WorldWideScience

Sample records for cord blood-derived mesenchymal

  1. Improved isolation protocol for equine cord blood-derived mesenchymal stromal cells

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Thomsen, Preben Dybdahl; Betts, Dean H.

    2009-01-01

      BACKGROUND AIMS: A robust methodology for the isolation of cord blood-derived multipotent mesenchymal stromal cells (CB-MSCs) from fresh umbilical cord blood has not been reported in any species. The objective of this study was to improve the isolation procedure for equine CB-MSCs. METHODS: Pre-culture...... separation of red and white blood cells was done using either PrepaCyte?-EQ medium or Ficoll-Paque? PREMIUM density medium. Regular FBS and MSC-qualified FBS were compared for their ability to support the establishment of putative primary MSC colonies. RESULTS AND CONCLUSIONS: Our results indicate that Prepa...

  2. Human umbilical cord blood-derived mesenchymal stem cells promote regeneration of crush-injured rat sciatic nerves

    Institute of Scientific and Technical Information of China (English)

    Mi-Ae Sung; Jong-Ho Lee; Hun Jong Jung; Jung-Woo Lee; Jin-Yong Lee; Kang-Mi Pang; Sang Bae Yoo; Mohammad S. Alrashdan; Soung-Min Kim; Jeong Won Jahng

    2012-01-01

    Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 × 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchymal stem cells promote the functional recovery of crush-injured sciatic nerves.

  3. The therapeutic potential of human umbilical cord blood-derived mesenchymal stem cells in Alzheimer's disease.

    Science.gov (United States)

    Lee, Hyun Ju; Lee, Jong Kil; Lee, Hyun; Shin, Ji-woong; Carter, Janet E; Sakamoto, Toshiro; Jin, Hee Kyung; Bae, Jae-sung

    2010-08-30

    The neuropathological hallmarks of Alzheimer's disease (AD) include the presence of extracellular amyloid-beta peptide (Abeta) in the form of amyloid plaques in the brain parenchyma and neuronal loss. The mechanism associated with neuronal death by amyloid plaques is unclear but oxidative stress and glial activation has been implicated. Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) are being scrutinized as a potential therapeutic tool to prevent various neurodegenerative diseases including AD. However, the therapeutic impact of hUCB-MSCs in AD has not yet been reported. Here we undertook in vitro work to examine the potential impact of hUCB-MSCs treatment on neuronal loss using a paradigm of cultured hippocampal neurons treated with Abeta. We confirmed that hUCB-MSCs co-culture reduced the hippocampal apoptosis induced by Abeta treatment. Moreover, in an acute AD mouse model to directly test the efficacy of hUCB-MSCs treatment on AD-related cognitive and neuropathological outcomes, we demonstrated that markers of glial activation, oxidative stress and apoptosis levels were decreased in AD mouse brain. Interestingly, hUCB-MSCs treated AD mice demonstrated cognitive rescue with restoration of learning/memory function. These data suggest that hUCB-MSCs warrant further investigation as a potential therapeutic agent in AD.

  4. Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Contribute to Chondrogenesis in Coculture with Chondrocytes

    Directory of Open Access Journals (Sweden)

    Xingfu Li

    2016-01-01

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs have been shown as the most potential stem cell source for articular cartilage repair. In this study, we aimed to develop a method for long-term coculture of human articular chondrocytes (hACs and hUCB-MSCs at low density in vitro to determine if the low density of hACs could enhance the hUCB-MSC chondrogenic differentiation as well as to determine the optimal ratio of the two cell types. Also, we compared the difference between direct coculture and indirect coculture at low density. Monolayer cultures of hUCB-MSCs and hACs were investigated at different ratios, at direct cell-cell contact groups for 21 days. Compared to direct coculture, hUCB-MSCs and hACs indirect contact culture significantly increased type II collagen (COL2 and decreased type I collagen (COL1 protein expression levels. SRY-box 9 (SOX9 mRNA levels and protein expression were highest in indirect coculture. Overall, these results indicate that low density direct coculture induces fibrocartilage. However, indirect coculture in conditioned chondrocyte cell culture medium can increase expression of chondrogenic markers and induce hUCB-MSCs differentiation into mature chondrocytes. This work demonstrates that it is possible to promote chondrogenesis of hUCB-MSCs in combination with hACs, further supporting the concept of novel coculture strategies for tissue engineering.

  5. Human umbilical cord blood-derived mesenchymal stem cells promote vascular growth in vivo.

    Directory of Open Access Journals (Sweden)

    Santiago Roura

    Full Text Available Stem cell therapies are promising strategies to regenerate human injured tissues, including ischemic myocardium. Here, we examined the acquisition of properties associated with vascular growth by human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs, and whether they promoted vascular growth in vivo. UCBMSCs were induced in endothelial cell-specific growth medium (EGM-2 acquiring new cell markers, increased Ac-LDL uptake, and migratory capacity as assessed by qRT-PCR, Western blotting, indirect immunofluorescence, and invasion assays. Angiogenic and vasculogenic potentials could be anticipated by in vitro experiments showing self organization into Matrigel-mediated cell networks, and activation of circulating angiogenic-supportive myeloid cells. In mice, following subcutaneous co-injection with Matrigel, UCBMSCs modified to co-express bioluminescent (luciferases and fluorescent proteins were demonstrated to participate in the formation of new microvasculature connected with the host circulatory system. Response of UCBMSCs to ischemia was explored in a mouse model of acute myocardial infarction (MI. UCBMSCs transplanted using a fibrin patch survived 4 weeks post-implantation and organized into CD31(+network structures above the infarcted myocardium. MI-treated animals showed a reduced infarct scar and a larger vessel-occupied area in comparison with MI-control animals. Taken together, the presented results show that UCBMSCs can be induced in vitro to acquire angiogenic and vasculogenic properties and contribute to vascular growth in vivo.

  6. Good manufacturing practice-compliant isolation and culture of human umbilical cord blood-derived mesenchymal stem cells

    OpenAIRE

    Van Pham, Phuc; Vu, Ngoc Bich; Pham, Vuong Minh; Truong, Nhung Hai; Pham, Truc Le-Buu; Dang, Loan Thi-Tung; Nguyen, Tam Thanh; Bui, Anh Nguyen-Tu; Phan, Ngoc Kim

    2014-01-01

    Background Mesenchymal stem cells (MSCs) are an attractive source of stem cells for clinical applications. These cells exhibit a multilineage differentiation potential and strong capacity for immune modulation. Thus, MSCs are widely used in cell therapy, tissue engineering, and immunotherapy. Because of important advantages, umbilical cord blood-derived MSCs (UCB-MSCs) have attracted interest for some time. However, the applications of UCB-MSCs are limited by the small number of recoverable U...

  7. Production of good manufacturing practice-grade human umbilical cord blood-derived mesenchymal stem cells for therapeutic use.

    Science.gov (United States)

    Van Pham, Phuc; Phan, Ngoc Kim

    2015-01-01

    Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are multipotent stem cells that can be differentiated into several specific cell types such as adipocytes, osteoblasts, and chondroblasts. They also were demonstrated to trans-differentiate into other cell lineages such as muscle cells and neurons. Thus, they are considered a promising stem cell source for therapeutic use. Here, we describe a method for production of good manufacturing practice-grade human UCB-MSCs for therapeutic use. The obtained UCB-MSCs are free of allogenous or xenogenous proteins. In addition, these MSCs could maintain the MSC phenotype in long-term culture.

  8. Factors inducing human umbilical cord blood-derived mesenchymal stem cells to differentiate into neuron-like cells

    Institute of Scientific and Technical Information of China (English)

    Nawei Zhang; Fengqing Ji

    2006-01-01

    OBJECTIVE:Human umbilical cord blood-derived mesenchymal stem cells (HUCB-derived MSCs)can differentiate into neuron-like cells,which can be used to treat some central nervous system(CNS)diseases.To investigate the factors,which can induce HUCB-derived MSCs to differentiate into neuron-like cells,so as to find effective methods for future clinical application.DATA SOURCES:Using the key terms"human umbilical cord blood"combined with"mesenchymal stem cells,neuron-like cells,neural cells"respectively,the relevant articles in English published during the period from January 1999 to June 2006 were searched from the Medline database.Meanwhile,relevant Chinese articles published from January 1999 to June 2006 were searched Using the same key terms.STUDY SELECTION: All articles associated with the differentiation from human umbilical cord blood into neuron-like cells were selected firstly.Then the full texts were looked up by searchling Ovid medical Journals full-text database and Elsevier Electrical Journals Full-text Database.Articles with full expeiments,enrolled in inducible factors or involved inducible mechanism were retdeved.DATA EXTRACTION:Among 119 collected correlative articles,29 were involved and 90 were excluded.DATA SYNTHESIS:The inducible factors of HUCB-derived MSCs differentiatling into neuron-like cells included renal endothelial growth factors,fibroblasts,β-mercaptoethanol,dimethyl sulfoxide,butyl hydroxyl anisol,brain-derived neurotrophic factor,Danshen,retinoic acid,sodium ferulate and so on,but its mechanism was unclear.CONCLUSION:Human umbilical cord blood-derived MSCs can differentiate into neuron-like cells,with varied inductors.

  9. Impact of Umbilical Cord Blood-Derived Mesenchymal Stem Cells on Cardiovascular Research

    Directory of Open Access Journals (Sweden)

    Santiago Roura

    2015-01-01

    Full Text Available Over the years, cell therapy has become an exciting opportunity to treat human diseases. Early enthusiasm using adult stem cell sources has been tempered in light of preliminary benefits in patients. Considerable efforts have been dedicated, therefore, to explore alternative cells such as those extracted from umbilical cord blood (UCB. In line, UCB banking has become a popular possibility to preserve potentially life-saving cells that are usually discarded after birth, and the number of UCB banks has grown worldwide. Thus, a brief overview on the categories of UCB banks as well as the properties, challenges, and impact of UCB-derived mesenchymal stem cells (MSCs on the area of cardiovascular research is presented. Taken together, the experience recounted here shows that UCBMSCs are envisioned as attractive therapeutic candidates against human disorders arising and/or progressing with vascular deficit.

  10. Impact of Umbilical Cord Blood-Derived Mesenchymal Stem Cells on Cardiovascular Research

    Science.gov (United States)

    Roura, Santiago; Pujal, Josep Maria; Gálvez-Montón, Carolina; Bayes-Genis, Antoni

    2015-01-01

    Over the years, cell therapy has become an exciting opportunity to treat human diseases. Early enthusiasm using adult stem cell sources has been tempered in light of preliminary benefits in patients. Considerable efforts have been dedicated, therefore, to explore alternative cells such as those extracted from umbilical cord blood (UCB). In line, UCB banking has become a popular possibility to preserve potentially life-saving cells that are usually discarded after birth, and the number of UCB banks has grown worldwide. Thus, a brief overview on the categories of UCB banks as well as the properties, challenges, and impact of UCB-derived mesenchymal stem cells (MSCs) on the area of cardiovascular research is presented. Taken together, the experience recounted here shows that UCBMSCs are envisioned as attractive therapeutic candidates against human disorders arising and/or progressing with vascular deficit. PMID:25861654

  11. Sustained expression of coagulation factor IX by modified cord blood-derived mesenchymal stromal cells.

    Science.gov (United States)

    Dodd, Megan; Marquez-Curtis, Leah; Janowska-Wieczorek, Anna; Hortelano, Gonzalo

    2014-01-01

    Hemophilia B patients are subject to frequent and spontaneous bleeding caused by a deficiency of clotting factor IX (FIX). Mesenchymal stromal cells (MSCs) have been used in cellular therapies as a result of their immunomodulatory properties, the ability to home to sites of injury and their amenability to various ex vivo modifications, including lentiviral-mediated gene transfer. MSCs were isolated from human umbilical cord blood and differentiated into adipogenic, chondrogenic and osteogenic lineages. A lentiviral DNA vector containing the human FIX gene was generated using traditional restriction enzyme digest and ligation techniques to generate viable replication-incompetent lentiviral particles that were used to transduce MSCs. Quantitative measurement of FIX expression was conducted using an enzyme-linked immunosorbent assay. The over-expression of FIX was sustained in vitro at levels > 4 µg/10(6) cells/24 h and FIX coagulant activity was > 2.5 mIU/10(6) cells/24 h for the 6-week duration of study. Lentiviral modification of cells with a multiplicity of infection of 10 did not adversely affect the potential of cord blood (CB) MSCs to differentiate to adipocytes, chondrocytes and osteoblastic cells, and the expression of functional FIX was sustained after differentiation and was similar to that in nondifferentiated cells. Modification of human CB MSCs with a lentiviral vector resulted in sustained high FIX expression in vitro after differentiation to adipogenic, chondrogenic and osteoblastic cells. These modified MSCs could have applications in cellular therapies for hemophilia B. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Distribution of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in canines after intracerebroventricular injection.

    Science.gov (United States)

    Park, Sang Eon; Jung, Na-Yeon; Lee, Na Kyung; Lee, Jeongmin; Hyung, Brian; Myeong, Su Hyeon; Kim, Hyeong Seop; Suh, Yeon-Lim; Lee, Jung-Il; Cho, Kyung Rae; Kim, Do Hyung; Choi, Soo Jin; Chang, Jong Wook; Na, Duk L

    2016-11-01

    In this study, we investigated the distribution of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) administered via intracerebroventricular (ICV) injection in a canine model. Ten beagles (11-13 kg per beagle) each received an injection of 1 × 10(6) cells into the right lateral ventricle and were sacrificed 7 days after administration. Based on immunohistochemical analysis, hUCB-MSCs were observed in the brain parenchyma, especially along the lateral ventricular walls. Detected as far as 3.5 mm from the cortical surface, these cells migrated from the lateral ventricle toward the cortex. We also observed hUCB-MSCs in the hippocampus and the cervical spinal cord. According to real-time polymerase chain reaction results, most of the hUCB-MSCs were found distributed in the brain and the cervical spinal cord but not in the lungs, heart, kidneys, spleen, and liver. ICV administered hUCB-MSCs also enhanced the endogenous neural stem cell population in the subventricular zone. These results highlighted the ICV delivery route as an optimal route to be performed in stem cell-based clinical therapies for neurodegenerative diseases.

  13. Human umbilical cord blood derived mesenchymal stem cells were differentiated into pancreatic endocrine cell by Pdx-1 electrotransfer

    Directory of Open Access Journals (Sweden)

    Phuoc Thi-My Nguyen

    2014-02-01

    Full Text Available Diabetes mellitus type 1 is an autoimmune disease with high incidence in adolescents and young adults. A seductive approach overcomes normally obstacles treatment is cell-replacement therapy to endogenous insulin production. At the present, to get enough pancreatic endocrine cells (PECs in cell transplantation, differentiation of mesenchymal stem cells (MSCs into IPCs is an interesting and promising strategy. This study aimed to orient umbilical cord blood-derived MSCs (UCB-MSCs to PECs by Pdx-1 electrotransfer. UCB-MSCs were isolated from human umbilical cord blood according to published protocol. Pdx-1 was isolated and cloned into a plasmid vector. Optimal voltage of an electrotransfer was investigated to improve the cell viability and gene transfection efficacy. The results showed that 200V of the electrotransfer significantly increased in the efficiency of electrotransfer and survival cells compared with other high voltages (350V and 550V. Pdx-1 successfully transfected UCB-MSCs over-expressed pancreatic related genes as Ngn3, Nkx6.1. These results suggested that Pdx-1 transfected UCB-MSCs were successfully oriented PECs. Different to lentiviral vectors, electrotransfer is a safer method to transfer Pdx-1 to UCB-MSCs and a useful tool in translational research. [Biomed Res Ther 2014; 1(2.000: 50-56

  14. Cartilage repair by human umbilical cord blood-derived mesenchymal stem cells with different hydrogels in a rat model.

    Science.gov (United States)

    Park, Yong-Beom; Song, Minjung; Lee, Choong-Hee; Kim, Jin-A; Ha, Chul-Won

    2015-11-01

    This study was carried out to assess the feasibility of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) in articular cartilage repair and to further determine a suitable delivering hydrogel in a rat model. Critical sized full thickness cartilage defects were created. The hUCB-MSCs and three different hydrogel composites (hydrogel A; 4% hyaluronic acid/30% pluronic (1:1, v/v), hydrogel B; 4% hyaluronic acid, and hydrogel C; 4% hyaluronic acid/30% pluronic/chitosan (1:1:2, v/v)) were implanted into the experimental knee (right knee) and hydrogels without hUCB-MSCs were implanted into the control knee (left knee). Defects were evaluated after 8 weeks. The hUCB-MSCs with hydrogels composites resulted in a better repair as seen by gross and histological evaluation compared with hydrogels without hUCB-MSCs. Among the three different hydrogels, the 4% hyaluronic acid hydrogel composite (hydrogel B) showed the best result in cartilage repair as seen by the histological evaluation compared with the other hydrogel composites (hydrogel A and C). The results of this study suggest that hUCB-MSCs may be a promising cell source in combination with 4% hyaluronic acid hydrogels in the in vivo repair of cartilage defects.

  15. Conditioned Media from Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibits Melanogenesis by Promoting Proteasomal Degradation of MITF.

    Directory of Open Access Journals (Sweden)

    Eun Sung Kim

    Full Text Available Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs secrete various beneficial molecules, which have anti-apoptotic activity and cell proliferation. However, the effect of hUCB-MSCs in melanogenesis is largely unclear. In this study, we show that conditioned media (CM derived from hUCB-MSCs inhibit melanogenesis by regulating microphthalmia-associated transcription factor (MITF expression via the ERK signalling pathway. Treatment of hUCB-MSC-CM strongly inhibited the alpha-melanocyte stimulating hormone-induced hyperpigmentation in melanoma cells as well as melanocytes. Treatment of hUCB-MSC-CM induced ERK1/2 activation in melanocytes. In addition, inhibition of ERK1/2 suppressed the anti-pigmentation activity of the hUCB-MSC-CM in melanocytes and in vitro artificial skin models. We also found that the expression of MITF was appreciably diminished while expression of phosphorylated MITF, which leads to its proteasomal degradation, was increased in cells treated with hUCB-MSC-CM. These results suggested that hUCB-MSC-CM significantly suppresses melanin synthesis via MITF degradation by the ERK pathway activation.

  16. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Miyoung; Jeong, Sang Young; Ha, Jueun; Kim, Miyeon; Jin, Hye Jin; Kwon, Soon-Jae [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Chang, Jong Wook [Research Institute for Future Medicine Stem Cell and Regenerative Medicine Center, Samsung Medical Center, Seoul 137-710 (Korea, Republic of); Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of); Kim, Jae-Sung [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 139-709 (Korea, Republic of); Jeon, Hong Bae, E-mail: jhb@medi-post.co.kr [Biomedical Research Institute, MEDIPOST Co., Ltd, Seoul 137-874 (Korea, Republic of)

    2014-04-18

    Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.

  17. Electrophysiological characterisation of human umbilical cord blood-derived mesenchymal stem cells induced by olfactory ensheathing cell-conditioned medium.

    Science.gov (United States)

    Zeng, Yu; Rong, Mingqiang; Liu, Yunsheng; Liu, Jingfang; Lu, Ming; Tao, Xiaoyu; Li, Zhenyan; Chen, Xin; Yang, Kui; Li, Chuntao; Liu, Zhixiong

    2013-12-01

    Umbilical cord blood-derived marrow stromal cells (UCB-MSCs) with high proliferation capacity and immunomodulatory properties are considered to be a good candidate for cell-based therapies. But until now, little work has been focused on the differentiation of UCB-MSCs. In this work, UCB-MSCs were demonstrated to be negative for CD34 and CD45 expression but positive for CD90 and CD105 expression. The gate values of UCB-MSCs for CD90 and CD105 were 99.3 and 98.6 %, respectively. Two weeks after treatment, the percentage of neuron-like cells differentiated from UCB-MSCs was increased to 84 ± 12 % in the experimental group [treated with olfactory ensheathing cells (OECs)-conditioned medium] and they were neuron-specific enolase positive; few neuron-like cells were found in the control group (without OECs-conditioned medium). Using whole-cell recording, sodium and potassium currents were recorded in UCB-MSCs after differentiation by OECs. Thus, human UCB-MSCs could be differentiated to neural cells by secreted secretion from OECs and exhibited electrophysiological properties similar to mature neurons after 2 weeks post-induction. These results imply that OECs can be used as a new strategy for stem cell differentiation and provide an alternative neurogenesis pathway for generating sufficient numbers of neural cells for cell therapy.

  18. Therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells on the radiation-induced GI syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Se Hwan; Jang, Won Suk; Lee, Sun Joo; Park, Eun Young; Kim, Youn Joo; Jin, Sung Ho; Park, Sun Hoo; Lee, Seung Sook [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2011-05-15

    The gastrointestinal (GI) tract is one of the most radiosensitive organ systems in the body. Radiation-induced GI injury is described as destruction of crypt cell, decrease in villous height and number, ulceration, and necrosis of intestinal epithelium. Studies show that mesenchymal stem cells (MSCs) treatment may be useful in the repair or regeneration of damaged organs including bone, cartilage, or myocardium. MSCs from umbilical cord blood (UCB) have many advantages because of the immature nature of newborn cells compared to bone marrow derived MSCs. Moreover, UCB-MSCs provide no ethical barriers for basic studies and clinical applications. In this study, we explore the regeneration capability of human UCB-MSCs after radiation-induced GI injury

  19. Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells.

    Science.gov (United States)

    Phuc, Pham Van; Nhung, Truong Hai; Loan, Dang Thi Tung; Chung, Doan Chinh; Ngoc, Phan Kim

    2011-01-01

    Umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are multipotent cells. They are able to differentiate into functional cells from not only mesoderm but also endoderm. Many researches showed that cells derived from fresh human UCB could transdifferentiate into insulin-secreting cells. In this study, transdifferentiating potential of cryopreserved human UCB-derived MSCs into insulin-secreting cell was investigated. Fresh human UCB was enriched the mononuclear cells by Ficoll-Paque centrifugation. The mononuclear cell population was cryopreserved in cryo-medium containing Iscove's modified Dulbecco's media (IMDM) with 10% DMSO at -196°C for 1 yr. After thawing, mononuclear cells were cultured to isolate MSCs in medium IMDM with 20% FBS supplemented with growth factors. At the fifth passages, MSCs were confirmed by flow cytometry about expression of CD13, CD14, CD34, CD45, CD166, and HLA-DR markers; after that, they were induced to differentiate into adipocytes and osteoblasts. After inducing with specific medium for islet differentiation, there were many clusters of cell like islet at day 14-28. Using real-time reverse transcription polymerase chain reaction (RT-PCR) to analyze the expression of functional genes, the result showed that Nestin, Pdx-1, Ngn3, Ils-1, Pax6, Pax4, Nkx2.2, Nkx6.1, Glut-2, Insulin genes expressed. The results showed that MSCs derived from banked cord blood can differentiate into functional pancreatic islet-like cells in vitro. If human MSCs, especially MSCs from banked cord blood of diabetes patients themselves can be isolated, proliferated, differentiated into functional pancreatic islet-like cells, and transplanted back into them (autologous transplantation), their high-proliferation potency and rejection avoidance will provide one promising therapy for diabetes.

  20. Human umbilical cord blood-derived mesenchymal stromal cells display a novel interaction between P-selectin and galectin-1.

    Science.gov (United States)

    Suila, H; Hirvonen, T; Kotovuori, A; Ritamo, I; Kerkelä, E; Anderson, H; Natunen, S; Tuimala, J; Laitinen, S; Nystedt, J; Räbinä, J; Valmu, L

    2014-07-01

    Human multipotent mesenchymal stromal/stem cells (MSCs) have been shown to exert immunomodulatory properties that have great potential in therapies for various inflammatory and autoimmune disorders. However, intravenous delivery of these cells is followed by massive cell entrapment in the lungs and insufficient homing to target tissues or organs. In targeting to tissues, MSCs and other therapeutic cells employ similar mechanisms as leucocytes, including a cascade of rolling and adhesion steps mediated by selectins, integrins and their ligands. However, the mechanisms of MSCs homing are not well understood. We discovered that P-selectin (CD62P) binds to umbilical cord blood (UCB)-derived MSCs independently of the previously known sialyl Lewis x (sLex)-containing ligands such as P-selectin glycoprotein ligand-1 (PSGL-1, CD162). By biochemical assays, we identified galectin-1 as a novel ligand for P-selectin. Galectin-1 has previously been shown to be a key mediator of the immunosuppressive effects of human MSCs. We conclude that this novel interaction is likely to play a major role in the immunomodulatory targeting of human UCB-derived MSCs.

  1. Distribution of human umbilical cord blood-derived mesenchymal stem cells in the Alzheimer's disease transgenic mouse after a single intravenous injection.

    Science.gov (United States)

    Park, Sang Eon; Lee, Na Kyung; Lee, Jeongmin; Hwang, Jung Won; Choi, Soo Jin; Hwang, Hyeri; Hyung, Brian; Chang, Jong Wook; Na, Duk L

    2016-03-02

    The aim of this study was to track the migration of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) administered through a single intravenous injection and to observe the consequential therapeutic effects in a transgenic Alzheimer's disease mouse model. Ten-month-old APP/PS1 mice received a total injection of 1×10 cells through the lateral tail vein and were killed 1, 4, and 7 days after administration. On the basis of immunohistochemical analysis, hUCB-MSCs were not detected in the brain at any of the time points. Instead, most of the injected mesenchymal stem cells were found to be distributed in the lung, heart, and liver. In terms of the molecular effects, statistically significant differences in the amyloid β protein, neprilysin, and SOX2 levels were not observed among the groups. On the basis of the results from this study, we suggest that single intravenously administered hUCB-MSCs are not delivered to the brain and also do not have a significant influence on Alzheimer's disease pathology.

  2. Delivery of the Sox9 gene promotes chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells in an in vitro model

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Li, X.L. [Department of Dermatology, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); He, X.J. [Department of Orthopedics, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Wu, B.J.; Xu, M. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Chang, H.M. [Department of Otolaryngology - Head and Neck Surgery, Affiliated Hospital of Xi' an Medical University, Xi' an (China); Zhang, X.H. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China); Xing, Z. [Department of Clinical Dentistry, Faculty of Dentistry, Center for Clinical Dental Research, University of Bergen, Bergen (Norway); Jing, X.H.; Kong, D.M.; Kou, X.H.; Yang, Y.Y. [Department of Otolaryngology - Head and Neck Surgery, The Second Hospital, Xi' an Jiaotong University, Xi' an (China)

    2014-03-18

    SRY-related high-mobility-group box 9 (Sox9) gene is a cartilage-specific transcription factor that plays essential roles in chondrocyte differentiation and cartilage formation. The aim of this study was to investigate the feasibility of genetic delivery of Sox9 to enhance chondrogenic differentiation of human umbilical cord blood-derived mesenchymal stem cells (hUC-MSCs). After they were isolated from human umbilical cord blood within 24 h after delivery of neonates, hUC-MSCs were untreated or transfected with a human Sox9-expressing plasmid or an empty vector. The cells were assessed for morphology and chondrogenic differentiation. The isolated cells with a fibroblast-like morphology in monolayer culture were positive for the MSC markers CD44, CD105, CD73, and CD90, but negative for the differentiation markers CD34, CD45, CD19, CD14, or major histocompatibility complex class II. Sox9 overexpression induced accumulation of sulfated proteoglycans, without altering the cellular morphology. Immunocytochemistry demonstrated that genetic delivery of Sox9 markedly enhanced the expression of aggrecan and type II collagen in hUC-MSCs compared with empty vector-transfected counterparts. Reverse transcription-polymerase chain reaction analysis further confirmed the elevation of aggrecan and type II collagen at the mRNA level in Sox9-transfected cells. Taken together, short-term Sox9 overexpression facilitates chondrogenesis of hUC-MSCs and may thus have potential implications in cartilage tissue engineering.

  3. Human umbilical cord blood-derived mesenchymal stem cells improve neuropathology and cognitive impairment in an Alzheimer's disease mouse model through modulation of neuroinflammation.

    Science.gov (United States)

    Lee, Hyun Ju; Lee, Jong Kil; Lee, Hyun; Carter, Janet E; Chang, Jong Wook; Oh, Wonil; Yang, Yoon Sun; Suh, Jun-Gyo; Lee, Byoung-Hee; Jin, Hee Kyung; Bae, Jae-Sung

    2012-03-01

    Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSC) have a potential therapeutic role in the treatment of neurological disorders, but their current clinical usage and mechanism of action has yet to be ascertained in Alzheimer's disease (AD). Here we report that hUCB-MSC transplantation into amyloid precursor protein (APP) and presenilin1 (PS1) double-transgenic mice significantly improved spatial learning and memory decline. Furthermore, amyloid-β peptide (Aβ) deposition, β-secretase 1 (BACE-1) levels, and tau hyperphosphorylation were dramatically reduced in hUCB-MSC transplanted APP/PS1 mice. Interestingly, these effects were associated with reversal of disease-associated microglial neuroinflammation, as evidenced by decreased microglia-induced proinflammatory cytokines, elevated alternatively activated microglia, and increased anti-inflammatory cytokines. These findings lead us to suggest that hUCB-MSC produced their sustained neuroprotective effect by inducing a feed-forward loop involving alternative activation of microglial neuroinflammation, thereby ameliorating disease pathophysiology and reversing the cognitive decline associated with Aβ deposition in AD mice.

  4. Inhibition by miR-410 facilitates direct retinal pigment epithelium differentiation of umbilical cord blood-derived mesenchymal stem cells

    Science.gov (United States)

    Choi, Soon Won; Kim, Jae-Jun; Seo, Min-Soo; Park, Sang-Bum; Shin, Tae-Hoon; Shin, Ji-Hee; Seo, Yoojin; Kim, Hyung-Sik

    2017-01-01

    Retinal pigment epithelium (RPE) is a major component of the eye. This highly specialized cell type facilitates maintenance of the visual system. Because RPE loss induces an irreversible visual impairment, RPE generation techniques have recently been investigated as a potential therapeutic approach to RPE degeneration. The microRNA-based technique is a new strategy for producing RPE cells from adult stem cell sources. Previously, we identified that antisense microRNA-410 (anti-miR-410) induces RPE differentiation from amniotic epithelial stem cells. In this study, we investigated RPE differentiation from umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) via anti-miR-410 treatment. We identified miR-410 as a RPE-relevant microRNA in UCB-MSCs from among 21 putative human RPE-depleted microRNAs. Inhibition of miR-410 induces overexpression of immature and mature RPE-specific factors, including MITF, LRAT, RPE65, Bestrophin, and EMMPRIN. The RPE-induced cells were able to phagocytize microbeads. Results of our microRNA-based strategy demonstrated proof-of-principle for RPE differentiation in UCB-MSCs by using anti-miR-410 treatment without the use of additional factors or exogenous transduction. PMID:27297412

  5. Immunoregulation and human umbilical cord blood-derived mesenchymal stem cells transplantation%脐血间充质干细胞移植与免疫调节

    Institute of Scientific and Technical Information of China (English)

    焦保良; 王景川; 高炳华; 王新生

    2012-01-01

    BACKGROUND: Research in recent years suggests that the self-renewal and multi-directional differentiation potency of human umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) offer basic condition to cell transplantation treatment. Moreover, their immunoloregulation function enormously expands the direction and limits cell transplantation treatment. OBJECTIVE: To retrospectively analyze the immunoloregulation and human UCB-MSCs transplantation. METHODS: The key word "umbilical cord blood-derived mesenchymal stem cells" was used to search in Pubmed database and CNKI database from January 2008 to June 2011 in English and Chinese using computer. The preliminary screening was made through reading the title and abstract. The articles with unrelated contents, repetitive and Meta analysis were excluded. 30 papers of pertinent literature to be published in the near future or published in the authority magazine were selected to review. RESULTS AND CONCLUSION: Human UCB-MSCs have the similar self-renewal and multi-directional differentiation potency with the bone marrow derived mesenchymal stem cells. Through cell transplantation technique, human UCB-MSCs show powerful potentiality in diabetes mellitus treatment, neural degeneration disease like Alzheimer's disease and Parkinson's disease and injury of nerve retreatment. Meanwhile, human UCB-MSCs have immunoregulatory ettects, they can lower immune reaction through down regulation of T-cells. We also get some advancements on several immunological diseases such as cell therapy of graft versus host disease and lupus nephritis.%背景:近年研究显示,脐血间充质干细胞的自我更新和多向分化潜能为细胞移植治疗提供了基础条件,而其免疫调节功能也极大地拓展了细胞治疗的方向和范围. 目的:就近期脐血间充质干细胞的免疫调节和细胞移植研究进行回顾分析. 摘要进行初筛,排除研究内容与此文无关的文献、重复性研究及Meta分析,

  6. Osteogenic potential of human umbilical cord-derived mesenchymal stromal cells cultured with umbilical cord blood-derived fibrin: a preliminary study.

    Science.gov (United States)

    Baba, Kyoko; Yamazaki, Yasuharu; Ishiguro, Masashi; Kumazawa, Kenichi; Aoyagi, Kazuya; Ikemoto, Shigehiro; Takeda, Akira; Uchinuma, Eiju

    2013-12-01

    This study examined the potential for osteogenesis via regenerative medicine using autologous tissues (umbilical cord (UC) and umbilical cord blood (UCB)) in nude mice. The study was designed to provide the three elements required for regenerative medicine (cell, scaffold, and growth factor) and autoserum for culture by means of autologous tissues. Mesenchymal stromal cells were obtained from UC (UC-MSCs). Fibrin, platelet-rich-plasma, and autoserum were obtained from UCB as scaffold, growth factor and serum for culture respectively. UC-MSCs were obtained from Wharton jelly and cultured with UCB-derived fibrin (UCB-fibrin) for 3-4 weeks to induce their differentiation into osteoblasts. They were implanted subcutaneously into the dorsum of male nude mice for 6 weeks prior to undergoing assessment. The assessments performed were haematoxylin and eosin, and alizarin red staining, immunohistochemical staining of human mitochondria, scanning electron microscopy, scanning electron microscopy with energy dispersive X-ray spectrometry and real-time reverse transcriptase-polymerase chain reaction to assess the expressions of osteoblast markers. Consequently, the differentiation of UC-MSCs into osteoblasts and the production of hydroxyapatite were verified. This study suggested the possible formation of bone tissue using biomedical materials obtained from UC and UCB.

  7. Response to intravenous allogeneic equine cord-blood-derived mesenchymal stromal cells administered from chilled or frozen state in serum and protein free media

    Directory of Open Access Journals (Sweden)

    Lynn Brandon Williams

    2016-07-01

    Full Text Available Equine Mesenchymal stromal cells (MSC are commonly transported, chilled or frozen, to veterinary clinics. These MSC must remain viable and minimally affected by culture, transport, or injection processes. The safety of two carrier solutions developed for optimal viability and excipient use were evaluated in ponies, with and without allogeneic cord blood-derived (CB MSC. We hypothesized that neither the carrier solutions nor CB-MSC would elicit measurable changes in clinical, hematological, or biochemical parameters. In 9 ponies (study 1 a bolus of HypoThermosol® FRS (HTS-FRS, CryoStor® CS10 (CS10 or saline was injected IV (n=3/treatment. Study 2, following a one week washout period 5x107 pooled allogeneic CB-MSC were administered IV in HTS-FRS following 24h simulated chilled transport. Study 3, following another one week washout period 5x107 pooled allogeneic CB-MSC were administered IV in CS10 immediately after thawing. Nine ponies received CB-MSCs in study 2 and 3 and three ponies received the cell carrier media without cells. CB-MSCs were pooled in equal numbers from five unrelated donors. In all studies ponies were monitored with physical examination, and blood collection for 7 days following injection. CD4 and CD8 lymphocyte populations were also evaluated in each blood sample.In all three studies, physical exam, complete blood cell count, serum biochemistry, and coagulation panel did not deviate from established normal ranges. Proportions of CD4+ and CD8+ lymphocytes increased at 168h post injection in CB-MSC treatment groups regardless of the carrier solution. Decreases in CD4+/CD8+ double positive populations were observed at 24 h and 72 h in CB-MSC treated animals. There was no difference in viability between CB-MSC suspended in HTS-FRS or CS10.HTS-FRS and CS10 used for low volume excipient injection of MSC suspensions was not associated with short-term adverse reactions. HTS-FRS and CS10 both adequately maintain CB-MSC viability

  8. Optimal Route for Human Umbilical Cord Blood-Derived Mesenchymal Stem Cell Transplantation to Protect Against Neonatal Hyperoxic Lung Injury: Gene Expression Profiles and Histopathology.

    Directory of Open Access Journals (Sweden)

    Dong Kyung Sung

    Full Text Available The aim of this study was to determine the optimal route of mesenchymal stem cell (MSC transplantation. To this end, gene expression profiling was performed to compare the effects of intratracheal (i.t. versus intravenous (i.v. MSC administration. Furthermore, the therapeutic efficacy of each route to protect against neonatal hyperoxic lung injury was also determined. Newborn Sprague-Dawley rats were exposed to hyperoxia (90% oxygen from birth for 14 days. Human umbilical cord blood-derived MSCs labeling with PKH26 were transplanted through either the i.t. (5×10(5 or i.v. (2×10(6 route at postnatal day (P 5. At P14, lungs were harvested for histological, biochemical and microarray analyses. Hyperoxic conditions induced an increase in the mean linear intercept and mean alveolar volume (MAV, indicative of impaired alveolarization. The number of ED-1 positive cells was significantly decreased by both i.t. and i.v. transplantations. However, i.t. administration of MSCs resulted in a greater decrease in MAV and ED-1 positive cells compared to i.v. administration. Moreover, the number of TUNEL-positive cells was significantly decreased in the i.t. group, but not in the i.v. group. Although the i.t. group received only one fourth of the number of MSCs that the i.v. group did, a significantly higher number of donor cell-derived red PKH 26 positivity were recovered in the i.t. group. Hyperoxic conditions induced the up regulation of genes associated with the inflammatory response, such as macrophage inflammatory protein-1 α, tumor necrosis factor-α and inter leukin-6; genes associated with cell death, such as p53 and caspases; and genes associated with fibrosis, such as connective tissue growth factor. In contrast, hyperoxic conditions induced the dwon-regulation of vascular endothelial growth factor and hepatocyte growth factor. These hyperoxia-induced changes in gene expression were decreased in the i.t. group, but not in the i.v. group. Thus

  9. Notch signaling: a novel regulating differentiation mechanism of human umbilical cord blood-derived mesenchymal stem cells into insulin-producing cells in vitro

    Institute of Scientific and Technical Information of China (English)

    HU Yan-hua; WU De-quan; GAO Feng; LI Guo-dong; ZHANG Xin-chen

    2010-01-01

    Background Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) could be induced to differentiate into insulin producing cells (IPCs) in vitro, which have good application potential in the cell replacement treatment of type-1 diabetes. However, the mechanisms regulating this differentiation have remained largely unknown. Notch signaling is critical in cell differentiation. This study investigated whether Notch signaling could regulate the IPCs differentiation of human UCB-MSCs. Methods Using an interfering Notch signaling protocol in vitro, we studied the role of Notch signaling in differentiation of human UCB-MSCs into IPCs. In a control group the induction took place without interfering Notch signaling. Results Human UCB-MSCs expressed the genes of Notch receptors (Notch 1 and Notch 2) and ligands (Jagged 1 and Deltalike 1). Human UCB-MSCs with over-expressing Notch signaling in differentiation resulted in the down-regulation of insulin gene level, proinsulin protein expression, and insulin-positive cells percentage compared with the control group. These results showed that over-expressing Notch signaling inhibited IPCs differentiation. Conversely, when Notch signaling was attenuated by receptor inhibitor, the induced cells increased on average by 3.06-fold (n=4, P<0.001) in insulin gene level, 2.60-fold (n=3, P <0.02) in proinsulin protein expression, and 1.62-fold (n=6, P <0.001) in the rate of IPCs compared with the control group. Notch signaling inhibition significantly promoted IPCs differentiation with about 40% of human UCB-MSCs that converted to IPCs, but these IPCs were not responsive to glucose challenge very well both in vitro and in vivo. Hence, further research has to be carried out in the future. Conclusions Notch signaling may be an important mechanism regulating IPCs differentiation of human UCB-MSCs in vitro and Notch signaling inhibition may be an efficient way to increase the number of IPCs, which may resolve the shortage of

  10. Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells.

    Directory of Open Access Journals (Sweden)

    Murni Tio

    Full Text Available Mesenchymal stem cells (MSCs have multilineage differentiation potential which includes cell lineages of the central nervous system; hence MSCs might be useful in the treatment of neurodegenerative diseases such as Parkinson's disease. Although mesenchymal stem cells have been shown to differentiate into the neural lineage, there is still little knowledge about the underlying mechanisms of differentiation particularly towards specialized neurons such as dopaminergic neurons. Here, we show that MSCs derived from human umbilical cord blood (MSC(hUCBs are capable of expressing tyrosine hydroxylase (TH and Nurr1, markers typically associated with DA neurons. We also found differential phosphorylation of TH isoforms indicating the presence of post-translational mechanisms possibly activating and modifying TH in MSC(hUCB. Furthermore, functional dissection of components in the differentiation medium revealed that dibutyryl-cAMP (db-cAMP, 3-isobutyl-1-methylxanthine (IBMX and retinoic acid (RA are involved in the regulation of Nurr1 and Neurofilament-L expression as well as in the differential phosphorylation of TH. We also demonstrate a possible inhibitory role of the protein kinase A signaling pathway in the phosphorylation of specific TH isoforms.

  11. Human umbilical cord blood-derived mesenchymal stem cells do not differentiate into neural cell types or integrate into the retina after intravitreal grafting in neonatal rats.

    Science.gov (United States)

    Hill, Andrew J; Zwart, Isabel; Tam, Henry H; Chan, Jane; Navarrete, Cristina; Jen, Ling-Sun; Navarrete, Roberto

    2009-04-01

    This study investigated the ability of mesenchymal stem cells (MSCs) derived from full-term human umbilical cord blood to survive, integrate and differentiate after intravitreal grafting to the degenerating neonatal rat retina following intracranial optic tract lesion. MSCs survived for 1 week in the absence of immunosuppression. When host animals were treated with cyclosporin A and dexamethasone to suppress inflammatory and immune responses, donor cells survived for at least 3 weeks, and were able to spread and cover the entire vitreal surface of the host retina. However, MSCs did not significantly integrate into or migrate through the retina. They also maintained their human antigenicity, and no indication of neural differentiation was observed in retinas where retinal ganglion cells either underwent severe degeneration or were lost. These results have provided the first in vivo evidence that MSCs derived from human umbilical cord blood can survive for a significant period of time when the host rat response is suppressed even for a short period. These results, together with the observation of a lack of neuronal differentiation and integration of MSCs after intravitreal grafting, has raised an important question as to the potential use of MSCs for neural repair through the replacement of lost neurons in the mammalian retina and central nervous system.

  12. Mid-trimester fetal blood-derived adherent cells share characteristics similar to mesenchymal stem cells but full-term umbilical cord blood does not

    Institute of Scientific and Technical Information of China (English)

    MinjunYu; ZhifengXiao; LiShen; LingsongLi

    2005-01-01

    Stem cell transplantation is a promising treatment for many conditions.Although stem cells can be isolated from many tissues, blood is the ideal source of these cells due to the ease of collection. Mesenchymal stem cells (MSCs) have been paid increased attention because of their powerful proliferation and pluripotent differentiating ability. But whether MSCs reside in blood (newborn umbilical cord blood and fetal or adult peripheral blood) is also debatable. The present study showed that MSC-like cells could be isolated and expanded from 16-26 weeks fetal blood but were not acquired efficiently from full-term infants' umbilical cord blood (UCB). Adherent cells separated from postnatal UCB were heterogeneous in cell morphology. Their proliferation capacity was limited and they were mainly CD45+, which indicated their haematopoietic derivation. On the contrary, MSC-like cells shared a similar phenotype to bone marrow MSCs. They were CD34- CD45- CD44+ CD71+ CD90+ CD105+. They could be induced to differentiate into osteogenic, adipogenic and neural lineage cells. Single cell clones also showed similar phenotype and differentiation ability. Our results suggest that early fetal blood is rich in MSCs but term UCB is not.

  13. Effect of Single and Double Administration of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Following Focal Cerebral Ischemia in Rats

    Science.gov (United States)

    Park, Hyung Woo; Kim, Yona; Chang, Jong Wook; Yang, Yoon Sun; Oh, Wonil; Lee, Jae Min; Park, Hye Ran; Kim, Dong Gyu

    2017-01-01

    Stem cell therapies are administered during the acute phase of stroke to preserve the penumbral tissues from ischemic injury. However, the effect of repeated cell therapy during the acute phase remains unclear. In this study, we investigated and compared the functional outcome of single (two days post-injury) and repeated (two and nine days post-injury) treatment with human umbilical cord derived mesenchymal stem cells (hUCB-MSCs) after middle cerebral artery occlusion (MCAO). The rotarod and limb placement tests were utilized to investigate functional outcomes, while infarct volume and tissue damage were measured by immunofluorescent staining for neovascularization, neurogenesis, apoptosis, and inflammation in the penumbral zones. We observed notable motor dysfunction and a significant decrease in infarcted brain volume, as well as increases in neurons and vessels in both single and repeated hUCB-MSC treatments compared to the control group. Interestingly, repeated administration of hUCB-MSCs was not found to elicit additional or synergistic improvements over monotherapy. This study suggests that a clearer understanding of the therapeutic window after stroke will facilitate the development of more efficient treatment protocols in the clinical application of stem cell therapy. PMID:28243167

  14. Preliminary evaluation of treatment efficacy of umbilical cord blood-derived mesenchymal stem cell-differentiated cardiac pro-genitor cells in a myocardial injury mouse model

    Directory of Open Access Journals (Sweden)

    Truc Le-Buu Pham

    2015-12-01

    Full Text Available Recently, stem cell therapy has been investigated as a strategy to prevent or reverse damage to heart tissue. Although the results of cell transplantation in animal models and patients with myocardial ischemia are promising, the selection of the appropriate cell type remains an issue that requires consideration. In this study, we aimed to evaluate the effect of cardiac progenitor cell transplantation in a mouse model of myocardial ischemia. The cardiac progenitor cells used for transplantation were differentiated from umbilical cord blood mesenchymal stem cells. Animal models injected with phosphate-buffered saline (PBS and healthy mice were used as controls. Cell grafting was assessed by changes in blood pressure and histological evaluation. After 14 days of transplantation, the results demonstrated that the blood pressure of transplanted mice was stable, similar to healthy mice, whereas it fluctuated in PBS-injected mice. Histological analysis showed that heart tissue had regenerated in transplanted mice, but remained damaged in PBS-injected mice. Furthermore, trichrome staining revealed that the transplanted mice did not generate significant amount of scar tissue compared with PBS-injected control mice. In addition, the cardiac progenitor cells managed to survive and integrate with local cells in cell-injected heart tissue 14 days after transplantation. Most importantly, the transplanted cells did not exhibit tumorigenesis. In conclusion, cardiac progenitor cell transplantation produced a positive effect in a mouse model of myocardial ischemia. [Biomed Res Ther 2015; 2(12.000: 435-445

  15. Fibroblast growth factor-4 and hepatocyte growth factor induce differentiation of human umbilical cord blood-derived mesenchymal stem cells into hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Xin-Qin Kang; Wei-Jin Zang; Li-Jun Bao; Dong-Ling Li; Tu-Sheng Song; Xiao-Li Xu; Xiao-Jiang Yu

    2005-01-01

    AIM: To investigate the differentiation of human umbilical cord blood (HUCB)-derived mesenchymal stem cells (MSCs) into hepatocytes by induction of fibroblast growth factor-4 (FGF-4) and hepatocyte growth factor (HGF), and to find a new source of cell types for therapies of hepatic diseases.METHODS: vSCs were isolated by combining gradient density centrifugation with plastic adherence. When HUCB-derived MSCs reached 70% confluence, they were cultured in Iscove modified Dulbecco medium (IMDM) supplemented with 10 mL/L FBS, 20 ng/mL HGF and 10 ng/mL FGF-4. The medium was changed every 4 d and stored for albumin, alpha-fetoprotein (AFP) and urea assay. Expression of CK-18 was detected by immunocytochemistry. Glycogen storage in hepatocytes was determined by PAS staining.RESULTS: By combining gradient density centrifugation with plastic adherence, we could isolate MSCs from 25.6% of human umbilical cord blood. When MSCs were cultured with FGF-4 and HGF, approximately 63.6% of cells became small, round and epithelioid on d 28 by morphology. Compared with the control, the level of AFP increased significantly from d 12 to 18.20±1.16 μg/L (t = 2.884, P<0.05) in MSCs cultured with FGF-4 and HGF, and was higher (54.28±3.11 μg/L) on d 28 (t = 13.493, P<0.01). Albumin increased significantly on d 16 (t = 6.68, P<0.01) to 1.02±0.15 μg/mL, and to 3.63±0.30 μg/mL on d 28 (t = 11.748, P<0.01). Urea(4.72±1.03 μmol/L) was detected on d 20 (t = 4.272,P<0.01), and continued to increase to 10.28±1.06 μmol/L on d 28 (t = 9.276, P<0.01). Cells expressed CK-18 on d 16. Glycogen storage was observed on d 24. CONCLUSION: HUCB-derived MSCs can differentiate into hepatocytes by induction of FGF-4 and HGF. HUCBderived MSCs are a new source of cell types for cell transplantation therapy of hepatic diseases.

  16. Extracellular matrix gel is necessary for in vitro cultivation of insulin producing cells from human umbilical cord blood derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    GAO Feng; WU De-quan; HU Yan-hua; JIN Guang-xin

    2008-01-01

    Background Pancreatic islet cell transplantation is an effective approach to treat type 1 diabetes. However, this therapy is not widely used because of the severe shortage of transplantable donor islets. This study investigated whether mesenchymal stem cells (MSCs) derived from human umbilical cord blood (UCB) could be transdifferentiated into insulin producing cells in vitro and the role of extracellular matrix (ECM) gel in this procedure.Methods Human UCB samples were collected and MSCs were isolated. MSCs specific marker proteins were analyzed by a flow cytometer. The capacities of osteoblast and adipocyte to differentiate were tested. Differentiation into islet like cell was induced by a 15-day protocol with or without ECM gel. Pancreatic characteristics were evaluated with immunofluorescence, reverse transcription polymerase chain reaction (RT-PCR) and flow cytometry. Insulin content and release in response to glucose stimulation were detected with chemiluminescent immunoassay system.Results Sixteen MSCs were isolated from 42 term human UCB units (38%). Human UCB-MSCs expressed MSCs specific markers and could be induced in vitro into osteoblast and adipocyte. Islet like cell clusters appeared about 9 days after pancreatic differentiation in the inducing system with ECM gel. The insulin positive cells accounted for (25.2±3.4)% of the induced cells. The induced cells expressed islet related genes and hormones, but were not very responsive to glucose challenge. When MSCs were induced without ECM gel, clusters formation and secretion of functional islet proteins could not be observed.Conclusions Human UCB-MSCs can differentiate into islet like cells in vitro and ECM gel plays an important role in pancreatic endocrine cell maturation and formation of three dimensional structures.

  17. Mesenchymal stem cells promote a primitive phenotype CD34+c-kit+ in human cord blood-derived hematopoietic stem cells during ex vivo expansion.

    Science.gov (United States)

    Rodríguez-Pardo, Viviana M; Vernot, Jean Paul

    2013-03-01

    The purpose of this study was to evaluate the influence of bone marrow-mesenchymal stem cells (BM-MSC) and exogenously added cytokines on the proliferation, primitive cell subpopulation maintenance (including the c-kit+ marker) and clonogenic capacity of hematopoietic stem cells (HSC). BM-MSC were collected from volunteer donors, isolated and characterized. Umbilical cord blood (UCB) samples were collected from healthy full-term deliveries. UCB-CD34+ cells were cultured in the presence or absence of BM-MSC and/or cytokines for 3 and 7 days. CD34+ cell proliferation was evaluated using the CSFE method and cell phenotype was determined by CD34, c-kit, CD33, CD38, HLA-DR, cyCD22 and cyCD3 detection. Cell clonogenic ability was also assessed. Exogenously added SCF, TPO and FLT3L increased CD34+ cell proliferation in the presence or absence of BM-MSC, but with concomitant cell differentiation. Without any added cytokines, BM-MSC are able to increase the percentage of primitive progenitors as evaluated by c-kit expression and CFU-GEMM increase. Interestingly, this latter effect was dependent on both cell-cell interactions and secreted factors. A 7-day co-culture period will be optimal for obtaining an increased primitive HSC level. Including c-kit as a marker for primitive phenotype evaluation has shown the relevance of BM-MSC and their secreted factors on UCB-HSC stemness function. This effect could be dissociated from that of the addition of exogenous cytokines, which induced cellular differentiation instead.

  18. Preliminary evaluation of intravenous infusion and intrapancreatic injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of diabetic mice

    Directory of Open Access Journals (Sweden)

    Ngoc Kim Phan

    2014-03-01

    Full Text Available Type 1 diabetes mellitus is characterized by the destruction of pancreatic islet beta cells, which leads to insulin insufficiency, hyperglycemia, and reduced metabolic glucose level. Insulin replacement is the current standard therapy for type 1 diabetes mellitus but has several limitations. Pancreatic islet transplantation can result in the production of exogenous insulin, but its use is limited by immune-rejection and donor availability. Recent studies have shown that mesenchymal stem cells (MSCs can transdifferentiate into insulin-producing cells (IPCs, which could be utilized for diabetes mellitus treatment. Previously published reports have demonstrated that MSC or IPC transplantation could produce significant improvement in mouse models of diabetes mellitus. This study was aimed at determining the effects of two different methods of MSC transplantation on the efficacy of diabetes mellitus treatment in mouse models. The MSCs were isolated from umbilical cord blood and were proliferated following a previously published procedure. Diabetes mellitus was induced in mice by streptozotocin (STZ injection. Thirty days after transplantation, the weight of the mice treated by intra-venous infusion and intra-pancreatic injection was found to be 22% and 14% higher than that of the un-treated mice. The blood glucose concentrations in both intra-venous infusion and intra-pancreatic injection groups decreased and remained more stable than those in the control group. Moreover, insulin was detected in the serum of the treated mice, and the pancreas also showed gradual recovery. Based on the results of this preliminary investigation, intra-venous infusion seems more suitable than intra-pancreatic injection for MSC transplantation for diabetes mellitus treatment. [Biomed Res Ther 2014; 1(3.000: 98-105

  19. Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles.

    Science.gov (United States)

    Markov, Vladimir; Kusumi, Kenro; Tadesse, Mahlet G; William, Dilusha A; Hall, Dorian M; Lounev, Vitali; Carlton, Arlene; Leonard, Jay; Cohen, Rick I; Rappaport, Eric F; Saitta, Biagio

    2007-02-01

    Phenotypic heterogeneity has been observed among mesenchymal stem/stromal cell (MSC) populations, but specific genes associated with this variability have not been defined. To study this question, we analyzed two distinct isogenic MSC populations isolated from umbilical cord blood (UCB1 and UCB2). The use of isogenic populations eliminated differences contributed by genetic background. We characterized these UCB MSCs for cell morphology, growth kinetics, immunophenotype, and potential for differentiation. UCB1 displayed faster growth kinetics, higher population doublings, and increased adipogenic lineage differentiation compared to UCB2. However, osteogenic differentiation was stronger for the UCB2 population. To identify MSC-specific genes and developmental genes associated with observed phenotypic differences, we performed expression analysis using Affymetrix microarrays and compared them to bone marrow (BM) MSCs. We compared UCB1, UCB2, and BM and identified distinct gene expression patterns. Selected clusters were analyzed demonstrating that genes of multiple developmental pathways, such as transforming growth factor-beta (TGF-beta) and wnt genes, and markers of early embryonic stages and mesodermal differentiation displayed significant differences among the MSC populations. In undifferentiated UCB1 cells, multiple genes were significantly up-regulated (p < 0.0001): peroxisome proliferation activated receptor gamma (PPARG), which correlated with adipogenic differentiation capacities, hepatocyte growth factor (HGF), and stromal-derived factor 1 (SDF1/CXCL12), which could both potentially contribute to the higher growth kinetics observed in UCB1 cells. Overall, the results confirmed the presence of two distinct isogenic UCB-derived cell populations, identified gene profiles useful to distinguish MSC types with different lineage differentiation potentials, and helped clarify the heterogeneity observed in these cells.

  20. Preliminary evaluation of intravenous infusion and intrapancreatic injection of human umbilical cord blood-derived mesenchymal stem cells for the treatment of diabetic mice

    OpenAIRE

    Ngoc Kim Phan; Thuy Thanh Duong; Truc Le-Buu Pham; Loan Thi-Tung Dang; Anh Nguyen-Tu Bui; Vuong Minh Pham; Nhat Chau Truong; and Phuc Van Pham

    2014-01-01

    Type 1 diabetes mellitus is characterized by the destruction of pancreatic islet beta cells, which leads to insulin insufficiency, hyperglycemia, and reduced metabolic glucose level. Insulin replacement is the current standard therapy for type 1 diabetes mellitus but has several limitations. Pancreatic islet transplantation can result in the production of exogenous insulin, but its use is limited by immune-rejection and donor availability. Recent studies have shown that mesenchymal stem cells...

  1. Neural differentiation of brain-derived neurotrophic factor-expressing human umbilical cord blood-derived mesenchymal stem cells in culture via TrkB-mediated ERK and β-catenin phosphorylation and following transplantation into the developing brain.

    Science.gov (United States)

    Lim, Jung Yeon; Park, Sang In; Kim, Seong Muk; Jun, Jin Ae; Oh, Ji Hyeon; Ryu, Chung Hun; Jeong, Chang Hyun; Park, Sun Hwa; Park, Soon A; Oh, Wonil; Chang, Jong Wook; Jeun, Sin-Soo

    2011-01-01

    The ability of mesenchymal stem cells (MSCs) to differentiate into neural cells makes them potential replacement therapeutic candidates in neurological diseases. Presently, overexpression of brain-derived neurotrophic factor (BDNF), which is crucial in the regulation of neural progenitor cell differentiation and maturation during development, was sufficient to convert the mesodermal cell fate of human umbilical cord blood-derived MSCs (hUCB-MSCs) into a neuronal fate in culture, in the absence of specialized induction chemicals. BDNF overexpressing hUCB-MSCs (MSCs-BDNF) yielded an increased number of neuron-like cells and, surprisingly, increased the expression of neuronal phenotype markers in a time-dependent manner compared with control hUCB-MSCs. In addition, MSCs-BDNF exhibited a decreased labeling for MSCs-related antigens such as CD44, CD73, and CD90, and decreased potential to differentiate into mesodermal lineages. Phosphorylation of the receptor tyrosine kinase B (TrkB), which is a receptor of BDNF, was increased significantly in MSC-BDNF. BDNF overexpression also increased the phosphorylation of β-catenin and extracellular signal-regulated kinases (ERKs). Inhibition of TrkB availability by treatment with the TrkB-specific inhibitor K252a blocked the BDNF-stimulated phosphorylation of β-catenin and ERKs, indicating the involvement of both the β-catenin and ERKs signals in the BDNF-stimulated and TrkB-mediated neural differentiation of hUCB-MSCs. Reduction of β-catenin availability using small interfering RNA-mediated gene silencing inhibited ERKs phosphorylation. However, β-catenin activation was maintained. In addition, inhibition of β-catenin and ERKs expression levels abrogated the BDNF-stimulated upregulation of neuronal phenotype markers. Furthermore, MSC-BDNF survived and migrated more extensively when grafted into the lateral ventricles of neonatal mouse brain, and differentiated significantly into neurons in the olfactory bulb and

  2. Repair of calvarial defects with human umbilical cord blood derived mesenchymal stem cells and demineralized bone matrix in athymic rats%人脐血间充质干细胞修复颅骨缺损的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘广鹏; 李宇琳; 孙剑; 崔磊; 张文杰; 曹谊林

    2010-01-01

    Objective To investigate the feasibility of using human umbilical cord blood derived mesenchymal stem cells (UCB-MSCs) and demineralized bone matrix (DBM) scaffolds to repair critical-sized calvarial defects in athymic rats. Methods Human UCB-MSCs were isolated, expanded and osteogenically induced in vitro. Osteogenic differentiation of UCB-MSCs was evaluated by Alizarin Red staining and measurement of calcium content respectively, and then the cells were seeded onto DBM scaffolds. Bilateral full-thickness defects (5 mm in diameter) of parietal bone were created in an athymic rat model. The defects were either repaired with UCB-MSC/DBM constructs (experimental group) or with DBM scaffolds alone (control group). Animals were harvested at 6 and 12 weeks post-implantation respectively, and defect repair was evaluated with gross observation, micro-CT measurement and histological analysis. Results Micro-CT showed that new bone was formed in the experimental group at 6 weeks post-implantation, while no sign of new bone formation was observed in the control group. At 12 weeks post-transplantation, scaffolds had been degraded almost completely in both sides. It was shown that an average of (78.19±6.45)% of each defect volume had been repaired in experimental side; while in the control side, only limited bone formed at the periphery of the defect. Histological examination revealed that the defect was repaired by trabecular bone tissue in experimental side at 12 weeks, while only fibrous connection was observed in the control group. Conclusions Tissue-engineered bone composed of osteogenically-induced human UCB-MSCs on DBM scaffolds could successfully repair the critical-sized calvarial defects in athymic rat models.%目的 应用人脐血间充质干细胞(umbilical cord blood derived mesenchymal stem cells,UCB-MSCs)复合脱钙骨材料构建组织工程化骨,修复裸大鼠颅骨标准缺损.方法 体外扩增培养、成骨诱导人UCB-MSCs,采用Alizarin Red染色

  3. Cotransplantation of human umbilical cord-derived mesenchymal stem cells and umbilical cord blood-derived CD34⁺ cells in a rabbit model of myocardial infarction.

    Science.gov (United States)

    Li, Tong; Ma, Qunxing; Ning, Meng; Zhao, Yue; Hou, Yuelong

    2014-02-01

    The objective of the study is to investigate the effect of hypoxic preconditioning on the immunomodulatory properties of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) and the effect of cotransplantation of hUC-MSCs and human umbilical cord blood (hUCB)-derived CD34(+) cells in a rabbit model of myocardial infarction. hUC-MSCs with or without hypoxic preconditioning by cobalt chloride were plated in a 24-well plate, and then cocultured with hUCB-CD34(+) cells and PBMCs for 96 h at 37 °C in a 5% CO₂ incubator. For the negative control, hUC-MSCs were omitted. The groups were divided as follows: A1 = HP-MSCs + hUCB-CD34(+) cells + PBMC, A2 = hUC-MSCs + hUCB-CD34(+) cells + PBMC, Negative Control = hUCB-CD34(+) cells + PBMC. Culture supernatants of each group were collected, and the IL-10 and IFN-γ levels were measured by ELISA. A rabbit model of MI was established using a modified Fujita method. The animals were then randomized into three groups and received intramyocardial injections of 0.4 ml of PBS alone (n = 8, PBS group), hUC-MSCs in PBS (n = 8, hUC-MSCs group), or hUC-MSCs + CD34(+) cells in PBS (n = 8, Cotrans group), at four points in the infarct border zone. Echocardiography was performed at baseline, 4 weeks after MI induction, and 4 weeks after cell transplantation, respectively. Stem cell differentiation and neovascularization in the infracted area were characterized for the presence of cardiac Troponin I (cTnI) and CD31 by immunohistochemical staining, and the extent of myocardial fibrosis was evaluated by hematoxylin and eosin (H&E) and Masson's trichrome. IFN-γ was 27.00 ± 1.11, 14.20 ± 0.81, and 7.22 ± 0.14 pg/ml, and IL-10 was 31.68 ± 3.08, 61.42 ± 1.08, and 85.85 ± 1.80 pg/ml for the Control, A1 and A2 groups, respectively, which indicated that hUCB-CD34(+) cells induced immune reaction of peripheral blood mononuclear cells, whereas both hUC-MSCs and HP-MSCs showed an immunosuppressive effect, which, however, was attenuated

  4. The treatment of neurodegenerative disorders using umbilical cord blood and menstrual blood-derived stem cells.

    Science.gov (United States)

    Sanberg, Paul R; Eve, David J; Willing, Alison E; Garbuzova-Davis, Svitlana; Tan, Jun; Sanberg, Cyndy D; Allickson, Julie G; Cruz, L Eduardo; Borlongan, Cesar V

    2011-01-01

    Stem cell transplantation is a potentially important means of treatment for a number of disorders. Two different stem cell populations of interest are mononuclear umbilical cord blood cells and menstrual blood-derived stem cells. These cells are relatively easy to obtain, appear to be pluripotent, and are immunologically immature. These cells, particularly umbilical cord blood cells, have been studied as either single or multiple injections in a number of animal models of neurodegenerative disorders with some degree of success, including stroke, Alzheimer's disease, amyotrophic lateral sclerosis, and Sanfilippo syndrome type B. Evidence of anti-inflammatory effects and secretion of specific cytokines and growth factors that promote cell survival, rather than cell replacement, have been detected in both transplanted cells.

  5. Isolation of mesenchymal stem cells from equine umbilical cord blood

    Directory of Open Access Journals (Sweden)

    Thomsen Preben D

    2007-05-01

    Full Text Available Abstract Background There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low. The hypothesis of this study was that equine MSCs could be isolated from fresh whole equine cord blood. Results Cord blood was collected from 7 foals immediately after foaling. The mononuclear cell fraction was isolated by Ficoll density centrifugation and cultured in a DMEM low glucose based media at 38.5°C in humidified atmosphere containing 5% CO2. In 4 out of 7 samples colonies with MSC morphology were observed. Cellular morphology varied between monolayers of elongated spindle-shaped cells to layered cell clusters of cuboidal cells with shorter cytoplasmic extensions. Positive Alizarin Red and von Kossa staining as well as significant calcium deposition and alkaline phosphatase activity confirmed osteogenesis. Histology and positive Safranin O staining of matrix glycosaminoglycans illustrated chondrogenesis. Oil Red O staining of lipid droplets confirmed adipogenesis. Conclusion We here report, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal model for proof-of-principle studies of cord blood derived MSCs.

  6. Human Umbilical Cord Blood-Derived Serum for Culturing the Supportive Feeder Cells of Human Pluripotent Stem Cell Lines

    Directory of Open Access Journals (Sweden)

    Ruttachuk Rungsiwiwut

    2016-01-01

    Full Text Available Although human pluripotent stem cells (hPSCs can proliferate robustly on the feeder-free culture system, genetic instability of hPSCs has been reported in such environment. Alternatively, feeder cells enable hPSCs to maintain their pluripotency. The feeder cells are usually grown in a culture medium containing fetal bovine serum (FBS prior to coculture with hPSCs. The use of FBS might limit the clinical application of hPSCs. Recently, human cord blood-derived serum (hUCS showed a positive effect on culture of mesenchymal stem cells. It is interesting to test whether hUCS can be used for culture of feeder cells of hPSCs. This study was aimed to replace FBS with hUCS for culturing the human foreskin fibroblasts (HFFs prior to feeder cell preparation. The results showed that HFFs cultured in hUCS-containing medium (HFF-hUCS displayed fibroblastic features, high proliferation rates, short population doubling times, and normal karyotypes after prolonged culture. Inactivated HFF-hUCS expressed important genes, including Activin A, FGF2, and TGFβ1, which have been implicated in the maintenance of hPSC pluripotency. Moreover, hPSC lines maintained pluripotency, differentiation capacities, and karyotypic stability after being cocultured for extended period with inactivated HFF-hUCS. Therefore, the results demonstrated the benefit of hUCS for hPSCs culture system.

  7. Impact of C-rel inhibition of cord blood-derived B-, T-, and NK cells.

    Science.gov (United States)

    Fallahi, Shirin; Mohammadi, Seyede Momeneh; Tayefi Nasrabadi, Hamid; Alihemmati, Alireza; Samadi, Naser; Gholami, Sanaz; Shanehbandi, Dariush; Nozad Charoudeh, Hojjatollah

    2017-12-01

    The c-Rel transcription factor is a unique member of the nuclear factor (NF)-κB family that has a role in curtailing the proliferation, differentiation, cytokine production, and overall activity of B- and T-cells. In addition, c-Rel is a key regulator of apoptosis in that it influences the expression of anti-apoptotic genes such as Bcl-2 and Bcl-xL; conversely, inhibition of c-Rel increases cell apoptosis. To better understand the relationship between c-Rel expression and effects on B- and T-cell expansion, the current study evaluated c-Rel expression in cord blood mononuclear cells. This particular source was selected as cord blood is an important source of cells used for transplantation and immunotherapy, primarily in treating leukemias. As stem cell factor (SCF) and FLT3 are important agents for hematopoietic stem cell expansion, and cytokines like interleukin (IL)-2, -7, and -15 are essential for T- and B- (and also NK) cell development and proliferation, the current study evaluated c-Rel expression in cord blood mononuclear cells and CD34(+ )cells, as well as effects on B-, T-, and NK cells associated with alterations in c-Rel expression, using flow cytometry and PCR. The results showed c-Rel expression increased among cells cultured in the presence of SCF and FLT3 but was reduced when IL-2, IL-7, and IL-15 were used all together. Further, inhibition of c-Rel expression by siRNA reduced cord blood-derived B-, T-, and NK cell differentiation and expansion. These results indicated that with cells isolated from cord blood, c-Rel has an important role in B-, T-, and NK cell differentiation and, further, that agents (select cytokines/growth factors) that could impact on its expression might not only affect immune cell profiles in a host but could potentially also limit apoptotic activities in (non-)immune cells in that host. In the context of cancer (immuno)therapy, in particular, when cord blood is used an important source in stem cell transplantation in

  8. In vitro differentiation of human umbilical cord blood mesenchymal ...

    African Journals Online (AJOL)

    May H. Hasan

    2016-08-05

    Aug 5, 2016 ... hepatocyte-like cells were detected on day 21 and increased on day 28. Protein ... MSCs can be a promising source of cell therapy for intractable liver diseases. ..... blood-derived mesenchymal stem cells by DNA microarray.

  9. Cord Blood Derived CD4+CD25high T Cells Become Functional Regulatory T Cells upon Antigen Encounter

    Science.gov (United States)

    Mayer, Elisabeth; Bannert, Christina; Gruber, Saskia; Klunker, Sven; Spittler, Andreas; Akdis, Cezmi A.

    2012-01-01

    Background: Upon antigen exposure, cord blood derived T cells respond to ubiquitous environmental antigens by high proliferation. To date it remains unclear whether these “excessive” responses relate to different regulatory properties of the putative T regulatory cell (Treg) compartment or even expansion of the Treg compartment itself. Methods: Cord blood (>37 week of gestation) and peripheral blood (healthy controls) were obtained and different Treg cell subsets were isolated. The suppressive potential of Treg populations after antigen exposure was evaluated via functional inhibition assays ([3H]thymidine incorporation assay and CFSE staining) with or without allergen stimulation. The frequency and markers of CD4+CD25highFoxP3+ T cells were characterized by mRNA analysis and flow cytometry. Results: Cord blood derived CD4+CD25high cells did not show substantial suppressor capacity upon TCR activation, in contrast to CD4+CD25high cells freshly purified from adult blood. This could not be explained by a lower frequency of FoxP3+CD4+CD25highcells or FOXP3 mRNA expression. However, after antigen-specific stimulation in vitro, these cells showed strong proliferation and expansion and gained potent suppressive properties. The efficiency of their suppressive capacity can be enhanced in the presence of endotoxins. If T-cells were sorted according to their CD127 expression, a tiny subset of Treg cells (CD4+CD25+CD127low) is highly suppressive even without prior antigen exposure. Conclusion: Cord blood harbors a very small subset of CD4+CD25high Treg cells that requires antigen-stimulation to show expansion and become functional suppressive Tregs. PMID:22272233

  10. Umbilical Cord Blood-Derived Stem Cells Improve Heat Tolerance and Hypothalamic Damage in Heat Stressed Mice

    Directory of Open Access Journals (Sweden)

    Ling-Shu Tseng

    2014-01-01

    Full Text Available Heatstroke is characterized by excessive hyperthermia associated with systemic inflammatory responses, which leads to multiple organ failure, in which brain disorders predominate. This definition can be almost fulfilled by a mouse model of heatstroke used in the present study. Unanesthetized mice were exposed to whole body heating (41.2°C for 1 hour and then returned to room temperature (26°C for recovery. Immediately after termination of whole body heating, heated mice displayed excessive hyperthermia (body core temperature ~42.5°C. Four hours after termination of heat stress, heated mice displayed (i systemic inflammation; (ii ischemic, hypoxic, and oxidative damage to the hypothalamus; (iii hypothalamo-pituitary-adrenocortical axis impairment (reflected by plasma levels of both adrenocorticotrophic-hormone and corticosterone; (iv decreased fractional survival; and (v thermoregulatory deficits (e.g., they became hypothermia when they were exposed to room temperature. These heatstroke reactions can be significantly attenuated by human umbilical cord blood-derived CD34+ cells therapy. Our data suggest that human umbilical cord blood-derived stem cells therapy may improve outcomes of heatstroke in mice by reducing systemic inflammation as well as hypothalamo-pituitary-adrenocortical axis impairment.

  11. Isolation of mesenchymal stem cells from equine umbilical cord blood

    OpenAIRE

    Thomsen Preben D; Heerkens Tammy; Koch Thomas G; Betts Dean H

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is lo...

  12. The Myocardial Detection of Acute Myocardial Infarction rats Transplant into Human Umbilical cord Blood Derived Mesenchymal stem cell%急性心肌梗死大鼠移植入人脐带血间充质干细胞后心肌组织检测

    Institute of Scientific and Technical Information of China (English)

    何志裕; 陆东风

    2015-01-01

    目的探讨经尾静脉脐血间充质干细胞(mesenchymal stem cells,MSCs)移植到急性心肌梗死大鼠体内,观察其是否可以存活及是否向心肌组织分化。方法无菌条件下采集健康育龄产妇正常分娩胎儿脐带血,通过Mesen-cult培养基条件培养,取P2代细胞用流式细胞仪检测细胞表面CD29、CD34、CD45、CD105标志。将36只SD大鼠随机分成MSCs移植组、假手术组和心肌梗死植组各12只,结扎左冠状动脉前降支制备大鼠心肌梗死模型。1周后,经尾静脉注射带DAPI标记的脐血MSCs。4周后行免疫组织化学检测移植细胞存活与分化情况及检测梗死组织中FactorⅧ表达来比较三组微血管密度。结果流式细胞仪检测第2代的脐血MSCs 结果显示, P2代MSCs 不表达或极弱表达CD34,CD45造血细胞标志,稳定地高表达CD29,CD105间充质细胞相关的表面抗原标记。这与骨髓MSCs的表面抗原标志相一致。移植后4周,移植组心肌组织中可以观察到DAPI标记细胞存在,但标记细胞并未表达Troponin-T及con-nexin43,免疫组化染色检测示MSCs移植组心肌微血管密度(MVD)明显高于心梗组和假手术组。结论将脐血单个核细胞接种在mesencult培养基中可以在体外成功的培养出较纯化的脐血MSCs,脐血MSCs的免疫表型符合间充质干细胞特征,脐血MSCs移植能刺激梗死部位血管生成,但未向心肌细胞分化。%Objective To investigate the human umbilical cord blood mesenchymal stem cells was transplanted into the rats of acute myocardial infarction ( AMI) to observe the mesenchymal stem cells whether it can survive and whether to myocardial tissue differentiation .Methods Human umbilical cord blood sam-ples were collected from healthy mothers .ALL samples was culture medium consisted of Mesencult ( a kind of medium special for stem cell cultured),detected the second generation of MSCs'immunophenotypes(CD29, CD44

  13. Evaluation of the expansion of umbilical cord blood derived from CD133+ cells on biocompatible microwells

    Directory of Open Access Journals (Sweden)

    Mina Soufizomorrod

    2016-05-01

    Full Text Available Background: Hematopoietic stem cell transplantation (HSCT is a therapeutic approach for treatment of hematological malignancies and incompatibility of Bone marrow. Umbilical cord blood (UCB has known as an alternative for hematopoietic stem/progenitor cells (HPSC in allogeneic transplantation. The low volume of collected samples is the main hindrance in application of HPSC derived from umbilical cord blood. So, ex vivo expansion of HPSCs is the useful approach to overcome this restriction. The goal of using this system is to produce appropriate amount of hematopoietic stem cells, which have the ability of transplantation and long term haematopoiesis. Material & Methods: In current study CD133+ cells were isolated from cord blood (CB. Isolated cells were seeded on microwells. Then expanded cells proliferation rate and ability in colony formation were assessed and finally were compared with 2 Dimensional (2D culture systems. Results: Our findings demonstrated that CD133+ cells derived from UCB which were cultivated on microwells had significantly higher rate of proliferation in compared with routine cell culture systems. Conclusion: In Current study, it was shown that CD133+ cells’ proliferations which were seeded on PDMS microwells coated with collagen significantly increased. We hope that 3 dimensional (3D microenvironment which mimics the 3D structure of bone marrow can solve the problem of using UCB as an alternative source of bone marrow.

  14. Differentiation of human menstrual blood-derived endometrial mesenchymal stem cells into oocyte-like cells.

    Science.gov (United States)

    Lai, Dongmei; Guo, Ying; Zhang, Qiuwan; Chen, Yifei; Xiang, Charlie

    2016-11-01

    Human endometrial mesenchymal stem cells (EnSCs) derived from menstrual blood are a unique stem cell source. Evidence suggests that EnSCs exhibit a multi-lineage potential and have attracted extensive attention in regenerative medicine. However, the potential of EnSCs to differentiate into germline cells in vitro remains unclear. In this study, EnSCs were induced to differentiate into germ cells in a differentiation medium supplemented with 20% human follicular fluid. Our results demonstrated that EnSCs derived from human menstrual blood form oocyte-like cells and express germ cell markers. The induced cell aggregates contained not only oocyte-like structures but also cells expressing follicle stimulating hormone receptor and luteotropic hormone receptor, and produced estrogen and progesterone regulated by gonodatropin, suggesting that granulosa-like and theca-like cells were also induced. We further found that granulosa cells promote the development of oocyte-like cells and activate the induction of blastocyst-like structures derived from EnSCs. In conclusion, EnSCs may potentially represent an in vitro system for the investigation of human folliculogenesis.

  15. Tissue engineering with peripheral blood-derived mesenchymal stem cells promotes the regeneration of injured peripheral nerves.

    Science.gov (United States)

    Pan, Mengjie; Wang, Xianghai; Chen, Yijing; Cao, Shangtao; Wen, Jinkun; Wu, Guofeng; Li, Yuanyuan; Li, Lixia; Qian, Changhui; Qin, Zhenqi; Li, Zhenlin; Tan, Dandan; Fan, Zhihao; Wu, Wutian; Guo, Jiasong

    2017-06-01

    Peripheral nerve injury repair can be enhanced by Schwann cell (SC) transplantation, but clinical applications are limited by the lack of a cell source. Thus, alternative systems for generating SCs are desired. Herein, we found the peripheral blood-derived mesenchymal stem cells (PBMSCs) could be induced into SC like cells with expressing SC-specific markers (S100, P75NTR and CNPase) and functional factors (NGF, NT-3, c-Fos, and Krox20). When the induced PBMSCs (iPBMSCs) were transplanted into crushed rat sciatic nerves, they functioned as SCs by wrapping the injured axons and expressing myelin specific marker of MBP. Furthermore, iPBMSCs seeded in an artificial nerve conduit to bridge a 10-mm defect in a sciatic nerve achieved significant nerve regeneration outcomes, including axonal regeneration and remyelination, nerve conduction recovery, and restoration of motor function, and attenuated myoatrophy and neuromuscular junction degeneration in the target muscle. Overall, the data from this study indicated that PBMSCs can transdifferentiate towards SC-like cells and have potential as grafting cells for nerve tissue engineering. Copyright © 2017. Published by Elsevier Inc.

  16. Isolation of mesenchymal stem cells from equine umbilical cord blood

    DEFF Research Database (Denmark)

    Koch, Thomas Gadegaard; Heerkens, Tammy; Thomsen, Preben Dybdahl

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non......-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is low and the future isolation percentage of MSCs from cryopreserved equine cord blood is therefore expectedly low......, for the first time, the isolation of mesenchymal-like stem cells from fresh equine cord blood and their differentiation into osteocytes, chondrocytes and adipocytes. This novel isolation of equine cord blood MSCs and their preliminary in vitro differentiation positions the horse as the ideal pre-clinical animal...

  17. In vitro culture and characterization of human umbilical cord blood-derived plasmacytoid dendritic cell subsets

    Directory of Open Access Journals (Sweden)

    PENG Jianping

    2015-11-01

    Full Text Available ObjectiveTo establish a method for in vitro culture of plasmacytoid dendritic cell (pDC. MethodsUmbilical cord blood (40 ml was collected from healthy parturients in the First Affiliated Hospital of Hunan University of Chinese Medicine, and cord blood mononuclear cell (CBMC were isolated. The CBMC were cultured for 7 days with RPMI 1640 complete medium containing rh Flt3-ligand (Flt3-L (100 ng/ml and rh interleukin (IL-3 (10 ng/ml, and the medium was half changed every 2 days. On the eighth day, CpG ODN (2 μg/ml was added to the cells, and the attached cells and supernatant were collected 24 h later for flow cytometry and interferon (IFNα measurement, respectively. On days 1, 3, 5, 7, and 8 of cell culture, the morphological changes of pDC were observed. Results After 2 h of culture, the CBMC showed circular, flat morphology. Twenty-four hours later, the cells began to adhere to the wall, with extended cytoplasm and increased volumes, and they became round and translucent, with scattered small colonies. On days 3-4 of culture, the cell volume continued increasing; most cells were round, and some had small protrusions; few cells were spindle-, tadpole-, star- or irregularly shaped; the number and volumes of colonies increased substantially. On days 5-8 of culture, the number of colonies and the number of cells in colonies gradually decreased, and suspended cells that were round or had small protrusions gradually increased in the medium. The cells expressing CD123, BDCA-2, and BDCA-4, which were considered pDC, were detected by flow cytometry. Flow cytometry revealed that the proportion of pDC in CBMC increased during the culture: increasing from 1.08% at the beginning of culture to 5.32% on day 4, and finally reaching a peak of 19.8% on day 8. On day 8, the level of IFNα in pDC culture supernatant was(11 302.61±1745.31 pg/ml. ConclusionpDC can be successfully induced in vitro by rh Flt3-L combined with IL-3 from human umbilical CBMC.

  18. Endothelial progenitor cell differentiation using cryopreserved, umbilical cord blood-derived mononuclear cells

    Institute of Scientific and Technical Information of China (English)

    Jun-ho JANG; Hugh C KIM; Sun-kyung KIM; Jeong-eun CHOI; Young-jin KIM; Hyun-woo LEE; Seok-yun KANG; Joon-seong PARK; Jin-hyuk CHOI; Ho-yeong LIM

    2007-01-01

    Aim: To investigate the endothelial differentiation potentiality of umbilical cord blood (UCB), we induced the differentiation of endothelial progenitor cells (EPC)from cryopreserved UCB-derived mononuclear cells (MNC). Methods: MNC from cryopreserved UCB and peripheral blood (PB) were cultured in M199 medium with endothelial cell growth supplements for 14 d. EPC were characterized by RT-PCR,flow cytometry, and immunocytochemistry analysis. The proliferation of differen-tiated EPC was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTI') assay, and vascular endothelial growth factor (VEGF) concentra-tion was measured using an ELISA kit. Characteristics of UCB-derived EPC were compared with those of PB-derived EPC. Results: A number of round-shaped cells were loosely attached to the bottom after 24 h culture, and numerous spindle-shaped cells began to appear from the round-shaped ones on d 7. Those cells expressed endothelial markers such as, Fit-1/VEGFR-1, ecNOS, VE-cadherin, yon Willebrand factor, and secreted VEGF. The patterns of endothelial markers of EPC from PB and UCB did not show striking differences. The results of the prolifera-tion and secretion of VEGF were also similar. Conclusion: We successfully cul-tured UCB cells stored at -196 ℃ into cells with the quality of endothelial cells.Those EPC could be used for angiogenic therapeutics by activating adjacent endothelial cells and enhancing angiogenesis.

  19. Human Umbilical Cord Blood-Derived Neural Stem Cell Line as a Screening Model for Toxicity.

    Science.gov (United States)

    Patnaik, Rajashree; Padhy, Rabindra Nath

    2017-04-01

    The aim was to investigate whether a human neural stem cell (NSC) line derived from human umbilical cord blood (hUCB) can be used for toxicity study. Toxicity of both neurotoxic environmental xenobiotics, methyl mercury chloride (CH3HgCl), lead acetate (CH3COOPb), and chlorpyrifos (CP), and non-neurotoxic insecticide, dichlorvos, as well as non-neurotoxic drugs, theophylline and acetaminophen were assessed. Additionally, differentiation of neuronal and glial cell lines derived from hUCB was elucidated. It was observed that CH3HgCl was more toxic to human NSCs in comparison to CH3COOPb and CP. The minimum inhibitory concentration (MIC) value against NSCs was 3, 10, and 300 mg/L, in each staining process, acridine orange/ethidium bromide (AO/EB) staining, 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl tetrazolium bromide (MTT) assay, and Hoechst staining, for CH3HgCl, CP, and CH3COOPb, respectively. CH3HgCl had the LC25 value as 10.0, 14.4, and 12.7 mg/L, by staining method mentioned in succession. CP had the LC25 value as 21.9, 23.7, and 18.4 mg/L; similarly, CH3COOPb had LC25 values, successively as 616.9, 719.2, and 890.3 mg/L. LC50 values ranged from 18.2 to 21.7 mg/L for CH3HgCl, 56.4 to 60.2 mg/L for CP, and 1000 to 1460.1 for CH3COOPb. Theophylline, acetaminophen, and dichlorvos had no impact on the viability of NSCs. This work justified that hUCB-NSC model can be used for toxicity study.

  20. Human cord blood derived immature basophils show dual characteristics, expressing both basophil and eosinophil associated proteins.

    Directory of Open Access Journals (Sweden)

    Jeanette Grundström

    Full Text Available Basophils are blood cells of low abundance associated with allergy, inflammation and parasite infections. To study the transcriptome of mature circulating basophils cells were purified from buffy coats by density gradient centrifugations and two-step magnetic cell sorting. However, after extensive analysis the cells were found to be transcriptionally inactive and almost completely lack functional mRNA. In order to obtain transcriptionally active immature basophils for analysis of their transcriptome, umbilical cord blood cells were therefore cultured in the presence of interleukin (IL-3 for 9 days and basophils were enriched by removing non-basophils using magnetic cell sorting. The majority of purified cells demonstrated typical metachromatic staining with Alcian blue dye (95% and expression of surface markers FcεRI and CD203c, indicating a pure population of cells with basophil-like phenotype. mRNA was extracted from these cells and used to construct a cDNA library with approximately 600 000 independent clones. This library served as tool to determine the mRNA frequencies for a number of hematopoietic marker proteins. It was shown that these cells express basophil/mast cell-specific transcripts, i.e. β-tryptase, serglycin and FcεRI α-chain, to a relatively low degree. In contrast, the library contained a high number of several eosinophil-associated transcripts such as: major basic protein (MBP, charcot leyden crystal (CLC, eosinophil cationic protein (ECP, eosinophil derived neurotoxin (EDN and eosinophil peroxidase (EPO. Out of these transcripts, MBP and EPO were the most frequently observed, representing 8% and 3.2% of the total mRNA pool, respectively. Moreover, in a proteome analysis of cultured basophils we identified MBP and EPO as the two most prominent protein bands, suggesting a good correlation between protein and mRNA analyses of these cells. The mixed phenotype observed for these cells strengthens the conclusion that

  1. Human cord blood derived immature basophils show dual characteristics, expressing both basophil and eosinophil associated proteins.

    Science.gov (United States)

    Grundström, Jeanette; Reimer, Jenny M; Magnusson, Sofia E; Nilsson, Gunnar; Wernersson, Sara; Hellman, Lars

    2012-01-01

    Basophils are blood cells of low abundance associated with allergy, inflammation and parasite infections. To study the transcriptome of mature circulating basophils cells were purified from buffy coats by density gradient centrifugations and two-step magnetic cell sorting. However, after extensive analysis the cells were found to be transcriptionally inactive and almost completely lack functional mRNA. In order to obtain transcriptionally active immature basophils for analysis of their transcriptome, umbilical cord blood cells were therefore cultured in the presence of interleukin (IL)-3 for 9 days and basophils were enriched by removing non-basophils using magnetic cell sorting. The majority of purified cells demonstrated typical metachromatic staining with Alcian blue dye (95%) and expression of surface markers FcεRI and CD203c, indicating a pure population of cells with basophil-like phenotype. mRNA was extracted from these cells and used to construct a cDNA library with approximately 600 000 independent clones. This library served as tool to determine the mRNA frequencies for a number of hematopoietic marker proteins. It was shown that these cells express basophil/mast cell-specific transcripts, i.e. β-tryptase, serglycin and FcεRI α-chain, to a relatively low degree. In contrast, the library contained a high number of several eosinophil-associated transcripts such as: major basic protein (MBP), charcot leyden crystal (CLC), eosinophil cationic protein (ECP), eosinophil derived neurotoxin (EDN) and eosinophil peroxidase (EPO). Out of these transcripts, MBP and EPO were the most frequently observed, representing 8% and 3.2% of the total mRNA pool, respectively. Moreover, in a proteome analysis of cultured basophils we identified MBP and EPO as the two most prominent protein bands, suggesting a good correlation between protein and mRNA analyses of these cells. The mixed phenotype observed for these cells strengthens the conclusion that eosinophils and

  2. Histone deacetylase inhibition enhances self renewal and cardioprotection by human cord blood-derived CD34 cells.

    Directory of Open Access Journals (Sweden)

    Ilaria Burba

    Full Text Available BACKGROUND: Use of peripheral blood- or bone marrow-derived progenitors for ischemic heart repair is a feasible option to induce neo-vascularization in ischemic tissues. These cells, named Endothelial Progenitors Cells (EPCs, have been extensively characterized phenotypically and functionally. The clinical efficacy of cardiac repair by EPCs cells remains, however, limited, due to cell autonomous defects as a consequence of risk factors. The devise of "enhancement" strategies has been therefore sought to improve repair ability of these cells and increase the clinical benefit. PRINCIPAL FINDINGS: Pharmacologic inhibition of histone deacetylases (HDACs is known to enhance hematopoietic stem cells engraftment by improvement of self renewal and inhibition of differentiation in the presence of mitogenic stimuli in vitro. In the present study cord blood-derived CD34(+ were pre-conditioned with the HDAC inhibitor Valproic Acid. This treatment affected stem cell growth and gene expression, and improved ischemic myocardium protection in an immunodeficient mouse model of myocardial infarction. CONCLUSIONS: Our results show that HDAC blockade leads to phenotype changes in CD34(+ cells with enhanced self renewal and cardioprotection.

  3. Ex-Vivo Gene Therapy Using Lentiviral Mediated Gene Transfer Into Umbilical Cord Blood Derived Stem Cells

    Directory of Open Access Journals (Sweden)

    Hanieh Jalali

    2016-02-01

    Full Text Available Background Introduction of therapeutic genes into the injured site of nervous system can be achieved using transplantation of cellular vehicles containing desired gene. To transfer exogenous genes into the cellular vehicles, lentiviral vectors are one of interested vectors because of advantages such high transduction efficiency of dividing and non-dividing cells. Unrestricted somatic stem cells are subclasses of umbilical cord blood derived stem cells which are appreciate candidates to use as cellular vehicles for ex vivo gene therapy of nervous system. Objectives In current study we investigated the effect of lentiviral vector transduction on the neuronal related features of unrestricted somatic stem cells to indicate the probable and unwanted changes related to transduction procedure. Materials and Methods In this experimental study, lentiviral vector containing green fluorescent protein (GFP were transduced into unrestricted somatic stem cells and its effect was investigated with using MTT assay, qPCR and immunohistochemistry techniques. For statistical comparison of real time PCR results, REST software (2009, Qiagen was used. Results Obtained results showed lentiviral vector transduction did not have cytotoxic effects on unrestricted somatic stem cells and did not change neuronal differentiation capacity of them as well the expression of some neuronal related genes and preserved them in multilineage situation. Conclusions In conclusion, we suggested that lentiviral vectors could be proper vectors to transfer therapeutic gene into unrestricted somatic stem cells to provide a cellular vehicle for ex vivo gene therapy of nervous system disorders.

  4. A Novel Molecular and Functional Stemness Signature Assessing Human Cord Blood-Derived Endothelial Progenitor Cell Immaturity.

    Directory of Open Access Journals (Sweden)

    Oriane Guillevic

    Full Text Available Endothelial Colony Forming Cells (ECFCs, a distinct population of Endothelial Progenitor Cells (EPCs progeny, display phenotypic and functional characteristics of endothelial cells while retaining features of stem/progenitor cells. Cord blood-derived ECFCs (CB-ECFCs have a high clonogenic and proliferative potentials and they can acquire different endothelial phenotypes, this requiring some plasticity. These properties provide angiogenic and vascular repair capabilities to CB-ECFCs for ischemic cell therapies. However, the degree of immaturity retained by EPCs is still confused and poorly defined. Consequently, to better characterize CB-ECFC stemness, we quantified their clonogenic potential and demonstrated that they were reprogrammed into induced pluripotent stem cells (iPSCs more efficiently and rapidly than adult endothelial cells. Moreover, we analyzed the transcriptional profile of a broad gene panel known to be related to stem cells. We showed that, unlike mature endothelial cells, CB-ECFCs expressed genes involved in the maintenance of embryonic stem cell properties such as DNMT3B, GDF3 or SOX2. Thus, these results provide further evidence and tools to appreciate EPC-derived cell stemness. Moreover this novel stem cell transcriptional signature of ECFCs could help better characterizing and ranging EPCs according to their immaturity profile.

  5. Efficient Expansion of SALL4–Transduced Umbilical Cord Blood Derived CD133+Hematopoietic Stem Cells

    Directory of Open Access Journals (Sweden)

    Majid Mossahebi-Mohammadi

    2017-07-01

    Full Text Available Hematopoietic stem cells (HSCs were characterized by self-renewal and multilineage potential. Umbilical cord blood-derived (UCB as an alternative source of HSCs is widely used especially in children for stem cells transplant (SCT. The main limitation in using UCB for transplantation especially in adults is low cell dose. To overcome this limitation besides using double dose UCB, ex vivo expansion is the most important way to increase cell number for transplantation. HSCs are mainly isolated using CD133 or CD34. CD133, as the most primitive marker, shows important physiological role in maintenance and expansion of HSCs. SALL4 plays crucial role in the development and maintaining the pluripotency and self-renewal ability of embryonic stem cells (ESCs as well as HSCs. Moreover, SALL4 act as a regulator of HSCs expansion, normal hematopoiesis, and hematological malignancies. In the present study, CD133+ cells positively selected and ex vivo expanded in SALL-4 and GFP-transduced group. CD133 expression assessed using flow cytometry at day 0, 7 and 10. Moreover, multilineage differentiation and proliferation potential of expanded cells in both groups evaluated using colony forming unit (CFU assay, and cells count assay. Karyotyping analysis was performed to assess any chromosomal instability after 7 days of expansion. Obtained results demonstrated that SALL-4 transduced cells showed significant increase in cell number compared to control group. Moreover, immunophenotyping results showed higher expression level of CD133 at day 7 and 10 following expansion in SALL-4 transduced (62 % and 42% compared to control group (51% and 20.6%. Our results illustrated that SALL4 could act as a positive factor for the expansion of CD133+ derived UCB cells besides maintaining self-renewal and differentiation ability of expanded cell without any numerical and structural chromosomal aberrations .

  6. Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve:viscoelasticity characterization

    Institute of Scientific and Technical Information of China (English)

    Xue-man Lv; Yan Liu; Fei Wu; Yi Yuan; Min Luo

    2016-01-01

    The optic nerve is a viscoelastic solid-like biomaterial. Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury. We hypothesized that stress relaxation and creep properties of the optic nerve change after injury. More-over, human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal. To validate this hypothesis, a rabbit model of optic nerve injury was established using a clamp approach. At 7 days after injury, the vitreous body re-ceived a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells. At 30 days after injury, stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly, with patho-logical changes in the injured optic nerve also noticeably improved. These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves, and thereby contributes to nerve recovery.

  7. Induction of differentiation by down-regulation of Nanog and Rex-1 in cord blood derived unrestricted somatic stem cells.

    Science.gov (United States)

    Langroudi, Lida; Forouzandeh, Mehdi; Soleimani, Masoud; Atashi, Amir; Golestaneh, Azadeh Fahim

    2013-07-01

    Stem cells with high self-renewal and tissue regeneration potentials are the core components of regenerative medicine. Adult stem cells with many available sources, high repairing ability, and also possessing no ethical issues are popular candidates in the clinical field. In this study we looked upon the effects of two transcription factors Nanog and Rex-1 in self-renewal and differentiation abilities of a subpopulation of cord blood stem cells known as unrestricted somatic stem cells (USSCs). USSCs were expanded and transfected in vitro with siRNAs targeting either Nanog, Rex-1, and in combination. Gene suppressions were achieved at both transcript and proteome level. Differentiations were evaluated by specific Real time PCR and differentiating staining. Nanog knock down revealed a significant increase in osteogenic markers, Osteocalcin and Osteopontin expression as well as a positive Alizarin Red staining, which proposes Osteogenesis. This treatment also became positive for Oil Red staining, implying adipogenic differentiation as well. In contrast, Rex-1 knock down showed an increase in MAP II and Nestin expression, which is a hall mark of neural differentiation. Surprisingly, treatment with both siRNAs did not express any changes in any of the assessed markers. Therefore, our results indicated a bilateral mesenchymal differentiation for Nanog and a neural lineage fate for Rex-1 suppression. Considering that both transcription factors are core activators of self-renewal and also are orchestrating with other factors, our results imply a positive feedback in response to changes in the regulatory network of self-renewal.

  8. Cord Blood-Derived Hematopoietic Stem/Progenitor Cells: Current Challenges in Engraftment, Infection, and Ex Vivo Expansion

    Directory of Open Access Journals (Sweden)

    Katsuhiro Kita

    2011-01-01

    Full Text Available Umbilical cord blood has served as an alternative to bone marrow for hematopoietic transplantation since the late 1980s. Numerous clinical studies have proven the efficacy of umbilical cord blood. Moreover, the possible immaturity of cells in umbilical cord blood gives more options to recipients with HLA mismatch and allows for the use of umbilical cord blood from unrelated donors. However, morbidity and mortality rates associated with hematopoietic malignancies still remain relatively high, even after cord blood transplantation. Infections and relapse are the major causes of death after cord blood transplantation in patients with hematopoietic diseases. Recently, new strategies have been introduced to improve these major problems. Establishing better protocols for simple isolation of primitive cells and ex vivo expansion will also be very important. In this short review, we discuss several recent promising findings related to the technical improvement of cord blood transplantation.

  9. Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    CAO Fu-jiang; FENG Shi-qing

    2009-01-01

    Objective To review the recent studies about human umbilical cord mesenchymal stem cells (hUCMSCs) and advances in the treatment of spinal cord injury, Data sources Published articles (1983-2007) about hUCMSCs and spinal cord injury were selected using Medline. Study selection Articles selected were relevant to development of mesenchymal stem cells (MSCs) for transplantation in spinal cord injury therapy. Of 258 originally identifiied arises 51 were selected that specifically addressed the stated purpose. Results Recent work has revealed that hUCMSCs share most of the characteristics with MSCs derived from bone marrow and are more appropriate to transplantation for cell based therapies. Conclusions Human umbilical cord could be regarded as a source of MSCs for experimental and clinical needs. In addition, as a peculiar source of stem cells, hUCMSCs may play an important role in the treatment of spinal cord injury.

  10. Brain-derived neurotrophic factor induces neuron-like cellular differentiation of mesenchymal stem cells derived from human umbilical cord blood cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Lei Chen; Guozhen Hui; Zhongguo Zhang; Bing Chen; Xiaozhi Liu; Zhenlin Liu; Hongliang Liu; Gang Li; Zhiguo Su; Junfei Wang

    2011-01-01

    Human umbilical cord blood was collected from full-term deliveries scheduled for cesarean section. Mononuclear cells were isolated, amplified and induced as mesenchymal stem cells. Isolated mesenchymal stem cells tested positive for the marker CD29, CD44 and CD105 and negative for typical hematopoietic and endothelial markers. Following treatment with neural induction medium containing brain-derived neurotrophic factor for 7 days, the adherent cells exhibited neuron-like cellular morphology. Immunohistochemical staining and reverse transcription-PCR revealed that the induced mesenchymal stem cells expressed the markers for neuron-specific enolase and neurofilament. The results demonstrated that human umbilical cord blood-derived mesenchymal stem cells can differentiate into neuron-like cells induced by brain-derived neurotrophic factor in vitro.

  11. File list: His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiovascular Umbilical cord.../hg19/assembled/His.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  12. File list: His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiovascular Umbilical cord.../hg19/assembled/His.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  13. File list: His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Histone Cardiovascular Umbilical cord.../hg19/assembled/His.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  14. Modulation of Chemokine Gene Expression in CD133 Cord Blood-Derived Human Mast Cells by Cyclosporin A and Dexamethasone

    DEFF Research Database (Denmark)

    Holm, Mette; Kvistgaard, Helene; Dahl, Christine

    2006-01-01

    We have recently developed a protocol for generating huge numbers of mature and functional mast cells from in vitro differentiated umbilical cord blood cells. Using CD133 as a positive selection marker to isolate haematopoietic progenitors we routinely expand the number of recovered cells at least...

  15. Acellular spinal cord scaffold seeded with mesenchymal stem cells promotes long-distance axon regeneration and functional recovery in spinal cord injured rats.

    Science.gov (United States)

    Liu, Jia; Chen, Jian; Liu, Bin; Yang, Cuilan; Xie, Denghui; Zheng, Xiaochen; Xu, Song; Chen, Tianyu; Wang, Liang; Zhang, Zhongmin; Bai, Xiaochun; Jin, Dadi

    2013-02-15

    The stem cell-based experimental therapies are partially successful for the recovery of spinal cord injury (SCI). Recently, acellular spinal cord (ASC) scaffolds which mimic native extracellular matrix (ECM) have been successfully prepared. This study aimed at investigating whether the spinal cord lesion gap could be bridged by implantation of bionic-designed ASC scaffold alone and seeded with human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) respectively, and their effects on functional improvement. A laterally hemisected SCI lesion was performed in adult Sprague-Dawley (SD) rats (n=36) and ASC scaffolds seeded with or without hUCB-MSCs were implanted into the lesion immediately. All rats were behaviorally tested using the Basso-Beattie-Bresnahan (BBB) test once a week for 8weeks. Behavioral analysis showed that there was significant locomotor recovery improvement in combined treatment group (ASC scaffold and ASC scaffold+hUCB-MSCs) as compared with the SCI only group (pspinal cord cavity and promote long-distance axon regeneration and functional recovery in SCI rats.

  16. Expression of CXCR4 in cord blood-derived CD133+ cells treated with platelet micro-particles.

    Science.gov (United States)

    Moghaddam, Farzaneh; Oodi, Arezoo; Nikougoftar Zarif, Mahin; Amani, Maryam; Amirizadeh, Naser

    2016-11-01

    Platelet micro-particles (MPs) contain CXCR4 markers and are able to transfer them into hematopoietic stem cells. Therefore, effect of platelet MPs (PMPs) on the expression levels of CXCR4 and CD34 markers in these cells was examined. Isolated CD 133+ cells cultivated for 5 d in the stem span medium and PMPs. Fold increase of CD34+ cells in the presence of 5 and 10 g/ml of PMPs was increased significantly. CXCR4+ cell percent in the presence of 10 g/ml PMPs compared with control cells (63.8 ± 6.4) was increased (P < 0.05). PMPs were no affect on clonogenicity of hematopoietic progenitor cells. Cord blood CD133+ cells are able to maintain long-term hematopoiesis and to differentiate to hematopoietic lineages. CXCR4 over expression is involved in homing and successful transplantation of hematopoietic stem cells (HSCs) in the bone marrow. PMPs contain CXCR4 markers and are able to transfer them into hematopoietic stem cells. Therefore, considering the importance of CD133+ cells as primitive HSCs, the effect of PMPs on the expression levels of CXCR4 and CD34 markers in these cells was examined. Cord blood CD133+ cells were isolated by MACS. Isolated cells were divided into three groups: (i) control cells, (ii) cells treated with 5 μg/ml PMPs, (iii) cells treated with 10 μg/ml PMPs. Cells were cultivated for 5 d in the stem span medium. Expression of CD 133, CD34, and CXCR4 surface marker was analyzed by flow cytometry. Total cell numbers were counted by hemocytometer and clonogenicity were measured by colony assay. PMPs were no effect on CD133+ cells proliferation, but fold increase of CD34+ cells in the presence of 5 and 10 g/ml of PMPs was increased significantly. CXCR4+ cell percent in the presence of 10 g/ml PMPs compared with control cells (63.8 ± 6.4) was increased (P < 0.05). PMPs were no affect on clonogenicity of hematopoietic progenitor cells. Exposure of CD133+ cells isolated from cord blood to PMPs with 10

  17. Effect of insulin on functional status of cord blood-derived dendritic cells and on dendritic cell-induced CTL cytotoxicity against pancreatic cancer cell lines

    Institute of Scientific and Technical Information of China (English)

    Qiu-Liang Liu; Yi-Sheng Wang; Jia-Xiang Wang

    2009-01-01

    BACKGROUND: Dendritic cells (DCs) are the most important antigen-presenting cells in the human body, and DCs with different mature status possess different or even opposite functions. This study was designed to explore the influence of insulin on the functional status of cord blood-derived DCs and on DC-induced cytotoxic T lymphocyte (CTL) activity against pancreatic cancer cell lines. METHODS: Mononuclear cells were isolated from fresh cord blood. Interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were used to induce or stimulate the mononuclear cells. Insulin at different concentrations served to modify DCs, and then DC morphology, number, and growth status were assessed. The DC immunophenotype was detected with a flow cytometer. The IL-12 in DC supernatant was determined by ELISA. DC functional status was evaluated by the autologous mixed lymphocyte reaction. T lymphocytes were induced by insulin-modified DCs to become CTLs. The CTL cytotoxicity against pancreatic cancer cell lines was determined. RESULTS:  Mononuclear cells from cord blood can be differentiated into DCs by cytokine induction and insulin modification. With the increase in insulin concentration (2.5-25 mg/L), the expression of DC HLA-DR, CD1α, CD80, and CD83 was significantly increased, the DC ability to secrete IL-12 was significantly improved, DC function to activate autologous lymphocytes was significantly enhanced, and the cytotoxicity of CTLs induced by insulin-modified DCs against pancreatic cancer cell lines was significantly strengthened. CONCLUSIONS: Insulin may facilitate DC induction and maturation, and improve the reproductive activity of autologous lymphocytes. The cytotoxicity of CTLs induced by insulin-modified DCs against pancreatic cancer cell lines was significantly enhanced. Insulin may serve as a factor modifying DCs and inducing CTLs in vitro in insulin biotherapy.

  18. Histone Deacetylase (HDAC Inhibitors Down-Regulate Endothelial Lineage Commitment of Umbilical Cord Blood Derived Endothelial Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Horia Maniu

    2012-11-01

    Full Text Available To test the involvement of histone deacetylases (HDACs activity in endothelial lineage progression, we investigated the effects of HDAC inhibitors on endothelial progenitors cells (EPCs derived from umbilical cord blood (UCB. Adherent EPCs, that expressed the endothelial marker proteins (PCAM-1, CD105, CD133, and VEGFR2 revealed by flow cytometry were treated with three HDAC inhibitors: Butyrate (BuA, Trichostatin A (TSA, and Valproic acid (VPA. RT-PCR assay showed that HDAC inhibitors down-regulated the expression of endothelial genes such as VE-cadherin, CD133, CXCR4 and Tie-2. Furthermore, flow cytometry analysis illustrated that HDAC inhibitors selectively reduce the expression of VEGFR2, CD117, VE-cadherin, and ICAM-1, whereas the expression of CD34 and CD45 remained unchanged, demonstrating that HDAC is involved in endothelial differentiation of progenitor cells. Real-Time PCR demonstrated that TSA down-regulated telomerase activity probably via suppression of hTERT expression, suggesting that HDAC inhibitor decreased cell proliferation. Cell motility was also decreased after treatment with HDAC inhibitors as shown by wound-healing assay. The balance of acethylation/deacethylation kept in control by the activity of HAT (histone acetyltransferases/HDAC enzymes play an important role in differentiation of stem cells by regulating proliferation and endothelial lineage commitment.

  19. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Ya-jing Zhou

    2015-01-01

    Full Text Available Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  20. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Institute of Scientific and Technical Information of China (English)

    Ya-jing Zhou; Jian-min Liu; Shu-ming Wei; Yun-hao Zhang; Zhen-hua Qu; Shu-bo Chen

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administrationvia the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve ifbers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and lfuorogold-labeled nerve ifbers were increased and hindlimb motor function of spinal cord-injured rats was mark-edly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats.

  1. Transplantation of human umbilical cord blood-derived mononuclear cells induces recovery of motor dysfunction in a rat model of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Chen C

    2016-04-01

    Full Text Available Chao Chen,1,* Jing Duan,1,* Aifang Shen,2,* Wei Wang,1 Hao Song,1 Yanming Liu,1 Xianjie Lu,1 Xiaobing Wang,2 Zhiqing You,1 Zhongchao Han,3,4 Fabin Han1 1Center for Stem Cells and Regenerative Medicine, The Liaocheng People's Hospital, Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People's Republic of China; 2Department of Gynecology and Obstetrics, The Liaocheng People's Hospital, Affiliated Liaocheng Hospital, Taishan Medical University, Shandong, People's Republic of China; 3The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences, Peking Union of Medical College, Tianjin, People's Republic of China; 4National Engineering Research Center of Cell Products, AmCellGene Co. Ltd., TEDA, Tianjin, People's Republic of China*These authors contributed equally to this workAbstract: Human umbilical cord blood-derived mononuclear cells (hUCB-MNCs were reported to have neurorestorative capacity for neurological disorders such as stroke and traumatic brain injury. This study was performed to explore if hUCB-MNC transplantation plays any therapeutic effects for Parkinson's disease (PD in a 6-OHDA-lesioned rat model of PD. hUCB-MNCs were isolated from umbilical cord blood and administered to the striatum of the 6-OHDA-lesioned rats. The apomorphine-induced locomotive turning-overs were measured to evaluate the improvement of motor dysfunctions of the rats after administration of hUCB-MNCs. We observed that transplanted hUCB-MNCs significantly improve the motor deficits of the PD rats and that grafted hUCB-MNCs integrated to the host brains and differentiated to neurons and dopamine neurons in vivo after 16 weeks of transplantation. Our study provided evidence that transplanted hUCB-MNCs play therapeutic effects in a rat PD model by differentiating to neurons and dopamine neurons. Keywords: hUCB-MNCs, Parkinson's disease, transplantation

  2. Chondrogenic Differentiation of Human Umbilical Cord Blood-Derived Unrestricted Somatic Stem Cells on A 3D Beta-Tricalcium Phosphate-Alginate-Gelatin Scaffold

    Directory of Open Access Journals (Sweden)

    Masoud Soleimani

    2014-03-01

    Full Text Available Objective: Finding cell sources for cartilage tissue engineering is a critical procedure. The purpose of the present experimental study was to test the in vitro efficacy of the beta-tricalcium phosphate-alginate-gelatin (BTAG scaffold to induce chondrogenic differentiation of human umbilical cord blood-derived unrestricted somatic stem cells (USSCs. Materials and Methods: In this experimental study, USSCs were encapsulated in BTAG scaffold and cultured for 3 weeks in chondrogenic medium as chondrogenic group and in Dulbecco’s Modified Eagle’s Medium (DMEM as control group. Chondrogenic differentiation was evaluated by histology, immunofluorescence and RNA analyses for the expression of cartilage extracellular matrix components. The obtain data were analyzed using SPSS version 15. Results: Histological and immunohistochemical staining revealed that collagen II was markedly expressed in the extracellular matrix of the seeded cells on scaffold in presence of chondrogenic media after 21 days. Reverse transcription-polymerase chain reaction (RT-PCR showed a significant increase in expression levels of genes encoded the cartilage-specific markers, aggrecan, type I and II collagen, and bone morphogenetic protein (BMP-6 in chondrogenic group. Conclusion: This study demonstrates that BTAG can be considered as a suitable scaffold for encapsulation and chondrogenesis of USSCs.

  3. File list: InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...bc.jp/kyushu-u/hg19/assembled/InP.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced

  4. File list: Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  5. File list: DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardiovascular Umbilical cord...-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  6. File list: ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831249,SRX831250,SRX831253,SRX831252,SRX831247

  7. File list: Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...ssembled/Unc.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a

  8. File list: Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  9. File list: DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardiovascular Umbilical cord...-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  10. File list: ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831252,SRX831249,SRX831251

  11. File list: NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  12. File list: ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831253,SRX831250,SRX831249,SRX831252,SRX831247

  13. File list: NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  14. File list: NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  15. File list: Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...ssembled/Unc.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a

  16. File list: Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  17. File list: ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 All antigens Ca...biosciencedbc.jp/kyushu-u/hg19/assembled/ALL.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells SRX831250,SRX831253,SRX831254,SRX831248,SRX831252

  18. File list: Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...ssembled/Unc.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a

  19. File list: DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 DNase-seq Cardiovascular Umbilical cord...-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/DNS.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  20. File list: Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  1. File list: Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  2. File list: Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  3. File list: InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...bc.jp/kyushu-u/hg19/assembled/InP.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced

  4. File list: InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...bc.jp/kyushu-u/hg19/assembled/InP.CDV.50.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced

  5. File list: InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Input control C...bc.jp/kyushu-u/hg19/assembled/InP.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...ardiovascular Umbilical cord-derived mesenchymal stem cells SRX831247,SRX831246 http://dbarchive.bioscienced

  6. File list: NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 No description ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/NoD.CDV.05.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  7. File list: Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 Unclassified Ca...ssembled/Unc.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ... ...rdiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/a

  8. File list: Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 TFs and others ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Oth.CDV.20.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  9. File list: Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells hg19 RNA polymerase ...Cardiovascular Umbilical cord-derived mesenchymal stem cells http://dbarchive.biosciencedbc.jp/kyushu-u/hg19.../assembled/Pol.CDV.10.AllAg.Umbilical_cord-derived_mesenchymal_stem_cells.bed ...

  10. Musculoskeletal tissue engineering with human umbilical cord mesenchymal stromal cells

    Science.gov (United States)

    Wang, Limin; Ott, Lindsey; Seshareddy, Kiran; Weiss, Mark L; Detamore, Michael S

    2011-01-01

    Multipotent mesenchymal stromal cells (MSCs) hold tremendous promise for tissue engineering and regenerative medicine, yet with so many sources of MSCs, what are the primary criteria for selecting leading candidates? Ideally, the cells will be multipotent, inexpensive, lack donor site morbidity, donor materials should be readily available in large numbers, immunocompatible, politically benign and expandable in vitro for several passages. Bone marrow MSCs do not meet all of these criteria and neither do embryonic stem cells. However, a promising new cell source is emerging in tissue engineering that appears to meet these criteria: MSCs derived from Wharton’s jelly of umbilical cord MSCs. Exposed to appropriate conditions, umbilical cord MSCs can differentiate in vitro along several cell lineages such as the chondrocyte, osteoblast, adipocyte, myocyte, neuronal, pancreatic or hepatocyte lineages. In animal models, umbilical cord MSCs have demonstrated in vivo differentiation ability and promising immunocompatibility with host organs/tissues, even in xenotransplantation. In this article, we address their cellular characteristics, multipotent differentiation ability and potential for tissue engineering with an emphasis on musculoskeletal tissue engineering. PMID:21175290

  11. A comparison of umbilical cord blood-derived endothelial progenitor and mononuclear cell transplantation for the treatment of acute hindlimb ischemia

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2014-01-01

    Full Text Available Acute lower limb ischemia is a common peripheral artery disease whose treatment presents many difficulties. Stem cell transplantation is considered a novel and promising method of treating this disease. Umbilical cord blood (UCB is rich in stem cells, including hematopoietic stem cells (HSCs, mesenchymal stem cells (MSCs and endothelial progenitor cells (EPCs. However, historically, banked umbilical cord blood has been used mainly to treat blood-related diseases. Therefore, this study compared the efficacy of umbilical cord bloodderived mononuclear cells (UCB-MNCs with EPC transplantation for the treatment of acute hindlimb ischemia (ALI in mouse models. MNCs were isolated from UCB by Ficoll gradient centrifugation, after which the EPCs were sorted based on CD34+ and CD133+ markers and cultured according to a previously published protocol. To induce ALI, mice were immuno-suppressed using busulfan (BU and cyclophosphamide (CY, after which the femoral arteries were burned. Induction of ALI in the immune suppressed mice was confirmed by the grade of tissue damage, pedal frequency in water, tissue edema, changes in histology, total white blood cell count, and white blood cell composition. Model mice were injected with a dose of MNCs or EPCs and un-treated control mice were injected with phosphate buffered saline. The efficiency of treatment was evaluated by comparing the grade of tissue damage between the three groups of mice. Mice aged 6 and ndash;12 months were suitable for ALI, with 100% of mice exhibiting ischemia from grade I 10%, grade III 50%, grade IV 40%. For all ALI mice, a gradual increase in pedal frequency in water, increased tissue edema, necrosis of muscle tissue, and loss of hindlimb function were observed after 20 days. Transplanted MNCs and EPCs significantly improved hindlimb ischemia compared with control treatment. Moreover, EPC transplantation significantly improved hindlimb ischemia compared with MNC transplantation. Following

  12. Concise review: ex vivo expansion of cord blood-derived hematopoietic stem and progenitor cells: basic principles, experimental approaches, and impact in regenerative medicine.

    Science.gov (United States)

    Flores-Guzmán, Patricia; Fernández-Sánchez, Verónica; Mayani, Hector

    2013-11-01

    Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) play key roles in the production of mature blood cells and in the biology and clinical outcomes of hematopoietic transplants. The numbers of these cells, however, are extremely low, particularly in umbilical cord blood (UCB); thus, ex vivo expansion of human UCB-derived HSCs and HPCs has become a priority in the biomedical field. Expansion of progenitor cells can be achieved by culturing such cells in the presence of different combinations of recombinant stimulatory cytokines; in contrast, expansion of actual HSCs has proved to be more difficult because, in addition to needing recombinant cytokines, HSCs seem to deeply depend on the presence of stromal cells and/or elements that promote the activation of particular self-renewal signaling pathways. Hence, there is still controversy regarding the optimal culture conditions that should be used to achieve this. To date, UCB transplants using ex vivo-expanded cells have already been performed for the treatment of different hematological disorders, and although results are still far from being optimal, the advances are encouraging. Recent studies suggest that HSCs may also give rise to nonhematopoietic cells, such as neural, cardiac, mesenchymal, and muscle cells. Such plasticity and the possibility of producing nonhematopoietic cells at the clinical scale could bring new alternatives for the treatment of neural, metabolic, orthopedic, cardiac, and neoplastic disorders. Once standardized, ex vivo expansion of human HSCs/HPCs will surely have a positive impact in regenerative medicine.

  13. Reversal of type 1 diabetes via islet β cell regeneration following immune modulation by cord blood-derived multipotent stem cells

    Directory of Open Access Journals (Sweden)

    Zhao Yong

    2012-01-01

    Full Text Available Abstract Background Inability to control autoimmunity is the primary barrier to developing a cure for type 1 diabetes (T1D. Evidence that human cord blood-derived multipotent stem cells (CB-SCs can control autoimmune responses by altering regulatory T cells (Tregs and human islet β cell-specific T cell clones offers promise for a new approach to overcome the autoimmunity underlying T1D. Methods We developed a procedure for Stem Cell Educator therapy in which a patient's blood is circulated through a closed-loop system that separates lymphocytes from the whole blood and briefly co-cultures them with adherent CB-SCs before returning them to the patient's circulation. In an open-label, phase1/phase 2 study, patients (n = 15 with T1D received one treatment with the Stem Cell Educator. Median age was 29 years (range: 15 to 41, and median diabetic history was 8 years (range: 1 to 21. Results Stem Cell Educator therapy was well tolerated in all participants with minimal pain from two venipunctures and no adverse events. Stem Cell Educator therapy can markedly improve C-peptide levels, reduce the median glycated hemoglobin A1C (HbA1C values, and decrease the median daily dose of insulin in patients with some residual β cell function (n = 6 and patients with no residual pancreatic islet β cell function (n = 6. Treatment also produced an increase in basal and glucose-stimulated C-peptide levels through 40 weeks. However, participants in the Control Group (n = 3 did not exhibit significant change at any follow-up. Individuals who received Stem Cell Educator therapy exhibited increased expression of co-stimulating molecules (specifically, CD28 and ICOS, increases in the number of CD4+CD25+Foxp3+ Tregs, and restoration of Th1/Th2/Th3 cytokine balance. Conclusions Stem Cell Educator therapy is safe, and in individuals with moderate or severe T1D, a single treatment produces lasting improvement in metabolic control. Initial results indicate Stem Cell

  14. Acetylcholine secretion by motor neuron-like cells from umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Xueyuan Liu; Dehua Li; Dong Jiang; Yan Fang

    2013-01-01

    Umbilical cord mesenchymal stem cel s were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cel s was induced with heparin and/or basic fi-broblast growth factor. Results confirmed that cel morphology did not change after induction with basic fibroblast growth factor alone. However, neuronal morphology was visible, and microtu-bule-associated protein-2 expression and acetylcholine levels increased fol owing induction with heparin alone or heparin combined with basic fibroblast growth factor. Hb9 and choline acetyl-transferase expression was high fol owing inductive with heparin combined with basic fibroblast growth factor. Results indicate that the inductive effect of basic fibroblast growth factor alone was not obvious. Heparin combined with basic fibroblast growth factor noticeably promoted the differen-tiation of umbilical cord mesenchymal stem cel s into motor neuron-like cel s. Simultaneously, um-bilical cord mesenchymal stem cel s could secrete acetylcholine.

  15. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy

    Directory of Open Access Journals (Sweden)

    Irina Arutyunyan

    2016-01-01

    Full Text Available The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin, proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity. A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells, derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant standardization criteria.

  16. Umbilical Cord as Prospective Source for Mesenchymal Stem Cell-Based Therapy

    Science.gov (United States)

    2016-01-01

    The paper presents current evidence on the properties of human umbilical cord-derived mesenchymal stem cells, including origin, proliferative potential, plasticity, stability of karyotype and phenotype, transcriptome, secretome, and immunomodulatory activity. A review of preclinical studies and clinical trials using this cell type is performed. Prospects for the use of mesenchymal stem cells, derived from the umbilical cord, in cell transplantation are associated with the need for specialized biobanking and transplant standardization criteria. PMID:27651799

  17. Neural Differentiation of Human Umbilical Cord Mesenchymal Stem Cells by Cerebrospinal Fluid

    Directory of Open Access Journals (Sweden)

    Shirin FARIVAR*

    2015-01-01

    chick embryos. J Exp Zool A Comp Exp Biol 2004 Apr 1;301(4:280-9.Mitchell KE, Weiss ML. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 2003;21(1:50-60.Marcus AJ, Woodbury D. Fetal stem cells from extra-embryonic tissues: do not discard. J Cell Mol Med 2008 Jun;12(3:730-42. doi: 10.1111/j.1582- 4934.2008.00221.x. Epub 2008 Jan 11.Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, Quian H, Zhang X. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 2006 Sep;30(9:681-7. Epub 2006 Apr 22.In ‘tAnker PS, Scherjon SA, Kleijburg-van der Keur C, Noort WA, Claas FHJ, Willemze R, Fibbe WE, Kanhai HHH. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003;102(4:1548-49.Magatti M, De Munari S, Vertua E, Gibelli L, Wengler GS, Parolini O. Human amnion mesenchyme harbors cells with allogeneic T-cell suppression and stimulation capabilities. Stem Cells 2008 Jan;26(1:182-92. Epub 2007 Sep 27.Kang XQ, Zang WJ, Bao LJ, Li DL, Xu XL, Yu XJ. Differentiating characterization of human umbilical cord blood-derived mesenchymal stem cells in vitro. Cell Biol Int 2006 Jul;30(7:569-75. Epub 2006 Mar 6.Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006 May;24(5:1294-301. Epub 2006 Jan 12.Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 2005 Nov;33(11:1402-16.Jackson JS, Golding JP, Chapon C, Jones WA, Bhakoo KK: Homing of stem cells to sites of inflammatory brain injury after intracerebral and intravenous administration: a longitudinal imaging study. Stem Cell Res Ther 2010 Jun 15;1(2:17. doi: 10.1186/scrt17.Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative

  18. Pluripotent stem cells isolated from umbilical cord form embryonic like bodies in a mesenchymal layer culture.

    Science.gov (United States)

    Tsagias, Nikos; Kouzi-Koliakos, Kokkona; Karagiannis, Vasileios; Tsikouras, P; Koliakos, George G

    2015-03-01

    Recently the matrix of umbilical cord began to use as an alternative source of stem cells additionally to the blood of umbilical cord. Umbilical cord has been used mainly for mesenchymal stem cell banking. The immunological characteristics of mesenchymal stem cells in combination with their ability to avoid rejection make them an attractive biological material for transplantations. In this study the isolation of small in size pluripotent stem cells from umbilical cord expressing early transcription factors with characteristics that resemble to embryonic stem cells is investigated. Pluripotent stem cells were isolated from human umbilical cords, by a new strategy method based on unique characteristics such as the small size and the positivity on early transcription factors OCT and Nanog. An enriched population of CXCR4(+) OCT(+) Nanog(+) CD45(-) small stem cells from the cord was isolated. This fraction was able to create alkaline phosphatase positive like spheres forms in a mesenchymal layer with multilineage differentiation capacity. Our results were assessed by RT PCR and electophoresis for the pluripotent genes. These data suggest that umbilical cord provides an attractive source not only of mesenchymal stem cells but moreover of pluripotent stem cells. The method described herein should be applied in the field of stem cell banking in addition to the classical umbilical cord harvesting method. Isolation of a population of cells with pluripotent characteristics from umbilical cord. Adoption of a second centrifugation step for the pluripotent stem isolation. Increasing the value of the cord and explaining the pluripotency. This work will enhance the value of umbilical cord harvesting.

  19. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Rui-ping Zhang

    2015-01-01

    Full Text Available An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T 7-8 . Superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cord via the subarachnoid space. An outer magnetic field was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesenchymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunofluorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guidance. Our data confirm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic field guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively tracked in vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  20. Isolation and Characterisation of Mesenchymal Stem Cells from Different Regions of the Human Umbilical Cord

    Directory of Open Access Journals (Sweden)

    Claire Mennan

    2013-01-01

    Full Text Available Umbilical cords as a source of stem cells are of increasing interest for cell therapies as they present little ethical consideration and are reported to contain immune privileged cells which may be suitable for allogeneic based therapies. Mesenchymal stem cells (MSCs sourced from several different cord regions, including artery, vein, cord lining, and Wharton’s jelly, are described in the literature. However, no one study has yet isolated and characterised MSCs from all regions of the same cord to determine the most suitable cells for cell based therapeutics.

  1. Isolation and Characterisation of Mesenchymal Stem Cells from Different Regions of the Human Umbilical Cord

    Science.gov (United States)

    Wright, Karina; Bhattacharjee, Atanu; Balain, Birender; Richardson, James; Roberts, Sally

    2013-01-01

    Umbilical cords as a source of stem cells are of increasing interest for cell therapies as they present little ethical consideration and are reported to contain immune privileged cells which may be suitable for allogeneic based therapies. Mesenchymal stem cells (MSCs) sourced from several different cord regions, including artery, vein, cord lining, and Wharton's jelly, are described in the literature. However, no one study has yet isolated and characterised MSCs from all regions of the same cord to determine the most suitable cells for cell based therapeutics. PMID:23984420

  2. Umbilical cord mesenchymal stem cell transplantation for the treatment of Duchenne muscular dystrophy

    Institute of Scientific and Technical Information of China (English)

    Xiaofeng Yang; Yanxiang Wu; Xinping Liu; Yifeng Xu; Naiwu Lü; Yibin Zhang; Hongmei Wang; Xin Lü; Jiping Cui; Jinxu Zhou; Hong Shan

    2011-01-01

    Due to their relative abundance, stable biological properties and excellent reproductive activity,umbilical cord mesenchymal stem cells have previously been utilized for the treatment of Duchenne muscular dystrophy, which is a muscular atrophy disease. Three patients who were clinically and pathologically diagnosed with Duchenne muscular dystrophy were transplanted with umbilical cord mesenchymal stem cells by intravenous infusion, in combination with multi-point intramuscular injection. They were followed up for 12 months after cell transplantation. Results showed that clinical symptoms significantly improved, daily living activity and muscle strength were enhanced,the sero-enzyme, electromyogram, and MRI scans showed improvement, and dystrophin was expressed in the muscle cell membrane. Hematoxylin-eosin staining of a muscle biopsy revealed that muscle fibers were well arranged, fibrous degeneration was alleviated, and fat infiltration was improved. These pieces of evidence suggest that umbilical cord mesenchymal stem cell transplantation can be considered as a new regimen for Duchenne muscular dystrophy.

  3. visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Rui-ping Zhang; Cheng Xu; Yin Liu; Jian-ding Li; Jun Xie

    2015-01-01

    An important factor in improving functional recovery from spinal cord injury using stem cells is maximizing the number of transplanted cells at the lesion site. Here, we established a contusion model of spinal cord injury by dropping a weight onto the spinal cord at T7–8. Superparamagnet-ic iron oxide-labeled bone marrow mesenchymal stem cells were transplanted into the injured spinal cordvia the subarachnoid space. An outer magnetic ifeld was used to successfully guide the labeled cells to the lesion site. Prussian blue staining showed that more bone marrow mesen-chymal stem cells reached the lesion site in these rats than in those without magnetic guidance or superparamagnetic iron oxide labeling, and immunolfuorescence revealed a greater number of complete axons at the lesion site. Moreover, the Basso, Beattie and Bresnahan (BBB) locomotor rating scale scores were the highest in rats with superparamagnetic labeling and magnetic guid-ance. Our data conifrm that superparamagnetic iron oxide nanoparticles effectively label bone marrow mesenchymal stem cells and impart sufficient magnetism to respond to the external magnetic ifeld guides. More importantly, superparamagnetic iron oxide-labeled bone marrow mesenchymal stem cells can be dynamically and non-invasively trackedin vivo using magnetic resonance imaging. Superparamagnetic iron oxide labeling of bone marrow mesenchymal stem cells coupled with magnetic guidance offers a promising avenue for the clinical treatment of spinal cord injury.

  4. Transplantation of placenta-derived mesenchymal stem cell-induced neural stem cells to treat spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Zhi Li; Wei Zhao; Wei Liu; Ye Zhou; Jingqiao Jia; Lifeng Yang

    2014-01-01

    Because of their strong proliferative capacity and multi-potency, placenta-derived mesenchymal stem cells have gained interest as a cell source in the ifeld of nerve damage repair. In the present study, human placenta-derived mesenchymal stem cells were induced to differentiate into neural stem cells, which were then transplanted into the spinal cord after local spinal cord injury in rats. The motor functional recovery and pathological changes in the injured spinal cord were observed for 3 successive weeks. The results showed that human placenta-derived mesenchymal stem cells can differentiate into neuron-like cells and that induced neural stem cells contribute to the resto-ration of injured spinal cord without causing transplant rejection. Thus, these cells promote the recovery of motor and sensory functions in a rat model of spinal cord injury. Therefore, human placenta-derived mesenchymal stem cells may be useful as seed cells during the repair of spinal cord injury.

  5. Migration capacity of human umbilical cord mesenchymal stem cells towards glioma in vivo*

    Institute of Scientific and Technical Information of China (English)

    Cungang Fan; Dongliang Wang; Qingjun Zhang; Jingru Zhou

    2013-01-01

    High-grade glioma is the most common malignant primary brain tumor in adults. The poor prognosis of glioma, combined with a resistance to currently available treatments, necessitates the ment of more effective tumor-selective therapies. Stem cel-based therapies are emerging as novel cel-based delivery vehicle for therapeutic agents. In the present study, we successful y isolated human umbilical cord mesenchymal stem cel s by explant culture. The human umbilical cord senchymal stem cel s were adherent to plastic surfaces, expressed specific surface phenotypes of mesenchymal stem cel s as demonstrated by flow cytometry, and possessed multi-differentiation potentials in permissive induction media in vitro. Furthermore, human umbilical cord mesenchymal stem cel s demonstrated excel ent glioma-specific targeting capacity in established rat glioma models after intratumoral injection or contralateral ventricular administration in vivo. The excellent glioma-specific targeting ability and extensive intratumoral distribution of human umbilical cord mesenchymal stem cel s indicate that they may serve as a novel cel ular vehicle for delivering the-rapeutic molecules in glioma therapy.

  6. Human Umbilical Cord Mesenchymal Stromal Cells Support Viability of Umbilical Cord Blood Hematopoietic Stem Cells but not the "Stemness" of Their Progeny in Co-Culture.

    Science.gov (United States)

    Romanov, Yu A; Volgina, N E; Balashova, E E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-08-01

    Cell-cell interactions and the ability of mesenchymal stromal cells to support the expansion of hematopoietic progenitor cells were studied in co-culture of human umbilical cord tissue-derived mesenchymal stromal cells and nucleated umbilical cord blood cells. It was found that hematopoietic stem cells from the umbilical cord blood are capable to adhere to mesenchymal stromal cells and proliferate during 3-4 weeks in co-culture. However, despite the formation of hematopoietic foci and accumulation of CD34(+) and CD133(+) cells in the adherent cell fraction, the ability of newly generated blood cells to form colonies in semi-solid culture medium was appreciably reduced. These findings suggest that human umbilical cord tissue-derived mesenchymal stromal cells display a weak capability to support the "stemness" of hematopoietic stem cell progeny despite long-term maintenance of their viability and proliferation.

  7. Induction of human umbilical cord blood-derived stem cells with embryonic stem cell phenotypes into insulin producing islet-like structure.

    Science.gov (United States)

    Sun, Bo; Roh, Kyung-Hwan; Lee, Sae-Rom; Lee, Yong-Soon; Kang, Kyung-Sun

    2007-03-23

    Success in islet-transplantation-based therapies for type I diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Embryonic stem cells (ESCs) have been successfully induced into insulin producing islet-like structure in several studies. However, the source of the ESCs has presented ethical and technical concerns. Here, we isolated a population of stem cells from human cord blood (UCB), which expressed embryo stage specific maker, SSEA-4, and the multi-potential stem cell marker, Oct4. Subsequently, we successfully induced them into insulin-producing islet-like structures, which co-express insulin and C-peptide. These findings might have a significant potential to advance human UCB derived stem-cell-based therapeutics for diabetes.

  8. Chondroitinase ABC plus bone marrow mesenchymal stem cells for repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Chun Zhang; Xijing He; Haopeng Li; Guoyu Wang

    2013-01-01

    As chondroitinase ABC can improve the hostile microenvironment and cell transplantation is proven to be effective after spinal cord injury, we hypothesized that their combination would be a more effective treatment option. At 5 days after T8 spinal cord crush injury, rats were injected with bone marrow mesenchymal stem cell suspension or chondroitinase ABC 1 mm from the edge of spinal cord damage zone. Chondroitinase ABC was first injected, and bone marrow mesenchymal stem cell suspension was injected on the next day in the combination group. At 14 days, the mean Basso, Beattie and Bresnahan score of the rats in the combination group was higher than other groups. Hematoxylin-eosin staining showed that the necrotic area was significantly reduced in the combination group compared with other groups. Glial fibrillary acidic protein-chondroitin sulfate proteoglycan double staining showed that the damage zone of astrocytic scars was significantly reduced without the cavity in the combination group. Glial fibrillary acidic protein/growth associated protein-43 double immunostaining revealed that positive fibers traversed the damage zone in the combination group. These results suggest that the combination of chondroitinase ABC and bone marrow mesenchymal stem cell transplantation contributes to the repair of spinal cord injury.

  9. An experimental study of preventing and treating acute radioactive enteritis with human umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Rui Wang; Wei Yuan; Qiang Zhao; Peng Song; Ji Yue; Shi-De Lin; Ting-Bao Zhao

    2013-01-01

    Objective:To test the curative effect of human umbilical cord-derived mesenchymal stem cells on rat acute radioactive enteritis and thus to provide clinical therapeutic basis for radiation sickness.Methods:Human umbilical cord-derived mesenchymal stem cells were cultivatedin vitro and the model of acute radioactive enteritis of rats was established.Then, the umbilical cord mesenchymal stem cells were injected into the rats via tail vein.Visual and histopathological changes of the experimental rats were observed.Results:After the injection, the rats in the prevention group and treatment group had remarkably better survival status than those in the control group.The histological observations revealed that the former also had better intestinal mucosa structure, more regenerative cells and stronger proliferation activity than the latter.Conclusions:Human umbilical cord-derived mesenchymal stem cells have a definite therapeutic effect on acute radioactive enteritis in rats.

  10. Transplantation of neurotrophin-3-transfected bone marrow mesenchymal stem cells for the repair of spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Yuzhen Dong; Libin Yang; Lin Yang; Hongxing Zhao; Chao Zhang; Dapeng Wu

    2014-01-01

    Bone marrow mesenchymal stem cell transplantation has been shown to be therapeutic in the repair of spinal cord injury. However, the low survival rate of transplanted bone marrow mesen-chymal stem cells in vivo remains a problem. Neurotrophin-3 promotes motor neuron survival and it is hypothesized that its transfection can enhance the therapeutic effect. We show that in vitro transfection of neurotrophin-3 gene increases the number of bone marrow mesenchymal stem cells in the region of spinal cord injury. These results indicate that neurotrophin-3 can promote the survival of bone marrow mesenchymal stem cells transplanted into the region of spinal cord injury and potentially enhance the therapeutic effect in the repair of spinal cord injury.

  11. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice.

    Directory of Open Access Journals (Sweden)

    Ravid Shechter

    2009-07-01

    Full Text Available BACKGROUND: Although macrophages (MPhi are known as essential players in wound healing, their contribution to recovery from spinal cord injury (SCI is a subject of debate. The difficulties in distinguishing between different MPhi subpopulations at the lesion site have further contributed to the controversy and led to the common view of MPhi as functionally homogenous. Given the massive accumulation in the injured spinal cord of activated resident microglia, which are the native immune occupants of the central nervous system (CNS, the recruitment of additional infiltrating monocytes from the peripheral blood seems puzzling. A key question that remains is whether the infiltrating monocyte-derived MPhi contribute to repair, or represent an unavoidable detrimental response. The hypothesis of the current study is that a specific population of infiltrating monocyte-derived MPhi is functionally distinct from the inflammatory resident microglia and is essential for recovery from SCI. METHODS AND FINDINGS: We inflicted SCI in adult mice, and tested the effect of infiltrating monocyte-derived MPhi on the recovery process. Adoptive transfer experiments and bone marrow chimeras were used to functionally distinguish between the resident microglia and the infiltrating monocyte-derived MPhi. We followed the infiltration of the monocyte-derived MPhi to the injured site and characterized their spatial distribution and phenotype. Increasing the naïve monocyte pool by either adoptive transfer or CNS-specific vaccination resulted in a higher number of spontaneously recruited cells and improved recovery. Selective ablation of infiltrating monocyte-derived MPhi following SCI while sparing the resident microglia, using either antibody-mediated depletion or conditional ablation by diphtheria toxin, impaired recovery. Reconstitution of the peripheral blood with monocytes resistant to ablation restored the lost motor functions. Importantly, the infiltrating monocyte

  12. Intravenous administration of human umbilical cord blood-derived AC133+ endothelial progenitor cells in rat stroke model reduces infarct volume: magnetic resonance imaging and histological findings.

    Science.gov (United States)

    Iskander, Asm; Knight, Robert A; Zhang, Zheng Gang; Ewing, James R; Shankar, Adarsh; Varma, Nadimpalli Ravi S; Bagher-Ebadian, Hassan; Ali, Meser M; Arbab, Ali S; Janic, Branislava

    2013-09-01

    Endothelial progenitor cells (EPCs) hold enormous therapeutic potential for ischemic vascular diseases. Previous studies have indicated that stem/progenitor cells derived from human umbilical cord blood (hUCB) improve functional recovery in stroke models. Here, we examined the effect of hUCB AC133+ EPCs on stroke development and resolution in a middle cerebral artery occlusion (MCAo) rat model. Since the success of cell therapies strongly depends on the ability to monitor in vivo the migration of transplanted cells, we also assessed the capacity of magnetic resonance imaging (MRI) to track in vivo the magnetically labeled cells that were administered. Animals were subjected to transient MCAo and 24 hours later injected intravenously with 10(7) hUCB AC133+ EPCs. MRI performed at days 1, 7, and 14 after the insult showed accumulation of transplanted cells in stroke-affected hemispheres and revealed that stroke volume decreased at a significantly higher rate in cell-treated animals. Immunohistochemistry analysis of brain tissues localized the administered cells in the stroke-affected hemispheres only and indicated that these cells may have significantly affected the magnitude of endogenous proliferation, angiogenesis, and neurogenesis. We conclude that transplanted cells selectively migrated to the ischemic brain parenchyma, where they exerted a therapeutic effect on the extent of tissue damage, regeneration, and time course of stroke resolution.

  13. Low oxygen tension favored expansion and hematopoietic reconstitution of CD34(+) CD38(-) cells expanded from human cord blood-derived CD34(+) Cells.

    Science.gov (United States)

    Wang, Ziyan; Du, Zheng; Cai, Haibo; Ye, Zhaoyang; Fan, Jinli; Tan, Wen-Song

    2016-07-01

    Oxygen tension is an important factor that regulates hematopoietic stem cells (HSCs) in both in vivo hematopoietic microenvironment and ex vivo culture system. Although the effect of oxygen tension on ex vivo expansion of HSCs was extensively studied, there were no clear descriptions on physiological function and gene expression analysis of HSCs under different oxygen tensions. In this study, the effects of oxygen tension on ex vivo expansion characteristics of human umbilical cord blood (UCB)-derived CD34(+) cells are evaluated. Moreover, the physiological function of expanded CD34(+) cells was assessed by secondary expansion ability ex vivo and hematopoietic reconstitution ability in vivo. Also, genetic profiling was applied to analyze the expression of genes related to cell function. It was found that low oxygen tension favored expansion of CD34(+) CD38(-) cells. Additionally, CD34(+) cells expanded under low oxygen tension showed better secondary expansion ability and reconstitution ability than those under atmospheric oxygen concentration. Finally, the genetic profiling of CD34(+) CD38(-) cells cultured under low oxygen tension was more akin to freshly isolated cells. These results collectively demonstrate that low oxygen tension was able to better maintain both self-renewal and hematopoietic reconstitution potential and may lay an experimental basis for clinical transplantation of HSCs.

  14. Therapeutic Potential of Umbilical Cord Mesenchymal Stromal Cells Transplantation for Cerebral Palsy: A Case Report

    OpenAIRE

    Liming Wang; Haijie Ji; Jianjun Zhou,; Jiang Xie; Zhanqiang Zhong; Ming Li; Wen Bai; Na Li; Zijia Zhang; Xuejun Wang; Delin Zhu; Yongjun Liu; Mingyuan Wu

    2013-01-01

    Cerebral palsy is the most common motor disability in childhood. In current paper, we first report our clinical data regarding administration of umbilical cord mesenchymal stem cells (MSCs) transplantation in treatment of cerebral palsy. A 5-year-old girl with cerebral palsy was treated with multiple times of intravenous and intrathecal administration of MSCs derived from her young sister and was followed up for 28 months. The gross motor dysfunction was improved. Other benefits included enha...

  15. Humoral activity of cord blood-derived stem/progenitor cells: implications for stem cell-based adjuvant therapy of neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Edyta Paczkowska

    Full Text Available BACKGROUND: Stem/progenitor cells (SPCs demonstrate neuro-regenerative potential that is dependent upon their humoral activity by producing various trophic factors regulating cell migration, growth, and differentiation. Herein, we compared the expression of neurotrophins (NTs and their receptors in specific umbilical cord blood (UCB SPC populations, including lineage-negative, CD34(+, and CD133(+ cells, with that in unsorted, nucleated cells (NCs. METHODS AND RESULTS: The expression of NTs and their receptors was detected by QRT-PCR, western blotting, and immunofluorescent staining in UCB-derived SPC populations (i.e., NCs vs. lineage-negative, CD34(+, and CD133(+ cells. To better characterize, global gene expression profiles of SPCs were determined using genome-wide RNA microarray technology. Furthermore, the intracellular production of crucial neuro-regenerative NTs (i.e., BDNF and NT-3 was assessed in NCs and lineage-negative cells after incubation for 24, 48, and 72 h in both serum and serum-free conditions. We discovered significantly higher expression of NTs and NT receptors at both the mRNA and protein level in lineage-negative, CD34(+, and CD133(+ cells than in NCs. Global gene expression analysis revealed considerably higher expression of genes associated with the production and secretion of proteins, migration, proliferation, and differentiation in lineage-negative cells than in CD34(+ or CD133(+ cell populations. Notably, after short-term incubation under serum-free conditions, lineage-negative cells and NCs produced significantly higher amounts of BDNF and NT-3 than under steady-state conditions. Finally, conditioned medium (CM from lineage-negative SPCs exerted a beneficial impact on neural cell survival and proliferation. CONCLUSIONS: Collectively, our findings demonstrate that UCB-derived SPCs highly express NTs and their relevant receptors under steady-state conditions, NT expression is greater under stress-related conditions and

  16. Mesenchymal stem cells from human umbilical cord ameliorate testicular dysfunction in a male rat hypogonadism model

    Directory of Open Access Journals (Sweden)

    Zhi-Yuan Zhang

    2017-01-01

    Full Text Available Androgen deficiency is a physical disorder that not only affects adults but can also jeopardize children′s health. Because there are many disadvantages to using traditional androgen replacement therapy, we have herein attempted to explore the use of human umbilical cord mesenchymal stem cells for the treatment of androgen deficiency. We transplanted CM-Dil-labeled human umbilical cord mesenchymal stem cells into the testes of an ethane dimethanesulfonate (EDS-induced male rat hypogonadism model. Twenty-one days after transplantation, we found that blood testosterone levels in the therapy group were higher than that of the control group (P = 0.037, and using immunohistochemistry and flow cytometry, we observed that some of the CM-Dil-labeled cells expressed Leydig cell markers for cytochrome P450, family 11, subfamily A, polypeptide 1, and 3-β-hydroxysteroid dehydrogenase. We then recovered these cells and observed that they were still able to proliferate in vitro. The present study shows that mesenchymal stem cells from human umbilical cord may constitute a promising therapeutic modality for the treatment of male hypogonadism patients.

  17. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    Directory of Open Access Journals (Sweden)

    Isaac Perea-Gil

    2015-01-01

    Full Text Available Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs. Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells.

  18. Preclinical Evaluation of the Immunomodulatory Properties of Cardiac Adipose Tissue Progenitor Cells Using Umbilical Cord Blood Mesenchymal Stem Cells: A Direct Comparative Study

    Science.gov (United States)

    Perea-Gil, Isaac; Monguió-Tortajada, Marta; Gálvez-Montón, Carolina; Bayes-Genis, Antoni; Borràs, Francesc E.; Roura, Santiago

    2015-01-01

    Cell-based strategies to regenerate injured myocardial tissue have emerged over the past decade, but the optimum cell type is still under scrutiny. In this context, human adult epicardial fat surrounding the heart has been characterized as a reservoir of mesenchymal-like progenitor cells (cardiac ATDPCs) with potential clinical benefits. However, additional data on the possibility that these cells could trigger a deleterious immune response following implantation are needed. Thus, in the presented study, we took advantage of the well-established low immunogenicity of umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) to comparatively assess the immunomodulatory properties of cardiac ATDPCs in an in vitro allostimulatory assay using allogeneic mature monocyte-derived dendritic cells (MDDCs). Similar to UCBMSCs, increasing amounts of seeded cardiac ATDPCs suppressed the alloproliferation of T cells in a dose-dependent manner. Secretion of proinflammatory cytokines (IL6, TNFα, and IFNγ) was also specifically modulated by the different numbers of cardiac ATDPCs cocultured. In summary, we show that cardiac ATDPCs abrogate T cell alloproliferation upon stimulation with allogeneic mature MDDCs, suggesting that they could further regulate a possible harmful immune response in vivo. Additionally, UCBMSCs can be considered as valuable tools to preclinically predict the immunogenicity of prospective regenerative cells. PMID:25861626

  19. Isolation and characterization of mesenchymal stem cells from caprine umbilical cord tissue matrix.

    Science.gov (United States)

    Kumar, Kuldeep; Agarwal, Pranjali; Das, Kinsuk; Mili, Bhabesh; Madhusoodan, A P; Kumar, Ajay; Bag, Sadhan

    2016-12-01

    Cord tissue fills the umbilical cord around the blood vessels and contains types of stem cells (mesenchymal stem cells or MSCs) that are not generally found in cord blood. MSCs are the stem cells that give rise to many of the "support tissues" in the body, including bone, cartilage, fat and muscle. Umbilical Cord Tissue cells (UCTs) possessing the capacity to differentiate into various cell types such as osteoblasts, chondrocytes and adipocytes have been previously isolated from different species including human, canine, murine, avian species etc. The present study documents the existence of similar multipotential stem cells in caprine UCTs having similar growth and morphological characteristics. The cells were isolated from caprine umbilical cord and cultivated in DMEM (low glucose) supplemented with 15% FBS, L-glutamine and antibiotics. Primary culture achieved confluence in 5-7days having spindle shaped morphology. The cells were morphologically homogeneous, showed robust proliferation ability with a population doubled time of 92.07h as well as normal karyotype. In vitro self-renewal capacity was demonstrated by colony-forming unit assay (CFU). The cells expressed MSC specific markers and showed multi-differentiation capability into adipogenic and osteogeneic. The results indicated that caprine UCTs (cUCTs) were isolated and characterized from umbilical cord tissue which can be used for tissue regeneration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy.

    Science.gov (United States)

    Ding, Dah-Ching; Chang, Yu-Hsun; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2015-01-01

    The human umbilical cord is a promising source of mesenchymal stem cells (HUCMSCs). Unlike bone marrow stem cells, HUCMSCs have a painless collection procedure and faster self-renewal properties. Different derivation protocols may provide different amounts and populations of stem cells. Stem cell populations have also been reported in other compartments of the umbilical cord, such as the cord lining, perivascular tissue, and Wharton's jelly. HUCMSCs are noncontroversial sources compared to embryonic stem cells. They can differentiate into the three germ layers that promote tissue repair and modulate immune responses and anticancer properties. Thus, they are attractive autologous or allogenic agents for the treatment of malignant and nonmalignant solid and soft cancers. HUCMCs also can be the feeder layer for embryonic stem cells or other pluripotent stem cells. Regarding their therapeutic value, storage banking system and protocols should be established immediately. This review critically evaluates their therapeutic value, challenges, and future directions for their clinical applications.

  1. Methods of isolation, expansion, differentiating induction and preservation of human umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    LI Dong-rui; CAI Jian-hui

    2012-01-01

    Objective This literature review aims to summarize the methods of isolation,expansion,differentiation and preservation of human umbilical cord mesenchymal stem cells (hUCMSCs),for comprehensive understanding and practical use in preclinical research and clinical trials.Data sources All the literature reviewed was published over the last 10 years and is listed in PubMed and Chinese National Knowledge Infrastructure (CNKI).Studies were retrieved using the key word "human umbilical cord mesenchymal stem cells".Results Explants culture and enzymatic digestion are two methods to isolate hUCMSCs from WJ and there are modifications to improve these methods.Culture conditions may affect the expansion and differentiating orientations of hUCMSCs.In addition,hUCMSCs can maintain their multi-potential effects after being properly frozen and thawed.Conclusion Considering their multi-potential,convenient and non-invasive accessibility,low immunogenicity and the reported therapeutic effects in several different preclinical animal models,hUCMSCs have immense scope in regeneration medicine as a substitute for MSCs derived from bone marrow or umbilical cord blood.

  2. Efficacy and safety of cord blood-derived dendritic cells plus cytokine-induced killer cells combined with chemotherapy in the treatment of patients with advanced gastric cancer: a randomized Phase II study

    Directory of Open Access Journals (Sweden)

    Mu Y

    2016-07-01

    Full Text Available Ying Mu,1,* Wei-hua Wang,2,* Jia-ping Xie,1 Ying-xin Zhang,2 Ya-pei Yang,2 Chang-hui Zhou2 1Department of Gastroenterology, 2Department of Central Laboratory, Liaocheng People’s Hospital, Liaocheng Clinical School of Taishan Medical University, Liaocheng, Shandong Province, People’s Republic of China *These authors contributed equally to this work Background: Cellular immunotherapy has been widely used in the treatment of solid tumors. However, the clinical application of cord blood-derived dendritic cells and cytokine-induced killer cells (CB-DC-CIK for the treatment of gastric cancer has not been frequently reported. In this study, the efficacy and safety of CB-DC-CIK for the treatment of gastric cancer were evaluated both in vitro and in vivo. Methods: The phenotypes, cytokines, and cytotoxicity of CB-DC-CIK were detected in vitro. Patients with advanced gastric cancer were divided into the following two groups: the experimental group (CB-DC-CIK combined with chemotherapy and the control group (chemotherapy alone. The curative effects and immune function were compared between the two groups. Results: First, the results showed that combination therapy significantly increased the overall disease-free survival rate (P=0.0448 compared with chemotherapy alone. The overall survival rate (P=0.0646, overall response rate (P=0.410, and disease control rate (P=0.396 were improved in the experimental group, but these changes did not reach statistical significance. Second, the percentage of T-cell subsets (CD4+, CD3-CD56+, and CD3+CD56+ and the levels of IFN-γ, TNF-α, and IL-2, which reflect immune function, were significantly increased (P<0.05 after immunotherapy. Finally, no serious side effects appeared in patients with gastric cancer after the application of cellular immunotherapy based on CB-DC-CIK. Conclusion: CB-DC-CIK combined with chemotherapy is effective and safe for the treatment of patients with advanced gastric cancer. Keywords: cord

  3. Epithelial and mesenchymal stem cells from the umbilical cord lining membrane.

    Science.gov (United States)

    Lim, Ivor J; Phan, Toan Thang

    2014-01-01

    Intense scientific research over the past two decades has yielded much knowledge about embryonic stem cells, mesenchymal stem cells from bone marrow, as well as epithelial stem cells from the skin and cornea. However, the billions of dollars spent in this research have not overcome the fundamental difficulties intrinsic to these stem cell strains related to ethics (embryonic stem cells), as well as to technical issues such as accessibility, ease of cell selection and cultivation, and expansion/mass production, while maintaining consistency of cell stemness (all of the stem cell strains already mentioned). Overcoming these technical hurdles has made stem cell technology expensive and any potential translational products unaffordable for most patients. Commercialization efforts have been rendered unfeasible by this high cost. Advanced biomedical research is on the rise in Asia, and new innovations have started to overcome these challenges. The Nobel Prize-winning Japanese development of iPSCs has effectively introduced a possible replacement for embryonic stem cells. For non-embryonic stem cells, cord lining stem cells (CLSCs) have overcome the preexisting difficulties inherent to mesenchymal stem cells from the bone marrow as well as epithelial stem cells from the skin and cornea, offering a realistic, practical, and affordable alternative for tissue repair and regeneration. This novel CLSC technology was developed in Singapore in 2004 and has 22 international patents granted to date, including those from the US and UK. CLSCs are derived from the umbilical cord outer lining membrane (usually regarded as medical waste) and is therefore free from ethical dilemmas related to its collection. The large quantity of umbilical cord lining membrane that can be collected translates to billions of stem cells that can be grown in primary stem cell culture and therefore very rapid and inexpensive cell cultivation and expansion for clinical translational therapies. Both

  4. Purified umbilical cord derived mesenchymal stem cell treatment in a case of systemic lupus erythematosus.

    Science.gov (United States)

    Phillips, Christopher D; Wongsaisri, Pornpatcharin; Htut, Thein; Grossman, Terry

    2017-12-01

    Systemic lupus erythematosus (SLE) is a multiple organ system autoimmune disorder for which there is no known cure. We report a case of a young adult lady with SLE and Sjogren's with diagnostic and clinical resolution following purified umbilical cord derived mesenchymal stem cell (MSC) and globulin component protein macrophage activating factor (GcMAF) therapy in a combined multidisciplinary integrative medicine protocol. Our patient had complete reversal of all clinical and laboratory markers. We recommend a prospective randomized double blind study to assess the sustained efficacy of MSC and GcMAF in the treatment of autoimmune connective tissue diseases such as systemic lupus erythematosus.

  5. Expression of neurotrophic factors in injured spinal cord after transplantation of human-umbilical cord blood stem cells in rats.

    Science.gov (United States)

    Chung, Hyo-jin; Chung, Wook-hun; Lee, Jae-Hoon; Chung, Dai-Jung; Yang, Wo-Jong; Lee, A-Jin; Choi, Chi-Bong; Chang, Hwa-Seok; Kim, Dae-Hyun; Suh, Hyun Jung; Lee, Dong-Hun; Hwang, Soo-Han; Do, Sun Hee; Kim, Hwi-Yool

    2016-03-01

    We induced percutaneous spinal cord injuries (SCI) using a balloon catheter in 45 rats and transplanted human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) at the injury site. Locomotor function was significantly improved in hUCB-MSCs transplanted groups. Quantitative ELISA of extract from entire injured spinal cord showed increased expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and neurotrophin-3 (NT-3). Our results show that treatment of SCI with hUCB-MSCs can improve locomotor functions, and suggest that increased levels of BDNF, NGF and NT-3 in the injured spinal cord were the main therapeutic effect.

  6. Human Umbilical Cord Blood Serum: Effective Substitute of Fetal Bovine Serum for Culturing of Human Multipotent Mesenchymal Stromal Cells.

    Science.gov (United States)

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-02-01

    Optimal conditions for culturing of multipotent mesenchymal stromal cells in the presence of pooled umbilical cord blood serum were determined. It was found that umbilical cord blood serum in a concentration range of 1-10% effectively supported high viability and proliferative activity of cells with unaltered phenotype and preserved multilineage differentiation capacity. The proposed approach allows avoiding the use of xenogenic animal sera for culturing of multipotent mesenchymal stromal cells and creates prerequisites for designing and manufacturing safe cellular and/or acellular products for medical purposes.

  7. The umbilical cord matrix is a better source of mesenchymal stem cells (MSC) than the umbilical cord blood.

    Science.gov (United States)

    Zeddou, Mustapha; Briquet, Alexandra; Relic, Biserka; Josse, Claire; Malaise, Michel G; Gothot, André; Lechanteur, Chantal; Beguin, Yves

    2010-07-01

    Many studies have drawn attention to the emerging role of MSC (mesenchymal stem cells) as a promising population supporting new clinical concepts in cellular therapy. However, the sources from which these cells can be isolated are still under discussion. Whereas BM (bone marrow) is presented as the main source of MSC, despite the invasive procedure related to this source, the possibility of isolating sufficient numbers of these cells from UCB (umbilical cord blood) remains controversial. Here, we present the results of experiments aimed at isolating MSC from UCB, BM and UCM (umbilical cord matrix) using different methods of isolation and various culture media that summarize the main procedures and criteria reported in the literature. Whereas isolation of MSC were successful from BM (10:10) and (UCM) (8:8), only one cord blood sample (1:15) gave rise to MSC using various culture media [DMEM (Dulbecco's modified Eagle's medium) +5% platelet lysate, DMEM+10% FBS (fetal bovine serum), DMEM+10% human UCB serum, MSCGM] and different isolation methods [plastic adherence of total MNC (mononuclear cells), CD3+/CD19+/CD14+/CD38+-depleted MNC and CD133+- or LNGFR+-enriched MNC]. MSC from UCM and BM were able to differentiate into adipocytes, osteocytes and hepatocytes. The expansion potential was highest for MSC from UCM. The two cell populations had CD90+/CD73+/CD105+ phenotype with the additional expression of SSEA4 and LNGFR for BM MSC. These results clearly exclude UCB from the list of MSC sources for clinical use and propose instead UCM as a rich, non-invasive and abundant source of MSC.

  8. VEGF-expressing human umbilical cord mesenchymal stem cells, an improved therapy strategy for Parkinson's disease.

    Science.gov (United States)

    Xiong, N; Zhang, Z; Huang, J; Chen, C; Zhang, Z; Jia, M; Xiong, J; Liu, X; Wang, F; Cao, X; Liang, Z; Sun, S; Lin, Z; Wang, T

    2011-04-01

    The umbilical cord provides a rich source of primitive mesenchymal stem cells (human umbilical cord mesenchymal stem cells (HUMSCs)), which have the potential for transplantation-based treatments of Parkinson's Disease (PD). Our pervious study indicated that adenovirus-associated virus-mediated intrastriatal delivery of human vascular endothelial growth factor 165 (VEGF 165) conferred molecular protection to the dopaminergic system. As both VEGF and HUMSCs displayed limited neuroprotection, in this study we investigated whether HUMSCs combined with VEGF expression could offer enhanced neuroprotection. HUMSCs were modified by adenovirus-mediated VEGF gene transfer, and subsequently transplanted into rotenone-lesioned striatum of hemiparkinsonian rats. As a result, HUMSCs differentiated into dopaminergic neuron-like cells on the basis of neuron-specific enolase (NSE) (neuronal marker), glial fibrillary acidic protein (GFAP) (astrocyte marker), nestin (neural stem cell marker) and tyrosine hydroxylase (TH) (dopaminergic marker) expression. Further, VEGF expression significantly enhanced the dopaminergic differentiation of HUMSCs in vivo. HUMSC transplantation ameliorated apomorphine-evoked rotations and reduced the loss of dopaminergic neurons in the lesioned substantia nigra (SNc), which was enhanced significantly by VEGF expression in HUMSCs. These findings present the suitability of HUMSC as a vector for gene therapy and suggest that stem cell engineering with VEGF may improve the transplantation strategy for the treatment of PD.

  9. Short-Lived Human Umbilical Cord-Blood-Derived Neural Stem Cells Influence the Endogenous Secretome and Increase the Number of Endogenous Neural Progenitors in a Rat Model of Lacunar Stroke.

    Science.gov (United States)

    Jablonska, Anna; Drela, Katarzyna; Wojcik-Stanaszek, Luiza; Janowski, Miroslaw; Zalewska, Teresa; Lukomska, Barbara

    2016-11-01

    Stroke is the leading cause of severe disability, and lacunar stroke is related to cognitive decline and hemiparesis. There is no effective treatment for the majority of patients with stroke. Thus, stem cell-based regenerative medicine has drawn a growing body of attention due to the capabilities for trophic factor expression and neurogenesis enhancement. Moreover, it was shown in an experimental autoimmune encephalomyelitis (EAE) model that even short-lived stem cells can be therapeutic, and we have previously observed that phenomenon indirectly. Here, in a rat model of lacunar stroke, we investigated the molecular mechanisms underlying the positive therapeutic effects of short-lived human umbilical cord-blood-derived neural stem cells (HUCB-NSCs) through the distinct measurement of exogenous human and endogenous rat trophic factors. We have also evaluated neurogenesis and metalloproteinase activity as cellular components of therapeutic activity. As expected, we observed an increased proliferation and migration of progenitors, as well as metalloproteinase activity up to 14 days post transplantation. These changes were most prominent at the 7-day time point when we observed 30 % increases in the number of bromodeoxyuridine (BrdU)-positive cells in HUCB-NSC transplanted animals. The expression of human trophic factors was present until 7 days post transplantation, which correlated well with the survival of the human graft. For these 7 days, the level of messenger RNA (mRNA) in the analyzed trophic factors was from 300-fold for CNTF to 10,000-fold for IGF, much higher compared to constitutive expression in HUCB-NSCs in vitro. What is interesting is that there was no increase in the expression of rat trophic factors during the human graft survival, compared to that in non-transplanted animals. However, there was a prolongation of a period of increased trophic expression until 14 days post transplantation, while, in non-transplanted animals, there was a

  10. Comparative Analysis of Human Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, and Umbilical Cord Blood as Sources of Cell Therapy

    Directory of Open Access Journals (Sweden)

    Yoon Sun Yang

    2013-09-01

    Full Text Available Various source-derived mesenchymal stem cells (MSCs have been considered for cell therapeutics in incurable diseases. To characterize MSCs from different sources, we compared human bone marrow (BM, adipose tissue (AT, and umbilical cord blood-derived MSCs (UCB-MSCs for surface antigen expression, differentiation ability, proliferation capacity, clonality, tolerance for aging, and paracrine activity. Although MSCs from different tissues have similar levels of surface antigen expression, immunosuppressive activity, and differentiation ability, UCB-MSCs had the highest rate of cell proliferation and clonality, and significantly lower expression of p53, p21, and p16, well known markers of senescence. Since paracrine action is the main action of MSCs, we examined the anti-inflammatory activity of each MSC under lipopolysaccharide (LPS-induced inflammation. Co-culture of UCB-MSCs with LPS-treated rat alveolar macrophage, reduced expression of inflammatory cytokines including interleukin-1α (IL-1α, IL-6, and IL-8 via angiopoietin-1 (Ang-1. Using recombinant Ang-1 as potential soluble paracrine factor or its small interference RNA (siRNA, we found that Ang-1 secretion was responsible for this beneficial effect in part by preventing inflammation. Our results demonstrate that primitive UCB-MSCs have biological advantages in comparison to adult sources, making UCB-MSCs a useful model for clinical applications of cell therapy.

  11. Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yanfu [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China); Chai, Jiake, E-mail: cjk304@126.com [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China); Sun, Tianjun; Li, Dongjie; Tao, Ran [Department of Burn and Plastic Surgery, Burns Institute, First Hospital Affiliated to General Hospital of PLA, Beijing (China)

    2011-10-07

    Highlights: {yields} Mesenchymal stem cells (MSCs) are potential seed cells for tissue-engineered skin. {yields} Tissue-derived umbilical cord MSCs (UCMSCs) can readily be isolated in vitro. {yields} We induce UCMSCs to differentiate into dermal fibroblasts via conditioned medium. {yields} Collagen type I and collagen type III mRNA level was higher in differentiated cells. {yields} UCMSCs-derived fibroblast-like cells strongly express fibroblast-specific protein. -- Abstract: Tissue-derived umbilical cord mesenchymal stem cells (UCMSCs) can be readily obtained, avoid ethical or moral constraints, and show excellent pluripotency and proliferation potential. UCMSCs are considered to be a promising source of stem cells in regenerative medicine. In this study, we collected newborn umbilical cord tissue under sterile conditions and isolated UCMSCs through a tissue attachment method. UCMSC cell surface markers were examined using flow cytometry. On the third passage, UCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. The induction results were detected using immunofluorescence with a fibroblast-specific monoclonal antibody and real time PCR for type I and type III collagen. UCMSCs exhibited a fibroblast-like morphology and reached 90% confluency 14 to 18 days after primary culture. Cultured UCMSCs showed strong positive staining for CD73, CD29, CD44, CD105, and HLA-I, but not CD34, CD45, CD31, or HLA-DR. After differentiation, immunostaining for collagen type I, type III, fibroblast-specific protein, vimentin, and desmin were all strongly positive in induced cells, and staining was weak or negative in non-induced cells; total transcript production of collagen type I and collagen type III mRNA was higher in induced cells than in non-induced cells. These results demonstrate that UCMSCs can be induced to differentiate into fibroblasts with conditioned induction media and, in turn, could be used as seed cells for tissue

  12. Co-culture with Sertoli cells promotes proliferation and migration of umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fenxi, E-mail: fxzhang0824@gmail.com [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Hong, Yan; Liang, Wenmei [Department of Histology and Embryology, Guiyang Medical University, Guizhou 550004, People' s Republic of China (China); Ren, Tongming [Department of Anatomy, Sanquan College, Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Jing, Suhua [ICU Center, The Third Hospital of Xinxiang Medical University, Henan 453003, People' s Republic of China (China); Lin, Juntang [Stem Cell Center, Xinxiang Medical University, Henan 453003, People' s Republic of China (China)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Co-culture of Sertoli cells (SCs) with human umbilical cord mesenchymal stem cells (UCMSCs). Black-Right-Pointing-Pointer Presence of SCs dramatically increased proliferation and migration of UCMSCs. Black-Right-Pointing-Pointer Presence of SCs stimulated expression of Mdm2, Akt, CDC2, Cyclin D, CXCR4, MAPKs. -- Abstract: Human umbilical cord mesenchymal stem cells (hUCMSCs) have been recently used in transplant therapy. The proliferation and migration of MSCs are the determinants of the efficiency of MSC transplant therapy. Sertoli cells are a kind of 'nurse' cells that support the development of sperm cells. Recent studies show that Sertoli cells promote proliferation of endothelial cells and neural stem cells in co-culture. We hypothesized that co-culture of UCMSCs with Sertoli cells may also promote proliferation and migration of UCMSCs. To examine this hypothesis, we isolated UCMSCs from human cords and Sertoli cells from mouse testes, and co-cultured them using a Transwell system. We found that UCMSCs exhibited strong proliferation ability and potential to differentiate to other cell lineages such as osteocytes and adipocytes. The presence of Sertoli cells in co-culture significantly enhanced the proliferation and migration potential of UCMSCs (P < 0.01). Moreover, these phenotypic changes were accompanied with upregulation of multiple genes involved in cell proliferation and migration including phospho-Akt, Mdm2, phospho-CDC2, Cyclin D1, Cyclin D3 as well as CXCR4, phospho-p44 MAPK and phospho-p38 MAPK. These findings indicate that Sertoli cells boost UCMSC proliferation and migration potential.

  13. UV-activated 7-dehydrocholesterol-coated titanium implants promote differentiation of human umbilical cord mesenchymal stem cells into osteoblasts.

    Science.gov (United States)

    Satué, María; Ramis, Joana M; Monjo, Marta

    2016-01-01

    Vitamin D metabolites are essential for bone regeneration and mineral homeostasis. The vitamin D precursor 7-dehydrocholesterol can be used after UV irradiation to locally produce active vitamin D by osteoblastic cells. Furthermore, UV-irradiated 7-dehydrocholesterol is a biocompatible coating for titanium implants with positive effects on osteoblast differentiation. In this study, we examined the impact of titanium implants surfaces coated with UV-irradiated 7-dehydrocholesterol on the osteogenic differentiation of human umbilical cord mesenchymal stem cells. First, the synthesis of cholecalciferol (D3) was achieved through the incubation of the UV-activated 7-dehydrocholesterol coating for 48 h at 23℃. Further, we investigated in vitro the biocompatibility of this coating in human umbilical cord mesenchymal stem cells and its potential to enhance their differentiation towards the osteogenic lineage. Human umbilical cord mesenchymal stem cells cultured onto UV-irradiated 7-dehydrocholesterol-coated titanium implants surfaces, combined with osteogenic supplements, upregulated the gene expression of several osteogenic markers and showed higher alkaline phosphatase activity and calcein blue staining, suggesting increased mineralization. Thus, our results show that the use of UV irradiation on 7-dehydrocholesterol -treated titanium implants surfaces generates a bioactive coating that promotes the osteogenic differentiation of human umbilical cord mesenchymal stem cells, with regenerative potential for improving osseointegration in titanium-based bone anchored implants.

  14. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Shaoqiang Chen; Bilian Wu; Jianhua Lin

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated,purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method.Passages 3-5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein.Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1-5 weeks).Expressions of choline acetyltransferase,glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation,determined by immunofluorescence staining and laser confocal scanning microscopy.Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase,glutamic acid decarboxylase and synapsins,3 weeks after transplantation.The Basso-Beattie-Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins.Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats,promote expression of choline acetyltransferase,glutamic acid decarboxylase and synapsins,and improve nerve function in rats with spinal cord injury.

  15. Biodegradable chitin conduit tubulation combined with bone marrow mesenchymal stem cell transplantation for treatment of spinal cord injury by reducing glial scar and cavity formation

    Institute of Scientific and Technical Information of China (English)

    Feng Xue; Er-jun Wu; Pei-xun Zhang; Li-ya A; Yu-hui Kou; Xiao-feng Yin; Na Han

    2015-01-01

    We examined the restorative effect of modiifed biodegradable chitin conduits in combination with bone marrow mesenchymal stem cell transplantation after right spinal cord hemisection injury. Immunohistochemical staining revealed that biological conduit sleeve bridging reduced glial scar formation and spinal muscular atrophy after spinal cord hemisection. Bone marrow mesenchymal stem cells survived and proliferated after transplantationin vivo, and differentiated into cells double-positive for S100 (Schwann cell marker) and glial ifbrillary acidic protein (glial cell marker) at 8 weeks. Retrograde tracing showed that more nerve ifbers had grown through the injured spinal cord at 14 weeks after combination therapy than either treatment alone. Our ifndings indicate that a biological conduit combined with bone marrow mesenchymal stem cell transplantation effectively prevented scar formation and provided a favorable local microenvi-ronment for the proliferation, migration and differentiation of bone marrow mesenchymal stem cells in the spinal cord, thus promoting restoration following spinal cord hemisection injury.

  16. Protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model

    Institute of Scientific and Technical Information of China (English)

    Peng Xie; Wen-Hui Ruan

    2016-01-01

    Objective:To study the protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model.Methods: SD rats were selected as experimental animals, spinal cord injury rat model was built by striking spinal cord with Hatteras Instruments PCI3000, and model rats were divided into control group, bone marrow mesenchymal stem cells (BMSCs) group, erythropoietin (EPO) group and BMSCs combined with EPO group according to different treatment methods. Then number of apoptotic cells in spinal cord tissue, contents of neural markers and neurotrophic factors as well as expression of apoptosis and injury molecules was detected.Results:Number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs group, EPO group and BMSCs+EPO group was lower than those of control group, and number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs+EPO group were lower than those of BMSCs group and EPO group; mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs group, EPO group and BMSCs+EPO group were higher than those of control group, and mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs+EPO group were higher than those of BMSCs group and EPO group.Conclusions:Bone marrow mesenchymal stem cells combined with erythropoietin therapy can inhibit cell apoptosis in the injured spinal cord tissue, increase neurotrophic factor levels and inhibit apoptosis and injury molecule expression; it has protective effect on spinal cord injury.

  17. In vivo differentiation of human amniotic epithelial cells into cardiomyocyte-like cells and cell transplantation effect on myocardial infarction in rats: comparison with cord blood and adipose tissue-derived mesenchymal stem cells.

    Science.gov (United States)

    Fang, Cheng-Hu; Jin, Jiyong; Joe, Jun-Ho; Song, Yi-Sun; So, Byung-Im; Lim, Sang Moo; Cheon, Gi Jeong; Woo, Sang-Keun; Ra, Jeong-Chan; Lee, Young-Yiul; Kim, Kyung-Soo

    2012-01-01

    Human amniotic epithelial cells (h-AECs), which have various merits as a cell source for cell therapy, are known to differentiate into cardiomyocytes in vitro. However, the ability of h-AECs to differentiate into cardiomyocytes in vivo and their cell transplantation effects on myocardial infarction are still unknown. In this study, we assessed whether h-AECs could differentiate into cardiomyocytes in vivo and whether h-AECs transplantation can decrease infarct size and improve cardiac function, in comparison to transplantation of cord blood-derived mesenchymal stem cells (MSCs) or adipose tissue-derived MSCs. For our study, we injected h-AECs, cord blood-derived MSCs, adipose tissue-derived MSCs, and saline into areas of myocardial infarction in athymic nude rats. After 4 weeks, 3% of the surviving h-AECs expressed myosin heavy chain, a marker specific to the myocardium. Compared with the saline group, all cell-implanted groups showed a higher ejection fraction, lower infarct area by positron emission tomography and histology, and more abundant myocardial gene and protein expression in the infarct area. We showed that h-AECs can differentiate into cardiomyocyte-like cells, decrease infarct size, and improve cardiac function in vivo. The beneficial effects of h-AECs were comparable to those of cord blood and adipose tissue-derived MSCs. These results support the need for further studies of h-AECs as a cell source for myocardial regeneration due to their plentiful availability, low immunity, and lack of ethical issues related to their use.

  18. Differentiation and tumorigenicity of neural stem cells from human cord blood mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Jing Xiang; Changming Wang; Jingzhou Wang

    2009-01-01

    BACKGROUND:Mesenchymal stem cells (MSCs) are capable of differentiating into a variety of tissues and exhibit low immunogenicity.OBJECTIVE:To investigate isolation and in vitro cultivation methods of human cord blood MSCs,to observe expression of neural stem cell (NSC) marker mRNA under induction,and to detect tumorigenicity in animals.DESIGN,TIME AND SETTING:A cell biological,in vitro trial and a randomized,controlled,in vivo experiment were performed at the Department of Neurology,Daping Hospital at the Third Military Medical University of Chinese PLA from August 2006 to May 2008.MATERIALS:Umbilical cord blood was collected from full-term-delivery fetus at the Department of Gynecology and Obstetrics of DapJng Hospital,China.Eighteen BALB/C nu/nu nude mice were randomly assigned to three groups:back subcutaneous,cervical subcutaneous,and control,with 6 mice in each group.METHODS:Monocytes were isolated from heparinized human cord blood samples by density gradient centrifugation and then adherent cultivated in vitro to obtain MSC clones.After the cord blood MSCs were cultured for 7 days with nerve growth factor and retinoic acid to induce differentiation into NSCs,the cells (adjusted density of 1×10~7/mL) were prepared into cell suspension.In the back subcutaneous and cervical subcutaneous groups,nude mice were hypodermically injected with a 0.5-mL cell suspension into the back and cervical regions,respectively.In the control group,nude mice received a subcutaneous injection of 0.5 mL physiological saline into the back or cervical regions,respectively.MAIN OUTCOME MEASURES:Cellular morphology was observed by inverted microscopy,cultured cord blood MSCs were examined by flow cytometry,expression of nestin and musashi-1 mRNA was detected by reverse-transcriptase polymerase chain reaction prior to and after induction,and tumorigenicity following cord blood MSC transplantation was assayed by hematoxylin-eosin staining.RESULTS:Following adherent cultivation

  19. Cryopreserved, Xeno-Free Human Umbilical Cord Mesenchymal Stromal Cells Reduce Lung Injury Severity and Bacterial Burden in Rodent Escherichia coli-Induced Acute Respiratory Distress Syndrome.

    Science.gov (United States)

    Curley, Gerard F; Jerkic, Mirjana; Dixon, Steve; Hogan, Grace; Masterson, Claire; O'Toole, Daniel; Devaney, James; Laffey, John G

    2017-02-01

    Although mesenchymal stem/stromal cells represent a promising therapeutic strategy for acute respiratory distress syndrome, clinical translation faces challenges, including scarcity of bone marrow donors, and reliance on bovine serum during mesenchymal stem/stromal cell proliferation. We wished to compare mesenchymal stem/stromal cells from human umbilical cord, grown in xeno-free conditions, with mesenchymal stem/stromal cells from human bone marrow, in a rat model of Escherichia coli pneumonia. In addition, we wished to determine the potential for umbilical cord-mesenchymal stem/stromal cells to reduce E. coli-induced oxidant injury. Randomized animal study. University research laboratory. Male Sprague-Dawley rats. Acute respiratory distress syndrome was induced in rats by intratracheal instillation of E. coli (1.5-2 × 10 CFU/kg). "Series 1" compared the effects of freshly thawed cryopreserved umbilical cord-mesenchymal stem/stromal cells with bone marrow-mesenchymal stem/stromal cells on physiologic indices of lung injury, cellular infiltration, and E. coli colony counts in bronchoalveolar lavage. "Series 2" examined the effects of cryopreserved umbilical cord-mesenchymal stem/stromal cells on survival, as well as measures of injury, inflammation and oxidant stress, including production of reactive oxidative species, reactive oxidative species scavenging by superoxide dismutase-1 and superoxide dismutase-2. In "Series 1," animals subjected to E. coli pneumonia who received umbilical cord-mesenchymal stem/stromal cells had improvements in oxygenation, respiratory static compliance, and wet-to-dry ratios comparable to bone marrow-mesenchymal stem/stromal cell treatment. E. coli colony-forming units in bronchoalveolar lavage were reduced in both cell therapy groups, despite a reduction in bronchoalveolar lavage neutrophils. In series 2, umbilical cord-mesenchymal stem/stromal cells enhanced animal survival and decreased alveolar protein and proinflammatory

  20. Human umbilical cord mesenchymal stem cells improve liver function and ascites in decompensated liver cirrhosis patients.

    Science.gov (United States)

    Zhang, Zheng; Lin, Hu; Shi, Ming; Xu, Ruonan; Fu, Junliang; Lv, Jiyun; Chen, Liming; Lv, Sa; Li, Yuanyuan; Yu, Shuangjie; Geng, Hua; Jin, Lei; Lau, George K K; Wang, Fu-Sheng

    2012-03-01

    Decompensated liver cirrhosis (LC), a life-threatening complication of chronic liver disease, is one of the major indications for liver transplantation. Recently, mesenchymal stem cell (MSC) transfusion has been shown to lead to the regression of liver fibrosis in mice and humans. This study examined the safety and efficacy of umbilical cord-derived MSC (UC-MSC) in patients with decompensated LC. A total of 45 chronic hepatitis B patients with decompensated LC, including 30 patients receiving UC-MSC transfusion, and 15 patients receiving saline as the control, were recruited; clinical parameters were detected during a 1-year follow-up period. No significant side-effects and complications were observed in either group. There was a significant reduction in the volume of ascites in patients treated with UC-MSC transfusion compared with controls (P decompensated LC. UC-MSC transfusion, therefore, might present a novel therapeutic approach for patients with decompensated LC.

  1. Transplanted Human Umbilical Cord Mesenchymal Stem Cells Facilitate Lesion Repair in B6.Fas Mice

    Directory of Open Access Journals (Sweden)

    Guang-ping Ruan

    2014-01-01

    Full Text Available Background. Systemic lupus erythematosus (SLE is a multisystem disease that is characterized by the appearance of serum autoantibodies. No effective treatment for SLE currently exists. Methods. We used human umbilical cord mesenchymal stem cell (H-UC-MSC transplantation to treat B6.Fas mice. Results. After four rounds of cell transplantation, we observed a statistically significant decrease in the levels of mouse anti-nuclear, anti-histone, and anti-double-stranded DNA antibodies in transplanted mice compared with controls. The percentage of CD4+CD25+Foxp3+ T cells in mouse peripheral blood significantly increased after H-UC-MSC transplantation. Conclusions. The results showed that H-UC-MSCs could repair lesions in B6.Fas mice such that all of the relevant disease indicators in B6.Fas mice were restored to the levels observed in normal C57BL/6 mice.

  2. Therapeutic potential of umbilical cord mesenchymal stromal cells transplantation for cerebral palsy: a case report.

    Science.gov (United States)

    Wang, Liming; Ji, Haijie; Zhou, Jianjun; Xie, Jiang; Zhong, Zhanqiang; Li, Ming; Bai, Wen; Li, Na; Zhang, Zijia; Wang, Xuejun; Zhu, Delin; Liu, Yongjun; Wu, Mingyuan

    2013-01-01

    Cerebral palsy is the most common motor disability in childhood. In current paper, we first report our clinical data regarding administration of umbilical cord mesenchymal stem cells (MSCs) transplantation in treatment of cerebral palsy. A 5-year-old girl with cerebral palsy was treated with multiple times of intravenous and intrathecal administration of MSCs derived from her young sister and was followed up for 28 months. The gross motor dysfunction was improved. Other benefits included enhanced immunity, increased physical strength, and adjusted speech and comprehension. Temporary low-grade fever was the only side effect during the treatment. MSCs may be a safe and effective therapy to improve symptoms in children with cerebral palsy.

  3. Distinguish on the viability of human umbilical cord mesenchymal stem cells using delayed luminescence

    Science.gov (United States)

    Chen, Ping; Li, Xing; Wang, Yan; Bai, Hua; Lin, Lie

    2014-09-01

    In this paper, we report the discrimination of the viability of human umbilical cord mesenchymal stem cells (hUC-MSCs) with photo-induced delayed luminescence (DL). We measure the DL decay kinetics of hUC-MSCs using an ultraweak luminescence detection system, and find the significant difference in the weight distributions of the decay rate for hUC-MSCs with high and low viabilities. Spectral discrimination of hUC-MSCs with high and low viabilities is thus carried out by comparing the DL kinetics parameters, including the initial intensity, the peak decay rate and the peak weight value. Our results show that the novel optical method for the viability diagnosis of hUC-MSCs has a promising prospect.

  4. Therapeutic Potential of Umbilical Cord Mesenchymal Stromal Cells Transplantation for Cerebral Palsy: A Case Report

    Directory of Open Access Journals (Sweden)

    Liming Wang

    2013-01-01

    Full Text Available Cerebral palsy is the most common motor disability in childhood. In current paper, we first report our clinical data regarding administration of umbilical cord mesenchymal stem cells (MSCs transplantation in treatment of cerebral palsy. A 5-year-old girl with cerebral palsy was treated with multiple times of intravenous and intrathecal administration of MSCs derived from her young sister and was followed up for 28 months. The gross motor dysfunction was improved. Other benefits included enhanced immunity, increased physical strength, and adjusted speech and comprehension. Temporary low-grade fever was the only side effect during the treatment. MSCs may be a safe and effective therapy to improve symptoms in children with cerebral palsy.

  5. Therapeutic Potential of Umbilical Cord Mesenchymal Stromal Cells Transplantation for Cerebral Palsy: A Case Report

    Science.gov (United States)

    Wang, Liming; Ji, Haijie; Zhou, Jianjun; Xie, Jiang; Zhong, Zhanqiang; Li, Ming; Bai, Wen; Li, Na; Zhang, Zijia; Wang, Xuejun; Zhu, Delin; Liu, Yongjun; Wu, Mingyuan

    2013-01-01

    Cerebral palsy is the most common motor disability in childhood. In current paper, we first report our clinical data regarding administration of umbilical cord mesenchymal stem cells (MSCs) transplantation in treatment of cerebral palsy. A 5-year-old girl with cerebral palsy was treated with multiple times of intravenous and intrathecal administration of MSCs derived from her young sister and was followed up for 28 months. The gross motor dysfunction was improved. Other benefits included enhanced immunity, increased physical strength, and adjusted speech and comprehension. Temporary low-grade fever was the only side effect during the treatment. MSCs may be a safe and effective therapy to improve symptoms in children with cerebral palsy. PMID:23533920

  6. 体外诱导脐血单核细胞向破骨样细胞的分化%In vitro differentiation of umbilical cord blood-derived mononuclear cells towards osteoclast-like cells

    Institute of Scientific and Technical Information of China (English)

    鲍庆红; 刘文佳; 王晓荣; 周洪

    2009-01-01

    胞集落刺激因子组及1α,25-(OH)2D3+前列腺素E2组破骨样细胞数量均明显减少(F=7.46,P<0.01).结论:脐血单核细胞经骨吸收刺激因子体外诱导培养后,可分化为TRAP(+)的多核破骨样细胞,其中10-8mol/L 1α,25-(OH)2D具有最强的生物学效应.%BACKGROUND: Orthodontic tooth movement is dependent on reconstruction of periodontium. Osteoclastic bone resorption is the first step of tooth movement. The present study hotspots focus on signal transduction pathway regarding osteoclast differentiation and functional development under stress and on the relationship between periodontal ligament cells and osteoclasts. OBJECTIVE: To set up a simple method to in vitro culture human osteoclast-like cells and to observe the effects of bone resorption-stimulating factors on differentiation, proliferation, and function of osteoclast-like cells, DESIGN, TIME AND STTING: A cytological in vitro controUod observation was performed at the Central Laboratory,Stomatology Hospital, Xi'an Jiaotong University between October 2007 and May 2008. MATERIALS: Umbilical cord blood was sourced from the healthy puerperae who had not suffered from high-risk pregnancy. Freshly prepared fetal femur provided by Laboratory Animal Center, Xi'an Jiaotong University and were used for preparation of bone flaps at 100-200 μm thickness. 1α ,25-(OH)2D3, macrophage colony-stimulating factor (M-CSF), prostaglandin E2 were purchased from Sigma Company, USA.METHODS: Under aseptic condition, umbilical cord blood was collected. Following Ficoll solution separation and centrifugation, supematant was discarded. Umbilical cord blood-derived mononuclear cells were suspended with o -modified minimal essential medium (α-MEM) solution and then inoculated into a 24-well culture plate, in which, coverslips and femoral slices were pre-placed, at a density of 1×109/L, 1.0 mL per well. Five groups were set, blank control, 108 mol/L 1α ,25-(OH)2D3, 10-7 mol/L 1α ,25-(OH)2D3, macrophage colony stimulating

  7. Immunophenotypic characterisation and cytogenetic analysis of mesenchymal stem cells from equine bone marrow and foal umbilical cords during in vitro culture

    Directory of Open Access Journals (Sweden)

    Mazurkevych Anatoliy

    2016-09-01

    Full Text Available Introduction: The objective of the study was immunophenotypic and cytogenetic analysis of mesenchymal stem cells from equine bone marrow and foal umbilical cords during in vitro culture.

  8. Human umbilical cord-derived mesenchymal stem cells can secrete insulin in vitro and in vivo.

    Science.gov (United States)

    Boroujeni, Zahra Niki; Aleyasin, Ahmad

    2014-01-01

    Diabetes mellitus is characterized by autoimmune destruction of pancreatic beta cells, leading to decreased insulin production. Differentiation of mesenchymal stem cells (MSCs) into insulin-producing cells offers novel ways of diabetes treatment. MSCs can be isolated from the human umbilical cord tissue and differentiate into insulin-secreting cells. Human umbilical cord-derived stem cells (hUDSCs) were obtained after birth, selected by plastic adhesion, and characterized by flow cytometric analysis. hUDSCs were transduced with nonintegrated lentivirus harboring PDX1 (nonintegrated LV-PDX1) and was cultured in differentiation medium in 21 days. Pancreatic duodenum homeobox protein-1 (PDX1) is a transcription factor in pancreatic development. Significant expressions of PDX1, neurogenin3 (Ngn3), glucagon, glucose transporter2 (Glut2), and somatostatin were detected by quantitative RT-PCR (P insulin proteins were shown by immunocytochemistry analysis. Insulin secretion of hUDSCs(PDX1+) in the high-glucose medium was 1.8 μU/mL. They were used for treatment of diabetic rats and could decrease the blood glucose level from 400 mg/dL to a normal level in 4 days. In conclusion, our results demonstrated that hUDSCs are able to differentiate into insulin-producing cells by transduction with nonintegrated LV-PDX1. These hUDSCs(PDX1+) have the potential to be used as a viable resource in cell-based gene therapy of type 1 diabetes.

  9. Umbilical Cord-Derived Mesenchymal Stem Cells Relieve Hindlimb Ischemia through Enhancing Angiogenesis in Tree Shrews

    Directory of Open Access Journals (Sweden)

    Cunping Yin

    2016-01-01

    Full Text Available Hindlimb ischemia is still a clinical problem with high morbidity and mortality. Patients suffer from consequent rest pain, ulcers, cool limbs, and even amputation. Angiogenesis is a promising target for the treatment of ischemic limbs, providing extra blood for the ischemic region. In the present study, we investigated the role of umbilical cord-derived mesenchymal stem cells (UC-MSCs in regulating angiogenesis and relieving hindlimb ischemia. UC-MSCs were isolated from the umbilical cord of tree shrews. Angiography results showed that UC-MSCs injection significantly promoted angiogenesis in tree shrews. Moreover, the ankle brachial index, transcutaneous oxygen pressure, blood perfusion, and capillary/muscle fiber ratio were all markedly increased by the application of UC-MSCs. In addition, the conditioned culture of human umbilical vein endothelial cells using medium collected from UC-MSCs showed higher expression of angiogenic markers and improved migration ability. In short, the isolated UC-MSCs notably contributed to restoring blood supply and alleviating the symptoms of limb ischemia through enhancing angiogenesis.

  10. Umbilical Cord-Derived Mesenchymal Stem Cells Relieve Hindlimb Ischemia through Enhancing Angiogenesis in Tree Shrews.

    Science.gov (United States)

    Yin, Cunping; Liang, Yuan; Zhang, Jian; Ruan, Guangping; Li, Zian; Pang, Rongqing; Pan, Xinghua

    2016-01-01

    Hindlimb ischemia is still a clinical problem with high morbidity and mortality. Patients suffer from consequent rest pain, ulcers, cool limbs, and even amputation. Angiogenesis is a promising target for the treatment of ischemic limbs, providing extra blood for the ischemic region. In the present study, we investigated the role of umbilical cord-derived mesenchymal stem cells (UC-MSCs) in regulating angiogenesis and relieving hindlimb ischemia. UC-MSCs were isolated from the umbilical cord of tree shrews. Angiography results showed that UC-MSCs injection significantly promoted angiogenesis in tree shrews. Moreover, the ankle brachial index, transcutaneous oxygen pressure, blood perfusion, and capillary/muscle fiber ratio were all markedly increased by the application of UC-MSCs. In addition, the conditioned culture of human umbilical vein endothelial cells using medium collected from UC-MSCs showed higher expression of angiogenic markers and improved migration ability. In short, the isolated UC-MSCs notably contributed to restoring blood supply and alleviating the symptoms of limb ischemia through enhancing angiogenesis.

  11. Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells

    Institute of Scientific and Technical Information of China (English)

    MA Lian; FENG Xue-yong; CUI Bing-lin; Frieda Law; JIANG Xue-wu; YANG Li-ye; XIE Qing-dong; HUANG Tian-hua

    2005-01-01

    Background The two most basic properties of mesenchymal stem cells (MSCs) are the capacities to self-renew indefinitely and differentiate into multiple cells and tissue types. The cells from human umbilical cord Wharton's Jelly have properties of MSCs and represent a rich source of primitive cells. This study was conducted to explore the possibility of inducing human umbilical cord Wharton's Jelly-derived MSCs to differentiate into nerve-like cells.Methods MSCs were cultured from the Wharton's Jelly taken from human umbilical cord of babies delivered after full-term normal labor. Salvia miltiorrhiza and β-mercaptoethanol were used to induce the human umbilical cord-derived MSCs to differentiate. The expression of neural protein markers was shown by immunocytochemistry. The induction process was monitored by phase contrast microscopy, electron microscopy (EM), and laser scanning confocal microscopy (LSCM) .The pleiotrophin and nestin genes were measured by reverse transcription-polymerase chain reaction (RT-PCR). Results MSCs in the Wharton's Jelly were easily attainable and could be maintained and expanded in culture. They were positive for markers of MSCs, but negative for markers of hematopoietic cells and graft-versus-host disease (GVHD)-related cells. Treatment with Salvia miltiorrhiza caused Wharton's Jelly cells to undergo profound morphological changes. The induced MSCs developed rounded cell bodies with multiple neurite-like extensions. Eventually they developed processes that formed networks reminiscent of primary cultures of neurons. Salvia miltiorrhiza and β-mercaptoethanol also induced MSCs to express nestin, β-tubulinⅢ, neurofilament (NF) and glial fibrillary acidic protein (GFAP). It was confirmed by RT-PCR that MSCs could express pleiotrophin both before and after induction by Salvia miltiorrhiza. The expression was markedly enhanced after induction and the nestin gene was also expressed.Conclusions MSCs could be isolated from human umbilical

  12. Isolation and characterization of in vitro culture of hair follicle cells differentiated from umbilical cord blood mesenchymal stem cells.

    Science.gov (United States)

    Bu, Zhang-Yu; Wu, Li-Min; Yu, Xiao-Hong; Zhong, Jian-Bo; Yang, Ping; Chen, Jian

    2017-07-01

    The present investigation explored the in vitro culture, isolation and characterization of hair follicle cell differentiation from umbilical cord blood mesenchymal stem cells (MSCs). Flow cytometry was used to obtain MSCs from the isolation and purification of human umbilical cord blood MSCs. Culture suspension of hair follicle organ was centrifuged and the supernatant used in the culture medium of MSCs, and the entire process of induced differentiation was recorded by photomicroscopy. The expression level of surface marker CK15 of hair follicle cells obtained from induced differentiation was detected with immunofluorescence. RT-PCR method was used to further detect the difference in expression of CK15 between hair follicle cells and umbilical cord blood MSCs, and statistical analysis was carried out. CD44(+)CD29(+) double-labeled cells accounted for 50.8% of all the samples of umbilical cord blood MSCs in this study. The diameter of hair follicle cells differentiated from umbilical cord blood stem cells reached 800×10(-3) mm after 3 weeks of cell culture. Based on the detection and colocalization of CK15 expression in induced hair follicle cells, the overlap ratio between CK15 and nuclei reached 83% in hair follicle cells, which was obviously higher than that in umbilical cord blood stem cells. The difference had statistical significance (Pumbilical cord blood stem cells by using the supernatant from hair follicle cells. This method can be used for high-speed induced differentiation with high purity, which is promising for clinical application.

  13. Expression of Surface Molecules in Human Mesenchymal Stromal Cells Co-Cultured with Nucleated Umbilical Cord Blood Cells.

    Science.gov (United States)

    Romanov, Yu A; Balashova, E E; Volgina, N E; Kabaeva, N V; Dugina, T N; Sukhikh, G T

    2017-02-01

    We studied the expression of different classes of surface molecules (CD13, CD29, CD40, CD44, CD54, CD71, CD73, CD80, CD86, CD90, CD105, CD106, CD146, HLA-I, and HLA-DR) in mesenchymal stromal cells from human umbilical cord and bone marrow during co-culturing with nucleated umbilical cord blood cells. Expression of the majority of surface markers in both types of mesenchymal stromal cells was stable and did not depend on the presence of the blood cells. Significant differences were found only for cell adhesion molecules CD54 (ICAM-1) and CD106 (VCAM-1) responsible for direct cell-cell contacts with leukocytes and only for bone marrow derived cells.

  14. Xeno-free culture condition for human bone marrow and umbilical cord matrix-derived mesenchymal stem/stromal cells using human umbilical cord blood serum

    Science.gov (United States)

    Esmaeli, Azadeh; Moshrefi, Mojgan; Shamsara, Ali; Eftekhar-vaghefi, Seyed Hasan; Nematollahi-mahani, Seyed Noureddin

    2016-01-01

    Background: Fetal bovine serum (FBS) is widely used in cell culture laboratories, risk of zoonotic infections and allergic side effects create obstacles for its use in clinical trials. Therefore, an alternative supplement with proper inherent growth-promoting activities is demanded. Objective: To find FBS substitute, we tested human umbilical cord blood serum (hUCS) for proliferation of human umbilical cord matrix derived mesenchymal stem cells (hUC-MSCs) and human bone marrow-derived mesenchymal cells (hBM-MSCs). Materials and Methods: Umbilical cord blood of healthy neonates, delivered by Caesarian section, was collected and the serum was separated. hUC-MSCs and hBM-MSCs were isolated and characterized by assessment of cell surface antigens by flow cytometry, alkaline phosphatase activity and osteogenic/adipogenic differentiation potential. The cells were then cultured in Iscove's Modified Dulbecco's Medium (IMDM) by conventional methods in three preparations: 1- with hUCS, 2- with FBS, and 3- without serum supplements. Cell proliferation was measured using WST-1 assay, and cell viability was assessed by trypan blue staining. Results: The cells cultured in hUCS and FBS exhibited similar morphology and mesenchymal stem cells properties. WST-1 proliferation assay data showed no significant difference between the proliferation rate of either cells following hUCS and FBS supplementation. Trypan blue exclusion dye test also revealed no significant difference for viability between hUCS and FBS groups. A significant difference was detected between the proliferation rate of stem cells cultured in serum-supplemented medium compared with serum-free medium. Conclusion: Our results indicate that human umbilical cord serum can effectively support proliferation of hBM-MSCS and hUC-MSCs in vitro and can be used as an appropriate substitute for FBS, especially in clinical studies. PMID:27738658

  15. Human umbilical cord mesenchymal stem cell-loaded amniotic membrane for the repair of radial nerve injury

    Institute of Scientific and Technical Information of China (English)

    Zhi Li; Hanjiao Qin; Zishan Feng; Wei Liu; Ye Zhou; Lifeng Yang; Wei Zhao; Youjun Li

    2013-01-01

    In this study, we loaded human umbilical cord mesenchymal stem cells onto human amniotic membrane with epithelial cells to prepare nerve conduits, i.e., a relatively closed nerve regeneration chamber. After neurolysis, the injured radial nerve was enwrapped with the prepared nerve conduit, which was fixed to the epineurium by sutures, with the cellon the inner surface of the conduit. Simultaneously, a 1.0 mL aliquot of human umbilical cord mesenchymal stem cellsuspension was injected into the distal and proximal ends of the injured radial nerve with 1.0 cm intervals. A total of 1.75 × 107 cells were seeded on the amniotic membrane. In the control group, patients received only neurolysis. At 12 weeks after celltransplantation, more than 80%of patients exhibited obvious improvements in muscular strength, and touch and pain sensations. In contrast, these improve-ments were observed only in 55-65% of control patients. At 8 and 12 weeks, muscular electro-physiological function in the region dominated by the injured radial nerve was significantly better in the transplantation group than the control group. After celltransplantation, no immunological rejec-tions were observed. These findings suggest that human umbilical cord mesenchymal stem cel-loaded amniotic membrane can be used for the repair of radial nerve injury.

  16. Progesterone promotes neuronal differentiation of human umbilical cord mesenchymal stem cells in culture conditions that mimic the brain microenvironment

    Institute of Scientific and Technical Information of China (English)

    Xianying Wang; Honghai Wu; Gai Xue; Yanning Hou

    2012-01-01

    In this study, human umbilical cord mesenchymal stem cells from full-term neonates born by vaginal delivery were cultured in medium containing 150 mg/mL of brain tissue extracts from Sprague-Dawley rats (to mimic the brain microenvironment). Immunocytochemical analysis demonstrated that the cells differentiated into neuron-like cells. To evaluate the effects of progesterone as a neurosteroid on the neuronal differentiation of human umbilical cord mesenchymal stem cells, we cultured the cells in medium containing progesterone (0.1, 1, 10 μM) in addition to brain tissue extracts. Reverse transcription-PCR and flow cytometric analysis of neuron specific enolase-positive cells revealed that the percentages of these cells increased significantly following progesterone treatment, with the optimal progesterone concentration for neuron-like differentiation being 1 μM. These results suggest that progesterone can enhance the neuronal differentiation of human umbilical cord mesenchymal stem cells in culture medium containing brain tissue extracts to mimic the brain microenvironment.

  17. Peptide-Tethered Hydrogel Scaffold Promotes Recovery from Spinal Cord Transection via Synergism with Mesenchymal Stem Cells.

    Science.gov (United States)

    Li, Li-Ming; Han, Min; Jiang, Xin-Chi; Yin, Xian-Zhen; Chen, Fu; Zhang, Tian-Yuan; Ren, Hao; Zhang, Ji-Wen; Hou, Ting-Jun; Chen, Zhong; Ou-Yang, Hong-Wei; Tabata, Yasuhiko; Shen, You-Qing; Gao, Jian-Qing

    2017-02-01

    Spinal cord injury (SCI) is one of the most devastating injuries. Treatment strategies for SCI are required to overcome comprehensive issues. Implantation of biomaterial scaffolds and stem cells has been demonstrated to be a promising strategy. However, a comprehensive recovery effect is difficult to achieve. In the comprehensive treatment process, the specific roles of the implanted scaffolds and of stem cells in combined strategy are usually neglected. In this study, a peptide-modified scaffold is developed based on hyaluronic acid and an adhesive peptide PPFLMLLKGSTR. Synchrotron radiation micro computed tomography measurement provides insights to the three-dimensional inner topographical property and perspective porous structure of the scaffold. The modified scaffold significantly improves cellular survival and adhesive growth of mesenchymal stem cells during 3D culture in vitro. After implantation in transected spinal cord, the modified scaffold and mesenchymal stems are found to function in synergy to restore injured spinal cord tissue, with respective strengths. Hindlimb motor function scores exhibit the most significant impact of the composite implant at 2 weeks post injury, which is the time secondary injury factors begin to take hold. Investigation on the secondary injury factors including inflammatory response and astrocyte overactivity at 10 days post injury reveals the possible underlying reason. Implants of the scaffold, cells, and especially the combination of both elicit inhibitory effects on these adverse factors. The study develops a promising implant for spinal cord tissue engineering and reveals the roles of the scaffold and stem cells. More importantly, the results provide the first understanding of the bioactive peptide PPFLMLLKGSTR concerning its functions on mesenchymal stem cells and spinal cord tissue restoration.

  18. Decreased Intracellular pH Induced by Cariporide Differentially Contributes to Human Umbilical Cord-Derived Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available Background/Aims: Na+/H+ exchanger 1 (NHE1 is an important regulator of intracellular pH (pHi. High pHi is required for cell proliferation and differentiation. Our previous study has proven that the pHi of mesenchymal stem cells is higher than that of normal differentiated cells and similar to tumor cells. NHE1 is highly expressed in both mesenchymal stem cells and tumor cells. Targeted inhibition of NHE1 could induce differentiation of K562 leukemia cells. In the present paper we explored whether inhibition of NHE1 could induce differentiation of mesenchymal stem cells. Methods: MSCs were obtained from human umbilical cord and both the surface phenotype and functional characteristics were analyzed. Selective NHE1 inhibitor cariporide was used to treat human umbilical cord-derived mesenchymal stem cells (hUC-MSCs. The pHi and the differentiation of hUC-MSCs were compared upon cariporide treatment. The putative signaling pathway involved was also explored. Results: The pHi of hUC-MSCs was decreased upon cariporide treatment. Cariporide up-regulated the osteogenic differentiation of hUC-MSCs while the adipogenic differentiation was not affected. For osteogenic differentiation, β-catenin expression was up-regulated upon cariporide treatment. Conclusion: Decreased pHi induced by cariporide differentially contributes to hUC-MSCs differentiation.

  19. A Simple Method to Isolate and Expand Human Umbilical Cord Derived Mesenchymal Stem Cells: Using Explant Method and Umbilical Cord Blood Serum.

    Science.gov (United States)

    Hassan, Ghmkin; Kasem, Issam; Soukkarieh, Chadi; Aljamali, Majd

    2017-08-31

    Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from umbilical cords and are therapeutically used because of their ability to differentiate into various types of cells, in addition to their immunosuppressive and anti-inflammatory properties. Fetal bovine serum (FBS), considered as the standard additive when isolating and culturing MSCs, has a major limitation related to its animal origin. Here, we employed a simple and economically efficient protocol to isolate MSCs from human umbilical cord tissues without using digestive enzymes and replacing FBS with umbilical cord blood serum (CBS). MSCs were isolated by culturing umbilical cord pieces in CBS or FBS supplemented media. Expansion and proliferation kinetics of cells isolated by explant method in the presence of either FBS or CBS were measured, with morphology and multi-differentiation potential of expanded cells characterized by flow cytometry, RT-PCR, and immunofluorescence. MSCs maintained morphology, immunophenotyping, multi-differentiation potential, and self-renewal ability, with better proliferation rates for cells cultured in CBS compared to FBS supplement media. We here present a simple, reliable and efficient method to isolate MSCs from umbilical cord tissues, where cells maintained proliferation, differentiation potential and immunophenotyping properties and could be efficiently expanded for clinical applications.

  20. Adenovirus-mediated human brain-derived neurotrophic factor gene-modified bone marrow mesenchymal stem cell transplantation for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Changsheng Wang; Jianhua Lin; Chaoyang Wu; Rongsheng Chen

    2011-01-01

    Rat bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor were successfully obtained using a gene transfection method, then intravenously transplanted into rats with spinal cord injury. At 1, 3, and 5 weeks after transplantation, the expression of ??brain-derived neurotrophic factor and neurofilament-200 was upregulated in the injured spinal cord, spinal cord injury was alleviated, and Basso-Beattie-Bresnahan scores of hindlimb motor function were significantly increased. This evidence suggested that intravenous transplantation of adenovirus- mediated brain-derived neurotrophic factor gene-modified rat bone marrow mesenchymal stem cells could play a dual role, simultaneously providing neural stem cells and neurotrophic factors.

  1. Implication of NOD1 and NOD2 for the differentiation of multipotent mesenchymal stem cells derived from human umbilical cord blood.

    Directory of Open Access Journals (Sweden)

    Hyung-Sik Kim

    Full Text Available Toll-like receptors (TLRs and Nod-like receptors (NLRs are known to trigger an innate immune response against microbial infection. Although studies suggest that activation of TLRs modulate the function of mesenchymal stem cells (MSCs, little is known about the role of NLRs on the MSC function. In this study, we investigated whether NOD1 and NOD2 regulate the functions of human umbilical cord blood-derived MSCs (hUCB-MSCs. The genes of TLR2, TLR4, NOD1, and NOD2 were expressed in hUCB-MSCs. Stimulation with each agonist (Pam(3CSK(4 for TLR2, LPS for TLR4, Tri-DAP for NOD1, and MDP for NOD2 led to IL-8 production in hUCB-MSC, suggesting the expressed receptors are functional in hUCB-MSC. CCK-8 assay revealed that none of agonist influenced proliferation of hUCB-MSCs. We next examined whether TLR and NLR agonists affect osteogenic-, adipogenic-, and chondrogenic differentiation of hUCB-MSCs. Pam(3CSK(4 and Tri-DAP strongly enhanced osteogenic differentiation and ERK phosphorylation in hUCB-MSCs, and LPS and MDP also slightly did. Treatment of U0126 (MEK1/2 inhibitor restored osteogenic differentiation enhanced by Pam(3CSK(4. Tri-DAP and MDP inhibited adipogenic differentiation of hUCB-MSCs, but Pam(3CSK(4 and LPS did not. On chondrogenic differentiation, all TLR and NLR agonists could promote chondrogenesis of hUCB-MSCs with difference in the ability. Our findings suggest that NOD1 and NOD2 as well as TLRs are involved in regulating the differentiation of MSCs.

  2. GDF-15 secreted from human umbilical cord blood mesenchymal stem cells delivered through the cerebrospinal fluid promotes hippocampal neurogenesis and synaptic activity in an Alzheimer's disease model.

    Science.gov (United States)

    Kim, Dong Hyun; Lee, Dahm; Chang, Eun Hyuk; Kim, Ji Hyun; Hwang, Jung Won; Kim, Ju-Yeon; Kyung, Jae Won; Kim, Sung Hyun; Oh, Jeong Su; Shim, Sang Mi; Na, Duk Lyul; Oh, Wonil; Chang, Jong Wook

    2015-10-15

    Our previous studies demonstrated that transplantation of human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) into the hippocampus of a transgenic mouse model of Alzheimer's disease (AD) reduced amyloid-β (Aβ) plaques and enhanced cognitive function through paracrine action. Due to the limited life span of hUCB-MSCs after their transplantation, the extension of hUCB-MSC efficacy was essential for AD treatment. In this study, we show that repeated cisterna magna injections of hUCB-MSCs activated endogenous hippocampal neurogenesis and significantly reduced Aβ42 levels. To identify the paracrine factors released from the hUCB-MSCs that stimulated endogenous hippocampal neurogenesis in the dentate gyrus, we cocultured adult mouse neural stem cells (NSCs) with hUCB-MSCs and analyzed the cocultured media with cytokine arrays. Growth differentiation factor-15 (GDF-15) levels were significantly increased in the media. GDF-15 suppression in hUCB-MSCs with GDF-15 small interfering RNA reduced the proliferation of NSCs in cocultures. Conversely, recombinant GDF-15 treatment in both in vitro and in vivo enhanced hippocampal NSC proliferation and neuronal differentiation. Repeated administration of hUBC-MSCs markedly promoted the expression of synaptic vesicle markers, including synaptophysin, which are downregulated in patients with AD. In addition, in vitro synaptic activity through GDF-15 was promoted. Taken together, these results indicated that repeated cisterna magna administration of hUCB-MSCs enhanced endogenous adult hippocampal neurogenesis and synaptic activity through a paracrine factor of GDF-15, suggesting a possible role of hUCB-MSCs in future treatment strategies for AD.

  3. [Marrow mesenchymal stem cell transplantation with sodium alginate gel for repair of spinal cord injury in mice].

    Science.gov (United States)

    Shi, Chen-yue; Ruan, Ling-qin; Feng, Yi-hui; Fang, Jia-lin; Song, Chen-jiao; Yuan, Zhang-gen; Ding, Yue-min

    2011-07-01

    To investigate the effects of sodium alginate gels on marrow mesenchymal stem cell transplantation for repair of spinal cord injury (SCI) in mice. In the present study, effects of different sterilization methods and concentrations of sodium alginate gels were examined. Marrow mesenchymal stem cells (mMSCs) were isolated from mice and cultured. Cells were cultured with sodium alginate gels and MTT assay was applied to determine the cell viability. Mice spinal cord injury was induced by spinal cord transection. mMSCs were transplanted into the cavity of injured spinal cord with sodium alginate gels. The effects of sodium alginate gel were assessed by BMS scales and immunofluorescence staining for NF-200. Compared with liquid form, solid form sodium alginate gel prepared with high pressure vapor sterilization had a better effect on cell viability. SCI mice treated with 10 % sodium alginate gel and mMSCs achieved higher score in BMS scale as well as higher expression of NF-200 compared with the untreated SCI group. Sodium alginate gel prepared with solid form sterilization induces mMSCs proliferation and thus can be used as the carrier of stem cell in treatment of SCI.

  4. [EXPERIMENTAL STUDY ON HUMAN UMBILICAL CORD MESENCHYMAL STEM CELLS-ALGINATE WOUND DRESSING].

    Science.gov (United States)

    Wang, Song; Su, Meilan; Yang, Huachao; Long, Gang; Tang, Zhenrui; Huang, Wen

    2015-09-01

    To observe the growth characteristics of human umbilical cord mesenchymal stem cells (hUCMSCs) cultured on the alginate gel scaffolds and to explore the feasibility of hUCMSCs-alginate dressing for wound healing. hUCMSCs were separated from human umbilical cords and cultured in vitro. After the 4th passage cells were co-cultured with alginate gel (experimental group), the cell growth characteristics were observed under the inverted phase contrast microscope. Vascular endothelial growth factor (VEGF) content was measured and the number of cells was counted at 0, 3, 6, and 9 days after culture; and the cell migration capacity was observed. The hUCMSCs were cultured without alginated gel as control. The model of full-thickness skin defects was established in 32 8-week-old Balb/c male mice and they were randomly divided into 4 groups (n=8): wounds were covered with hUCMSCs-alginate gel compound (MSC-gel group), cell supernatants-alginate gel compound (CS-gel group), 10% FBS-alginate gel compound (FBS-gel group), and 0.01 mol/L PBS-alginate compound (PBS-gel group), respectively. Wound healing rates at 5, 10, and 15 days were observed and calculated; and the wound tissues were harvested for histological and immunohistochemical staining to assess new skin conditions at 15 days after operation. hUCMSCs grew well with grape-like proliferation on the alginate gel, but no cell migration was observed at 7 days after cultivation. VEGF expression and cell number in experimental group were significantly less than those in control group at 3 days (P0.05). hUCMSCs can continuously express VEGF in alginate gel, which is necessary for wound healing. The hUCMSCs-alginate compound is probably a good wound dressing.

  5. Transplantation of umbilical cord and bone marrow-derived mesenchymal stem cells in a patient with relapsing-remitting multiple sclerosis.

    Science.gov (United States)

    Hou, Zong-liu; Liu, Ying; Mao, Xi-Hong; Wei, Chuan-yu; Meng, Ming-yao; Liu, Yun-hong; Zhuyun Yang, Zara; Zhu, Hongmei; Short, Martin; Bernard, Claude; Xiao, Zhi-cheng

    2013-01-01

    There is currently great interest in the use of mesenchymal stem cells as a therapy for multiple sclerosis with potential to both ameliorate inflammatory processes as well as improve regeneration and repair. Although most clinical studies have used autologous bone marrow-derived mesenchymal stem cells, other sources such as allogeneic umbilical cord-derived cells may provide a more accessible and practical supply of cells for transplantation. In this case report we present the treatment of aggressive multiple sclerosis with multiple allogenic human umbilical cord-derived mesenchymal stem cell and autologous bone marrow-derived mesenchymal stem cells over a 4 y period. The treatments were tolerated well with no significant adverse events. Clinical and radiological disease appeared to be suppressed following the treatments and support the expansion of mesenchymal stem cell transplantation into clinical trials as a potential novel therapy for patients with aggressive multiple sclerosis.

  6. Umbilical Cord Derived Mesenchymal Stem Cells Useful in Insulin Production - Another Opportunity in Cell Therapy

    Science.gov (United States)

    Sarang, Shabari; Viswanathan, Chandra

    2016-01-01

    Background and Objectives Type 1 Diabetes Mellitus (T1DM) is an autoimmune disorder resulting out of T cell mediated destruction of pancreatic beta cells. Immunomodulatory properties of mesenchymal stem cells may help to regenerate beta cells and/or prevent further destruction of remnant, unaffected beta cells in diabetes. We have assessed the ability of umbilical cord derived MSCs (UCMSCs) to differentiate into functional islet cells in vitro. Methods and Results We have isolated UCMSCs and allowed sequential exposure of various inducing agents and growth factors. We characterized these cells for confirmation of the presence of islet cell markers and their functionality. The spindle shaped undifferentiated UCMSCs, change their morphology to become triangular in shape. These cells then come together to form the islet like structures which then grow in size and mature over time. These cells express pancreatic and duodenal homeobox −1 (PDX-1), neurogenin 3 (Ngn-3), glucose transporter 2 (Glut 2) and other pancreatic cell markers like glucagon, somatostatin and pancreatic polypeptide and lose expression of MSC markers like CD73 and CD105. They were functionally active as demonstrated by release of physiological insulin and C-peptide in response to elevated glucose concentrations. Conclusions Pancreatic islet like cells with desired functionality can thus be obtained in reasonable numbers from undifferentiated UCMSCs invitro. This could help in establishing a “very definitive source” of islet like cells for cell therapy. UCMSCs could thus be a game changer in treatment of diabetes. PMID:27426087

  7. Implantation of human umbilical cord mesenchymal stem cells for ischemic stroke: perspectives and challenges.

    Science.gov (United States)

    Li, Yingchen; Hu, Guoheng; Cheng, Qilai

    2015-03-01

    Ischemic stroke is a focal cerebral insult that often leads to many adverse neurological complications severely affecting the quality of life. The prevalence of stroke is increasing throughout the world, while the efficacy of current pharmacological therapies remains unclear. As a neuroregenerative therapy, the implantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) has shown great possibility to restore function after stroke. This review article provides an update role of hUC-MSCs implantation in the treatment of ischemic stroke. With the unique "immunosuppressive and immunoprivilege" property, hUC-MSCs are advised to be an important candidate for allogeneic cell treatment. Nevertheless, most of the treatments are still at primary stage and not clinically feasible at the current time. Several uncertain problems, such as culture conditions, allograft rejection, and potential tumorigenicity, are the choke points in this cellular therapy. More preclinical researches and clinical studies are needed before hUC-MSCs implantation can be used as a routinely applied clinical therapy.

  8. Human umbilical cord mesenchymal stem cells promote peripheral nerve repairvia paracrine mechanisms

    Institute of Scientific and Technical Information of China (English)

    Zhi-yuan Guo; Xun Sun; Xiao-long Xu; Qing Zhao; Jiang Peng; Yu Wang

    2015-01-01

    Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.

  9. Experimental treatment of radiation pneumonitis with human umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    Rui Wang; Chang-zheng Zhu; Ping Qiao; Jian Liu; Qiang Zhao; Kui-jie Wang; Ting-bao Zhao

    2014-01-01

    Objective: To evaluate of the curative effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) on rat acute radiation pneumonitis. Methods: Fourty rats were randomly divided into control group, radiation group, stem cell prevention group, stem cell treatment group and prednisone treatment group. All rats except those in the control group were radiated with X ray to establish the acute radiation pneumonitis damage model. The hUC-MSCs cultured in vitro was administrated to the rats of the prevention group via tail vein (1×106 cells/kg BW) 24 h before the radiation, while the same administration was performed in the rats of the treatment group 24 h after the radiation. After 24 h post the radiation, the rats in the radiation group were given 0.4 mL physiological saline, and those in the prednisone group were given 1 mg/kg prednisone. All rats were observed and executed 72 h after the radiation to detect lung histological changes. Results:After the administration of hUC-MSCs, the survival status of the rats in the prevention group and treatment group was obviously better than that in the control group. As shown by the histological staining, the morphology, proliferation activity and bronchial state of lung tissues were better in the prevention group and treatment group than in the control group. Conclusion: The hUC-MSCs have definite therapeutic effects on acute radiation pneumonitis in rats.

  10. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells

    Science.gov (United States)

    Chen, Hongli; Wang, Hong; Li, Yingxin; Liu, Weichao; Wang, Chao; Chen, Zhuying

    2016-04-01

    Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm2 and 12 J/cm2, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to the other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.

  11. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhao

    2015-01-01

    Full Text Available This study is aimed at investigating whether human umbilical cord mesenchymal stem cell- (hucMSC- derived exosomes (hucMSC-exosomes have a protective effect on acute myocardial infarction (AMI. Exosomes were characterized under transmission electron microscopy and the particles of exosomes were further examined through nanoparticle tracking analysis. Exosomes (400 μg protein were intravenously administrated immediately following ligation of the left anterior descending (LAD coronary artery in rats. Cardiac function was evaluated by echocardiography and apoptotic cells were counted using TUNEL staining. The cardiac fibrosis was assessed using Masson’s trichrome staining. The Ki67 positive cells in ischemic myocardium were determined using immunohistochemistry. The effect of hucMSC-exosomes on blood vessel formation was evaluated through tube formation and migration of human umbilical vein endothelial cells (EA.hy926 cells. The results indicated that ligation of the LAD coronary artery reduced cardiac function and induced cardiomyocyte apoptosis. Administration of hucMSC-exosomes significantly improved cardiac systolic function and reduced cardiac fibrosis. Moreover, hucMSC-exosomes protected myocardial cells from apoptosis and promoted the tube formation and migration of EA.hy926 cells. It is concluded that hucMSC-exosomes improved cardiac systolic function by protecting myocardial cells from apoptosis and promoting angiogenesis. These effects of hucMSC-exosomes might be associated with regulating the expression of Bcl-2 family.

  12. Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms

    Directory of Open Access Journals (Sweden)

    Zhi-yuan Guo

    2015-01-01

    Full Text Available Human umbilical cord-derived mesenchymal stem cells (hUCMSCs represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the paracrine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These findings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair.

  13. Mesenchymal stem cells derived from human placenta suppress allogeneic umbilical cord blood lymphocyte proliferation

    Institute of Scientific and Technical Information of China (English)

    Chang Dong LI; Wei Yuan ZHANG; He Lian LI; Xiao Xia JIANG; Yi ZHANG; Pei Hsien TANG; Ning MAO

    2005-01-01

    Human placenta-derived mononuclear cells (MNC) were isolated by a Percoll density gradient and cultured in mesenchymal stem cell (MSC) maintenance medium.The homogenous layer of adherent cells exhibited a typical fibroblastlike morphology,a large expansive potential,and cell cycle characteristics including a subset of quiescent cells.In vitro differentiation assays showed the tripotential differentiation capacity of these cells toward adipogenic,osteogenic and chondrogenic lineages.Flow cytometry analyses and immunocytochemistry stain showed that placental MSC was a homogeneous cell population devoid of hematopoietic cells,which uniformly expressed CD29,CD44,CD73,CD 105,CD166,laminin,fibronectin and vimentin while being negative for expression of CD31,CD34,CD45 and α-smooth muscle actin.Most importantly,immuno-phenotypic analyses demonstrated that these cells expressed class I major histocompatibility complex (MHC-Ⅰ),but they did not express MHC-Ⅱ molecules.Additionally these cells could suppress umbilical cord blood (UCB) lymphocytes proliferation induced by cellular or nonspecific mitogenic stimuli.This strongly implies that they may have potential application in allograft transplantation.Since placenta and UCB are homogeneous,the MSC derived from human placenta can be transplanted combined with hematopoietic stem cells (HSC) from UCB to reduce the potential graft-versus-host disease (GVHD) in recipients.

  14. Umbilical cord as a mesenchymal stem cell source for treating joint pathologies.

    Science.gov (United States)

    Arufe, Maria Carmen; De la Fuente, Alexandre; Fuentes, Isaac; Toro, Francisco Javier De; Blanco, Francisco Javier

    2011-06-18

    Articular cartilage disorders and injuries often result in life-long chronic pain and compromised quality of life. Regrettably, the regeneration of articular cartilage is a continuing challenge for biomedical research. One of the most promising therapeutic approaches is cell-based tissue engineering, which provides a healthy population of cells to the injured site but requires differentiated chondrocytes from an uninjured site. The use of healthy chondrocytes has been found to have limitations. A promising alternative cell population is mesenchymal stem cells (MSCs), known to possess excellent proliferation potential and proven capability for differentiation into chondrocytes. The "immunosuppressive" property of human MSCs makes them an important candidate for allogeneic cell therapy. The use of allogeneic MSCs to repair large defects may prove to be an alternative to current autologous and allogeneic tissue-grafting procedures. An allogeneic cell-based approach would enable MSCs to be isolated from any donor, expanded and cryopreserved in allogeneic MSC banks, providing a readily available source of progenitors for cell replacement therapy. These possibilities have spawned the current exponential growth in stem cell research in pharmaceutical and biotechnology communities. Our objective in this review is to summarize the knowledge about MSCs from umbilical cord stroma and focus mainly on their applications for joint pathologies.

  15. The role of biologically active peptides in tissue repair using umbilical cord mesenchymal stem cells.

    Science.gov (United States)

    Cabrera, Carlos; Carriquiry, Gabriela; Pierinelli, Chiara; Reinoso, Nancy; Arias-Stella, Javier; Paino, Javier

    2012-10-01

    The role of bioactive compounds in wound repair is critical. The preliminary work described herein includes the study of the effects of second degree burns in a Rex rabbit model and the action of human umbilical cord cells on the regulation and secretion of bioactive compounds. When applied on blood scaffolds as heterograft matrices, fibroblasts proliferate from these primary cultures and release biologically active peptides under tight control. Our work in progress indicates that mesenchymal stem cell (MSC)-mediated therapy provides better quality and more efficient burn reepithelialization of injured tissues by controlling the release of these peptides. Improvement of wound aesthetics is achieved in less time than without MSC-mediated therapy. Well-organized epidermal regeneration and overall better quality of reepithelialization, with no rejection, can be demonstrated consistently with periodic biopsies. Our studies indicate that MSCs have the capacity to produce, regulate, and deliver biologically active peptides that result in superior regeneration, compared with conventional treatments. © 2012 New York Academy of Sciences.

  16. Effects of Human Umbilical Cord Mesenchymal Stem Cells on Human Trophoblast Cell Functions In Vitro

    Directory of Open Access Journals (Sweden)

    Yajing Huang

    2016-01-01

    Full Text Available Trophoblast cell dysfunction is involved in many disorders during pregnancy such as preeclampsia and intrauterine growth restriction. Few treatments exist, however, that target improving trophoblast cell function. Human umbilical cord mesenchymal stem cells (hUCMSCs are capable of self-renewing, can undergo multilineage differentiation, and have homing abilities; in addition, they have immunomodulatory effects and paracrine properties and thus are a prospective source for cell therapy. To identify whether hUCMSCs can regulate trophoblast cell functions, we treated trophoblast cells with hUCMSC supernatant or cocultured them with hUCMSCs. Both treatments remarkably enhanced the migration and invasion abilities of trophoblast cells and upregulated their proliferation ability. At a certain concentration, hUCMSCs also modulated hCG, PIGF, and sEndoglin levels in the trophoblast culture medium. Thus, hUCMSCs have a positive effect on trophoblast cellular functions, which may provide a new avenue for treatment of placenta-related diseases during pregnancy.

  17. Effects of Hypoxia and Chitosan on Equine Umbilical Cord-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    D. J. Griffon

    2016-01-01

    Full Text Available Chitosan opens new perspectives in regenerative medicine as it enhances the properties of mesenchymal stem cells (MSCs through formation of spheroids. Hypoxia has also been proposed to enhance stemness and survival of MSCs after in vivo implantation. These characteristics are relevant to the development of an off-the-shelf source of allogenic cells for regenerative therapy of tendinopathies. Umbilical cord-derived MSCs (UCM-MSCs offer an abundant source of immature and immunoprivileged stem cells. In this study, equine UCM-MSCs (eqUCM-MSCs conditioned for 3 and 7 days on chitosan films at 5% oxygen were compared to eqUCM-MSCs under standard conditions. Equine UCM-MSCs formed spheroids on chitosan but yielded 72% less DNA than standard eqUCM-MSCs. Expression of Sox2, Oct4, and Nanog was 4 to 10 times greater in conditioned cells at day 7. Fluorescence-labeled cells cultured for 7 days under standard conditions or on chitosan films under hypoxia were compared in a bilateral patellar tendon defect model in rats. Fluorescence was present in all treated tendons, but the modulus of elasticity under tension was greater in tendons treated with conditioned cells. Chitosan and hypoxia affected cell yield but improved the stemness of eqUCM-MSCs and their contribution to the healing of tissues. Given the abundance of allogenic cells, these properties are highly relevant to clinical applications and outweigh the negative impact on cell proliferation.

  18. Effects of hypoxic culture conditions on umbilical cord-derived human mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Hass Ralf

    2010-07-01

    Full Text Available Abstract Following cultivation of distinct mesenchymal stem cell (MSC populations derived from human umbilical cord under hypoxic conditions (between 1.5% to 5% oxygen (O2 revealed a 2- to 3-fold reduced oxygen consumption rate as compared to the same cultures at normoxic oxygen levels (21% O2. A simultaneous measurement of dissolved oxygen within the culture media from 4 different MSC donors ranged from 15 μmol/L at 1.5% O2 to 196 μmol/L at normoxic 21% O2. The proliferative capacity of the different hypoxic MSC populations was elevated as compared to the normoxic culture. This effect was paralleled by a significantly reduced cell damage or cell death under hypoxic conditions as evaluated by the cellular release of LDH whereby the measurement of caspase3/7 activity revealed little if any differences in apoptotic cell death between the various cultures. The MSC culture under hypoxic conditions was associated with the induction of hypoxia-inducing factor-alpha (HIF-1α and an elevated expression of energy metabolism-associated genes including GLUT-1, LDH and PDK1. Concomitantly, a significantly enhanced glucose consumption and a corresponding lactate production could be observed in the hypoxic MSC cultures suggesting an altered metabolism of these human stem cells within the hypoxic environment.

  19. Human Umbilical Cord Mesenchymal Stem Cells Therapy in Cyclophosphamide-Induced Premature Ovarian Failure Rat Model

    Directory of Open Access Journals (Sweden)

    Dan Song

    2016-01-01

    Full Text Available Premature ovarian failure (POF is one of the most common causes of infertility in women. In our present study, we established cyclophosphamide- (CTX- induced POF rat model and elucidated its effect on ovarian function. We detected the serum estrogen, follicle stimulating hormone, and anti-Müllerian hormone of mice models by ELISA and evaluated their folliculogenesis by histopathology examination. Our study revealed that CTX administration could severely disturb hormone secretion and influence folliculogenesis in rat. This study also detected ovarian cells apoptosis by deoxy-UTP-digoxigenin nick end labeling (TUNEL and demonstrated marked ovarian cells apoptosis in rat models following CTX administration. In order to explore the potential of human umbilical cord mesenchymal stem cells (UCMSCs in POF treatment, the above indexes were used to evaluate ovarian function. We found that human UCMSCs transplantation recovered disturbed hormone secretion and folliculogenesis in POF rat, in addition to reduced ovarian cell apoptosis. We also tracked transplanted UCMSCs in ovaries by fluorescence in situ hybridization (FISH. The results manifested that the transplanted human UCMSCs could reside in ovarian tissues and could survive for a comparatively long time without obvious proliferation. Our present study provides new insights into the great clinical potential of human UCMSCs in POF treatment.

  20. Detecting viability transitions of umbilical cord mesenchymal stem cells by Raman micro-spectroscopy

    Science.gov (United States)

    Bai, H.; Chen, P.; Fang, H.; Lin, L.; Tang, G. Q.; Mu, G. G.; Gong, W.; Liu, Z. P.; Wu, H.; Zhao, H.; Han, Z. C.

    2011-01-01

    Recent research suggests that human umbilical cord derived mesenchymal stem cells (hUC-MSCs) can be promising candidates for cell-based therapy. Since large population and high viability are generally required, detecting viability transitions of these cells is crucial for their population expansion and quality control. Here, as a non-invasive method, Raman micro-spectroscopy is applied to examine hUC-MSCs with different viability. Using peak fitting and statistic t-test, the Raman peaks with obvious differences between the cells with high viability (> 90%) and low viability (< 20%) are extracted. It is found that the C=O out of plane bending in thymine at 744 cm-1, symmetric stretching of C-C in lipids at 877 cm-1 and CH deformation in proteins at 1342 cm-1 show the most significant changes (p < 0.001). When the cell viability decreases, the intensities of the former two peaks are both about doubled while that of the latter peak reduces by about 30%. Based on these results, we propose that the viability of hUC-MSCs can be characterized by these three peaks. And their intensity changes can be understood from the model of excessive reactive oxygen species interacting with the bio-macromolecules.

  1. Umbilical Cord Mesenchymal Stem Cells Combined With a Collagenfibrin Double-layered Membrane Accelerates Wound Healing.

    Science.gov (United States)

    Nan, Wenbin; Liu, Rui; Chen, Hongli; Xu, Zhihao; Chen, Jiannan; Wang, Manman; Yuan, Zhiqing

    2015-05-01

    The aim of this study was to examine the effects of human umbilical cord mesenchymal stem cells (hUCMSCs) in combination with a collagen-fibrin double-layered membrane on wound healing in mice. A collagen-fibrin double-layered membrane was prepared, and the surface properties of the support material were investigated using a scanning electron microscope. Twenty-four mice were prepared for use as full-thickness skin wound models and randomly divided into 3 groups: group A, a control group in which the wounds were bound using a conventional method; group B, a group treated with hUCMSCs combined with a collagen membrane; and group C, a group treated with hUCMSCs combined with a collagen-fibrin double-layered membrane. The postoperative concrescence of the wounds was observed daily to evaluate the effects of the different treatments. Scanning electron microscope observation showed the collagen-fibrin scaffolds exhibited a highly porous and interconnected structure, and wound healing in the double-layered membrane group was better than in groups A or B. Treatment with hUCMSCs combined with a collagen-fibrin double-layered membrane accelerated wound healing.

  2. Human Umbilical Cord Mesenchymal Stem Cells: A New Therapeutic Option for Tooth Regeneration.

    Science.gov (United States)

    Chen, Yuanwei; Yu, Yongchun; Chen, Lin; Ye, Lanfeng; Cui, Junhui; Sun, Quan; Li, Kaide; Li, Zhiyong; Liu, Lei

    2015-01-01

    Tooth regeneration is considered to be an optimistic approach to replace current treatments for tooth loss. It is important to determine the most suitable seed cells for tooth regeneration. Recently, human umbilical cord mesenchymal stem cells (hUCMSCs) have been regarded as a promising candidate for tissue regeneration. However, it has not been reported whether hUCMSCs can be employed in tooth regeneration. Here, we report that hUCMSCs can be induced into odontoblast-like cells in vitro and in vivo. Induced hUCMSCs expressed dentin-related proteins including dentin sialoprotein (DSP) and dentin matrix protein-1 (DMP-1), and their gene expression levels were similar to those in native pulp tissue cells. Moreover, DSP- and DMP-1-positive calcifications were observed after implantation of hUCMSCs in vivo. These findings reveal that hUCMSCs have an odontogenic differentiation potency to differentiate to odontoblast-like cells with characteristic deposition of dentin-like matrix in vivo. This study clearly demonstrates hUCMSCs as an alternative therapeutic cell source for tooth regeneration.

  3. Clinical Observation of Employment of Umbilical Cord Derived Mesenchymal Stem Cell for Juvenile Idiopathic Arthritis Therapy

    Directory of Open Access Journals (Sweden)

    Liming Wang

    2016-01-01

    Full Text Available Juvenile idiopathic arthritis (JIA, known as Juvenile rheumatoid arthritis, is the most common type of arthritis in children aged under 17. It may cause sequelae due to lack of effective treatment. The goal of this study is to explore the therapeutic effect of umbilical cord mesenchymal stem cells (UC-MSCs for JIA. Ten JIA patients were treated with UC-MSCs and received second infusion three months later. Some key values such as 28-joint disease activity score (DAS28, TNF-α, IL-6, and regulatory T cells (Tregs were evaluated. Data were collected at 3 months and 6 months after first treatment. DAS28 score of 10 patients was between 2.6 and 3.2 at three months after infusion. WBC, ESR, and CRP were significantly decreased while Tregs were remarkably increased and IL-6 and TNF-α were declined. Similar changes of above values were found after 6 months. At the same time, the amount of NSAIDS and steroid usage in patients was reduced. However, no significant changes were found comparing the data from 3 and 6 months. These results suggest that UC-MSCs can reduce inflammatory cytokines, improve immune network effects, adjust immune tolerance, and effectively alleviate the symptoms and they might provide a safe and novel approach for JIA treatment.

  4. Induction of pluripotency in human umbilical cord mesenchymal stem cells in feeder layer-free condition.

    Science.gov (United States)

    Daneshvar, Nasibeh; Rasedee, Abdullah; Shamsabadi, Fatemeh Tash; Moeini, Hassan; Mehrboud, Parvaneh; Rahman, Heshu Sulaiman; Boroojerdi, Mohadeseh Hashem; Vellasamy, Shalini

    2015-12-01

    Induced Pluripotent Stem Cells (iPSCs) has been produced by the reprogramming of several types of somatic cells through the expression of different sets of transcription factors. This study consists of a technique to obtain iPSCs from human umbilical cord mesenchymal stem cells (UC-MSCs) in a feeder layer-free process using a mini-circle vector containing defined reprogramming genes, Lin28, Nanog, Oct4 and Sox2. The human MSCs transfected with the minicircle vector were cultured in iPSCs medium. Human embryonic stem cell (ESC)-like colonies with tightly packed domelike structures appeared 7-10 days after the second transfection. In the earliest stages, the colonies were green fluorescence protein (GFP)-positive, while upon continuous culture and passage, genuine hiPSC clones expressing GFP were observed. The induced cells, based on the ectopic expression of the pluripotent markers, exhibited characteristics similar to the embryonic stem cells. These iPSCs demonstrated in vitro capabilities for differentiation into the three main embryonic germ layers by embryoid bodies formation. There was no evidence of transgenes integration into the genome of the iPSCs in this study. In conclusion, this method offers a means of producing iPSCs without viral delivery that could possibly overcome ethical concerns and immune rejection in the use of stem cells in medical applications.

  5. Biological effects of low-level laser irradiation on umbilical cord mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hongli; Wang, Hong; Li, Yingxin, E-mail: yingxinli2005@126.com; Liu, Weichao; Chen, Zhuying [Key Laboratory of Laser Medicine of Tianjin, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192 (China); Wang, Chao [Biomedical Engineering and Technology College, Tianjin Medical University, Tianjin, 300070 (China)

    2016-04-15

    Low-level laser irradiation (LLLI) can enhance stem cell (SC) activity by increasing migration and proliferation. This study investigated the effects of LLLI on proliferation, enzymatic activity, and growth factor production in human umbilical cord mesenchymal SCs (hUC-MSCs) as well as the underlying mechanisms. hUC-MSCs were assigned to a control group (non-irradiation group) and three LLLI treatment groups (635 nm group, 808 nm group, and 635/808 nm group). Laser power density and energy density of 20 mW/cm{sup 2} and 12 J/cm{sup 2}, respectively, were used for each experiment. The proliferation rate was higher in the 635 nm as compared to the other groups. LLLI at 808 nm did not induce cell proliferation. ROS levels in cells exposed to 635, 808, and 635/808 nm radiation were increased by 52.81%, 26.89%, and 21.15%, respectively, relative to the control group. CAT, tGPx, and SOD activity was increased. LLLI at 808 nm increased the levels of IL-1, IL-6, and NFκB but not VEGF. LLLI improved hUC-MSCs function and increased antioxidant activity. Dual-wavelength LLLI had more potent effects on hUC-MSCs than single-wavelength treatment. LLLI has potential applications in the preconditioning of hUC-MSCs in vitro prior to transplantation, which could improve the regenerative capacity of cells.

  6. [Human umbilical cord mesenchymal stem cells reduce the sensitivity of HL-60 cells to cytarabine].

    Science.gov (United States)

    Cui, Jun-Jie; Chi, Ying; Du, Wen-Jing; Yang, Shao-Guang; Li, Xue; Chen, Fang; Ma, Feng-Xia; Lu, Shi-Hong; Han, Zhong-Chao

    2013-06-01

    This study was purposed to investigate the impact of human umbilical cord-derived mesenchymal stem cells (hUC-MSC) on the sensitivity of HL-60 cells to therapeutic drugs so as to provide more information for exploring the regulatory effect of hUC-MSC on leukemia cells. Transwell and direct co-culture systems of HL-60 and hUC-MSC were established. The apoptosis and cell cycle of HL-60 cells were detected by flow cytometry. RT-PCR and Western blot were used to detect the mRNA and protein levels of Caspase 3, respectively. The results showed that the apoptosis of HL-60 induced by cytarabine (Ara-C) decreased significantly after direct co-cultured with hUC-MSC cycle mRNA (P HL-60 cells were arrested at G0/G1 phase and did not enter into S phase (P HL-60 cells were reduced (P HL-60 from Arc-C induced apoptosis through regulating the cell cycle and down-regulating expression of Caspase 3 in HL-60 cells. In addition, this effect is caused by the soluble factors from hUC-MSC.

  7. 人胰岛素样生长因子1基因质粒载体的构建及其在人脐血源性神经干细胞中的表达%Construction of Plasmid Vector Containing Human Insulin-Like Growth Factor 1 and Its Expression in Human Umbilical Cord Blood-Derived Neural Stem Cells

    Institute of Scientific and Technical Information of China (English)

    王军; 吴值荣; 朱登纳; 高峰; 侯艳艳; 陈海; 王留霞

    2011-01-01

    Objective To construct the plasmid expression vector containing human insulin - like growth factor 1 ( IGF - 1 ), and examine the expression of IGF - 1 gene in human umbilical cord blood - derived neural stem cells(NSCs).Methods The IGF - 1 gene was extracted from the fetal liver via reverse tranacription polymerase chain reaction( RT - PCR) ,then the product of PCR and plasmid pcDNA3.1 were purified by gel extraction.After enzyme digestion of DNA restriction enzyme - BamH Ⅰ and Hind Ⅲ, purified IGF - 1 gene was cloned into expression plasmid vector pcDNA3.1 by T4 DNA Ligase.Recombinant plasmid was identified by DNA sequencing method and enzyme digestion of DNA restriction enzyme - BamH Ⅰ and Hind Ⅲ.Recombinant pcDNA3.1 - IGF - 1 and empty plasmid were transfected into human umbilical cord blood - derived NSCs through lipofectin transfection.After transfection, transfected umbilical cord blood - derived NSCs were filtered with neomycin( G418 ).The expression of IGF - 1 gene in the gene transfected umbilical cord blood - derived was examined by immunocytochemical method and RT - PCR.Results IGF - 1 gene was successfully extracted from the fetal liver.Recombinants peDNA3.1 -IGF - 1 was proved accurate by restriction enzyme digestion and sequencing.Recombinant was transfected into human umbilical cord blood -derived NSCs by liposome for 24 hours,then selection cell clones appeared after 2 weeks for G418 filtering.In umbilical cord blood -derived NSCs transfected by recombinant plasmid vector, the expression of IGF- 1 gene was successful, which was detected by immtmocyto-chemical method and the expression of IGF - 1 mRNA was also positive while the other was negative compared with controla,which was examined by RT - PCR.Conclusion IGF - 1 gene can expressed in umbilical cord blood - derived NSCs transfected by recombinant plasmid vector.%目的 构建人胰岛素样生长因子1(IGF-1)质粒表达载体,并观察重组体pcDNA3.1-IGF-1转染后的脐血

  8. Combination of autologous bone marrow mesenchymal stem cells and cord blood mononuclear cells in the treatment of chronic thoracic spinal cord injury in 27 cases

    Directory of Open Access Journals (Sweden)

    Lian-zhong WANG

    2012-08-01

    Full Text Available Objective To investigate and evaluate therapeutic effects of transplantation of autologous bone marrow mesenchymal stem cells in conjunction with cord blood mononuclear cells for late thoracic spinal cord injury. Methods Data from 27 patients with late thoracic spinal cord injury who received transplantation of autologous bone marrow mesenchymal stem cells in conjunction with cord blood mononuclear cells in Neurosurgery Department of 463rd Hospital of PLA between July 2006 and July 2008 were collected and analyzed. The full treatment course consisted of 4 consecutive injections at one week apart. Indicators for evaluation followed that of the American Spiral Injury Association (ASIA Impairment Scale (AIS grade, ASIA motor and sensory scores, ASIA visual analog score, and the Ashworth score. The follow-up period was 6 months. Evaluations were made 6 weeks and 6 months after the treatment. Results Improvement from AIS A to AIS B was found in 4 patients. In one patient, improvement from AIS A to AIS C and in one patient from AIS B to AIS C was found 6 weeks after the treatment. The AIS improvement rate was 22.2%. In one patient improvement from AIS A to AIS B was found after 6 months. The overall AIS improvement rate was 25.9%. ASIA baseline motor scores of lower extremties were 0.5±1.5, 1.7±2.9, 3.1±3.6 before the treatment, 6 weeks and 6 months after the treatment, respectively, and showed a statistically significant improvement (P < 0.05. ASIA sensory scores including light touch and pinprick were 66.6±13.7 and 67.0±13.6 respectively before treatment, and they became 68.8±14.4, 68.4±14.7 and 70.5±14.4, 70.2±14.4 six weeks and six months after the treatment. The changes were statistically significant (P < 0.05; Modified Ashworth Scale scores were 1.8±1.5, 1.6±1.2,1.1±0.8 respectively at baseline, 6 weeks and 6months after the treatment, and showed a statistically significant descending trend (P < 0.05. Conclusion Transplantation of

  9. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injur y by promoting axonal growth and anti-autophagy

    Institute of Scientific and Technical Information of China (English)

    Fei Yin; Chunyang Meng; Rifeng Lu; Lei Li; Ying Zhang; Hao Chen; Yonggang Qin; Li Guo

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after trans-plantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunolfuorescence with subsequent quantiifcation revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-as-sociated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Fur-thermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was signiifcantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neuro-iflament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mes-enchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury.

  10. Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats.

    Science.gov (United States)

    Menezes, Karla; Nascimento, Marcos Assis; Gonçalves, Juliana Pena; Cruz, Aline Silva; Lopes, Daiana Vieira; Curzio, Bianca; Bonamino, Martin; de Menezes, João Ricardo Lacerda; Borojevic, Radovan; Rossi, Maria Isabel Doria; Coelho-Sampaio, Tatiana

    2014-01-01

    Cell therapy is a promising strategy to pursue the unmet need for treatment of spinal cord injury (SCI). Although several studies have shown that adult mesenchymal cells contribute to improve the outcomes of SCI, a description of the pro-regenerative events triggered by these cells is still lacking. Here we investigated the regenerative properties of human adipose tissue derived stromal cells (hADSCs) in a rat model of spinal cord compression. Cells were delivered directly into the spinal parenchyma immediately after injury. Human ADSCs promoted functional recovery, tissue preservation, and axonal regeneration. Analysis of the cord tissue showed an abundant deposition of laminin of human origin at the lesion site and spinal midline; the appearance of cell clusters composed of neural precursors in the areas of laminin deposition, and the appearance of blood vessels with separated basement membranes along the spinal axis. These effects were also observed after injection of hADSCs into non-injured spinal cord. Considering that laminin is a well-known inducer of axonal growth, as well a component of the extracellular matrix associated to neural progenitors, we propose that it can be the paracrine factor mediating the pro-regenerative effects of hADSCs in spinal cord injury.

  11. Calpain inhibitor attenuates ER stress-induced apoptosis in injured spinal cord after bone mesenchymal stem cells transplantation.

    Science.gov (United States)

    Wang, Chao; Shi, Dongling; Song, Xinghui; Chen, Yingying; Wang, Linlin; Zhang, Xiaoming

    2016-07-01

    Bone marrow mesenchymal stem cells (BMSCs) therapy for tissue repair is limited by low survival of cells transplanted in the recipient sites after spinal cord injury (SCI). Here, we investigated the effects of a calpain inhibitor (MDL28170) on BMSCs survival by a rat model of spinal cord injury in vitro and in vivo. Conditioned medium from hypoxia injured VSC4.1 motor neurons (Hypoxia-CM) were collected to mimic the micro-environment of injured spinal cord. Tunicamycin was also applied to induce endoplasmic reticulum (ER) stress in BMSCs. The CCK-8 assay, LDH leakage assay and flow cytometer assay demonstrated that MDL28170 could enhance BMSCs survival in response to Hypoxia-CM and tunicamycin. Moreover, MDL28170 significantly enhanced GFP-positive BMSCs survival in vivo after transplantation into the contused spinal cord of SCI rats. The protective effects of MDL28170 on BMSCs survival may inhibit the activation of calpain and the downstream ER stress-induced apoptosis. The present results suggested for the first time that MDL28170 with BMSCs transplant helped to rescue cells in injured spinal cord by modulating the ER stress-induced apoptosis. The calpain inhibitor, MDL28170 may have the promising new strategies for promoting the survival of transplanted BMSCs on cell-based regenerative medicine.

  12. Human olfactory mesenchymal stromal cell transplants promote remyelination and earlier improvement in gait co‐ordination after spinal cord injury

    Science.gov (United States)

    Lindsay, Susan L.; Toft, Andrew; Griffin, Jacob; M. M. Emraja, Ahmed

    2017-01-01

    Autologous cell transplantation is a promising strategy for repair of the injured spinal cord. Here we have studied the repair potential of mesenchymal stromal cells isolated from the human olfactory mucosa after transplantation into a rodent model of incomplete spinal cord injury. Investigation of peripheral type remyelination at the injury site using immunocytochemistry for P0, showed a more extensive distribution in transplanted compared with control animals. In addition to the typical distribution in the dorsal columns (common to all animals), in transplanted animals only, P0 immunolabelling was consistently detected in white matter lateral and ventral to the injury site. Transplanted animals also showed reduced cavitation. Several functional outcome measures including end‐point electrophysiological testing of dorsal column conduction and weekly behavioural testing of BBB, weight bearing and pain, showed no difference between transplanted and control animals. However, gait analysis revealed an earlier recovery of co‐ordination between forelimb and hindlimb stepping in transplanted animals. This improvement in gait may be associated with the enhanced myelination in ventral and lateral white matter, where fibre tracts important for locomotion reside. Autologous transplantation of mesenchymal stromal cells from the olfactory mucosa may therefore be therapeutically beneficial in the treatment of spinal cord injury. GLIA 2017 GLIA 2017;65:639–656 PMID:28144983

  13. Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord

    Directory of Open Access Journals (Sweden)

    Majore Ingrida

    2009-03-01

    Full Text Available Abstract Background A variety of cell types can be identified in the adherent fraction of bone marrow mononuclear cells including more primitive and embryonic-like stem cells, mesenchymal stem cells (MSC, lineage-committed progenitors as well as mature cells such as osteoblasts and fibroblasts. Different methods are described for the isolation of single bone marrow stem cell subpopulations – beginning from ordinary size sieving, long term cultivation under specific conditions to FACS-based approaches. Besides bone marrow-derived subpopulations, also other tissues including human umbilical cord (UC have been recently suggested to provide a potential source for MSC. Although of clinical importance, these UC-derived MSC populations remain to be characterized. It was thus the aim of the present study to identify possible subpopulations in cultures of MSC-like cells obtained from UC. We used counterflow centrifugal elutriation (CCE as a novel strategy to successfully address this question. Results UC-derived primary cells were separated by CCE and revealed differentially-sized populations in the fractions. Thus, a subpopulation with an average diameter of about 11 μm and a small flat cell body was compared to a large sized subpopulation of about 19 μm average diameter. Flow cytometric analysis revealed the expression of certain MSC stem cell markers including CD44, CD73, CD90 and CD105, respectively, although these markers were expressed at higher levels in the small-sized population. Moreover, this small-sized subpopulation exhibited a higher proliferative capacity as compared to the total UC-derived primary cultures and the large-sized cells and demonstrated a reduced amount of aging cells. Conclusion Using the CCE technique, we were the first to demonstrate a subpopulation of small-sized UC-derived primary cells carrying MSC-like characteristics according to the presence of various mesenchymal stem cell markers. This is also supported by the

  14. Salvianolic acid B promotes survival of transplanted mesenchymal stem cells in spinal cord-injured rats

    Institute of Scientific and Technical Information of China (English)

    Xiao-bin BI; Yu-bin DENG; Dan-hui GAN; Ya-zhu WANG

    2008-01-01

    Aim: Stem cells hold great promise for brain and spinal cord injuries (SCI), but cell survival following transplantation to adult central nervous system has been poor. Salvianolic acid B (Sal B) has been shown to improve functional recovery in brain-injured rats. The present study was designed to determine whether Sal B could improve transplanted mesenchymal stem cell (MSC) survival in SCI rats. Methods: SCI rats were treated with Sal B. The Basso-Beatie-Bresnahan (BBB) scale was used to test the functional recovery. Sal B was used to protect MSC from being damaged by TNF-α in vitro. Bromodeoxyuridine-labeled MSC were transplanted into SCI rats with Sal B intraperitoneal injection, simul-taneously. MSC were examined, and the functional recovery of the SCI rats was tested. Results: Sal B treatment significantly reduced the lesion area from 0.26±0.05 mm2 to 0.15±0.03 mm2 (P<0.01) and remarkably raised the BBB scores on d 28, post-injury, from 7.3±0.9 to 10.5±1.3 (P<0.05), compared with the phosphate-buffered saline (PBS) control group. MSC were protected from the damage of TNF-α by Sal B. The number of surviving MSC in the MSC plus Sal B groups were 1143.3± 195.6 and 764.0±81.3 on d 7 and 28, post-transplantation, more than those in the MSC group, which was 569.3±72.3 and 237.0±61.3, respectively (P<0.05). Rats with MSC trans-planted and Sal B injected obtained higher BBB scores than those with MSC transplanted alone (P<0.05) and PBS (P<0.01). Conclusion: Sal B provides neuroprotection to SCI and promotes the survival of MSC in vitro and after cell transplantation to the injured spinal cord in vivo.

  15. Umbilical Cord Blood Platelet Lysate as Serum Substitute in Expansion of Human Mesenchymal Stem Cells.

    Science.gov (United States)

    Shirzad, Negin; Bordbar, Sima; Goodarzi, Alireza; Mohammad, Monire; Khosravani, Pardis; Sayahpour, Froughazam; Baghaban Eslaminejad, Mohamadreza; Ebrahimi, Marzieh

    2017-10-01

    The diverse clinical applications for human mesenchymal stem cells (hMSCs) in cellular therapy and regenerative medicine warrant increased focus on developing adequate culture supplements devoid of animal-derived products. In the present study, we have investigated the feasibility of umbilical cord blood-platelet lysate (UCB-PL) as a standard substitute for fetal bovine serum (FBS) and human peripheral blood-PL (PB-PL). In this experimental study, platelet concentrates (PC) from UCB and human PB donors were frozen, melted, and sterilized to obtain PL. Quality control included platelet cell counts, sterility testing (viral and microbial), total protein concentrations, growth factor levels, and PL stability. The effects of UCB-PL and PB-PL on hMSCs proliferation and differentiation into osteocytes, chondrocytes, and adipocytes were studied and the results compared with FBS. UCB-PL contained high levels of protein content, platelet-derived growth factor- AB (PDGF-AB), and transforming growth factor (TGF) compared to PB-PL. All growth factors were stable for at least nine months post-storage at -70˚C. hMSCs proliferation enhanced following treatment with UCB-PL. With all three supplements, hMSCs could differentiate into all three lineages. PB-PL and UCB-PL both were potent in hMSCs proliferation. However, PB promoted osteoblastic differentiation and UCB-PL induced chondrogenic differentiation. Because of availability, ease of use and feasible standardization of UCB-PL, we have suggested that UCB-PL be used as an alternative to FBS and PB-PL for the cultivation and expansion of hMSCs in cellular therapy.

  16. Conditioned medium: a new alternative for cryopreservation of equine umbilical cord mesenchymal stem cells.

    Science.gov (United States)

    Maia, Leandro; Dias, Marianne Camargos; de Moraes, Carolina Nogueira; de Paula Freitas-Dell'Aqua, Camila; da Mota, Ligia S L Silveira; Santiloni, Valquíria; da Cruz Landim-Alvarenga, Fernanda

    2017-03-01

    Cryopreservation is a feasible alternative to maintaining several cell lines, particularly for immediate therapeutic use, transportation of samples, and implementation of new in vitro studies. This work parts from the hypothesis that the medium of cryopreservation composed by 90% of conditioned medium (CM) supports cryopreservation of equine umbilical cord intervascular matrix mesenchymal stem cells (UCIM-MSCs), allowing the maintenance of the biological properties for the establishment of cell banks intended for therapeutic use and in vitro studies. Thus, we evaluated the viability, apoptosis/necrosis rates, immunophenotypic profile (IP), chromosomal stability, clonicity, and differentiation potential of UCIM-MSCs cryopreserved with four different mediums (with FBS: M1, M3, M4 and without FBS: M2). After 3 months of cryopreservation, samples were thawed and analyzed. The potential of differentiation in the mesodermal lineages, clonicity, and the chromosomal stability were maintained after cryopreservation of UCIM-MSCs with medium containing FBS. Changes (P cells cryopreserved with medium M1-M3. Only the UCIM-MSCs cryopreserved with the CM (M4) had similar viability post-thaw (P = 0.23) when compared with fresh cells. We proved the hypothesis that the medium of cryopreservation containing CM supports the cryopreservation of UCIM-MSCs, at the experimental conditions, being the medium that better maintains the biological characteristics observed at fresh cells. Thus, future studies of UCIM-MSCs secretome should be conducted to better understand the beneficial and protective effects of the CM during the freezing process. © 2017 International Federation for Cell Biology.

  17. Hypoxic pretreatment of human umbilical cord mesenchymal stem cells regulating macrophage polarization

    Directory of Open Access Journals (Sweden)

    Chuan TONG

    2016-08-01

    Full Text Available Objective  To investigate the effect of human umbilical cord mesenchymal stem cells (hUC-MSCs on macrophage polarization under hypoxia. Methods  hUC-MSCs were obtained by explants adherent culture and cultured under normoxia (21% O2 and hypoxia (5% O2. The multi-directional differentiation of hUC-MSCs was observed by osteogenic and adipogenic differentiation induction. Live/death staining was performed to detect the cell viability, and ELISA was executed to detect the protein content in supernatant of hUC-MSCs. Transwell chamber was employed to co-culture the hUC-MSCs cultured under normoxia and hypoxia and macrophage (THP-1 stimulated by lipopolysaccharide (IPS, then the polarization of THP-1 was detected by immunofluorescence, and the secretions of inflammatory factor and anti-inflammatory factor of THP-1 were detected by ELISA. Results  hUC-MSCs cultured under hypoxia showed the ability of osteogenic and adipogenic multi-directional differentiation. Live/death staining showed the high cell viability of hUC-MSCs cultured under normoxia and hypoxia. The expression levels of prostaglandin E2 (PGE2 and indoleamine 2,3-dioxygenase (IDO were significantly higher in the hUC-MSCs cultured under hypoxia than in those cultured under normoxia. hUCMSCs cultured under hypoxia promoted the polarization of THP-1 to M2, obviously reduced the expression of TNF-α and IL-1β, and increased the expression of IL-10 significantly. Conclusion hUC-MSCs cultured under hypoxia may promote the polarization of THP-1 to M2 and improve the viability of anti-inflammatory. DOI: 10.11855/j.issn.0577-7402.2016.07.01

  18. Suspension Culture Alters Insulin Secretion in Induced Human Umbilical Cord Matrix-Derived Mesenchymal Cells

    Directory of Open Access Journals (Sweden)

    Fatemeh Seyedi

    2016-04-01

    Full Text Available Objective: Worldwide, diabetes mellitus (DM is an ever-increasing metabolic disorder. A promising approach to the treatment of DM is the implantation of insulin producing cells (IPC that have been derived from various stem cells. Culture conditions play a pivotal role in the quality and quantity of the differentiated cells. In this experimental study, we have applied various culture conditions to differentiate human umbilical cord matrix-derived mesenchymal cells (hUCMs into IPCs and measured insulin production. Materials and Methods: In this experimental study, we exposed hUCMs cells to pancreatic medium and differentiated them into IPCs in monolayer and suspension cultures. Pancreatic medium consisted of serum-free Dulbecco’s modified eagle’s medium Nutrient mixture F12 (DMEM/F12 medium with 17.5 mM glucose supplemented by 10 mM nicotinamide, 10 nM exendin-4, 10 nM pentagastrin, 100 pM hepatocyte growth factor, and B-27 serum-free supplement. After differentiation, insulin content was analyzed by gene expression, immunocytochemistry (IHC and the chemiluminesence immunoassay (CLIA. Results: Reverse transcription-polymerase chain reaction (RT-PCR showed efficient expressions of NKX2.2, PDX1 and INSULIN genes in both groups. IHC analysis showed higher expression of insulin protein in the hanging drop group, and CLIA revealed a significant higher insulin production in hanging drops compared with the monolayer group following the glucose challenge test. Conclusion: We showed by this novel, simple technique that the suspension culture played an important role in differentiation of hUCMs into IPC. This culture was more efficient than the conventional culture method commonly used in IPC differentiation and cultivation.

  19. Ophthalmic use of blood-derived products.

    Science.gov (United States)

    Nugent, Ryan B; Lee, Graham A

    2015-01-01

    There is a wide spectrum of blood-derived products that have been used in many different medical and surgical specialties with success. Blood-derived products for clinical use can be extracted from autologous or allogeneic specimens of blood, but recombinant products are also commonly used. A number of blood derivatives have been used for a wide range of ocular conditions, from the ocular surface to the retina. With stringent preparation guidelines, the potential risk of transmission of blood-borne diseases is minimized. We review blood-derived products and how they are improving the management of ocular disease.

  20. Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells.

    Directory of Open Access Journals (Sweden)

    Abel Torres-Espín

    Full Text Available Transplantation of bone marrow derived mesenchymal stromal cells (MSC or olfactory ensheathing cells (OEC have demonstrated beneficial effects after spinal cord injury (SCI, providing tissue protection and improving the functional recovery. However, the changes induced by these cells after their transplantation into the injured spinal cord remain largely unknown. We analyzed the changes in the spinal cord transcriptome after a contusion injury and MSC or OEC transplantation. The cells were injected immediately or 7 days after the injury. The mRNA of the spinal cord injured segment was extracted and analyzed by microarray at 2 and 7 days after cell grafting. The gene profiles were analyzed by clustering and functional enrichment analysis based on the Gene Ontology database. We found that both MSC and OEC transplanted acutely after injury induce an early up-regulation of genes related to tissue protection and regeneration. In contrast, cells transplanted at 7 days after injury down-regulate genes related to tissue regeneration. The most important change after MSC or OEC transplant was a marked increase in expression of genes associated with foreign body response and adaptive immune response. These data suggest a regulatory effect of MSC and OEC transplantation after SCI regarding tissue repair processes, but a fast rejection response to the grafted cells. Our results provide an initial step to determine the mechanisms of action and to optimize cell therapy for SCI.

  1. Effects of Co-grafts Mesenchymal Stem Cells and Nerve Growth Factor Suspension in the Repair of Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    FANG Huang; WANG Junfang; CHEN Anmin

    2006-01-01

    To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n= 32) was injured by using the modified Allen' s method. One week after the injury, the injured cords were injected with Dubecco-modified Eagles medium (DMEM , Group Ⅰ), MSCs (Group Ⅱ), NGF (Group Ⅲ), and MSCs plus NGF (Group Ⅳ). One month and two months after the injury, rats were sacrificed and their injured cord tissues were sectioned for the identification of the transplanted cells. The axonal regeneration and the differentiation of MSCs were examined by immunocytochemical staining. At the same time, rats were subjected to behavioral tests by using the open-field BBB scoring system. Immunocytochemical staining showed that axonal regeneration and the transplanted cells partially expressed neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP). At the same time, significant improvement in BBB locomotor rating scale (P<0.05) were observed in the treatment group. More importantly, further functional improvement were noted in the combined treatment group. MSCs could differentiate into neurons and astrocytes. MSCs and NGF can promote axonal regeneration and improve functional recovery. There might exist a synergistic effect between MSCs and NGF.

  2. Propofol combined with bone marrow mesenchymal stem cell transplantation improves electrophysiological function in the hindlimb of rats with spinal cord injury better than monotherapy

    Directory of Open Access Journals (Sweden)

    Yue-xin Wang

    2015-01-01

    Full Text Available The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via tail vein using an infusion pump. Four weeks after cell transplantation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve fibers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electrophysiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  3. Propofol injection combined with bone marrow mesenchymal stem cell transplantation better improves electrophysiological function in the hindlimb of rats with spinal cord injury than monotherapy

    Institute of Scientific and Technical Information of China (English)

    Yue-xin Wang; Jing-jing Sun; Mei Zhang; Xiao-hua Hou; Jun Hong; Ya-jing Zhou; Zhi-yong Zhang

    2015-01-01

    The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantationvia tail vein injection and/or propofol injectionvia tail vein using an infusion pump. Four weeks after cell transplan-tation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve ifbers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electro-physiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  4. Study of differentiated human umbilical cord-derived mesenchymal stem cells transplantation on rat model of advanced parkinsonism.

    Science.gov (United States)

    Wang, Zhaowei; Chen, Aimin; Yan, Shengjuan; Li, Chengyan

    2016-08-01

    The aim of this study was to explore the curative effect of differentiated human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) transplantation on rat of advanced Parkinson disease (PD) model. Human umbilical cord-derived mesenchymal stem cells were cultured and induced differentiation in vitro. The PD rats were established and allocated randomly into 2 groups: differentiated hUC-MSCs groups and physiological saline groups (the control group). Rotation test and immunofluorescence double staining were done. The result showed that hUC-MSCs could differentiate into mature dopamine neurons. Frequency of rotation was significantly less in differentiated hUC-MSCs groups than in normal saline group. After we transplanted these cells into the unilateral lesioned substantia nigra induced by striatal injection of 6-hydroxydopamine and performed in the medial forebrain bundle and ventral tegmental area, nigral tyrosine hydroxylase-positive cells were observed and survival of at least 2 months. In addition, transplantation of hUC-MSCs could make an obviously therapeutic effect on PD rats. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications.

    Science.gov (United States)

    Van Pham, Phuc; Truong, Nhat Chau; Le, Phuong Thi-Bich; Tran, Tung Dang-Xuan; Vu, Ngoc Bich; Bui, Khanh Hong-Thien; Phan, Ngoc Kim

    2016-06-01

    Umbilical cord (UC) is a rich source of rapidly proliferating mesenchymal stem cells (MSCs) that are easily cultured on a large-scale. Clinical applications of UC-MSCs include graft-versus-host disease, and diabetes mellitus types 1 and 2. UC-MSCs should be isolated and proliferated according to good manufacturing practice (GMP) with animal component-free medium, quality assurance, and quality control for their use in clinical applications. This study developed a GMP standard protocol for UC-MSC isolation and culture. UC blood and UC were collected from the same donors. Blood vasculature was removed from UC. UC blood was used as a source of activated platelet rich plasma (aPRP). Small fragments (1-2 mm(2)) of UC membrane and Wharton's jelly were cut and cultured in DMEM/F12 medium containing 1 % antibiotic-antimycotic, aPRP (2.5, 5, 7.5 and 10 %) at 37 °C in 5 % CO2. The MSC properties of UC-MSCs at passage 5 such as osteoblast, chondroblast and adipocyte differentiation, and markers including CD13, CD14, CD29, CD34, CD44, CD45, CD73, CD90, CD105, and HLA-DR were confirmed. UC-MSCs also were analyzed for karyotype, expression of tumorigenesis related genes, cell cycle, doubling time as well as in vivo tumor formation in NOD/SCID mice. Control cells consisted of UC-MSCs cultured in DMEM/F12 plus 1 % antibiotic-antimycotic, and 10 % fetal bovine serum (FBS). All UC-MSC (n = 30) samples were successfully cultured in medium containing 7.5 and 10 % aPRP, 92 % of samples grew in 5.0 % aPRP, 86 % of samples in 2.5 % aPRP, and 72 % grew in 10 % FBS. UC-MSCs in these four groups exhibited similar marker profiles. Moreover, the proliferation rates in medium with PRP, especially 7.5 and 10 %, were significantly quicker compared with 2.5 and 5 % aPRP or 10 % FBS. These cells maintained a normal karyotype for 15 sub-cultures, and differentiated into osteoblasts, chondroblasts, and adipocytes. The analysis of pluripotent cell markers showed UC-MSCs maintained

  6. Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats.

    Directory of Open Access Journals (Sweden)

    Lingying Liu

    Full Text Available BACKGROUND: Severe burns are a common and highly lethal trauma. The key step for severe burn therapy is to promote the wound healing as early as possible, and reports indicate that mesenchymal stem cell (MSC therapy contributes to facilitate wound healing. In this study, we investigated effect of human umbilical cord MSCs (hUC-MSCs could on wound healing in a rat model of severe burn and its potential mechanism. METHODS: Adult male Wistar rats were randomly divided into sham, burn, and burn transplanted hUC-MSCs. GFP labeled hUC-MSCs or PBS was intravenous injected into respective groups. The rate of wound closure was evaluated by Image Pro Plus. GFP-labeled hUC-MSCs were tracked by in vivo bioluminescence imaging (BLI, and human-specific DNA expression in wounds was detected by PCR. Inflammatory cells, neutrophils, macrophages, capillaries and collagen types I/III in wounds were evaluated by histochemical staining. Wound blood flow was evaluated by laser Doppler blood flow meter. The levels of proinflammatory and anti-inflammatory factors, VEGF, collagen types I/III in wounds were analyzed using an ELISA. RESULTS: We found that wound healing was significantly accelerated in the hUC-MSC therapy group. The hUC-MSCs migrated into wound and remarkably decreased the quantity of infiltrated inflammatory cells and levels of IL-1, IL-6, TNF-α and increased levels of IL-10 and TSG-6 in wounds. Additionally, the neovascularization and levels of VEGF in wounds in the hUC-MSC therapy group were markedly higher than those in other control groups. The ratio of collagen types I and III in the hUC-MSC therapy group were markedly higher than that in the burn group at indicated time after transplantation. CONCLUSION: The study suggests that hUC-MSCs transplantation can effectively improve wound healing in severe burned rat model. Moreover, these data might provide the theoretical foundation for the further clinical application of hUC-MSC in burn areas.

  7. Effects of human umbilical cord mesenchymal stem cells therapy on CD61,CD62P and CD54 in elderly patients with old myocardial infarction

    Institute of Scientific and Technical Information of China (English)

    李侠

    2013-01-01

    Objective To study the effects of human umbilical cord mesenchymal stem cells (hUCM-SCs) therapy on peripheral blood CD61,CD62P and CD54 in elderly patients with old myocardial infarction.Methods From July2010 to August 2012,30 elderly patients with old myocardial infarction were randomly selected.Patients were

  8. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    NARCIS (Netherlands)

    Berk, L.C.J. van den; Roelofs, H.; Huijs, T.; Siebers-Vermeulen, K.G.C.; Raymakers, R.A.P.; Kogler, G.; Figdor, C.G.; Torensma, R.

    2009-01-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord

  9. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    Science.gov (United States)

    Penha, Euler Moraes; Meira, Cássio Santana; Guimarães, Elisalva Teixeira; Mendonça, Marcus Vinícius Pinheiro; Gravely, Faye Alice; Pinheiro, Cláudia Maria Bahia; Pinheiro, Taiana Maria Bahia; Barrouin-Melo, Stella Maria; Ribeiro-dos-Santos, Ricardo; Soares, Milena Botelho Pereira

    2014-01-01

    The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten days after the surgical procedure and MSC transplantation, we observed a progressive recovery of the panniculus reflex and diminished superficial and deep pain response, although there were still low proprioceptive reflexes in addition to a hyperreflex in the ataxic hind limb movement responses. Each dog demonstrated an improvement in these gains over time. Conscious reflex recovery occurred simultaneously with moderate improvement in intestine and urinary bladder functions in two of the four dogs. By the 18th month of clinical monitoring, we observed a remarkable clinical amelioration accompanied by improved movement, in three of the four dogs. However, no clinical gain was associated with alterations in magnetic resonance imaging. Our results indicate that MSC are potential candidates for the stem cell therapy following spinal cord injury. PMID:24723956

  10. Use of Autologous Mesenchymal Stem Cells Derived from Bone Marrow for the Treatment of Naturally Injured Spinal Cord in Dogs

    Directory of Open Access Journals (Sweden)

    Euler Moraes Penha

    2014-01-01

    Full Text Available The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten days after the surgical procedure and MSC transplantation, we observed a progressive recovery of the panniculus reflex and diminished superficial and deep pain response, although there were still low proprioceptive reflexes in addition to a hyperreflex in the ataxic hind limb movement responses. Each dog demonstrated an improvement in these gains over time. Conscious reflex recovery occurred simultaneously with moderate improvement in intestine and urinary bladder functions in two of the four dogs. By the 18th month of clinical monitoring, we observed a remarkable clinical amelioration accompanied by improved movement, in three of the four dogs. However, no clinical gain was associated with alterations in magnetic resonance imaging. Our results indicate that MSC are potential candidates for the stem cell therapy following spinal cord injury.

  11. Use of autologous mesenchymal stem cells derived from bone marrow for the treatment of naturally injured spinal cord in dogs.

    Science.gov (United States)

    Penha, Euler Moraes; Meira, Cássio Santana; Guimarães, Elisalva Teixeira; Mendonça, Marcus Vinícius Pinheiro; Gravely, Faye Alice; Pinheiro, Cláudia Maria Bahia; Pinheiro, Taiana Maria Bahia; Barrouin-Melo, Stella Maria; Ribeiro-Dos-Santos, Ricardo; Soares, Milena Botelho Pereira

    2014-01-01

    The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten days after the surgical procedure and MSC transplantation, we observed a progressive recovery of the panniculus reflex and diminished superficial and deep pain response, although there were still low proprioceptive reflexes in addition to a hyperreflex in the ataxic hind limb movement responses. Each dog demonstrated an improvement in these gains over time. Conscious reflex recovery occurred simultaneously with moderate improvement in intestine and urinary bladder functions in two of the four dogs. By the 18th month of clinical monitoring, we observed a remarkable clinical amelioration accompanied by improved movement, in three of the four dogs. However, no clinical gain was associated with alterations in magnetic resonance imaging. Our results indicate that MSC are potential candidates for the stem cell therapy following spinal cord injury.

  12. Mesenchymal stem cells promote augmented response of endogenous neural stem cells in spinal cord injury of rats

    Directory of Open Access Journals (Sweden)

    Marta Rocha Araujo

    2016-06-01

    Full Text Available Traumatic spinal cord injury results in severe neurological deficits, mostly irreversible. The cell therapy represents a strategy for treatment particularly with the use of stem cells with satisfactory results in several experimental models. The aim of the study was to compare the treatment of spinal cord injury (SCI with and without mesenchymal stem cells (MSC, to investigate whether MSCs migrate and/or remain at the site of injury, and to analyze the effects of MSCs on inflammation, astrocytic reactivity and activation of endogenous stem cells. Three hours after SCI, animals received bone marrow-derived MSCs (1×107 in 1mL PBS, IV. Animals were euthanized 24 hours, 7 and 21 days post-injury. The MSC were not present in the site of the lesion and the immunofluorescent evaluation showed significant attenuation of inflammatory response with reduction in macrophages labeled with anti-CD68 antibody (ED1, decreased immunoreactivity of astrocytes (GFAP+ and greater activation of endogenous stem cells (nestin+ in the treated groups. Therefore, cell transplantation have a positive effect on recovery from traumatic spinal cord injury possibly due to the potential of MSCs to attenuate the immune response.

  13. Comparative Study on the Differentiation of Mesenchymal Stem Cells Between Fetal and Postnatal Rat Spinal Cord Niche.

    Science.gov (United States)

    Cao, Songying; Wei, Xiaowei; Li, Hui; Miao, Jianing; Zhao, Guifeng; Wu, Di; Liu, Bo; Zhang, Yi; Gu, Hui; Wang, Lili; Fan, Yang; An, Dong; Yuan, Zhengwei

    2016-01-01

    In a previous study, we established a prenatal surgical approach and transplanted mesenchymal stem cells (MSCs) into the fetal rat spinal column to treat neural tube defects (NTDs). We found that the transplanted MSCs survived and differentiated into neural lineage cells. Various cytokines and extracellular signaling systems in the spinal cord niche play an important role in cell differentiation. In this study, we observed the differentiation of transplanted MSCs in different spinal cord niches and further observed the expression of neurotrophic factors and growth factors in the spinal cord at different developmental stages to explore the mechanism of MSC differentiation in different spinal cord niches. The results showed that transplanted MSCs expressed markers of neural precursor cells (nestin), neurogliocytes (GFAP), and neurons (β-tubulin). The percentages of GFP(+)/nestin(+) double-positive cells in transplanted MSCs in E16, P1, and P21 rats were 18.31%, 12.18%, and 5.06%, respectively. The percentages of GFP(+)/GFAP(+) double-positive cells in E16, P1, and P21 rats were 32.01%, 15.35%, and 12.56%, respectively. The percentages of GFP(+)/β-tubulin(+) double-positive cells in E16, P1, and P21 were 11.76%, 7.62%, and 4.88%, respectively. The differentiation rates of MSCs in embryonic spinal cords were significantly higher than in postnatal spinal cords (p < 0.05). We found that the transplanted MSCs expressed synapsin-1 at different developmental stages. After MSC transplantation, we observed that neurotrophic factor-3 (NT-3), fibroblast growth factor-2 (FGF-2), FGF-8, transforming growth factor-α (TGF-α), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF) significantly increased in the MSC transplantation group compared with the blank injection group. Furthermore, FGF-2 and VEGF expression were positively correlated with the number of surviving MSCs. In addition, we found that the expression of brain

  14. Effect on umbilical cord blood platelet - rich plasma promoting proliferation of umbilical cord blood mesenchymal stem cells%脐血来源富血小板血浆对脐血间充质干细胞增殖的影响

    Institute of Scientific and Technical Information of China (English)

    胡资兵; 孙杰聪; 刘田丰

    2016-01-01

    Objective To explore the best concentration of umbilical cord blood derived platelet rich plasma for promoting the proliferation and proliferation of umbilical cord blood mesenchymal stem cells. Method Umbilical cord blood was collected in term health cesarean selection newborn. Separation of umbilical cord blood mesenchymal stem cells was performed by using the tissue pieces culture. Platelet - rich plasma from umbilical cord blood was extracted with the use of secondary centrifuga-tion. Transforming growth factor - beta 1 in platelet - rich plasma was detected with the method of ELISA. In this experiment, platelet rich plasma combined 10% fetal bovine serum was used to cultivate umbilical cord blood mesenchymal stem cells. According to the concentration of TGF - beta 1 in platelet - rich plasma,the experiment was divided into 6 groups:2 000 pg/ ml,1 000 pg/ ml,750 pg/ ml,500 pg/ ml,250 pg/ ml,10% fetal bovine serum group. Umbilical cord blood mesenchy-mal stem cells were incubated in 96 - well plates,and cultured for 7 days. After 1,3,5,and 7 days later,CCK8 kit was used to determinate the proliferation effect of mesenchymal stem cells. Meanwhile,statistical analysis was performed to select the best concentration. Results Different concentrations of platelet - rich plasma combined 10% fetal bovine serum resulted in varied proliferation rate from umbilical cord blood mesenchymal stem cells. The findings suggested that the proliferation rate in 500 ~1 000 pg/ ml concentration groups was superior to that of other groups. It was not 5 - day cultured until there was statistically significant(P ﹤ 0. 05). Conclusion Platelet - rich plasma can improve proliferation of the umbilical cord blood mesenchymal stem cells. Furthermore,the activity shows a dose dependent.%目的:初步探讨脐血来源富血小板血浆促进脐血间充质干细胞增殖及增殖最佳浓度。方法:收集足月健康剖宫产新生儿脐带血,采用组织块培养法进行脐血间

  15. Effects of combinatorial treatment with pituitary adenylate cyclase activating peptide and human mesenchymal stem cells on spinal cord tissue repair.

    Directory of Open Access Journals (Sweden)

    Kuan-Min Fang

    Full Text Available The aim of this study is to understand if human mesenchymal stem cells (hMSCs and neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP have synergistic protective effect that promotes functional recovery in rats with severe spinal cord injury (SCI. To evaluate the effect of delayed combinatorial therapy of PACAP and hMSCs on spinal cord tissue repair, we used the immortalized hMSCs that retain their potential of neuronal differentiation under the stimulation of neurogenic factors and possess the properties for the production of several growth factors beneficial for neural cell survival. The results indicated that delayed treatment with PACAP and hMSCs at day 7 post SCI increased the remaining neuronal fibers in the injured spinal cord, leading to better locomotor functional recovery in SCI rats when compared to treatment only with PACAP or hMSCs. Western blotting also showed that the levels of antioxidant enzymes, Mn-superoxide dismutase (MnSOD and peroxiredoxin-1/6 (Prx-1 and Prx-6, were increased at the lesion center 1 week after the delayed treatment with the combinatorial therapy when compared to that observed in the vehicle-treated control. Furthermore, in vitro studies showed that co-culture with hMSCs in the presence of PACAP not only increased a subpopulation of microglia expressing galectin-3, but also enhanced the ability of astrocytes to uptake extracellular glutamate. In summary, our in vivo and in vitro studies reveal that delayed transplantation of hMSCs combined with PACAP provides trophic molecules to promote neuronal cell survival, which also foster beneficial microenvironment for endogenous glia to increase their neuroprotective effect on the repair of injured spinal cord tissue.

  16. Relationship between the telomerase activity and the growth kinetics of the human umbilical cord derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Leila Hosseinzadeh Anvar

    2016-08-01

    Full Text Available Background: Telomerase as an enzyme with reverse transcriptase activity has an essential role in telomere maintenance by adding a telomere repeat sequence to the 3' end of chromosome and is important for regulating of many processes in embryonic development including cell proliferation and differentiation. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs with a self-renewal capacity are cells that can differentiate into various germ layer derivatives including neural cells and cardiomyocytes, and undergo biological changes during long-term cultivation. Hence, the passage number in which the cells expanded seems to be very important for proliferating and differentiating. This study was aimed at investigating the relationship between the telomerase activity and the growth rate of (hUC-MSCs at different passages. Methods: This experimental study was performed in Ardabil University of Medical Sciences, Iran, from March 2014 to December 2014. The umbilical cord samples were obtained from full-term neonate hospitalized in Alavi’s Hospital in Ardabil under sterile conditions. The umbilical vessels were clear off and the small pieces of the umbilical cord were cultured in Dulbecco's modified eagle's medium (DMEM supplemented with 20% fetal bovine serum (FBS. Then, the hUC-MSCs were harvested from passage one to three to calculate the population doubling time (PDT and extract proteins by using CHAPS lysis buffer. Finally, the telomerase activity of the cells at different passages was measured by telomeric repeat amplification protocol (TRAP and qRT-TRAP assays. Results: The hUC-MSCs population doubling time at passage from 1 to 3 were calculated as the average of 54.68±1.92, 55.03±1.71 and 69.41±2.54 hours, respectively, suggesting the higher cell passage number, the more extended PDT. The threshold cycles (CTs for the telomerase activity also showed 30.58±0.51, 27.24±0.74 and 32.13±0.75 for the cell passage from one to three

  17. Manufacturing of Human Umbilical Cord Mesenchymal Stromal Cells on Microcarriers in a Dynamic System for Clinical Use

    Directory of Open Access Journals (Sweden)

    Florian Petry

    2016-01-01

    Full Text Available The great properties of human mesenchymal stromal cells (hMSCs make these cells an important tool in regenerative medicine. Because of the limitations of hMSCs derived from the bone marrow during isolation and expansion, hMSCs derived from the umbilical cord stroma are a great alternative to overcome these issues. For a large expansion of these cells, we performed a process transfer from static culture to a dynamic system. For this reason, a microcarrier selection out of five microcarrier types was made to achieve a suitable growth surface for the cells. The growth characteristics and metabolite consumption and production were used to compare the cells growth in 12-well plate and spinner flask. The goal to determine relevant process parameters to transfer the expansion process into a stirred tank bioreactor was achieved.

  18. Mesenchymal Stem or Stromal Cells from Amnion and Umbilical Cord Tissue and Their Potential for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Heinz Redl

    2012-11-01

    Full Text Available Mesenchymal stem or stromal cells (MSC have proven to offer great promise for cell-based therapies and tissue engineering applications, as these cells are capable of extensive self-renewal and display a multilineage differentiation potential. Furthermore, MSC were shown to exhibit immunomodulatory properties and display supportive functions through parakrine effects. Besides bone marrow (BM, still today the most common source of MSC, these cells were found to be present in a variety of postnatal and extraembryonic tissues and organs as well as in a large variety of fetal tissues. Over the last decade, the human umbilical cord and human amnion have been found to be a rich and valuable source of MSC that is bio-equivalent to BM-MSC. Since these tissues are discarded after birth, the cells are easily accessible without ethical concerns.

  19. Manufacturing of Human Umbilical Cord Mesenchymal Stromal Cells on Microcarriers in a Dynamic System for Clinical Use

    Science.gov (United States)

    Petry, Florian; Smith, J. Robert; Leber, Jasmin; Salzig, Denise; Czermak, Peter; Weiss, Mark L.

    2016-01-01

    The great properties of human mesenchymal stromal cells (hMSCs) make these cells an important tool in regenerative medicine. Because of the limitations of hMSCs derived from the bone marrow during isolation and expansion, hMSCs derived from the umbilical cord stroma are a great alternative to overcome these issues. For a large expansion of these cells, we performed a process transfer from static culture to a dynamic system. For this reason, a microcarrier selection out of five microcarrier types was made to achieve a suitable growth surface for the cells. The growth characteristics and metabolite consumption and production were used to compare the cells growth in 12-well plate and spinner flask. The goal to determine relevant process parameters to transfer the expansion process into a stirred tank bioreactor was achieved. PMID:26977155

  20. Evaluation of Tissue Homogenization to Support the Generation of GMP-Compliant Mesenchymal Stromal Cells from the Umbilical Cord

    Directory of Open Access Journals (Sweden)

    Ryan J. Emnett

    2016-01-01

    Full Text Available Recent studies have demonstrated that the umbilical cord (UC is an excellent source of mesenchymal stromal cells (MSCs. However, current protocols for extracting and culturing UC-MSCs do not meet current good manufacturing practice (cGMP standards, in part due to the use of xenogeneic reagents. To support the development of a cGMP-compliant method, we have examined an enzyme-free isolation method utilizing tissue homogenization (t-H followed by culture in human platelet lysate (PL supplemented media. The yield and viability of cells after t-H were comparable to those obtained after collagenase digestion (Col-D. Importantly, kinetic analysis of cultured cells showed logarithmic growth over 10 tested passages, although the rate of cell division was lower for t-H as compared to Col-D. This slower growth of t-H-derived cells was also reflected in their longer population doubling time. Interestingly, there was no difference in the expression of mesenchymal markers and trilineage differentiation potential of cells generated using either method. Finally, t-H-derived cells had greater clonogenic potential compared to Col-D/FBS but not Col-D/PL and were able to maintain CFU-F capacity through P7. This bench scale study demonstrates the possibility of generating therapeutic doses of good quality UC-MSCs within a reasonable length of time using t-H and PL.

  1. Proteomic validation of multifunctional molecules in mesenchymal stem cells derived from human bone marrow, umbilical cord blood and peripheral blood.

    Directory of Open Access Journals (Sweden)

    Jumi Kim

    Full Text Available Mesenchymal stem cells (MSCs are one of the most attractive therapeutic resources in clinical application owing to their multipotent capability, which means that cells can differentiate into various mesenchymal tissues such as bone, cartilage, fat, tendon, muscle and marrow stroma. Depending on the cellular source, MSCs exhibit different application potentials according to their different in vivo functions, despite similar phenotypic and cytological characteristics. To understand the different molecular conditions that govern the different application or differentiation potential of each MSC according to cellular source, we generated a proteome reference map of MSCs obtained from bone marrow (BM, umbilical cord blood (CB and peripheral blood (PB. We identified approximately 30 differentially regulated (or expressed proteins. Most up-regulated proteins show a cytoskeletal and antioxidant or detoxification role according to their functional involvement. Additionally, these proteins are involved in the increase of cell viability, engraftment and migration in pathological conditions in vivo. In summary, we examined differentially expressed key regulatory factors of MSCs obtained from several cellular sources, demonstrated their differentially expressed proteome profiles and discussed their functional role in specific pathological conditions. With respect to the field of cell therapy, it may be particularly crucial to determine the most suitable cell sources according to target disease.

  2. Neurogenic differentiation of human umbilical cord mesenchymal stem cells on aligned electrospun polypyrrole/polylactide composite nanofibers with electrical stimulation

    Science.gov (United States)

    Zhou, Junfeng; Cheng, Liang; Sun, Xiaodan; Wang, Xiumei; Jin, Shouhong; Li, Junxiang; Wu, Qiong

    2016-09-01

    Adult central nervous system (CNS) tissue has a limited capacity to recover after trauma or disease. Recent medical cell therapy using polymeric biomaterialloaded stem cells with the capability of differentiation to specific neural population has directed focuses toward the recovery of CNS. Fibers that can provide topographical, biochemical and electrical cues would be attractive for directing the differentiation of stem cells into electro-responsive cells such as neuronal cells. Here we report on the fabrication of an electrospun polypyrrole/polylactide composite nanofiber film that direct or determine the fate of mesenchymal stem cells (MSCs), via combination of aligned surface topography, and electrical stimulation (ES). The surface morphology, mechanical properties and electric properties of the film were characterized. Comparing with that on random surface film, expression of neurofilament-lowest and nestin of human umbilical cord mesenchymal stemcells (huMSCs) cultured on film with aligned surface topography and ES were obviously enhanced. These results suggest that aligned topography combining with ES facilitates the neurogenic differentiation of huMSCs and the aligned conductive film can act as a potential nerve scaffold.

  3. Hypoxic chondrogenic differentiation of human cord blood stem cells in structurally-graded polycaprolactone scaffolds

    DEFF Research Database (Denmark)

    Munir, Samir; Søballe, Kjeld; Ulrich-Vinther, Michael

    Background: Articular chondrocytes and bone marrow-derived multipotent mesenchymal stromal cells (MSCs) are the favoured cells for cartilage tissue engineering. Umbilical cord blood has proven an alternative source of MSCs and moreover they may be more potent chondroprogenitor cells than bonemarrow...... MSCs. Purpose / Aim of Study: Multilineage progenitor cells (MLPCs) are clonal cord blood-derived MSCs and may therefore provide a cell source with more reproducible outcomes compared to heterogeneous primary MSC cultures. Materials and Methods: We evaluated the chondrogenic potency of MLPCs...

  4. Electrophysiological functional recovery in a rat model of spinal cord hemisection injury following bone marrow-derived mesenchymal stem cell transplantation under hypothermia

    Institute of Scientific and Technical Information of China (English)

    Dong Wang; Jianjun Zhang

    2012-01-01

    Following successful establishment of a rat model of spinal cord hemisection injury by resecting right spinal cord tissues, bone marrow stem cells were transplanted into the spinal cord lesions via the caudal vein while maintaining rectal temperature at 34 ± 0.5°C for 6 hours (mild hypothermia). Hematoxylin-eosin staining showed that astrocytes gathered around the injury site and formed scars at 4 weeks post-transplantation. Compared with rats transplanted with bone marrow stem cells under normal temperature, rats transplanted with bone marrow stem cells under hypothermia showed increased numbers of proliferating cells (bromodeoxyuridine-positive cells), better recovery of somatosensory-evoked and motor-evoked potentials, greater Basso, Beattie, and Bresnahan locomotor rating scores, and an increased degree of angle in the incline plate test. These findings suggested that hypothermia combined with bone marrow mesenchymal stem cells transplantation effectively promoted electrical conduction and nerve functional repair in a rat model of spinal cord hemisection injury.

  5. Icariin combined with human umbilical cord mesenchymal stem cells significantly improve the impaired kidney function in chronic renal failure.

    Science.gov (United States)

    Li, Wen; Wang, Li; Chu, Xiaoqian; Cui, Huantian; Bian, Yuhong

    2017-01-23

    At present, the main therapy for chronic renal failure (CRF) is dialysis and renal transplantation, but neither obtains satisfactory results. Human umbilical cord mesenchymal stem cells (huMSCs) are isolated from the fetal umbilical cord which has a high self-renewal and multi-directional differentiation potential. Icariin (ICA), a kidney-tonifying Chinese Medicine can enhance the multipotency of huMSCs. Therefore, this work seeks to employ the use of ICA-treated huMSCs for the treatment of chronic renal failure. Blood urea nitrogen and creatinine (Cr) analyses showed amelioration of functional parameters in ICA-treated huMSCs for the treatment of CRF rats at 3, 7, and 14 days after transplantation. ICA-treated huMSCs can obviously increase the number of cells in injured renal tissues at 3, 7, and 14 days after transplantation by optical molecular imaging system. Hematoxylin-eosin staining demonstrated that ICA-treated huMSCs reduced the levels of fibrosis in CRF rats at 14 days after transplantation. Superoxide dismutase and Malondialdehyde analyses showed that ICA-treated huMSCs reduced the oxidative damage in CRF rats. Moreover, transplantation with ICA-treated huMSCs decreased inflammatory responses, promoted the expression of growth factors, and protected injured renal tissues. Taken together, our findings suggest that ICA-treated huMSCs could improve the kidney function in CRF rats.

  6. Mesenchymal stem cell isolation from human umbilical cord tissue: understanding and minimizing variability in cell yield for process optimization.

    Science.gov (United States)

    Iftimia-Mander, Andreea; Hourd, Paul; Dainty, Roger; Thomas, Robert J

    2013-10-01

    Human tissue banks are a potential source of cellular material for the nascent cell-based therapy industry; umbilical cord (UC) tissue is increasingly privately banked in such facilities as a source of mesenchymal stem cells for future therapeutic use. However, early handling of UC tissue is relatively uncontrolled due to the clinical demands of the birth environment and subsequent transport logistics. It is therefore necessary to develop extraction methods that are robust to real-world operating conditions, rather than idealized operation. Cell yield, growth, and differentiation potential of UC tissue extracted cells was analyzed from tissue processed by explant and enzymatic digestion. Variability of cell yield extracted with the digestion method was significantly greater than with the explant method. This was primarily due to location within the cord tissue (higher yield from placental end) and time delay before tissue processing (substantially reduced yield with time). In contrast, extraction of cells by explant culture was more robust to these processing variables. All cells isolated showed comparable proliferative and differentiation functionality. In conclusion, given the challenge of tightly controlled operating conditions associated with isolation and shipping of UC tissue to banking facilities, explant extraction of cells offers a more robust and lower-variability extraction method than enzymatic digestion.

  7. Hypoxia-mimetic agents inhibit proliferation and alter the morphology of human umbilical cord-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Zeng Hui-Lan

    2011-08-01

    Full Text Available Abstract Background The therapeutic efficacy of human mesenchymal stem cells (hMSCs for the treatment of hypoxic-ischemic diseases is closely related to level of hypoxia in the damaged tissues. To elucidate the potential therapeutic applications and limitations of hMSCs derived from human umbilical cords, the effects of hypoxia on the morphology and proliferation of hMSCs were analyzed. Results After treatment with DFO and CoCl2, hMSCs were elongated, and adjacent cells were no longer in close contact. In addition, vacuole-like structures were observed within the cytoplasm; the rough endoplasmic reticulum expanded, and expanded ridges were observed in mitochondria. In addition, DFO and CoCl2 treatments for 48 h significantly inhibited hMSCs proliferation in a concentration-dependent manner (P Conclusions The hypoxia-mimetic agents, DFO and CoCl2, alter umbilical cord-derived hMSCs morphology and inhibit their proliferation through influencing the cell cycle.

  8. Longitudinal tracking of triple labeled umbilical cord derived mesenchymal stromal cells in a mouse model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Martina Bruna Violatto

    2015-07-01

    Full Text Available The translational potential of cell therapy to humans requires a deep knowledge of the interaction between transplanted cells and host tissues. In this study, we evaluate the behavior of umbilical cord mesenchymal stromal cells (UC-MSCs, labeled with fluorescent nanoparticles, transplanted in healthy or early symptomatic transgenic SOD1G93A mice (a murine model of Amyotrophic Lateral Sclerosis. The double labeling of cells with nanoparticles and Hoechst-33258 enabled their tracking for a long time in both cells and tissues. Whole-body distribution of UC-MSCs was performed by in-vivo and ex-vivo analyses 1, 7, 21 days after single intravenous or intracerebroventricular administration. By intravenous administration cells were sequestered by the lungs and rapidly cleared by the liver. No difference in biodistribution was found among the two groups. On the other hand, UC-MSCs transplanted in lateral ventricles remained on the choroid plexus for the whole duration of the study even if decreasing in number. Few cells were found in the spinal cord of SOD1G93A mice exclusively. No migration in brain parenchyma was observed. These results suggest that the direct implantation in brain ventricles allows a prolonged permanence of cells close to the damaged areas and makes this method of tracking reliable for future studies of efficacy.

  9. 经血源子宫内膜干细胞复合3D打印PLGA支架体外培养的相容性研究%Cellular Compatibility of Menstrual Blood-derived Mesenchymal Stem Cells in Three-dimensional Printing PLGA Scaffolds

    Institute of Scientific and Technical Information of China (English)

    许世兵; 单乐天; 金红婷; 王萍儿; 童培建; 肖鲁伟

    2015-01-01

    Objective] To investigate the feasibility of using three-dimensional(3D) printing PLGA loaded with menstrual blood-derived mesenchymal stem cells(MenSCs) as scaffolds for bone cartilage tissue engineering. [Methods] Three-dimensional printing PLGA was preprocessed. The five generation MenSCs were utilized. use invert microscope to observe cells biological property. According to 1.0 ×106/mL cells seeded onto PLGA scaffold composite culture, invert microscope, Mico-CT, scanning electron microscope and histopathology were observed.[Results] MSCs grew well, cells were plated to grow, fusiform or spindle row, thin cytoplasmic and nuclear circle centered, with fibroblast morphology. Cells to the fifth generation had long spindle cell monolayer and swirling arrangement. PLGA scaffolds exhibited microscopic interconnected porous structure, loose structure, large pores and mutual traffic, thinner hole wall. MenSCs on PLGA scaffold grew well, mainly in the scaffolds surface and inside growth, the scaffolds aperture had cell matrix organization connection.[Conclusion] MenSCs are ideal seeding cells for bone cartilage tissue engineering. And the PLGA scaffolds by three-dimensional printing with MenSCs may be in vitro construction as bone cartilage formation.%[目的]通过经血源子宫内膜干细胞(menstrual blood-derived mesenchymal stem cells, MenSCs)与3D打印PLGA支架材料的复合培养,探讨构建组织工程化骨软骨的可行性。[方法]预处理3D打印PLGA支架,取第5代MenSCs,倒置显微镜下观察细胞生物学特性,按1.0×106/mL的密度接种到PLGA支架材料上复合培养,通过倒置显微镜、Mico-CT、扫描电镜和组织病理学进行观察,并借此判断MenSCs与3D打印PLGA支架材料复合体外培养的融合性。[结果] MenSCs生长良好,细胞平铺生长,呈梭形或纺锤形,胞质薄,核圆居中,具有成纤维细胞形态。细胞传至第5代,为长梭形细胞单层,呈漩涡状排列

  10. Comparison of human mesenchymal stromal cells from four neonatal tissues: Amniotic membrane, chorionic membrane, placental decidua and umbilical cord.

    Science.gov (United States)

    Araújo, Anelise Bergmann; Salton, Gabrielle Dias; Furlan, Juliana Monteiro; Schneider, Natália; Angeli, Melissa Helena; Laureano, Álvaro Macedo; Silla, Lúcia; Passos, Eduardo Pandolfi; Paz, Ana Helena

    2017-05-01

    Mesenchymal stromal cells (MSCs) are being investigated as a potential alternative for cellular therapy. This study was designed to compare the biological characteristics of MSCs isolated from amniotic membrane (A-MSCs), chorionic membrane (C-MSCs), placental decidua (D-MSCs) and umbilical cord (UC-MSCs) to ascertain whether any one of these sources is superior to the others for cellular therapy purposes. MSCs were isolated from amniotic membrane, chorionic membrane, umbilical cord and placental decidua. Immunophenotype, differentiation ability, cell size, cell complexity, polarity index and growth kinetics of MSCs isolated from these four sources were analyzed. MSCs were successfully isolated from all four sources. Surface marker profile and differentiation ability were consistent with human MSCs. C-MSCs in suspension were the smallest cells, whereas UC-MSCs presented the greatest length and least width. A-MSCs had the lowest polarity index and UC-MSCs, as more elongated cells, the highest. C-MSCs, D-MSCs and UC-MSCs exhibited similar growth capacity until passage 8 (P8); C-MSCs presented better lifespan, whereas insignificant proliferation was observed in A-MSCs. Neonatal and maternal tissues can serve as sources of multipotent stem cells. Some characteristics of MSCs obtained from four neonatal tissues were compared and differences were observed. Amniotic membrane was the least useful source of MSCs, whereas chorionic membrane and umbilical cord were considered good options for future use in cell therapy because of the known advantages of immature cells. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  11. Encapsulation of factor IX-engineered mesenchymal stem cells in fibrinogen-alginate microcapsules enhances their viability and transgene secretion.

    Science.gov (United States)

    Sayyar, Bahareh; Dodd, Megan; Wen, Jianping; Ma, Shirley; Marquez-Curtis, Leah; Janowska-Wieczorek, Anna; Hortelano, Gonzalo

    2012-01-01

    Cell microencapsulation holds significant promise as a strategy for cellular therapies; however, inadequate survival and functionality of the enclosed cells limit its application in hemophilia treatment. Here, we evaluated the use of alginate-based microcapsules to enhance the viability and transgene secretion of human cord blood-derived mesenchymal stem cells in three-dimensional cultures. Given the positive effects of extracellular matrix molecules on mesenchymal stem cell growth, we tested whether fibrinogen-supplemented alginate microcapsules can improve the efficiency of encapsulated factor IX-engineered mesenchymal stem cells as a treatment of hemophilia B. We found that fibrinogen-supplemented alginate microcapsules (a) significantly enhanced the viability and proliferation of factor IX-engineered mesenchymal stem cells and (b) increased factor IX secretion by mesenchymal stem cells compared to mesenchymal stem cells in nonsupplemented microcapsules. Moreover, we observed the osteogenic, but not chondrogenic or adipogenic, differentiation capability of factor IX-engineered cord blood mesenchymal stem cells and their efficient factor IX secretion while encapsulated in fibrinogen-supplemented alginate microcapsules. Thus, the use of engineered mesenchymal stem cells encapsulated in fibrinogen-modified microcapsules may have potential application in the treatment of hemophilia or other protein deficiency diseases.

  12. Human umbilical cord mesenchymal stem cells derived from Wharton's jelly differentiate into insulin-producing cells in vitro

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-wu; LIN Li-min; HE Hong-yan; YOU Fang; LI Wei-zhong; HUANG Tian-hua; MA Gui-xia; MA Lian

    2011-01-01

    Background Islet transplantation is an effective way of reversing type Ⅰ diabetes. However, islet transplantation is hampered by issues such as immune rejection and shortage of donor islets. Mesenchymal stem cells can differentiate into insulin-producing cells. However, the potential of human umbilical cord mesenchymal stem cells (huMSCs) to become insulin-producing cells remains undetermined.Methods We isolated and induced cultured huMSCs under islet cell culture conditions. The response of huMSCs were monitored under an inverted phase contrast microscope. Immunocytochemical and immunofluorescence staining methods were used to measure insulin and glucagon protein levels. Reverse transcription-polymerase chain reaction (RT-PCR) was performed to detect gene expression of human insulin and PDX-1. Dithizone-staining was employed to determine the zinc contents in huMSCs. Insulin secretion was also evaluated through radioimmunoassay.Results HuMSCs induced by nicotinamide and β-mercaptoethanol or by neurogenic differentiation 1 gene (NeuroD1)transfection gradually changed morphology from typically elongated fibroblast-shaped cells to round cells. They had a tendency to form clusters. Immunocytochemical studies showed positive expression of human insulin and glucagon in these cells in response to induction. RT-PCR experiments found that huMSCs expressed insulin and PDX-1 genes following induction and dithizone stained the cytoplasm of huMSCs a brownish red color after induction. Insulin secretion in induced huMSCs was significantly elevated compared with the control group (t=6.183, P<0.05).Conclusions HuMSCs are able to differentiate into insulin-producing cells in vitro. The potential use of huMSCs in βcell replacement therapy of diabetes needs to be studied further.

  13. Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions

    Directory of Open Access Journals (Sweden)

    Zhang Henggui

    2011-06-01

    Full Text Available Abstract Background It is of growing interest to develop novel approaches to initiate differentiation of mesenchymal stem cells (MSCs into cardiomyocytes. The purpose of this investigation was to determine if Sphingosine-1-phosphate (S1P, a native circulating bioactive lipid metabolite, plays a role in differentiation of human umbilical cord mesenchymal stem cells (HUMSCs into cardiomyocytes. We also developed an engineered cell sheet from these HUMSCs derived cardiomyocytes by using a temperature-responsive polymer, poly(N-isopropylacrylamide (PIPAAm cell sheet technology. Methods Cardiomyogenic differentiation of HUMSCs was performed by culturing these cells with either designated cardiomyocytes conditioned medium (CMCM alone, or with 1 μM S1P; or DMEM with 10% FBS + 1 μM S1P. Cardiomyogenic differentiation was determined by immunocytochemical analysis of expression of cardiomyocyte markers and patch clamping recording of the action potential. Results A cardiomyocyte-like morphology and the expression of α-actinin and myosin heavy chain (MHC proteins can be observed in both CMCM culturing or CMCM+S1P culturing groups after 5 days' culturing, however, only the cells in CMCM+S1P culture condition present cardiomyocyte-like action potential and voltage gated currents. A new approach was used to form PIPAAm based temperature-responsive culture surfaces and this successfully produced cell sheets from HUMSCs derived cardiomyocytes. Conclusions This study for the first time demonstrates that S1P potentiates differentiation of HUMSCs towards functional cardiomyocytes under the designated culture conditions. Our engineered cell sheets may provide a potential for clinically applicable myocardial tissues should promote cardiac tissue engineering research.

  14. Collagen-Coated Polytetrafluoroethane Membrane Inserts Enhances Chondrogenic Differentiation of Human Cord Blood Multi-Lineage Progenitor Cells

    DEFF Research Database (Denmark)

    Munir, Samir; Søballe, Kjeld; Ulrich-Vinther, Michael

    Background: Articular chondrocytes and bone marrow-derived multipotent mesenchymal stromal cells (MSCs) are the favoured cells for cartilage tissue engineering. Umbilical cord blood has proven an alternative source of MSCs and moreover they may be more potent chondroprogenitor cells than bonemarrow...... MSCs. Purpose / Aim of Study: Multilineage progenitor cells (MLPCs) are clonal cord blood-derived MSCs and may therefore provide a cell source with more reproducible outcomes compared to heterogeneous primary MSC cultures. Materials and Methods: We evaluated the chondrogenic potency of MLPCs...

  15. Mesenchymal stem cells from the human umbilical cord ameliorate fulminant hepatic failure and increase survival in mice

    Institute of Scientific and Technical Information of China (English)

    Jin-Feng Yang; Hong-Cui Cao; Qiao-Ling Pan; Jiong Yu; Jun Li; Lan-Juan Li

    2015-01-01

    BACKGROUND:Cell therapy has been promising for various diseases. We investigated whether transplantation of human umbilical cord mesenchymal stem cells (hUCMSCs) has any therapeutic effects on D-galactosamine/lipopolysaccharide (GalN/LPS)-induced fulminant hepatic failure in mice. METHODS:hUCMSCs isolated from human umbilical cord were cultured and transplanted via the tail vein into severe combined immune deifciency mice with GalN/LPS-induced fulminant hepatic failure. After transplantation, the localiza-tion and differentiation of hUCMSCs in the injured livers were investigated by immunohistochemical and genetic analy-ses. The recovery of the injured livers was evaluated histologi-cally. The survival rate of experimental animals was analyzed by the Kaplan-Meier method and log-rank test. RESULTS:hUCMSCs expressed high levels of CD29, CD73, CD13, CD105 and CD90, but did not express CD31, CD79b, CD133, CD34, and CD45. Cultured hUCMSCs displayed adip-ogenic and osteogenic differentiation potential. Hematoxylin and eosin staining revealed that transplantation of hUCMSCs reduced hepatic necrosis and promoted liver regeneration. Transplantation of hUCMSCs prolonged the survival rate of mice with fulminant hepatic failure. Polymerase chain reaction for humanalu sequences showed the presence of human cells in mouse livers. Positive staining for human albumin, human alpha-fetoprotein and human cytokeratin 18 suggested the for-mation of hUCMSCs-derived hepatocyte-like cellsin vivo. CONCLUSIONS:hUCMSC was a potential candidate for stem cell based therapies. After transplantation, hUCMSCs partially repaired hepatic damage induced by GalN/LPS in mice. hUC-MSCs engrafted into the injured liver and differentiated into hepatocyte-like cells.

  16. The effect of mesenchymal stem cell transplantation on the recovery of bladder and hindlimb function after spinal cord contusion in rats

    Directory of Open Access Journals (Sweden)

    Park Jeong-Soo

    2010-09-01

    Full Text Available Abstract Background Mesenchymal stem cells are widely used for transplantation into the injured spinal cord in vivo model and for safety, many human clinical trials are continuing to promote improvements of motor and sensory functions after spinal cord injury. Yet the exact mechanism for these improvements remains undefined. Neurogenic bladder following spinal cord injury is the main problem decreasing the quality of life for patients with spinal cord injury, but there are no clear data using stem cell transplantation for the improvement of neurogenic bladder for in vivo studies and the clinical setting. The purpose of this study was to delineate the effect of human mesenchymal stem cell (hMSCs transplantation on the restoration of neurogenic bladder and impaired hindlimb function after spinal cord contusion of rats and the relationship between neurotrophic factors such as brain derived neurotrophic factor (BDNF and neurotrophin-3 (NT-3 and bladder and hindlimb functions. Results Modified moderate contusion injury were performed on the thoracic spinal cord of Sprague-Dawley rats using MASCIS impactor and hMSCs, human fibroblasts or phosphate-buffered saline were transplanted into injured spinal cord 9 days after injury for hMSC and two control groups respectively. Ladder test showed more rapid restoration of hindlimb function in hMSC group than in control group, but Basso, Beattie, and Bresnahan score and coupling score were not different significantly among hMSC and two control groups. Neurogenic bladder was not improved in either group. ED1 positive macrophages were significantly reduced in hMSC group than in two control groups, but ELISA and RT-PCR studies revealed BDNF and NT-3 levels in spinal cord and bladder were not different among hMSC and two control groups regardless the experimental duration. Conclusion hMSC transplantation was effective in reducing inflammatory reaction after spinal cord contusion of rats but not sufficient to

  17. Mesenchymal stem cells from human umbilical cord express preferentially secreted factors related to neuroprotection, neurogenesis, and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Jui-Yu Hsieh

    Full Text Available Mesenchymal stem cells (MSCs are promising tools for the treatment of diseases such as infarcted myocardia and strokes because of their ability to promote endogenous angiogenesis and neurogenesis via a variety of secreted factors. MSCs found in the Wharton's jelly of the human umbilical cord are easily obtained and are capable of transplantation without rejection. We isolated MSCs from Wharton's jelly and bone marrow (WJ-MSCs and BM-MSCs, respectively and compared their secretomes. It was found that WJ-MSCs expressed more genes, especially secreted factors, involved in angiogenesis and neurogenesis. Functional validation showed that WJ-MSCs induced better neural differentiation and neural cell migration via a paracrine mechanism. Moreover, WJ-MSCs afforded better neuroprotection efficacy because they preferentially enhanced neuronal growth and reduced cell apoptotic death of primary cortical cells in an oxygen-glucose deprivation (OGD culture model that mimics the acute ischemic stroke situation in humans. In terms of angiogenesis, WJ-MSCs induced better microvasculature formation and cell migration on co-cultured endothelial cells. Our results suggest that WJ-MSC, because of a unique secretome, is a better MSC source to promote in vivo neurorestoration and endothelium repair. This study provides a basis for the development of cell-based therapy and carrying out of follow-up mechanistic studies related to MSC biology.

  18. Comparative Analysis of Human Mesenchymal Stem Cells from Umbilical Cord, Dental Pulp, and Menstrual Blood as Sources for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Huaijuan Ren

    2016-01-01

    Full Text Available Although mesenchymal stem cells (MSCs based therapy has been considered as a promising tool for tissue repair and regeneration, the optimal cell source remains unknown. Umbilical cord (UC, dental pulp (DP, and menstrual blood (MB are easily accessible sources, which make them attractive candidates for MSCs. The goal of this study was to compare the biological characteristics, including morphology, proliferation, antiapoptosis, multilineage differentiation capacity, and immunophenotype of UC-, DP-, and MB-MSCs in order to provide a theoretical basis for clinical selection and application of these cells. As a result, all UC-, DP-, and MB-MSCs have self-renewal capacity and multipotentiality. However, the UC-MSCs seemed to have higher cell proliferation ability, while DP-MSCs may have significant advantages for osteogenic differentiation, lower cell apoptosis, and senescence. These differences may be associated with the different expression level of cytokines, including vascular endothelial growth factor, fibroblast growth factor, keratinocyte growth factor, and hepatocyte growth factor in each of the MSCs. Comprehensively, our results suggest DP-MSCs may be a desired source for clinical applications of cell therapy.

  19. Optimization of primary culture condition for mesenchymal stem cells derived from umbilical cord blood with factorial design.

    Science.gov (United States)

    Fan, Xiubo; Liu, Tianqing; Liu, Yang; Ma, Xuehu; Cui, Zhanfeng

    2009-01-01

    Mesenchymal stem cells (MSCs) can not only support the expansion of hematopoietic stem cells in vitro, but also alleviate complications and accelerate recovery of hematopoiesis during hematopoietic stem cell transplantation. However, it proved challenging to culture MSCs from umbilical cord blood (UCB) with a success rate of 20-30%. Many cell culture parameters contribute to this outcome and hence optimization of culture conditions is critical to increase the probability of success. In this work, fractional factorial design was applied to study the effect of cell inoculated density, combination and dose of cytokines, and presence of serum and stromal cells. The cultured UCB-MSC-like cells were characterized by flow cytometry and their multilineage differentiation potentials were tested. The optimal protocol was identified achieving above 90% successful outcome: 2 x 10(6) cells/mL mononuclear cells inoculated in Iscove's modified Dulbecco's medium supplied with 10% FBS, 15 ng/mL IL-3, and 5 ng/mL Granulocyte-macrophage colony-stimulating factor (GM-CSF). Moreover, the UCB-MSC-like cells expressed MSC surface markers of CD13, CD29, CD105, CD166, and CD44 positively, and CD34, CD45, and human leukocyte antigens-DR (HLA-DR) negatively. Meanwhile, these cells could differentiate into osteoblasts, chondrocytes, and adipocytes similarly to MSCs derived from bone marrow. In conclusion, we have developed an efficient protocol for the primary culture of UCB-MSCs by adding suitable cytokines into the culture system.

  20. Trimetazidine Protects Umbilical Cord Mesenchymal Stem Cells Against Hypoxia and Serum Deprivation Induced Apoptosis by Activation of Akt

    Directory of Open Access Journals (Sweden)

    Xuhe Gong

    2014-12-01

    Full Text Available Background: Mesenchymal stem cell (MSC transplantation is a promising therapy for cardiac repair. However, the efficacy is limited by the poor viability of MSCs in the infarcted heart. Recent findings have implicated that trimetazidine (TMZ enhanced the survival of the stem cells under various conditions. However, as the stem cells in these studies were animal-derived, little information is available about the effects of TMZ on human MSCs. Herein, we propose that TMZ may protect human MSCs against apoptosis induced by Hypoxia/Serum deprivation (H/SD. Methods: Human umbilical cord MSCs (UC-MSCs from Wharton's jelly were pretreated with 10µM TMZ of H/SD with or without the Akt inhibitor LY294002. The morphological changes were assessed using Hoechst 33342. Apoptosis was evaluated via Annexin V/PI staining; and apoptosis-related proteins were detected using Western-blot. Protein chip technology was used to screen for differences between the cell supernatants. Results: TMZ had a significant protective effect against H/SD-induced apoptosis, accompanied by an increase in Bcl-2 and p-Akt. The TMZ-mediated anti-apoptotic effect on MSCs could be attenuated by treatment with LY294002. Moreover, protein chip assays showed that TMZ treatment increased the paracrine functions of MSCs. Conclusion: Trimetazidine protects human UC-MSCs from H/SD-induced apoptosis via the Akt pathway and may therefore be a potentially useful therapeutic adjunct for transplanting MSCs into damaged heart after myocardial infarction.

  1. Proteome analysis during chondrocyte differentiation in a new chondrogenesis model using human umbilical cord stroma mesenchymal stem cells.

    Science.gov (United States)

    De la Fuente, Alexandre; Mateos, Jesús; Lesende-Rodríguez, Iván; Calamia, Valentina; Fuentes-Boquete, Isaac; de Toro, Francisco J; Arufe, Maria C; Blanco, Francisco J

    2012-02-01

    Umbilical cord stroma mesenchymal stem cells were differentiated toward chondrocyte-like cells using a new in vitro model that consists of the random formation of spheroids in a medium supplemented with fetal bovine serum on a nonadherent surface. The medium was changed after 2 days to one specific for the induction of chondrocyte differentiation. We assessed this model using reverse transcriptase-polymerase chain reaction, flow cytometry, immunohistochemistry, and secretome analyses. The purpose of this study was to determine which proteins were differentially expressed during chondrogenesis. Differential gel electrophoresis analysis was performed, followed by matrix-assisted laser desorption/ionization mass spectrometry protein identification. A total of 97 spots were modulated during the chondrogenesis process, 54 of these spots were identified as 39 different proteins and 15 were isoforms. Of the 39 different proteins identified 15 were down-regulated, 21 were up-regulated, and 3 were up- and down-regulated during the chondrogenesis process. Using Pathway Studio 7.0 software, our results showed that the major cell functions modulated during chondrogenesis were cellular differentiation, proliferation, and migration. Five proteins involved in cartilage extracellular matrix metabolism found during the differential gel electrophoresis study were confirmed using Western blot. The results indicate that our in vitro chondrogenesis model is an efficient and rapid technique for obtaining cells similar to chondrocytes that express proteins characteristic of the cartilage extracellular matrix. These chondrocyte-like cells could prove useful for future cell therapy treatment of cartilage pathologies.

  2. Proteome Analysis During Chondrocyte Differentiation in a New Chondrogenesis Model Using Human Umbilical Cord Stroma Mesenchymal Stem Cells*

    Science.gov (United States)

    De la Fuente, Alexandre; Mateos, Jesús; Lesende-Rodríguez, Iván; Calamia, Valentina; Fuentes-Boquete, Isaac; de Toro, Francisco J.; Arufe, Maria C.; Blanco, Francisco J.

    2012-01-01

    Umbilical cord stroma mesenchymal stem cells were differentiated toward chondrocyte-like cells using a new in vitro model that consists of the random formation of spheroids in a medium supplemented with fetal bovine serum on a nonadherent surface. The medium was changed after 2 days to one specific for the induction of chondrocyte differentiation. We assessed this model using reverse transcriptase-polymerase chain reaction, flow cytometry, immunohistochemistry, and secretome analyses. The purpose of this study was to determine which proteins were differentially expressed during chondrogenesis. Differential gel electrophoresis analysis was performed, followed by matrix-assisted laser desorption/ionization mass spectrometry protein identification. A total of 97 spots were modulated during the chondrogenesis process, 54 of these spots were identified as 39 different proteins and 15 were isoforms. Of the 39 different proteins identified 15 were down-regulated, 21 were up-regulated, and 3 were up- and down-regulated during the chondrogenesis process. Using Pathway Studio 7.0 software, our results showed that the major cell functions modulated during chondrogenesis were cellular differentiation, proliferation, and migration. Five proteins involved in cartilage extracellular matrix metabolism found during the differential gel electrophoresis study were confirmed using Western blot. The results indicate that our in vitro chondrogenesis model is an efficient and rapid technique for obtaining cells similar to chondrocytes that express proteins characteristic of the cartilage extracellular matrix. These chondrocyte-like cells could prove useful for future cell therapy treatment of cartilage pathologies. PMID:22008206

  3. Dual Differentiation-Exogenous Mesenchymal Stem Cell Therapy for Traumatic Spinal Cord Injury Repair in a Murine Hemisection Model

    Directory of Open Access Journals (Sweden)

    Hai Liu

    2013-01-01

    Full Text Available Mesenchymal stem cell (MSC transplantation has shown tremendous promise as a therapy for repair of various tissues of the musculoskeletal, vascular, and central nervous systems. Based on this success, recent research in this field has focused on complex tissue damage, such as that which occurs from traumatic spinal cord injury (TSCI. As the critical event for successful exogenous, MSC therapy is their migration to the injury site, which allows for their anti-inflammatory and morphogenic effects on fracture healing, neuronal regeneration, and functional recover. Thus, there is a need for a cost-effective in vivo model that can faithfully recapitulate the salient features of the injury, therapy, and recovery. To address this, we review the recent advances in exogenous MSC therapy for TSCI and traumatic vertebral fracture repair and the existing challenges regarding their translational applications. We also describe a novel murine model designed to take advantage of multidisciplinary collaborations between musculoskeletal and neuroscience researchers, which is needed to establish an efficacious MSC therapy for TSCI.

  4. Wound Dressing Model of Human Umbilical Cord Mesenchymal Stem Cells-Alginates Complex Promotes Skin Wound Healing by Paracrine Signaling

    Directory of Open Access Journals (Sweden)

    Song Wang

    2016-01-01

    Full Text Available Purpose. To probe growth characteristics of human umbilical cord mesenchymal stem cells (hUCMSCs cultured with alginate gel scaffolds, and to explore feasibility of wound dressing model of hUCMSCs-alginates compound. Methods. hUCMSCs were isolated, cultured, and identified in vitro. Then cells were cultivated in 100 mM calcium alginate gel, and the capacity of proliferation and migration and the expression of vascular endothelial growth factors (VEGF were investigated regularly. Wound dressing model of hUCMSCs-alginate gel mix was transplanted into Balb/c mice skin defects. Wound healing rate and immunohistochemistry were examined. Results. hUCMSCs grew well but with little migration ability in the alginate gel. Compared with control group, a significantly larger cell number and more VEGF expression were shown in the gel group after culturing for 3–6 days (P < 0.05. In addition, a faster skin wound healing rate with more neovascularization was observed in the hUCMSCs-alginate gel group than in control groups at 15th day after surgery (P < 0.05. Conclusion. hUCMSCs can proliferate well and express massive VEGF in calcium alginate gel porous scaffolds. Wound dressing model of hUCMSCs-alginate gel mix can promote wound healing through paracrine signaling.

  5. Umbilical cord-derived mesenchymal stem cell transplantation combined with hyperbaric oxygen treatment for repair of traumatic brain injury

    Institute of Scientific and Technical Information of China (English)

    Hai-xiao Zhou; Zhi-gang Liu; Xiao-jiao Liu; Qian-xue Chen

    2016-01-01

    Transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for repair of traumatic brain injury has been used in the clinic. Hyperbaric oxygen (HBO) treatment has long been widely used as an adjunctive therapy for treating traumatic brain injury. UC-MSC transplantation combined with HBO treatment is expected to yield better therapeutic effects on traumatic brain injury. In this study, we established rat models of severe traumatic brain injury by pressurized lfuid (2.5–3.0 atm impact force). The injured rats were then administered UC-MSC transplantationvia the tail vein in combination with HBO treatment. Compared with monotherapy, aquaporin 4 expression decreased in the injured rat brain, but growth-associated protein-43 expression, calaxon-like structures, and CM-Dil-positive cell number increased. Following combination therapy, however, rat cognitive and neurological function signiifcantly improved. UC-MSC transplantation combined with HBO therapyfor repair of traumatic brain injury shows better therapeutic effects than monotherapy and signiifcantly promotes recovery of neurological functions.

  6. Activation of the Extracellular Signal-Regulated Kinase Signaling Is Critical for Human Umbilical Cord Mesenchymal Stem Cell Osteogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Chen-Shuang Li

    2016-01-01

    Full Text Available Human umbilical cord mesenchymal stem cells (hUCMSCs are recognized as candidate progenitor cells for bone regeneration. However, the mechanism of hUCMSC osteogenesis remains unclear. In this study, we revealed that mitogen-activated protein kinases (MAPKs signaling is involved in hUCMSC osteogenic differentiation in vitro. Particularly, the activation of c-Jun N-terminal kinases (JNK and p38 signaling pathways maintained a consistent level in hUCMSCs through the entire 21-day osteogenic differentiation period. At the same time, the activation of extracellular signal-regulated kinases (ERK signaling significantly increased from day 5, peaked at day 9, and declined thereafter. Moreover, gene profiling of osteogenic markers, alkaline phosphatase (ALP activity measurement, and alizarin red staining demonstrated that the application of U0126, a specific inhibitor for ERK activation, completely prohibited hUCMSC osteogenic differentiation. However, when U0126 was removed from the culture at day 9, ERK activation and osteogenic differentiation of hUCMSCs were partially recovered. Together, these findings demonstrate that the activation of ERK signaling is essential for hUCMSC osteogenic differentiation, which points out the significance of ERK signaling pathway to regulate the osteogenic differentiation of hUCMSCs as an alternative cell source for bone tissue engineering.

  7. Proteomic Analysis of the Peri-Infarct Area after Human Umbilical Cord Mesenchymal Stem Cell Transplantation in Experimental Stroke

    Science.gov (United States)

    He, Dongsheng; Zhang, Zhuo; Lao, Jiamin; Meng, Hailan; Han, Lijuan; Chen, Fan; Ye, Dan; Zhang, He; Xu, Yun

    2016-01-01

    Among various therapeutic approaches for stroke, treatment with human umbilical cord mesenchymal stem cells (hUC-MSCs) has acquired some promising results. However, the underlying mechanisms remain unclear. We analyzed the protein expression spectrum of the cortical peri-infarction region after ischemic stroke followed by treatment with hUC-MSCs, and found 16 proteins expressed differentially between groups treated with or without hUC-MSCs. These proteins were further determined by Gene Ontology term analysis and network with CD200-CD200R1, CCL21-CXCR3 and transcription factors. Three of them: Abca13, Grb2 and Ptgds were verified by qPCR and ELISA. We found the protein level of Abca13 and the mRNA level of Grb2 consistent with results from the proteomic analysis. Finally, the function of these proteins was described and the potential proteins that deserve to be further studied was also highlighted. Our data may provide possible underlying mechanisms for the treatment of stroke using hUC-MSCs. PMID:27699085

  8. In vitro induction and differentiation of umbilical cord mesenchymal stem cells into neuron-like cells by alltrans retinoic acid

    Institute of Scientific and Technical Information of China (English)

    Wei; Jin; Yao-Peng; Xu; An-Huai; Yang; Yi-Qiao; Xing

    2015-01-01

    AIM: To determine the optimal concentration for inducing the differentiation of human umbilical cord-derived mesenchymal stem cells(h UC-MSCs) into neuron-like cells, although it is understood that all-trans retinoic acid(ATRA) regulates cell proliferation in the nervous system by modulating the balance between mitosis and apoptosis.METHODS: The abilities of ATRA to promote apoptosis as well as neural differentiation were assessed in cultured h UC-MSCs by morphological observation, MTT assay, annexin V-FITC/PI flow cytometry and immunocytochemistry.RESULTS: The data showed that low concentrations of ATRA(0.5 μmol, 0.25 μmol) had no effect on the number of cells. However, treatment with 1.0 μmol or 2.0 μmol ATRA induced a 24.16% and 52.67% reduction in cell number, respectively, compared with vehicle-treated cultures. Further, 4.0 μmol ATRA had a potent effect on cell number, with almost no adherent cells recovered after 24 h. We further showed that 0.5 μmol ATRA caused these cells to express characteristic markers of neuronal progenitor cells.CONCLUSION: Taken together, we conclude that ATRA has a dose-dependent influence on the neural differentiation and apoptosis of h UC-MSCs. These findings have implications on the use of ATRA-differentiated h UC-MSCs for the study of neural degeneration diseases.

  9. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury.

    Science.gov (United States)

    Caron, Ilaria; Rossi, Filippo; Papa, Simonetta; Aloe, Rossella; Sculco, Marika; Mauri, Emanuele; Sacchetti, Alessandro; Erba, Eugenio; Panini, Nicolò; Parazzi, Valentina; Barilani, Mario; Forloni, Gianluigi; Perale, Giuseppe; Lazzari, Lorenza; Veglianese, Pietro

    2016-01-01

    Stem cell therapy with human mesenchymal stem cells (hMSCs) represents a promising strategy in spinal cord injury (SCI). However, both systemic and parenchymal hMSCs administrations show significant drawbacks as a limited number and viability of stem cells in situ. Biomaterials able to encapsulate and sustain hMSCs represent a viable approach to overcome these limitations potentially improving the stem cell therapy. In this study, we evaluate a new agarose/carbomer based hydrogel which combines different strategies to optimize hMSCs viability, density and delivery of paracrine factors. Specifically, we evaluate a new loading procedure on a lyophilized scaffold (soaked up effect) that reduces mechanical stress in encapsulating hMSCs into the hydrogel. In addition, we combine arginine-glycine-aspartic acid (RGD) tripeptide and 3D extracellular matrix deposition to increase the capacity to attach and maintain healthy hMSCs within the hydrogel over time. Furthermore, the fluidic diffusion from the hydrogel toward the injury site is improved by using a cling film that oriented efficaciously the delivery of paracrine factors in vivo. Finally, we demonstrate that an improved combination as here proposed of hMSCs and biomimetic hydrogel is able to immunomodulate significantly the pro-inflammatory environment in a SCI mouse model, increasing M2 macrophagic population and promoting a pro-regenerative environment in situ.

  10. Neuroprotective Effects of Transplanted Mesenchymal Stromal Cells-derived Human Umbilical Cord Blood Neural Progenitor Cells in EAE

    Directory of Open Access Journals (Sweden)

    Hassan Rafieemehr

    2015-11-01

    Full Text Available Multiple Sclerosis (MS is an autoimmune inflammatory demyelinating disease of the central nervous system. The aim of this study was to investigate the neuroprotective effects of transplanted human umbilical cord blood mesenchymal stromal cells (UCB-MSC derived neural progenitor cell (MDNPC in EAE, an experimental model of MS. To initiate neuronal differentiation of UCB-MSCs, the pre-induction medium was removed and replaced with induction media containing retinoic acid, b FGF, h EGF, NGF, IBMX and ascorbic acid for one week. The expression of neural genes was examined in comparison to control group by real-time PCR assay. Then, experimental autoimmune encephalitis (EAE was induced using myelin oligodendrocyte glycoprotein (MOG, 35-55 peptides in 24 C57BL/6 mice. After induction, the mice were divided in four groups (n=6 as follows: healthy, PBS, UCB-MSCs and MDNPC, respectively. At the end of the study, disease status in all the groups was analyzed using hematoxylin-eosin (H&E staining of brain sections. We found that UCB-MSCs exhibit neuronal differentiation potential in vitro and transplanted MDNPC lowered clinical score and reduced CNS leukocyte infiltration compared to untreated mice. Our results showed that MDNPC from UCB may be a proper candidate for regenerative therapy in MS and other neurodegenerative diseases. 

  11. Transplantation of autologous bone marrow mesenchymal stem cells in the treatment of complete and chronic cervical spinal cord injury.

    Science.gov (United States)

    Dai, Guanghui; Liu, Xuebin; Zhang, Zan; Yang, Zhijun; Dai, Yiwu; Xu, Ruxiang

    2013-10-02

    Neuronal injuries have been a challenging problem for treatment, especially in the case of complete and chronic cervical spinal cord injury (SCI). Recently, particular attention is paid to the potential of stem cell in treating SCI, but there are only few clinical studies and insufficient data. This study explored the efficacy of autologous bone marrow mesenchymal stem cells (BMMSCs) transplantation in the treatment of SCI. Forty patients with complete and chronic cervical SCI were selected and randomly assigned to one of the two experimental groups, treatment group and control group. The treatment group received BMMSCs transplantation to the area surrounding injury, while the control group was not treated with any cell transplantation. Both the transplant recipients and the control group were followed up to 6 months, postoperatively. Preoperative and postoperative neurological functions were evaluated with AIS grading, ASIA score, residual urine volume and neurophysiological examination. Results showed that in the treatment group 10 patients had a significant clinical improvement in terms of motor, light touch, pin prick sensory and residual urine volume, while nine patients showed changes in AIS grade. Neurophysiological examination was consistent with clinical observations. No sign of tumor was evident until 6 months postoperatively. In the control group, no improvement was observed in any of the neurological functions specified above. BMMSCs transplantation improves neurological function in patients with complete and chronic cervical SCI, providing valuable information on applications of BMMSCs for the treatment of SCI. © 2013 Published by Elsevier B.V.

  12. Chronic spinal cord injury treated with transplanted autologous bone marrow-derived mesenchymal stem cells tracked by magnetic resonance imaging: a case report.

    Science.gov (United States)

    Chotivichit, Areesak; Ruangchainikom, Monchai; Chiewvit, Pipat; Wongkajornsilp, Adisak; Sujirattanawimol, Kittipong

    2015-04-09

    Intrathecal transplantation is a minimally invasive method for the delivery of stem cells, however, whether the cells migrate from the lumbar to the injured cervical spinal cord has not been proved in humans. We describe an attempt to track bone marrow-derived mesenchymal stem cells in a patient with a chronic cervical spinal cord injury. A 33-year-old Thai man who sustained an incomplete spinal cord injury from the atlanto-axial subluxation was enrolled into a pilot study aiming to track bone marrow-derived mesenchymal stem cells, labeled with superparamagnetic iron oxide nanoparticles, from intrathecal transplantation in chronic cervical spinal cord injury. He had been dependent on respiratory support since 2005. There had been no improvement in his neurological function for the past 54 months. Bone marrow-derived mesenchymal stem cells were retrieved from his iliac crest and repopulated to the target number. One half of the total cells were labeled with superparamagnetic iron oxide nanoparticles before transplantation to the intrathecal space between L4 and L5. Magnetic resonance imaging studies were performed immediately after the transplantation and at 48 hours, two weeks, one month and seven months after the transplantation. His magnetic resonance imaging scan performed immediately after the transplantation showed hyposignal intensity of paramagnetic substance tagged stem cells in the subarachnoid space at the lumbar spine area. This phenomenon was observed at the surface around his cervical spinal cord at 48 hours. A focal hyposignal intensity of tagged bone marrow-derived stem cells was detected at his cervical spinal cord with magnetic resonance imaging at 48 hours, which faded after two weeks, and then disappeared after one month. No clinical improvement of the neurological function had occurred at the end of this study. However, at 48 hours after the transplantation, he presented with a fever, headache, myalgia and worsening of his motor function (by one

  13. Use of hybrid chitosan membranes and human mesenchymal stem cells from the Wharton jelly of umbilical cord for promoting nerve regeneration in an axonotmesis rat model

    Institute of Scientific and Technical Information of China (English)

    Andrea G(a)rtner; Yuri Nakamura; Satoshi Hayakawa; Akiyoshi Osakah; Beatriz Porto; Ana Lúcia Luís; Artur SP Varej(a)o; Ana Colette Maurício; Tiago Pereira; Maria Jo(a)o Sim(o)es; Paulo AS Armada-da-Silva; Miguel L Fran(c)a; Rosa Sousa; Simone Bompasso; Stefania Raimondo; Yuki Shirosaki

    2012-01-01

    Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration.The goal of this study was to assess the effect on nerve regeneration,associating a hybrid chitosan membrane with non-differentiated human mesenchymal stem cells isolated from Wharton's jelly of umbilical cord,in peripheral nerve reconstruction after crush injury.Chromosome analysis on human mesenchymal stem cell line from Wharton's jelly was carried out and no structural alterations were found in metaphase.Chitosan membranes were previously tested in vitro,to assess their ability in supporting human mesenchymal stem cell survival,expansion,and differentiation.For the in vivo testing,Sasco Sprague adult rats were divided in 4 groups of 6 or 7 animals each:Group 1,sciatic axonotmesis injury without any other intervention (Group 1-Crush); Group 2,the axonotmesis lesion of 3 mm was infiltrated with a suspension of 1 250- 1 500 human mesenchymal stem cells (total volume of 50 μL) (Group 2-CrushCell); Group 3,axonotmesis lesion of 3 mm was enwrapped with a chitosan type Ⅲ membrane covered with a monolayer of non-differentiated human mesenchymal stem cells (Group 3-CrushChitlllCell) and Group 4,axonotmesis lesion of 3 mm was enwrapped with a chitosan type Ⅲ membrane (Group 4-CrushChitlll).Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index,static sciatic index,extensor postural thrust,and withdrawal reflex latency.Stereological analysis was carried out on regenerated nerve fibers.Results showed that infiltration of human mesenchymal stem cells,or the combination of chitosan membrane enwrapment and human mesenchymal stem cell enrichment after nerve crush injury provide a slight advantage to post-traumatic nerve regeneration.Results obtained with chitosan type Ⅲ membrane alone confirmed that they significantly improve post-traumatic axonal regrowth and may represent a very promising

  14. Use of hybrid chitosan membranes and human mesenchymal stem cells from the Wharton jelly of umbilical cord for promoting nerve regeneration in an axonotmesis rat model★

    Science.gov (United States)

    Gärtner, Andrea; Pereira, Tiago; Simões, Maria João; Armada-da-Silva, Paulo AS; França, Miguel L; Sousa, Rosa; Bompasso, Simone; Raimondo, Stefania; Shirosaki, Yuki; Nakamura, Yuri; Hayakawa, Satoshi; Osakah, Akiyoshi; Porto, Beatriz; Luís, Ana Lúcia; Varejão, Artur SP; Maurício, Ana Colette

    2012-01-01

    Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to assess the effect on nerve regeneration, associating a hybrid chitosan membrane with non-differentiated human mesenchymal stem cells isolated from Wharton's jelly of umbilical cord, in peripheral nerve reconstruction after crush injury. Chromosome analysis on human mesenchymal stem cell line from Wharton's jelly was carried out and no structural alterations were found in metaphase. Chitosan membranes were previously tested in vitro, to assess their ability in supporting human mesenchymal stem cell survival, expansion, and differentiation. For the in vivo testing, Sasco Sprague adult rats were divided in 4 groups of 6 or 7 animals each: Group 1, sciatic axonotmesis injury without any other intervention (Group 1-Crush); Group 2, the axonotmesis lesion of 3 mm was infiltrated with a suspension of 1 250–1 500 human mesenchymal stem cells (total volume of 50 μL) (Group 2-CrushCell); Group 3, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane covered with a monolayer of non-differentiated human mesenchymal stem cells (Group 3-CrushChitIIICell) and Group 4, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane (Group 4-CrushChitIII). Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index, static sciatic index, extensor postural thrust, and withdrawal reflex latency. Stereological analysis was carried out on regenerated nerve fibers. Results showed that infiltration of human mesenchymal stem cells, or the combination of chitosan membrane enwrapment and human mesenchymal stem cell enrichment after nerve crush injury provide a slight advantage to post-traumatic nerve regeneration. Results obtained with chitosan type III membrane alone confirmed that they significantly improve post-traumatic axonal regrowth and may

  15. Use of hybrid chitosan membranes and human mesenchymal stem cells from the Wharton jelly of umbilical cord for promoting nerve regeneration in an axonotmesis rat model.

    Science.gov (United States)

    Gärtner, Andrea; Pereira, Tiago; Simões, Maria João; Armada-da-Silva, Paulo As; França, Miguel L; Sousa, Rosa; Bompasso, Simone; Raimondo, Stefania; Shirosaki, Yuki; Nakamura, Yuri; Hayakawa, Satoshi; Osakah, Akiyoshi; Porto, Beatriz; Luís, Ana Lúcia; Varejão, Artur Sp; Maurício, Ana Colette

    2012-10-15

    Many studies have been dedicated to the development of scaffolds for improving post-traumatic nerve regeneration. The goal of this study was to assess the effect on nerve regeneration, associating a hybrid chitosan membrane with non-differentiated human mesenchymal stem cells isolated from Wharton's jelly of umbilical cord, in peripheral nerve reconstruction after crush injury. Chromosome analysis on human mesenchymal stem cell line from Wharton's jelly was carried out and no structural alterations were found in metaphase. Chitosan membranes were previously tested in vitro, to assess their ability in supporting human mesenchymal stem cell survival, expansion, and differentiation. For the in vivo testing, Sasco Sprague adult rats were divided in 4 groups of 6 or 7 animals each: Group 1, sciatic axonotmesis injury without any other intervention (Group 1-Crush); Group 2, the axonotmesis lesion of 3 mm was infiltrated with a suspension of 1 250-1 500 human mesenchymal stem cells (total volume of 50 μL) (Group 2-CrushCell); Group 3, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane covered with a monolayer of non-differentiated human mesenchymal stem cells (Group 3-CrushChitIIICell) and Group 4, axonotmesis lesion of 3 mm was enwrapped with a chitosan type III membrane (Group 4-CrushChitIII). Motor and sensory functional recovery was evaluated throughout a healing period of 12 weeks using sciatic functional index, static sciatic index, extensor postural thrust, and withdrawal reflex latency. Stereological analysis was carried out on regenerated nerve fibers. Results showed that infiltration of human mesenchymal stem cells, or the combination of chitosan membrane enwrapment and human mesenchymal stem cell enrichment after nerve crush injury provide a slight advantage to post-traumatic nerve regeneration. Results obtained with chitosan type III membrane alone confirmed that they significantly improve post-traumatic axonal regrowth and may

  16. Application potential of bone marrow mesenchymal stem cell (BMSCs) based tissue-engineering for spinal cord defect repair in rat fetuses with spina bifida aperta.

    Science.gov (United States)

    Li, Xiaoshuai; Yuan, Zhengwei; Wei, Xiaowei; Li, Hui; Zhao, Guifeng; Miao, Jiaoning; Wu, Di; Liu, Bo; Cao, Songying; An, Dong; Ma, Wei; Zhang, Henan; Wang, Weilin; Wang, Qiushi; Gu, Hui

    2016-04-01

    Spina bifida aperta are complex congenital malformations resulting from failure of fusion in the spinal neural tube during embryogenesis. Despite surgical repair of the defect, most patients who survive with spina bifida aperta have a multiple system handicap due to neuron deficiency of the defective spinal cord. Tissue engineering has emerged as a novel treatment for replacement of lost tissue. This study evaluated the prenatal surgical approach of transplanting a chitosan-gelatin scaffold seeded with bone marrow mesenchymal stem cells (BMSCs) in the healing the defective spinal cord of rat fetuses with retinoic acid induced spina bifida aperta. Scaffold characterisation revealed the porous structure, organic and amorphous content. This biomaterial promoted the adhesion, spreading and in vitro viability of the BMSCs. After transplantation of the scaffold combined with BMSCs, the defective region of spinal cord in rat fetuses with spina bifida aperta at E20 decreased obviously under stereomicroscopy, and the skin defect almost closed in many fetuses. The transplanted BMSCs in chitosan-gelatin scaffold survived, grew and expressed markers of neural stem cells and neurons in the defective spinal cord. In addition, the biomaterial presented high biocompatibility and slow biodegradation in vivo. In conclusion, prenatal transplantation of the scaffold combined with BMSCs could treat spinal cord defect in fetuses with spina bifida aperta by the regeneration of neurons and repairmen of defective region.

  17. Mesenchymal stromal cells integrate and form longitudinally-aligned layers when delivered to injured spinal cord via a novel fibrin scaffold.

    Science.gov (United States)

    Hyatt, Alex J T; Wang, Difei; van Oterendorp, Christian; Fawcett, James W; Martin, Keith R

    2014-05-21

    Mesenchymal stromal cells (MSCs) have been shown to promote healing and regeneration in a number of CNS injury models and therefore there is much interest in the clinical use of these cells. For spinal cord injuries, a standard delivery method for MSCs is intraspinal injection, but this can result in additional injury and provides little control over how the cells integrate into the tissue. The present study examines the use of a novel fibrin scaffold as a new method of delivering MSCs to injured spinal cord. Use of the fibrin scaffold resulted in the formation of longitudinally-aligned layers of MSCs growing over the spinal cord lesion site. Host neurites were able to migrate into this MSC architecture and grow longitudinally. The length of the MSC bridge corresponded to the length of the fibrin scaffold. MSCs that were delivered via intraspinal injection were mainly oriented perpendicular to the plane of the spinal cord and remained largely restricted to the lesion site. Host neurites within the injected MSC graft were also oriented perpendicular to the plane of the spinal cord.

  18. Repair of Osteochondral Defects Using Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells in a Rabbit Model

    Directory of Open Access Journals (Sweden)

    Shuyun Liu

    2017-01-01

    Full Text Available Umbilical cord Wharton’s jelly-derived mesenchymal stem cell (WJMSC is a new-found mesenchymal stem cell in recent years with multiple lineage potential. Due to its abundant resources, no damage procurement, and lower immunogenicity than other adult MSCs, WJMSC promises to be a good xenogenous cell candidate for tissue engineering. This in vivo pilot study explored the use of human umbilical cord Wharton’s jelly mesenchymal stem cells (hWJMSCs containing a tissue engineering construct xenotransplant in rabbits to repair full-thickness cartilage defects in the femoral patellar groove. We observed orderly spatial-temporal remodeling of hWJMSCs into cartilage tissues during repair over 16 months, with characteristic architectural features, including a hyaline-like neocartilage layer with good surface regularity, complete integration with adjacent host cartilage, and regenerated subchondral bone. No immune rejection was detected when xenograft hWJMSCs were implanted into rabbit cartilage defects. The repair results using hWJMSCs were superior to those of chondrogenically induced hWJMSCs after assessing gross appearance and histological grading scores. These preliminary results suggest that using novel undifferentiated hWJMSCs as seed cells might be a better approach than using transforming growth factor-β-induced differentiated hWJMSCs for in vivo tissue engineering treatment of cartilage defects. hWJMSC allografts may be promising for clinical applications.

  19. Effects of magnetic nanoparticle-incorporated human bone marrow-derived mesenchymal stem cells exposed to pulsed electromagnetic fields on injured rat spinal cord.

    Science.gov (United States)

    Cho, Hyunjin; Choi, Yun-Kyong; Lee, Dong Heon; Park, Hee Jung; Seo, Young-Kwon; Jung, Hyun; Kim, Soo-Chan; Kim, Sung-Min; Park, Jung-Keug

    2013-01-01

    Transplanting mesenchymal stem cells into injured lesions is currently under study as a therapeutic approach for spinal cord injury. In this study, the effects of a pulsed electromagnetic field (PEMF) on injured rat spinal cord were investigated in magnetic nanoparticle (MNP)-incorporated human bone marrow-derived mesenchymal stem cells (hBM-MSCs). A histological analysis revealed significant differences in MNP-incorporated cell distribution near the injured site under the PEMF in comparison with that in the control group. We confirmed that MNP-incorporated cells were widely distributed in the lesions under PEMF. The results suggest that MNP-incorporated hBM-MSCs were guided by the PEMF near the injured site, and that PEMF exposure for 8 H per day over 4 weeks promoted behavioral recovery in spinal cord injured rats. The results show that rats with MNP-incorporated hBM-MSCs under a PEMF were more effective on the Basso, Beattie, and Bresnahan behavioral test and suggest that the PEMF enhanced the action of transplanted cells for recovery of the injured lesion.

  20. The experimental investigation of glioma-trophic capacity of human umbilical cord-derived mesenchymal stem cells after intraventricular administration

    Directory of Open Access Journals (Sweden)

    FAN Cun-gang

    2013-07-01

    Full Text Available Objective To explore the glioma-trophic migration capacity of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs by intraventricular administration. Methods The umbilical cord tissue were obtained during full-term pregnancy cesarean section under sterile conditions. This study was approved by Ethics Committee and got the informed consent of patient. The hUC-MSCs were isolated by trypsin and collagenase digestion, followed by adherent culture methods. The characteristics of isolated hUC-MSCs were demonstrated by cell morphylogy, phenotype analysis and multi-differentiation potentials into adipocytes, osteoblasts and neural cells. Then the hUC-MSCs were labeled with CM-DiI and injected into contralateral ventricle of glioma of the C6 glioma-bearing Sprague-Dawley (SD rats. Two weeks later, the rats were sacrificed and the brains were taken out to examine the migration and distribution of hUC-MSCs in the tumor bed, at the interface of tumor and cerebral parenchyma as well as the tumor satelites infiltrating into the normal brain. Results The hUC-MSCs demonstrated plastic-adherent characterization and homogeneous fibroblastic-like morphylogy in culture, expression of specific surface phenotypes of MSCs (CD13, CD29, CD44, CD90 but not endothelial or hematopoietic markers (CD14, CD31, CD34, CD38, CD45, CD133, and muti-differentiatiation potentials into Oil red O stained adipocytes, Alizarin red S stained osteoblasts, neuron-specific enolase (NSE-positive neurons and glial fibrillary acidic protein (GFAP-positive astrocytes in permissive inducive conditions. Importantly, after labeled hUC-MSCs injection into contralateral ventricle of glioma, the hUC-MSCs migrated from initial injection site to the glioma mass and along the interface of tumor and brain, and some of them "chasing" the glioma satellites infiltrated into the normal parenchyma. Conclusion The hUC-MSCs possess prominent tumor-specific targeting capacity and extensive intratumoral

  1. Intranasal administration of human umbilical cord mesenchymal stem cells-conditioned medium enhances vascular remodeling after stroke.

    Science.gov (United States)

    Zhao, Qiuchen; Hu, Jinxia; Xiang, Jie; Gu, Yuming; Jin, Peisheng; Hua, Fang; Zhang, Zunsheng; Liu, Yonghai; Zan, Kun; Zhang, Zuohui; Zu, Jie; Yang, Xinxin; Shi, Hongjuan; Zhu, Jienan; Xu, Yun; Cui, Guiyun; Ye, Xinchun

    2015-10-22

    Stem cell-based treatments have been reported to be a potential strategy for stroke. However, tumorigenic potential and low survival rates of transplanted cells could attenuate the efficacy of the stem cell-based treatments. The application of stem cell-condition medium (CM) may be a practicable approach to conquer these limitations. In this study, we investigated whether intranasal administration of human umbilical cord mesenchymal stem cells (hUCMSCs)-CM has the therapeutic effects in rats after stroke. Adult male rats were subjected to middle cerebral artery occlusion (MCAo) and were treated by intranasal routine with or without hUCMSCs-CM (1 ml/kg/d), starting 24h after MCAo and daily for 14 days. Neurological functional tests, blood brain barrier (BBB) leakage, were measured. Angiogenesis and angiogenic factor expression were measured by immunohistochemistry, and Western blot, respectively. hUCMSCs-CM treatment of stroke by intranasal routine starting 24h after MCAo in rats significantly enhances BBB functional integrity and promotes functional outcome but does not decrease lesion volume compared to rats in DMEM/F12 medium control group and saline control group. Treatment of ischemic rats with hUCMSCs-CM by intranasal routine also significantly decreases the levels of Ang2 and increases the levels of both Ang1 and Tie2 in the ischemic brain. To take together, increased expression of Ang1 and Tie2 and decreased expression of Ang2, induced by hUCMSCs-CM treatment, contribute to vascular remodeling in the ischemic brain which plays an important role in functional outcome after stroke.

  2. Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats.

    Science.gov (United States)

    Jia, Yijia; Wu, Dou; Zhang, Ruiping; Shuang, Weibing; Sun, Jiping; Hao, Haihu; An, Qijun; Liu, Qiang

    2014-06-24

    Spinal cord injury (SCI) is one of the most disabling diseases. Cell-based gene therapy is becoming a major focus for the treatment of SCI. Bone marrow-derived mesenchymal stem cells (BMSCs) are a promising stem cell type useful for repairing SCI. However, the effects of BMSCs transplants are likely limited because of low transplant survival after SCI. Sonic hedgehog (Shh) is a multifunctional growth factor which can facilitate neuronal and BMSCs survival, promote axonal growth, prevent activation of the astrocyte lineage, and enhance the delivery of neurotrophic factors in BMSCs. However, treatment of SCI with Shh alone also has limited effects on recovery, because the protein is cleared quickly. In this study, we investigated the use of BMSCs overexpressing the Shh transgene (Shh-BMSCs) in the treatment of rats with SCI, which could stably secrete Shh and thereby enhance the effects of BMSCs, in an attempt to combine the advantages of Shh and BMSCs and so to promote functional recovery. After Shh-BMSCs treatment of SCI via the subarachnoid, we detected significantly greater damage recovery compared with that seen in rats treated with phosphate-buffered saline (PBS) and BMSCs. Use of Shh-BMSCs increased the expression and secretion of Shh, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), improved the behavioral function, enhanced the BMSCs survival, promoted the expression level of neurofilament 200 (NF200), and reduced the expression of glial fibrillary acidic protein (GFAP). Thus, our results indicated that Shh-BMSCs enhanced recovery of neurological function after SCI in rats and could be a potential valuable therapeutic intervention for SCI in humans.

  3. Analysis of the chondrogenic potential and secretome of mesenchymal stem cells derived from human umbilical cord stroma.

    Science.gov (United States)

    Arufe, Maria C; De la Fuente, Alexandre; Mateos, Jesus; Fuentes, Isaac; De Toro, Francisco J; Blanco, Francisco J

    2011-07-01

    Mesenchymal stem cells (MSCs) from umbilical cord stroma were isolated by plastic adherence and characterized by flow cytometry, looking for cells positive for OCT3/4 and SSEA-4 as well as the classic MSC markers CD44, CD73, CD90, Ki67, CD105, and CD106 and negative for CD34 and CD45. Quantitative reverse transcriptase-polymerase chain reaction analysis of the genes ALP, MEF2C, MyoD, LPL, FAB4, and AMP, characteristic for the differentiated lineages, were used to evaluate early and late differentiation of 3 germ lines. Direct chondrogenic differentiation was achieved through spheroid formation by MSCs in a chondrogenic medium and the presence of chondrogenic markers at 4, 7, 14, 28, and 46 days of culture was tested. Immunohistochemistry and quantitative reverse transcriptase-polymerase chain reaction analyses were utilized to assess the expression of collagen type I, collagen type II, and collagen type X throughout the time studied. We found expression of all the markers as early as 4 days of chondrogenic differentiation culture, with their expression increasing with time, except for collagen type I, which decreased in expression in the formed spheroids after 4 days of differentiation. The signaling role of Wnt during chondrogenic differentiation was studied by western blot. We observed that β-catenin expression decreased during the chondrogenic process. Further, a secretome study to validate our model of differentiation in vitro was performed on spheroids formed during the chondrogenesis process. Our results indicate the multipotential capacity of this source of human cells; their chondrogenic capacity could be useful for future cell therapy in articular diseases.

  4. Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes.

    Directory of Open Access Journals (Sweden)

    Naomi Ohta

    Full Text Available Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naïve UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP and follistatin (FST, that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.

  5. Mesenchymal Stem Cells and Mononuclear Cells From Cord Blood: Cotransplantation Provides a Better Effect in Treating Myocardial Infarction.

    Science.gov (United States)

    Chen, Gecai; Yue, Aihuan; Yu, Hong; Ruan, Zhongbao; Yin, Yigang; Wang, Ruzhu; Ren, Yin; Zhu, Li

    2016-03-01

    The aim of this study was to evaluate the effect of cotransplanting mononuclear cells from cord blood (CB-MNCs) and mesenchymal stem cells (MSCs) as treatment for myocardial infarction (MI). Transplanting CD34+ cells or MSCs separately has been shown effective in treating MI, but the effect of cotransplanting CB-MNCs and MSCs is not clear. In this study, MSCs were separated by their adherence to the tissue culture. The morphology, immunophenotype, and multilineage potential of MSCs were analyzed. CB-MNCs were separated in lymphocyte separation medium 1.077. CD34+ cell count and viability were analyzed by flow cytometry. Infarcted male Sprague-Dawley rats in a specific-pathogen-free grade were divided into four treatment groups randomly: group I, saline; group II, CB-MNCs; group III, MSCs; and group IV, CB-MNCs plus MSCs. The saline, and CB-MNCs and/or MSCs were injected intramyocardially in infarcted rats. Their cardiac function was evaluated by echocardiography. The myocardial capillary density was analyzed by immunohistochemistry. Both cell types induced an improvement in the left ventricular cardiac function and increased tissue cell proliferation in myocardial tissue and neoangiogenesis. However, CB-MNCs plus MSCs were more effective in reducing the infarct size and preventing ventricular remodeling. Scar tissue was reduced significantly in the CB-MNCs plus MSCs group. MSCs facilitate engraftment of CD34+ cells and immunomodulation after allogeneic CD34+ cell transplantation. Cotransplanting MSCs and CB-MNCs might be more effective than transplanting MSCs or CB-MNCs separately for treating MI. This study contributes knowledge toward effective treatment strategies for MI.

  6. Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium.

    Science.gov (United States)

    Wang, Ping; Liu, Xian; Zhao, Liang; Weir, Michael D; Sun, Jirun; Chen, Wenchuan; Man, Yi; Xu, Hockin H K

    2015-05-01

    Human induced pluripotent stem cells (hiPSCs) are an exciting cell source with great potential for tissue engineering. Human bone marrow mesenchymal stem cells (hBMSCs) have been used in clinics but are limited by several disadvantages, hence alternative sources of MSCs such as umbilical cord MSCs (hUCMSCs) are being investigated. However, there has been no report comparing hiPSCs, hUCMSCs and hBMSCs for bone regeneration. The objectives of this pilot study were to investigate hiPSCs, hUCMSCs and hBMSCs for bone tissue engineering, and compare their bone regeneration via seeding on biofunctionalized macroporous calcium phosphate cement (CPC) in rat cranial defects. For all three types of cells, approximately 90% of the cells remained alive on CPC scaffolds. Osteogenic genes were up-regulated, and mineral synthesis by cells increased with time in vitro for all three types of cells. The new bone area fractions at 12weeks (mean±sd; n=6) were (30.4±5.8)%, (27.4±9.7)% and (22.6±4.7)% in hiPSC-MSC-CPC, hUCMSC-CPC and hBMSC-CPC respectively, compared to (11.0±6.3)% for control (pcells (p>0.1). New blood vessel density was higher in cell-seeded groups than control (pcells was confirmed via immunohistochemical staining. In conclusion, (1) hiPSCs, hUCMSCs and hBMSCs greatly enhanced bone regeneration, more than doubling the new bone amount of cell-free CPC control; (2) hiPSC-MSCs and hUCMSCs represented viable alternatives to hBMSCs; (3) biofunctionalized macroporous CPC-stem cell constructs had a robust capacity for bone regeneration. Published by Elsevier Ltd.

  7. Umbilical cord tissue-derived mesenchymal stromal cells maintain immunomodulatory and angiogenic potencies after cryopreservation and subsequent thawing.

    Science.gov (United States)

    Bárcia, Rita N; Santos, Jorge M; Teixeira, Mariana; Filipe, Mariana; Pereira, Ana Rita S; Ministro, Augusto; Água-Doce, Ana; Carvalheiro, Manuela; Gaspar, Maria Manuela; Miranda, Joana P; Graça, Luis; Simões, Sandra; Santos, Susana Constantino Rosa; Cruz, Pedro; Cruz, Helder

    2017-03-01

    The effect of cryopreservation on mesenchymal stromal cell (MSC) therapeutic properties has become highly controversial. However, data thus far have indiscriminately involved the assessment of different types of MSCs with distinct production processes. This study assumed that MSC-based products are affected differently depending on the tissue source and manufacturing process and analyzed the effect of cryopreservation on a specific population of umbilical cord tissue-derived MSCs (UC-MSCs), UCX(®). Cell phenotype was assessed by flow cytometry through the evaluation of the expression of relevant surface markers such as CD14, CD19, CD31, CD34, CD44, CD45, CD90, CD105, CD146, CD200, CD273, CD274 and HLA-DR. Immunomodulatory activity was analyzed in vitro through the ability to inhibit activated T cells and in vivo by the ability to reverse the signs of inflammation in an adjuvant-induced arthritis (AIA) model. Angiogenic potential was evaluated in vitro using a human umbilical vein endothelial cell-based angiogenesis assay, and in vivo using a mouse model for hindlimb ischemia. Phenotype and immunomodulatory and angiogenic potencies of this specific UC-MSC population were not impaired by cryopreservation and subsequent thawing, both in vitro and in vivo. This study suggests that potency impairment related to cryopreservation in a given tissue source can be avoided by the production process. The results have positive implications for the development of advanced-therapy medicinal products. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  8. Therapy for Cerebral Palsy by Human Umbilical Cord Blood Mesenchymal Stem Cells Transplantation Combined With Basic Rehabilitation Treatment

    Directory of Open Access Journals (Sweden)

    Che Zhang MD

    2015-03-01

    Full Text Available Background. Cerebral palsy (CP is the most common cause leading to childhood disability. Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs transplantation is a promising alternative considering the safety and efficacy in current reports. This report represents a case of hUCB-MSCs transplantation combined with basic rehabilitation treatment beginning as early as age 6 months with follow-up as long as 5 years. Methods. A 6-year-old female patient was diagnosed with CP at age 6 months. The patient accepted 4 infusions of intravenous hUCB-MSCs in each course and received 4 courses of transplantation totally. A series of assessments were performed before the first transplantation, including laboratory tests, CDCC Infant Mental Development Scale, and Gross Motor Function Measure-88 (GMFM-88. Then annual assessments using the GMFM-88, Ashworth spasm assessment, and comprehensive function assessment scale were made in addition to the annual laboratory tests. In addition, electroencephalography and brain magnetic resonance imaging were conducted before transplantation and in the follow-up phase. Rehabilitation and safety follow-up have been ongoing for 5 years up to date. Results. There was no complaint about adverse effects during hospitalization or postoperative follow-up. Motor function recovered to normal level according to the evaluation of scales. Language function improved significantly. Linguistic rehabilitation therapy was enhanced for further improvement. Conclusions. The clinical application of hUC-MSCs combined with basic rehabilitation treatment was effective and safe for improving motor and comprehensive function in a patient with CP.

  9. The protective effects of human umbilical cord mesenchymal stem cells on damaged ovarian function: A comparative study.

    Science.gov (United States)

    Zhang, Jinjin; Xiong, Jiaqiang; Fang, Li; Lu, Zhiyong; Wu, Meng; Shi, Liangyan; Qin, Xian; Luo, Aiyue; Wang, Shixuan

    2016-09-05

    Numerous studies have reported that human umbilical cord mesenchymal stem cell (hUCMSC) therapy can rescue the structure and function of injured tissues. The aims of this study were to explore the protective role of hUCMSC transplantation in a model of accelerated ovarian aging and to compare 2 methods of transplanting hUCMSCs, i.e. i) via intravenous injection (IV) and ii) in situ ovarian micro injection (MI). Female mice were subjected to superovulation and ozone inhalation to create a model of accelerated ovarian aging with a decline in both the quantity and quality of oocytes. Cells were transplanted via IV or MI, and ovaries were removed after 2 weeks or 1 month of treatment. Ovarian reserve and function were evaluated based on the follicle counts, hormone levels, the estrous cycle, and reproductive performance. Cell tracking, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), real-time polymerase chain reaction (PCR), and Western blot analysis were used to assess the inner mechanisms of injury and repair. Results indicated that ovarian function increased significantly after treatment with hUCMSCs. Immunofluorescence revealed reduced TUNEL staining and a decreased percentage of apoptotic cells. A higher level of expression of anti-apoptotic and antioxidant enzymes was noted in the ovaries of groups treated with hUCMSCs. These parameters were enhanced more when mice were treated with hUCMSCs for 1 month than when they treated with hUCMSCs for 2 weeks. IV was better able to restore ovarian function than MI. These results suggest that both methods of transplantation may improve ovarian function and that IV transplantation of hUCMSCs can significantly improve ovarian function and structural parameters more than MI transplantation of hUCMSCs can.

  10. [Changes of biological characteristics and gene expression profile of umbilical cord mesenchymal stem cells during senescence in culture].

    Science.gov (United States)

    Ning, Xue; Li, Dong; Wang, Da-Kun; Fu, Jin-Qiu; Ju, Xiu-Li

    2012-04-01

    This study was purposed to investigate the changes of biological properties and expression patterns of the aging related genes in umbilical cord mesenchymal stem cells (UC-MSC) during in vitro culture. UC-MSC at passage 3 were served as the control cells and those at passage 15 were considered as the aged cells. The biological features of those two kinds of cells including morphology, proliferation activity and phenotypic profile were observed, and the differences of gene expression were analysed by the whole human genome oligo microarray. Several differential genes were selected for further confirmation by quantitative reverse transcription-polymerase chain reaction. The results showed that UC-MSC at passage 15 were larger in size and their proliferation rate was slower compared with those of cells at passage 3, while the positivity of CD44 and CD105 remained unchanged. Compared with UC-MSC at passage 3, relatively aged cells expressed higher levels of genes that are associated with small subunit of ribosome. Further analysis with Gene Ontology functional categories showed that the up-regulated genes were concentrated in those related to steroid biosynthesis, galactose metabolism and the development of autoimmune diseases and degenerative diseases and the down-regulated genes in UC-MSC at passage 15 were concentrated in cytoskeleton molecules, DNA structure binding, mRNA binding and protein function. Functional analysis with Kyoto Encyclopedia of Genes and Genomes functional pathway revealed that the expression of some genes responsible for ribosome composition was elevated while those of associated with extracellular matrix, focal adhesion and cell cycle progression were down-regulated. It is concluded that UC-MSC become senescent due to the declines in metabolism and proliferation activities.

  11. Transplantation of umbilical cord-derived mesenchymal stem cells as a novel strategy to protect the central nervous system: technical aspects, preclinical studies, and clinical perspectives.

    Science.gov (United States)

    Dalous, Jérémie; Larghero, Jérome; Baud, Olivier

    2012-04-01

    The prevention of perinatal neurological disabilities remains a major challenge for public health, and no neuroprotective treatment to date has proven clinically useful in reducing the lesions leading to these disabilities. Efforts are, therefore, urgently needed to test other neuroprotective strategies including cell therapies. Although stem cells have raised great hopes as an inexhaustible source of therapeutic products that could be used for neuroprotection and neuroregeneration in disorders affecting the brain and spinal cord, certain sources of stem cells are associated with potential ethical issues. The human umbilical cord (hUC) is a rich source of stem and progenitor cells including mesenchymal stem cells (MSCs) derived either from the cord or from cord blood. hUC MSCs (hUC-MSCs) have several advantages as compared to other types and sources of stem cells. In this review, we will summarize the most recent findings regarding the technical aspects and the preclinical investigation of these promising cells in neuroprotection and neuroregeneration, and their potential use in the developing human brain. However, extensive studies are needed to optimize the administration protocol, safety parameters, and potential preinjection cell manipulations before designing a controlled trial in human neonates.

  12. Conditioned Media from Human Adipose Tissue-Derived Mesenchymal Stem Cells and Umbilical Cord-Derived Mesenchymal Stem Cells Efficiently Induced the Apoptosis and Differentiation in Human Glioma Cell Lines In Vitro

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2014-01-01

    Full Text Available Human mesenchymal stem cells (MSCs have an intrinsic property for homing towards tumor sites and can be used as tumor-tropic vectors for tumor therapy. But very limited studies investigated the antitumor properties of MSCs themselves. In this study we investigated the antiglioma properties of two easily accessible MSCs, namely, human adipose tissue-derived mesenchymal stem cells (ASCs and umbilical cord-derived mesenchymal stem cells (UC-MSCs. We found (1 MSC conditioned media can significantly inhibit the growth of human U251 glioma cell line; (2 MSC conditioned media can significantly induce apoptosis in human U251 cell line; (3 real-time PCR experiments showed significant upregulation of apoptotic genes of both caspase-3 and caspase-9 and significant downregulation of antiapoptotic genes such as survivin and XIAP after MSC conditioned media induction in U 251 cells; (4 furthermore, MSCs conditioned media culture induced rapid and complete differentiation in U251 cells. These results indicate MSCs can efficiently induce both apoptosis and differentiation in U251 human glioma cell line. Whereas UC-MSCs are more efficient for apoptosis induction than ASCs, their capability of differentiation induction is not distinguishable from each other. Our findings suggest MSCs themselves have favorable antitumor characteristics and should be further explored in future glioma therapy.

  13. Comparative analysis of adherence, viability, proliferation and morphology of umbilical cord tissue-derived mesenchymal stem cells seeded on different titanium-coated expanded polytetrafluoroethylene scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Hollweck, Trixi; Marschmann, Michaela; Hartmann, Isabel; Akra, Bassil; Meiser, Bruno; Reichart, Bruno; Eissner, Guenther [Department of Cardiac Surgery, University of Munich, Marchioninistrasse 15, 81377 Munich (Germany); Eblenkamp, Markus; Wintermantel, Erich, E-mail: Guenther.Eissner@med.uni-muenchen.d [Chair of Medical Engineering, Technische Universitaet Muenchen, Boltzmannstrasse 15, 85748 Garching (Germany)

    2010-12-15

    Umbilical cord tissue comprises an attractive new source for mesenchymal stem cells. Umbilical cord tissue-derived mesenchymal stem cells (UCMSC) exhibit self-renewal, multipotency and immunological naivity, and they can be obtained without medical intervention. The transfer of UCMSC to the ischemic region of the heart may have a favorable impact on tissue regeneration. Benefit from typical cell delivery by injection to the infarcted area is often limited due to poor cell retention and survival. Another route of administration is to use populated scaffolds implanted into the infarcted zone. In this paper, the seeding efficiency of UCMSC on uncoated and titanium-coated expanded polytetrafluoroethylene (ePTFE) scaffolds with different surface structures was determined. Dualmesh (registered) (DM) offers a corduroy-like surface in contrast to the comparatively planar surface of cardiovascular patch (CVP). The investigation of adherence, viability and proliferation of UCMSC demonstrates that titanium-coated scaffolds are superior to uncoated scaffolds, independent of the surface structure. Microscopic images reveal spherical UCMSC seeded on uncoated scaffolds. In contrast, UCMSC on titanium-coated scaffolds display their characteristic spindle-shaped morphology and a homogeneous coverage of CVP. In summary, titanium coating of clinically approved CVP enhances the retention of UCMSC and thus offers a potential cell delivery system for the repair of the damaged myocardium.

  14. Inhibitor of p53-p21 pathway induces the differentiation of human umbilical cord derived mesenchymal stem cells into cardiomyogenic cells.

    Science.gov (United States)

    Ruan, Zhong-Bao; Zhu, Li; Yin, Yi-Gang; Chen, Ge-Cai

    2016-08-01

    P53 is shown recently to play an important role in the proliferation and differentiation of mesenchymal stem cells. In this study, human umbilical cord derived mesenchymal stem cells (hUCMSCs) were isolated and purified from the umbilical cords of normal or cesarean term deliveries, after treatment with 20 μmol/L PFT-α for 24 h, hUCMSCs were continued to be cultured for 4 weeks, cardiac-specific protein expression of cTnI, Desmin and Nkx2.5 was determined using immunofluorescence assay and RT-PCR. The expression of p53 and p21 was detected by western blot. Results showed that no expression of cTnI, Desmin or Nkx2.5 was observed in the control and the PFT-α group at 1 week after induction. However, after 4 weeks, while control group still had little expression of cTnI, Desmin and Nkx2.5, the PFT-α group demonstrated strong expression of cTnI, Desmin and Nkx2.5 (P cells in the PFT-α group (36.98 %) was significantly higher than that in the control group (4.41 %) (P p21 was seen in the PFT-α group at 4 weeks. The difference compared with the control group was statistically significant (P cells by modulating the p53-p21 pathway.

  15. Different effects of energy dependent irradiation of red and green lights on proliferation of human umbilical cord matrix-derived mesenchymal cells.

    Science.gov (United States)

    Dehghani Soltani, Samereh; Babaee, Abdolreza; Shojaei, Mohammad; Salehinejad, Parvin; Seyedi, Fatemeh; JalalKamali, Mahshid; Nematollahi-Mahani, Seyed Noureddin

    2016-02-01

    Light-emitting diodes (LED) have recently been introduced as a potential factor for proliferation of various cell types in vitro. Nowadays, stem cells are widely used in regenerative medicine. Human umbilical cord matrix-derived mesenchymal (hUCM) cells can be more easily isolated and cultured than adult mesenchymal stem cells. The aim of this study was to evaluate the effect of red and green lights produced by LED on the proliferation of hUCM cells. hUCM cells were isolated from the umbilical cord, and light irradiation was applied at radiation energies of 0.318, 0.636, 0.954, 1.59, 3.18, 6.36, 9.54, and 12.72 J/cm(2). Irradiation of the hUCM cells shows a significant (p cell number as compared to controls after 40 h. In addition, cell proliferation on days 7, 14, and 21 in irradiated groups were significantly (p red and green lights irradiation to promote proliferation of hUCM cells in vitro. The energy applied to the cells through LED irradiation is an effective factor with paradoxical alterations. Green light inserted a much profound effect at special dosages than red light.

  16. Dynamic microRNA profiles of hepatic differentiated human umbilical cord lining-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Lina Cui

    Full Text Available Despite the extensive hepatic differentiation potential of human umbilical cord lining-derived mesenchymal stem cells (hUC-MSC, little is known about the molecular mechanisms of hUC-MSC differentiation. At the post-transcriptional level, microRNAs are key players in the control of cell fate determination during differentiation. In this study, we aimed to identify microRNAs involved in the hepatic differentiation of hUC-MSCs. After successfully isolating hUC- MSCs, we induced hepatocyte formation in vitro with growth factors. After 26 days of induction, hUC-MSCs could express hepatocyte-specific genes, synthesize urea and glycogen and uptake low-density lipoprotein. Cellular total RNA from hUC-MSCs and hepatic differentiated hUC-MSCs was collected at 7 time points, including 2 days, 6 days, 10 days, 14 days, 22 days and 26 days, for microRNA microarray analysis. Dynamic microRNA profiles were identified that did not overlap or only partially overlapped with microRNAs reported to be involved in human liver development, hepatocyte regeneration or hepatic differentiation of liver-derived progenitor cells. A total of 61 microRNAs among 1205 human and 144 human viral microRNAs displayed consistent changes and were altered at least 2-fold between hUC-MSCs and hepatic differentiated hUC-MSCs. Among these microRNAs, 25 were over-expressed; this over-expression occurred either gradually or increased sharply and was maintained at a high level. A total of 36 microRNAs were under-expressed, with an expression pattern similar to that of the over-expressed microRNAs. The expression of the altered expressed microRNAs was also confirmed by quantitative reverse-transcription polymerase chain reaction. We also found that microRNAs involved in hepatic differentiation were not enriched in hepatocyte or hepatocellular carcinoma cells and can potentially target liver-enriched transcription factors and genes. The elucidation of the microRNA profile during the hepatic

  17. Culturing on decellularized extracellular matrix enhances antioxidant properties of human umbilical cord-derived mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaozhen [School of Engineering, Sun Yat-sen University, Guangzhou 510006 (China); Zhou, Long; Chen, Xi [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Liu, Tao [Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Pan, Guoqing; Cui, Wenguo; Li, Mao; Luo, Zong-Ping [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Pei, Ming [Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV 26506 (United States); Yang, Huilin [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China); Gong, Yihong, E-mail: gongyih@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510006 (China); He, Fan, E-mail: fanhe@suda.edu.cn [Orthopaedic Institute, Soochow University, Suzhou 215007 (China); Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006 (China)

    2016-04-01

    Human umbilical cord-derived mesenchymal stem cells (UC-MSCs) have attracted great interest in clinical application because of their regenerative potential and their lack of ethical issues. Our previous studies showed that decellularized cell-deposited extracellular matrix (ECM) provided an in vivo-mimicking microenvironment for MSCs and facilitated in vitro cell expansion. This study was conducted to analyze the cellular response of UC-MSCs when culturing on the ECM, including reactive oxygen species (ROS), intracellular antioxidative enzymes, and the resistance to exogenous oxidative stress. After decellularization, the architecture of cell-deposited ECM was characterized as nanofibrous, collagen fibrils and the matrix components were identified as type I and III collagens, fibronectin, and laminin. Compared to tissue culture polystyrene (TCPS) plates, culturing on ECM yielded a 2-fold increase of UC-MSC proliferation and improved the percentage of cells in the S phase by 2.4-fold. The levels of intracellular ROS and hydrogen peroxide (H{sub 2}O{sub 2}) in ECM-cultured cells were reduced by 41.7% and 82.9%, respectively. More importantly, ECM-cultured UC-MSCs showed enhanced expression and activity of intracellular antioxidative enzymes such as superoxide dismutase and catalase, up-regulated expression of silent information regulator type 1, and suppressed phosphorylation of p38 mitogen-activated protein kinase. Furthermore, a continuous treatment with exogenous 100 μM H{sub 2}O{sub 2} dramatically inhibited osteogenic differentiation of UC-MSCs cultured on TCPS, but culturing on ECM retained the differentiation capacity for matrix mineralization and osteoblast-specific marker gene expression. Collectively, by providing sufficient cell amounts and enhancing antioxidant capacity, decellularized ECM can be a promising cell culture platform for in vitro expansion of UC-MSCs. - Highlights: • Decellularization preserved the architecture and components of cell

  18. The role of human umbilical cord tissue-derived mesenchymal stromal cells (UCX® in the treatment of inflammatory arthritis

    Directory of Open Access Journals (Sweden)

    Santos Jorge M

    2013-01-01

    Full Text Available Abstract Background ECBio has developed proprietary technology to consistently isolate, expand and cryopreserve a well-characterized population of stromal cells from human umbilical cord tissue (UCX® cells. The technology has recently been optimized in order to become compliant with Advanced Medicine Therapeutic Products. In this work we report the immunosuppressive capacity of UCX® cells for treating induced autoimmune inflammatory arthritis. Methods UCX® cells were isolated using a proprietary method (PCT/IB2008/054067 that yields a well-defined number of cells using a precise proportion between tissue digestion enzyme activity units, tissue mass, digestion solution volume and void volume. The procedure includes three recovery steps to avoid non-conformities related to cell recovery. UCX® surface markers were characterized by flow cytometry and UCX® capacity to expand in vitro and to differentiate into adipocyte, chondrocyte and osteoblast-like cells was evaluated. Mixed Lymphocyte Reaction (MLR assays were performed to evaluate the effect of UCX® cells on T-cell activation and Treg conversion assays were also performed in vitro. Furthermore, UCX® cells were administered in vivo in both a rat acute carrageenan-induced arthritis model and rat chronic adjuvant induced arthritis model for arthritic inflammation. UCX® anti-inflammatory activity was then monitored over time. Results UCX® cells stained positive for CD44, CD73, CD90 and CD105; and negative for CD14, CD19 CD31, CD34, CD45 and HLA-DR; and were capable to differentiate into adipocyte, chondrocyte and osteoblast-like cells. UCX® cells were shown to repress T-cell activation and promote the expansion of Tregs better than bone marrow mesenchymal stem cells (BM-MSCs. Accordingly, xenogeneic UCX® administration in an acute carrageenan-induced arthritis model showed that human UCX® cells can reduce paw edema in vivo more efficiently than BM-MSCs. Finally, in a chronic adjuvant

  19. Effects of umbilical cord tissue mesenchymal stem cells (UCX® on rat sciatic nerve regeneration after neurotmesis injuries

    Directory of Open Access Journals (Sweden)

    Gärtner A

    2013-04-01

    Full Text Available Peripheral nerves have the intrinsic capacity of self-regeneration after traumatic injury but the extent of the regeneration is often very poor. Increasing evidence demonstrates that mesenchymal stem/stromal cells (MSCs may play an important role in tissue regeneration through the secretion of soluble trophic factors that enhance and assist in repair by paracrine activation of surrounding cells. In the present study, the therapeutic value of a population of umbilical cord tissue-derived MSCs, obtained by a proprietary method (UCX®, was evaluated on end-to-end rat sciatic nerve repair. Furthermore, in order to promote both, end-to-end nerve fiber contacts and MSC cell-cell interaction, as well as reduce the flush away effect of the cells after administration, a commercially available haemostatic sealant, Floseal®, was used as vehicle. Both, functional and morphologic recoveries were evaluated along the healing period using extensor postural thrust (EPT, withdrawal reflex latency (WRL, ankle kinematics analysis, and either histological analysis or stereology, in the hyper-acute, acute and chronic phases of healing. The histological analysis of the hyper-acute and acute phase studies revealed that in the group treated with UCX ® alone the Wallerian degeneration was improved for the subsequent process of regeneration, the fiber organization was higher, and the extent of fibrosis was lower. The chronic phase experimental groups revealed that treatment with UCX® induced an increased number of regenerated fibers and thickening of the myelin sheet. Kinematics analysis showed that the ankle joint angle determined for untreated animals was significantly different from any of the treated groups at the instant of initial contact (IC. At opposite toe off (OT and heel rise (HR, differences were found between untreated animals and the groups treated with either UCX® alone or UCX® administered with Floseal®. Overall, the UCX® application presented

  20. Efficient generation of multipotent mesenchymal stem cells from umbilical cord blood in stroma-free liquid culture.

    Directory of Open Access Journals (Sweden)

    Rowayda Peters

    Full Text Available BACKGROUND: Haematopoiesis is sustained by haematopoietic (HSC and mesenchymal stem cells (MSC. HSC are the precursors for blood cells, whereas marrow, stroma, bone, cartilage, muscle and connective tissues derive from MSC. The generation of MSC from umbilical cord blood (UCB is possible, but with low and unpredictable success. Here we describe a novel, robust stroma-free dual cell culture system for long-term expansion of primitive UCB-derived MSC. METHODS AND FINDINGS: UCB-derived mononuclear cells (MNC or selected CD34(+ cells were grown in liquid culture in the presence of serum and cytokines. Out of 32 different culture conditions that have been tested for the efficient expansion of HSC, we identified one condition (DMEM, pooled human AB serum, Flt-3 ligand, SCF, MGDF and IL-6; further denoted as D7 which, besides supporting HSC expansion, successfully enabled long-term expansion of stromal/MSC from 8 out of 8 UCB units (5 MNC-derived and 3 CD34(+ selected cells. Expanded MSC displayed a fibroblast-like morphology, expressed several stromal/MSC-related antigens (CD105, CD73, CD29, CD44, CD133 and Nestin but were negative for haematopoietic cell markers (CD45, CD34 and CD14. MSC stemness phenotype and their differentiation capacity in vitro before and after high dilution were preserved throughout long-term culture. Even at passage 24 cells remained Nestin(+, CD133(+ and >95% were positive for CD105, CD73, CD29 and CD44 with the capacity to differentiate into mesodermal lineages. Similarly we show that UCB derived MSC express pluripotency stem cell markers despite differences in cell confluency and culture passages. Further, we generated MSC from peripheral blood (PB MNC of 8 healthy volunteers. In all cases, the resulting MSC expressed MSC-related antigens and showed the capacity to form CFU-F colonies. CONCLUSIONS: This novel stroma-free liquid culture overcomes the existing limitation in obtaining MSC from UCB and PB enabling so far unmet

  1. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue.

    Science.gov (United States)

    Heo, June Seok; Choi, Youjeong; Kim, Han-Soo; Kim, Hyun Ok

    2016-01-01

    Mesenchymal stem cells (MSCs) are clinically useful due to their capacity for self-renewal, their immunomodulatory properties and tissue regenerative potential. These cells can be isolated from various tissues and exhibit different potential for clinical applications according to their origin, and thus comparative studies on MSCs from different tissues are essential. In this study, we investigated the immunophenotype, proliferative potential, multilineage differentiation and immunomodulatory capacity of MSCs derived from different tissue sources, namely bone marrow, adipose tissue, the placenta and umbilical cord blood. The gene expression profiles of stemness-related genes [octamer-binding transcription factor 4 (OCT4), sex determining region Y-box (SOX)2, MYC, Krüppel-like factor 4 (KLF4), NANOG, LIN28 and REX1] and lineage‑related and differentiation stage-related genes [B4GALNT1 (GM2/GS2 synthase), inhibin, beta A (INHBA), distal-less homeobox 5 (DLX5), runt-related transcription factor 2 (RUNX2), proliferator‑activated receptor gamma (PPARG), CCAAT/enhancer-binding protein alpha (C/EBPA), bone morphogenetic protein 7 (BMP7) and SOX9] were compared using RT-PCR. No significant differences in growth rate, colony-forming efficiency and immunophenotype were observed. Our results demonstrated that MSCs derived from bone marrow and adipose tissue shared not only in vitro tri-lineage differentiation potential, but also gene expression profiles. While there was considerable inter-donor variation in DLX5 expression between MSCs derived from different tissues, its expression appears to be associated with the osteogenic potential of MSCs. Bone marrow-derived MSCs (BM-MSCs) significantly inhibited allogeneic T cell proliferation possibly via the high levels of the immunosuppressive cytokines, IL10 and TGFB1. Although MSCs derived from different tissues and fibroblasts share many characteristics, some of the marker genes, such as B4GALNT1 and DLX5 may be useful for

  2. Clinical Effects of Novel Nanoscaled Core Decompression Rods Combined with Umbilical Cord Mesenchymal Stem Cells on the Treatment of Early Osteonecrosis of the Femoral Head

    Directory of Open Access Journals (Sweden)

    Hongyang Gao

    2015-01-01

    Full Text Available Osteonecrosis of the femoral head (ONFH is one of the most common diseases in orthopedics. In this study, we investigated the clinical effects of novel nanoscaled core decompression rods combined with mesenchymal stem cells on the treatment of the ONFH. 12 adult patients with early ONFH (at the stage of Ficat II received the treatment using the implantation of novel nanoscaled core decompression rods combined with umbilical cord mesenchymal stem cells. The grade of the patients’ hip was scored by Harris marking system before and after the surgery, and then paired t-test was done. We assessed the curative efficiency based on the change of the patients before and after the surgery. In particular, the survival rate of femoral head was assessed at 12 months after the surgery. The results demonstrated that according to the standard of Harris Scoring, the average grade of hip joint before the surgery was 54.16 ± 4.23 points while average grade of hip joint at 12 months after the surgery was 85.28 ± 3.65 points. So, the implantation of the novel nanoscaled core decompression rods combined with mesenchymal stem cells had satisfactory clinical effects, suggesting that this implantation should be effective to treat early ONFH.

  3. Umbilical cord tissue-derived mesenchymal stem cells grow best under GMP-compliant culture conditions and maintain their phenotypic and functional properties.

    Science.gov (United States)

    Hartmann, Isabel; Hollweck, Trixi; Haffner, Silvia; Krebs, Michaela; Meiser, Bruno; Reichart, Bruno; Eissner, Günther

    2010-12-15

    Mesenchymal stem cells (MSCs) are fibroblast-like multipotent stem cells that can differentiate into cell types of mesenchymal origin. Because of their immune properties and differentiation, potential MSCs are discussed for the use in tissue regeneration and tolerance induction in transplant medicine. This cell type can easily be obtained from the umbilical cord tissue (UCMSC) without medical intervention. Standard culture conditions include fetal bovine serum (FBS) which may not be approved for clinical settings. Here, we analyzed the phenotypic and functional properties of UCMSC under xeno-free (XF, containing GMP-certified human serum) and serum-free (SF) culture conditions in comparison with standard UCMSC cultures. Phenotypically, UCMSC showed no differences in the expression of mesenchymal markers or differentiation capacity. Functionally, XF and SF-cultured UCMSC have comparable adipogenic, osteogenic, and endothelial differentiation potential. Interestingly, the UCMSC-mediated suppression of T cell proliferation in an allogeneic mixed lymphocyte reaction (MLR) is more effective in XF and SF media than in standard FBS-containing cultures. Regarding the mechanism of action of MLR suppression, transwell experiments revealed that in neither UCMSC culture a direct cell-cell contact is necessary for inhibiting T cell proliferation, and that the major effector molecule is prostaglandin E₂ (PGE₂). Taken together, GMP-compliant growth media qualify for long-term cultures of UCMSC which is important for a future clinical study design in regenerative and transplant medicine. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Comparison of human amniotic fluid-derived and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells: Characterization and myocardial differentiation capacity

    Institute of Scientific and Technical Information of China (English)

    Jing Bai; Yuan Hu; Yi-Ru Wang; Li-Feng Liu; Jie Chen; Shao-Ping Su; Yu Wang

    2012-01-01

    Objective To compare the characterization and myocardial differentiation capacity of amniotic fluid-derived mesenchymal stromal cells (AF MSCs) and umbilical cord Wharton's Jelly-derived mesenchymal stromal cells (WJ MSCs). Methods The human AF MSCs were cultured from amniotic fluid samples obtained by amniocentesis. The umbilical cord WJ MSCs were obtained from Wharton's Jelly of umbilical cords of infants delivered full-term by normal labor. The morphology, growth curves, and analyses by flow cytometry of cell surface markers were compared between the two types of cells. Myocardial genes (GATA-4, c-TnT, α-actin, and Cx43) were detected by real-time PCR and the corresponding protein expressions were detected by Western blot analysis after myocardial induced in AF MSCs and WJ MSCs. Results Our findings revealed AF MSCs and WJ MSCs shared similar morphological characteristics of the fibroblastoid shape. The AF MSCs were easily obtained than the WJ MSCs and had a shorter time to reach adherence of 2.7 ± 1.6 days to WJ MSCs of 6.5 ± 1.8 days. The growth curves by MTT cytotoxic assay showed the AF MSCs had a similar proliferative capacity at passage 5 and passage 10. However, the proliferative capacities of WJ MSCs were decreased at 5 passage relative to 10 passage. Both AF stem cells and WJ stem cells had the characteristics of mesenchymal stromal cells with some characteristics of embryonic stem cells. They express CD29 and CD105, but not CD34. They were positive for Class I major histocompatibility (MHC I) antigens (HLA-ABC), and were negative, or mildly positive, for MHC Class II (HLA-DR) antigen. Oct-4 was positive in all the two cells types. Both AF MSCs and WJ MSCs could differentiate along myocardium. The differentiation capacities were detected by the expression of GATA-4, c-TnT, α-actin, Cx43 after myocardial induction. Conclusions Both AF MSCs and WJ MSCs have the potential clinical application for myogenesis in cardiac regenerative therapy.

  5. Isolation, culture and surface markers detection of human umbilical cord mesenchymal stem cells%人脐带间充质干细胞分离培养及表面标志检测

    Institute of Scientific and Technical Information of China (English)

    冯凯; 肖漓; 马锡慧; 高钰; 孔祥瑞

    2013-01-01

    Objective To investigate the methods of isolation and culture in vitro and detect the surface markers of human umbilical cord mesenchymal stem cells.Methods Human umbilical cord Wharton' s jelly was separated and cut up as small as possible,and then cultured with α-MEM.Human umbilical cord mesenchymal stem cells could be obtained by culturing the tissue block adhered the bottle wall.And the cells were passaged at a certain density.The surface markers of human umbilical cord mesenchymal stem cells were detected by FACS when the cells were in Generation Three.Results Human umbilical cord mesenchymal stem cells were obtained from Wharton' s jelly conveniently,with fibroblast shape and stable proliferation and passage.CD29,CD44,CD105 were strongly expressed on human umbilical cord mesenchymal stem cells.But CD45,CD34,HLA-DR,HLA-G,CD80,CDs6 were not expressed.Conclusion Human umbilical cord mesenchymal stem cells can be obtained effectively from the culture of the tissue block,which provides a rich source of cells for tissue engineering.%目的 探讨体外分离培养人脐带源间充质干细胞(hUCMSC)的方法,并检测hUCMSC的表面标志.方法 分离脐带华通胶(Wharton's jelly),将其剪碎后利用组织块贴壁法培养获得hUCMSC,生长至一定密度后进行传代,采用流式细胞术检测第3代hUCMSC表面标志.结果 由人脐带华通胶可方便、有效地获得hUCMSC,其体外生长形态类似成纤维细胞,并可稳定增殖和传代.hUCMSC表面标志CD29、CD44、CD105高表达,而表面标志CD45、CD34、HLA-DR、HLA-G、CD80、CD86不表达.结论 利用人脐带华通胶组织块培养可有效获得hUCMSC,为组织工程提供丰富的细胞来源.

  6. Glycogen synthase kinase 3 (GSK3)-inhibitor SB216763 promotes the conversion of human umbilical cord mesenchymal stem cells into neural precursors in adherent culture.

    Science.gov (United States)

    Gao, Liyang; Zhao, Mingyan; Li, Peng; Kong, Junchao; Liu, Zhijun; Chen, Yonghua; Huang, Rui; Chu, Jiaqi; Quan, Juanhua; Zeng, Rong

    2017-01-01

    The ability to generate neural progenitor cells from human umbilical cord mesenchymal stem cells (hUC-MSCs) has provided an option to treat neurodegenerative diseases. To establish a method for this purpose, we characterized the early neural markers of hUC-MSCs-derived cells under different conditions. We found that neither the elimination of signals for alternative fate nor N2 supplement was sufficient to differentiate hUC-MSCs into neural precursor cells, but the GSK3 inhibitor SB216763 could promote an efficient neural commitment of hUC-MSCs. The results indicated that Wnt/β-catenin might play an important role during the early neural differentiation of hUC-MSCs. Here, we report a method for hUC-MSCs to commit efficiently into a neural fate within a short period of time. This protocol provides an efficient method for hUC-MSCs-based neural regeneration.

  7. Effective Action Distance of Co-Culture between Umbilical Cord Blood-Derived Hematopoietic Stem/Progenitor Cells and Human Adipose Derived Stem Cells%脐血造血干/祖细胞与脂肪干细胞共培养的作用距离研究

    Institute of Scientific and Technical Information of China (English)

    宋克东; 崔占峰; 刘天庆; 武爽; 郭文华; 郝永杰; 方美云; 石芳鑫; 朱丽丽; 马学虎

    2011-01-01

    设计了一种细胞间距可调的transwell共培养方法,以研究脐带血来源的造血干/祖细胞(HS/PCs)和人脂肪干细胞(human-adipose derived stem cells,h-ADSCs)体外共培养时细胞间作用距离对造血干细胞扩增能力和脂肪干细胞在共培养后干细胞特性的影响.采用不同规格的砂纸打磨孔板的上壁面,经高精度游标卡尺测量,使两种细胞之间的有效接触间距为10~450 μm不等.然后以h-ADSCs为基质细胞,分别考察HS/PCs和h-ADSCs在不同的作用距离下的共培养情况.其间每24小时对细胞进行计数,观察细胞形态.培养7天后对MNCs表面抗原CD34+、CFU-GM集落扩增倍数进行了检测;同时也对h-ADSCs表面抗原(CD13、CD29、CD34、CD44、CD45、CD73、CD105、CD166、HLA-DR)及其多向分化潜能(成骨、成软骨、成脂肪)进行分析以鉴定其干细胞性能.结果表明,通过transwell共培养,细胞之间在作用距离为350μm时HS/PCs的扩增效果最好,其中造血MNCs扩增了15.1±0.2倍,CD34+扩增了5.0±0.1倍;扩增的h-ADSCs表达CD29、CD44、CD166,而不表达CD34、CD45,且在适当诱导条件下可以向成骨细胞、软骨细胞、脂肪细胞分化.%In order to investigate the effects of in vitro co-culture distance between umbilical cord blood-derived hematopoietic stem/progenitor cells (HS/PCs) and human adipose derived stem cells (h-ADSCs) on the expansion of HS/PCs and the stem cell properties of h-ADSCs, a novel transwell co-culture protocol in which the distance between the two culture chambers could be adjusted was designed. Sand papers with different specifications were utilized to adjust the cellular action distance between two kinds of cells mentioned above in the range of 10 to 450 μrn which was measured by a high-precision vernier caliper. Then the HS/PCs were cultured in the modified transwell supported by ADSCs for 7 days. The total cell number was counted by using a hemacytometer and the cell morphology

  8. Reduced inflammatory cell recruitment and tissue damage in spinal cord injury by acellular spinal cord scaffold seeded with mesenchymal stem cells.

    Science.gov (United States)

    Wang, Yu-Hai; Chen, Jian; Zhou, Jing; Nong, Feng; Lv, Jin-Han; Liu, Jia

    2017-01-01

    Therapy using acellular spinal cord (ASC) scaffolds seeded with bone marrow stromal cells (BMSCs) has previously been shown to restore function of the damaged spinal cord and improve functional recovery in a rat model of acute hemisected spinal cord injury (SCI). The aim of the present study was to determine whether BMSCs and ASC scaffolds promote the functional recovery of the damaged spinal cord in a rat SCI model through regulation of apoptosis and immune responses. Whether this strategy regulates secondary inflammation, which is characterized by the infiltration of immune cells and inflammatory mediators to the lesion site, in SCI repair was investigated. Basso, Beattie, and Bresnahan scores revealed that treatment with BMSCs seeded into an ASC scaffold led to a significant improvement in motor function recovery compared with treatment with an ASC scaffold alone or untreated controls at 2 and 8 weeks after surgery (Pscaffold significantly decreased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells, as compared with the ASC scaffold only and control groups. These results suggested that the use of BMSCs decreased the apoptosis of neural cells and thereby limited tissue damage at the lesion site. Notably, the use of BMSCs with an ASC scaffold also decreased the recruitment of macrophages (microglia; Pscaffold only groups. BMSCs regulated inflammatory cell recruitment to promote functional recovery. However, there was no significant difference in IgM-positive expression among the three groups (P>0.05). The results of this study demonstrated that BMSCs seeded into ASC scaffolds for repair of spinal cord hemisection defects promoted functional recovery through the early regulation of inflammatory cell recruitment with inhibition of apoptosis and secondary inflammation.

  9. Umbilical cord-derived stem cells (MODULATISTTM show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Phuc Van Pham

    2016-06-01

    Full Text Available Introduction: Mesenchymal stem cells (MSCs show great promise in regenerative medicine. Clinical applications of MSCs have recently increased significantly, especially for immune diseases. Autologous transplantation is considered a safe therapy. However, its main disadvantages are poor stability and quality of MSCs from patient to patient, and labor-intensive and time-consuming culture procedures. Therefore, allogeneic MSC transplantation has recently emerged as a potential replacement for autologous transplantation. and ldquo;Off the shelf and rdquo; MSC products, or so-called and ldquo;stem cell drugs and rdquo;, have rapidly developed; these products have already been approved in various countries, including Canada, Korea and Japan. This study aims to evaluate a new stem cell product or and ldquo;drug and rdquo;, termed ModulatistTM, derived from umbilical cord mesenchymal stem cells (UCMSCs, which have strong immunomodulatory properties, compared to bone marrow-derived MSCs (BMMSCs or adipose tissue-derived stem cells (ADSCs. Methods: ModulatistTM was produced from MSCs derived from whole umbilical cord (UC tissue (which includes Wharton's jelly and UC, according to GMP compliant procedures. Bone marrow- and adipose tissue-derived MSCs were isolated and proliferated in standard conditions, according to GMP compliant procedures. Immunomodulation mediated by MSCs was assessed by allogenic T cell suppression and cytokine release; role of prostaglandin E2 in the immunomodulation was also evaluated. Results: The results showed that ModulatistTM exhibited stronger immunomodulation than BMMSC and ADSC in vitro. ModulatistTM strongly suppressed allogeneic T cells proliferation and decreased cytokine production, compared to BMMSCs and ADSCs. Conclusion: ModulatistTM is a strong immunomodulator and promising MSC product. It may be useful to modulate or treat autoimmune diseases. [Biomed Res Ther 2016; 3(6.000: 687-696

  10. Human Umbilical Cord Mesenchymal Stem Cells Promote Breast Cancer Metastasis by Interleukin-8- and Interleukin-6-Dependent Induction of CD44(+)/CD24(-) Cells.

    Science.gov (United States)

    Ma, Fengxia; Chen, Dandan; Chen, Fang; Chi, Ying; Han, Zhibo; Feng, Xiaoming; Li, Xue; Han, Zhongchao

    2015-01-01

    Although emerging evidence links mesenchymal stem cells (MSCs) with cancer metastasis, the underlying mechanisms are poorly understood. In the present study, we found that human umbilical cord-derived MSCs (UC-MSCs) promoted MCF-7 cell migration in vitro and metastasis in vivo. To explore the mechanisms, the characteristics of MCF-7 cells cocultured with UC-MSCs were assessed. The expression and secretion of interleukin-8 (IL-8) and IL-6 were induced in MCF-7 cells cocultured with UC-MSCs. However, neutralization of IL-8 or IL-6 secreted by UC-MSCs could attenuate the enhanced expression of IL-8 and IL-6 in MCF-7 cells cocultured with UC-MSCs, which subsequently alleviated the enhanced migration. Similar to UC-MSCs, exogenous human recombinant IL-8 or IL-6 also promoted IL-8 and IL-6 expression and MCF-7 cell migration. In addition to enhanced IL-8 and IL-6 expression, MCF-7 cells cocultured with UC-MSCs displayed enhanced mammosphere-forming ability and increased percentage of CD44(+)/CD24(-) cells. However, epithelial-to-mesenchymal transition (EMT) was not observed in MCF-7 cells cocultured with UC-MSCs. Taken together, these results suggested that IL-8 and IL-6 secreted by UC-MSCs activated the autocrine IL-8 and IL-6 signaling in MCF-7 cells and induced CD44(+)/CD24(-) cells, which subsequently promoted MCF-7 cell migration in vitro and metastasis in vivo.

  11. Mir-218 contributes to the transformation of 5-Aza/GF induced umbilical cord mesenchymal stem cells into hematopoietic cells through the MITF pathway.

    Science.gov (United States)

    Hu, Kaimeng; Xu, Chen; Ni, Haitao; Xu, Zhenyu; Wang, Yue; Xu, Sha; Ji, Kaihong; Xiong, Jun; Liu, Houqi

    2014-07-01

    Experiments with 5'-azacytidine and hematopoietic growth factor approved for the transformation of human mesenchymal cells into hematopoietic cells have demonstrated that cell fate can be dramatically altered by changing the epigenetic state of cells. Here, we demonstrate that umbilical cord-derived human mesenchymal stem cells (uMSC) are easily accessible and could be induced into cells with hematopoietic function. Furthermore, we focused on the crucial miRNAs and relative transcription factors (TFs) in our study. We show that combined Aza/GF incubation can increase expression of miR-218, miR-150, and miR-451. Accordingly, miR-218 overexpression achieved an increase in expression of CD34 (3-13%), CD45 (50-65%), CD133 and c-Kit in uMSCs that cultured with Aza/GF. The expression of the relevant transcriptional factors, such as HoxB4 and NF-Ya, was higher than in the negative control group or miR-218 inhibitor transfected group, and microphthalmia-associated transcription factor (MITF) is regarded to be a direct target of miR-218, as demonstrated by luciferase assays. Overexpression of miR-218 might, in conjunction with the MITF, upregulate the expression of NF-Ya and HoxB4, which induce a hematopoietic state. We concluded that miR-218 might have a role in the transformation of hematopoietic cells through the MITF pathway.

  12. Optimization of culture conditions for the expansion of umbilical cord-derived mesenchymal stem or stromal cell-like cells using xeno-free culture conditions.

    Science.gov (United States)

    Hatlapatka, Tim; Moretti, Pierre; Lavrentieva, Antonina; Hass, Ralf; Marquardt, Nicole; Jacobs, Roland; Kasper, Cornelia

    2011-04-01

    First isolated from bone marrow, mesenchymal stem or stromal cells (MSC) were shown to be present in several postnatal and extraembryonic tissues as well as in a large variety of fetal tissues (e.g., fatty tissue, dental pulp, placenta, umbilical cord blood, and tissue). In this study, an optimized protocol for the expansion of MSC-like cells from whole umbilical cord tissue under xeno-free culture conditions is proposed. Different fetal calf sera and human serum (HS) were compared with regard to cell proliferation and MSC marker stability in long-term expansion experiments, and HS was shown to support optimal growth conditions. Additionally, the optimal concentration of HS during the cultivation was determined. With regard to cell proliferative potential, apoptosis, colony-forming unit fibroblast frequency, and cell senescence, our findings suggest that an efficient expansion of the cells is carried out best in media supplemented with 10% HS. Under our given xeno-free culture conditions, MSC-like cells were found to display in vitro immunoprivileged and immunomodulatory properties, which were assessed by co-culture and transwell culture experiments with carboxyfluorescein diacetate succinimidyl ester-labeled peripheral blood mononuclear cells. These findings may be of great value for the establishment of biotechnological protocols for the delivery of sufficient cell numbers of high quality for regenerative medicine purposes.

  13. Chondrogenic Differentiation Capacity of Human Umbilical Cord Mesenchymal Stem Cells with Platelet Rich Fibrin Scaffold in Cartilage Regeneration (In Vitro Study

    Directory of Open Access Journals (Sweden)

    Ni Putu Mira Sumarta

    2016-09-01

    Full Text Available Background: Human umbilical cord mesenchymal stem cell is a promising source of allogenous MSC with great chondrogenic differentiation capacity. Meanwhile, platelet rich fibrin (PRF is a natural fibrin matrix, rich in growth factors, forming a smooth and flexible fibrin network, supporting cytokines and cell migration, thus can be used as a scaffold that facilitate the differentiation of MSC. However, the differential capability of MSC cultured in PRF was still poorly understood. Method: We studied in vitro differentiation potential of MSC cultured in PRF by evaluating several markers such as FGF 18, Sox 9, type II collagen, aggrecan in 3 different culture medium. Result: The result showed that there was positive expression of FGF 18, Sox 9, type II collagen, aggrecan in all medium of in vitro culture. Conclusion: MSC cultured from human umbilical cord had the capacity of chondrogenic differentiation and able to produce cartilage extracellular matrix in vitro which means that hUCMSC is a potential allogeneic MSC for cartilage regeneration.

  14. Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage.

    Directory of Open Access Journals (Sweden)

    Cristiana Leite

    Full Text Available Mesenchymal stem cells (MSCs are viewed as safe, readily available and promising adult stem cells, which are currently used in several clinical trials. Additionally, their soluble-factor secretion and multi-lineage differentiation capacities place MSCs in the forefront of stem cell types with expected near-future clinical applications. In the present work MSCs were isolated from the umbilical cord matrix (Wharton's jelly of human umbilical cord samples. The cells were thoroughly characterized and confirmed as bona-fide MSCs, presenting in vitro low generation time, high proliferative and colony-forming unit-fibroblast (CFU-F capacity, typical MSC immunophenotype and osteogenic, chondrogenic and adipogenic differentiation capacity. The cells were additionally subjected to an oligodendroglial-oriented step-wise differentiation protocol in order to test their neural- and oligodendroglial-like differentiation capacity. The results confirmed the neural-like plasticity of MSCs, and suggested that the cells presented an oligodendroglial-like phenotype throughout the differentiation protocol, in several aspects sharing characteristics common to those of bona-fide oligodendrocyte precursor cells and differentiated oligodendrocytes.

  15. Cord blood mesenchymal stem cells propel human dendritic cells to an intermediate maturation state and boost interleukin-12 production by mature dendritic cells.

    Science.gov (United States)

    van den Berk, Lieke C J; Roelofs, Helene; Huijs, Tonnie; Siebers-Vermeulen, Kim G C; Raymakers, Reinier A; Kögler, Gesine; Figdor, Carl G; Torensma, Ruurd

    2009-12-01

    Pathogen-derived entities force the tissue-resident dendritic cells (DCs) towards a mature state, followed by migration to the draining lymph node to present antigens to T cells. Bone marrow mesenchymal stem cells (MSCs) modulate the differentiation, maturation and function of DCs. In umbilical cord blood an immature MSC population was identified. Remarkably, these immature stem cells modulated DCs in a different way. Marker expression was unchanged during the differentiation of monocytes towards immature DCs (iDCs) when cocultured with cord blood MSC [unrestricted somatic stem cells (USSCs)]. The maturation to mature DCs (mDCs) was enhanced when DCs were co-cultured with USSC, as evidenced by the up-regulation of costimulatory molecules. Endocytosis of dextran by iDCs was hampered in the presence of USSCs, which is indicative for the maturation of iDCs. Despite this maturation, the migration of iDCs cocultured with USSCs appeared to be identical to iDCs cultured alone. However, USSCs increased the migration of mDCs towards CCL21 and boosted interleukin-12 production. So, USSCs mature iDCs, thereby redirecting the antigen-uptake phenotype towards a mature phenotype. Furthermore, DC maturation by lipopolysaccharide (LPS) or USSCs reflects two distinct pathways because migration was unaffected when iDCs were matured by coculture with USSCs, while it was strongly enhanced in the presence of LPS. DCs are able to discriminate the different MSC subtypes, resulting in diverse differentiation programmes.

  16. High Harvest Yield, High Expansion, and Phenotype Stability of CD146 Mesenchymal Stromal Cells from Whole Primitive Human Umbilical Cord Tissue

    Directory of Open Access Journals (Sweden)

    Rebecca C. Schugar

    2009-01-01

    Full Text Available Human umbilical cord blood is an excellent primitive source of noncontroversial stem cells for treatment of hematologic disorders; meanwhile, new stem cell candidates in the umbilical cord (UC tissue could provide therapeutic cells for nonhematologic disorders. We show novel in situ characterization to identify and localize a panel of some markers expressed by mesenchymal stromal cells (MSCs; CD44, CD105, CD73, CD90 and CD146 in the UC. We describe enzymatic isolation and purification methods of different UC cell populations that do not require manual separation of the vessels and stroma of the coiled, helical-like UC tissue. Unique quantitation of in situ cell frequency and stromal cell counts upon harvest illustrate the potential to obtain high numerical yields with these methods. UC stromal cells can differentiate to the osteogenic and chondrogenic lineages and, under specific culturing conditions, they exhibit high expandability with unique long-term stability of their phenotype. The remarkable stability of the phenotype represents a novel finding for human MSCs, from any source, and supports the use of these cells as highly accessible stromal cells for both basic studies and potentially therapeutic applications such as allogeneic clinical use for musculoskeletal disorders.

  17. Isolation and characterization of a novel strain of mesenchymal stem cells from mouse umbilical cord: potential application in cell-based therapy.

    Directory of Open Access Journals (Sweden)

    Wen-Wen Li

    Full Text Available Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs have recently been recognized as a potential source for cell-based therapy in various preclinical animal models, such as Parkinson's disease, cerebral ischemia, spinal cord injury, and liver failure; however, the precise cellular and molecular mechanisms underlying the beneficial outcomes remain under investigation. There is a growing concern regarding rejection and alteration of genetic code using this xenotransplantation approach. In this study, a novel strain of murine MSCs derived from the umbilical cord of wild-type and green fluorescent protein (GFP transgenic mice have been successfully isolated, expanded, and characterized. After 10 passages, the mUC-MSCs developed a rather homogeneous, triangular, spindle-shaped morphology, and were sub-cultured up to 7 months (over 50 passages without overt changes in morphology and doubling time. Cell surface markers are quite similar to MSCs isolated from other tissue origins as well as hUC-MSCs. These mUC-MSCs can differentiate into osteoblasts, adipocytes, neurons, and astrocytes in vitro, as well as hematopoietic lineage cells in vivo. mUC-MSCs also possess therapeutic potential against two disease models, focal ischemic stroke induced by middle cerebral artery occlusion (MCAo and acute hepatic failure. Subtle differences in the expression of cytokine-related genes exist between mUC-MSCs and hUC-MSCs, which may retard and jeopardize the advance of cell therapy. Allografts of these newly established mUC-MSCs into various mouse disease models may deepen our insights into the development of more effective cell therapy regimens.

  18. Ultrastructural and immunocytochemical analysis of multilineage differentiated human dental pulp- and umbilical cord-derived mesenchymal stem cells

    NARCIS (Netherlands)

    Struys, T.; Moreels, M.; Martens, W.; Donders, R.; Wolfs, E.; Lambrichts, I.

    2011-01-01

    Mesenchymal stem cells (MSCs) are one of the most promising stem cell types due to their availability and relatively simple requirements for in vitro expansion and genetic manipulation. Besides the well-characterized MSCs derived from bone marrow, there is growing evidence suggesting that dental pul

  19. Hypoxic chondrogenic differentiation of human cord blood stem cells in structurally-graded polycaprolactone scaffolds

    DEFF Research Database (Denmark)

    Munir, Samir; Søballe, Kjeld; Ulrich-Vinther, Michael;

    Background: Articular chondrocytes and bone marrow-derived multipotent mesenchymal stromal cells (MSCs) are the favoured cells for cartilage tissue engineering. Umbilical cord blood has proven an alternative source of MSCs and moreover they may be more potent chondroprogenitor cells than bonemarrow...... MSCs. Purpose / Aim of Study: Multilineage progenitor cells (MLPCs) are clonal cord blood-derived MSCs and may therefore provide a cell source with more reproducible outcomes compared to heterogeneous primary MSC cultures. Materials and Methods: We evaluated the chondrogenic potency of MLPCs...... in standard micromass pellet system, layered on calcium polyphosphate (CPP), and on semi-permeable polytetrafluoroethane membranes with and without collagen type I, II or IV pre-coating. Findings / Results: The MPLC cell line used in this study possessed poor chondrogenic potency overall, but membrane...

  20. Nursing for patients with multiple system atrophy treated with mesenchymal stem cells in umbilical cord blood therapy%脐血间充质干细胞治疗多系统萎缩患者的护理

    Institute of Scientific and Technical Information of China (English)

    许梅

    2011-01-01

    目的 观察护理对脐血间充质干细胞治疗多系统萎缩疗效的作用.方法 脐血间充质干细胞治疗(静脉输注结合鞘内注射)2例多系统萎缩患者,辅以心理护理、专科护理、健康宣教等.结果 2例患者脐血间充质干细胞治疗后,临床症状显著改善.结论 脐血间充质干细胞治疗是一种新型有效的治疗多系统萎缩的方法,而护理在其中起重要作用.%Objective To observe the effect of nursing for patients with multiple system atrophy treated with mesenchymal stem cells in umbilical cord blood therapyMethods Two patients with multiple system atrophy were treated by mesenchymal stem cells in umbilical cord blood (intravenous and intrathecal injection). Results The mesenchymal stem cell therapy improved clinical symptoms. Conclusion The mesenchymal stem cell therapy is a novel and effective therapy for multiple system atrophy. Nursing plays a key role in the process.

  1. Mesenchymal stem/progenitor cells in human umbilical cord blood as support for ex vivo expansion of CD34+ hematopoietic stem cells and for chondrogenic differentiation

    Institute of Scientific and Technical Information of China (English)

    JIN-FUWANG; LI-JUANWANG; YI-FANWU; YINGXIANG; CHUN-GANGXIE; BING-BINGJIA; JENNYHARRINGTON; IANK.MCNIECE

    2005-01-01

    Background and Objectives. Human mesenchymal stem/progenitor cells (MSPC) ar pluripotent, being the precursors for marrow stroma, bone, cartilage, muscle and connective tissues. Although the presence of hematopoietic stem/progenitor cells (HSPC) in umbilical cord blood (UCB) is well known, that of MSPC has been not fully evaluated. Design and Methods. In this study, we examined the immunophenotype, the supporting function in relation to exvivo expansion of hematopoietic stem progenitor cells and the chondrogenic differentiation of cultured cells with characteristics of MSPC from UCB. When UCB nucleated cells were isolated and 107 cells cultured in IMDM with 20% fetal bovine serum, the mean number of adherent fibroblastlike colonies was 3.5±0.7/106 monuclear cells. Results. UCB-derived MSPC could be expanded for at least 15 passages. In their undifferentiated state, UCB-derived MSPC were CD 13+, CD29+, CD90+, CD105+, CD166+, SH2+,SH3+, SH4+, CD45-, CD34-, and CD14-; they produced stem cell factor, interleukin 6 and tumor necrosis factor α.UCB-derived MSPC cultured in chondrogenic media differentiated into chondrogenic cells. UCB-derived MSPC supported the proliferation and differentiation of CD34+ cells from UCB in vitro. Interpretation and Conclusions. UCB-derived MSPC have the potential to support ex vivo expansion of HSPC and chondrogenic differentiation. UCB should not be regarded as medical waste. It can serve as an alternative source of mesenchymal stem cells and may provide a unique source of fetal cells for cellular and gene therapy.

  2. Direct Comparison of Wharton's Jelly and Bone Marrow-Derived Mesenchymal Stromal Cells to Enhance Engraftment of Cord Blood CD34+ Transplants

    Science.gov (United States)

    van der Garde, Mark; van Pel, Melissa; Millán Rivero, Jose Eduardo; de Graaf-Dijkstra, Alice; Slot, Manon C.; Kleinveld, Yoshiko; Watt, Suzanne M.; Roelofs, Helene

    2015-01-01

    Cotransplantation of CD34+ hematopoietic stem and progenitor cells (HSPCs) with mesenchymal stromal cells (MSCs) enhances HSPC engraftment. For these applications, MSCs are mostly obtained from bone marrow (BM). However, MSCs can also be isolated from the Wharton's jelly (WJ) of the human umbilical cord. This source, regarded to be a waste product, enables a relatively low-cost MSC acquisition without any burden to the donor. In this study, we evaluated the ability of WJ MSCs to enhance HSPC engraftment. First, we compared cultured human WJ MSCs with human BM-derived MSCs (BM MSCs) for in vitro marker expression, immunomodulatory capacity, and differentiation into three mesenchymal lineages. Although we confirmed that WJ MSCs have a more restricted differentiation capacity, both WJ MSCs and BM MSCs expressed similar levels of surface markers and exhibited similar immune inhibitory capacities. Most importantly, cotransplantation of either WJ MSCs or BM MSCs with CB CD34+ cells into NOD SCID mice showed similar enhanced recovery of human platelets and CD45+ cells in the peripheral blood and a 3-fold higher engraftment in the BM, blood, and spleen 6 weeks after transplantation when compared to transplantation of CD34+ cells alone. Upon coincubation, both MSC sources increased the expression of adhesion molecules on CD34+ cells, although stromal cell-derived factor-1 (SDF-1)-induced migration of CD34+ cells remained unaltered. Interestingly, there was an increase in CFU-GEMM when CB CD34+ cells were cultured on monolayers of WJ MSCs in the presence of exogenous thrombopoietin, and an increase in BFU-E when BM MSCs replaced WJ MSCs in such cultures. Our results suggest that WJ MSC is likely to be a practical alternative for BM MSC to enhance CB CD34+ cell engraftment. PMID:26414086

  3. Microvesicles derived from human umbilical cord Wharton's jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Shuai Wu

    Full Text Available Several studies suggest that mesenchymal stem cells (MSCs possess antitumor properties; however, the exact mechanisms remain unclear. Recently, microvesicles (MVs are considered as a novel avenue intercellular communication, which may be a mediator in MSCs-related antitumor effect. In the present study, we evaluated whether MVs derived from human umbilical cord Wharton's jelly mesenchymal stem cells (hWJMSCs may inhibit bladder tumor T24 cells growth using cell culture and the BALB/c nu/nu mice xenograft model. CCK-8 assay and Ki-67 immunostaining were performed to estimate cell proliferation in vitro and in vivo. Flow cytometry and TUNEL assay were used to assess cell cycle and apoptosis. To study the conceivable mechanism by which hWJMSC-MVs attenuate bladder tumor T24 cells, we estimated the expression of Akt/p-Akt, p-p53, p21 and cleaved Caspase 3 by Western blot technique after exposing T24 cells to hWJMSC-MVs for 24, 48 and 72h. Our data indicated that hWJMSC-MVs can inhibit T24 cells proliferative viability via cell cycle arrest and induce apoptosis in T24 cells in vitro and in vivo. This study showed that hWJMSC-MVs down-regulated phosphorylation of Akt protein kinase and up-regulated cleaved Caspase 3 during the process of anti-proliferation and pro-apoptosis in T24 cells. These results demonstrate that hWJMSC-MVs play a vital role in hWJMSC-induced antitumor effect and may be a novel tool for cancer therapy as a new mechanism of cell-to-cell communication.

  4. MicroRNA-34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wang Tao-Yeuan

    2011-09-01

    Full Text Available Abstract Background Mesenchymal stem cell (MSC found in bone marrow (BM-MSCs and the Wharton's jelly matrix of human umbilical cord (WJ-MSCs are able to transdifferentiate into neuronal lineage cells both in vitro and in vivo and therefore hold the potential to treat neural disorders such as stroke or Parkinson's disease. In bone marrow MSCs, miR-130a and miR-206 have been show to regulate the synthesis of neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. However, how neuronal differentiation is controlled in WJ-MSC remains unclear. Methods WJ-MSCs were isolated from human umbilical cords. We subjected WJ-MSCs into neurogenesis by a published protocol, and the miRNome patterns of WJ-MSCs and their neuronal progenitors (day 9 after differentiation were analyzed by the Agilent microRNA microarray. Results Five miRNAs were enriched in WJ-MSCs, including miR-345, miR-106a, miR-17-5p, miR-20a and miR-20b. Another 11 miRNAs (miR-206, miR-34a, miR-374, miR-424, miR-100, miR-101, miR-323, miR-368, miR-137, miR-138 and miR-377 were abundantly expressed in transdifferentiated neuronal progenitors. Among these miRNAs, miR-34a and miR-206 were the only 2 miRNAs been linked to BM-MSC neurogenesis. Overexpressing miR-34a in cells suppressed the expression of 136 neuronal progenitor genes, which all possess putative miR-34a binding sites. Gene enrichment analysis according to the Gene Ontology database showed that those 136 genes were associated with cell motility, energy production (including those with oxidative phosphorylation, electron transport and ATP synthesis and actin cytoskeleton organization, indicating that miR-34a plays a critical role in precursor cell migration. Knocking down endogenous miR-34a expression in WJ-MSCs resulted in the augment of WJ-MSC motility. Conclusions Our data suggest a critical role of miRNAs in MSC neuronal differentiation, and miR-34a contributes in neuronal precursor motility, which may

  5. What Makes Umbilical Cord Tissue-Derived Mesenchymal Stromal Cells Superior Immunomodulators When Compared to Bone Marrow Derived Mesenchymal Stromal Cells?

    Directory of Open Access Journals (Sweden)

    R. N. Bárcia

    2015-01-01

    Full Text Available MSCs derived from the umbilical cord tissue, termed UCX, were investigated for their immunomodulatory properties and compared to bone marrow-derived MSCs (BM-MSCs, the gold-standard in immunotherapy. Immunogenicity and immunosuppression were assessed by mixed lymphocyte reactions, suppression of lymphocyte proliferation and induction of regulatory T cells. Results showed that UCX were less immunogenic and showed higher immunosuppression activity than BM-MSCs. Further, UCX did not need prior activation or priming to exert their immunomodulatory effects. This was further corroborated in vivo in a model of acute inflammation. To elucidate the potency differences observed between UCX and BM-MSCs, gene expression related to immune modulation was analysed in both cell types. Several gene expression profile differences were found between UCX and BM-MSCs, namely decreased expression of HLA-DRA, HO-1, IGFBP1, 4 and 6, ILR1, IL6R and PTGES and increased expression of CD200, CD273, CD274, IL1B, IL-8, LIF and TGFB2. The latter were confirmed at the protein expression level. Overall, these results show that UCX seem to be naturally more potent immunosuppressors and less immunogenic than BM-MSCs. We propose that these differences may be due to increased levels of immunomodulatory surface proteins such as CD200, CD273, CD274 and cytokines such as IL1β, IL-8, LIF and TGFβ2.

  6. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells.

    Science.gov (United States)

    Mizukami, Amanda; Fernandes-Platzgummer, Ana; Carmelo, Joana G; Swiech, Kamilla; Covas, Dimas T; Cabral, Joaquim M S; da Silva, Cláudia L

    2016-08-01

    Mesenchymal stem/stromal cells (MSC) are being widely explored as promising candidates for cell-based therapies. Among the different human MSC origins exploited, umbilical cord represents an attractive and readily available source of MSC that involves a non-invasive collection procedure. In order to achieve relevant cell numbers of human MSC for clinical applications, it is crucial to develop scalable culture systems that allow bioprocess control and monitoring, combined with the use of serum/xenogeneic (xeno)-free culture media. In the present study, we firstly established a spinner flask culture system combining gelatin-based Cultispher(®) S microcarriers and xeno-free culture medium for the expansion of umbilical cord matrix (UCM)-derived MSC. This system enabled the production of 2.4 (±1.1) x10(5) cells/mL (n = 4) after 5 days of culture, corresponding to a 5.3 (±1.6)-fold increase in cell number. The established protocol was then implemented in a stirred-tank bioreactor (800 mL working volume) (n = 3) yielding 115 million cells after 4 days. Upon expansion under stirred conditions, cells retained their differentiation ability and immunomodulatory potential. The development of a scalable microcarrier-based stirred culture system, using xeno-free culture medium that suits the intrinsic features of UCM-derived MSC represents an important step towards a GMP compliant large-scale production platform for these promising cell therapy candidates. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Conditioned Medium from Placental Mesenchymal Stem Cells Reduces Oxidative Stress during the Cryopreservation of Ex Vivo Expanded Umbilical Cord Blood Cells.

    Science.gov (United States)

    Kadekar, Darshana; Rangole, Sonal; Kale, Vaijayanti; Limaye, Lalita

    2016-01-01

    The limited cell dose in umbilical cord blood (UCB) necessitates ex vivo expansion of UCB. Further, the effective cryopreservation of these expanded cells is important in widening their use in the clinics. During cryopreservation, cells experience oxidative stress due to the generation of reactive oxygen species (ROS). Conditioned medium from mesenchymal stem cells (MSCs-CM) has been shown to alleviate the oxidative stress during wound healing, Alzheimer's disease and ischemic disease. This premise prompted us to investigate the influence of MSCs-CM during cryopreservation of expanded UCB cells. CM-was collected from cord/placental MSCs(C-MSCs-CM, P-MSC-CM). UCB CD34+cells were expanded as suspension cultures in serum free medium containing cytokines for 10 days. Cells were frozen with/without C-MSCs-CM and or P-MSCs-CM in the conventional freezing medium containing 20%FCS +10%DMSO using a programmable freezer and stored in liquid nitrogen. Upon revival, cells frozen with MSCs-CM were found to be superior to cells frozen in conventional medium in terms of viability, CD34+content and clonogenecity. Priming of revived cells for 48 hrs with MSCs-CM further improved their transplantation ability, as compared to those cultured without MSCs-CM. P-MSCs-CM radically reduced the oxidative stress in cryopreserved cells, resulting in better post thaw functionality of CD34+ cells than with C-MSCs-CM. The observed cryoprotective effect of MSCs-CM was primarily due to anti-oxidative and anti-apoptotic properties of the MSCs-CM and not because of the exosomes secreted by them. Our data suggest that MSCs-CM can serve as a valuable additive to the freezing or the priming medium for expanded UCB cells, which would increase their clinical applicability.

  8. Enhancement of mouse germ cell-associated genes expression by injection of human umbilical cord mesenchymal stem cells into the testis of chemical-induced azoospermic mice

    Institute of Scientific and Technical Information of China (English)

    RuiFeng Yang; TaiHua Liu; Kai Zhao; ChengLiang Xiong

    2014-01-01

    Various methods are currently under investigation to preserve fertility in males treated with high‑dose chemotherapy and radiation for malignant and nonmalignant disorders. Human umbilical cord mesenchymal stem cells(HUC‑MSCs), which possess potent immunosuppressive function and secrete various cytokines and growth factors, have the potential clinical applications. As a potential alternative, we investigate whether injection of HUC‑MSCs into the interstitial compartment of the testes to promote spermatogenic regeneration efifciently. HUC‑MSCs were isolated from different sources of umbilical cords and injected into the interstitial space of one testis from 10 busulfan‑treated mice(saline and HEK293cells injections were performed in a separate set of mice) and the other testis remained uninjected. Three weeks after MSCs injection, Relative quantitative reverse transcription polymerase chain reaction was used to identify the expression of 10 of germ cell associated, which are all related to meiosis, demonstrated higher levels of spermatogenic gene expression(2–8 fold) in HUC‑MSCs injected testes compared to the contralateral uninjected testes(ifve mice). Protein levels for germ cell‑speciifc genes,miwi, vasa and synaptonemal complex protein (Scp3)were also higher in MSC‑treated testes compared to injected controls 3weeks after treatment. However, no different expression was detected in saline water and HEK293cells injection control group. We have demonstrated HUC‑MSCs could affect mouse germ cell‑speciifc genes expression. The results also provide a possibility that the transplanted HUC‑MSCs may promote the recovery of spermatogenesis. This study provides further evidence for preclinical therapeutic effects of HUC‑MSCs, and explores a new approach to the treatment of azoospermia.

  9. 3, 3', 5-triiodo-L-thyronine Increases In Vitro Chondrogenesis of Mesenchymal Stem Cells From Human Umbilical Cord Stroma Through SRC2.

    Science.gov (United States)

    Fernández-Pernas, Pablo; Fafián-Labora, Juan; Lesende-Rodriguez, Iván; Mateos, Jesús; De la Fuente, Alexandre; Fuentes, Isaac; De Toro Santos, Javier; Blanco García, Fco; Arufe, María C

    2016-09-01

    Our group focuses on the study of mesenchymal stem cells (MSCs) from human umbilical cord stroma or Warthońs jelly and their directed differentiation toward chondrocyte-like cells capable of regenerating damaged cartilage when transplanted into an injured joint. This study aimed to determine whether lactogenic hormone prolactin (PRL) or 3, 3', 5-triiodo-L-thyronine (T3), the active thyroid hormone, modulates chondrogenesis in our in vitro model of directed chondrogenic differentiation, and whether Wnt signalling is involved in this modulation. MSCs from human umbilical cord stroma underwent directed differentiation toward chondrocyte-like cells by spheroid formation. The addition of T3 to the chondrogenic medium increased the expression of genes linked to chondrogenesis like collagen type 2, integrin alpha 10 beta 1, and Sox9 measured by quantitative real time polymerase chain reaction (qRT-PCR) analysis. Levels of collagen type 2 and aggrecane analyzed by immunohistochemistry, and staining by Safranin O were increased after 14 days in spheroid culture with T3 compared to those without T3 or only with PRL. B-catenin, Frizzled, and GSK-3β gene expressions were significantly higher in spheroids cultured with chondrogenic medium (CM) plus T3 compared to CM alone after 14 days in culture. The increase of chondrogenic differentiation was inhibited when the cells were treated with T3 plus ML151, an inhibitor of the T3 steroid receptor. This work demonstrates, for first time, that T3 promotes differentiation towards chondrocytes-like cells in our in vitro model, that this differentiation is mediated by steroid receptor co-activator 2 (SRC2) and does not induce hypertrophy. J. Cell. Biochem. 117: 2097-2108, 2016. © 2016 Wiley Periodicals, Inc.

  10. An increase in CD3+CD4+CD25+ regulatory T cells after administration of umbilical cord-derived mesenchymal stem cells during sepsis.

    Directory of Open Access Journals (Sweden)

    Yu-Hua Chao

    Full Text Available Sepsis remains an important cause of death worldwide, and vigorous immune responses during sepsis could be beneficial for bacterial clearance but at the price of collateral damage to self tissues. Mesenchymal stem cells (MSCs have been found to modulate the immune system and attenuate sepsis. In the present study, MSCs derived from bone marrow and umbilical cord were used and compared. With a cecal ligation and puncture (CLP model, the mechanisms of MSC-mediated immunoregulation during sepsis were studied by determining the changes of circulating inflammation-associated cytokine profiles and peripheral blood mononuclear cells 18 hours after CLP-induced sepsis. In vitro, bone marrow-derived MSCs (BMMSCs and umbilical cord-derived MSCs (UCMSCs showed a similar morphology and surface marker expression. UCMSCs had stronger potential for osteogenesis but lower for adipogenesis than BMMSCs. Compared with rats receiving PBS only after CLP, the percentage of circulating CD3+CD4+CD25+ regulatory T (Treg cells and the ratio of Treg cells/T cells were elevated significantly in rats receiving MSCs. Further experiment regarding Treg cell function demonstrated that the immunosuppressive capacity of Treg cells from rats with CLP-induced sepsis was decreased, but could be restored by administration of MSCs. Compared with rats receiving PBS only after CLP, serum levels of interleukin-6 and tumor necrosis factor-α were significantly lower in rats receiving MSCs after CLP. There were no differences between BMMSCs and UCMSCs. In summary, this work provides the first in vivo evidence that administering BMMSCs or UCMSCs to rats with CLP-induced sepsis could increase circulating CD3+CD4+CD25+ Treg cells and Treg cells/T cells ratio, enhance Treg cell suppressive function, and decrease serum levels of interleukin-6 and tumor necrosis factor-α, suggesting the immunomodulatory association of Treg cells and MSCs during sepsis.

  11. Umbilical cord Wharton's jelly repeated culture system: a new device and method for obtaining abundant mesenchymal stem cells for bone tissue engineering.

    Directory of Open Access Journals (Sweden)

    Zhengqi Chang

    Full Text Available To date, various types of cells for seeding regenerative scaffolds have been used for bone tissue engineering. Among seed cells, the mesenchymal stem cells derived from human umbilical cord Wharton's jelly (hUCMSCs represent a promising candidate and hold potential for bone tissue engineering due to the the lack of ethical controversies, accessibility, sourced by non-invasive procedures for donors, a reduced risk of contamination, osteogenic differentiation capacities, and higher immunomodulatory capacity. However, the current culture methods are somewhat complicated and inefficient and often fail to make the best use of the umbilical cord (UC tissues. Moreover, these culture processes cannot be performed on a large scale and under strict quality control. As a result, only a small quantity of cells can be harvested using the current culture methods. To solve these problems, we designed and evaluated an UC Wharton's jelly repeated culture device. Using this device, hUCMSCs were obtained from the repeated cultures and their quantities and biological characteristics were compared. We found that using our culture device, which retained all tissue blocks on the bottom of the dish, the total number of obtained cells increased 15-20 times, and the time required for the primary passage was reduced. Moreover, cells harvested from the repeated cultures exhibited no significant difference in their immunophenotype, potential for multilineage differentiation, or proliferative, osteoinductive capacities, and final osteogenesis. The application of the repeated culture frame (RCF not only made full use of the Wharton's jelly but also simplified and specified the culture process, and thus, the culture efficiency was significantly improved. In summary, abundant hUCMSCs of dependable quality can be acquired using the RCF.

  12. Mesenchymal Stromal Cells Derived from Human Umbilical Cord Tissues: Primitive Cells with Potential for Clinical and Tissue Engineering Applications

    Science.gov (United States)

    Moretti, Pierre; Hatlapatka, Tim; Marten, Dana; Lavrentieva, Antonina; Majore, Ingrida; Hass, Ralf; Kasper, Cornelia

    Mesenchymal stem or stromal cells (MSCs) have a high potential for cell-based therapies as well as for tissue engineering applications. Since Friedenstein first isolated stem or precursor cells from the human bone marrow (BM) stroma that were capable of osteogenesis, BM is currently the most common source for MSCs. However, BM presents several disadvantages, namely low frequency of MSCs, high donor-dependent variations in quality, and painful invasive intervention. Thus, tremendous research efforts have been observed during recent years to find alternative sources for MSCs.

  13. 脐血间充质干细胞移植治疗儿童型脊肌萎缩症1例%Umbilical cord blood mesenchymal stem cell transplantation for treatment of a child with spinal muscular atrophy

    Institute of Scientific and Technical Information of China (English)

    杜玲; 杨华强; 王娜; 罗国君

    2011-01-01

    BACKGROUND: Many animal and clinical studies have reported that the safe and effective usage of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) transplantation for treatment of neurological genetic diseases.OBJECTIVE: To investigate the feasibility and effect of UCB-MSCs transplantation in the treatment of spinal muscular atrophy (SMA).METHODS: A child admitted at January 2010 had been confirmed as having SMA, and drug and rehabilitation therapies were invalid. Then, the child received UCB-MSCs transplantation via the first intravenous infusion and three times of subarachnoid injection, once a week, (4-6)×107 cells once and four times as a course. Neurological physical examination, biochemical test, muscle enzymes detection, FIM scoring and electromyography (EMG) examination were conducted. RESULTS AND CONCLUSION: Compared with prior to transplantation, the level of muscle enzymes decreased, FIM scores were increased from 68 to 93 points, EMG results showed that the motor units with re-contraction in each 10.0 ms were increased that the motor function was improved, the lower extremity muscle strength elevated, and the self-care ability was improved in the SMA child at 6 months after transplantation. During the 10-month follow-up, the child had no adverse effects. It is indicated that UCB-MSCs transplantation is effective to treat SMA, and the neurological function has a remarkable restoration.%背景:国内外已有实验动物和临床应用脐血间充质干细胞移植治疗神经系统遗传性疾病安全、有效的诸多报道.目的:探讨脐血间充质干细胞移植治疗儿童进行性脊髓性肌肉萎缩症的可行性及效果.方法:2010-01收治1例确诊为儿童进行性脊髓性肌肉萎缩症患儿,经药物及康复治疗无效,行脐血间充质干细胞移植治疗.移植途径采取首次静脉输注,后3次蛛网膜下腔注入,1次/周,每次细胞数量达(4~6)×107个,4次为1个疗程.治疗前和治疗后半年均需

  14. Effects of Human Mesenchymal Stem Cells Isolated from Wharton’s Jelly of the Umbilical Cord and Conditioned Media on Skeletal Muscle Regeneration Using a Myectomy Model

    Directory of Open Access Journals (Sweden)

    T. Pereira

    2014-01-01

    Full Text Available Skeletal muscle has good regenerative capacity, but the extent of muscle injury and the developed fibrosis might prevent complete regeneration. The in vivo application of human mesenchymal stem cells (HMSCs of the umbilical cord and the conditioned media (CM where the HMSCs were cultured and expanded, associated with different vehicles to induce muscle regeneration, was evaluated in a rat myectomy model. Two commercially available vehicles and a spherical hydrogel developed by our research group were used. The treated groups obtained interesting results in terms of muscle regeneration, both in the histological and in the functional assessments. A less evident scar tissue, demonstrated by collagen type I quantification, was present in the muscles treated with HMSCs or their CM. In terms of the histological evaluation performed by ISO 10993-6 scoring, it was observed that HMSCs apparently have a long-term negative effect, since the groups treated with CM presented better scores. CM could be considered an alternative to the in vivo transplantation of these cells, as it can benefit from the local tissue response to secreted molecules with similar results in terms of muscular regeneration. Searching for an optimal vehicle might be the key point in the future of skeletal muscle tissue engineering.

  15. A Conditioned Medium of Umbilical Cord Mesenchymal Stem Cells Overexpressing Wnt7a Promotes Wound Repair and Regeneration of Hair Follicles in Mice

    Directory of Open Access Journals (Sweden)

    Liang Dong

    2017-01-01

    Full Text Available Mesenchymal stem cells (MSCs can affect the microenvironment of a wound and thereby accelerate wound healing. Wnt proteins act as key mediators of skin development and participate in the formation of skin appendages such as hair. The mechanisms of action of MSCs and Wnt proteins on skin wounds are largely unknown. Here, we prepared a Wnt7a-containing conditioned medium (Wnt-CM from the supernatant of cultured human umbilical cord-MSCs (UC-MSCs overexpressing Wnt7a in order to examine the effects of this CM on cutaneous healing. Our results revealed that Wnt-CM can accelerate wound closure and induce regeneration of hair follicles. Meanwhile, Wnt-CM enhanced expression of extracellular matrix (ECM components and cell migration of fibroblasts but inhibited the migratory ability and expression of K6 and K16 in keratinocytes by enhancing expression of c-Myc. However, we found that the CM of fibroblasts treated with Wnt-CM (HFWnt-CM-CM can also promote wound repair and keratinocyte migration; but there was no increase in the number of hair follicles of regeneration. These data indicate that Wnt7a and UC-MSCs have synergistic effects: they can accelerate wound repair and induce hair regeneration via cellular communication in the wound microenvironment. Thus, this study opens up new avenues of research on the mechanisms underlying wound repair.

  16. Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer's disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis.

    Science.gov (United States)

    Cui, YuanBo; Ma, ShanShan; Zhang, ChunYan; Cao, Wei; Liu, Min; Li, DongPeng; Lv, PengJu; Xing, Qu; Qu, RuiNa; Yao, Ning; Yang, Bo; Guan, FangXia

    2017-03-01

    Stem cell transplantation represents a promising therapy for central nervous system injuries, but its application to Alzheimer's disease (AD) is still limited and the potential mechanism for cognition improvement remains to be elucidated. In the present study, we used Tg2576 mice which express AD-like pathological forms of amyloid precursor protein (APP) to investigate the effects of human umbilical cord mesenchymal stem cells (hUC-MSCs) intravenous transplantation on AD mice. Interestingly, hUC-MSCs transplantation significantly ameliorated cognitive function of AD mice without altering Aβ levels in hippocampus. Remarkably, hUC-MSCs transplantation reduced oxidative stress in hippocampus of AD mice by decreasing the level of malondialdehyde (MDA), increasing the level of nitric oxide (NO), enhancing the activity of superoxide dismutase (SOD) and neuronal nitric oxide synthase (nNOS). The mechanisms underlying the improved cognitive function may be linked to hippocampal neurogenesis and an up-regulation of neuronal synaptic plasticity related proteins levels including silent information regulator 1 (Sirt1), brain-derived neurotrophic factor (BDNF) and synaptophysin (SYN). Taken together, our findings suggest that hUC-MSCs can improve cognition of AD mice by decreasing oxidative stress and promoting hippocampal neurogenesis. These results suggest that modulating hUC-MSCs to generate excess neuroprotective factors could provide a viable therapy to treat AD.

  17. Post-thaw non-cultured and post-thaw cultured equine cord blood mesenchymal stromal cells equally suppress lymphocyte proliferation in vitro.

    Directory of Open Access Journals (Sweden)

    Lynn B Williams

    Full Text Available Multipotent mesenchymal stromal cells (MSC are receiving increased attention for their non-progenitor immunomodulatory potential. Cryopreservation is commonly used for long-term storage of MSC. Post-thaw MSC proliferation is associated with a lag-phase in vitro. How this lag-phase affect MSC immunomodulatory properties is unknown. We hypothesized that in vitro there is no difference in lymphocyte suppression potential between quick-thawed cryopreserved equine cord blood (CB MSC immediately included in mixed lymphocyte reaction (MLR and same MSC allowed post-thaw culture time prior to inclusion in MLR. Cryopreserved CB-MSC from five unrelated foals were compared using two-way MLR. For each of the five unrelated MSC cultures, paired MLR assays of MSC allowed five days of post-thaw culture and MSC included in MLR assay immediately post-thawing were evaluated. We report no difference in the suppression of lymphocyte proliferation by CB-MSC that had undergone post-thaw culture and MSC not cultured post-thaw (p<0.0001. Also, there was no inter-donor variability between the lymphocyte suppressive properties of MSC harvested from the five different donors (p = 0.13. These findings suggest that cryopreserved CB-MSC may have clinical utility immediately upon thawing. One implication hereof is the possibility of using cryopreserved CB-MSC at third party locations without the need for cell culture equipment or competencies.

  18. Therapeutic Effects of CUR-Activated Human Umbilical Cord Mesenchymal Stem Cells on 1-Methyl-4-phenylpyridine-Induced Parkinson's Disease Cell Model.

    Science.gov (United States)

    Jinfeng, Li; Yunliang, Wang; Xinshan, Liu; Yutong, Wang; Shanshan, Wang; Peng, Xue; Xiaopeng, Yang; Zhixiu, Xu; Qingshan, Lu; Honglei, Yin; Xia, Cao; Hongwei, Wang; Bingzhen, Cao

    2016-01-01

    The purpose of this study is to evaluate the therapeutic effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSC) activated by curcumin (CUR) on PC12 cells induced by 1-methyl-4-phenylpyridinium ion (MPP+), a cell model of Parkinson's disease (PD). The supernatant of hUC-MSC and hUC-MSC activated by 5 µmol/L CUR (hUC-MSC-CUR) were collected in accordance with the same concentration. The cell proliferation and differentiation potential to dopaminergic neuronal cells and antioxidation were observed in PC12 cells after being treated with the above two supernatants and 5 µmol/L CUR. The results showed that the hUC-MSC-CUR could more obviously promote the proliferation and the expression of tyrosine hydroxylase (TH) and microtubule associated protein-2 (MAP2) and significantly decreased the expression of nitric oxide (NO) and inducible nitric oxide synthase (iNOS) in PC12 cells. Furtherly, cytokines detection gave a clue that the expression of IL-6, IL-10, and NGF was significantly higher in the group treated with the hUC-MSC-CUR compared to those of other two groups. Therefore, the hUC-MSC-CUR may be a potential strategy to promote the proliferation and differentiation of PD cell model, therefore providing new insights into a novel therapeutic approach in PD.

  19. Exosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation

    Directory of Open Access Journals (Sweden)

    Xiao Li

    2016-06-01

    Full Text Available Mesenchymal stem cell (MSC-derived exosomes have diverse functions in regulating wound healing and inflammation; however, the molecular mechanism of human umbilical cord MSC (hUCMSC-derived exosomes in regulating burn-induced inflammation is not well understood. We found that burn injury significantly increased the inflammatory reaction of rats or macrophages exposed to lipopolysaccharide (LPS, increased tumor necrosis factor α (TNF-α and interleukin-1β (IL-1β levels and decreased IL-10 levels. hUCMSC-exosome administration successfully reversed this reaction. Further studies showed that miR-181c in the exosomes played a pivotal role in regulating inflammation. Compared to control hUCMSC-exosomes, hUCMSC-exosomes overexpressing miR-181c more effectively suppressed the TLR4 signaling pathway and alleviated inflammation in burned rats. Administration of miR-181c-expressing hUCMSC-exosomes or TLR4 knockdown significantly reduced LPS-induced TLR4 expression by macrophages and the inflammatory reaction. In summary, miR-181c expression in hUCMSC-exosomes reduces burn-induced inflammation by downregulating the TLR4 signaling pathway.

  20. WNT/β-Catenin signaling pathway regulates non-tumorigenesis of human embryonic stem cells co-cultured with human umbilical cord mesenchymal stem cells

    Science.gov (United States)

    Chang, Yu-Hsun; Chu, Tang-Yuan; Ding, Dah-Ching

    2017-01-01

    Human pluripotent stem cells harbor hope in regenerative medicine, but have limited application in treating clinical diseases due to teratoma formation. Our previous study has indicated that human umbilical cord mesenchymal stem cells (HUCMSC) can be adopted as non-teratogenenic feeders for human embryonic stem cells (hESC). This work describes the mechanism of non-tumorigenesis of that feeder system. In contrast with the mouse embryonic fibroblast (MEF) feeder, HUCMSC down-regulates the WNT/β-catenin/c-myc signaling in hESC. Thus, adding β-catenin antagonist (FH535 or DKK1) down-regulates β-catenin and c-myc expressions, and suppresses tumorigenesis (3/14 vs. 4/4, p = 0.01) in hESC fed with MEF, while adding the β-catenin enhancer (LiCl or 6-bromoindirubin-3′-oxime) up-regulates the expressions, and has a trend (p = 0.056) to promote tumorigenesis (2/7 vs. 0/21) in hESC fed with HUCMSC. Furthermore, FH535 supplement does not alter the pluripotency of hESC when fed with MEF, as indicated by the differentiation capabilities of the three germ layers. Taken together, this investigation concludes that WNT/β-catenin/c-myc pathway causes the tumorigenesis of hESC on MEF feeder, and β-catenin antagonist may be adopted as a tumor suppressor. PMID:28157212

  1. Umbilical Cord Tissue-Derived Mesenchymal Stem Cells Induce T Lymphocyte Apoptosis and Cell Cycle Arrest by Expression of Indoleamine 2, 3-Dioxygenase

    Directory of Open Access Journals (Sweden)

    Xiuying Li

    2016-01-01

    Full Text Available It has been reported that human mesenchymal stem cells are able to inhibit T lymphocyte activation; however, the discrepancy among different sources of MSCs is not well documented. In this study, we have compared the MSCs from bone marrow (BM, adipose tissue (AT, placenta (PL, and umbilical cord (UC to determine which one displayed the most efficient immunosuppressive effects on phytohemagglutinin-induced T cell proliferation. Among them we found that hUC-MSC has the strongest effects on inhibiting T cell proliferation and is chosen to do the further study. We observed that T lymphocyte spontaneously released abundant IFN-γ. And IFN-γ secreted by T lymphocyte could induce the expression of indoleamine 2, 3-dioxygenase (IDO in hUC-MSCs. IDO was previously reported to induce T lymphocyte apoptosis and cell cycle arrest in S phase. When cocultured with hUC-MSCs, T lymphocyte expression of caspase 3 was significantly increased, while Bcl2 and CDK4 mRNA expression decreased dramatically. Addition of 1-methyl tryptophan (1-MT, an IDO inhibitor, restored T lymphocyte proliferation, reduced apoptosis, and induced resumption of the cell cycle. In addition, the changes in caspase 3, CDK4, and Bcl2 expression were reversed by 1-MT. These findings demonstrate that hUC-MSCs induce T lymphocyte apoptosis and cell cycle arrest by expressing abundant IDO and provide an explanation for some of the immunomodulatory effects of MSCs.

  2. Development of a Xeno-Free Feeder-Layer System from Human Umbilical Cord Mesenchymal Stem Cells for Prolonged Expansion of Human Induced Pluripotent Stem Cells in Culture.

    Science.gov (United States)

    Zou, Qing; Wu, Mingjun; Zhong, Liwu; Fan, Zhaoxin; Zhang, Bo; Chen, Qiang; Ma, Feng

    2016-01-01

    Various feeder layers have been extensively applied to support the prolonged growth of human pluripotent stem cells (hPSCs) for in vitro cultures. Among them, mouse embryonic fibroblast (MEF) and mouse fibroblast cell line (SNL) are most commonly used feeder cells for hPSCs culture. However, these feeder layers from animal usually cause immunogenic contaminations, which compromises the potential of hPSCs in clinical applications. In the present study, we tested human umbilical cord mesenchymal stem cells (hUC-MSCs) as a potent xeno-free feeder system for maintaining human induced pluripotent stem cells (hiPSCs). The hUC-MSCs showed characteristics of MSCs in xeno-free culture condition. On the mitomycin-treated hUC-MSCs feeder, hiPSCs maintained the features of undifferentiated human embryonic stem cells (hESCs), such as low efficiency of spontaneous differentiation, stable expression of stemness markers, maintenance of normal karyotypes, in vitro pluripotency and in vivo ability to form teratomas, even after a prolonged culture of more than 30 passages. Our study indicates that the xeno-free culture system may be a good candidate for growth and expansion of hiPSCs as the stepping stone for stem cell research to further develop better and safer stem cells.

  3. Human Umbilical Cord Perivascular Cells Exhibited Enhanced Migration Capacity towards Hepatocellular Carcinoma in Comparison with Bone Marrow Mesenchymal Stromal Cells: A Role for Autocrine Motility Factor Receptor

    Directory of Open Access Journals (Sweden)

    Juan Bayo

    2014-01-01

    Full Text Available Hepatocellular carcinoma (HCC is the third cause of cancer-related death worldwide. Unfortunately, the incidence and mortality associated with HCC are increasing. Therefore, new therapeutic strategies are urgently needed and the use of mesenchymal stromal cells (MSCs as carrier of therapeutic genes is emerging as a promising option. Different sources of MSCs are being studied for cell therapy and bone marrow-derived cells are the most extensively explored; however, birth associated-tissues represent a very promising source. The aim of this work was to compare the in vitro and in vivo migration capacity between bone marrow MSCs (BM-MSCs and human umbilical cord perivascular cells (HUCPVCs towards HCC. We observed that HUCPVCs presented higher in vitro and in vivo migration towards factors released by HCC. The expression of autocrine motility factor (AMF receptor, genes related with the availability of the receptor on the cell surface (caveolin-1 and -2 and metalloproteinase 3, induced by the receptor activation and important for cell migration, was increased in HUCPVCs. The chemotactic response towards recombinant AMF was increased in HUCPVCs compared to BM-MSCs, and its inhibition in the conditioned medium from HCC induced higher decrease in HUCPVC migration than in BM-MSC. Our results indicate that HUCPVCs could be a useful cellular source to deliver therapeutic genes to HCC.

  4. Standardizing Umbilical Cord Mesenchymal Stromal Cells for Translation to Clinical Use: Selection of GMP-Compliant Medium and a Simplified Isolation Method

    Science.gov (United States)

    Smith, J. Robert; Pfeifer, Kyle; Petry, Florian; Powell, Natalie; Delzeit, Jennifer; Weiss, Mark L.

    2016-01-01

    Umbilical cord derived mesenchymal stromal cells (UC-MSCs) are a focus for clinical translation but standardized methods for isolation and expansion are lacking. Previously we published isolation and expansion methods for UC-MSCs which presented challenges when considering good manufacturing practices (GMP) for clinical translation. Here, a new and more standardized method for isolation and expansion of UC-MSCs is described. The new method eliminates dissection of blood vessels and uses a closed-vessel dissociation following enzymatic digestion which reduces contamination risk and manipulation time. The new method produced >10 times more cells per cm of UC than our previous method. When biographical variables were compared, more UC-MSCs per gram were isolated after vaginal birth compared to Caesarian-section births, an unexpected result. UC-MSCs were expanded in medium enriched with 2%, 5%, or 10% pooled human platelet lysate (HPL) eliminating the xenogeneic serum components. When the HPL concentrations were compared, media supplemented with 10% HPL had the highest growth rate, smallest cells, and the most viable cells at passage. UC-MSCs grown in 10% HPL had surface marker expression typical of MSCs, high colony forming efficiency, and could undergo trilineage differentiation. The new protocol standardizes manufacturing of UC-MSCs and enables clinical translation. PMID:26966439

  5. A Conditioned Medium of Umbilical Cord Mesenchymal Stem Cells Overexpressing Wnt7a Promotes Wound Repair and Regeneration of Hair Follicles in Mice

    Science.gov (United States)

    Dong, Liang; Hao, Haojie; Liu, Jiejie; Ti, Dongdong; Tong, Chuan; Hou, Qian; Li, Meirong; Zheng, Jingxi; Liu, Gang

    2017-01-01

    Mesenchymal stem cells (MSCs) can affect the microenvironment of a wound and thereby accelerate wound healing. Wnt proteins act as key mediators of skin development and participate in the formation of skin appendages such as hair. The mechanisms of action of MSCs and Wnt proteins on skin wounds are largely unknown. Here, we prepared a Wnt7a-containing conditioned medium (Wnt-CM) from the supernatant of cultured human umbilical cord-MSCs (UC-MSCs) overexpressing Wnt7a in order to examine the effects of this CM on cutaneous healing. Our results revealed that Wnt-CM can accelerate wound closure and induce regeneration of hair follicles. Meanwhile, Wnt-CM enhanced expression of extracellular matrix (ECM) components and cell migration of fibroblasts but inhibited the migratory ability and expression of K6 and K16 in keratinocytes by enhancing expression of c-Myc. However, we found that the CM of fibroblasts treated with Wnt-CM (HFWnt-CM-CM) can also promote wound repair and keratinocyte migration; but there was no increase in the number of hair follicles of regeneration. These data indicate that Wnt7a and UC-MSCs have synergistic effects: they can accelerate wound repair and induce hair regeneration via cellular communication in the wound microenvironment. Thus, this study opens up new avenues of research on the mechanisms underlying wound repair.

  6. Standardizing Umbilical Cord Mesenchymal Stromal Cells for Translation to Clinical Use: Selection of GMP-Compliant Medium and a Simplified Isolation Method

    Directory of Open Access Journals (Sweden)

    J. Robert Smith

    2016-01-01

    Full Text Available Umbilical cord derived mesenchymal stromal cells (UC-MSCs are a focus for clinical translation but standardized methods for isolation and expansion are lacking. Previously we published isolation and expansion methods for UC-MSCs which presented challenges when considering good manufacturing practices (GMP for clinical translation. Here, a new and more standardized method for isolation and expansion of UC-MSCs is described. The new method eliminates dissection of blood vessels and uses a closed-vessel dissociation following enzymatic digestion which reduces contamination risk and manipulation time. The new method produced >10 times more cells per cm of UC than our previous method. When biographical variables were compared, more UC-MSCs per gram were isolated after vaginal birth compared to Caesarian-section births, an unexpected result. UC-MSCs were expanded in medium enriched with 2%, 5%, or 10% pooled human platelet lysate (HPL eliminating the xenogeneic serum components. When the HPL concentrations were compared, media supplemented with 10% HPL had the highest growth rate, smallest cells, and the most viable cells at passage. UC-MSCs grown in 10% HPL had surface marker expression typical of MSCs, high colony forming efficiency, and could undergo trilineage differentiation. The new protocol standardizes manufacturing of UC-MSCs and enables clinical translation.

  7. Exosome Derived From Human Umbilical Cord Mesenchymal Stem Cell Mediates MiR-181c Attenuating Burn-induced Excessive Inflammation.

    Science.gov (United States)

    Li, Xiao; Liu, Lingying; Yang, Jing; Yu, Yonghui; Chai, Jiake; Wang, Lingyan; Ma, Li; Yin, Huinan

    2016-06-01

    Mesenchymal stem cell (MSC)-derived exosomes have diverse functions in regulating wound healing and inflammation; however, the molecular mechanism of human umbilical cord MSC (hUCMSC)-derived exosomes in regulating burn-induced inflammation is not well understood. We found that burn injury significantly increased the inflammatory reaction of rats or macrophages exposed to lipopolysaccharide (LPS), increased tumor necrosis factor α (TNF-α) and interleukin-1β (IL-1β) levels and decreased IL-10 levels. hUCMSC-exosome administration successfully reversed this reaction. Further studies showed that miR-181c in the exosomes played a pivotal role in regulating inflammation. Compared to control hUCMSC-exosomes, hUCMSC-exosomes overexpressing miR-181c more effectively suppressed the TLR4 signaling pathway and alleviated inflammation in burned rats. Administration of miR-181c-expressing hUCMSC-exosomes or TLR4 knockdown significantly reduced LPS-induced TLR4 expression by macrophages and the inflammatory reaction. In summary, miR-181c expression in hUCMSC-exosomes reduces burn-induced inflammation by downregulating the TLR4 signaling pathway.

  8. A peculiar molecular profile of umbilical cord-mesenchymal stromal cells drives their inhibitory effects on multiple myeloma cell growth and tumor progression.

    Science.gov (United States)

    Ciavarella, Sabino; Caselli, Anna; Tamma, Antonella Valentina; Savonarola, Annalisa; Loverro, Giuseppe; Paganelli, Roberto; Tucci, Marco; Silvestris, Franco

    2015-06-15

    Bone marrow-derived mesenchymal stromal cells (BM-MSCs) are under intensive investigation in preclinical models of cytotherapies against cancer, including multiple myeloma (MM). However, the therapeutic use of stromal progenitors holds critical safety concerns due to their potential MM-supporting activity in vivo. Here, we explored whether MSCs from sources other than BM, such as adipose tissue (AD-MSCs) and umbilical cord (UC-MSCs), affect MM cell growth in comparison to either normal (nBM-MSCs) or myelomatous marrow MSCs (MM-BM-MSCs). Results from both proliferation and clonogenic assays indicated that, in contrast to nBM- and MM-BM-MSCs, both AD and particularly UC-MSCs significantly inhibit MM cell clonogenicity and growth in vitro. Furthermore, when co-injected with UC-MSCs into mice, RPMI-8226 MM cells formed smaller subcutaneous tumor masses, while peritumoral injections of the same MSC subtype significantly delayed the tumor burden growing in subcutaneous plasmocytoma-bearing mice. Finally, both microarrays and ELISA revealed different expression of several genes and soluble factors in UC-MSCs as compared with other MSCs. Our data suggest that UC-MSCs have a distinct molecular profile that correlates with their intrinsic anti-MM activity and emphasize the UCs as ideal sources of MSCs for future cell-based therapies against MM.

  9. Therapeutic Effects of CUR-Activated Human Umbilical Cord Mesenchymal Stem Cells on 1-Methyl-4-phenylpyridine-Induced Parkinson’s Disease Cell Model

    Directory of Open Access Journals (Sweden)

    Li Jinfeng

    2016-01-01

    Full Text Available The purpose of this study is to evaluate the therapeutic effects of human umbilical cord-derived mesenchymal stem cells (hUC-MSC activated by curcumin (CUR on PC12 cells induced by 1-methyl-4-phenylpyridinium ion (MPP+, a cell model of Parkinson’s disease (PD. The supernatant of hUC-MSC and hUC-MSC activated by 5 µmol/L CUR (hUC-MSC-CUR were collected in accordance with the same concentration. The cell proliferation and differentiation potential to dopaminergic neuronal cells and antioxidation were observed in PC12 cells after being treated with the above two supernatants and 5 µmol/L CUR. The results showed that the hUC-MSC-CUR could more obviously promote the proliferation and the expression of tyrosine hydroxylase (TH and microtubule associated protein-2 (MAP2 and significantly decreased the expression of nitric oxide (NO and inducible nitric oxide synthase (iNOS in PC12 cells. Furtherly, cytokines detection gave a clue that the expression of IL-6, IL-10, and NGF was significantly higher in the group treated with the hUC-MSC-CUR compared to those of other two groups. Therefore, the hUC-MSC-CUR may be a potential strategy to promote the proliferation and differentiation of PD cell model, therefore providing new insights into a novel therapeutic approach in PD.

  10. Long-Term Safety Issues of iPSC-Based Cell Therapy in a Spinal Cord Injury Model: Oncogenic Transformation with Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Satoshi Nori

    2015-03-01

    Full Text Available Previously, we described the safety and therapeutic potential of neurospheres (NSs derived from a human induced pluripotent stem cell (iPSC clone, 201B7, in a spinal cord injury (SCI mouse model. However, several safety issues concerning iPSC-based cell therapy remain unresolved. Here, we investigated another iPSC clone, 253G1, that we established by transducing OCT4, SOX2, and KLF4 into adult human dermal fibroblasts collected from the same donor who provided the 201B7 clone. The grafted 253G1-NSs survived, differentiated into three neural lineages, and promoted functional recovery accompanied by stimulated synapse formation 47 days after transplantation. However, long-term observation (for up to 103 days revealed deteriorated motor function accompanied by tumor formation. The tumors consisted of Nestin+ undifferentiated neural cells and exhibited activation of the OCT4 transgene. Transcriptome analysis revealed that a heightened mesenchymal transition may have contributed to the progression of tumors derived from grafted cells.

  11. Collagen-Coated Polytetrafluoroethane Membrane Inserts Enhances Chondrogenic Differentiation of Human Cord Blood Multi-Lineage Progenitor Cells

    DEFF Research Database (Denmark)

    Munir, Samir; Søballe, Kjeld; Ulrich-Vinther, Michael;

    Background: Articular chondrocytes and bone marrow-derived multipotent mesenchymal stromal cells (MSCs) are the favoured cells for cartilage tissue engineering. Umbilical cord blood has proven an alternative source of MSCs and moreover they may be more potent chondroprogenitor cells than bonemarrow...... MSCs. Purpose / Aim of Study: Multilineage progenitor cells (MLPCs) are clonal cord blood-derived MSCs and may therefore provide a cell source with more reproducible outcomes compared to heterogeneous primary MSC cultures. Materials and Methods: We evaluated the chondrogenic potency of MLPCs...... in standard micromass pellet system, layered on calcium polyphosphate (CPP), and on semi-permeable polytetrafluoroethane membranes with and without collagen type I, II or IV pre-coating. Findings / Results: The MPLC cell line used in this study possessed poor chondrogenic potency overall, but membrane...

  12. Transplantation of umbilical cord mesenchymal stem cells for treatment of autosomal dominant spinocerebellar ataxias in 12 cases%脐带间充质干细胞治疗脊髓小脑性共济失调12例

    Institute of Scientific and Technical Information of China (English)

    邱云; 汪铮; 路红社; 许鹏; 陈文怡; 路延光; 丁永红

    2012-01-01

    BACKGROUND: There is no study addressing transplantation of umbilical cord mesenchymal stem cells for the treatment of spinocerebellar ataxia.OBJECTIVE: To study the clinical effect of human umbilical cord stem cells transplantation in the treatment of autosomal dominant spinocerebellar ataxias. METHODS: Spinocerebellar ataxias patients selected from Stem Transplantation Center of the 455 Hospital of Chinese PLA were treated with umbilical cord mesenchymal stem cells transplantation via intrathecal injection. The number of umbilical cord mesenchymal stem cells was 107 per transplantation, once per week, for 4 weeks.RESULTS AND CONCLUSION: Both the total score of the International Cooperative Ataxia Rating Scale and Activities of Daily Living score were significantly decreased at 1 month after transplantation compared with before treatment (P < 0.05). The nerve function was significantly improved and the total effective rate was up to 16.7%. Experimental findings indicate that, transplantation of umbilical cord mesenchymal stem cells via intrathecal injection is a feasible and effective treatment to ameliorate the clinical efficacy of spinocerebellar ataxias patients and improve their quality of life.%背景:目前尚未见应用脐带间充质干细胞治疗脊髓小脑性共济失调的报道.目的:观察脐带间充质干细胞治疗脊髓小脑性共济失调的临床效果.方法:选择2010-09/12解放军455医院干细胞移植中心收治的12例脊髓小脑共济失调患者,给予脐带间充质干细胞鞘内注射,每次107个细胞,1次/周,4次为1个疗程.结果与结论:患者治疗后1个月与治疗前比较国际合作共济失调评分量表评分及日常生活量表评分均明显降低(P < 0.05),提示患者的神经功能显著改善,总有效率为16.7%.说明脐带间充质干细胞鞘内注射治疗可以在一定程度上改善脊髓小脑性共济失调患者的临床症状,提高患者生活质量.

  13. Combined transplantation of bone marrow mesenchymal stem cells and pedicled greater omentum promotes locomotor function and regeneration of axons after spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    Liang Li; Zhiying Zhang; Haiyan Lin; Congli Ren; Chuansen Zhang

    2008-01-01

    BACKGROUND: According to previous studies, the neuroprotective effect of the pedicled greater omentum may be attributed to the secretion of neurotrophic factors and stimulation of angiogenesis. The neurotrophic factors released from the pedicled greater omentum, such as brain-derived neurotrophic factor and neurotrophin 3/4/5 could exert a neuroprotective effect on the damaged host neural and glial cells, and also could induce the transdifferentiation of transplanted bone marrow mesenchymal stem cells (BMSCs) into neural cells. OBJECTIVE: Based on the functions of the omentum of neuro-protection and vascularization, we hypothesize that the transplantation of BMSCs and pedicled greater omentum into injured rat spinal cord might improve the survival rate and neural differentiation of transplanted BMSCs and consequently gain a better functional outcome. DESIGN, TIME AND SETTING: A randomized, controlled animal experiment. The experiments were carried out at the Department of Anatomy, the Secondary Military Medical University of Chinese PLA between June 2005 and June 2007.MATERIALS: Fifteen male inbred Wistar rats, weighing (200±20) g, provided by the Experimental Animal Center of the Secondary Military Medical University of Chinese PLA were used and met the animal ethical standards. Mouse anti-BrdU and mouse anti-NF200 monoclonal antibody were purchased from Boster, China. METHODS: Cell culture: We used inbred Sprague-Dawley rats to harvest bone marrow for culture of BMSCs and transplantation to avoid possible immune rejection. BMSCs were cultured via total bone marrow adherence. Experimental grouping and intervention: The rats were randomly divided into a control group, cell group and combined group, five rats per group. Rats in the control group underwent spinal cord injury (SCI) only, during which an artery clamp with pressure force of 30 g was employed to compress the spinal cord at the T10 level for 30 seconds to produce the SCI model. 5 μL PBS containing 105

  14. 人脐带间充质干细胞原代培养方法的改良%Improved primary cultivation of human umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    李小战; 马红; 许辉; 李淑; 李遇梅

    2014-01-01

    Objective:To improve the tissue mass primary culture protocol of human umbilical cord-derived mesenchymal stem cells (hUC-MSCs),so as to explore their morphology,cell surface markers,osteogenic and adipogenic differentiation potential and observe biological properties.Methods:Human umbilical cords were obtained from healthy full-term delivered newborns.After stripping off blood vessels,the remaining connective tissues were cut into small fragments,and primary hUC-MSCs were separated by culture of traditional and improved tissue explants methods.The hUC-MSCs were tested with MTT method and the growth curves of them were drawn.Cell surface markers were detected by flow cytometry.After osteogenic and adipogenic differentiation,the potentiality of their differentiation was detected by chemistry staining.Results:After 3-4 days of incubation,flat or spindle-shaped fibroblast-like primary cells were presented,and cells reached 80% confluence after 5-6 days of incubation.Culture period was shortened by more than half.Flowing water-like or spiral growth morphology was presented after cell passage.MTT revealed high capability of proliferation.Flow cytometry analysis showed CD90 (+),CD105 (+),CD73 (+),CD166(+),CD44(+),CD29(+),positive rate of 95% or more ;CD45(-),HLA-DR(-),negative rate of not more than 2%.Its differentiation potential was proved by osteogenic and adipogenic differentiation,which was proved by chemistry staining.Conclusion:An improved primary culture method of hUCMSCs has been developed.Primary cells can be obtained from improved tissue explants method combined enzyme digestion technique.Primary cell culture time was shortened,and the efficiency of cell culture was improved.Cells isolated by the new method from the human umbilical cords had the following biological characteristics:adherent growth,high proliferation,mesenchymal stem cell phenotype,and multipotent differentiation.They could be used as the source of seed cells in scientific research and

  15. [Effects of human mesenchymal stem cells and fibroblastoid cell line as feeder layers on expansion of umbilical cord blood CD34(+) cells in vitro].

    Science.gov (United States)

    Ma, Li-Jun; Gao, Lei; Zhou, Hong; Qiu, Hui-Ying; Hu, Xiao-Xia; Xie, Lin-Na; Wang, Jian-Min

    2006-10-01

    To investigate the effects of human mesenchymal stem cells (MSC) and human fibroblastoid cell line (HFCL) as feeder layer on expansion of umbilical cord blood CD34(+) cells in vitro, (60)Co gamma-ray irradiated MSC and HFCL were used as feeder layer to expand cord blood CD34(+) cells in culture. The efficiencies of MSC and HFCL on expansion of CD34(+) cells in culture with or without cytokines were compared. The results showed that no matter whether cytokines (rhFL, rhSCF, rhTPO) were added, the proliferation of nucleated cells after expansion for 12 days in HFCL group was statistically higher than that in MSC group, i.e. with cytokines (9797 +/- 361)% vs (7061 +/- 418)%; without cytokines (5305 +/- 354)% vs (1992 +/- 247)%, when the cell numbers at day 0 was accounted as 100%), P 0.05. However, in the presence of cytokines, the propagating rate of MSC group was lower than that of HFCL group (939 +/- 212)% vs (1617 +/- 222)%, P < 0.01. MSC was better than HFCL in maintaining the LTC-IC of UCB CD34(+) cells, i.e. the number of CFU-GM colonies in the fifth week was (129.95 +/- 8.73) /10(5) seeded cells vs (89.81 +/- 10.29) colonies/10(5) cells, P < 0.05; with addition of cytokines, the effect was more obvious, i.e. the number of CFU-GM colonies in the fifth week (192.93 +/- 4.95)/10(5) seeded cells vs (90.47 +/- 14.28) colonies/10(5) seeded cells, P < 0.01. MSC mixed with a certain proportion of HFCL facilitated maintaining the LTC-IC of UCB CD34(+) cells. When the proportion was 4:1, the number of CFU-GM colonies was the highest (186.89 +/- 11.11)/10(5) seeded cells, which was higher than that of both 3:2 group [(138.92 +/- 14.84) colonies/10(5) seeded cells] and MSC only group, i.e. (64.63 +/- 6.11) colonies/10(5) seeded cells, both P < 0.01. It is concluded that HFCL is better than MSC in maintaining the expansion of CD34(+) cells and cytokines can enhance this effect, while MSC are stronger than HFCL in maintaining the LTC-IC of UCB CD34(+) cells in vitro. MSC

  16. Bone Marrow Mesenchymal Stem-Cell Transplantation Promotes Functional Improvement Associated with CNTF-STAT3 Activation after Hemi-Sectioned Spinal Cord Injury in Tree Shrews

    Directory of Open Access Journals (Sweden)

    Liu-Lin Xiong

    2017-06-01

    Full Text Available Hemi-sectioned spinal cord injury (hSCI can lead to spastic paralysis on the injured side, as well as flaccid paralysis on the contralateral side, which can negatively affect a patient’s daily life. Stem-cell therapy may offer an effective treatment option for individuals with hSCI. To examine the role of bone marrow mesenchymal stem cells (BMSCs transplantation on hSCI and explore related mechanisms in the tree shrews, here, we created a model of hSCI by inducing injury at the tenth thoracic vertebra (T10. Hoechst 33342-labeled BMSCs derived from adult tree shrews were isolated, cultured, and implanted into the spinal cord around the injury site at 9 days after injury. The isolated BMSCs were able to survive, proliferate and release a variety of neurotrophic factors (NTFs both in vitro and in vivo. At 28 days after injury, compared with the sham group, the hSCI group displayed scar formation and dramatic elevations in the mean interleukin 1 beta (IL-1β density and cell apoptosis level, whereas the expression of signal transducer and activator of transcription 3 (STAT3 and ciliary neurotrophic factor (CNTF mRNA was reduced. Following BMSC transplantation, motoneurons extent of shrinkage were reduced and the animals’ Basso, Beattie, and Bresnahan (BBB locomotion scale scores were significantly higher at 21 and 28 days after injury when compared with the injured group. Moreover, the hSCI-induced elevations in scar formation, IL-1β, and cell apoptosis were reduced by BMSC transplantation to levels that were close to those of the sham group. Corresponding elevations in the expression of STAT3 and CNTF mRNA were observed in the hSCI + BMSCs group, and the levels were not significantly different from those observed in the sham group. Together, our results support that grafted BMSCs can significantly improve locomotor function in tree shrews subjected to hSCI and that this improvement is associated with the upregulation of CNTF and STAT3

  17. Islet-like clusters derived from mesenchymal stem cells in Wharton's Jelly of the human umbilical cord for transplantation to control type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kuo Ching Chao

    Full Text Available BACKGROUND: There is a widespread interest in developing renewable sources of islet-replacement tissue for type I diabetes mellitus. Human mesenchymal cells isolated from the Wharton's jelly of the umbilical cord (HUMSCs, which can be easily obtained and processed compared with embryonic and bone marrow stem cells, possess stem cell properties. HUMSCs may be a valuable source for the generation of islets. METHODOLOGY AND PRINCIPAL FINDINGS: HUMSCs were induced to transform into islet-like cell clusters in vitro through stepwise culturing in neuron-conditioned medium. To assess the functional stability of the islet-like cell clusters in vivo, these cell clusters were transplanted into the liver of streptozotocin-induced diabetic rats via laparotomy. Glucose tolerance was measured on week 12 after transplantation accompanied with immunohistochemistry and electron microscopy analysis. These islet-like cell clusters were shown to contain human C-peptide and release human insulin in response to physiological glucose levels. Real-time RT-PCR detected the expressions of insulin and other pancreatic beta-cell-related genes (Pdx1, Hlxb9, Nkx2.2, Nkx6.1, and Glut-2 in these islet-like cell clusters. The hyperglycemia and glucose intolerance in streptozotocin-induced diabetic rats was significantly alleviated after xenotransplantation of islet-like cell clusters, without the use of immunosuppressants. In addition to the existence of islet-like cell clusters in the liver, some special fused liver cells were also found, which characterized by human insulin and nuclei-positive staining and possessing secretory granules. CONCLUSIONS AND SIGNIFICANCE: In this study, we successfully differentiate HUMSCs into mature islet-like cell clusters, and these islet-like cell clusters possess insulin-producing ability in vitro and in vivo. HUMSCs in Wharton's Jelly of the umbilical cord seem to be the preferential source of stem cells to convert into insulin

  18. Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project.

    Directory of Open Access Journals (Sweden)

    Allison L B Shapiro

    Full Text Available The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM, a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1 NAM increases the adipogenic response of human umbilical cord tissue-derived mesenchymal stem cells (MSCs through a SIRT1 and PPARγ pathway; 2 lipid potentiates the NAM-enhanced adipogenic response; and 3 the adipogenic response to NAM is associated with increased percent fat mass (%FM among neonates. MSCs were derived from the umbilical cord of 46 neonates born to non-obese mothers enrolled in the Healthy Start study. Neonatal %FM was measured using air displacement plethysmography (Pea Pod shortly after birth. Adipogenic differentiation was induced for 21 days in the 46 MSC sets under four conditions, +NAM (3mM/-lipid (200 μM oleate/palmitate mix, +NAM/+lipid, -NAM/+lipid, and vehicle-control (-NAM/-lipid. Cells incubated in the presence of NAM had significantly higher PPARγ protein (+24%, p <0.01, FABP4 protein (+57%, p <0.01, and intracellular lipid content (+51%, p <0.01. Lipid did not significantly increase either PPARγ protein (p = 0.98 or FABP4 protein content (p = 0.82. There was no evidence of an interaction between NAM and lipid on adipogenic response of PPARγ or FABP4 protein (p = 0.99 and p = 0.09. In a subset of 9 MSC, SIRT1 activity was measured in the +NAM/-lipid and vehicle control conditions. SIRT1 enzymatic activity was significantly lower (-70%, p <0.05 in the +NAM/-lipid condition than in vehicle-control. In a linear model with neonatal %FM as the outcome, the percent increase in PPARγ protein in the +NAM/-lipid condition compared to vehicle-control was a significant predictor (β = 0.04, 95% CI 0.01-0.06, p <0.001. These are the first data to support that chronic NAM exposure

  19. Nicotinamide Promotes Adipogenesis in Umbilical Cord-Derived Mesenchymal Stem Cells and Is Associated with Neonatal Adiposity: The Healthy Start BabyBUMP Project

    Science.gov (United States)

    Shapiro, Allison L. B.; Boyle, Kristen E.; Dabelea, Dana; Patinkin, Zachary W.; De la Houssaye, Becky; Ringham, Brandy M.; Glueck, Deborah H.; Barbour, Linda A.; Norris, Jill M.; Friedman, Jacob E.

    2016-01-01

    The cellular mechanisms whereby excess maternal nutrition during pregnancy increases adiposity of the offspring are not well understood. However, nicotinamide (NAM), a fundamental micronutrient that is important in energy metabolism, has been shown to regulate adipogenesis through inhibition of SIRT1. Here we tested three novel hypotheses: 1) NAM increases the adipogenic response of human umbilical cord tissue-derived mesenchymal stem cells (MSCs) through a SIRT1 and PPARγ pathway; 2) lipid potentiates the NAM-enhanced adipogenic response; and 3) the adipogenic response to NAM is associated with increased percent fat mass (%FM) among neonates. MSCs were derived from the umbilical cord of 46 neonates born to non-obese mothers enrolled in the Healthy Start study. Neonatal %FM was measured using air displacement plethysmography (Pea Pod) shortly after birth. Adipogenic differentiation was induced for 21 days in the 46 MSC sets under four conditions, +NAM (3mM)/–lipid (200 μM oleate/palmitate mix), +NAM/+lipid, –NAM/+lipid, and vehicle-control (–NAM/–lipid). Cells incubated in the presence of NAM had significantly higher PPARγ protein (+24%, p <0.01), FABP4 protein (+57%, p <0.01), and intracellular lipid content (+51%, p <0.01). Lipid did not significantly increase either PPARγ protein (p = 0.98) or FABP4 protein content (p = 0.82). There was no evidence of an interaction between NAM and lipid on adipogenic response of PPARγ or FABP4 protein (p = 0.99 and p = 0.09). In a subset of 9 MSC, SIRT1 activity was measured in the +NAM/-lipid and vehicle control conditions. SIRT1 enzymatic activity was significantly lower (-70%, p <0.05) in the +NAM/-lipid condition than in vehicle-control. In a linear model with neonatal %FM as the outcome, the percent increase in PPARγ protein in the +NAM/-lipid condition compared to vehicle-control was a significant predictor (β = 0.04, 95% CI 0.01–0.06, p <0.001). These are the first data to support that chronic NAM

  20. Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data.

    Science.gov (United States)

    Martins, José Paulo; Santos, Jorge Miguel; de Almeida, Joana Marto; Filipe, Mariana Alves; de Almeida, Mariana Vargas Teixeira; Almeida, Sílvia Cristina Paiva; Água-Doce, Ana; Varela, Alexandre; Gilljam, Mari; Stellan, Birgitta; Pohl, Susanne; Dittmar, Kurt; Lindenmaier, Werner; Alici, Evren; Graça, Luís; Cruz, Pedro Estilita; Cruz, Helder Joaquim; Bárcia, Rita Nogueira

    2014-01-17

    Standardization of mesenchymal stromal cells (MSCs) manufacturing is urgently needed to enable translational activities and ultimately facilitate comparison of clinical trial results. In this work we describe the adaptation of a proprietary method for isolation of a specific umbilical cord tissue-derived population of MSCs, herein designated by its registered trademark as UCX®, towards the production of an advanced therapy medicinal product (ATMP). The adaptation focused on different stages of production, from cell isolation steps to cell culturing and cryopreservation. The origin and quality of materials and reagents were considered and steps for avoiding microbiological and endotoxin contamination of the final cell product were implemented. Cell isolation efficiency, MSCs surface markers and genetic profiles, originating from the use of different medium supplements, were compared. The ATMP-compliant UCX® product was also cryopreserved avoiding the use of dimethyl sulfoxide, an added benefit for the use of these cells as an ATMP. Cells were analyzed for expansion capacity and longevity. The final cell product was further characterized by flow cytometry, differentiation potential, and tested for contaminants at various passages. Finally, genetic stability and immune properties were also analyzed. The isolation efficiency of UCX® was not affected by the introduction of clinical grade enzymes. Furthermore, isolation efficiencies and phenotype analyses revealed advantages in the use of human serum in cell culture as opposed to human platelet lysate. Initial decontamination of the tissue followed by the use of mycoplasma- and endotoxin-free materials and reagents in cell isolation and subsequent culture, enabled the removal of antibiotics during cell expansion. UCX®-ATMP maintained a significant expansion potential of 2.5 population doublings per week up to passage 15 (P15). They were also efficiently cryopreserved in a DMSO-free cryoprotectant medium with

  1. Human umbilical cord mesenchymal stem cells and derived hepatocyte-like cells exhibit similar therapeutic effects on an acute liver failure mouse model.

    Directory of Open Access Journals (Sweden)

    Ruiping Zhou

    Full Text Available Mesenchymal stem cells (MSCs have exhibited therapeutic effects in multiple animal models so that are promising liver substitute for transplantation treatment of end-stage liver diseases. However, it has been shown that over-manipulation of these cells increased their tumorigenic potential, and that reducing the in vitro culture time could minimize the risk. In this study, we used a D-galactosamine plus lipopolysaccharide (Gal/LPS-induced acute liver failure mouse model, which caused death of about 50% of the mice with necrosis of more than 50% hepatocytes, to compare the therapeutic effects of human umbilical cord MSCs (hUCMSCs before and after induction of differentiation into hepatocyte (i-Heps. Induction of hUCMSCs to become i-Heps was achieved by treatment of the cells with a group of growth factors within 4 weeks. The resulted i-Heps exhibited a panel of human hepatocyte biomarkers including cytokeratin (hCK-18, α-fetoprotein (hAFP, albumin (hALB, and hepatocyte-specific functions glycogen storage and urea metabolism. We demonstrated that transplantation of both cell types through tail vein injection rescued almost all of the Gal/LPS-intoxicated mice. Although both cell types exhibited similar ability in homing at the mouse livers, the populations of the hUCMSCs-derived cells, as judged by expressing hAFP, hCK-18 and human hepatocyte growth factor (hHGF, were small. These observations let us to conclude that the hUCMSCs was as effective as the i-Heps in treatment of the mouse acute liver failure, and that the therapeutic effects of hUCMSCs were mediated largely via stimulation of host hepatocyte regeneration, and that delivery of the cells through intravenous injection was effective.

  2. Construction of engineering adipose-like tissue in vivo utilizing human insulin gene-modified umbilical cord mesenchymal stromal cells with silk fibroin 3D scaffolds.

    Science.gov (United States)

    Li, Shi-Long; Liu, Yi; Hui, Ling

    2015-12-01

    We evaluated the use of a combination of human insulin gene-modified umbilical cord mesenchymal stromal cells (hUMSCs) with silk fibroin 3D scaffolds for adipose tissue engineering. In this study hUMSCs were isolated and cultured. HUMSCs infected with Ade-insulin-EGFP were seeded in fibroin 3D scaffolds with uniform 50-60 µm pore size. Silk fibroin scaffolds with untransfected hUMSCs were used as control. They were cultured for 4 days in adipogenic medium and transplanted under the dorsal skins of female Wistar rats after the hUMSCs had been labelled with chloromethylbenzamido-1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (CM-Dil). Macroscopical impression, fluorescence observation, histology and SEM were used for assessment after transplantation at 8 and 12 weeks. Macroscopically, newly formed adipose tissue was observed in the experimental group and control group after 8 and 12 weeks. Fluorescence observation supported that the formed adipose tissue originated from seeded hUMSCs rather than from possible infiltrating perivascular tissue. Oil red O staining of newly formed tissue showed that there was substantially more tissue regeneration in the experimental group than in the control group. SEM showed that experimental group cells had more fat-like cells, whose volume was larger than that of the control group, and degradation of the silk fibroin scaffold was greater under SEM observation. This study provides significant evidence that hUMSCs transfected by adenovirus vector have good compatibility with silk fibroin scaffold, and adenoviral transfection of the human insulin gene can be used for the construction of tissue-engineered adipose. Copyright © 2013 John Wiley & Sons, Ltd.

  3. The Role of Amnion Membrane-Derived Mesenchymal Stem Cells on Differentiation and Expansion of Natural Killer Cell Progenitors Originated From Umbilical Cord Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Ahmadi

    2015-11-01

    Full Text Available Background Natural killer (NK cells are members of the innate immune system. Their unique properties, including recognition of viral infected and tumor cells without major histocompatibility complex (MHC restriction or prior sensitization, make them a suitable choice for immunotherapy. Low numbers of NK cells in circulating blood is the most important obstacle for this goal. Objectives The aim of this study was to make an optimum in vitro condition to proliferate and differentiate cord blood (CB-NK cell progenitors to mature NK cells, which can be used for cell therapy. Materials and Methods In our study, CB-Mononuclear Cells’ (MNCs CD3+ lymphocytes were positive depleted using immunomagnetic microbeads. This CD3-depleted (CD3-dep CB - MNCs compartment was used for in vitro expansion with or without a layer of amnion membrane mesenchymal stem cells (MSCs in combination with cytokines that are essential for NK cells expansion (IL-2, IL-3, IL-15, and FLT3 ligand. The expansion period lasted for one week. On day seven, immunophenotype and fold expansion of differentiated cells were measured. Results Combination of cytokines and MSC layer yielded significant fold expansion in comparison with cytokines without feeder conditions (day 7: 5.2 ± 1.12 and 2 ± 0.78, respectively, P < 0.05. CD3-/CD56+ cells percentage increased during the culture period in MSCs/with cytokine and cytokine/without feeder, respectively (day 0: 4.4 ± 0.42% and day 7: 22.9 ± 3.6% and 13.9 ± 1.92 % for MSC/with cytokine and cytokine without feeder, respectively. Conclusions Our results suggested that CB-NK cells progenitors could proliferate and differentiate on feeder layer of amnion membrane MSCs in combination with specific cytokines to produce NK cells for immunotherapy.

  4. Long-term safety of umbilical cord mesenchymal stem cells transplantation for systemic lupus erythematosus: a 6-year follow-up study.

    Science.gov (United States)

    Wang, Dandan; Niu, Lingying; Feng, Xuebing; Yuan, Xinran; Zhao, Shengnan; Zhang, Huayong; Liang, Jun; Zhao, Cheng; Wang, Hong; Hua, Bingzhu; Sun, Lingyun

    2016-06-07

    The aim of this study is to assess the long-term safety of allogeneic umbilical cord mesenchymal stem cells (UC MSCs) transplantation for patients with refractory systemic lupus erythematosus (SLE). Nine SLE patients, who were refractory to steroid and immunosuppressive drugs treatment and underwent MSCs transplantation in 2009, were enrolled. One million allogeneic UC MSCs per kilogram of body weight were infused intravenously at days 0 and 7. The possible adverse events, including immediately after MSCs infusions, as well as the long-term safety profiles were observed. Blood and urine routine test, liver function, electrocardiogram, chest radiography and serum levels of tumor markers, including alpha fetal protein (AFP), cancer embryo antigen (CEA), carbohydrate antigen 155 (CA155) and CA199, were assayed before and 1, 2, 4 and 6 years after MSCs transplantation. All the patients completed two times of MSCs infusions. One patient had mild dizzy and warm sensation 5 min after MSCs infusion, and the symptoms disappeared quickly. No other adverse event, including fluster, headache, nausea or vomit, was observed. There was no change in peripheral white blood cell count, red blood cell count and platelet number in these patients after followed up for 6 years. Liver functional analysis showed that serum alanine aminotransferase, glutamic-oxalacetic transaminase, total bilirubin and direct bilirubin remained in normal range after MSCs infusions. No newly onset abnormality was detected on electrocardiogram and chest radiography. Moreover, we found no rise of serum tumor markers, including AFP, CEA, CA125 and CA199, before and 6 years after MSCs infusions. Our long-term observational study demonstrated a good safety profile of allogeneic UC MSCs in SLE patients.

  5. Therapy for Cerebral Palsy by Human Umbilical Cord Blood Mesenchymal Stem Cells Transplantation Combined With Basic Rehabilitation Treatment: A Case Report.

    Science.gov (United States)

    Zhang, Che; Huang, Li; Gu, Jiaowei; Zhou, Xihui

    2015-01-01

    Background. Cerebral palsy (CP) is the most common cause leading to childhood disability. Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) transplantation is a promising alternative considering the safety and efficacy in current reports. This report represents a case of hUCB-MSCs transplantation combined with basic rehabilitation treatment beginning as early as age 6 months with follow-up as long as 5 years. Methods. A 6-year-old female patient was diagnosed with CP at age 6 months. The patient accepted 4 infusions of intravenous hUCB-MSCs in each course and received 4 courses of transplantation totally. A series of assessments were performed before the first transplantation, including laboratory tests, CDCC Infant Mental Development Scale, and Gross Motor Function Measure-88 (GMFM-88). Then annual assessments using the GMFM-88, Ashworth spasm assessment, and comprehensive function assessment scale were made in addition to the annual laboratory tests. In addition, electroencephalography and brain magnetic resonance imaging were conducted before transplantation and in the follow-up phase. Rehabilitation and safety follow-up have been ongoing for 5 years up to date. Results. There was no complaint about adverse effects during hospitalization or postoperative follow-up. Motor function recovered to normal level according to the evaluation of scales. Language function improved significantly. Linguistic rehabilitation therapy was enhanced for further improvement. Conclusions. The clinical application of hUC-MSCs combined with basic rehabilitation treatment was effective and safe for improving motor and comprehensive function in a patient with CP.

  6. miR-26b-3p Regulates Human Umbilical Cord-Derived Mesenchymal Stem Cell Proliferation by Targeting Estrogen Receptor.

    Science.gov (United States)

    Wang, Qiaoling; Xu, Chen; Zhao, Yunpeng; Xu, Zhenyu; Zhang, Yan; Jiang, Junfeng; Yan, Binghao; Gu, Daolan; Wu, Minjuan; Wang, Yue; Liu, Houqi

    2016-03-01

    Human umbilical cord-derived mesenchymal stem cells (hUC-MSC) have been considered as promising candidates for cell-based regeneration medicine. However, the application was limited to its poor in vitro proliferation ability against the huge demand of cells. MicroRNA plays important roles in the regulation of cell proliferation, apoptosis, and differentiation. The objective of this study is to explore the roles of miRNAs in regulating the in vitro proliferation of hUC-MSC and unveil their possible mechanism. In this study, we found that miR-26b-3p was significantly upregulated during serial in vitro passage of hUC-MSC and was correlated with cellular senescence and cell cycle genes. The overexpression of miR-26b-3p greatly inhibited the proliferation of hUC-MSC in vitro, which is indicated by 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay, cell cycle, and cell growth curve analyses. miR-26b-3p suppression partly rescued this phenotype by maintaining its proliferation ability in vitro. For mechanism studies, we predicted and validated that miR-26b-3p suppresses estrogen receptor 1 (ESR1) expression by directly binding to the coding sequence (CDS) region of its message RNA (mRNA), thus subsequently changing the expression of its downstream effector Cyclin D1. In conclusion, we found that miR-26b-3p played an important role in the regulation of hUC-MSC proliferation in vitro by targeting the ESR-CCND1 pathway.

  7. MicroRNA and messenger RNA analyses of mesenchymal stem cells derived from teeth and the Wharton jelly of umbilical cord.

    Science.gov (United States)

    Chen, Hua-Chien; Lee, Yun-Shien; Sieber, Martin; Lu, Huan-Ting; Wei, Pei-Cih; Wang, Chao-Nin; Peng, Hsiu-Huei; Chao, An-Shine; Cheng, Po-Jen; Chang, Shuenn-Dyh; Chen, Shu-Jen; Wang, Tzu-Hao

    2012-04-10

    Microarray analyses of transcriptomes have been used to characterize mesenchymal stem cells (MSCs) of various origins. MicroRNAs (miRNAs) are short, nonprotein-coding RNAs involved in post-transcriptional gene inhibition in a variety of tissues, including cancer cells and MSCs. This study has integrated the use of miRNA and mRNA expression profiles to analyze human MSCs derived from Wharton's jelly (WJ) of the umbilical cord, milk teeth (MT), and adult wisdom teeth (AT). Because both miRNA and mRNA expression in MT and AT MSCs were so similar, they were combined together as tooth MSCs for comparison with WJ MSCs. Twenty-five genes that were up-regulated in tooth MSCs and 41 genes that were up-regulated in WJ MSCs were identified by cross-correlating miRNA and mRNA profiles. Functional network analysis show that tooth MSCs signature genes, represented by SATB2 and TNFRSF11B, are involved in ossification, bone development, and actin cytoskeleton organization. In addition, 2 upregulated genes of tooth MSCs-NEDD4 and EMP1-have been shown to be involved in neuroectodermal differentiation. The signature genes of WJ MSCs, represented by KAL1 and PAPPA, are involved in tissue development, regulation of cell differentiation, and bone morphogenetic protein signaling pathways. In conclusion, the combined interrogation of miRNA and mRNA expression profiles in this study proved useful in extracting reliable results from a genome-wide comparison of multiple types of MSCs. Subsequent functional network analysis provided further functional insights about these MSCs.

  8. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study.

    Science.gov (United States)

    Pal, Rakhi; Venkataramana, Neelam K; Bansal, Abhilash; Balaraju, Sudheer; Jan, Majahar; Chandra, Ravi; Dixit, Ashish; Rauthan, Amit; Murgod, Uday; Totey, Satish

    2009-01-01

    Spinal cord injury (SCI) is a medically untreatable condition for which stem cells have created hope in the last few years. Earlier pre-clinical reports have shown that transplantation of bone marrow (BM) mesenchymal stromal cells (MSC) in SCI-simulated models can produce encouraging results. In a clinical pilot study, we investigated the growth kinetics of BM MSC from SCI patients, their safety and functional improvement post-transplantation. Thirty patients with clinically complete SCI at cervical or thoracic levels were recruited and divided into two groups based on the duration of injury. Patients with SCI were recruited into group 1 and patients with >6 months of post-SCI were included into group 2. Autologous BM was harvested from the iliac crest of SCI patients under local anesthesia and BM MSC were isolated and expanded ex vivo. BM MSC were tested for quality control, characterized for cell surface markers and transplanted back to the patient via lumbar puncture at a dose of 1 x 10(6) cells/kg body weight. At the time of writing, three patients had completed 3 years of follow-up post-BM MSC administration, 10 patients 2 years follow-up and 10 patients 1 year follow-up. Five patients have been lost to follow-up. None of the patients have reported any adverse events associated with BM MSC transplantation. The results indicate that our protocol is safe with no serious adverse events following transplantation in SCI patients. The number of patients recruited and the uncontrolled nature of the trial do not permit demonstration of the effectiveness of the treatment involved. However, the results encourage further trials with higher doses and different routes of administration in order to demonstrate the recovery/efficacy if any, in SCI patients.

  9. Calcium-sensing receptor-mediated osteogenic and early-stage neurogenic differentiation in umbilical cord matrix mesenchymal stem cells from a large animal model.

    Science.gov (United States)

    Martino, Nicola Antonio; Reshkin, Stephan Joel; Ciani, Elena; Dell'Aquila, Maria Elena

    2014-01-01

    Umbilical cord matrix mesenchymal stem cells (UCM-MSCs) present a wide range of potential therapeutical applications. The extracellular calcium-sensing receptor (CaSR) regulates physiological and pathological processes. We investigated, in a large animal model, the involvement of CaSR in triggering osteogenic and neurogenic differentiation of two size-sieved UCM-MSC lines, by using AMG641, a novel potent research calcimimetic acting as CaSR agonist. Large (>8 µm in diameter) and small (cell proliferation were evaluated. Both cell lines were then cultured in osteogenic or neurogenic differentiation medium containing: 1) low [Ca2+]o (0.37 mM); 2) high [Ca2+]o (2.87 mM); 3) AMG641 (0.05, 0.1 or 1 µM) with high [Ca2+]o and 4) the CaSR antagonist NPS2390 (10 mM for 30 min) followed by incubation with AMG641 in high [Ca2+]o. Expression of osteogenic or neurogenic differentiation biomarkers was compared among groups. In both cell lines, AMG641 dose-dependently increased cell proliferation (up to Pcells, respectively. AMG641 significantly increased alkaline phosphatase activity and calcium phosphate deposition in both cell lines. Following treatment with AMG641 during osteogenic differentiation, in both cell lines CaSR expression was inversely related to that of osteogenic markers and inhibition of CaSR by NPS2390 blocked AMG641-dependent responses. Early-stage neurogenic differentiation was promoted/triggered by AMG641 in both cell lines, as Nestin and CaSR mRNA transcription up-regulation were observed. Calcium- and AMG641-induced CaSR stimulation promoted in vitro proliferation and osteogenic and early-stage neurogenic differentiation of UCM-MSCs. CaSR activation may play a fundamental role in selecting specific differentiation checkpoints of these two differentiation routes, as related to cell commitment status.

  10. Combination of low O(2) concentration and mesenchymal stromal cells during culture of cord blood CD34(+) cells improves the maintenance and proliferative capacity of hematopoietic stem cells.

    Science.gov (United States)

    Hammoud, Mohammad; Vlaski, Marija; Duchez, Pascale; Chevaleyre, Jean; Lafarge, Xavier; Boiron, Jean-Michel; Praloran, Vincent; Brunet De La Grange, Philippe; Ivanovic, Zoran

    2012-06-01

    The physiological approach suggests that an environment associating the mesenchymal stromal cells (MSC) and low O(2) concentration would be most favorable for the maintenance of hematopoietic stem cells (HSCs) in course of ex vivo expansion of hematopoietic grafts. To test this hypothesis, we performed a co-culture of cord blood CD34(+) cells with or without MSC in presence of cytokines for 10 days at 20%, 5%, and 1.5% O(2) and assessed the impact on total cells, CD34(+) cells, committed progenitors (colony-forming cells-CFC) and stem cells activity (pre-CFC and Scid repopulating cells-SRC). Not surprisingly, the expansion of total cells, CD34(+) cells, and CFC was higher in co-culture and at 20% O(2) compared to simple culture and low O(2) concentrations, respectively. However, co-culture at low O(2) concentrations provided CD34(+) cell and CFC amplification similar to classical culture at 20% O(2) . Interestingly, low O(2) concentrations ensured a better pre-CFC and SRC preservation/expansion in co-culture. Indeed, SRC activity in co-culture at 1.5% O(2) was higher than in freshly isolated CD34(+) cells. Interleukin-6 production by MSC at physiologically low O(2) concentrations might be one of the factors mediating this effect. Our data demonstrate that association of co-culture and low O(2) concentration not only induces sufficient expansion of committed progenitors (with respect to the classical culture), but also ensures a better maintenance/expansion of hematopoietic stem cells (HSCs), pointing to the oxygenation as a physiological regulatory factor but also as a cell engineering tool.

  11. Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34+ cells

    Institute of Scientific and Technical Information of China (English)

    YiZhanga; ChangdongLi; XiaoxiaJiang; ShuangxiZhang; YingWu; BingLiu; PeihsienTang; NingMao

    2005-01-01

    Objective. Allogeneic transplantation with umbilical cord blood (UCB) in adult recipients is limited mainly by a low CD34+ cell dose. To overcome this shortcoming, human placenta as a novel source of human mesenchymal progenitor cell (MPC) was incorporated in an attempt to expand CD34+ ceils from UCB in vitro.Materials and Methods. Human placenta MPC was isolated and characterized by morphologic,immunophenotypical, and functional analysis. UCB CD34+ cells were expanded by coculturewith placeutal MPC. Suitable aliquots of cells were used to monitor cell production, elonogenie activity, and tong-term culture-initiating culture (LTC-IC) output. Finally, the immunoregulatory effect of placental MPC was evaluated by T-cell proliferation assay.Results. In its undifferentiated state, placental MPC displayed fibroblastoid morphology; was CD73, CD105, CD29, CD44, HLA-ABC, and CD166 positive; produced fibronectin, laminin,and vimentin; but was negative for CD14, CD31, CD34, CD45, HLA-DR, and α-smooth muscle actin. Functionally, it could be induced into adipocytes, osteocytes, and chondrocytes.In vitro expansion of UCB hematopoietic cells, when cocultured with placental MPC in the presence of eytokines, was significantly enhanced: CD34+ cells by 14.89±2.32 fold; colonyforming cell (CFC) by 36.73±5.79 told; and LTC-IC by 7.43±2.66 fold. Moreover, placental MPC could suppress T-cell proliferation induced by cellular stimuli.Conclusion. These results strongly suggest that human placental MPC may be a suitable feeder layer for expansion of hematopoietic progenitors from UCB in vitro.

  12. Effect of human umbilical cord mesenchymal stem cell adjuvant therapy on liver function and fibrosis indicators as well as the degree of inflammation in patients with hepatitis B cirrhosis

    Institute of Scientific and Technical Information of China (English)

    Gui-Jin Luo; Ping-Guang Lei

    2016-01-01

    Objective:To analyze the effect of human umbilical cord mesenchymal stem cell adjuvant therapy on liver function and fibrosis indicators as well as the degree of inflammation in patients with hepatitis B cirrhosis.Methods:A total of 80 cases with hepatitis B cirrhosis in our hospital from August 2012 to November 2014 were included for study. According to different treatment methods, all included patients were divided into observation group and control group by half. Control group received conventional treatment, observation group received human umbilical cord mesenchymal stem cell adjuvant therapy, and then differences in the levels of liver function indicators, liver fibrosis indicators, inflammation-related indicators and illness-related indicators were compared between two groups.Results:Serum ALB, GLB and A/G values of observation group after treatment were higher than those of control group, andα2-M, TB, APO-A1 and GGT values were lower than those of control group (P<0.05); serum HA, LN, CIV, PⅢNP and PLD values of observation group after treatment were lower than those of control group (P<0.05); serum TGF-β1, PCT, WBC and SIL-2R levels of observation group after treatment were lower than those of control group (P<0.05); serum FT3 and ADP values of observation group after treatment were higher than those of control group, and NO, EGF, ADM and IR values were lower than those of control group (P<0.05).Conclusions:Human umbilical cord mesenchymal stem cell adjuvant therapy for patients with hepatitis B cirrhosis can optimize liver function and inhibit disease progression, and it has active clinical significance.

  13. 评价脐带间充质干细胞移植前细胞活性的指标★%Evaluation indexes for the viability of umbilical cord-derived mesenchymal stem cells before transplantation

    Institute of Scientific and Technical Information of China (English)

    雷鑫; 陈彦; 张建林; 崔蕾; 牛玉虎; 牛勃

    2013-01-01

    BACKGROUND:Umbilical cord-derived mesenchymal stem cel s are gaining more attention in clinical treatments. Cel viability prior to transplantation has a direct impact on clinical prognosis. Despite trypan blue staining is a widely performed procedure to assess the viability of umbilical cord-derived mesenchymal stem cel s, it cannot reflect the functional capacity of those cel s accurately because of some subjective factors. OBJECTIVE:To explore sensitive and accurate assay for the functions of umbilical cord-derived mesenchymal stem cel s. METHODS:Human umbilical cord-derived mesenchymal stem cel s were isolated and cultured in vitro. Cultured umbilical cord-derived mesenchymal stem cel s were preserved in 0.9%saline for 0, 2, 4 and 6 hours at 4 ℃. Various methods (trypan blue staining, AnnexinV-PI, terminal deoxynucleotidyl transferase dutp nick end labeling, cel counting kit-8, live-dead assay, cel adherent assay) were used to determine the viability of post-storage umbilical cord-derived mesenchymal stem cel s, and the results were compared with colony-forming efficiency, a measure of cel function. RESULTS AND CONCLUSION:Human umbilical cord-derived mesenchymal stem cel s cultured in vitro showed a spindle shape and attached growth, the third-generation umbilical cord-derived mesenchymal stem cel s were positive for CD29, CD44, CD105, and negative for CD 34 and CD 45. Umbilical cord-derived mesenchymal stem cel s incubated in the adipogenic and osteogenic medium were both positive. Cel viability measured with trypan blue correlated moderately with colony-forming efficiency, while the percentage of viable cel s measured with other methods correlated better with colony-forming efficiency, among which adherent assay was the most obvious. It is proved that cel adherent assay-measured viability is the most accurate indicator.%  背景:脐带间充质干细胞已在临床多种疾病中展开研究,作为一种动态的活细胞,移植前的细胞活性

  14. 食蟹猴脐带间充质干细胞的分离与鉴定%Isolation and identification of cynomolgus monkey umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    庞荣清; 何洁; 李瑞生; 赵晶; 朱慧; 朱向情; 阮光萍; 潘兴华

    2015-01-01

    目的:建立食蟹猴脐带间充质干细胞的分离培养方法。方法新鲜食蟹猴脐带剪碎为糊状,用含10%胎牛血清的DMEM/F12培养液培养,观察细胞形态特征,流式细胞技术分析细胞抗原标志的表达,并检测其体外多向分化潜能。结果运用组织贴块法可以从新鲜脐带中分离到贴壁生长、阳性表达CD29、CD44、CD90的成纤维细胞样细胞。这些细胞在体外诱导培养后可分别检测到脂滴、骨和软骨细胞。结论运用组织贴块培养法可用含10%胎牛血清的DMEM/F12培养液从食蟹猴脐带中分离到间充质干细胞。%Objective To establish a method for isolation of cynomolgus monkey umbilical cord mesenchymal stem cells.Methods Fresh cynomolgus monkey umbilical cord was directly minced into pasty fine pieces, and the pieces were cultured in tissue flask with DMEM/F12 medium supplemented with 10% fetal bovine serum.The morphological characteristics of the resulting cells were examined, and their expression of mesenchymal cell surface markers were analyzed by flow cytometry.The multidifferentiation potential was examined in vitro, too.Results The fibroblast-like cells were successfully isolated from the fresh umbilical cord by an adherent culture procedure.These adherent cells expressed mesenchymal markers including CD29, CD44, and CD90, and also could be induced to differentiate into adipocytes, osteoblasts and chondrocytes.Conclusion Mesenchymal stem cells can be isolated from fresh cynomolgus monkey umbilical cord by using an adherent culture procedure.

  15. Effect of human umbilical cord mesenchymal stem cell-secretion on proliferation and apoptosis in hepatocytes%人脐带间充质干细胞分泌物对肝细胞增殖和凋亡的影响

    Institute of Scientific and Technical Information of China (English)

    黎娇; 朱争艳; 杜智; 骆莹; 王鹏; 高英堂

    2010-01-01

    目的 探讨人脐带间充质干细胞(human umbilical cord mesenchymal stem cells,HUC MSC)旁分泌物质在体外对肝细胞再生和凋亡的影响.方法 利用Ⅳ型胶原酶和胰酶消化法从脐带中分离间充质干细胞,制备含有HUCMSC旁分泌物质的条件培养基(mesenchymal stem cells-conditioned medium,MSC-CM),采用低浓度胶原酶原位循环灌流法分离肝细胞.试验分为对照组、2%MSC-CM组和8%MSC-CM组三组.采用MTT比色法观察不同浓度MSC-CM对正常肝细胞增殖的影响.测定上清中尿素、白蛋白的含量,观察不同浓度MSC-CM对肝细胞功能的影响.利用放线菌素D和肿瘤坏死因子α诱导肝细胞凋亡,采用细胞活性分析试剂盒检测不同浓度MSC-CM对肝细胞凋亡的影响.结果 与对照组比较,2%MSC-CM组吸光度(A)540nm值(P<0.01)以及上清尿素和白蛋白含量显著升高(P<0.01),肝细胞存活率增加(P<0.05);8%MSC-CM组与对照组无显著差异.结论 低浓度的MSC-CM在体外可以刺激正常肝细胞再生,抑制受损肝细胞凋亡,改善肝细胞功能.%Objective To investigate the effect of human umbilical cord mesenchymal stem cell paracrine substance on proliferation and apoptosis of liver cells in vitro. Methods Mesenchymal stem cells (MSC)were separated from human umbilical cord with type Ⅳ collagenase and trypsogen digestion method and cultured in vitro. The human umbilical cord mesenchymal stem cells-conditioned medium(MSC-CM) which contain paracrine substance of human umbilical cord mesenchymal stem cells (HUCMSC) was prepared. Hepatocytes were isolated from SD rats by low concentration collagenase perfusion procedure. There were three groups in the experiment, control group, 2% MSC-CM group and 8% MSC-CM group. The proliferation of normal hepatocytes were assayed with MTT method. We detected the urea and albumin level in culture supernatant to assay the hepatocyte function under different concentration MSC-CM. Hepatocytes were

  16. Umbilical cord mesenchymal stem cells promote angiogenesis of ischemic lower limbs%脐带间充质干细胞促血管新生在治疗下肢缺血中的研究与应用

    Institute of Scientific and Technical Information of China (English)

    李晓玲; 朱旅云; 宋光耀

    2015-01-01

    BACKGROUND:Under certain conditions, stem cel s can be induced to differentiate into vascular endothelial cel s, which can promote the angiogenesis of ischemic lower limbs and the establishment of effective circulation and improve distal blood supply of the ischemic limbs. OBJECTIVE:To review the biological characteristics and pro-angiogenesis mechanism of umbilical cord mesenchymal stem cel s and to investigate the current status of umbilical cord mesenchymal stem cel s in the repair of neuropathy and chronic wounds. METHODS:PubMed, VIP and Wanfang databases were searched for relevant articles published from 2000 to 2015 using the keywords of“stem cel s transplantation, umbilical cord mesenchymal stem cel , diabetic angiopathies”in English and Chinese, respectively. RESULTS AND CONCLUSION:Compared with peripheral blood stem cel s and bone marrow mesenchymal stem cel s, umbilical cord mesenchymal stem cel s are characterized as more widespread sources, easy col ection, stronger amplification ability, no immunogenicity, and no ethical controversy, which have become ideal target and seed cel s for pro-angiogenesis and gene therapy in ischemic diseases. Umbilical cord mesenchymal stem cel s can differentiate into vascular endothelial cel s and fibroblasts involved in wound healing. In addition, these cel s can promote the production and expression of neurotrophic factors, promote nerve regeneration in ischemic tissues, and participate in tissue repair and accelerate healing of ulcers by paracrine and autocrine cytokines, anti-inflammation and immunomodulation. Therefore, umbilical cord mesenchymal stem cel s have a broad prospect in the improvement of diabetic lower limb ischemia, repair of diabetic peripheral neuropathy and promotion of chronic ulcer healing. Compared with stem cel transplantation alone, umbilical cord mesenchymal stem cel s transplantation combined with gene therapy can further enhance cel survival and pro-angiogenesis.%背景:干细胞在

  17. “Biological drug”:mesenchymal stem cells derived from umbilical cord%“生物药”--Wharton’s jelly源间充质干细胞

    Institute of Scientific and Technical Information of China (English)

    高连如

    2016-01-01

    干细胞治疗代表生物冶疗进入到了一个崭新的时代。间充质干细胞是存在于胚胎或成体组织中来源于中胚层具有多向分化潜能的干细胞。由于成体间充质干细胞的质量与数量自身缺陷,使之应用受到了很大限制。 Wharton’s jelly组织,是起始于胚胎发育第13天的胚外中胚层组织。使用基因微阵列分析及功能分析,首次发现Wharton’s jelly源间充质干细胞( Wharton’s jelly derived mesenchymal stem cells,WJMSCs)高表达胚胎早期干性基因及心肌细胞分化早期特异转录因子,可分化心肌细胞等多种细胞。进而,应用临床级WJMSCs经冠状动脉移植治疗ST抬高型急性心肌梗死患者的随机双盲临床试验,首次证明WJMSCs可明显改善心肌活力及心脏功能。因此,WJMSCs具有极其重要益处;无伦理涉及,有强的分化潜能,无致瘤性;加之,WJMSCs可作为产品,在任何时候病情需要时立即应用。为此,WJMSCs作为真正意义上的干细胞族,将最有希望成为具有应用前景的干细胞生物药。%Cell-based treatment represents a new generation in the evolution of biological therapeutics. Mesenchymal stem cells ( MSCs) are mesoderm-derived multipotent stromal cells that reside in embryonic and adult tissues. The use of adult MSCs is limited by the quality and quantity of host stem cells. Wharton’s jelly of the umbilical cord originates from the extraembryonic and/or the embryonic mesoderm at day 13 of embryonic development. Using Affymetrix GeneChip microarray and functional network analyses, we found for the first time that Wharton’s jelly-derived MSCs ( WJMSCs) , except for their expression of stemness molecular markers in common with human ESCs ( hESCs) , exhibited a high expression of early cardiac transcription factor genes and could be in-duced to differentiate into cardiomyocyte-like cells. Further, we demonstrated for the first time that intracoronary delivery of prepared

  18. Ex vivo expansion of hematopoietic stem- and progenitor cells from cord blood in coculture with mesenchymal stroma cells from amnion, chorion, Wharton's jelly, amniotic fluid, cord blood, and bone marrow.

    Science.gov (United States)

    Klein, Caroline; Strobel, Julian; Zingsem, Jürgen; Richter, Richard H; Goecke, Tamme W; Beckmann, Matthias W; Eckstein, Reinhold; Weisbach, Volker

    2013-12-01

    In most cases, the amount of hematopoietic stem and progenitor cells (HSPCs) in a single cord blood (CB) unit is not sufficient for allogenic transplantation of adults. Therefore, two CB units are usually required. The ex vivo expansion of HSPCs from CB in coculture with mesenchymal stroma cells (MSCs) might be an alternative. It was investigated, whether bone marrow-derived MSCs, which have to be obtained in an invasive procedure, introduce a further donor and increases the risk of transmissible infectious diseases for the patient can be replaced by MSCs from amnion, chorion, Wharton's jelly, amniotic fluid, and CB, which can be isolated from placental tissue which is readily available when CB is sampled. In a two-step ex vivo coculture mononuclear cells from cryopreserved CB were cultured with different MSC-feederlayers in a medium supplemented with cytokines (stem cell factor, thrombopoietin [TPO], and granulocyte colony-stimulating factor). Expansion rates were analyzed as well, by long-term culture-initiating cell (LTC-IC) and colony-forming unit (CFU) assays, as by measuring CD34(+)- and CD45(+)-cells. Due to the comparably low number of 5×10(2) to 1×10(4) CD34(+)-cells per cm(2) MSC-monolayer, we observed comparably high expansion rates from 80 to 391,000 for CFU, 70 to 313,000 for CD34(+)-, and 200 to 352,000 for CD45(+)-cells. Expansion of LTC-IC was partly observed. Compared to the literature, we found a better expansion rate of CD34(+)-cells with MSCs from all different sources. This is probably due to the comparably low number of 5×10(2) to 1×10 CD34(+)-cells per cm(2) MSC-monolayer we used. Comparably, high expansion rates were observed from 80 to 391,000 for CFUs, 70 to 313,000 for CD34(+)-, and 200 to 352,000 for CD45(+)-cells. However, the expansion of CD34(+)-cells was significantly more effective with MSCs from bone marrow compared to MSCs from amnion, chorion, and Wharton's jelly. The comparison of MSCs from bone marrow with MSCs from CB and

  19. Alginate/PEG based microcarriers with cleavable crosslinkage for expansion and non-invasive harvest of human umbilical cord blood mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunge [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Qian, Yufeng [Department of Chemistry and Biochemistry, University of Texas at Austin, 2500 Speedway, Austin, TX 78712 (United States); Zhao, Shuang [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Yin, Yuji, E-mail: yinyuji@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Li, Junjie, E-mail: li41308@tju.edu.cn [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, No. 92, Weijin Road, Tianjin 300072 (China); Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences, No. 27, Taiping Road, Beijing 100850 (China)

    2016-07-01

    Porous microcarriers are increasingly used to expand and harvest stem cells. Generally, the cells are harvested via proteolytic enzyme treatment, which always leads to damages to stem cells. To address this disadvantage, a series of alginate/PEG (AL/PEG) semi-interpenetrating network microcarriers are prepared in this study. In this AL/PEG system, the chemically cross-linked alginate networks are formed via the reaction between carboxylic acid group of alginate and di-terminated amine groups of cystamine. PEG is introduced to modulate the degradation of microcarriers, which does not participate in this cross-linked reaction, while it interpenetrates in alginate network via physical interactions. In addition, chitosan are coated on the surface of AL/PEG to improve the mechanical strength via the electrostatic interactions. Biocompatible fibronectin are also coated on these microcarriers to modulate the biological behaviors of cells seeded in microcarriers. Results suggest that the size of AL/PEG microcarriers can be modulated via adjusting the contents and molecular weight of PEG. Moreover, the microcarriers are designed to be degraded with cleavage of disulfide crosslinkage. By changing the type and concentration of reductant, the ratio of AL to PEG, and the magnitude of chitosan coating, the degradation ability of AL/PEG microcarriers can be well controlled. In addition, AL/PEG microcarriers can support the attachment and proliferation of human umbilical cord blood mesenchymal stem cells (hUCB-MSCs). More importantly, the expanded hUCB-MSCs can be detached from microcarriers after addition of reductant, which indeed reduce the cell damage caused by proteolytic enzyme treatment. Therefore, it is convinced that AL/PEG based microcarriers will be a promising candidate for large-scale expansion of hUCB-MSCs. - Graphical abstract: Alginate/PEG IPN microcarriers can support the attachment and expansion of hUCB-MSCs. More importantly, the expanded cells can be harvested

  20. Honokiol improved chondrogenesis and suppressed inflammation in human umbilical cord derived mesenchymal stem cells via blocking nuclear factor-κB pathway.

    Science.gov (United States)

    Wu, Hao; Yin, Zhanhai; Wang, Ling; Li, Feng; Qiu, Yusheng

    2017-08-29

    Cartilage degradation is the significant pathological process in osteoarthritis (OA). Inflammatory cytokines, such as interleukin-1β (IL-1β), activate various downstream mediators contributing to OA pathology. Recently, stem cell-based cartilage repair emerges as a potential therapeutic strategy that being widely studied, whereas, the outcome is still far from clinical application. In this study, we focused on an anti-inflammatory agent, honokiol, which is isolated from an herb, investigated the potential effects on human umbilical cord derived mesenchymal stem cells (hUC-MSCs) in IL-1β stimulation. Second passage hUC-MSCs were cultured for multi-differentiation. Flow cytometry, qRT-PCR, von Kossa stain, alcian blue stain and oil red O stain were used for characterization and multi-differentiation determination. Honokiol (5, 10, 25, 50 μM) and IL-1β (10 ng/ml) were applied in hUC-MSCs during chondrogenesis. Analysis was performed by MTT, cell apoptosis evaluation, ELISA assay, qRT-PCR and western blot. hUC-MSC was positive for CD73, CD90 and CD105, but lack of CD34 and CD45. Remarkable osteogenesis, chondrogenesis and adipogenesis were detected in hUC-MSCs. IL-1β enhanced cell apoptosis and necrosis and activated the expression of caspase-3, cyclooxygenase-2 (COX-2), interleukin-6 (IL-6) and matrix metalloproteinase (MMP)-1, -9, 13 in hUC-MSCs. Moreover, the expression of SRY-related high-mobility group box 9 (SOX-9), aggrecan and col2α1 was suppressed. Honokiol relieved these negative impacts induced by IL-1β and suppressed Nuclear factor-κB (NF-κB) pathway by downregulating expression of p-IKKα/β, p-IκBα and p-p65 in dose-dependent and time-dependent manner. Honokiol improved cell survival and chondrogenesis of hUC-MSCs and inhibited IL-1β-induced inflammatory response, which suggested that combination of anti-inflammation and stem cell can be a novel strategy for better cartilage repair.

  1. 脐带间充质干细胞生物学特性的研究%Biological Characteristics of Mesenchymal Stem Cells Derived from Umbilical Cord

    Institute of Scientific and Technical Information of China (English)

    李洁; 傅勇辉; 邓婷; 万齐根; 袁铿

    2014-01-01

    Objective To study the biological characteristics of mesenchymal stem cells derived from umbilical cord(UC-MSCs).Methods The umbilical cords were obtained from pregnancies delivered by caesarean section.UC-MSCs were isolated by typeⅡ collagenase digestion.The UC-MSCs at the third generation were randomly divided into three groups:normal control group,dif-ferentiation into adipocyte group and differentiation into chondrocyte group.The morphology of UC-MSCs was observed under an optical microscope.The surface markers of UC-MSCs were de-tected by flow cytometry.In addition,the differentiation of UC-MSCs into adipocytes and chon-drocytes were observed.Results Flow cytometry showed that UC-MSCs highly expressed CD29, CD105,CD166 and CD90 but did not express CD34 and CD45.UC-MSCs showed spindle shape and arranged with obvious directivity.Cells differentiated toward adipocytes showed round or ap-proximately round shape.Cells differentiated toward chondrocytes showed spindle,round or ap-proximately round shape.Moreover,cells differentiated into adipocytes and chondrocytes were proved by oil red O staining and alcian blue staining,respectively.Conclusion UC-MSCs are plu-ripotent cells that may be used as a new source for stem cell transplantation.%目的:探讨脐带(UC)间充质干细胞(MSC)生物学的特性。方法行剖宫产术时采集胎儿 UC,采用1 g· L-1Ⅱ型胶原酶消化、分离 UC-MSC。将第3代 UC-MSC随机分为3组:正常对照组、诱导向脂肪细胞分化组和诱导向软骨细胞分化组,分别在光学显微镜下观察 UC-MSC形态,流式细胞仪检测 UC-MSC表面标志,体外诱导UC-MSC分化为软骨及脂肪细胞。结果第3代 UC-MSC 经流式细胞仪测定证明,其高表达 CD29、CD105、CD166和CD90,不表达CD34、CD45。正常对照组的 UC-MSC细胞呈长梭形,排列有明显方向性;诱导向脂肪细胞分化组的 UC-MSC细胞呈圆形或近似圆形;诱

  2. Co-transplantation of autologous bone marrow mesenchymal stem cells and Schwann cells through cerebral spinal fluid for the treatment of patients with chronic spinal cord injury: safety and possible outcome.

    Science.gov (United States)

    Oraee-Yazdani, S; Hafizi, M; Atashi, A; Ashrafi, F; Seddighi, A-S; Hashemi, S M; Seddighi, A; Soleimani, M; Zali, A

    2016-02-01

    This is a clinical trial (phase 1). The objective of this study was to asses the safety and feasibility of bone marrow mesenchymal stem cell (MSC) and Schwann cell (SC) co-injection through cerebral spinal fluid (CSF) for the treatment of patients with chronic spinal cord injury. Six subjects with complete spinal cord injury due to trauma according to International Standard of Neurological Classification for Spinal Cord Injury (ISNCSCI) developed by the American Spinal Injury Association were enrolled. They received autologous co-transplantation of MSC and SC through lumbar puncture. Neurological status of the patients was determined by ISNCSCI, as well as by assessment of functional status by Spinal Cord Independent Measure. Before and after cell transplantation, magnetic resonance imaging (MRI) was performed for all the patients. Before the procedure, all the patients underwent electromyography, urodynamic study (UDS) and MRI tractograghy. After transplantation, these assessments were performed in special cases when the patients reported any changes in motor function or any changes in urinary sensation. Over the mean 30 months of follow-up, the radiological findings were unchanged without any evidence of neoplastic tissue overgrowth. American Spinal Injury Association class in one patient was changed from A to B, in addition to the improvement in indexes of UDS, especially bladder compliance, which was congruous with axonal regeneration detected in MRI tractography. No motor score improvement was observed among the patients. No adverse findings were detected at a mean of 30 months after autologous transplantation of the combination of MSCs and SCs through CSF. It may suggest the safety of this combination of cells for spinal cord regeneration.

  3. [Effects of combined application of culture supernatant of human umbilical cord mesenchymal stem cells and ciprofloxacin on Staphylococcus aureus in vitro].

    Science.gov (United States)

    Zhou, B; Tu, H L; Ba, T; Wang, L F; Wang, S J; Nie, S Y

    2017-06-20

    Objective: To explore the effects of combined application of culture supernatant of human umbilical cord mesenchymal stem cells (hUCMSCs) and ciprofloxacin on Staphylococcus aureus (SA) in vitro. Methods: hUCMSCs were isolated from umbilical cord tissue of full-term healthy fetus after cesarean section and cultured. Cells in the third passage were used in the experiments after identification. SA strains isolated from wounds of burn patients in our burn wards were used in the experiments. Cells were divided into 0, 10, 100, and 1 000 ng/mL lipopolysaccharide (LPS) groups according to the random number table (the same dividing method below). Cells were cultured with culture medium of mesenchymal stem cells (MSCs) after being treated with medium containing the corresponding mass concentrations of LPS for 12 h. At post culture hour (PCH) 6, 12, and 24, 6 wells of culture supernatant of cells in each group were obtained to measure the content of LL-37 with enzyme-linked immunosorbent assay. Ninety blood agar plates were divided into ciprofloxacin control group (CC), ciprofloxacin+ supernatant group (CS), and ciprofloxacin+ supernatant+ LL-37 antibody group (CSL), with 30 blood agar plates in each group. Blood agar plates in group CC were coated with 1.5×10(8) colony forming unit (CFU)/mL bacteria solution prepared with normal saline. Blood agar plates in group CS were coated with 1.5×10(8) CFU/mL bacteria solution prepared with normal saline and culture supernatant of hUCMSCs (cultured by culture medium of MSCs, the same below) in double volume of normal saline. Blood agar plates in group CSL were coated with 1.5×10(8) CFU/mL bacteria solution prepared with normal saline, culture supernatant of hUCMSCs in double volume of normal saline, and 2.6 μL LL-37 antibody in the concentration of 2 μg/mL. At PCH 12, 24, and 48, 10 blood agar plates of each group were harvested to observe the distribution of SA colony on blood agar plate and to measure the diameter of

  4. Menstrual Blood-Derived Stem Cells: In Vitro and In Vivo Characterization of Functional Effects.

    Science.gov (United States)

    Rodrigues, Maria Carolina Oliveira; Lippert, Trenton; Nguyen, Hung; Kaelber, Sussannah; Sanberg, Paul R; Borlongan, Cesar V

    2016-01-01

    Accumulating evidence has demonstrated that menstrual blood stands as a viable source of stem cells. Menstrual blood-derived stem cells (MenSCs) are morphologically and functionally similar to cells directly extracted from the endometrium, and present dual expression of mesenchymal and embryonic cell markers, thus becoming interesting tools for regenerative medicine. Functional reports show higher proliferative and self-renewal capacities than bone marrow-derived stem cells, as well as successful differentiation into hepatocyte-like cells, glial-like cells, endometrial stroma-like cells, among others. Moreover, menstrual blood stem cells may be used with increased efficiency in reprogramming techniques for induced Pluripotent Stem cell (iPS) generation. Experimental studies have shown successful treatment of stroke, colitis, limb ischemia, coronary disease, Duchenne's muscular atrophy and streptozotocin-induced type 1 diabetes animal models with MenSCs. As we envision an off-the-shelf product for cell therapy, cryopreserved MenSCs appear as a feasible clinical product. Clinical applications, although still very limited, have great potential and ongoing studies should be disclosed in the near future.

  5. Nanopatterned acellular valve conduits drive the commitment of blood-derived multipotent cells

    Science.gov (United States)

    Di Liddo, Rosa; Aguiari, Paola; Barbon, Silvia; Bertalot, Thomas; Mandoli, Amit; Tasso, Alessia; Schrenk, Sandra; Iop, Laura; Gandaglia, Alessandro; Parnigotto, Pier Paolo; Conconi, Maria Teresa; Gerosa, Gino

    2016-01-01

    Considerable progress has been made in recent years toward elucidating the correlation among nanoscale topography, mechanical properties, and biological behavior of cardiac valve substitutes. Porcine TriCol scaffolds are promising valve tissue engineering matrices with demonstrated self-repopulation potentiality. In order to define an in vitro model for investigating the influence of extracellular matrix signaling on the growth pattern of colonizing blood-derived cells, we cultured circulating multipotent cells (CMC) on acellular aortic (AVL) and pulmonary (PVL) valve conduits prepared with TriCol method and under no-flow condition. Isolated by our group from Vietnamese pigs before heart valve prosthetic implantation, porcine CMC revealed high proliferative abilities, three-lineage differentiative potential, and distinct hematopoietic/endothelial and mesenchymal properties. Their interaction with valve extracellular matrix nanostructures boosted differential messenger RNA expression pattern and morphologic features on AVL compared to PVL, while promoting on both matrices the commitment to valvular and endothelial cell-like phenotypes. Based on their origin from peripheral blood, porcine CMC are hypothesized in vivo to exert a pivotal role to homeostatically replenish valve cells and contribute to hetero- or allograft colonization. Furthermore, due to their high responsivity to extracellular matrix nanostructure signaling, porcine CMC could be useful for a preliminary evaluation of heart valve prosthetic functionality. PMID:27789941

  6. 人脐带间充质干细胞移植治疗小脑萎缩%Transplantation of Human Umbilical-Cord Mesenchymal Stem Cells in Treatment of Cerebellar Atrophy

    Institute of Scientific and Technical Information of China (English)

    应奇; 王毛毛; 张风林; 徐小龙; 郭子宽; 许志方

    2013-01-01

    目的 研究人脐带间充质干细胞(Human umbilical-cord mesenchymal stem cells,hUMSCs)治疗小脑萎缩(Cerebellar atrophy,CA)的临床疗效.方法 健康新生儿脐带中分离MSCs,连续体外扩增,采用鞘内注射(2.5×1075 mL)结合静脉滴注(7.5×107100 mL)的方法,治疗57例小脑萎缩患者,每次治疗剂量为1.0× 108个细胞.结果 所有患者随访6个月,治疗3个月后有效率为72.0%,治疗6个月后有效率为79.0%,无明显并发症.结论 应用hUMSCs治疗小脑萎缩安全有效,但远期疗效尚待进一步观察.%Objective To evaluate the clinical effectiveness of transplantation of human umbilical-cord mesenchymal stem cells (hUMSCs) in the treatment of cerebellar atrophy (CA). Methods The mesenchymal stem cells (MSCs) were separated from umbilical -cord of healthy newborn and were cultured to a large amount in vitro. Then hUMSCs were transplanted (cell amount: 1.0×108) into CA patients (57 cases) by intra-dural injection (2.5×107/5 mL) and intravenous injection (7.5×107/100 mL). Results All the patients were followed up for 6 months. The effective rate were 72.0% 3 months after transplantation and 79.0% 6 months after transplantation respectively. No complication were observed. Conclusion hUMSCs treating CA is safe and effective, but its long-term effectiveness should be further observed.

  7. 脐带间充质干细胞移植治疗帕金森病5例%Umbilical Cord Mesenchymal Stem Cell Transplantation Treating Parkinson’s Disease Among 5 Cases

    Institute of Scientific and Technical Information of China (English)

    尚亚细亚; 杜菊梅

    2016-01-01

    目的:观察脐带间充质干细胞移植治疗帕金森病患者的疗效。方法选取2015年3月至2016年5月我院脑病科收治的帕金森病患者5例(男3例,女2例);平均年龄(68.23±9.13)岁。患者均签署知情同意书。静脉滴注脐带间充质干细胞200 ml(含细胞数量为1×108个),3次为1个疗程,共3个疗程。结果5例患者治疗3个疗程后,与治疗前相比,帕金森病评定量表评分、Hoehn - Yahr 量表评分明显降低(P<0.01)。结论脐带间充质干细胞移植在改善帕金森病患者的临床症状有显著疗效。%Objective To observe the effects of umbilical cord mesenchymal stem cell transplantation in the treatment of patients with Parkinson’s disease curative effect .Methods A total of 2 0 1 5 March to may in 2 0 1 6 in our hospital department of encephalopathy treated patients with Parkinson’s disease in 5 cases(male 3 cases , female 2 ) ;mean age (6 8 .2 3 ± 9 .1 3 ) years old .The patients signed the informed consent .Intravenous infusion of umbilical cord mesenchymal stem cells (BMSCs) 2 0 0 ml (including cell number 1 × 1 0 8 ) ,3 times for a course of treatment ,a total of three courses .Results The 5 cases after 3 courses of treatment ,compared with before treatment ,Unified Parkinson’s disease rating scale and Hoehn - Yahr amount .Conclusion The umbilical cord mesenchymal stem cells transplantation in improving the clinical symptoms of patients with Parkinson’s disease has a significant effect on the clinical symptoms of’s disease .

  8. Human cord blood derived immature basophils show dual characteristics, expressing both basophil and eosinophil associated proteins

    OpenAIRE

    Jeanette Grundström; Jenny M Reimer; Sofia E Magnusson; Gunnar Nilsson; Sara Wernersson; Lars Hellman

    2012-01-01

    Basophils are blood cells of low abundance associated with allergy, inflammation and parasite infections. To study the transcriptome of mature circulating basophils cells were purified from buffy coats by density gradient centrifugations and two-step magnetic cell sorting. However, after extensive analysis the cells were found to be transcriptionally inactive and almost completely lack functional mRNA. In order to obtain transcriptionally active immature basophils for analysis of their transc...

  9. Umbilical cord mesenchymal stem cell transplantation for the treatment of diabetes mellitus in rats%脐带间充质干细胞移植治疗大鼠糖尿病

    Institute of Scientific and Technical Information of China (English)

    李丽; 赵博

    2014-01-01

    背景:脐血间充质干细胞具有很强的增殖能力和分化能力,在趋向分化作用下可以分化成胰岛β细胞,进而起到治疗糖尿病的作用。  目的:观察移植脐带间充质干细胞对大鼠糖尿病的治疗效果。  方法:30只雄性SD大鼠中随机取6只作为对照组,注射生理盐水;其中24只按45 mg/kg的剂量注射链脲霉素建立糖尿病模型后,随机等分为移植组和糖尿病组,移植组大鼠尾静脉注射移植脐带间充质干细胞。  结果与结论:造模后30 d,糖尿病组大鼠空腹血糖维持在较高水平,且高于对照组(P 0.05),而糖尿病组大鼠空腹血糖维持较高水平,且体质量持续下降。提示脐带间充质干细胞移植能有效治疗大鼠糖尿病。%BACKGROUND:Umbilical cord mesenchymal stem cels have strong proliferation and differentiation capacities, and can be induced to differentiate into pancreatic β cels, thereby playing a therapeutic effect on diabetes mel itus. OBJECTIVE:To study the therapeutic effects of transplantation of umbilical cord mesenchymal stem cels for treatment of diabetes melitus in rats. METHODS: Thirty male Sprague-Dawley rats were randomly divided into control group (n=6), transplantation group (n=12) and diabetic group (n=12). Rats in the control group were given normal saline injection. Rats in the other two groups were injected with streptozotocin at a dose of 45 mg/kg to establish diabetic models. After modeling, transplantation of umbilical cord mesenchymal stem celsviatail vein was given in the transplantation group. RESULTS AND CONCLUSION:Thirty days after modeling, the fasting blood glucose was maintained at a higher level in comparison with the control group (P 0.05), but in the diabetic group, the fasting blood glucose level was stil higher and the body mass continued to decrease. These findings indicate that the transplantation of umbilical cord mesenchymal stem cels can be effective

  10. Advances in menstrual blood-derived stem cells%宫内膜干细胞研究进展

    Institute of Scientific and Technical Information of China (English)

    张金龙; 张舒琪; 袁立

    2012-01-01

    本文介绍新型间充质干细胞—宫内膜干细胞的来源和特征,简述宫内膜干细胞分离、培养和体外扩增的方法;阐述宫内膜干细胞体外诱导分化心肌细胞和神经细胞的潜能,展望宫内膜干细胞的临床应用价值.%Menstrual blood-derived stem cells (MenSCs) are newly discovered mesenchymal stem cells. They have the potential ability to differentiate into various cell types, including heart and nerve cells. MenSCs provide an alternative source of adult stem cells for research and use in regenerative medicine.

  11. Optimized Isolation of Human Mesenchymal Stem Cells from Umbilical Cord%人脐带间充质干细胞分离扩增方法的优化

    Institute of Scientific and Technical Information of China (English)

    杨卿; 杨扬; 刘剑戎; 潘国政; 张英才; 陈规划; 张琪

    2011-01-01

    [Objective]To optimize the isolation and expansion protocol of human umbilical cord mesenchymal stem cells (hUC-MSC). [Methods] Human UC-MSC were isolated from 20 umbilical cords by combined enzyme digestion (n = 12) or by sequential enzyme digestion (re = 8). The derivation efficiency, primary cell culture period as well as cell yield were compared. The hUC-MSC proliferation capacity was compared between complete low glucose-Dulbecco's modified eagle medium (LG-DMEM) condition and LD-Mesen medium (a medium mixed with MesenPro RSTM (Invitrogen) and LG-DMEM) condition. The phenotypic characteristics of hUC-MSC were determined by FACS and multi-lineage differentiation capacity was confirmed by induced adipogenesis and osteogenesis. [Results] The hUC-MSC derivation efficiency using combined enzymatic digestion was 100% (12/12), significantly higher than that of sequential enzymatic digestion [ 12.5%( 1/8), P = 1.03 x 10"4]. With combined enzymatic digestion, (1.30 ± 0.14) x 106 cells can be obtained during a mean primary cell culture period of (14.17 ± 1.14) <1. Moreover, 2 x 105 hUC-MSC were cultured for 12 days, more cells can be obtained using LD-Mesen culture medium than using LG-DMEM culture medium [(14.86 ± 0.08) x 106 vs (5.08 ± 0.08)x 10', P = 1.38 x 10"8]. hUC-MSC express CD73, CD105, CD90, CD29, and CD44 surface markers, but do not express CD31 ,CD34,CD45 and HLA-DR.They can be also differentiated into osteoblasts and adipocytes in vitro. [Conclusion] hUC-MSC can be efficiently derived by combined enzymatic digestion from Wharton's Jelly and expanded by LD-Mesen expansion system, which is significantly superior to the conventional protocol.%[目的]探讨一种高效稳定分离和扩增人脐带间充质干细胞(hUC-MSC)的方法.[方法]取脐带20条,获得Wharton's Jelly组织,分别用酶联合消化法(12例)和酶序贯消化法(8例)来分离、提取hUC-MSC,比较两种方法分离hUC -MSC的成功率、原代培养时间及获得的

  12. Comparative Characterization of Cells from the Various Compartments of the Human Umbilical Cord Shows that the Wharton's Jelly Compartment Provides the Best Source of Clinically Utilizable Mesenchymal Stem Cells.

    Directory of Open Access Journals (Sweden)

    Arjunan Subramanian

    Full Text Available The human umbilical cord (UC is an attractive source of mesenchymal stem cells (MSCs with unique advantages over other MSC sources. They have been isolated from different compartments of the UC but there has been no rigorous comparison to identify the compartment with the best clinical utility. We compared the histology, fresh and cultured cell numbers, morphology, proliferation, viability, stemness characteristics and differentiation potential of cells from the amnion (AM, subamnion (SA, perivascular (PV, Wharton's jelly (WJ and mixed cord (MC of five UCs. The WJ occupied the largest area in the UC from which 4.61 ± 0.57 x 106 /cm fresh cells could be isolated without culture compared to AM, SA, PV and MC that required culture. The WJ and PV had significantly lesser CD40+ non-stem cell contaminants (26-27% compared to SA, AM and MC (51-70%. Cells from all compartments were proliferative, expressed the typical MSC-CD, HLA, and ESC markers, telomerase, had normal karyotypes and differentiated into adipocyte, chondrocyte and osteocyte lineages. The cells from WJ showed significantly greater CD24+ and CD108+ numbers and fluorescence intensities that discriminate between MSCs and non-stem cell mesenchymal cells, were negative for the fibroblast-specific and activating-proteins (FSP, FAP and showed greater osteogenic and chondrogenic differentiation potential compared to AM, SA, PV and MC. Cells from the WJ offer the best clinical utility as (i they have less non-stem cell contaminants (ii can be generated in large numbers with minimal culture avoiding changes in phenotype, (iii their derivation is quick and easy to standardize, (iv they are rich in stemness characteristics and (v have high differentiation potential. Our results show that when isolating MSCs from the UC, the WJ should be the preferred compartment, and a standardized method of derivation must be used so as to make meaningful comparisons of data between research groups.

  13. Isolation and characterization of Wharton’s jelly-derived multipotent mesenchymal stromal cells obtained from bovine umbilical cord and maintained in a defined serum-free three-dimensional system

    Directory of Open Access Journals (Sweden)

    Cardoso Tereza C

    2012-05-01

    Full Text Available Abstract Background The possibility for isolating bovine mesenchymal multipotent cells (MSCs from fetal adnexa is an interesting prospect because of the potential for these cells to be used for biotechnological applications. Bone marrow and adipose tissue are the most common sources of MSCs derived from adult animals. However, little knowledge exists about the characteristics of these progenitors cells in the bovine species. Traditionally most cell cultures are developed in two dimensional (2D environments. In mammalian tissue, cells connect not only to each other, but also support structures called the extracellular matrix (ECM. The three-dimensional (3D cultures may play a potential role in cell biotechnology, especially in tissue therapy. In this study, bovine-derived umbilical cord Wharton’s jelly (UC-WJ cells were isolated, characterized and maintained under 3D-free serum condition as an alternative of stem cell source for future cell banking. Results Bovine-derived UC-WJ cells, collected individually from 5 different umbilical cords sources, were successfully cultured under serum-free conditions and were capable to support 60 consecutive passages using commercial Stemline® mesenchymal stem cells expansion medium. Moreover, the UC-WJ cells were differentiated into osteocytes, chondrocytes, adipocytes and neural-like cells and cultured separately. Additionally, the genes that are considered important embryonic, POU5F1 and ITSN1, and mesenchymal cell markers, CD105+, CD29+, CD73+ and CD90+ in MSCs were also expressed in five bovine-derived UC-WJ cultures. Morphology of proliferating cells typically appeared fibroblast-like spindle shape presenting the same viability and number. These characteristics were not affected during passages. There were 60 chromosomes at the metaphase, with acrocentric morphology and intense telomerase activity. Moreover, the proliferative capacity of T cells in response to a mitogen stimulus was suppressed when

  14. 人脐带间充质干细胞移植治疗系统性红斑狼疮%Transplantation of human umbilical cord mesenchymal stem cells in the treatment of systemic lupus erythematosus

    Institute of Scientific and Technical Information of China (English)

    阮光萍; 姚翔; 刘菊芬; 王金祥; 胡媛媛; 李自安; 杨建勇; 庞荣清; 潘兴华

    2015-01-01

    BACKGROUND:Systemic lupus erythematosus is an autoimmune disease characterized as an emergence of a variety of autoantibodies in serum and multi-system and multi-organ lesions. Currently, there is a lack of effective treatment options, and umbilical cord mesenchymal stem cel s are a promising therapy for systemic lupus erythematosus based on cel biological roles. OBJECTIVE:To observe the therapeutic efficacy of human umbilical cord mesenchymal stem cel transplantation in the treatment of systemic lupus erythematosus in mice. METHODS:Human umbilical cord mesenchymal stem cel s were isolated and cultured fol owed by labeling with DiR fluorescence. Experimental mice were divided into normal control group (C57BL mice), model control group (C57BL/lpr mice), low-, medium-and high-dose umbilical cord mesenchymal stem cel therapy groups (C57BL/lpr mice), with 10 mice in each group. Mice in the low-, medium-and high-dose groups were respectively injected 0.5×106, 1×106, 2×106 human umbilical cord mesenchymal stem cel s, once a week, for 3 consecutive weeks. At the end of treatment, blood samples were col ected to measure antinuclear antibody, anti-histone antibody, anti-double stranded DNA antibody changes;OPG and Foxp3 gene expression changes were detected by quantitative PCR method. RESULTS AND CONCLUSION:After treatment, the levels of anti-nuclear antibodies, anti-histone antibodies and anti-double stranded DNA antibodies in the peripheral blood of mice were al declined in the low-, medium-and high-dose groups, while the number of peripheral blood CD4+CD25+T cel s was significantly elevated. OPG and Foxp3 gene expression was also increased dramatical y in the low-, medium-and high-dose groups, which was similar to that in the normal control group and significantly different from that in the model control group (P<0.01). Experimental findings demonstrate that after transplantation of human umbilical cord mesenchymal stem cel s, al relevant indicators in C57BL/lpr mice

  15. Blood-derived DNA methylation markers of cancer risk.

    Science.gov (United States)

    Marsit, Carmen; Christensen, Brock

    2013-01-01

    The importance of somatic epigenetic alterations in tissues targeted for carcinogenesis is now well recognized and considered a key molecular step in the development of a tumor. Particularly, alteration of gene-specific and genomic DNA methylation has been extensively characterized in tumors, and has become an attractive biomarker of risk due to its specificity and stability in human samples. It also is clear that tumors do not develop as isolated phenomenon in their target tissue, but instead result from altered processes affecting not only the surrounding cells and tissues, but other organ systems, including the immune system. Thus, alterations to DNA methylation profiles detectable in peripheral blood may be useful not only in understanding the carcinogenic process and response to environmental insults, but can also provide critical insights in a systems biological view of tumorigenesis. Research to date has generally focused on how environmental exposures alter genomic DNA methylation content in peripheral blood. More recent work has begun to translate these findings to clinically useful endpoints, by defining the relationship between DNA methylation alterations and cancer risk. This chapter highlights the existing research linking the environment, blood-derived DNA methylation alterations, and cancer risk, and points out how these epigenetic alterations may be contributing fundamentally to carcinogenesis.

  16. 人脐带华通胶间充质干细胞的体外分离培养及鉴定%Isolation, Characterization and Induced Differentiation of Human Umbilical Cord Wharton's Jelly-derived Mesenchymal Stem Cells

    Institute of Scientific and Technical Information of China (English)

    胡晶琼; 李慧玉; 欧阳为相; 胡丽; 卢聪; 张兰男; 陈莉莉

    2012-01-01

    目的 研究由脐带华通胶组织(Wharton's jelly)在体外分离、培养、扩增获得脐带间充质干细胞(umbilical cord derived mesenchymal stem cells,以下简称UC MSCs)的方法,并进行UC- MSCs的各项鉴定.方法 脐带华通胶组织采用胶原酶以及胰酶序贯消化法分离得到UC-MSCs,用流式细胞仪分析其表型特征,向成骨、成脂以及成神经元细胞诱导分化并鉴定.结果 由人脐带华通胶可以有效获得间充质干细胞.原代细胞培养24~48 h内细胞开始贴壁生长,5~7 d左右可以传代培养,在2~3周时间内可以迅速扩增至107到108数量级.各项分化鉴定试验证实UC-MSCs具有多向分化潜能,能分化成骨、成脂细胞以及神经元细胞.UC-MSCs在体外培养传至20~30代仍保持稳定的细胞表面标记.结论 由人脐带华通胶可以有效地获得间充质干细胞,这种UC-MSCs能在体外长期传代培养,生物学特性稳定,具有多向分化的潜能,是今后细胞治疗很有前景的种子细胞.%Objective To isolate and characterize mesenchymal stem cells derived from human umbilical cord Wharton' s jelly(UC-MSCs). Methods MSCs were derived from human umbilical cord Wharton's jelly using a consecutive enzyme digestion method of both collagenase and trypsin. FACS analysis was done to access the phenotype of UC-MSCs. Moreover,the UC-MSCs were induced to differentiate into chondrocytes,adipocytes and neurons. Results MSCs could be efficiently derived from human umbilical cord Wharton's jelly- Primary cells could attach around 24 - 48 h after plating. Around 5-7 days the first passage could be made. Primary cells could be expanded within two-three weeks in 107 to 108 range. Human umbilical cord Wharton's jelly MSCs could be efficiently induced to differentiate into chondrocytes,adipocytes and neurons. Phenotype of UC-MSCs was stable even after prolonged ex vivo cell culture of 20-30 passages. Conclusion We described the isolation,maintenance, ex

  17. Isolation,culture and identification of human umbilical cord mesenchymal stem cells%人脐带间充质干细胞的分离、培养及鉴定

    Institute of Scientific and Technical Information of China (English)

    韩华; 薛改; 张俊勤; 闫萍; 李艳丽

    2015-01-01

    目的:探讨人脐带华通胶间充质干细胞体外分离、培养、鉴定及冻存、复苏的方法。方法收集健康足月新生儿脐带组织,采用组织块贴壁法分离、培养脐带间充质干细胞,流式细胞仪检测细胞表面抗原,将细胞冻存3个月后复苏,鉴定复苏后细胞的特性。结果组织块贴壁法获得脐带间充质干细胞成功率高;细胞表面高表达CD29、CD44、CD90和CD105,不表达造血干细胞表型CD34、CD45等;冻存后再复苏细胞活性高达80%~90%。结论组织块贴壁法可以从人脐带华通胶中较好的分离、培养出间充质干细胞,为干细胞移植实验研究和临床治疗提供了理想的细胞来源。%Objective To explore isolating,culturing,identifying,freezing and thawing mesenchymal stem cells(MSCs)approach from Wharton j elly of human umbilical cord.Methods The MSCs were isolated from neonate umbilical cord,cultured by tissue explants adherent method.The surface markers were identified by flow cytometry.Passage cells,frozen 6 months, were thawed,then their biological characteristics were identified.Results MSCs were easily obtained from Wharton j elly of human umbilical cord via the proposed approach of tissue adherence.The flow cytometry analysis showed that MSCs expressed CD29,CD44,CD90 and CD105 positively,but negatively for CD34,CD45.The living cells of MSCs were 80%-90% after having been frozen and the thawed cells had the same characteristics as the previous.Conclusion MSCs can be successfully isolated from Wharton j elly of human umbilical cord by this method. The stem cells derived from Wharton j elly of human umbilical cord may be a novel alternative source of human MSCs for experimental and clinical applications.

  18. 脐带间充质干细胞移植可延缓大鼠失神经肌肉的萎缩%Human umbilical cord mesenchymal stem cells transplantation delays denervated muscle atrophy in rats

    Institute of Scientific and Technical Information of China (English)

    陈传煌; 杨万章; 杨涛; 吴芳; 李文庆; 李楚炎; 毛仁群; 余志才; 张国雷; 肖振兴

    2014-01-01

    背景:周围神经断伤后生长缓慢,失神经支配的肌肉萎缩及运动终板纤维化,导致肢体功能不可逆障碍。脐带间充质干细胞已经广泛应用于多学科研究,但应用于周围神经损伤中延缓大鼠失神经肌肉萎缩鲜有报道。目的:观察异种异基因脐带间充干细胞移植于大鼠离断坐骨神经断端,延缓失神经肌肉萎缩的效果。  方法:新鲜脐带采集于健康足月产妇,分离鉴定脐带间充质干细胞。制备大鼠坐骨神经SunderlandⅣ度损伤模型,去神经束5 mm,神经外膜修复,5 mm小间隙移植脐带间充质干细胞模型,对照组仅在小间隙内注入同体积生理盐水。测定大鼠坐骨神经功能指数,小腿三头肌湿质量,坐骨神经干潜伏期、动作电位传导速度、波幅,以及骨骼肌纤维横截面积维持率。  结果与结论:造模后4,8及12周,脐带间充质干细胞组大鼠坐骨神经功能指数、右侧小腿三头肌湿质量及骨骼肌纤维横截面积维持率均显著高于对照组(P OBJECTIVE:To observe the value of human umbilical cord mesenchymal stem cells transplantation to delay denervated muscle atrophy of rats after sciatic nerve injury. METHODS:Umbilical cord blood was col ected from healthy parturient woman after ful-term delivery. In the experimental group, the rat’s Sunderland IV degree sciatic nerve injury model was established by 5 mm denervation, epineurial repair, and 5 mm smal gap transplantation of umbilical cord mesenchymal stem cells. In the control group, after modeling, the same volume of normal saline was injected into the smal gap. The main outcome measures included the sciatic nerve function index, the wet weight of triceps surae,sciatic nerve latency, action potential conduction velocity and amplitude,and skeletal muscle fiber cross section area maintenance rate. RESULTS AND CONCLUSION:After 4, 8 and 12 weeks of modeling, the sciatic nerve

  19. Construction of targeted umbilical cord derived mesenchymal stem cells and their distribution in the mouse spleen%靶向脐带间充质干细胞的构建及其在小鼠脾脏内的定位

    Institute of Scientific and Technical Information of China (English)

    秦力维; 张宁坤; 路平; 彭秀军; 王桂琴; 高原; 曹利群; 崔蓓; 郭建巍

    2015-01-01

    Objective To construct lentiviral vectors containing peptide P1-GFP fusion genes.Umbilical cord derived mesenchymal stem cells were infected with lentivirus carrying peptide P1 and GFP fusion genes.To inject the targeted umbilical cord derived mesenchymal stem cells into mice and to detect GFP expression in the spleen.Methods Umbilical cord derived mesenchymal stem cells were cultured with adhered tissues of umbilical cord smaller than 1 mm3 . Lentiviral vector containing P1-GFP fusion genes with engineering technology was constructed and infected the umbilical cord derive mesenchymal stem cells.Targeted umbilical cord derived mesenchymal stem cells were intravenously injected in the mouse tail vein and after 18 hours GFP expression was detected with immunohistochamical staining of the spleen tissues.Results Harvested umbilical cord derived mesenchymal stem cells grew well in culture medium. Green fluorescence on umbilical cord derived mesenchymal stem cells were observed under fluorescence microscope at 18 hours after infected with lentivirus.Green fluorescence intensity of umbilical cord derived mesenchymal stem cells was increasing over time and reached a peak at 72 hours.Umbilical cord derived mesenchymal stem cells highly expressed CD105 (90.0%)/CD44 (98%) and CD73 (85.0%)/CD90 (98.5%) molecules.GFP expression was detected in the spleen after intravenous injection of targeted umbilical cord derived mesenchymal stem cells in the mice 18 hours later.GFP expressing cells intimately contacted with lymphocytes.Conclusions Targeted umbilical cord derived mesenchymal stem cells contain P1-GFP fusion genes are constructed.Targeted umbilical cord derived mesenchymal stem cells can be targeted to mouse spleen and intimately contact with lymphocytes after intravenous injection.Our results lay the groundwork for further studies.%目的:构建含小分子肽P1-GFP融合基因慢病毒载体,用携带P1-GFP融合基因的慢病毒感染MSC,使MSC具有靶向性,

  20. Platelet-Rich Blood Derivatives for Stem Cell-Based Tissue Engineering and Regeneration

    NARCIS (Netherlands)

    Masoudi, E.A.; Ribas, J.; Kaushik, G.; Leijten, Jeroen Christianus Hermanus; Khademhosseini, A.

    2016-01-01

    Platelet-rich blood derivatives have been widely used in different fields of medicine and stem cell-based tissue engineering. They represent natural cocktails of autologous growth factors, which could provide an alternative for recombinant protein-based approaches. Platelet-rich blood derivatives,

  1. Platelet-Rich Blood Derivatives for Stem Cell-Based Tissue Engineering and Regeneration

    NARCIS (Netherlands)

    Masoudi, E.A.; Ribas, J.; Kaushik, G.; Leijten, J.C.H.; Khademhosseini, A.

    2016-01-01

    Platelet-rich blood derivatives have been widely used in different fields of medicine and stem cell-based tissue engineering. They represent natural cocktails of autologous growth factors, which could provide an alternative for recombinant protein-based approaches. Platelet-rich blood derivatives, s

  2. Intraperitoneal transplantation of human umbilical cord mesenchymal stem cells in the treatment of acute liver injury in rats%人脐带间充质干细胞腹腔移植治疗急性肝损伤大鼠

    Institute of Scientific and Technical Information of China (English)

    郑学峰; 刘霞

    2013-01-01

    BACKGROUND:In vitro experiments have confirmed that human umbilical cord mesenchymal stem cells can be induced to differentiate into hepatocyte-like cells, thus which can be considered to function as liver repair. OBJECTIVE:To observe the therapeutic effect of human umbilical cord mesenchymal stem celltransplantation on acute liver injuries in rats through in vivo animal experiments. METHODS:Healthy Sprague-Dawley rats were randomly divided into three groups:normal control group without modeling, celltransplantation group, and PBS group. Rat models of acute liver injury were prepared by 10%CCl4-olive oil solution in the celltransplantation and PBS groups which were fol owed by intraperitoneal injection of 0.5 mL human umbilical cord mesenchymal stem cellsuspension and 0.5 mL PBS, respectively. RESULTS AND CONCLUSION:Hematoxylin-eosin staining showed that pathological changes related to acute liver injury appeared at 24 hours after intraperitoneal injection of CCl 4 . Then, the liver structure recovered at 7 days after celltransplantation, but it did not recover til the 14th day after PBS injection. Compared with the normal control group, serum alanine aminotransferase and aspartate aminotransferase levels were significantly increased in the other two groups (P  目的:进行动物体内实验,观察人脐带间充质干细胞移植治疗大鼠急性肝损伤的效果。  方法:将健康SD大鼠随机分为3组,正常对照组不造模,细胞移植组和PBS组腹腔注射体积分数10%CCl4橄榄油溶液制造急性肝损伤模型后24 h,分别经腹腔移植人脐带间充质干细胞悬液0.5 mL和等量PBS。  结果与结论:苏木精-伊红染色显示,CCl4腹腔注射24 h后大鼠肝脏出现急性肝损伤的病理变化,细胞移植后7 d时肝脏结构完全恢复正常,PBS组14 d才恢复正常肝脏组织结构。与正常对照组相比,其他2组大鼠血清丙氨酸转氨酶及天门冬氨

  3. Immunological characteristics and transplantation of bone marrow mesenchymal stem cells in treatment of spinal cord injury%骨髓间充质干细胞免疫学特性及其移植治疗脊髓损伤

    Institute of Scientific and Technical Information of China (English)

    刘筱; 许铁

    2011-01-01

    背景:近年来研究表明:骨髓间充质干细胞能在同种异基因,甚至异种基因的环境中长期存活,并且保持多向分化潜能.这一独特的免疫学特性,以及来源丰富、避免伦理问题等优点,可能为治疗脊髓损伤和促进神经功能修复提供了新的途径.目的:对骨髓间充质干细胞的免疫学特性、不同途径移植及其可能机制进行综述,为干细胞治疗脊髓损伤提供理论依据.方法:由第一作者应用计算机检索PubMed 2000-01/2010-09期间相关文章,检索词为"mesenchymal stem cells,bone marrow,immunological characteristics,transplantation,spinal cord injury".纳入标准:文章所述内容应与骨髓间充质干细胞的免疫学特性及其治疗相关研究进展.排除标准:重复研究或者Meta分析类文章.共收集到260篇相关文献,选取33篇文献进入结果分析.结果与结论:骨髓间充质干细胞具有独特的低免疫原性,有助于抑制移植排斥反应.通过不同的移植方法、选择合适的移植途径和时机,均可对脊髓损伤的治疗提供有益的保护作用,其机制可能是神经元替代、分泌神经营养因子、归巢效应等.随着对骨髓间充质干细胞和脊髓损伤机制研究的不断深入,预示着间充质干细胞移植在治疗脊髓损伤后神经功能修复领域,将有着广阔的临床应用前景.%BACKGROUND: Previous studies have confirmed that bone marrow mesenchymal stem cells (BMSCs) can be also transplanted into allogeneic and heterologous gene environment, and maintain multi-directional differentiation potential. It may provide a new path to promote nerve repair after spinal cord injuries for its rich source, avoidance of ethical problem and distinct immunological characteristics.OBJECTIVE: To summarize the immunological characteristics, different pathways of transplantation and its possible mechanisms of BMSCs and to provide theoretical evidence for stem cells in treatment of spinal cord

  4. Are globoseries glycosphingolipids SSEA-3 and -4 markers for stem cells derived from human umbilical cord blood?

    Institute of Scientific and Technical Information of China (English)

    Heli Suila; Jari Natunen; Saara Laitinen; Leena Valmu; Virve Pitk(a)nen; Tia Hirvonen; Annamari Heiskanen; Heidi Anderson; Anita Laitinen; Suvi Natunen; Halina Miller-Podraza; Tero Satomaa

    2011-01-01

    Umbilical cord blood (UCB) is an efficient and valuable source of hematopoietic stem cells (HSCs) for transplantation. In addition to HSCs it harbours low amounts of mesenchymal stem cells (MSCs). No single marker to identify cord blood-derived stem cells, or to indicate their multipotent phenotype, has been characterized so far. SSEA-3 and -4 are cell surface globoseries glycosphingolipid epitopes that are commonly used as markers for human embryonic stem cells, where SSEA-3 rapidly disappears when the cells start to differentiate. Lately SSEA-3 and -4 have also been observed in MSCs. As there is an ongoing discussion and variation of stem-cell markers between laboratories, we have now comprehensively characterized the expression of these epitopes in both the multipotent stem-cell types derived from UCB. We have performed complementary analysis using gene expression analysis, mass spectrometry and immunochemical methods, including both flow cytometry and immunofluoresence microscopy. SSEA-4, but not SSEA-3, was expressed on MSCs but absent from HSCs. Our findings indicate that SSEA-3 and/or -4 may not be optimal markers for multipotency in the case of stem cells derived from cord blood, as their expression may be altered by cell-culture conditions.

  5. 脐血干细胞和脐带间充质干细胞联合移植治疗自闭症%Umbilical blood stem cell and umbilical cord mesenchymal stem cell combination transplantation on autism

    Institute of Scientific and Technical Information of China (English)

    杨华强; 张荣环; 李贞艳; 杜玲; 李东升; 张琼

    2012-01-01

    目的 探讨干细胞移植治疗自闭症的可行性、疗效和安全性.方法 将脐血干细胞和脐带间充质干细胞分别通过静脉输注和腰穿鞘内注射途径移植到自愿接受干细胞移植的2例自闭症患者体内.术后随访6个月定期观察患者临床症状及各项指标的变化,并采用儿童自闭症评定量表(CARS)和临床总体评定量表(CGIS)进行综合分析.结果 治疗后患者临床症状较治疗前明显好转,并且随访半年症状持续缓解无复发.2例患者CARS较治疗前明显降低、CGIS较治疗前明显好转,移植过程中及治疗后未出现严重的并发症和明显的不良反应.结论 脐血干细胞和脐带间充质干细胞联合移植治疗自闭症患者是一种值得借鉴的方法.%Objective It is to approach the feasibility, clinical effect and safety of stem cell transplantation in the treatment of autism. Methods Two patients with autism were received umbilical blood stem cell and umbilical cord mesenchymal stem cell combination transplantation by intravenous infusion and lumbar puncture intrathecal injections respectively. The patients were followed up for six months after transplantation, and the clinical symptoms and various indexes were observed. Childhood Autism Rating Scale ( CARS ) and Clinical Global Impression Scale ( CGIS ) were employed to assess the children of autism. Results The clinical symptoms of the two patients were improved obviously after transplantation treatment, and the patient ' s conditions were continuously relieved and no recurrence after six months was followed up. CARS were markedly decreased and CGIS were markedly improved than before treatment for all two patients. Various biochemical indicators were normal and the patient had no severe complications and clear side effects after transplantation. Conclusion The combination transplantation of umbilical blood stem cell and umbilical cord mesenchymal stem cell can be a new hope for autism

  6. MiRNAs and piRNAs from bone marrow mesenchymal stem cell extracellular vesicles induce cell survival and inhibit cell differentiation of cord blood hematopoietic stem cells: a new insight in transplantation.

    Science.gov (United States)

    De Luca, Luciana; Trino, Stefania; Laurenzana, Ilaria; Simeon, Vittorio; Calice, Giovanni; Raimondo, Stefania; Podestà, Marina; Santodirocco, Michele; Di Mauro, Lazzaro; La Rocca, Francesco; Caivano, Antonella; Morano, Annalisa; Frassoni, Francesco; Cilloni, Daniela; Del Vecchio, Luigi; Musto, Pellegrino

    2016-02-01

    Hematopoietic stem cells (HSC), including umbilical cord blood CD34+ stem cells (UCB-CD34+), are used for the treatment of several diseases. Although different studies suggest that bone marrow mesenchymal stem cells (BM-MSC) support hematopoiesis, the exact mechanism remains unclear. Recently, extracellular vesicles (EVs) have been described as a novel avenue of cell communication, which may mediate BM-MSC effect on HSC. In this work, we studied the interaction between UCB-CD34+ cells and BM-MSC derived EVs. First, by sequencing EV derived miRNAs and piRNAs we found that EVs contain RNAs able to influence UCB-CD34+ cell fate. Accordingly, a gene expression profile of UCB-CD34+ cells treated with EVs, identified about 100 down-regulated genes among those targeted by EV-derived miRNAs and piRNAs (e.g. miR-27b/MPL, miR-21/ANXA1, miR-181/EGR2), indicating that EV content was able to modify gene expression profile of receiving cells. Moreover, we demonstrated that UCB-CD34+ cells, exposed to EVs, significantly changed different biological functions, becoming more viable and less differentiated. UCB-CD34+ gene expression profile also identified 103 up-regulated genes, most of them codifying for chemokines, cytokines and their receptors, involved in chemotaxis of different BM cells, an essential function of hematopoietic reconstitution. Finally, the exposure of UCB-CD34+ cells to EVs caused an increased expression CXCR4, paralleled by an in vivo augmented migration from peripheral blood to BM niche in NSG mice. This study demonstrates the existence of a powerful cross talk between BM-MSC and UCB-CD34+ cells, mediated by EVs, providing new insight in the biology of cord blood transplantation.

  7. Electro-acupuncture promotes the survival and differentiation of transplanted bone marrow mesenchymal stem cells pre-induced with neurotrophin-3 and retinoic acid in gelatin sponge scaffold after rat spinal cord transection.

    Science.gov (United States)

    Zhang, Ke; Liu, Zhou; Li, Ge; Lai, Bi-Qin; Qin, Li-Na; Ding, Ying; Ruan, Jing-Wen; Zhang, Shu-Xin; Zeng, Yuan-Shan

    2014-08-01

    In the past decades, mesenchymal stem cells (MSCs) as a promising cell candidate have received the most attention in the treatment of spinal cord injury (SCI). However, due to the low survival rate and low neural differentiation rate, the grafted MSCs do not perform well as one would have expected. In the present study, we tested a combinational therapy to improve on this situation. MSCs were loaded into three-dimensional gelatin sponge (GS) scaffold. After 7 days of induction with neurotrophin-3 (NT-3) and retinoic acid (RA) in vitro, we observed a significant increase in TrkC mRNA transcription by Real-time PCR and this was confirmed by in situ hybridization. The expression of TrkC was also confirmed by Western blot and immunohistochemistry. Differentiation potential of MSCs in vitro into neuron-like cells or oligodendrocyte-like cells was further demonstrated by using immunofluorescence staining. The pre-induced MSCs seeding in GS scaffolds were then grafted into the transected rat spinal cord. One day after grafting, Governor Vessel electro-acupuncture (GV-EA) treatment was applied to rats in the NR-MSCs + EA group. At 30 days after GV-EA treatment, it found that the grafted MSCs have better survival rate and neuron-like cell differentiation compared with those without GV-EA treatment. The sustained TrkC expression in the grafted MSCs as well as increased NT-3 content in the injury/graft site by GV-EA suggests that NT-3/TrkC signaling pathway may be involved in the promoting effect. This study demonstrates that GV-EA and pre-induction with NT-3 and RA together may promote the survival and differentiation of grafted MSCs in GS scaffold in rat SCI.

  8. Evaluation of umbilical cord mesenchymal stem cells labeling with superparamagnetic iron oxide nanoparticles coated with dextran and complexed with Poly-L-Lysine; Avaliacao da marcacao de celulas-tronco mesenquimais de cordao umbilical com nanoparticulas superparamagneticas de oxido de ferro recobertas com Dextran e complexadas a Poli-L-Lisina

    Energy Technology Data Exchange (ETDEWEB)

    Sibov, Tatiana Tais; Mamani, Javier Bustamante; Pavon, Lorena Favaro; Cardenas, Walter Humberto; Gamarra, Lionel Fernel, E-mail: tatianats@einstein.br [Instituto do Cerebro - InCe, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Miyaki, Liza Aya Mabuchi [Faculdade de Enfermagem, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Marti, Luciana Cavalheiro; Sardinha, Luiz Roberto [Centro de Pesquisa Experimental, Hospital Israelita Albert Einstein - HIAE, Sao Paulo, SP (Brazil); Oliveira, Daniela Mara de [Universidade de Brasilia - UnB, Brasilia, DF (Brazil)

    2012-04-15

    Objective: The objective of this study was to evaluate the effect of the labeling of umbilical cord vein derived mesenchymal stem cells with superparamagnetic iron oxide nanoparticles coated with dextran and complexed to a non-viral transfector agent transfector poly-L-lysine. Methods: The labeling of mesenchymal stem cells was performed using the superparamagnetic iron oxide nanoparticles/dextran complexed and not complexed to poly-L-lysine. Superparamagnetic iron oxide nanoparticles/dextran was incubated with poly-L-lysine in an ultrasonic sonicator at 37 deg C for 10 minutes for complex formation superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine by electrostatic interaction. Then, the mesenchymal stem cells were incubated overnight with the complex superparamagnetic iron oxide nanoparticles/dextran/poly-L-lysine and superparamagnetic iron oxide nanoparticles/dextran. After the incubation period the mesenchymal stem cells were evaluated by internalization of the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine and superparamagnetic iron oxide nanoparticles/dextran by Prussian Blue stain. Cellular viability of labeled mesenchymal stem cells was evaluated by cellular proliferation assay using 5,6-carboxyfluorescein-succinimidyl ester method and apoptosis detection by Annexin V- Propidium Iodide assay. Results: mesenchymal stem cells labeled with superparamagnetic iron oxide nanoparticles/ dextran without poly-L-lysine not internalized efficiently the superparamagnetic iron oxide nanoparticles due to its low presence detected within cells. Mesenchymal stem cells labeled with the complex superparamagnetic iron oxide nanoparticles/dextran/polyL-lysine efficiently internalized the superparamagnetic iron oxide nanoparticles due to greater presence in the cells interior. The viability and apoptosis assays demonstrated that the mesenchymal stem cells labeled and not labeled respectively with the superparamagnetic iron oxide

  9. Isolation and biological characteristics of umbilical cord mesenchymal stem cells%脐带间充质干细胞的体外分离及生物学特性观察

    Institute of Scientific and Technical Information of China (English)

    田新; 韦红艳; 符仁义

    2009-01-01

    背景:脐带组织依赖于母体免疫系统的保护,且胚胎自身免疫系统相对不发育、MHC表达低下,故来源于脐带的间充质干细胞的生物学特性已成为目前研究热点.目的:拟在体外分离培养人脐带组织间充质干细胞,并观察其多向分化能力.设计、时间及地点:细胞学体外观察,于2006-10/2007-05在四川大学组织工程重建实验室完成.材料:脐带来源于胎龄37~40周的健康新生儿,由四川大学华西第二医院产房提供.方法:取脐带沿血管长轴切开,去掉血管,再将脐带重新缝合形成环状,灌入胶原酶悬液,6~8 h后灌洗离心,获取细胞后贴壁法分离培养、扩增,细胞呈集落生长后传代.取传至第5代细胞,分别加入成骨、成脂诱导分化培养基.主要观察指标:脐带间充质干细胞的形态、生长状况、表面抗原分子的表达、多向分化潜能.结果:去除血管后获取脐带组织细胞的方法可获得贴壁生长的细胞,呈短棒状或梭形样细胞,易扩增和形成集落;高表达基质细胞抗原CD29,CD51,CD71,而不表达CD34,CD45及HLA-DR等造血干细胞抗原分子;成骨诱导后茜素红染色胞浆中有大量的钙沉积,碱性磷酸酶钙钴法染色胞质呈灰黑色,阳性细胞率>85%;成脂诱导后油红O染色示胞浆充满油滴空泡.结论:脐带组织存在具有分化能力的间充质干细胞,并可在体外进行培养扩增形成集落细胞传代,传代细胞表达基质细胞表面抗原,能够向成骨细胞、成脂肪细胞方向分化.%BACKGROUND:Cord tissues,which immune system is relatively non-development with low expression of MHC,rely on the protection of the mother's immune system.Accordingly,studies underlying biological characteristics of umbilical cord mesenchymal stem cells (MSCs) arouse more and more attention.OBJECTIVE:To isolate,separate,and culture MSCs from the tissues of umbilical cord,and to explore the ability of multi

  10. 脐带间充质干细胞牙向分化的可行性研究%A new possible strategy and its feasibility for tooth regeneration: odontogenic differentiation of umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    陈林; 刘磊

    2011-01-01

    Regenerative medicine is paid more and more attention in recent years. It opened a new way to treat defect or deformity due to aging, injury and congenital defect. Its clinical application has been involved in the repair of various tissues, such us blood, skin, cornea, cartilage and bone, In oral area, the current treatment of tooth loss relies on restoration, implants and tooth transplantation. However, these methods have various flaws. Tooth regeneration through principles and methods of rogcnerative medicine can provide a living, functional and biocompatible substitute, while seeding cells are the basis and key in tooth regeneration. At present, dental-derived stem cells such as mesenchymal stem cells in dental pulp, dental papilla cells, periodontal ligament mesenchymal stem cells, dental follicle cells and odontogenic epithelial cells are the most commonly used seeding cells, but they are difficult to obtain in clinical practice. Some non-dental-derived stem cells, such as bone marrow mesenchymal stem cells and adipose mesenchymal stem cells are used as seeding cells in the most recent research, but the differentiation capacity and differentiation mechanism are unclear, umbilical cord mesenchymal stem cells Show a greater advantage in Recent study, they are more primitive, with a higher plasticity, greater amplification and differentiation potential, In this paper, we try to analyse the possibility of odontogenic differentiation of umbilical cord mesenchymal stem cells for tooth regeneration and put forward the possible methods and strategies.%再生医学近年来受到越来越多的重视.它开启了治疗由于老化,损伤及一些先天性缺陷所造成的缺损畸形的新途径.其临床应用已涉及到各种组织的修复,包括血液,皮肤,角膜,软骨和骨等.在口腔领域,目前治疗牙缺失主要依靠修复体,种植体和牙移植.然而这些方法都存在一定的缺陷.而通过再生医学的原理和方法实现牙再生治疗

  11. Intra-Arterially Delivered Mesenchymal Stem Cells Are Not Detected in the Brain Parenchyma in an Alzheimer's Disease Mouse Model.

    Directory of Open Access Journals (Sweden)

    Na Kyung Lee

    Full Text Available Mesenchymal stem cells (MSCs have a promising role as a therapeutic agent for neurodegenerative diseases such as Alzheimer's disease (AD. Prior studies suggested that intra-arterially administered MSCs are engrafted into the brain in stroke or traumatic brain injury (TBI animal models. However, a controversial standpoint exists in terms of the integrity of the blood brain barrier (BBB in transgenic AD mice. The primary goal of this study was to explore the feasibility of delivering human umbilical cord-blood derived mesenchymal stem cells (hUCB-MSCs into the brains of non-transgenic WT (C3H/C57 and transgenic AD (APP/PS1 mice through the intra-arterial (IA route. Through two experiments, mice were infused with hUCB-MSCs via the right internal carotid artery and were sacrificed at two different time points: 6 hours (experiment 1 or 5 minutes (experiment 2 after infusion. In both experiments, no cells were detected in the brain parenchyma while MSCs were detected in the cerebrovasculature in experiment 2. The results from this study highlight that intra-arterial delivery of MSCs is not the most favorable route to be implemented as a potential therapeutic approach for AD.

  12. Intra-Arterially Delivered Mesenchymal Stem Cells Are Not Detected in the Brain Parenchyma in an Alzheimer's Disease Mouse Model.

    Science.gov (United States)

    Lee, Na Kyung; Yang, Jehoon; Chang, Eun Hyuk; Park, Sang Eon; Lee, Jeongmin; Choi, Soo Jin; Oh, Wonil; Chang, Jong Wook; Na, Duk L

    2016-01-01

    Mesenchymal stem cells (MSCs) have a promising role as a therapeutic agent for neurodegenerative diseases such as Alzheimer's disease (AD). Prior studies suggested that intra-arterially administered MSCs are engrafted into the brain in stroke or traumatic brain injury (TBI) animal models. However, a controversial standpoint exists in terms of the integrity of the blood brain barrier (BBB) in transgenic AD mice. The primary goal of this study was to explore the feasibility of delivering human umbilical cord-blood derived mesenchymal stem cells (hUCB-MSCs) into the brains of non-transgenic WT (C3H/C57) and transgenic AD (APP/PS1) mice through the intra-arterial (IA) route. Through two experiments, mice were infused with hUCB-MSCs via the right internal carotid artery and were sacrificed at two different time points: 6 hours (experiment 1) or 5 minutes (experiment 2) after infusion. In both experiments, no cells were detected in the brain parenchyma while MSCs were detected in the cerebrovasculature in experiment 2. The results from this study highlight that intra-arterial delivery of MSCs is not the most favorable route to be implemented as a potential therapeutic approach for AD.

  13. Evaluation of cell tracking effects for transplanted mesenchymal stem cells with jetPEI/Gd-DTPA complexes in animal models of hemorrhagic spinal cord injury.

    Science.gov (United States)

    Liu, Yu; He, Zhi-Jie; Xu, Bo; Wu, Qi-Zhu; Liu, Gang; Zhu, Hongyan; Zhong, Qian; Deng, David Y; Ai, Hua; Yue, Qiang; Wei, Yi; Jun, Shen; Zhou, Guangqian; Gong, Qi-Yong

    2011-05-19

    Cell tracking using iron oxide nanoparticles has been well established in MRI. However, in experimental rat models, the intrinsic iron signal derived from erythrocytes masks the labeled cells. The research evaluated a clinically applied Gd-DTPA for T1-weighted positive enhancement for cell tracking in spinal cord injury (SCI) rat models. MSCs were labeled with jetPEI/Gd-DTPA particles to evaluate the transfection efficiency by MRI in vitro. Differentiation assays were carried out to evaluate the differentiation ability of Gd-DTPA-labeled MSCs. The Gd-DTPA-labeled MSCs were transplanted to rat SCI model and monitored by MRI in vivo. Fluorescence images were taken to confirm the MRI results. Behavior test was assessed with Basso, Beattie, and Bresnahan (BBB) scoring in 6weeks after cell transplantation. The Gd-labeled MSCs showed a significant increase in signal intensity in T1-weighted images. After local transplantation, Gd-DTPA-labeled MSCs could be detected in SCI rat models by the persistent T1-weighted positive enhancement from 3 to 14days. Under electronic microscope, Gd-DTPA/jetPEI complexes were mostly observed in cytoplasm. Fluorescence microscopy examination showed that the Gd-labeled MSCs survived and distributed within the injured spinal cord until 2weeks. The Gd-labeled MSCs were identified and tracked with MRI by cross and sagittal sections. The BBB scores of the rats with labeled MSCs transplantation were significantly higher than those of control rats. Our results demonstrated that Gd-DTPA is appropriate for cell tracking in rat model of SCI, indicating that an efficient and nontoxic label method with Gd-DTPA could properly track MSCs in hemorrhage animal models. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Cultivo de células mesenquimais do sangue de cordão umbilical com e sem uso do gradiente de densidade Ficoll-Paque Blood mesenchymal stem cell culture from the umbilical cord with and without Ficoll-Paque density gradient method

    Directory of Open Access Journals (Sweden)

    Rosa Sayoko Kawasaki-Oyama

    2008-03-01

    Full Text Available OBJETIVOS: Implantação de técnicas de isolamento e cultivo de células-tronco mesenquimais do sangue de cordão umbilical humano, com e sem uso de gradiente de densidade Ficoll-Paque (d=1,077g/ml. MÉTODOS: Dez amostras de sangue de cordão umbilical humano de gestação a termo foram submetidas a dois procedimentos de cultivo de células-tronco mesenquimais: sem gradiente de densidade Ficoll-Paque e com gradiente de densidade. As células foram semeadas em frascos de 25cm² a uma densidade de 1x10(7células nucleadas/cm² (sem Ficoll e 1,0x10(6 células mononucleares/cm² (com Ficoll. As células aderentes foram submetidas a marcação citoquímica com fosfatase ácida e reativo de Schiff. RESULTADOS: No procedimento sem gradiente de densidade Ficoll, foram obtidas 2,0-13,0x10(7 células nucleadas (mediana=2,35x10(7 e, no procedimento com gradiente de densidade Ficoll, foram obtidas 3,7-15,7x10(6 células mononucleares (mediana=7,2x10(6. Em todas as culturas foram observadas células aderentes 24 horas após o início de cultivo. As células apresentaram morfologias fibroblastóides ou epitelióides. Na maioria das culturas houve proliferação celular nas primeiras semanas de cultivo, mas após a segunda semana, somente três culturas provenientes do método sem gradiente de densidade Ficoll-Paque mantiveram crescimento celular, formando focos confluentes de células. Essas culturas foram submetidas a várias etapas de tripsinização para espalhamento ou subdivisão e permaneceram em cultivo por períodos que variaram de dois a três meses. CONCLUSÃO: Nas amostras estudadas, o isolamento e cultivo de células-tronco mesenquimais do sangue de cordão umbilical humano pelo método sem gradiente de densidade Ficoll-Paque foi mais eficiente do que o método com gradiente de densidade Ficoll-Paque.OBJECTIVES: Implantation of cell separation and mesenchymal stem cell culture techniques from human umbilical cord blood with and without using the

  15. 冻存前后脐带间充质干细胞生物学特性的比较%Effect of cryopreservation on the biological characteristics of umbilical cord mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    李洁; 傅勇辉; 吴琼; 孙万磊; 袁铿

    2014-01-01

    目的:比较冻存对脐带间充质干细胞生物学特性的影响,为其更广泛的应用提供基础。方法实验于2009年至2010年在南昌大学第二附属医院分子医学实验室、血液病研究所完成。(1)实验材料:剖宫产胎儿脐带取自自愿捐献者,实验经医学伦理委员会批准。(2)采用胶原酶消化法从脐带中分离培养间充质干细胞。(3)将传至第3代的细胞冻存半年后复苏。(4)通过显微镜观察细胞形态,通过流式细胞仪检测细胞的表面标志,体外诱导分化为软骨及脂肪细胞检测其多向分化能力,比较复苏前后上述指标的差异。结果脐带经胶原酶消化法所获得的细胞培养至第3代细胞呈长梭形,排列有明显方向性,细胞排列成网状、辐射状,冻存复苏后期形态学无明显改变。培养至第3代的细胞高表达CD29、CD54、CD166,不表达CD13、CD34、CD45、CD31、HLA-DR,冻存复苏后的细胞表达与未冻存的细胞无统计学差异。 MSC在体外分别向脂肪细胞及软骨细胞诱导分化,以油红O染色后可见染为红色的阳性细胞为脂肪细胞,经阿新兰染色后可见为蓝色的阳性细胞为软骨细胞,冻存复苏后的脐带间充质干细胞细胞也可向脂肪及软骨细胞分化。结论脐带作为一种新的MSC来源,可成为脐血和骨髓MSC 的替代来源,并且冻存对MSC的生物学特性无明显改变,使其能更广泛地用于科研和临床前试验。%Objective To provide experimental basis for application of umbilical cord as a new source of mesenchymal stem cells. Methods The experiment was conducted in the key molecular medicine laboratory of Jiangxi province and institute of hema-tology from 2009 to 2010. (1)Material:The umbilical cords were obtained from the voluntary donors and the experiment was ap-proved by the medical ethics committee.(2)The mesenchymal stem cells were isolated from the umbilical cords by collagenase di

  16. Application of Bone Marrow Mesenchymal Stem Cells in Treatment of Rats with Spinal Cord Injuries%骨髓间充质干细胞在大鼠脊髓损伤治疗中的应用

    Institute of Scientific and Technical Information of China (English)

    薛荣利; 张媛媛; 李泽慧; 周丹; 张晨晨; 哈小琴

    2015-01-01

    Objective To investigate the effect of transplanting bone mesenchymal stem cells ( MSCs) in repair of rats with spinal cord injuries ( SCI) . Methods Bone marrow MSCs were isolated and cultured using whole bone mar-row cells adherence method, and models of SCI were established using free falling body hitting method. A total of 24 rats survived after model establishment, and were divided into transplantation group ( n=12 ) and control group ( n=12 ) . Transplantation group was transplanted with mesenchymal stem cells in injury sites, while control group was treated with same values of physiological saline. The recovery conditions of locomotory capabilities were evaluated using combined praxiology score, and the medullary histopathological changes, injuries and repair of nerve cells and expression of SRY gene were observed. Results The combined praxiology scores of transplantation group at different time points after the treatment were higher than those of control group (P<0. 05). In control group, there were cavities in spinal cord tissues and dead nerve fibers and cells. In transplantation group, the number of cavities was decreased, but hyperplastic tissues was increased uncreased as well as nerve fibers and cells, and SRY gene expression was found. Conclusion Transplan-tation of bone marrow MSCs may improve SCI repair.%目的 探讨骨髓间充质干细胞( MSCs)移植对大鼠脊髓损伤( SCI)修复的作用. 方法 全骨髓贴壁法分离培养骨髓MSCs,采用自由落体撞击法制作大鼠SCI模型,建模大鼠存活24只,分为移植组和对照组,每组12只,移植组在损伤部位移植培养的骨髓MSCs,对照组给予等量生理盐水. 根据联合行为学评分评价两组大鼠运动能力恢复情况,观察脊髓组织病理学变化、神经细胞损伤与修复及SRY基因的表达情况. 结果 移植组治疗后不同时间联合行为学评分均高于对照组(P<0. 05). 对照组脊髓组织中出现较多空腔,神经纤维及细胞

  17. Human umbilical cord mesenchymal stem cells have neuroprotective effect on neonatal mouse periventricular leukomalacia%人脐带间充质干细胞对新生鼠脑白质软化灶的神经保护作用

    Institute of Scientific and Technical Information of China (English)

    张宁; 摆翔; 蒋犁; 李伟

    2012-01-01

    目的:探讨人脐带间充质干细胞(human umbilical cord mesenchymal stem cells,HUcMSCs),对新生未成熟鼠脑室周围白质软化灶受损神经细胞的保护作用.方法:建立新生大鼠PVL(periventricular leukomalacia)动物模型,造模后随机分为两组.于第5天(P5d)分别给两组大鼠腹腔注射5-溴脱氧尿核苷(5-bromodeoxyuridine,BrdU)标记的第二代HUcMSCs[每只1×107(0.05 ml)-1]或0.05 ml PBS无菌溶液.24 h后(P6d)处死一组大鼠,行BrdU染色观察HUcMSCs在鼠脑内的迁移;另一组于移植HUcMSCs后14 d(P19d)行微型MRI(MicroMRI)扫描观察受损区域修复程度,髓磷脂碱性蛋白(myelin basic protein,MBP)染色观察移植HUcMSCs对大鼠脑室周围脑白质损伤的保护.结果:HUcMSCs在宿主体内明显向侧脑室周围白质损伤区域迁移,且脑室周围存活少突胶质细胞数量明显多于注射PBS组,微型MRI扫描观察到HUcMSCs可缩小受损脑白质病灶,远期神经行为学观察到HUcMSCs移植组神经行为学高于PBS组(P<0.05).结论:HUcMSCs对新生大鼠PVL具有神经保护作用,可缩小病变范围.%To investigate the behavior of the homing of the human umbilical cord mesenchymal stem cells ( HUcMSCs )after intraperitoneal implantation to the premature rats with peri ventricular leukomalacia( PVL ), observe the injury volume of preterm mouse with PVL by MicroMRI and explore the neuroprotective effect. Methods: HUcMSCs were cultured in vitro, the second generation was selected. In one group, every mouse with PVL was injected HUcMSCs stained- BrdU ( bromodeoxyuridine ) ( 1× 107 /0. 05 ml ) intraperitoneally after operation. The other group was inject the 0. 05 ml bioclean PBS intraperitoneally simultaneously. The mice of two groups were put to death after 24 hours, the movement of the HUcMSCs to the damaged host brain region was observed with BrdU immunofluorescence staining, and the reduction of the injury volume after injection of HUcMSCs was measured by MBP( myelin

  18. Effects of Serial Passage on the Characteristics and Cardiac and Neural Differentiation of Human Umbilical Cord Wharton’s Jelly-Derived Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Jianchun Lian

    2016-01-01

    Full Text Available Background and Objective. It is important to guarantee the quality of stem cells. Serial passage is the main approach to expand stem cells. This study evaluated effects of serial passage on the biological characteristics of human umbilical cord Wharton’s jelly-derived MSCs (WJ MSCs. Methods. Biological properties of WJ MSCs in the early (less than 10 passages, P10, middle (P11–20, and late (more than P20 phases including cell proliferation, cell cycle, phenotype, senescence, oncogene expression, stemness marker expression, and differentiation capacity were evaluated using flow cytometry, real-time PCR, immunocytofluorescence, and western blot. Results. It was found that there were no significant differences in cell proliferation, cell cycle, phenotype, and stemness marker expression in different phases. However, the expression of senescence-related gene, p21, and oncogene, c-Myc, was significantly upregulated in the late phase, which had close relations with the obviously increased cell senescence. Moreover, cardiac differentiation capability of WJ MSCs decreased whereas the propensity for neural differentiation increased significantly in the middle phase. Conclusions. This study reveals that WJ MSCs in the early and middle phases are relatively stable, and effect of serial passage on the lineage-specific differentiation should be considered carefully.

  19. Umbilical Cord-Derived Mesenchymal Stem Cell Transplantation in Hepatitis B Virus Related Acute-on-Chronic Liver Failure Treated with Plasma Exchange and Entecavir: a 24-Month Prospective Study.

    Science.gov (United States)

    Li, Yu-Hua; Xu, Ying; Wu, Hua-Mei; Yang, Jing; Yang, Li-Hong; Yue-Meng, Wan

    2016-12-01

    Search for an effective therapy for patients with hepatitis B virus related acute-on-chronic liver failure (HBV-ACLF) remains an important issue. This study investigated the efficacy of umbilical cord-derived mesenchymal stem cell (UC-MSC) transplantation in patients with HBV-ACLF. 45 consecutive entecavir-treated HBV-ACLF patients were prospectively studied. Among these patients, 11 received both plasma exchange (PE) and a single transplantation of UC-MSCs (group A), while 34 received only PE (group B). The primary endpoint was survival at 24 months. Compared with group B, levels of albumin, alanine aminotransferase, aspartate aminotransferase, total bilirubin, direct bilirubin, prothrombin time (PT), international normalized ratio (INR) and model for end-stage liver disease score in group A improved significantly at 4 weeks after transplantation (p < 0.05). Levels of albumin, PT and INR in group A were also markedly improved at 24 months (p < 0.05). Group A had significantly higher cumulative survival rate at 24 months (54.5 % v.s. 26.5 %, p = 0.015 by log rank test). Between the two groups, levels of creatinine, White blood cell, hemoglobin and platelet were similar. HBeAg loss and hepatocellular carcinoma incidence were similar at 24 months. Group assignment (relative risk: 2.926, 95%confidence interval: 1.043-8.203, p = 0.041) was an independent predictor for survival at 24 months. Success rate of UC-MSC transplantation was 100 % in group A. No severe adverse event was observed in any patient. UC-MSC transplantation is safe and effective for HBV-ACLF patients treated with PE and entecavir. It further improves the hepatic function and survival.

  20. Isolation and Identification of Human AKT Gene Transfected Human Umbilical Cord Mesenchymal Stem Cells Derived Exosomes%AKT基因转染人脐带间质干细胞来源exosomes的分离及鉴定

    Institute of Scientific and Technical Information of China (English)

    马洁; 赵媛媛; 曹文明; 孙晓仙; 孙丽; 钱晖; 许文荣; 朱伟

    2014-01-01

    该研究构建人AKT基因重组腺病毒载体(Ad-AKT),转染人脐带间质干细胞(human umbilical cord mesenchymal stem cells,hucMSC),分离hucMSC分泌的exosomes,检测exosomes 中的成分变化,为exosomes的临床研究提供实验基础.该实验设计含有EcoR Ⅰ、Xho Ⅰ的限制性酶切位点的引物,PCR扩增AKT,将扩增产物克隆到带有绿色荧光蛋白(green fluorescence protein,GFP)标记的穿梭质粒上.重组穿梭质粒经线性化处理后,与腺病毒骨架质粒在Stbl3中重组,筛选获得含有AKT的重组腺病毒质粒,PCR鉴定并测序.重组病毒质粒用Pac Ⅰ酶切线性化,转染293A细胞,制备高效表达的Ad-AKT,并转染hucMSC.结果表明,AKT基因重组腺病毒能高效转染hucMSC,hucMSC中AKT蛋白表达增多,并且转染AKT基因的hucMSC来源的exosomes(AKT-MSC-exosomes)中AKT蛋白也增多,说明通过基因修饰可以获得过表达目的蛋白的exosomes,为exosomes的来源及应用研究提供可选择的方法.

  1. The assessment of CD146-based cell sorting and telomere length analysis for establishing the identity of mesenchymal stem cells in human umbilical cord [v2; ref status: indexed, http://f1000r.es/48d

    Directory of Open Access Journals (Sweden)

    Dimitrios Kouroupis

    2014-08-01

    Full Text Available Adult stem cells are characterised by longer telomeres compared to mature cells from the same tissue. In this study, candidate CD146+ umbilical cord (UC mesenchymal stem cells (MSCs were purified by cell sorting from UC tissue digests and their telomere lengths were measured in comparison to donor-matched CD146-negative fraction.   UC tissue fragments were enzymatically treated with collagenase and the cells were used for cell sorting, colony-forming fibroblast (CFU-F assay or for long-term MSC cultivation. Telomere lengths were measured by qPCR in both culture-expanded MSCs and candidate native UC MSCs. Immunohistochemistry was undertaken to study the topography of CD146+ cells.   Culture-expanded UC MSCs had a stable expression of CD73, CD90 and CD105, whereas CD146 declined in later passages which correlated with the shortening of telomeres in the same cultures. In five out of seven donors, telomeres in candidate native UC MSCs (CD45-CD235α-CD31-CD146+ were longer compared to donor-matched CD146- population (CD45-CD235α-CD31-CD146-. The frequency of CD45-CD235α-CD31-CD146+ cells measured by flow cytometry was ~1000-fold above that of CFU-Fs (means 10.4% and 0.01%, respectively. CD146+ cells were also abundant in situ having a broad topography including high levels of positivity in muscle areas in addition to vessels.   Although qPCR-based telomere length analysis in sorted populations could be limited in its sensitivity, very high frequency of CD146+ cells in UC tissue suggests that CD146 expression alone is unlikely to be sufficient to identify and purify native MSCs from the UC tissue.

  2. Human Umbilical Cord Mesenchymal Stromal Cell Transplantation in Myocardial Ischemia (HUC-HEART Trial). A Study Protocol of a Phase 1/2, Controlled and Randomized Trial in Combination with Coronary Artery Bypass Grafting.

    Science.gov (United States)

    Can, Alp; Ulus, Ahmet Tulga; Cinar, Ozgur; Topal Celikkan, Ferda; Simsek, Erdal; Akyol, Mesut; Canpolat, Ugur; Erturk, Murat; Kara, Fadil; Ilhan, Osman

    2015-10-01

    Mesenchymal stem cells (MSCs), which may be obtained from the bone marrow, have been studied for more than a decade in the setting of coronary artery disease (CAD). Adipose tissue-derived MSCs have recently come into focus and are being tested in a series of clinical trials. MSC-like cells have also been derived from a variety of sources, including umbilical cord stroma, or HUC-MSCs. The HUC-HEART trail (ClinicalTrials.gov Identifier: NCT02323477) is a phase 1/2, controlled, multicenter, randomized clinical study of the intramyocardial delivery of allogeneic HUC-MSCs in patients with chronic ischemic cardiomyopathy. A total of 79 patients (ages 30-80) with left ventricle ejection fractions ranging between 25 and 45% will be randomized in a 2:1:1 pattern in order to receive an intramyocardial injection of either HUC-MSCs or autologous bone marrow-derived mononuclear cells (BM-MNCs) in combination with coronary arterial bypass grafting (CABG) surgery. The control group of patients will receive no cells and undergo CABG alone. Human HUC-MSCs will be isolated, propagated and banked in accordance with a cGMP protocol, whereas the autologous BM-MNCs will be isolated via aspiration from the iliac crest and subsequently process in a closed-circuit cell purification system shortly before cell transplantation. The cell injections will be implemented in 10 peri-infarct areas. Baseline and post-transplantation outcome measures will be primarily utilized to test both the safety and the efficacy of the administered cells for up to 12 months.

  3. Mesenchymal stem cells of umbilical cord and maintenance of ovarian function%脐带多能干细胞与女性卵巢功能维护

    Institute of Scientific and Technical Information of China (English)

    曹宁; 郑佳佳; 余澜; 梁素丽; 冯春; 冯磊; 郭镭; 幺福勤

    2014-01-01

    卵巢作为女性的性腺,在女性体内负责生殖和内分泌的功能,卵巢功能障碍会严重影响女性生理和身心健康。干细胞能可分化成多种组织细胞,其在早衰卵巢的微环境下能“因地制宜”的分化为卵巢细胞,发挥卵巢细胞正常功能,维持卵巢的正常形态,防止卵巢萎缩变形。此外,干细胞再生的卵巢细胞可以对脑垂体分泌的促性腺激素做出及时、正确的反应,维护内激素水平处于平衡状态。%As female gonad , ovary is responsible for the reproduction and endocrine .Ovarian dysfunction will affect woman ’ s physical and mental health seriously .Stem cells can differentiate into various tissue cells and ovarian germ cells in premature ovarian failure ( POF) microenvironment , which play normal function and maintain morphology of ovary to prevent deformation and atrophy .In addition , when mesenchymal stem cells ( MSCs ) are differentiated into ovarian germ cells successfully , they can make responses to the secretion of pituitary gonadotropins timely and accurately in order to keep hormone levels in balance .

  4. 脐带间充质干细胞鞘内注射治疗脊髓小脑性共济失调%Intrathecal injection of umbilical cord mesenchymal stem cells for spinocerebellar ataxia

    Institute of Scientific and Technical Information of China (English)

    刘静; 郭子宽; 王恒湘; 韩冬梅; 丁丽; 薛梅; 阎洪敏; 王志东; 朱玲; 郑晓丽; 董磊

    2014-01-01

    clinical effect of umbilical cord mesenchymal stem cells in treating spinocerebel ar ataxia by intrathecal injection. METHODS:Thirty-eight cases of spinocerebel ar ataxia were given umbilical cord mesenchymal stem cells by intrathecal injection, 1×106/kg once a week, four times as a course. These 38 cases received 52 courses. Among them, 27 cases received 1 course, 8 cases received 2 courses and 3 cases received 3 courses. International Cooperative Ataxia Rating Scale (ICARS) and Activity of Daily Living Scale (ADL) were used to evaluate patients’ neural functions (the greater scores, the more severe damage) and ability of daily living (the lower score, the stronger the ability of daily living). After treatment, al patients were subjected to fol ow-up visit. RESULTS AND CONCLUSION:The total effective rate of 52 courses of treatment was 84.62%. ICARS and ADL scores were significantly decreased at 1 month after treatment (P<0.01). In most of effective patients, unstable walking and standing, slow movement, upper limb fine motor disorder, writing difficulties, dysarthria, eye movement disorders were improved. After treatment, common adverse effects were dizziness (1 case), low back pain (2 cases), headache (1 case), and fever (2 cases). Al these symptoms disappeared within 1-3 days. No treatment-related adverse events happened in the median fol ow-up of 39 months (11-59 months). The il ness of effective patients had been stable for 1-19 months, average (5.95±4.84) months. Intrathecal injection of umbilical cord mesenchymal stem cells is safe to ameliorate clinical symptoms to some extent within a certain time. It may delay the progression of spinocerebel ar ataxia. Multiple courses of treatment can help to further improve neurological function in most patients.

  5. 人脐带间充质干细胞治疗严重失代偿肝硬化伴皮肤广泛撕裂伤1例%Human umbilical cord mesenchymal stem cells in patients with decompensated cirrhosis complicated with wide-ranging injury of skin: a case and review

    Institute of Scientific and Technical Information of China (English)

    臧祖胜; 王晓今; 傅青春; 陈今伟; 李震宇; 李莉; 金银鹏; 周丰; 施莉琴; 陈成伟

    2013-01-01

    Objective To observe the efficacy of human umbilical cord mesenchymal stem cells in a patient with decompensated cirrhosis complicated with wide-ranging injury of skin. Methods Human umbilical cord mesenchymal stem cells were injected into the skin around the lesions on multiple pornts and multiple times and simultaneously intravenous infusion of the stem cells was carried out. Results The edema around the lesions subsided and the exudation reduced on 10th day of the human umbilical cord mesenchymal stem cells therapy. There was a significant growth of granulation tissue and the skin island on the wound. The skin lesions was completely healed on 23th day of the therapy. CTP and MELD scores reduced from 10 and 8. 31 to 7 and 5. 03 respectively. Conclusion The local injection combined with the intravenous infusion of human umbilical cord mesenchymal stem cells can accelerate the wound healing and promote the skin regrowth significantly in decompensated cirrhosis patients with wide-ranging injury of skin.%目的 对严重肝硬化失代偿期伴皮肤广泛撕裂伤患者以人脐带间充质干细胞进行试验性治疗并观察其疗效.方法 以人脐带间充质干细胞多点、多次注射于皮肤创面周围,同时联合静脉输注治疗.结果 人脐带间充质干细胞治疗后10 d,患者皮肤创面周围皮肤水肿消退,渗出减少,肉芽组织及皮岛生长明显,治疗后23 d创面完全愈合;患者CTP及MELD评分分别由入院时的10分及8.31分降至皮肤创面愈合时的7分及5.03分.结论 采用局部注射联合全身输注人脐带间充质干细胞治疗肝硬化失代偿合并皮肤损伤,可明显加快创面愈合,促进大面积破溃皮肤的再生.

  6. Enrichment and neural induction of mesenchymal stem cells from the human umbilical cord%人脐带间充质干细胞的富集及向神经细胞的诱导分化

    Institute of Scientific and Technical Information of China (English)

    孙丽; 于丽; 张华芳; 江洪

    2011-01-01

    目的:寻找一种稳定、高效的分离人脐带间充质干细胞(MSCs)的方法,并探讨脐带MSCs向神经细胞方向分化的可能性.方法:分别采用组织块贴壁法和双酶消化法分离人脐带MSCs,对比其培养成功率;BrdU掺入实验检测脐带MSCs的增殖能力;流式细胞仪检测脐带MSCs表面分子标志;采用丹参联合生长因子的方法诱导其向神经细胞分化,免疫荧光方法检测神经元特异性烯醇化酶(NSE)、微管相关蛋白2(MAP2)、胶质纤维酸性蛋白(GFAP)的表达.结果:组织块贴壁法获得脐带MSCs成功率高;BrdU阳性标记率达90%以上;流式细胞仪检测显示细胞表达CD29、CD44和CD90,不表达CD34;脐带MSCs经诱导分化,伸出长突起,呈神经元样细胞改变,且表达神经元标志性蛋白NSE、MAP2.神经胶质细胞标志性蛋白GFAP表达较少.结论:成功建立了高效、稳定的脐带MSCs分离培养方法.脐带MSCs经诱导可向神经细胞方向分化,为临床移植治疗神经系统疾病提供了理想的细胞来源.%Objective: To find a stable and efficient method for separating mesenchymal stem cells (MSCs) from human umbilicalcord, and explore their ability to differentiate into neural cells. Methods: MSCs were isolated from human umbilical cord with two methods: tissue adherent and double-enzyme digestion, and followed by comparing their success rate.The proliferative capacity was detected using BrdU incorporation method, and surface markers for MSCs were tested by flow cytometry. The third passage of MSCs were induced into neuron-like cells by danshen combined growth factor in vitro, then the expressions of neuron specific enolase (NSE), microtubule-associated protein 2 ( MAP2 ) and glial fiber acidic protein (GFAP) were detected by immunofluorescence techniques. Results: Tissue adherent method had higher ratio of obtaining MSCs than double digests method, the percentase of cells positive to BrdU was more than 90%. Flow cytometry

  7. 脐带来源间充质干细胞的制备及其质量检定%Preparation and qualification of umbilical cord-derived mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    孙瑞婷; 陈瑶瑶; 王华; 靳继德; 汪劲松; 刘冬梅; 王立生; 吴祖泽

    2013-01-01

    Objective To establish a practical quality control standard of the product of umbilical cord-derived mesenchymal stem cells (UC-MSCs) for clinical research. Methods Fresh umbilical cord from donors was obtained. After amnion and blood vessel was removed, the Wharton Jelly was minced into 1-2 mm3 fragments and then suspended in an animal serum-free MSC growth medium and incubated in a humidified atmosphere with 5% CO2 at 37 ℃. Cells at passage 3 were used for experiments. According to guideline of quality control and preclinical research of stem cells, UC-MSCs were performed overall examination. The examined contents contained sterility detection, mycoplasma detection, human-derived and swine-derived virus screening, endotoxin detection, cell morphology observation, cell number and cell viability assay, chromatosome karyotype analysis, immunophenotype assay, short tandem repeat profiling, immuno-supress activity and differentiation assay. Results UC-MSCs from donors were prepared according to the standard operation procedure for cell isolation, purification and culture. Through overall quality arbitration, the quality of UC-MSCs could be controlled. The cell viability was more than or equal to 90 percent before preservation and more than or equal to 80 percent after preservation. UC-MSCs was sterile, mycoplasma-free, endotoxin-free and non-specific human- and swine-derived virus. The UC-MSCs were positive for CD90 and CD105, whereas negative for CD34, CD45, and HLA-DR. Chromatosome karyotype was in the form of 46XX or 46XY, no deletion and insertion mutation. STR profiling verified that UC-MSCs showed characteristic human STR profiles and no cross contamination. UC-MSCs possessed multi-differentiation potential and suppressed heterogenous lymphocyte proliferation. Conclusion We have established the quality-control standard and supplied experimental data for preparation and examination procedure of umbilical cord-derived mesenchymal stem cells.%目的:研究脐

  8. Comparison of corneal epitheliotrophic capacities among human platelet lysates and other blood derivatives

    Science.gov (United States)

    Huang, Chien-Jung; Sun, Yi-Chen; Christopher, Karen; Pai, Amy Shih-I; Lu, Chia-Ju; Hu, Fung-Rong; Lin, Szu-Yuan; Chen, Wei-Li

    2017-01-01

    Purpose To evaluate the corneal epitheliotropic abilities of two commercialized human platelet lysates (HPLs) and to compare the results with other blood derivatives, including human peripheral serum (HPS) and bovine fetal serum (FBS). Methods In vitro, human corneal epithelial cells were incubated in various concentrations (0%, 3%, 5% and 10%) of blood derivatives. Two commercialized HPLs, including UltraGRO TM (Helios, Atlanta, GA) and PLTMax (Mill Creek, Rochester, MI), were tested and compared with HPS and FBS. Scratch-induced directional wounding assay was performed to evaluate cellular migration. MTS assay was used to evaluate cellular proliferation. Cellular differentiation was examined by scanning electron microscopy, inverted microscopy and transepithelial electrical resistance. Sprague-Dawley rats were used to evaluate the effects of the blood derivatives on corneal epithelial wound healing in vivo. Different blood derivatives were applied topically every 2 hours for 2 days after corneal epithelial debridement. The concentrations of epidermal growth factor (EGF), transforming growth factor -β1 (TGF-β1), fibronectin, platelet-derived growth factor-AB (PDGF-AB), PDGF-BB, and hyaluronic acid in different blood derivatives were evaluated by enzyme-linked immunosorbent assay (ELISA). Results In vitro experiments demonstrated statistically comparable epitheliotropic characteristics in cellular proliferation, migration, and differentiation for the two commercialized HPLs compared to FBS and HPS. Cells cultured without any serum were used as control group. The epitheliotropic capacities were statistically higher in the two commercialized HPLs compared to the control group (p<0.05). Among the different concentrations of blood derivatives, the preparations with 3% yielded better outcomes compared to 5% and 10%. In rats, HPLs also caused improved but not statistically significant wound healing compared to HPS. All the blood derivatives had better wound healing

  9. Enhancing the Migration Ability of Mesenchymal Stromal Cells by Targeting the SDF-1/CXCR4 Axis

    Directory of Open Access Journals (Sweden)

    Leah A. Marquez-Curtis

    2013-01-01

    Full Text Available Mesenchymal stromal cells (MSCs are currently being investigated in numerous clinical trials of tissue repair and various immunological disorders based on their ability to secrete trophic factors and to modulate inflammatory responses. MSCs have been shown to migrate to sites of injury and inflammation in response to soluble mediators including the chemokine stromal cell-derived factor-(SDF-1, but during in vitro culture expansion MSCs lose surface expression of key homing receptors particularly of the SDF-1 receptor, CXCR4. Here we review studies on enhancement of SDF-1-directed migration of MSCs with the premise that their improved recruitment could translate to therapeutic benefits. We describe our studies on approaches to increase the CXCR4 expression in in vitro-expanded cord blood-derived MSCs, namely, transfection, using the commercial liposomal reagent IBAfect, chemical treatment with the histone deacetylase inhibitor valproic acid, and exposure to recombinant complement component C1q. These methodologies will be presented in the context of other cell targeting and delivery strategies that exploit pathways involved in MSC migration. Taken together, these findings indicate that MSCs can be manipulated in vitro to enhance their in vivo recruitment and efficacy for tissue repair.

  10. Efficient expansion of mesenchymal stromal cells in a disposable fixed bed culture system.

    Science.gov (United States)

    Mizukami, Amanda; Orellana, Maristela D; Caruso, Sâmia R; de Lima Prata, Karen; Covas, Dimas T; Swiech, Kamilla

    2013-01-01

    The need for efficient and reliable technologies for clinical-scale expansion of mesenchymal stromal cells (MSC) has led to the use of disposable bioreactors and culture systems. Here, we evaluate the expansion of cord blood-derived MSC in a disposable fixed bed culture system. Starting from an initial cell density of 6.0 × 10(7) cells, after 7 days of culture, it was possible to produce of 4.2(±0.8) × 10(8) cells, which represents a fold increase of 7.0 (±1.4). After enzymatic retrieval from Fibra-Cell disks, the cells were able to maintain their potential for differentiation into adipocytes and osteocytes and were positive for many markers common to MSC (CD73, CD90, and CD105). The results obtained in this study demonstrate that MSC can be efficiently expanded in the culture system. This novel approach presents several advantages over the current expansion systems, based on culture flasks or microcarrier-based spinner flasks and represents a key element for MSC cellular therapy according to GMP compliant clinical-scale production system.

  11. Intra-Arterially Delivered Mesenchymal Stem Cells Are Not Detected in the Brain Parenchyma in an Alzheimer’s Disease Mouse Model

    Science.gov (United States)

    Lee, Na Kyung; Yang, Jehoon; Chang, Eun Hyuk; Park, Sang Eon; Lee, Jeongmin; Choi, Soo Jin; Oh, Wonil; Chang, Jong Wook; Na, Duk L.

    2016-01-01

    Mesenchymal stem cells (MSCs) have a promising role as a therapeutic agent for neurodegenerative diseases such as Alzheimer’s disease (AD). Prior studies suggested that intra-arterially administered MSCs are engrafted into the brain in stroke or traumatic brain injury (TBI) animal models. However, a controversial standpoint exists in terms of the integrity of the blood brain barrier (BBB) in transgenic AD mice. The primary goal of this study was to explore the feasibility of delivering human umbilical cord-blood derived mesenchymal stem cells (hUCB-MSCs) into the brains of non-transgenic WT (C3H/C57) and transgenic AD (APP/PS1) mice through the intra-arterial (IA) route. Through two experiments, mice were infused with hUCB-MSCs via the right internal carotid artery and were sacrificed at two different time points: 6 hours (experiment 1) or 5 minutes (experiment 2) after infusion. In both experiments, no cells were detected in the brain parenchyma while MSCs were detected in the cerebrovasculature in experiment 2. The results from this study highlight that intra-arterial delivery of MSCs is not the most favorable route to be implemented as a potential therapeutic approach for AD. PMID:27203695

  12. 脐血干细胞移植对帕金森病大鼠旋转行为的影响%Effect of human umbilical cord blood mesenchymal stem cells transplantation on rotational behavior of Parkinson's disease rats

    Institute of Scientific and Technical Information of China (English)

    樊志刚; 刘芳

    2012-01-01

    背景:目前帕金森病的临床治疗还是以药物为主,细胞移植实验也多见于骨髓间充质干细胞,脐血来源干细胞移植能否改善帕金森病的旋转行为报道较少.目的:观察脐血间充质干细胞移植对帕金森病大鼠旋转行为的影响.方法:帕金森病模型大鼠随机分成实验组和对照组.实验组大鼠纹状体内植入用Hoechst33258标记的第4代脐血间充质干细胞,对照组注射PBS.此后每周腹腔注射阿扑吗啡以观察大鼠的旋转行为;并在移植后3,6,9周用免疫荧光双标法检测间充质干细胞的存活、迁移情况以及胶质纤维酸性蛋白、神经元特异性烯醇化酶、酪氨酸羟化酶和突触素的表达.结果与结论:移植脐血间充质干细胞后大鼠的旋转行为与对照组相比有明显改善(P < 0.05);间充质干细胞可在大鼠脑内存活,随时间延长迁移范围扩大,分布于纹状体、胼胝体和皮质;胶质纤维酸性蛋白、神经元特异性烯醇化酶、酪氨酸羟化酶都有表达,突触素无表达.结果可见移植脐血间充质干细胞后能明显改善帕金森病大鼠旋转行为,有望成为治疗帕金森病的种子细胞.%BACKGROUND: To date, the clinical treatment of Parkinson's disease (PD) mainly depends on drug, and as for celltransplantation experiment, bone marrow mesenchymal stem cells (BMSCs) transplantation is the common method. The reportsabout whether umbilical cord blood mesenchymal stem cells (UCBMSCs) transplantation can improve the rotational behavior arerare.OBJECTIVE: To explore the effect of human UCBMSCs transplantation on rotational behavior of PD rats.METHODS: The PD rat models were divided into the experimental group (n=20) and the control group (n=20). The fourthgeneration of MSCs were marked by Hoechst33258 and then transplanted into rat striatum in experimental group, and the rats incontrol group were given PBS. Apomorphine was injected intraperitoneally to examine the rotational

  13. Bone marrow stromal cell : mediated neuroprotection for spinal cord repair

    NARCIS (Netherlands)

    Ritfeld, Gaby Jane

    2014-01-01

    Currently, there is no treatment available that restores anatomy and function after spinal cord injury. This thesis explores transplantation of bone marrow-derived mesenchymal stem cells (bone marrow stromal cells; BMSCs) as a therapeutic approach for spinal cord repair. BMSCs secrete neurotrophic f

  14. Metabolite features of the human umbilical cord mesenchymal stem cells on 9.4T MR spectroscopy%9.4T MRS观察人脐带间充质干细胞代谢特征

    Institute of Scientific and Technical Information of China (English)

    代海洋; 肖叶玉; 洪璧楷; 陈耀文; 谢庆东; 吴仁华

    2011-01-01

    Objective To get a more detailed understanding of the metabolic features of the human umbilical cord mesenchymal stem cells (hUCMSCs) by analyzing both the water- and lipid-soluble metabolite extractions with 9. 4T MR spectroscopy (MRS). Methods The hUCMSCs were cultured and collected, both water- and lipid-soluble metabolites were extracted simultaneously by a dual phase extraction procedure using methanol-chloroform-water and prepared for MRS analysis. ' H proton spectra were acquired on 9. 4T MR and the concentrations of main metabolites were quantitatively calculated. Results hUCMSCs had different spectral property between aqueous and organic metabolites. In the water-soluble metabolite profiles, main resonances were assigned to lactate, acetate, succinate, glutamate, creatine and choline-containing metabolites, while in the lipid-soluble metabolite profiles, most resonances were assigned to saturated and unsaturated fatty acids. Conclusion MRS is an effective tool to detect cell biological status. Combined analysis of both the water- and lipid-soluble metabolites enables an elaborate cognition of the metabolic profiles of hUCMSCs.%目的 利用9.4T高分辨力MRS检测人脐带间充质干细胞(hUCMSCs)的水溶性及脂溶性提取物,明确其频谱代谢特征.方法 培养获取hUCMSCs,利用甲醇/氯仿/水一次性提取细胞的水溶性及脂溶性代谢物,使用9.4T MR检测提取物的氢质子频谱,并定量计算谱线中主要代谢物的浓度.结果 hUCMSCs的水溶性与脂溶性提取物具有不同的频谱特征,水溶性提取物频谱中的主要代谢峰有乳酸、醋酸、苏氨酸、谷氨酸、肌酸、肌醇及胆碱复合物等,脂溶性谱线中主要代谢峰为长/短链脂肪酸等.结论 MRS能反映细胞的生理状态,综合分析两类提取物的频谱特征能更全面地获取间充质干细胞的代谢信息.

  15. Molecular and stimulus-response profiles illustrate heterogeneity between peripheral and cord blood-derived human mast cells

    DEFF Research Database (Denmark)

    Jensen, Bettina M; Frandsen, Pernille M; Raaby, Ellen M

    2014-01-01

    Different protocols exist for in vitro development of HuMCs from hematopoietic stem cells, which results in distinct mast cells regarding molecular markers and activation patterns. Here, we introduce a SR profile using immunological, neurogenic, and pharmacological stimuli to characterize cellular...... functionality. Mast cells were obtained from three culture protocols using two types of PBdMCs (CD34(+) PBdMC or CD133(+) PBdMC) and one type of CBdMC (CD133(+) CBdMC). We analyzed resting cells for specific mast cell markers at protein and mRNA levels, thereby creating a molecular profile. To characterize...... the SR profile, we stimulated cells with anti-IgE, C3a, C5a, Substance P, or Compound 48/80 and measured the release of histamine and cytokines (IL-10, IL-13, GM-CSF, TNF-α). Molecular profiling revealed that CD133(+) CBdMC expressed less chymase, FcεRIα, and CD203c but more CD117 compared with CD34...

  16. Early Umbilical Cord Blood-Derived Stem Cell Transplantation Does Not Prevent Neurological Deterioration in Mucopolysaccharidosis Type III

    NARCIS (Netherlands)

    Welling, Lindsey; Marchal, Jan Pieter; van Hasselt, Peter; van der Ploeg, Ans T; Wijburg, Frits A; Boelens, Jaap Jan

    2015-01-01

    Mucopolysaccharidosis type III (MPS III), or Sanfilippo disease, is a neurodegenerative lysosomal storage disease (LSD) caused by defective lysosomal degradation of heparan sulfate (HS). No effective disease-modifying therapy is yet available. In contrast to some other neuronopathic LSDs, bone marro

  17. Encapsulated feeder cells within alginate beads for ex vivo expansion of cord blood-derived CD34(+) cells

    National Research Council Canada - National Science Library

    Pan, Xiuwei; Sun, Qiong; Cai, Haibo; Gao, Yun; Tan, Wensong; Zhang, Weian

    2016-01-01

    A co-culture system based on encapsulated feeder cells within alginate beads was developed through optimizing the detailed aspects of the cell culture system to expand CD34-positive (CD34(+)) cells ex vivo...

  18. Modulation of Chemokine Gene Expression in CD133 Cord Blood-Derived Human Mast Cells by Cyclosporin A and Dexamethasone

    DEFF Research Database (Denmark)

    Holm, Mette; Kvistgaard, Helene; Dahl, Christine

    2006-01-01

    with different kinetics and with different amplitudes in a receptor activation dependent manner, and that these events can be mimicked using pharmacological agents which activate distinct signal transduction pathways. These findings were corroborated by adding immunomodulators such as cyclosporin...

  19. 脐带间充质干细胞联合渗液吸收贴治疗Ⅱ、Ⅲ期压疮研究%Umbilical cord mesenchymal stem cells partnering with exudate-absorbing dressings for the treatment of stage 2 or 3 pressure ulcers

    Institute of Scientific and Technical Information of China (English)

    王运平; 刘玉芬; 闫秀杰; 严向芳; 孙悦; 陈然; 史晶

    2012-01-01

    目的 探讨脐带间充质干细胞联合渗液吸收贴治疗Ⅱ、Ⅲ期压疮的临床效果.方法 将36例脊髓损伤合并Ⅱ、Ⅲ期压疮患者随机分为对照组(Ⅱ期18处、Ⅲ期13处)和观察组(Ⅱ期24处、Ⅲ期压疮11处).对照组采用常规治疗与护理方法;观察组采用脐带间充质干细胞联合渗液吸收贴治疗的方法,即局部清创、消毒后将1 mL脐带间充质干细胞混悬液均匀涂抹于创面,并外敷渗液吸收贴.所有患者每2天换药1次,直至创面愈合.结果 两组疗效比较,差异有统计学意义(P<0.05);两组显效时间和治愈时间比较,差异有统计学意义(均P<0.01).结论 脐带间充质干细胞联合渗液吸收贴可有效治疗Ⅱ、Ⅲ期压疮,并显著缩短创口治愈时间.%Objective To investigate the effects of umbilical cord mesenchymal stem cells combined with exudate-absorbing dressings for the treatment of stage 2 or 3 pressure ulcers. Methods Thirty-six cases of spinal cord injury who suffered stage 2 or stage 3 pressure ulcers were randomly assigned to a control group (18 stage- 2 and 13 stage 3 ulcers) and an observation group (24 stage 2 and 11 stage 3 ulcers). The control group received conventional treatment and care, while patients in the observation group were subjected to the treatment which combined umbilical cord mesenchymal stem cells with exudate-absorbing dressings: 1 mL of solution containing umbilical cord mesenchymal stem cells was applied to the pressure ulcer surface after local debridement and disinfection, and then the ulcer was covered with exudate-absorbing dressing. Dressing change was performed every day until healing of the ulcer. Results Significant differences were found in the total efficacy, the time from commence of the treatment to effect appearance, and the healing time between the two groups (P<0. 01 for all). Conclusion Umbilical cord mesenchymal stem cells combined with exudate-absorbing dressings can be used to

  20. Cord Blood

    Directory of Open Access Journals (Sweden)

    Saeed Abroun

    2014-05-01

    Full Text Available   Stem cells are naïve or master cells. This means they can transform into special 200 cell types as needed by body, and each of these cells has just one function. Stem cells are found in many parts of the human body, although some sources have richer concentrations than others. Some excellent sources of stem cells, such as bone marrow, peripheral blood, cord blood, other tissue stem cells and human embryos, which last one are controversial and their use can be illegal in some countries. Cord blood is a sample of blood taken from a newborn baby's umbilical cord. It is a rich source of stem cells, umbilical cord blood and tissue are collected from material that normally has no use following a child’s birth. Umbilical cord blood and tissue cells are rich sources of stem cells, which have been used in the treatment of over 80 diseases including leukemia, lymphoma and anemia as bone marrow stem cell potency.  The most common disease category has been leukemia. The next largest group is inherited diseases. Patients with lymphoma, myelodysplasia and severe aplastic anemia have also been successfully transplanted with cord blood. Cord blood is obtained by syringing out the placenta through the umbilical cord at the time of childbirth, after the cord has been detached from the newborn. Collecting stem cells from umbilical blood and tissue is ethical, pain-free, safe and simple. When they are needed to treat your child later in life, there will be no rejection or incompatibility issues, as the procedure will be using their own cells. In contrast, stem cells from donors do have these potential problems. By consider about cord blood potency, cord blood banks (familial or public were established. In IRAN, four cord blood banks has activity, Shariati BMT center cord blood bank, Royan familial cord blood banks, Royan public cord blood banks and Iranian Blood Transfusion Organ cord blood banks. Despite 50,000 sample which storage in these banks, but the