WorldWideScience

Sample records for coral larval transcriptome

  1. Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx

    Directory of Open Access Journals (Sweden)

    Colbourne John K

    2009-05-01

    population connectivity studies. The characterization of the larval transcriptome for this widely-studied coral will enable research into the biological processes underlying stress responses in corals and evolutionary adaptation to global climate change.

  2. Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral.

    Science.gov (United States)

    Strader, Marie E; Aglyamova, Galina V; Matz, Mikhail V

    2018-01-04

    Molecular mechanisms underlying coral larval competence, the ability of larvae to respond to settlement cues, determine their dispersal potential and are potential targets of natural selection. Here, we profiled competence, fluorescence and genome-wide gene expression in embryos and larvae of the reef-building coral Acropora millepora daily throughout 12 days post-fertilization. Gene expression associated with competence was positively correlated with transcriptomic response to the natural settlement cue, confirming that mature coral larvae are "primed" for settlement. Rise of competence through development was accompanied by up-regulation of sensory and signal transduction genes such as ion channels, genes involved in neuropeptide signaling, and G-protein coupled receptor (GPCRs). A drug screen targeting components of GPCR signaling pathways confirmed a role in larval settlement behavior and metamorphosis. These results gives insight into the molecular complexity underlying these transitions and reveals receptors and pathways that, if altered by changing environments, could affect dispersal capabilities of reef-building corals. In addition, this dataset provides a toolkit for asking broad questions about sensory capacity in multicellular animals and the evolution of development.

  3. A Study of the Pelagic Larval Duration of Acropora humilis, Coral Recruitment and Connectivity in the Saudi Arabian Red Sea

    KAUST Repository

    Khalil, Maha

    2011-01-01

    Combined knowledge of the pelagic larval duration of coral species and coral recruitment patterns can provide evidence of inter-reef connectivity and indicate a reef’s ability to recover. We attempted to determine the maximum pelagic larval duration

  4. Gene discovery in the threatened elkhorn coral: 454 sequencing of the Acropora palmata transcriptome.

    Directory of Open Access Journals (Sweden)

    Nicholas R Polato

    Full Text Available BACKGROUND: Cnidarians, including corals and anemones, offer unique insights into metazoan evolution because they harbor genetic similarities with vertebrates beyond that found in model invertebrates and retain genes known only from non-metazoans. Cataloging genes expressed in Acropora palmata, a foundation-species of reefs in the Caribbean and western Atlantic, will advance our understanding of the genetic basis of ecologically important traits in corals and comes at a time when sequencing efforts in other cnidarians allow for multi-species comparisons. RESULTS: A cDNA library from a sample enriched for symbiont free larval tissue was sequenced on the 454 GS-FLX platform. Over 960,000 reads were obtained and assembled into 42,630 contigs. Annotation data was acquired for 57% of the assembled sequences. Analysis of the assembled sequences indicated that 83-100% of all A. palmata transcripts were tagged, and provided a rough estimate of the total number genes expressed in our samples (~18,000-20,000. The coral annotation data contained many of the same molecular components as in the Bilateria, particularly in pathways associated with oxidative stress and DNA damage repair, and provided evidence that homologs of p53, a key player in DNA repair pathways, has experienced selection along the branch separating Cnidaria and Bilateria. Transcriptome wide screens of paralog groups and transition/transversion ratios highlighted genes including: green fluorescent proteins, carbonic anhydrase, and oxidative stress proteins; and functional groups involved in protein and nucleic acid metabolism, and the formation of structural molecules. These results provide a starting point for study of adaptive evolution in corals. CONCLUSIONS: Currently available transcriptome data now make comparative studies of the mechanisms underlying coral's evolutionary success possible. Here we identified candidate genes that enable corals to maintain genomic integrity despite

  5. Gene discovery in the threatened elkhorn coral: 454 sequencing of the Acropora palmata transcriptome.

    Science.gov (United States)

    Polato, Nicholas R; Vera, J Cristobal; Baums, Iliana B

    2011-01-01

    Cnidarians, including corals and anemones, offer unique insights into metazoan evolution because they harbor genetic similarities with vertebrates beyond that found in model invertebrates and retain genes known only from non-metazoans. Cataloging genes expressed in Acropora palmata, a foundation-species of reefs in the Caribbean and western Atlantic, will advance our understanding of the genetic basis of ecologically important traits in corals and comes at a time when sequencing efforts in other cnidarians allow for multi-species comparisons. A cDNA library from a sample enriched for symbiont free larval tissue was sequenced on the 454 GS-FLX platform. Over 960,000 reads were obtained and assembled into 42,630 contigs. Annotation data was acquired for 57% of the assembled sequences. Analysis of the assembled sequences indicated that 83-100% of all A. palmata transcripts were tagged, and provided a rough estimate of the total number genes expressed in our samples (~18,000-20,000). The coral annotation data contained many of the same molecular components as in the Bilateria, particularly in pathways associated with oxidative stress and DNA damage repair, and provided evidence that homologs of p53, a key player in DNA repair pathways, has experienced selection along the branch separating Cnidaria and Bilateria. Transcriptome wide screens of paralog groups and transition/transversion ratios highlighted genes including: green fluorescent proteins, carbonic anhydrase, and oxidative stress proteins; and functional groups involved in protein and nucleic acid metabolism, and the formation of structural molecules. These results provide a starting point for study of adaptive evolution in corals. Currently available transcriptome data now make comparative studies of the mechanisms underlying coral's evolutionary success possible. Here we identified candidate genes that enable corals to maintain genomic integrity despite considerable exposure to genotoxic stress over long life

  6. Coral host transcriptomic states are correlated with Symbiodinium genotypes

    KAUST Repository

    DeSalvo, Michael K.

    2010-03-01

    A mutualistic relationship between reef-building corals and endosymbiotic dinoflagellates (Symbiodinium spp.) forms the basis for the existence of coral reefs. Genotyping tools for Symbiodinium spp. have added a new level of complexity to studies concerning cnidarian growth, nutrient acquisition, and stress. For example, the response of the coral holobiont to thermal stress is connected to the host-Symbiodinium genotypic combination, as different partnerships can have different bleaching susceptibilities. In this study, we monitored Symbiodinium physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered fragments of the coral Montastraea faveolata using a custom cDNA gene expression microarray. Interestingly, gene expression was more similar among samples with the same Symbiodinium content rather than the same experimental condition. In order to discount for host-genotypic effects, we sampled fragments from a single colony of M. faveolata containing different symbiont types, and found that the host transcriptomic states grouped according to Symbiodinium genotype rather than thermal stress. As the first study that links coral host transcriptomic patterns to the clade content of their Symbiodinium community, our results provide a critical step to elucidating the molecular basis of the apparent variability seen among different coral-Symbiodinium partnerships. © 2010 Blackwell Publishing Ltd.

  7. Larval dispersal in three coral reef decapod species: Influence of larval duration on the metapopulation structure

    Science.gov (United States)

    Zavala-Hidalgo, Jorge; Allende-Arandía, Eugenia; Hermoso-Salazar, Margarita

    2018-01-01

    Most coral-associated decapod species have non-migratory adult populations and depend on their planktonic larvae for dispersal. This study examined the metapopulation structure of three decapod species with different pelagic larval duration (PLD) from twelve coral reef complexes of the Gulf of Mexico. The dispersion of larvae was analyzed through the use of a realistic numerical simulation of the Gulf of Mexico with the Hybrid Coordinate Ocean Model. To study the transport and dispersion of particles in near-surface waters, a particle-tracking subroutine was run using as input the currents from the model. The simulation consisted of the launch of 100 passive particles (virtual larvae) every 24 hours from each reef throughout five years, and tracked for as long as 210 days. Results indicated that species with a short PLD, Mithraculus sculptus (PLD 8‒13 days), had a weak connection among the reefs, but higher self-recruitment, especially on the narrow western shelf. The species with a longer PLD, Dromia erythropus (28‒30 days), had a stronger connection among neighboring reefs (< 300 km). Finally, the species with an even longer PLD, Stenopus hispidus (123‒210 days), had a wider potential distribution than the other species. Circulation on synoptic, seasonal and interannual scales had differential effects on the larval dispersal of each species. The metapopulation structure of M. sculptus and D. erythropus seemed to combine features of the non-equilibrium and the patchy models, whereas that of S. hispidus presumably fit to a patchy model. These findings support previous observations that indicate that species with longer PLD tend to occupy larger areas than species with short PLD, although recruitment of juveniles to the adult populations will also depend on other factors, such as the availability of suitable habitats and the ability to colonize them. PMID:29558478

  8. Larval settlement: the role of surface topography for sessile coral reef invertebrates.

    Science.gov (United States)

    Whalan, Steve; Wahab, Muhammad A Abdul; Sprungala, Susanne; Poole, Andrew J; de Nys, Rocky

    2015-01-01

    For sessile marine invertebrates with complex life cycles, habitat choice is directed by the larval phase. Defining which habitat-linked cues are implicated in sessile invertebrate larval settlement has largely concentrated on chemical cues which are thought to signal optimal habitat. There has been less effort establishing physical settlement cues, including the role of surface microtopography. This laboratory based study tested whether surface microtopography alone (without chemical cues) plays an important contributing role in the settlement of larvae of coral reef sessile invertebrates. We measured settlement to tiles, engineered with surface microtopography (holes) that closely matched the sizes (width) of larvae of a range of corals and sponges, in addition to surfaces with holes that were markedly larger than larvae. Larvae from two species of scleractinian corals (Acropora millepora and Ctenactis crassa) and three species of coral reef sponges (Luffariella variabilis, Carteriospongia foliascens and Ircinia sp.,) were used in experiments. L. variabilis, A. millepora and C. crassa showed markedly higher settlement to surface microtopography that closely matched their larval width. C. foliascens and Ircinia sp., showed no specificity to surface microtopography, settling just as often to microtopography as to flat surfaces. The findings of this study question the sole reliance on chemical based larval settlement cues, previously established for some coral and sponge species, and demonstrate that specific physical cues (surface complexity) can also play an important role in larval settlement of coral reef sessile invertebrates.

  9. Circatrigintan instead of lunar periodicity of larval release in a brooding coral species.

    Science.gov (United States)

    Linden, Bart; Huisman, Jef; Rinkevich, Baruch

    2018-04-04

    Larval release by brooding corals is often assumed to display lunar periodicity. Here, we show that larval release of individual Stylophora pistillata colonies does not comply with the assumed tight entrainment by the lunar cycle, and can better be classified as a circatrigintan pattern. The colonies exhibited three distinct reproductive patterns, characterized by short intervals, long intervals and no periodicity between reproductive peaks, respectively. Cross correlation between the lunar cycle and larval release of the periodic colonies revealed an approximately 30-day periodicity with a variable lag of 5 to 10 days after full moon. The observed variability indicates that the lunar cycle does not provide a strict zeitgeber. Other factors such as water temperature and solar radiation did not correlate significantly with the larval release. The circatrigintan patterns displayed by S. pistillata supports the plasticity of corals and sheds new light on discussions on the fecundity of brooding coral species.

  10. Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence.

    KAUST Repository

    Aranda, Manuel

    2011-07-01

    Scleractinian corals are the major builders of the complex structural framework of coral reefs. They live in tropical waters around the globe where they are frequently exposed to potentially harmful ultraviolet radiation (UVR). The eggs and early embryonic stages of some coral species are highly buoyant and remain near the sea surface for prolonged periods of time and may therefore be the most sensitive life stages with respect to UVR. Here, we analysed gene expression changes in five developmental stages of the Caribbean coral Montastraea faveolata to natural levels of UVR using high-density cDNA microarrays (10 930 clones). We found that larvae exhibit low sensitivity to natural levels of UVR during early development as reflected by comparatively few transcriptomic changes in response to UVR. However, we identified a time window of high UVR sensitivity that coincides with the motile planula stage and the onset of larval competence. These processes have been shown to be affected by UVR exposure, and the transcriptional changes we identified explain these observations well. Our analysis of differentially expressed genes indicates that UVR alters the expression of genes associated with stress response, the endoplasmic reticulum, Ca(2+) homoeostasis, development and apoptosis during the motile planula stage and affects the expression of neurogenesis-related genes that are linked to swimming and settlement behaviour at later stages. Taken together, our study provides further data on the impact of natural levels of UVR on coral larvae. Furthermore, our results might allow a better prediction of settlement and recruitment rates after coral spawning events if UVR climate data are taken into account.

  11. Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata.

    Science.gov (United States)

    Portune, Kevin J; Voolstra, Christian R; Medina, Mónica; Szmant, Alina M

    2010-03-01

    Projected elevation of seawater temperatures poses a threat to the reproductive success of Caribbean reef-building corals that have planktonic development during the warmest months of the year. This study examined the transcriptomic changes that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28°C) and further assessed the effects of two elevated temperatures (30°C and 31.5°C) on these expression patterns. Using cDNA microarrays, we compared expression levels of 2051 genes from early embryos and larvae at multiple developmental stages (including pre-blastula, blastula, gastrula, and planula stages) at each of the three temperatures. At 12h post-fertilization in 28°C treatments, genes involved in cell replication/cell division and transcription were up-regulated in A. palmata embryos, followed by a reduction in expression of these genes during later growth stages. From 24.5 to 131h post-fertilization at 28°C, A. palmata altered its transcriptome by up-regulating genes involved in protein synthesis and metabolism. Temperatures of 30°C and 31.5°C caused major changes to the A. palmata embryonic transcriptomes, particularly in the samples from 24.5hpf post-fertilization, characterized by down-regulation of numerous genes involved in cell replication/cell division, metabolism, cytoskeleton, and transcription, while heat shock genes were up-regulated compared to 28°C treatments. These results suggest that increased temperature may cause a breakdown in proper gene expression during development in A. palmata by down-regulation of genes involved in essential cellular processes, which may lead to the abnormal development and reduced survivorship documented in other studies. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata

    KAUST Repository

    Portune, Kevin J.

    2010-03-01

    Projected elevation of seawater temperatures poses a threat to the reproductive success of Caribbean reef-building corals that have planktonic development during the warmest months of the year. This study examined the transcriptomic changes that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28 °C) and further assessed the effects of two elevated temperatures (30 °C and 31.5 °C) on these expression patterns. Using cDNA microarrays, we compared expression levels of 2051 genes from early embryos and larvae at multiple developmental stages (including pre-blastula, blastula, gastrula, and planula stages) at each of the three temperatures. At 12 h post-fertilization in 28 °C treatments, genes involved in cell replication/cell division and transcription were up-regulated in A. palmata embryos, followed by a reduction in expression of these genes during later growth stages. From 24.5 to 131 h post-fertilization at 28 °C, A. palmata altered its transcriptome by up-regulating genes involved in protein synthesis and metabolism. Temperatures of 30 °C and 31.5 °C caused major changes to the A. palmata embryonic transcriptomes, particularly in the samples from 24.5 hpf post-fertilization, characterized by down-regulation of numerous genes involved in cell replication/cell division, metabolism, cytoskeleton, and transcription, while heat shock genes were up-regulated compared to 28 °C treatments. These results suggest that increased temperature may cause a breakdown in proper gene expression during development in A. palmata by down-regulation of genes involved in essential cellular processes, which may lead to the abnormal development and reduced survivorship documented in other studies. © 2010 Elsevier B.V. All rights reserved.

  13. The host transcriptome remains unaltered during the establishment of coral-algal symbioses.

    Science.gov (United States)

    Voolstra, Christian R; Schwarz, Jodi A; Schnetzer, Julia; Sunagawa, Shinichi; Desalvo, Michael K; Szmant, Alina M; Coffroth, Mary Alice; Medina, Mónica

    2009-05-01

    Coral reefs are based on the symbiotic relationship between corals and photosynthetic dinoflagellates of the genus Symbiodinium. We followed gene expression of coral larvae of Acropora palmata and Montastraea faveolata after exposure to Symbiodinium strains that differed in their ability to establish symbioses. We show that the coral host transcriptome remains almost unchanged during infection by competent symbionts, but is massively altered by symbionts that fail to establish symbioses. Our data suggest that successful coral-algal symbioses depend mainly on the symbionts' ability to enter the host in a stealth manner rather than a more active response from the coral host.

  14. Embryogenesis and larval biology of the cold-water coral Lophelia pertusa.

    Directory of Open Access Journals (Sweden)

    Ann I Larsson

    Full Text Available Cold-water coral reefs form spectacular and highly diverse ecosystems in the deep sea but little is known about reproduction, and virtually nothing about the larval biology in these corals. This study is based on data from two locations of the North East Atlantic and documents the first observations of embryogenesis and larval development in Lophelia pertusa, the most common framework-building cold-water scleractinian. Embryos developed in a more or less organized radial cleavage pattern from ∼ 160 µm large neutral or negatively buoyant eggs, to 120-270 µm long ciliated planulae. Embryogenesis was slow with cleavage occurring at intervals of 6-8 hours up to the 64-cell stage. Genetically characterized larvae were sexually derived, with maternal and paternal alleles present. Larvae were active swimmers (0.5 mm s(-1 initially residing in the upper part of the water column, with bottom probing behavior starting 3-5 weeks after fertilization. Nematocysts had developed by day 30, coinciding with peak bottom-probing behavior, and possibly an indication that larvae are fully competent to settle at this time. Planulae survived for eight weeks under laboratory conditions, and preliminary results indicate that these planulae are planktotrophic. The late onset of competency and larval longevity suggests a high dispersal potential. Understanding larval biology and behavior is of paramount importance for biophysical modeling of larval dispersal, which forms the basis for predictions of connectivity among populations.

  15. Effects of thermal stress and nitrate enrichment on the larval performance of two Caribbean reef corals

    Science.gov (United States)

    Serrano, Xaymara M.; Miller, Margaret W.; Hendee, James C.; Jensen, Brittany A.; Gapayao, Justine Z.; Pasparakis, Christina; Grosell, Martin; Baker, Andrew C.

    2018-03-01

    The effects of multiple stressors on the early life stages of reef-building corals are poorly understood. Elevated temperature is the main physiological driver of mass coral bleaching events, but increasing evidence suggests that other stressors, including elevated dissolved inorganic nitrogen (DIN), may exacerbate the negative effects of thermal stress. To test this hypothesis, we investigated the performance of larvae of Orbicella faveolata and Porites astreoides, two important Caribbean reef coral species with contrasting reproductive and algal transmission modes, under increased temperature and/or elevated DIN. We used a fluorescence-based microplate respirometer to measure the oxygen consumption of coral larvae from both species, and also assessed the effects of these stressors on P. astreoides larval settlement and mortality. Overall, we found that (1) larvae increased their respiration in response to different factors ( O. faveolata in response to elevated temperature and P. astreoides in response to elevated nitrate) and (2) P. astreoides larvae showed a significant increase in settlement as a result of elevated nitrate, but higher mortality under elevated temperature. This study shows how microplate respirometry can be successfully used to assess changes in respiration of coral larvae, and our findings suggest that the effects of thermal stress and nitrate enrichment in coral larvae may be species specific and are neither additive nor synergistic for O. faveolata or P. astreoides. These findings may have important consequences for the recruitment and community reassembly of corals to nutrient-polluted reefs that have been impacted by climate change.

  16. Toward an understanding of the molecular mechanisms of barnacle larval settlement: A comparative transcriptomic approach

    KAUST Repository

    Chen, Zhang-Fan

    2011-07-29

    Background: The barnacle Balanus amphitrite is a globally distributed biofouler and a model species in intertidal ecology and larval settlement studies. However, a lack of genomic information has hindered the comprehensive elucidation of the molecular mechanisms coordinating its larval settlement. The pyrosequencing-based transcriptomic approach is thought to be useful to identify key molecular changes during larval settlement. Methodology and Principal Findings: Using 454 pyrosequencing, we collected totally 630,845 reads including 215,308 from the larval stages and 415,537 from the adults; 23,451 contigs were generated while 77,785 remained as singletons. We annotated 31,720 of the 92,322 predicted open reading frames, which matched hits in the NCBI NR database, and identified 7,954 putative genes that were differentially expressed between the larval and adult stages. Of these, several genes were further characterized with quantitative real-time PCR and in situ hybridization, revealing some key findings: 1) vitellogenin was uniquely expressed in late nauplius stage, suggesting it may be an energy source for the subsequent non-feeding cyprid stage; 2) the locations of mannose receptors suggested they may be involved in the sensory system of cyprids; 3) 20 kDa-cement protein homologues were expressed in the cyprid cement gland and probably function during attachment; and 4) receptor tyrosine kinases were expressed higher in cyprid stage and may be involved in signal perception during larval settlement. Conclusions: Our results provide not only the basis of several new hypotheses about gene functions during larval settlement, but also the availability of this large transcriptome dataset in B. amphitrite for further exploration of larval settlement and developmental pathways in this important marine species. © 2011 Chen et al.

  17. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium.

    Directory of Open Access Journals (Sweden)

    Jan Tebben

    Full Text Available The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora. The metamorphic cue was identified as tetrabromopyrrole (TBP in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm(-2 in laboratory assays, which is on the order of 0.1-1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae.

  18. Induction of Larval Metamorphosis of the Coral Acropora millepora by Tetrabromopyrrole Isolated from a Pseudoalteromonas Bacterium

    Science.gov (United States)

    Tebben, Jan; Tapiolas, Dianne M.; Motti, Cherie A.; Abrego, David; Negri, Andrew P.; Blackall, Linda L.; Steinberg, Peter D.; Harder, Tilmann

    2011-01-01

    The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm−2 in laboratory assays, which is on the order of 0.1 –1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae. PMID:21559509

  19. Larval fish dispersal in a coral-reef seascape

    KAUST Repository

    Almany, Glenn R.

    2017-05-23

    Larval dispersal is a critical yet enigmatic process in the persistence and productivity of marine metapopulations. Empirical data on larval dispersal remain scarce, hindering the use of spatial management tools in efforts to sustain ocean biodiversity and fisheries. Here we document dispersal among subpopulations of clownfish (Amphiprion percula) and butterflyfish (Chaetodon vagabundus) from eight sites across a large seascape (10,000 km2) in Papua New Guinea across 2 years. Dispersal of clownfish was consistent between years, with mean observed dispersal distances of 15 km and 10 km in 2009 and 2011, respectively. A Laplacian statistical distribution (the dispersal kernel) predicted a mean dispersal distance of 13–19 km, with 90% of settlement occurring within 31–43 km. Mean dispersal distances were considerably greater (43–64 km) for butterflyfish, with kernels declining only gradually from spawning locations. We demonstrate that dispersal can be measured on spatial scales sufficient to inform the design of and test the performance of marine reserve networks.

  20. Larval fish dispersal in a coral-reef seascape

    KAUST Repository

    Almany, Glenn R.; Planes, Serge; Thorrold, Simon R.; Berumen, Michael L.; Bode, Michael; Saenz Agudelo, Pablo; Bonin, Mary C.; Frisch, Ashley J.; Harrison, Hugo B.; Messmer, Vanessa; Nanninga, Gerrit B.; Priest, Mark; Srinivasan, Maya; Sinclair-Taylor, Tane; Williamson, David H.; Jones, Geoffrey P.

    2017-01-01

    Larval dispersal is a critical yet enigmatic process in the persistence and productivity of marine metapopulations. Empirical data on larval dispersal remain scarce, hindering the use of spatial management tools in efforts to sustain ocean biodiversity and fisheries. Here we document dispersal among subpopulations of clownfish (Amphiprion percula) and butterflyfish (Chaetodon vagabundus) from eight sites across a large seascape (10,000 km2) in Papua New Guinea across 2 years. Dispersal of clownfish was consistent between years, with mean observed dispersal distances of 15 km and 10 km in 2009 and 2011, respectively. A Laplacian statistical distribution (the dispersal kernel) predicted a mean dispersal distance of 13–19 km, with 90% of settlement occurring within 31–43 km. Mean dispersal distances were considerably greater (43–64 km) for butterflyfish, with kernels declining only gradually from spawning locations. We demonstrate that dispersal can be measured on spatial scales sufficient to inform the design of and test the performance of marine reserve networks.

  1. Coral host transcriptomic states are correlated with Symbiodinium genotypes

    KAUST Repository

    DeSalvo, Michael K.; Sunagawa, Shinichi; Fisher, Paul L.; Voolstra, Christian R.; Iglesias Prieto, Roberto; Medina, Mó nica

    2010-01-01

    susceptibilities. In this study, we monitored Symbiodinium physiological parameters and profiled the coral host transcriptional responses in acclimated, thermally stressed, and recovered fragments of the coral Montastraea faveolata using a custom cDNA gene

  2. Tissue-specific transcriptome profiling of Plutella xylostella third instar larval midgut.

    Science.gov (United States)

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416 bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10(-5). Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis identified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense.As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current

  3. Tissue-Specific Transcriptome Profiling of Plutella Xylostella Third Instar Larval Midgut

    Science.gov (United States)

    Xie, Wen; Lei, Yanyuan; Fu, Wei; Yang, Zhongxia; Zhu, Xun; Guo, Zhaojiang; Wu, Qingjun; Wang, Shaoli; Xu, Baoyun; Zhou, Xuguo; Zhang, Youjun

    2012-01-01

    The larval midgut of diamondback moth, Plutella xylostella, is a dynamic tissue that interfaces with a diverse array of physiological and toxicological processes, including nutrient digestion and allocation, xenobiotic detoxification, innate and adaptive immune response, and pathogen defense. Despite its enormous agricultural importance, the genomic resources for P. xylostella are surprisingly scarce. In this study, a Bt resistant P. xylostella strain was subjected to the in-depth transcriptome analysis to identify genes and gene networks putatively involved in various physiological and toxicological processes in the P. xylostella larval midgut. Using Illumina deep sequencing, we obtained roughly 40 million reads containing approximately 3.6 gigabases of sequence data. De novo assembly generated 63,312 ESTs with an average read length of 416bp, and approximately half of the P. xylostella sequences (45.4%, 28,768) showed similarity to the non-redundant database in GenBank with a cut-off E-value below 10-5. Among them, 11,092 unigenes were assigned to one or multiple GO terms and 16,732 unigenes were assigned to 226 specific pathways. In-depth analysis indentified genes putatively involved in insecticide resistance, nutrient digestion, and innate immune defense. Besides conventional detoxification enzymes and insecticide targets, novel genes, including 28 chymotrypsins and 53 ABC transporters, have been uncovered in the P. xylostella larval midgut transcriptome; which are potentially linked to the Bt toxicity and resistance. Furthermore, an unexpectedly high number of ESTs, including 46 serpins and 7 lysozymes, were predicted to be involved in the immune defense. As the first tissue-specific transcriptome analysis of P. xylostella, this study sheds light on the molecular understanding of insecticide resistance, especially Bt resistance in an agriculturally important insect pest, and lays the foundation for future functional genomics research. In addition, current

  4. Novel transcriptome resources for three scleractinian coral species from the Indo-Pacific.

    Science.gov (United States)

    Kenkel, Carly D; Bay, Line K

    2017-09-01

    Transcriptomic resources for coral species can provide insight into coral evolutionary history and stress-response physiology. Goniopora columna, Galaxea astreata, and Galaxea acrhelia are scleractinian corals of the Indo-Pacific, representing a diversity of morphologies and life-history traits. G. columna and G. astreata are common and cosmopolitan, while G. acrhelia is largely restricted to the coral triangle and Great Barrier Reef. Reference transcriptomes for these species were assembled from replicate colony fragments exposed to elevated (31°C) and ambient (27°C) temperatures. Trinity was used to create de novo assemblies for each species from 92-102 million raw Illumina Hiseq 2 × 150 bp reads. Host-specific assemblies contained 65 460-72 405 contigs, representing 26 693-37 894 isogroups (∼genes) with an average N50 of 2254. Gene name and/or gene ontology annotations were possible for 58% of isogroups on average. Transcriptomes contained 93.1-94.3% of EuKaryotic Orthologous Groups comprising the core eukaryotic gene set, and 89.98-91.92% of the single-copy metazoan core gene set orthologs were complete, indicating fairly comprehensive assemblies. This work expands the complement of transcriptomic resources available for scleractinian coral species, including the first reference for a representative of Goniopora spp. as well as species with novel morphology. © The Authors 2017. Published by Oxford University Press.

  5. Transcriptomic responses to darkness stress point to common coral bleaching mechanisms

    Science.gov (United States)

    Desalvo, M. K.; Estrada, A.; Sunagawa, S.; Medina, Mónica

    2012-03-01

    Coral bleaching occurs in response to numerous abiotic stressors, the ecologically most relevant of which is hyperthermic stress due to increasing seawater temperatures. Bleaching events can span large geographic areas and are currently a salient threat to coral reefs worldwide. Much effort has been focused on understanding the molecular and cellular events underlying bleaching, and these studies have mainly utilized heat and light stress regimes. In an effort to determine whether different stressors share common bleaching mechanisms, we used complementary DNA (cDNA) microarrays for the corals Acropora palmata and Montastraea faveolata (containing >10,000 features) to measure differential gene expression during darkness stress. Our results reveal a striking transcriptomic response to darkness in A. palmata involving chaperone and antioxidant up-regulation, growth arrest, and metabolic modifications. As these responses were previously measured during thermal stress, our results suggest that different stressors may share common bleaching mechanisms. Furthermore, our results point to hypoxia and endoplasmic reticulum stress as critical cellular events involved in molecular bleaching mechanisms. On the other hand, we identified a meager transcriptomic response to darkness in M. faveolata where gene expression differences between host colonies and sampling locations were greater than differences between control and stressed fragments. This and previous coral microarray studies reveal the immense range of transcriptomic responses that are possible when studying two coral species that differ greatly in their ecophysiology, thus pointing to the importance of comparative approaches in forecasting how corals will respond to future environmental change.

  6. Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata

    KAUST Repository

    Portune, Kevin J.; Voolstra, Christian R.; Medina, Mó nica; Szmant, Alina M.

    2010-01-01

    that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28 °C) and further assessed the effects of two elevated temperatures (30 °C and 31.5 °C) on these expression patterns. Using cDNA

  7. Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis

    Science.gov (United States)

    Jiang, Lei; Sun, You-Fang; Zhang, Yu-Yang; Zhou, Guo-Wei; Li, Xiu-Bao; McCook, Laurence J.; Lian, Jian-Sheng; Lei, Xin-Ming; Liu, Sheng; Cai, Lin; Qian, Pei-Yuan; Huang, Hui

    2017-12-01

    Diurnal fluctuations in seawater temperature are ubiquitous on tropical reef flats. However, the effects of such dynamic temperature variations on the early stages of corals are poorly understood. In this study, we investigated the responses of larvae and new recruits of Pocillopora damicornis to two constant temperature treatments (29 and 31 °C) and two diurnally fluctuating treatments (28-31 and 30-33 °C with daily means of 29 and 31 °C, respectively) simulating the 3 °C diel oscillations at 3 m depth on the Luhuitou fringing reef (Sanya, China). Results showed that the thermal stress on settlement at 31 °C was almost negated by the fluctuating treatment. Further, neither elevated temperature nor temperature fluctuations caused bleaching responses in recruits, while the maximum excitation pressure over photosystem II (PSII) was reduced under fluctuating temperatures. Although early growth and development were highly stimulated at 31 °C, oscillations of 3 °C had little effects on budding and lateral growth at either mean temperature. Nevertheless, daytime encounters with the maximum temperature of 33 °C in fluctuating 31 °C elicited a notable reduction in calcification compared to constant 31 °C. These results underscore the complexity of the effects caused by diel temperature fluctuations on early stages of corals and suggest that ecologically relevant temperature variability could buffer warming stress on larval settlement and dampen the positive effects of increased temperatures on coral growth.

  8. Pyrosequencing the Manduca sexta larval midgut transcriptome: messages for digestion, detoxification and defence.

    Science.gov (United States)

    Pauchet, Y; Wilkinson, P; Vogel, H; Nelson, D R; Reynolds, S E; Heckel, D G; ffrench-Constant, R H

    2010-02-01

    The tobacco hornworm Manduca sexta is an important model for insect physiology but genomic and transcriptomic data are currently lacking. Following a recent pyrosequencing study generating immune related expressed sequence tags (ESTs), here we use this new technology to define the M. sexta larval midgut transcriptome. We generated over 387,000 midgut ESTs, using a combination of Sanger and 454 sequencing, and classified predicted proteins into those involved in digestion, detoxification and immunity. In many cases the depth of 454 pyrosequencing coverage allowed us to define the entire cDNA sequence of a particular gene. Many new M. sexta genes are described including up to 36 new cytochrome P450s, some of which have been implicated in the metabolism of host plant-derived nicotine. New lepidopteran gene families such as the beta-fructofuranosidases, previously thought to be restricted to Bombyx mori, are also described. An unexpectedly high number of ESTs were involved in immunity, for example 39 contigs encoding serpins, and the increasingly appreciated role of the midgut in insect immunity is discussed. Similar studies of other tissues will allow for a tissue by tissue description of the M. sexta transcriptome and will form an essential complimentary step on the road to genome sequencing and annotation.

  9. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    OpenAIRE

    Yum, L. K.; Baumgarten, S.; Röthig, T.; Roder, C.; Roik, Anna; Michell, C.; Voolstra, C. R.

    2017-01-01

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20??C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studie...

  10. Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmata and A. cervicornis

    Science.gov (United States)

    Ritson-Williams, R.; Paul, Valerie J.; Arnold, S. N.; Steneck, R. S.

    2010-03-01

    The settlement specificity of two threatened Caribbean corals, Acropora palmata and A. cervicornis, was tested by measuring their rates of larval metamorphosis in response to crustose coralline algae (CCA) and other substrata. In the no-choice experiments, the coral larvae were placed in six treatments: filtered seawater (FSW), a fragment of biofilmed dead skeleton of A. palmata, or a fragment of one of four species of CCA ( Hydrolithon boergesenii, Porolithon pachydermum, Paragoniolithon solubile, and Titanoderma prototypum). Within each CCA treatment, there were three different substrata on which to settle and metamorphose: (1) the CCA surface, (2) the rock under the CCA, or (3) the plastic dish. The 5-day-old larvae of both A. palmata and A. cervicornis had similar rates of total metamorphosis (all substrata combined) in every treatment (excluding FSW) even in the absence of CCA. However, there were differences in larval behavior among the CCA species since the larvae settled and metamorphosed on different substrata in the presence of different CCA species. In the no-choice experiments the larvae of both corals had higher rates of metamorphosis on the top surfaces of H. boergesenii and/or T. prototypum than on P. pachydermum. In the choice experiments, the coral larvae were offered two species of CCA in the same dish. When given a choice, both species of coral larvae had more settlement and metamorphosis on the surface of H. boergesenii or T. prototypum or clean rock than onto the surface of P. solubile. After 6 weeks in the field, transplanted A. palmata recruits had approximately 15% survival on both T. prototypum and H. boergesenii, but A. cervicornis recruits only survived on T. prototypum (13%). Some, but not all, CCA species facilitated the larval settlement and post-settlement survival of these two threatened corals, highlighting the importance of benthic community composition for successful coral recruitment.

  11. Transcriptome analysis of the scleractinian coral Stylophora pistillata.

    Directory of Open Access Journals (Sweden)

    Sarit Karako-Lampert

    Full Text Available The principal architects of coral reefs are the scleractinian corals; these species are divided in two major clades referred to as "robust" and "complex" corals. Although the molecular diversity of the "complex" clade has received considerable attention, with several expressed sequence tag (EST libraries and a complete genome sequence having been constructed, the "robust" corals have received far less attention, despite the fact that robust corals have been prominent focal points for ecological and physiological studies. Filling this gap affords important opportunities to extend these studies and to improve our understanding of the differences between the two major clades. Here, we present an EST library from Stylophora pistillata (Esper 1797 and systematically analyze the assembled transcripts compared to putative homologs from the complete proteomes of six well-characterized metazoans: Nematostella vectensis, Hydra magnipapillata, Caenorhabditis elegans, Drosophila melanogaster, Strongylocentrotus purpuratus, Ciona intestinalis and Homo sapiens. Furthermore, comparative analyses of the Stylophora pistillata ESTs were performed against several Cnidaria from the Scleractinia, Actiniaria and Hydrozoa, as well as against other stony corals separately. Functional characterization of S. pistillata transcripts into KOG/COG categories and further description of Wnt and bone morphogenetic protein (BMP signaling pathways showed that the assembled EST library provides sufficient data and coverage. These features of this new library suggest considerable opportunities for extending our understanding of the molecular and physiological behavior of "robust" corals.

  12. Larval Behaviours and Their Contribution to the Distribution of the Intertidal Coral Reef Sponge Carteriospongia foliascens

    Science.gov (United States)

    Abdul Wahab, Muhammad Azmi; de Nys, Rocky; Webster, Nicole; Whalan, Steve

    2014-01-01

    Sponges (Phylum Porifera) are an evolutionary and ecologically significant group; however information on processes influencing sponge population distributions is surprisingly limited. Carteriospongia foliascens is a common Indo-Pacific sponge, which has been reported from the intertidal to the mesophotic. Interestingly, the distribution of C. foliascens at inshore reefs of the Great Barrier Reef is restricted to the intertidal with no individuals evident in adjacent subtidal habitats. The abundance of C. foliascens and substrate availability was first quantified to investigate the influence of substrate limitation on adult distribution. Pre-settlement processes of larval spawning, swimming speeds, phototaxis, vertical migration, and settlement to intertidal and subtidal substrate cues were also quantified. Notably, suitable settlement substrate (coral rubble) was not limiting in subtidal habitats. C. foliascens released up to 765 brooded larvae sponge−1 day−1 during the day, with larvae (80%±5.77) being negatively phototactic and migrating to the bottom within 40 minutes from release. Subsequently, larvae (up to 58.67%±2.91) migrated to the surface after the loss of the daylight cue (nightfall), and after 34 h post-release >98.67% (±0.67) of larvae had adopted a benthic habit regardless of light conditions. Intertidal and subtidal biofilms initiated similar settlement responses, inducing faster (as early 6 h post-release) and more successful metamorphosis (>60%) than unconditioned surfaces. C. foliascens has a high larval supply and larval behaviours that support recruitment to the subtidal. The absence of C. foliascens in subtidal habitats at inshore reefs is therefore proposed to be a potential consequence of post-settlement mortalities. PMID:24853091

  13. Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis

    Directory of Open Access Journals (Sweden)

    L. Jiang

    2017-12-01

    Full Text Available Diurnal fluctuations in seawater temperature are ubiquitous on tropical reef flats. However, the effects of such dynamic temperature variations on the early stages of corals are poorly understood. In this study, we investigated the responses of larvae and new recruits of Pocillopora damicornis to two constant temperature treatments (29 and 31 °C and two diurnally fluctuating treatments (28–31 and 30–33 °C with daily means of 29 and 31 °C, respectively simulating the 3 °C diel oscillations at 3 m depth on the Luhuitou fringing reef (Sanya, China. Results showed that the thermal stress on settlement at 31 °C was almost negated by the fluctuating treatment. Further, neither elevated temperature nor temperature fluctuations caused bleaching responses in recruits, while the maximum excitation pressure over photosystem II (PSII was reduced under fluctuating temperatures. Although early growth and development were highly stimulated at 31 °C, oscillations of 3 °C had little effects on budding and lateral growth at either mean temperature. Nevertheless, daytime encounters with the maximum temperature of 33 °C in fluctuating 31 °C elicited a notable reduction in calcification compared to constant 31 °C. These results underscore the complexity of the effects caused by diel temperature fluctuations on early stages of corals and suggest that ecologically relevant temperature variability could buffer warming stress on larval settlement and dampen the positive effects of increased temperatures on coral growth.

  14. Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata

    KAUST Repository

    DeSalvo, MK

    2010-03-08

    The emergence of genomic tools for reef-building corals and symbiotic anemones comes at a time when alarming losses in coral cover are being observed worldwide. These tools hold great promise in elucidating novel and unforeseen cellular processes underlying the successful mutualism between corals and their dinoflagellate endosymbionts Symbiodinium spp. Since thermal stress triggers a breakdown in the symbiosis (coral bleaching), measuring the transcriptomic response to thermal stress-induced bleaching offers an extraordinary view of cellular processes that are specific to coral–algal symbioses. In the present study, we utilized a cDNA microarray containing 2059 genes of the threatened Caribbean elkhorn coral Acropora palmata to identify genes that are differentially expressed upon thermal stress. Fragments from replicate colonies were exposed to elevated temperature for 2 d, and samples were frozen for microarray analysis after 24 and 48 h. Totals of 204 and 104 genes were differentially expressed in samples that were collected 1 and 2 d after thermal stress, respectively. Analysis of the differentially expressed genes indicates a cellular stress response in A. palmata involving (1) growth arrest, (2) chaperone activity, (3) nucleic acid stabilization and repair, and (4) removal of damaged macromolecules. Other differentially expressed processes include sensory perception, metabolite transfer between host and endosymbiont, nitric oxide signaling, and modifications to the actin cytoskeleton and extracellular matrix. The results are compared with those from a previous coral microarray study of thermal stress in Montastraea faveolata, and point to an overall evolutionary conserved bleaching response in scleractinian corals.

  15. Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata

    KAUST Repository

    DeSalvo, MK; Sunagawa, S; Voolstra, Christian R.; Medina, M

    2010-01-01

    The emergence of genomic tools for reef-building corals and symbiotic anemones comes at a time when alarming losses in coral cover are being observed worldwide. These tools hold great promise in elucidating novel and unforeseen cellular processes underlying the successful mutualism between corals and their dinoflagellate endosymbionts Symbiodinium spp. Since thermal stress triggers a breakdown in the symbiosis (coral bleaching), measuring the transcriptomic response to thermal stress-induced bleaching offers an extraordinary view of cellular processes that are specific to coral–algal symbioses. In the present study, we utilized a cDNA microarray containing 2059 genes of the threatened Caribbean elkhorn coral Acropora palmata to identify genes that are differentially expressed upon thermal stress. Fragments from replicate colonies were exposed to elevated temperature for 2 d, and samples were frozen for microarray analysis after 24 and 48 h. Totals of 204 and 104 genes were differentially expressed in samples that were collected 1 and 2 d after thermal stress, respectively. Analysis of the differentially expressed genes indicates a cellular stress response in A. palmata involving (1) growth arrest, (2) chaperone activity, (3) nucleic acid stabilization and repair, and (4) removal of damaged macromolecules. Other differentially expressed processes include sensory perception, metabolite transfer between host and endosymbiont, nitric oxide signaling, and modifications to the actin cytoskeleton and extracellular matrix. The results are compared with those from a previous coral microarray study of thermal stress in Montastraea faveolata, and point to an overall evolutionary conserved bleaching response in scleractinian corals.

  16. A snapshot of a coral "holobiont": a transcriptome assembly of the scleractinian coral, porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae.

    Science.gov (United States)

    Shinzato, Chuya; Inoue, Mayuri; Kusakabe, Makoto

    2014-01-01

    Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire "coral holobiont". We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral symbioses

  17. A snapshot of a coral "holobiont": a transcriptome assembly of the scleractinian coral, porites, captures a wide variety of genes from both the host and symbiotic zooxanthellae.

    Directory of Open Access Journals (Sweden)

    Chuya Shinzato

    Full Text Available Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire "coral holobiont". We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp. We successfully distinguished contigs originating from the host (Porites and the symbiont (Symbiodinium by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of

  18. Transcriptomic variation in a coral reveals pathways of clonal organisation

    DEFF Research Database (Denmark)

    K Bay, Line; Nielsen, Henrik Bjørn; Jarmer, Hanne Østergaard

    2009-01-01

    A microarray study was undertaken to examine the potential for clonal gene expression variation in a branching reef building coral, Acropora millepora. The role of small-scale gradients in light and water flow was examined by comparing gene expression levels between branch elevation (tip and base......) and position (centre and edge) of replicate coral colonies (n=3). Analyses of variance revealed that almost 60% of variation in gene expression was present between colonies and 34 genes were considered differentially expressed between colonies (minimum P=6.5 x 10(-4)). These genes are associated with energy...... of corymbose-like branching coral colonies such as A. millepora. Four genes were differentially expressed between the tip and base of branches (P=3.239 x 10(-4)) and were associated with lysosome lipase activity and fluorescence, suggesting that branch tips may encounter higher pathogen loads or levels...

  19. Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete pseudopolydora vexillosa

    KAUST Repository

    Chandramouli, Kondethimmanahalli; Sun, Jin; Mok, FloraSy; Liu, Lingli; Qiu, Jianwen; Ravasi, Timothy; Qian, Peiyuan

    2013-01-01

    Larval growth of the polychaete worm Pseudopolydora vexillosa involves the formation of segment-specific structures. When larvae attain competency to settle, they discard swimming chaetae and secrete mucus. The larvae build tubes around themselves and metamorphose into benthic juveniles. Understanding the molecular processes, which regulate this complex and unique transition, remains a major challenge because of the limited molecular information available. To improve this situation, we conducted high-throughput RNA sequencing and quantitative proteome analysis of the larval stages of P. vexillosa. Based on gene ontology (GO) analysis, transcripts related to cellular and metabolic processes, binding, and catalytic activities were highly represented during larval-adult transition. Mitogen-activated protein kinase (MAPK), calcium-signaling, Wnt/β-catenin, and notch signaling metabolic pathways were enriched in transcriptome data. Quantitative proteomics identified 107 differentially expressed proteins in three distinct larval stages. Fourteen and 53 proteins exhibited specific differential expression during competency and metamorphosis, respectively. Dramatic up-regulation of proteins involved in signaling, metabolism, and cytoskeleton functions were found during the larval-juvenile transition. Several proteins involved in cell signaling, cytoskeleton and metabolism were up-regulated, whereas proteins related to transcription and oxidative phosphorylation were down-regulated during competency. The integration of high-throughput RNA sequencing and quantitative proteomics allowed a global scale analysis of larval transcripts/proteins associated molecular processes in the metamorphosis of polychaete worms. Further, transcriptomic and proteomic insights provide a new direction to understand the fundamental mechanisms that regulate larval metamorphosis in polychaetes. © 2013 American Chemical Society.

  20. Transcriptome and quantitative proteome analysis reveals molecular processes associated with larval metamorphosis in the polychaete pseudopolydora vexillosa

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2013-03-01

    Larval growth of the polychaete worm Pseudopolydora vexillosa involves the formation of segment-specific structures. When larvae attain competency to settle, they discard swimming chaetae and secrete mucus. The larvae build tubes around themselves and metamorphose into benthic juveniles. Understanding the molecular processes, which regulate this complex and unique transition, remains a major challenge because of the limited molecular information available. To improve this situation, we conducted high-throughput RNA sequencing and quantitative proteome analysis of the larval stages of P. vexillosa. Based on gene ontology (GO) analysis, transcripts related to cellular and metabolic processes, binding, and catalytic activities were highly represented during larval-adult transition. Mitogen-activated protein kinase (MAPK), calcium-signaling, Wnt/β-catenin, and notch signaling metabolic pathways were enriched in transcriptome data. Quantitative proteomics identified 107 differentially expressed proteins in three distinct larval stages. Fourteen and 53 proteins exhibited specific differential expression during competency and metamorphosis, respectively. Dramatic up-regulation of proteins involved in signaling, metabolism, and cytoskeleton functions were found during the larval-juvenile transition. Several proteins involved in cell signaling, cytoskeleton and metabolism were up-regulated, whereas proteins related to transcription and oxidative phosphorylation were down-regulated during competency. The integration of high-throughput RNA sequencing and quantitative proteomics allowed a global scale analysis of larval transcripts/proteins associated molecular processes in the metamorphosis of polychaete worms. Further, transcriptomic and proteomic insights provide a new direction to understand the fundamental mechanisms that regulate larval metamorphosis in polychaetes. © 2013 American Chemical Society.

  1. Gene Expression Patterns during the Early Stages of Chemically Induced Larval Metamorphosis and Settlement of the Coral Acropora millepora

    Science.gov (United States)

    Siboni, Nachshon; Abrego, David; Motti, Cherie A.; Tebben, Jan; Harder, Tilmann

    2014-01-01

    The morphogenetic transition of motile coral larvae into sessile primary polyps is triggered and genetically programmed upon exposure to environmental biomaterials, such as crustose coralline algae (CCA) and bacterial biofilms. Although the specific chemical cues that trigger coral larval morphogenesis are poorly understood there is much more information available on the genes that play a role in this early life phase. Putative chemical cues from natural biomaterials yielded defined chemical samples that triggered different morphogenetic outcomes: an extract derived from a CCA-associated Pseudoalteromonas bacterium that induced metamorphosis, characterized by non-attached metamorphosed juveniles; and two fractions of the CCA Hydrolithon onkodes (Heydrich) that induced settlement, characterized by attached metamorphosed juveniles. In an effort to distinguish the genes involved in these two morphogenetic transitions, competent larvae of the coral Acropora millepora were exposed to these predictable cues and the expression profiles of 47 coral genes of interest (GOI) were investigated after only 1 hour of exposure using multiplex RT–qPCR. Thirty-two GOI were differentially expressed, indicating a putative role during the early regulation of morphogenesis. The most striking differences were observed for immunity-related genes, hypothesized to be involved in cell recognition and adhesion, and for fluorescent protein genes. Principal component analysis of gene expression profiles resulted in separation between the different morphogenetic cues and exposure times, and not only identified those genes involved in the early response but also those which influenced downstream biological changes leading to larval metamorphosis or settlement. PMID:24632854

  2. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci.

    Directory of Open Access Journals (Sweden)

    Ciemon Frank Caballes

    Full Text Available Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides versus non-preferred coral prey (Porites rus and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure and quantity (coral abundance varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species.

  3. The Role of Maternal Nutrition on Oocyte Size and Quality, with Respect to Early Larval Development in The Coral-Eating Starfish, Acanthaster planci.

    Science.gov (United States)

    Caballes, Ciemon Frank; Pratchett, Morgan S; Kerr, Alexander M; Rivera-Posada, Jairo A

    2016-01-01

    Variation in local environmental conditions can have pronounced effects on the population structure and dynamics of marine organisms. Previous studies on crown-of-thorns starfish, Acanthaster planci, have primarily focused on effects of water quality and nutrient availability on larval growth and survival, while the role of maternal nutrition on reproduction and larval development has been overlooked. To examine the effects of maternal nutrition on oocyte size and early larval development in A. planci, we pre-conditioned females for 60 days on alternative diets of preferred coral prey (Acropora abrotanoides) versus non-preferred coral prey (Porites rus) and compared resulting gametes and progeny to those produced by females that were starved over the same period. Females fed ad libitum with Acropora increased in weight, produced heavier gonads and produced larger oocytes compared to Porites-fed and starved females. Fed starfish (regardless of whether it was Acropora or Porites) produced bigger larvae with larger stomachs and had a higher frequency of normal larvae that reached the late bipinnaria / early brachiolaria stage compared to starved starfish. Females on Acropora diet also produced a higher proportion of larvae that progressed to more advanced stages faster compared to Porites-fed starfish, which progressed faster than starved starfish. These results suggest that maternal provisioning can have important consequences for the quality and quantity of progeny. Because food quality (coral community structure) and quantity (coral abundance) varies widely among reef locations and habitats, local variation in maternal nutrition of A. planci is likely to moderate reproductive success and may explain temporal and spatial fluctuations in abundance of this species.

  4. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    KAUST Repository

    Williamson, David H.

    2016-11-15

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  5. Large-scale, multidirectional larval connectivity among coral reef fish populations in the Great Barrier Reef Marine Park

    KAUST Repository

    Williamson, David H.; Harrison, Hugo B.; Almany, Glenn R.; Berumen, Michael L.; Bode, Michael; Bonin, Mary C.; Choukroun, Severine; Doherty, Peter J.; Frisch, Ashley J.; Saenz-Agudelo, Pablo; Jones, Geoffrey P.

    2016-01-01

    Larval dispersal is the key process by which populations of most marine fishes and invertebrates are connected and replenished. Advances in larval tagging and genetics have enhanced our capacity to track larval dispersal, assess scales of population connectivity, and quantify larval exchange among no-take marine reserves and fished areas. Recent studies have found that reserves can be a significant source of recruits for populations up to 40 km away, but the scale and direction of larval connectivity across larger seascapes remain unknown. Here, we apply genetic parentage analysis to investigate larval dispersal patterns for two exploited coral reef groupers (Plectropomus maculatus and Plectropomus leopardus) within and among three clusters of reefs separated by 60–220 km within the Great Barrier Reef Marine Park, Australia. A total of 69 juvenile P. maculatus and 17 juvenile P. leopardus (representing 6% and 9% of the total juveniles sampled, respectively) were genetically assigned to parent individuals on reefs within the study area. We identified both short-distance larval dispersal within regions (200 m to 50 km) and long-distance, multidirectional dispersal of up to ~250 km among regions. Dispersal strength declined significantly with distance, with best-fit dispersal kernels estimating median dispersal distances of ~110 km for P. maculatus and ~190 km for P. leopardus. Larval exchange among reefs demonstrates that established reserves form a highly connected network and contribute larvae for the replenishment of fished reefs at multiple spatial scales. Our findings highlight the potential for long-distance dispersal in an important group of reef fishes, and provide further evidence that effectively protected reserves can yield recruitment and sustainability benefits for exploited fish populations.

  6. Coral-zooxanthellae meta-transcriptomics reveals integrated response to pollutant stress.

    Science.gov (United States)

    Gust, Kurt A; Najar, Fares Z; Habib, Tanwir; Lotufo, Guilherme R; Piggot, Alan M; Fouke, Bruce W; Laird, Jennifer G; Wilbanks, Mitchell S; Rawat, Arun; Indest, Karl J; Roe, Bruce A; Perkins, Edward J

    2014-07-12

    Corals represent symbiotic meta-organisms that require harmonization among the coral animal, photosynthetic zooxanthellae and associated microbes to survive environmental stresses. We investigated integrated-responses among coral and zooxanthellae in the scleractinian coral Acropora formosa in response to an emerging marine pollutant, the munitions constituent, 1,3,5-trinitro-1,3,5 triazine (RDX; 5 day exposures to 0 (control), 0.5, 0.9, 1.8, 3.7, and 7.2 mg/L, measured in seawater). RDX accumulated readily in coral soft tissues with bioconcentration factors ranging from 1.1 to 1.5. Next-generation sequencing of a normalized meta-transcriptomic library developed for the eukaryotic components of the A. formosa coral holobiont was leveraged to conduct microarray-based global transcript expression analysis of integrated coral/zooxanthellae responses to the RDX exposure. Total differentially expressed transcripts (DET) increased with increasing RDX exposure concentrations as did the proportion of zooxanthellae DET relative to the coral animal. Transcriptional responses in the coral demonstrated higher sensitivity to RDX compared to zooxanthellae where increased expression of gene transcripts coding xenobiotic detoxification mechanisms (i.e. cytochrome P450 and UDP glucuronosyltransferase 2 family) were initiated at the lowest exposure concentration. Increased expression of these detoxification mechanisms was sustained at higher RDX concentrations as well as production of a physical barrier to exposure through a 40% increase in mucocyte density at the maximum RDX exposure. At and above the 1.8 mg/L exposure concentration, DET coding for genes involved in central energy metabolism, including photosynthesis, glycolysis and electron-transport functions, were decreased in zooxanthellae although preliminary data indicated that zooxanthellae densities were not affected. In contrast, significantly increased transcript expression for genes involved in cellular energy production

  7. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    KAUST Repository

    Yum, Lauren

    2017-07-19

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  8. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals.

    Science.gov (United States)

    Yum, Lauren K; Baumgarten, Sebastian; Röthig, Till; Roder, Cornelia; Roik, Anna; Michell, Craig; Voolstra, Christian R

    2017-07-25

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  9. Transcriptomes and expression profiling of deep-sea corals from the Red Sea provide insight into the biology of azooxanthellate corals

    KAUST Repository

    Yum, Lauren; Baumgarten, Sebastian; Rö thig, Till; Roder, Cornelia; Roik, Anna Krystyna; Michell, Craig; Voolstra, Christian R.

    2017-01-01

    Despite the importance of deep-sea corals, our current understanding of their ecology and evolution is limited due to difficulties in sampling and studying deep-sea environments. Moreover, a recent re-evaluation of habitat limitations has been suggested after characterization of deep-sea corals in the Red Sea, where they live at temperatures of above 20 °C at low oxygen concentrations. To gain further insight into the biology of deep-sea corals, we produced reference transcriptomes and studied gene expression of three deep-sea coral species from the Red Sea, i.e. Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus typus. Our analyses suggest that deep-sea coral employ mitochondrial hypometabolism and anaerobic glycolysis to manage low oxygen conditions present in the Red Sea. Notably, we found expression of genes related to surface cilia motion that presumably enhance small particle transport rates in the oligotrophic deep-sea environment. This is the first study to characterize transcriptomes and in situ gene expression for deep-sea corals. Our work offers several mechanisms by which deep-sea corals might cope with the distinct environmental conditions present in the Red Sea As such, our data provide direction for future research and further insight to organismal response of deep-sea coral to environmental change and ocean warming.

  10. A Study of the Pelagic Larval Duration of Acropora humilis, Coral Recruitment and Connectivity in the Saudi Arabian Red Sea

    KAUST Repository

    Khalil, Maha

    2011-12-12

    Combined knowledge of the pelagic larval duration of coral species and coral recruitment patterns can provide evidence of inter-reef connectivity and indicate a reef’s ability to recover. We attempted to determine the maximum pelagic larval duration of Acropora humilis. Larvae were reared in a controlled environment unfavorable for settlement. The larvae lived in a pelagic state for a maximum of 29 days, although this is probably an underestimate of actual longevity for this species. Given the information available from the literature with respect to larval dispersal rates, it is not expected that larvae with this longevity will disperse further than 10-20 km from their natal reef, if at all. A long-term recruitment monitoring project was also set up on Abu Shosha Reef, which suffered nearly complete coral loss due to a bleaching event in summer of 2010. In April 2011, 60 settlement plates were placed on the reef. In July, a total of 102 living scleractinian recruits were counted on the plates. While pocilloporids were the most dominant recruits on the reef (57.8%), about 20.6% of living recruits belonged to Acroporidae, a family whose live cover on the reef is extremely low (0.67%). However, the overall mean density of recruits was very low (1.7 living recruits/100cm2) compared to similar studies around the world despite the spawning season having just ended. Fish surveys showed herbivore biomass to be very low compared to other reef systems in the world, but densities were significantly higher than another reef in the Red Sea with about 10 times more live coral cover. Recovery from bleaching for Abu Shosha and similar reefs in the region may be very slow relative to rates observed in other parts of the world if recruitment rates and herbivore communities remain low.

  11. Limited Capacity for Faster Digestion in Larval Coral Reef Fish at an Elevated Temperature.

    Science.gov (United States)

    McLeod, Ian M; Clark, Timothy D

    2016-01-01

    The prevalence of extreme, short-term temperature spikes in coastal regions during summer months is predicted to increase with ongoing climate change. In tropical systems, these changes are predicted to increase the metabolic demand of coral reef fish larvae while also altering the plankton communities upon which the larvae feed during their pelagic phase. The consequences of these predictions remain speculative in the absence of empirical data on the interactive effects of warm temperatures on the metabolism, postprandial processes and growth responses of coral reef fish larvae. Here, we tested the effect of increased temperature on the metabolism, postprandial performance and fine-scale growth patterns of a coral reef fish (Amphiprion percula) in the latter half of its ~11-d larval phase. First, we measured the length and weight of fed versus fasted larvae (N = 340; mean body mass 4.1±0.05 mg) across fine temporal scales at a typical current summer temperature (28.5°C) and a temperature that is likely be encountered during warm summer periods later this century (31.5°C). Second, we measured routine metabolic rate (Mo2 routine) and the energetics of the postprandial processes (i.e., digestion, absorption and assimilation of a meal; termed specific dynamic action (SDA)) at both temperatures. Larvae fed voraciously when provided with food for a 12-hour period and displayed a temperature-independent increase in mass of 40.1% (28.5°C) and 42.6% (31.5°C), which was largely associated with the mass of prey in the gut. A subsequent 12-h fasting period revealed that the larvae had grown 21.2±4.8% (28.5°C) and 22.8±8.8% (31.5°C) in mass and 10.3±2.0% (28.5°C) and 7.8±2.6% (31.5°C) in length compared with pre-feeding values (no significant temperature effect). Mo2 routine was 55±16% higher at 31.5°C and peak Mo2 during the postprandial period was 28±11% higher at 31.5°C, yet elevated temperature had no significant effect on SDA (0.51±0.06 J at 28.5°C vs

  12. Limited Capacity for Faster Digestion in Larval Coral Reef Fish at an Elevated Temperature.

    Directory of Open Access Journals (Sweden)

    Ian M McLeod

    Full Text Available The prevalence of extreme, short-term temperature spikes in coastal regions during summer months is predicted to increase with ongoing climate change. In tropical systems, these changes are predicted to increase the metabolic demand of coral reef fish larvae while also altering the plankton communities upon which the larvae feed during their pelagic phase. The consequences of these predictions remain speculative in the absence of empirical data on the interactive effects of warm temperatures on the metabolism, postprandial processes and growth responses of coral reef fish larvae. Here, we tested the effect of increased temperature on the metabolism, postprandial performance and fine-scale growth patterns of a coral reef fish (Amphiprion percula in the latter half of its ~11-d larval phase. First, we measured the length and weight of fed versus fasted larvae (N = 340; mean body mass 4.1±0.05 mg across fine temporal scales at a typical current summer temperature (28.5°C and a temperature that is likely be encountered during warm summer periods later this century (31.5°C. Second, we measured routine metabolic rate (Mo2 routine and the energetics of the postprandial processes (i.e., digestion, absorption and assimilation of a meal; termed specific dynamic action (SDA at both temperatures. Larvae fed voraciously when provided with food for a 12-hour period and displayed a temperature-independent increase in mass of 40.1% (28.5°C and 42.6% (31.5°C, which was largely associated with the mass of prey in the gut. A subsequent 12-h fasting period revealed that the larvae had grown 21.2±4.8% (28.5°C and 22.8±8.8% (31.5°C in mass and 10.3±2.0% (28.5°C and 7.8±2.6% (31.5°C in length compared with pre-feeding values (no significant temperature effect. Mo2 routine was 55±16% higher at 31.5°C and peak Mo2 during the postprandial period was 28±11% higher at 31.5°C, yet elevated temperature had no significant effect on SDA (0.51±0.06 J at 28.5

  13. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    KAUST Repository

    Yan, Xing-Cheng

    2012-10-02

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  14. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    KAUST Repository

    Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S S; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  15. Transcriptomic Analysis of Neuropeptides and Peptide Hormones in the Barnacle Balanus amphitrite: Evidence of Roles in Larval Settlement

    Science.gov (United States)

    Yan, Xing-Cheng; Chen, Zhang-Fan; Sun, Jin; Matsumura, Kiyotaka; Wu, Rudolf S. S.; Qian, Pei-Yuan

    2012-01-01

    The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall

  16. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement.

    Directory of Open Access Journals (Sweden)

    Xing-Cheng Yan

    Full Text Available The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in

  17. Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata

    KAUST Repository

    Closek, Collin J.

    2014-06-20

    Coral diseases impact reefs globally. Although we continue to describe diseases, little is known about the etiology or progression of even the most common cases. To examine a spectrum of coral health and determine factors of disease progression we examined Orbicella faveolata exhibiting signs of Yellow Band Disease (YBD), a widespread condition in the Caribbean. We used a novel combined approach to assess three members of the coral holobiont: the coral-host, associated Symbiodinium algae, and bacteria. We profiled three conditions: (1) healthy-appearing colonies (HH), (2) healthy-appearing tissue on diseased colonies (HD), and (3) diseased lesion (DD). Restriction fragment length polymorphism analysis revealed health state-specific diversity in Symbiodinium clade associations. 16S ribosomal RNA gene microarrays (PhyloChips) and O. faveolata complimentary DNA microarrays revealed the bacterial community structure and host transcriptional response, respectively. A distinct bacterial community structure marked each health state. Diseased samples were associated with two to three times more bacterial diversity. HD samples had the highest bacterial richness, which included components associated with HH and DD, as well as additional unique families. The host transcriptome under YBD revealed a reduced cellular expression of defense- and metabolism-related processes, while the neighboring HD condition exhibited an intermediate expression profile. Although HD tissue appeared visibly healthy, the microbial communities and gene expression profiles were distinct. HD should be regarded as an additional (intermediate) state of disease, which is important for understanding the progression of YBD. © 2014 International Society for Microbial Ecology. All rights reserved.

  18. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral.

    Science.gov (United States)

    Pinzón, Jorge H; Kamel, Bishoy; Burge, Colleen A; Harvell, C Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D

    2015-04-01

    Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs.

  19. Whole transcriptome analysis reveals changes in expression of immune-related genes during and after bleaching in a reef-building coral

    Science.gov (United States)

    Pinzón, Jorge H.; Kamel, Bishoy; Burge, Colleen A.; Harvell, C. Drew; Medina, Mónica; Weil, Ernesto; Mydlarz, Laura D.

    2015-01-01

    Climate change is negatively affecting the stability of natural ecosystems, especially coral reefs. The dissociation of the symbiosis between reef-building corals and their algal symbiont, or coral bleaching, has been linked to increased sea surface temperatures. Coral bleaching has significant impacts on corals, including an increase in disease outbreaks that can permanently change the entire reef ecosystem. Yet, little is known about the impacts of coral bleaching on the coral immune system. In this study, whole transcriptome analysis of the coral holobiont and each of the associate components (i.e. coral host, algal symbiont and other associated microorganisms) was used to determine changes in gene expression in corals affected by a natural bleaching event as well as during the recovery phase. The main findings include evidence that the coral holobiont and the coral host have different responses to bleaching, and the host immune system appears suppressed even a year after a bleaching event. These results support the hypothesis that coral bleaching changes the expression of innate immune genes of corals, and these effects can last even after recovery of symbiont populations. Research on the role of immunity on coral's resistance to stressors can help make informed predictions on the future of corals and coral reefs. PMID:26064625

  20. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals.

    KAUST Repository

    Bayer, Till

    2012-04-18

    Dinoflagellates are unicellular algae that are ubiquitously abundant in aquatic environments. Species of the genus Symbiodinium form symbiotic relationships with reef-building corals and other marine invertebrates. Despite their ecologic importance, little is known about the genetics of dinoflagellates in general and Symbiodinium in particular. Here, we used 454 sequencing to generate transcriptome data from two Symbiodinium species from different clades (clade A and clade B). With more than 56,000 assembled sequences per species, these data represent the largest transcriptomic resource for dinoflagellates to date. Our results corroborate previous observations that dinoflagellates possess the complete nucleosome machinery. We found a complete set of core histones as well as several H3 variants and H2A.Z in one species. Furthermore, transcriptome analysis points toward a low number of transcription factors in Symbiodinium spp. that also differ in the distribution of DNA-binding domains relative to other eukaryotes. In particular the cold shock domain was predominant among transcription factors. Additionally, we found a high number of antioxidative genes in comparison to non-symbiotic but evolutionary related organisms. These findings might be of relevance in the context of the role that Symbiodinium spp. play as coral symbionts.Our data represent the most comprehensive dinoflagellate EST data set to date. This study provides a comprehensive resource to further analyze the genetic makeup, metabolic capacities, and gene repertoire of Symbiodinium and dinoflagellates. Overall, our findings indicate that Symbiodinium possesses some unique characteristics, in particular the transcriptional regulation in Symbiodinium may differ from the currently known mechanisms of eukaryotic gene regulation.

  1. Consumption of coral propagules after mass spawning enhances larval quality of damselfish through maternal effects.

    Science.gov (United States)

    McCormick, Mark I

    2003-06-01

    The synchronized spawning of corals in many parts of the Indo-Pacific represents a huge injection of biological material into the waters around reefs. Much of this material is consumed by fishes and filter-feeding invertebrates in the 5 or so days following spawning. The present study is the first to document the effect of the consumption of coral propagules on a population of facultatively planktivorous fish and the transference of physiological condition across generations. The study compares two populations of the damselfish Pomacentrus amboinensis that fed to differing degrees on coral propagules for 5 days after the annual mass spawning of corals at Lizard Island, Great Barrier Reef, Australia. Wind blew coral slicks over the outer lagoon to the inner lagoon some 1.5 km away. While coral propagules were abundant in the water column in the windward location, they were scarce by the time the water mass reached the inner lagoon. Behavioral observations 2-5 days after coral spawning showed that a significantly higher proportion of P. amboinensis was feeding on coral propagules in the windward location than in the inner lagoon location. Windward location females consumed coral propagules almost exclusively and had fuller guts than females from the inner lagoonal location. Five days after the mass coral spawning, windward location females had a higher condition factor and a larger liver mass relative to body mass compared to females within the inner lagoon or females from both locations 2 months later. Fish eggs laid by the windward location females soon after coral spawning yielded larvae that had 25% larger yolk sacs and 100% larger oil globules than did larvae produced from the females from the inner lagoon location, or larvae produced at either location prior to or well after coral spawning in 2 previous years. Larger yolk sacs and oil globules have been shown to have direct survival benefits in the transition from endogenous to exogenous feeding. A feeding

  2. Larval midgut modifications associated with Bti resistance in the yellow fever mosquito using proteomic and transcriptomic approaches

    Directory of Open Access Journals (Sweden)

    Tetreau Guillaume

    2012-06-01

    Full Text Available Abstract Background Bacillus thuringiensis var. israelensis (Bti is a natural larval mosquito pathogen producing pore-forming toxins targeting the midgut of Diptera larvae. It is used worldwide for mosquito control. Resistance mechanisms of an Aedes aegypti laboratory strain selected for 30 generations with field-collected leaf litter containing Bti toxins were investigated in larval midguts at two levels: 1. gene transcription using DNA microarray and RT-qPCR and 2. differential expression of brush border membrane proteins using DIGE (Differential In Gel Electrophoresis. Results Several Bti Cry toxin receptors including alkaline phosphatases and N-aminopeptidases and toxin-binding V-ATPases exhibited altered expression levels in the resistant strain. The under-expression of putative Bti-receptors is consistent with Bt-resistance mechanisms previously described in Lepidoptera. Four soluble metalloproteinases were found under-transcribed together with a drastic decrease of metalloproteinases activity in the resistant strain, suggesting a role in resistance by decreasing the amount of activated Cry toxins in the larval midgut. Conclusions By combining transcriptomic and proteomic approaches, we detected expression changes at nearly each step of the ingestion-to-infection process, providing a short list of genes and proteins potentially involved in Bti-resistance whose implication needs to be validated. Collectively, these results open the way to further functional analyses to better characterize Bti-resistance mechanisms in mosquitoes.

  3. Larval traits carry over to affect post-settlement behaviour in a common coral reef fish.

    Science.gov (United States)

    Dingeldein, Andrea L; White, J Wilson

    2016-07-01

    Most reef fishes begin life as planktonic larvae before settling to the reef, metamorphosing and entering the benthic adult population. Different selective forces determine survival in the planktonic and benthic life stages, but traits established in the larval stage may carry over to affect post-settlement performance. We tested the hypothesis that larval traits affect two key post-settlement fish behaviours: social group-joining and foraging. Certain larval traits of reef fishes are permanently recorded in the rings in their otoliths. In the bluehead wrasse (Thalassoma bifasciatum), prior work has shown that key larval traits recorded in otoliths (growth rate, energetic condition at settlement) carry over to affect post-settlement survival on the reef, with higher-larval-condition fish experiencing less post-settlement mortality. We hypothesized that this selective mortality is mediated by carry-over effects on post-settlement antipredator behaviours. We predicted that better-condition fish would forage less and be more likely to join groups, both behaviours that would reduce predation risk. We collected 550 recently settled bluehead wrasse (Thalassoma bifasciatum) from three reef sites off St. Croix (USVI) and performed two analyses. First, we compared each settler's larval traits to the size of its social group to determine whether larval traits influenced group-joining behaviour. Secondly, we observed foraging behaviour in a subset of grouped and solitary fish (n = 14) for 1-4 days post-settlement. We then collected the fish and tested whether larval traits influenced the proportion of time spent foraging. Body length at settlement, but not condition, affected group-joining behaviour; smaller fish were more likely to remain solitary or in smaller groups. However, both greater length and better condition were associated with greater proportions of time spent foraging over four consecutive days post-settlement. Larval traits carry over to affect post

  4. Toward an understanding of the molecular mechanisms of barnacle larval settlement: A comparative transcriptomic approach

    KAUST Repository

    Chen, Zhang-Fan; Matsumura, Kiyotaka; Wang, Hao; Arellano, Shawn M.; Yan, Xingcheng; Alam, Intikhab; Archer, John A.C.; Bajic, Vladimir B.; Qian, Pei-Yuan

    2011-01-01

    of cyprids; 3) 20 kDa-cement protein homologues were expressed in the cyprid cement gland and probably function during attachment; and 4) receptor tyrosine kinases were expressed higher in cyprid stage and may be involved in signal perception during larval

  5. Uncovering the immune responses of Apis mellifera ligustica larval gut to Ascosphaera apis infection utilizing transcriptome sequencing.

    Science.gov (United States)

    Chen, Dafu; Guo, Rui; Xu, Xijian; Xiong, Cuiling; Liang, Qin; Zheng, Yanzhen; Luo, Qun; Zhang, Zhaonan; Huang, Zhijian; Kumar, Dhiraj; Xi, Weijun; Zou, Xuan; Liu, Min

    2017-07-20

    Honeybees are susceptible to a variety of diseases, including chalkbrood, which is capable of causing huge losses of both the number of bees and colony productivity. This research is designed to characterize the transcriptome profiles of Ascosphaera apis-treated and un-treated larval guts of Apis mellifera ligustica in an attempt to unravel the molecular mechanism underlying the immune responses of western honeybee larval guts to mycosis. In this study, 24, 296 and 2157 genes were observed to be differentially expressed in A. apis-treated Apis mellifera (4-, 5- and 6-day-old) compared with un-treated larval guts. Moreover, the expression patterns of differentially expressed genes (DEGs) were examined via trend analysis, and subsequently, gene ontology analysis and KEGG pathway enrichment analysis were conducted for DEGs involved in up- and down-regulated profiles. Immunity-related pathways were selected for further analysis, and our results demonstrated that a total of 13 and 50 DEGs were annotated in the humoral immune-related and cellular immune-related pathways, respectively. Additionally, we observed that many DEGs up-regulated in treated guts were part of cellular immune pathways, such as the lysosome, ubiquitin mediated proteolysis, and insect hormone biosynthesis pathways and were induced by A. apis invasion. However, more down-regulated DEGs were restrained. Surprisingly, a majority of DEGs within the Toll-like receptor signaling pathway, and the MAPK signaling pathway were up-regulated in treated guts, while all but two genes involved in the NF-κB signaling pathway were down-regulated, which suggested that most genes involved in humoral immune-related pathways were activated in response to the invasive fungal pathogen. This study's findings provide valuable information regarding the investigation of the molecular mechanism of immunity defenses of A. m. ligustica larval guts to infection with A. apis. Furthermore, these studies lay the groundwork for

  6. Coastal circulation and potential coral-larval dispersal in Maunalua Bay, O'ahu, Hawaii—Measurements of waves, currents, temperature, and salinity, June-September 2010

    Science.gov (United States)

    Presto, M. Katherine; Storlazzi, Curt D.; Logan, Joshua B.; Reiss, Thomas E.; Rosenberger, Kurt J.

    2012-01-01

    This report presents a summary of fieldwork conducted in Maunalua Bay, O'ahu, Hawaii to address coral-larval dispersal and recruitment from June through September, 2010. The objectives of this study were to understand the temporal and spatial variations in currents, waves, tides, temperature, and salinity in Maunalua Bay during the summer coral-spawning season of Montipora capitata. Short-term vessel surveys and satellite-tracked drifters were deployed to measure currents during the June 2010 spawning event and to supplement the longer-term measurements of currents and water-column properties by fixed, bottom-mounted instruments deployed in Maunalua Bay. These data show that currents at the surface and just below the surface where coral larvae are found are often oriented in opposite directions due primarily to tidal and trade-winds forcing as the primary mechanisms of circulation in the bay. These data extend our understanding of coral-larvae dispersal patterns due to tidal and wind-driven currents and may be applicable to larvae of other Hawaiian corals.

  7. Transcriptome

    Science.gov (United States)

    ... Also: Talking Glossary of Genetic Terms Definitions for genetic terms used on this page En Español: Transcriptoma Transcriptome What is a transcriptome? What can a transcriptome tell us? How can transcriptome data be used to explore gene function? What is ...

  8. Transcriptomic basis for an antiserum against Micrurus corallinus (coral snake venom

    Directory of Open Access Journals (Sweden)

    Ho Paulo L

    2009-03-01

    Full Text Available Abstract Background Micrurus corallinus (coral snake is a tropical forest snake belonging to the family Elapidae. Its venom shows a high neurotoxicity associated with pre- and post-synaptic toxins, causing diaphragm paralysis, which may result in death. In spite of a relatively small incidence of accidents, serum therapy is crucial for those bitten. However, the adequate production of antiserum is hampered by the difficulty in obtaining sufficient amounts of venom from a small snake with demanding breeding conditions. In order to elucidate the molecular basis of this venom and to uncover possible immunogens for an antiserum, we generated expressed sequences tags (ESTs from its venom glands and analyzed the transcriptomic profile. In addition, their immunogenicity was tested using DNA immunization. Results A total of 1438 ESTs were generated and grouped into 611 clusters. Toxin transcripts represented 46% of the total ESTs. The two main toxin classes consisted of three-finger toxins (3FTx (24% and phospholipases A2 (PLA2s (15%. However, 8 other classes of toxins were present, including C-type lectins, natriuretic peptide precursors and even high-molecular mass components such as metalloproteases and L-amino acid oxidases. Each class included an assortment of isoforms, some showing evidence of alternative splicing and domain deletions. Five antigenic candidates were selected (four 3FTx and one PLA2 and used for a preliminary study of DNA immunization. The immunological response showed that the sera from the immunized animals were able to recognize the recombinant antigens. Conclusion Besides an improvement in our knowledge of the composition of coral snake venoms, which are very poorly known when compared to Old World elapids, the expression profile suggests abundant and diversified components that may be used in future antiserum formulation. As recombinant production of venom antigens frequently fails due to complex disulfide arrangements, DNA

  9. A Transcriptomic Analysis of Echinococcus granulosus Larval Stages: Implications for Parasite Biology and Host Adaptation

    Science.gov (United States)

    Parkinson, John; Wasmuth, James D.; Salinas, Gustavo; Bizarro, Cristiano V.; Sanford, Chris; Berriman, Matthew; Ferreira, Henrique B.; Zaha, Arnaldo; Blaxter, Mark L.; Maizels, Rick M.; Fernández, Cecilia

    2012-01-01

    Background The cestode Echinococcus granulosus - the agent of cystic echinococcosis, a zoonosis affecting humans and domestic animals worldwide - is an excellent model for the study of host-parasite cross-talk that interfaces with two mammalian hosts. To develop the molecular analysis of these interactions, we carried out an EST survey of E. granulosus larval stages. We report the salient features of this study with a focus on genes reflecting physiological adaptations of different parasite stages. Methodology/Principal Findings We generated ∼10,000 ESTs from two sets of full-length enriched libraries (derived from oligo-capped and trans-spliced cDNAs) prepared with three parasite materials: hydatid cyst wall, larval worms (protoscoleces), and pepsin/H+-activated protoscoleces. The ESTs were clustered into 2700 distinct gene products. In the context of the biology of E. granulosus, our analyses reveal: (i) a diverse group of abundant long non-protein coding transcripts showing homology to a middle repetitive element (EgBRep) that could either be active molecular species or represent precursors of small RNAs (like piRNAs); (ii) an up-regulation of fermentative pathways in the tissue of the cyst wall; (iii) highly expressed thiol- and selenol-dependent antioxidant enzyme targets of thioredoxin glutathione reductase, the functional hub of redox metabolism in parasitic flatworms; (iv) candidate apomucins for the external layer of the tissue-dwelling hydatid cyst, a mucin-rich structure that is critical for survival in the intermediate host; (v) a set of tetraspanins, a protein family that appears to have expanded in the cestode lineage; and (vi) a set of platyhelminth-specific gene products that may offer targets for novel pan-platyhelminth drug development. Conclusions/Significance This survey has greatly increased the quality and the quantity of the molecular information on E. granulosus and constitutes a valuable resource for gene prediction on the parasite genome

  10. Differential sensitivity of coral larvae to natural levels of ultraviolet radiation during the onset of larval competence.

    KAUST Repository

    Aranda, Manuel; Banaszak, Anastazia T; Bayer, Till; Luyten, James; Medina, Mó nica; Voolstra, Christian R.

    2011-01-01

    Scleractinian corals are the major builders of the complex structural framework of coral reefs. They live in tropical waters around the globe where they are frequently exposed to potentially harmful ultraviolet radiation (UVR). The eggs and early

  11. Climatic forcing and larval dispersal capabilities shape the replenishment of fishes and their habitat-forming biota on a tropical coral reef.

    Science.gov (United States)

    Wilson, Shaun K; Depcyznski, Martial; Fisher, Rebecca; Holmes, Thomas H; Noble, Mae M; Radford, Ben T; Rule, Michael; Shedrawi, George; Tinkler, Paul; Fulton, Christopher J

    2018-02-01

    Fluctuations in marine populations often relate to the supply of recruits by oceanic currents. Variation in these currents is typically driven by large-scale changes in climate, in particular ENSO (El Nino Southern Oscillation). The dependence on large-scale climatic changes may, however, be modified by early life history traits of marine taxa. Based on eight years of annual surveys, along 150 km of coastline, we examined how ENSO influenced abundance of juvenile fish, coral spat, and canopy-forming macroalgae. We then investigated what traits make populations of some fish families more reliant on the ENSO relationship than others. Abundance of juvenile fish and coral recruits was generally positively correlated with the Southern Oscillation Index (SOI), higher densities recorded during La Niña years, when the ENSO-influenced Leeuwin Current is stronger and sea surface temperature higher. The relationship is typically positive and stronger among fish families with shorter pelagic larval durations and stronger swimming abilities. The relationship is also stronger at sites on the coral back reef, although the strongest of all relationships were among the lethrinids ( r  = .9), siganids ( r  = .9), and mullids ( r  = .8), which recruit to macroalgal meadows in the lagoon. ENSO effects on habitat seem to moderate SOI-juvenile abundance relationship. Macroalgal canopies are higher during La Niña years, providing more favorable habitat for juvenile fish and strengthening the SOI effect on juvenile abundance. Conversely, loss of coral following a La Niña-related heat wave may have compromised postsettlement survival of coral dependent species, weakening the influence of SOI on their abundance. This assessment of ENSO effects on tropical fish and habitat-forming biota and how it is mediated by functional ecology improves our ability to predict and manage changes in the replenishment of marine populations.

  12. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals.

    KAUST Repository

    Bayer, Till; Aranda, Manuel; Sunagawa, Shinichi; Yum, Lauren K; Desalvo, Michael K; Lindquist, Erika; Coffroth, Mary Alice; Voolstra, Christian R.; Medina, Mó nica

    2012-01-01

    Dinoflagellates are unicellular algae that are ubiquitously abundant in aquatic environments. Species of the genus Symbiodinium form symbiotic relationships with reef-building corals and other marine invertebrates. Despite their ecologic importance

  13. Modeling fine-scale coral larval dispersal and interisland connectivity to help designate mutually-supporting coral reef marine protected areas: Insights from Maui Nui, Hawaii

    Science.gov (United States)

    Storlazzi, Curt; van Ormondt, Maarten; Chen, Yi-Leng; Elias, Edwin P. L.

    2017-01-01

    Connectivity among individual marine protected areas (MPAs) is one of the most important considerations in the design of integrated MPA networks. To provide such information for managers in Hawaii, USA, a numerical circulation model was developed to determine the role of ocean currents in transporting coral larvae from natal reefs throughout the high volcanic islands of the Maui Nui island complex in the southeastern Hawaiian Archipelago. Spatially- and temporally-varying wind, wave, and circulation model outputs were used to drive a km-scale, 3-dimensional, physics-based circulation model for Maui Nui. The model was calibrated and validated using satellite-tracked ocean surface current drifters deployed during coral-spawning conditions, then used to simulate the movement of the larvae of the dominant reef-building coral, Porites compressa, from 17 reefs during eight spawning events in 2010–2013. These simulations make it possible to investigate not only the general dispersal patterns from individual coral reefs, but also how anomalous conditions during individual spawning events can result in large deviations from those general patterns. These data also help identify those reefs that are dominated by self-seeding and those where self-seeding is limited to determine their relative susceptibility to stressors and potential roadblocks to recovery. Overall, the numerical model results indicate that many of the coral reefs in Maui Nui seed reefs on adjacent islands, demonstrating the interconnected nature of the coral reefs in Maui Nui and providing a key component of the scientific underpinning essential for the design of a mutually supportive network of MPAs to enhance conservation of coral reefs.

  14. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change.

    Directory of Open Access Journals (Sweden)

    Paulina Kaniewska

    Full Text Available Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5 decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification.

  15. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change.

    Science.gov (United States)

    Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Kline, David; Ling, Edmund Yew Siang; Rosic, Nedeljka; Edwards, David; Hoegh-Guldberg, Ove; Dove, Sophie

    2015-01-01

    Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification.

  16. Dietary Supplementation with Vitamin K Affects Transcriptome and Proteome of Senegalese Sole, Improving Larval Performance and Quality

    DEFF Research Database (Denmark)

    Richard, Nadege; Fernandez, Ignacio; Wulff, Tune

    2014-01-01

    Nutritional factors strongly influence fish larval development and skeletogenesis, and may induce skeletal deformities. Vitamin K (VK) has been largely disregarded in aquaculture nutrition, despite its important roles in bone metabolism, in gamma-carboxylation of Gla proteins, and in regulating...

  17. Developmental Transcriptome Analysis and Identification of Genes Involved in Larval Metamorphosis of the Razor Clam, Sinonovacula constricta.

    Science.gov (United States)

    Niu, Donghong; Wang, Fei; Xie, Shumei; Sun, Fanyue; Wang, Ze; Peng, Maoxiao; Li, Jiale

    2016-04-01

    The razor clam Sinonovacula constricta is an important commercial species. The deficiency of developmental transcriptomic data is becoming the bottleneck of further researches on the mechanisms underlying settlement and metamorphosis in early development. In this study, de novo transcriptome sequencing was performed for S. constricta at different early developmental stages by using Illumina HiSeq 2000 paired-end (PE) sequencing technology. A total of 112,209,077 PE clean reads were generated. De novo assembly generated 249,795 contigs with an average length of 585 bp. Gene annotation resulted in the identification of 22,870 unigene hits against the NCBI database. Eight unique sequences related to metamorphosis were identified and analyzed using real-time PCR. The razor clam reference transcriptome would provide useful information on early developmental and metamorphosis mechanisms and could be used in the genetic breeding of shellfish.

  18. Selective predation for low body condition at the larval-juvenile transition of a coral reef fish.

    Science.gov (United States)

    Hoey, Andrew S; McCormick, Mark I

    2004-03-01

    Mortality is known to be high during the transition from larval to juvenile life stages in organisms that have complex life histories. We are only just beginning to understand the processes that influence which individuals survive this period of high mortality, and which traits may be beneficial. Here we document a field experiment that examines the selectivity of predation immediately following settlement to the juvenile population in a common tropical fish, Pomacentrus amboinensis (Pomacentridae). Newly metamorphosed fish were tagged and randomly placed onto replicated patches of natural habitat cleared of resident fishes. After exposure to transient predators for 3 days, fish were recollected and the attributes of survivors from patch reefs that sustained high mortality were compared to individuals from patch reefs that experienced low mortality. Seven characteristics of individuals, which were indicative of previous and present body condition, were compared between groups. Predation was found to be selective for fish that grew slowly in the latter third of their larval phase, were low in total lipids, and had a high standardized weight (Fulton's K). Traits developed in the larval phase can strongly influence the survival of individuals over this critical transition period for organisms with complex life cycles.

  19. The importance of coral larval recruitment for the recovery of reefs impacted by cyclone Yasi in the central Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Vimoksalehi Lukoschek

    Full Text Available Cyclone Yasi, one of the most severe tropical storms on record, crossed the central Great Barrier Reef (GBR in February 2011, bringing wind speeds of up to 285 km hr⁻¹ and wave heights of at least 10 m, and causing massive destruction to exposed reefs in the Palm Island Group. Following the cyclone, mean (± S.E. hard coral cover ranged from just 2.1 (0.2 % to 5.3 (0.4 % on exposed reefs and no reproductively mature colonies of any species of Acropora remained. Although no fragments of Acropora were found at impacted exposed sites following the cyclone, small juvenile colonies of Acropora (<10 cm diameter were present, suggesting that their small size and compact morphologies enabled them to survive the cyclone. By contrast, sheltered reefs appeared to be unaffected by the cyclone. Mean (± S.E. hard coral cover ranged from 18.2 (2.4 % to 30.0 (1.0 % and a large proportion of colonies of Acropora were reproductively mature. Macroalgae accounted for 8 to 16% of benthic cover at exposed sites impacted by cyclone Yasi but were absent at sheltered sites. Mean (± S.E. recruitment of acroporids to settlement tiles declined from 25.3 (4.8 recruits tile⁻¹ in the pre-cyclone spawning event (2010 to 15.4 (2.2 recruits tile⁻¹ in the first post-cyclone spawning event (2011. Yet, post-cyclone recruitment did not differ between exposed (15.2±2.1 S.E. and sheltered sites (15.6±2.2 S.E., despite the loss of reproductive colonies at the exposed sites, indicating larval input from external sources. Spatial variation in impacts, the survival of small colonies, and larval replenishment to impacted reefs suggest that populations of Acropora have the potential to recover from this severe disturbance, provided that the Palm Islands are not impacted by acute disturbances or suffer additional chronic stressors in the near future.

  20. Transcriptome, expression, and activity analyses reveal a vital heat shock protein 70 in the stress response of stony coral Pocillopora damicornis.

    Science.gov (United States)

    Zhang, Yidan; Zhou, Zhi; Wang, Lingui; Huang, Bo

    2018-02-12

    Coral bleaching occurs worldwide with increasing frequencies and intensities, which is caused by the stress response of stony coral to environmental change, especially increased sea surface temperature. In the present study, transcriptome, expression, and activity analyses were employed to illustrate the underlying molecular mechanisms of heat shock protein 70 (HSP70) in the stress response of coral to environmental changes. The domain analyses of assembled transcripts revealed 30 HSP70 gene contigs in stony coral Pocillopora damicornis. One crucial HSP70 (PdHSP70) was observed, whose expressions were induced by both elevated temperature and ammonium after expression difference analysis. The complete complementary DNA (cDNA) sequence of PdHSP70 was identified, which encoded a polypeptide of 650 amino acids with a molecular weight of 71.93 kDa. The deduced amino acid sequence of PdHSP70 contained a HSP70 domain (from Pro8 to Gly616), and it shared the highest similarity (95%) with HSP70 from Stylophora pistillata. The expression level of PdHSP70 gene increased significantly at 12 h, and returned to the initial level at 24 h after the stress of high temperature (32 °C). The cDNA fragment encoding the mature peptide of PdHSP70 was recombined and expressed in the prokaryotic expression system. The ATPase activity of recombinant PdHSP70 protein was determined, and it did not change significantly in a wide range of temperature from 25 to 40 °C. These results collectively suggested that PdHSP70 was a vital heat shock protein 70 in the stony coral P. damicornis, whose mRNA expression could be induced by diverse environmental stress and whose activity could remain stable under heat stress. PdHSP70 might be involved in the regulation of the bleaching owing to heat stress in the stony coral P. damicornis.

  1. The genetics of colony form and function in Caribbean Acropora corals.

    Science.gov (United States)

    Hemond, Elizabeth M; Kaluziak, Stefan T; Vollmer, Steven V

    2014-12-17

    Colonial reef-building corals have evolved a broad spectrum of colony morphologies based on coordinated asexual reproduction of polyps on a secreted calcium carbonate skeleton. Though cnidarians have been shown to possess and use similar developmental genes to bilaterians during larval development and polyp formation, little is known about genetic regulation of colony morphology in hard corals. We used RNA-seq to evaluate transcriptomic differences between functionally distinct regions of the coral (apical branch tips and branch bases) in two species of Caribbean Acropora, the staghorn coral, A. cervicornis, and the elkhorn coral, A. palmata. Transcriptome-wide gene profiles differed significantly between different parts of the coral colony as well as between species. Genes showing differential expression between branch tips and bases were involved in developmental signaling pathways, such as Wnt, Notch, and BMP, as well as pH regulation, ion transport, extracellular matrix production and other processes. Differences both within colonies and between species identify a relatively small number of genes that may contribute to the distinct "staghorn" versus "elkhorn" morphologies of these two sister species. The large number of differentially expressed genes supports a strong division of labor between coral branch tips and branch bases. Genes involved in growth of mature Acropora colonies include the classical signaling pathways associated with development of cnidarian larvae and polyps as well as morphological determination in higher metazoans.

  2. Transcriptomic responses to ocean acidification in larval sea urchins from a naturally variable pH environment.

    Science.gov (United States)

    Evans, Tyler G; Chan, Francis; Menge, Bruce A; Hofmann, Gretchen E

    2013-03-01

    Some marine ecosystems already experience natural declines in pH approximating those predicted with future anthropogenic ocean acidification (OA), the decline in seawater pH caused by the absorption of atmospheric CO2 . The molecular mechanisms that allow organisms to inhabit these low pH environments, particularly those building calcium carbonate skeletons, are unknown. Also uncertain is whether an enhanced capacity to cope with present day pH variation will confer resistance to future OA. To address these issues, we monitored natural pH dynamics within an intertidal habitat in the Northeast Pacific, demonstrating that upwelling exposes resident species to pH regimes not predicted to occur elsewhere until 2100. Next, we cultured the progeny of adult purple sea urchins (Strongylocentrotus purpuratus) collected from this region in CO2 -acidified seawater representing present day and near future ocean scenarios and monitored gene expression using transcriptomics. We hypothesized that persistent exposure to upwelling during evolutionary history will have selected for increased pH tolerance in this population and that their transcriptomic response to low pH seawater would provide insight into mechanisms underlying pH tolerance in a calcifying species. Resulting expression patterns revealed two important trends. Firstly, S. purpuratus larvae may alter the bioavailability of calcium and adjust skeletogenic pathways to sustain calcification in a low pH ocean. Secondly, larvae use different strategies for coping with different magnitudes of pH stress: initiating a robust transcriptional response to present day pH regimes but a muted response to near future conditions. Thus, an enhanced capacity to cope with present day pH variation may not translate into success in future oceans. © 2013 Blackwell Publishing Ltd.

  3. Larval Red Drum (Sciaenops ocellatus) Sublethal Exposure to Weathered Deepwater Horizon Crude Oil: Developmental and Transcriptomic Consequences.

    Science.gov (United States)

    Xu, Elvis Genbo; Khursigara, Alex J; Magnuson, Jason; Hazard, E Starr; Hardiman, Gary; Esbaugh, Andrew J; Roberts, Aaron P; Schlenk, Daniel

    2017-09-05

    The Deepwater Horizon (DWH) incident resulted in extensive oiling of the pelagic zone and shoreline habitats of many commercially important fish species. Exposure to the water-accommodated fraction (WAF) of oil from the spill causes developmental toxicity through cardiac defects in pelagic fish species. However, few studies have evaluated the effects of the oil on near-shore estuarine fish species such as red drum (Sciaenops ocellatus). Following exposure to a certified weathered slick oil (4.74 μg/L ∑PAH 50 ) from the DWH event, significant sublethal impacts were observed ranging from impaired nervous system development [average 17 and 22% reductions in brain and eye area at 48 h postfertilization (hpf), respectively] to abnormal cardiac morphology (100% incidence at 24, 48, and 72 hpf) in red drum larvae. Consistent with the phenotypic responses, significantly differentially expressed transcripts, enriched gene ontology, and altered functions and canonical pathways predicted adverse outcomes in nervous and cardiovascular systems, with more pronounced changes at later larval stages. Our study demonstrated that the WAF of weathered slick oil of DWH caused morphological abnormalities predicted by a suite of advanced bioinformatic tools in early developing red drum and also provided the basis for a better understanding of molecular mechanisms of crude oil toxicity in fish.

  4. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms

    Science.gov (United States)

    2013-01-01

    Background Snake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype. New World coral snakes (Elapidae) are represented by three genera and over 120 species and subspecies that are capable of causing significant human morbidity and mortality, yet coral-snake venom composition is poorly understood in comparison to that of Old World elapids. High-throughput sequencing is capable of identifying thousands of loci, while providing characterizations of expression patterns and the molecular evolutionary forces acting within the venom gland. Results We describe the de novo assembly and analysis of the venom-gland transcriptome of the eastern coral snake (Micrurus fulvius). We identified 1,950 nontoxin transcripts and 116 toxin transcripts. These transcripts accounted for 57.1% of the total reads, with toxins accounting for 45.8% of the total reads. Phospholipases A2 and three-finger toxins dominated expression, accounting for 86.0% of the toxin reads. A total of 15 toxin families were identified, revealing venom complexity previously unknown from New World coral snakes. Toxins exhibited high levels of heterozygosity relative to nontoxins, and overdominance may favor gene duplication leading to the fixation of advantageous alleles. Phospholipase A2 expression was uniformly distributed throughout the class while three-finger toxin expression was dominated by a handful of transcripts, and phylogenetic analyses indicate that toxin divergence may have occurred following speciation. Positive selection was detected in three of the four most diverse toxin classes, suggesting that venom diversification is driven by recurrent directional selection. Conclusions We describe the most complete characterization of an elapid venom gland to date. Toxin gene duplication may be driven by heterozygote advantage, as the frequency of

  5. The venom-gland transcriptome of the eastern coral snake (Micrurus fulvius) reveals high venom complexity in the intragenomic evolution of venoms.

    Science.gov (United States)

    Margres, Mark J; Aronow, Karalyn; Loyacano, Jacob; Rokyta, Darin R

    2013-08-02

    Snake venom is shaped by the ecology and evolution of venomous species, and signals of positive selection in toxins have been consistently documented, reflecting the role of venoms as an ecologically critical phenotype. New World coral snakes (Elapidae) are represented by three genera and over 120 species and subspecies that are capable of causing significant human morbidity and mortality, yet coral-snake venom composition is poorly understood in comparison to that of Old World elapids. High-throughput sequencing is capable of identifying thousands of loci, while providing characterizations of expression patterns and the molecular evolutionary forces acting within the venom gland. We describe the de novo assembly and analysis of the venom-gland transcriptome of the eastern coral snake (Micrurus fulvius). We identified 1,950 nontoxin transcripts and 116 toxin transcripts. These transcripts accounted for 57.1% of the total reads, with toxins accounting for 45.8% of the total reads. Phospholipases A(2) and three-finger toxins dominated expression, accounting for 86.0% of the toxin reads. A total of 15 toxin families were identified, revealing venom complexity previously unknown from New World coral snakes. Toxins exhibited high levels of heterozygosity relative to nontoxins, and overdominance may favor gene duplication leading to the fixation of advantageous alleles. Phospholipase A(2) expression was uniformly distributed throughout the class while three-finger toxin expression was dominated by a handful of transcripts, and phylogenetic analyses indicate that toxin divergence may have occurred following speciation. Positive selection was detected in three of the four most diverse toxin classes, suggesting that venom diversification is driven by recurrent directional selection. We describe the most complete characterization of an elapid venom gland to date. Toxin gene duplication may be driven by heterozygote advantage, as the frequency of polymorphic toxin loci was

  6. Exploration of immunoglobulin transcriptomes from mice immunized with three-finger toxins and phospholipases A2 from the Central American coral snake, Micrurus nigrocinctus

    Directory of Open Access Journals (Sweden)

    Andreas H. Laustsen

    2017-01-01

    Full Text Available Snakebite envenomings represent a neglected public health issue in many parts of the rural tropical world. Animal-derived antivenoms have existed for more than a hundred years and are effective in neutralizing snake venom toxins when timely administered. However, the low immunogenicity of many small but potent snake venom toxins represents a challenge for obtaining a balanced immune response against the medically relevant components of the venom. Here, we employ high-throughput sequencing of the immunoglobulin (Ig transcriptome of mice immunized with a three-finger toxin and a phospholipase A2 from the venom of the Central American coral snake, Micrurus nigrocinctus. Although exploratory in nature, our indicate results showed that only low frequencies of mRNA encoding IgG isotypes, the most relevant isotype for therapeutic purposes, were present in splenocytes of five mice immunized with 6 doses of the two types of toxins over 90 days. Furthermore, analysis of Ig heavy chain transcripts showed that no particular combination of variable (V and joining (J gene segments had been selected in the immunization process, as would be expected after a strong humoral immune response to a single antigen. Combined with the titration of toxin-specific antibodies in the sera of immunized mice, these data support the low immunogenicity of three-finger toxins and phospholipases A2found in M. nigrocinctusvenoms, and highlight the need for future studies analyzing the complexity of antibody responses to toxins at the molecular level.

  7. Trehalose is a chemical attractant in the establishment of coral symbiosis.

    Directory of Open Access Journals (Sweden)

    Mary Hagedorn

    Full Text Available Coral reefs have evolved with a crucial symbiosis between photosynthetic dinoflagellates (genus Symbiodinium and their cnidarian hosts (Scleractinians. Most coral larvae take up Symbiodinium from their environment; however, the earliest steps in this process have been elusive. Here we demonstrate that the disaccharide trehalose may be an important signal from the symbiont to potential larval hosts. Symbiodinium freshly isolated from Fungia scutaria corals constantly released trehalose (but not sucrose, maltose or glucose into seawater, and released glycerol only in the presence of coral tissue. Spawning Fungia adults increased symbiont number in their immediate area by excreting pellets of Symbiodinium, and when these naturally discharged Symbiodinium were cultured, they also released trehalose. In Y-maze experiments, coral larvae demonstrated chemoattractant and feeding behaviors only towards a chamber with trehalose or glycerol. Concomitantly, coral larvae and adult tissue, but not symbionts, had significant trehalase enzymatic activities, suggesting the capacity to utilize trehalose. Trehalase activity was developmentally regulated in F. scutaria larvae, rising as the time for symbiont uptake occurs. Consistent with the enzymatic assays, gene finding demonstrated the presence of a trehalase enzyme in the genome of a related coral, Acropora digitifera, and a likely trehalase in the transcriptome of F. scutaria. Taken together, these data suggest that adult F. scutaria seed the reef with Symbiodinium during spawning and the exuded Symbiodinium release trehalose into the environment, which acts as a chemoattractant for F. scutaria larvae and as an initiator of feeding behavior- the first stages toward establishing the coral-Symbiodinium relationship. Because trehalose is a fixed carbon compound, this cue would accurately demonstrate to the cnidarian larvae the photosynthetic ability of the potential symbiont in the ambient environment. To our

  8. From transcriptome to biological function: environmental stress in an ectothermic vertebrate, the coral reef fish Pomacentrus moluccensis

    Directory of Open Access Journals (Sweden)

    Ward Alister C

    2007-10-01

    Full Text Available Abstract Background Our understanding of the importance of transcriptional regulation for biological function is continuously improving. We still know, however, comparatively little about how environmentally induced stress affects gene expression in vertebrates, and the consistency of transcriptional stress responses to different types of environmental stress. In this study, we used a multi-stressor approach to identify components of a common stress response as well as components unique to different types of environmental stress. We exposed individuals of the coral reef fish Pomacentrus moluccensis to hypoxic, hyposmotic, cold and heat shock and measured the responses of approximately 16,000 genes in liver. We also compared winter and summer responses to heat shock to examine the capacity for such responses to vary with acclimation to different ambient temperatures. Results We identified a series of gene functions that were involved in all stress responses examined here, suggesting some common effects of stress on biological function. These common responses were achieved by the regulation of largely independent sets of genes; the responses of individual genes varied greatly across different stress types. In response to heat exposure over five days, a total of 324 gene loci were differentially expressed. Many heat-responsive genes had functions associated with protein turnover, metabolism, and the response to oxidative stress. We were also able to identify groups of co-regulated genes, the genes within which shared similar functions. Conclusion This is the first environmental genomic study to measure gene regulation in response to different environmental stressors in a natural population of a warm-adapted ectothermic vertebrate. We have shown that different types of environmental stress induce expression changes in genes with similar gene functions, but that the responses of individual genes vary between stress types. The functions of heat

  9. Diel and lunar variations in larval supply to Malindi Marine Park ...

    African Journals Online (AJOL)

    Understanding larval ecology and the mechanisms used in dispersal and habitat selection helps to better understand the population dynamics of coral reef communities. However, few studies have examined patterns of larval supply to reefs sites especially in the WIO region. Temporal patterns of fish larval occurrence in ...

  10. Petroleum hydrocarbon toxicity to corals: A review.

    Science.gov (United States)

    Turner, Nicholas R; Renegar, D Abigail

    2017-06-30

    The proximity of coral reefs to coastal urban areas and shipping lanes predisposes corals to petroleum pollution from multiple sources. Previous research has evaluated petroleum toxicity to coral using a variety of methodology, including monitoring effects of acute and chronic spills, in situ exposures, and ex situ exposures with both adult and larval stage corals. Variability in toxicant, bioassay conditions, species and other methodological disparities between studies prevents comprehensive conclusions regarding the toxicity of hydrocarbons to corals. Following standardized protocols and quantifying the concentration and composition of toxicant will aid in comparison of results between studies and extrapolation to actual spills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Possible Role for Vitamin C in Coral Calcification

    Science.gov (United States)

    Rosenthal, J. J.; Roberson, L.; Vazquez, N.

    2016-02-01

    Despite the importance of coral reefs to tropical, marine ecosystems, the biological components of the calcification process are poorly understood. Because calcification must involve the delivery of organic and inorganic components across cell membranes, we postulate that it has similar features to epithelial and neuronal transport mechanisms in vertebrates. Accordingly, we are interested in identifying the specific membrane transporters underlying skeleton formation. As a model, we are using larvae from the ubiquitous Caribbean species Porites astreoides, a rapidly growing stony coral that is resistant to anthropogenic stressors. Using Illumina RNAseq, we assembled a larval transcriptome and compared gene expression between swimming larvae and recently settled ones that had just commenced the process of calcification. As expected, we identified many ion transporter, pump and channel transcripts that were upregulated in settled larvae. It was surprising, however, to find that the most upregulated transcript appeared to encode a Na-dependent Vitamin C transporter (SLC23A). In vertebrates, SLC23A transporters play a vital role in bone morphogenesis where Vitamin C is an essential cofactor for enzymes that condition collagen precursors for assembly into mature molecules. In corals, collagen has been identified as a component of the skeleton's extracellular matrix. Using in situ hybridization, we showed that the P. astreoides SLC23A messages were expressed in regions adjacent to rapid skeleton formation, on the aboral surface and septa of settled larvae. To confirm that the coral clone is indeed a Vitamin C transporter, we expressed it in Xenopus oocytes and studied its activity using voltage-clamp. Preliminary data demonstrate that it induces a current that is activated by Na and Vitamin C. This approach will help us better understand the molecular mechanisms underlying calcification and how they might respond to environmental change.

  12. A deep transcriptomic resource for the copepod crustacean Labidocera madurae: A potential indicator species for assessing near shore ecosystem health.

    Directory of Open Access Journals (Sweden)

    Vittoria Roncalli

    Full Text Available Coral reef ecosystems of many sub-tropical and tropical marine coastal environments have suffered significant degradation from anthropogenic sources. Research to inform management strategies that mitigate stressors and promote a healthy ecosystem has focused on the ecology and physiology of coral reefs and associated organisms. Few studies focus on the surrounding pelagic communities, which are equally important to ecosystem function. Zooplankton, often dominated by small crustaceans such as copepods, is an important food source for invertebrates and fishes, especially larval fishes. The reef-associated zooplankton includes a sub-neustonic copepod family that could serve as an indicator species for the community. Here, we describe the generation of a de novo transcriptome for one such copepod, Labidocera madurae, a pontellid from an intensively-studied coral reef ecosystem, Kāne'ohe Bay, Oahu, Hawai'i. The transcriptome was assembled using high-throughput sequence data obtained from whole organisms. It comprised 211,002 unique transcripts, including 72,391 with coding regions. It was assessed for quality and completeness using multiple workflows. Bench-marking-universal-single-copy-orthologs (BUSCO analysis identified transcripts for 88% of expected eukaryotic core proteins. Targeted gene-discovery analyses included searches for transcripts coding full-length "giant" proteins (>4,000 amino acids, proteins and splice variants of voltage-gated sodium channels, and proteins involved in the circadian signaling pathway. Four different reference transcriptomes were generated and compared for the detection of differential gene expression between copepodites and adult females; 6,229 genes were consistently identified as differentially expressed between the two regardless of reference. Automated bioinformatics analyses and targeted manual gene curation suggest that the de novo assembled L. madurae transcriptome is of high quality and completeness. This

  13. A deep transcriptomic resource for the copepod crustacean Labidocera madurae: A potential indicator species for assessing near shore ecosystem health

    Science.gov (United States)

    Christie, Andrew E.; Sommer, Stephanie A.; Cieslak, Matthew C.; Hartline, Daniel K.; Lenz, Petra H.

    2017-01-01

    Coral reef ecosystems of many sub-tropical and tropical marine coastal environments have suffered significant degradation from anthropogenic sources. Research to inform management strategies that mitigate stressors and promote a healthy ecosystem has focused on the ecology and physiology of coral reefs and associated organisms. Few studies focus on the surrounding pelagic communities, which are equally important to ecosystem function. Zooplankton, often dominated by small crustaceans such as copepods, is an important food source for invertebrates and fishes, especially larval fishes. The reef-associated zooplankton includes a sub-neustonic copepod family that could serve as an indicator species for the community. Here, we describe the generation of a de novo transcriptome for one such copepod, Labidocera madurae, a pontellid from an intensively-studied coral reef ecosystem, Kāne‘ohe Bay, Oahu, Hawai‘i. The transcriptome was assembled using high-throughput sequence data obtained from whole organisms. It comprised 211,002 unique transcripts, including 72,391 with coding regions. It was assessed for quality and completeness using multiple workflows. Bench-marking-universal-single-copy-orthologs (BUSCO) analysis identified transcripts for 88% of expected eukaryotic core proteins. Targeted gene-discovery analyses included searches for transcripts coding full-length “giant” proteins (>4,000 amino acids), proteins and splice variants of voltage-gated sodium channels, and proteins involved in the circadian signaling pathway. Four different reference transcriptomes were generated and compared for the detection of differential gene expression between copepodites and adult females; 6,229 genes were consistently identified as differentially expressed between the two regardless of reference. Automated bioinformatics analyses and targeted manual gene curation suggest that the de novo assembled L. madurae transcriptome is of high quality and completeness. This

  14. Coral reproduction in Western Australia

    Science.gov (United States)

    Speed, Conrad W.; Babcock, Russ

    2016-01-01

    Larval production and recruitment underpin the maintenance of coral populations, but these early life history stages are vulnerable to extreme variation in physical conditions. Environmental managers aim to minimise human impacts during significant periods of larval production and recruitment on reefs, but doing so requires knowledge of the modes and timing of coral reproduction. Most corals are hermaphroditic or gonochoric, with a brooding or broadcast spawning mode of reproduction. Brooding corals are a significant component of some reefs and produce larvae over consecutive months. Broadcast spawning corals are more common and display considerable variation in their patterns of spawning among reefs. Highly synchronous spawning can occur on reefs around Australia, particularly on the Great Barrier Reef. On Australia’s remote north-west coast there have been fewer studies of coral reproduction. The recent industrial expansion into these regions has facilitated research, but the associated data are often contained within confidential reports. Here we combine information in this grey-literature with that available publicly to update our knowledge of coral reproduction in WA, for tens of thousands of corals and hundreds of species from over a dozen reefs spanning 20° of latitude. We identified broad patterns in coral reproduction, but more detailed insights were hindered by biased sampling; most studies focused on species of Acropora sampled over a few months at several reefs. Within the existing data, there was a latitudinal gradient in spawning activity among seasons, with mass spawning during autumn occurring on all reefs (but the temperate south-west). Participation in a smaller, multi-specific spawning during spring decreased from approximately one quarter of corals on the Kimberley Oceanic reefs to little participation at Ningaloo. Within these seasons, spawning was concentrated in March and/or April, and October and/or November, depending on the timing of

  15. Location-specific responses to thermal stress in larvae of the reef-building coral Montastraea faveolata.

    KAUST Repository

    Polato, Nicholas R; Voolstra, Christian R.; Schnetzer, Julia; DeSalvo, Michael K; Randall, Carly J; Szmant, Alina M; Medina, Mó nica; Baums, Iliana B

    2010-01-01

    The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations.

  16. Location-specific responses to thermal stress in larvae of the reef-building coral Montastraea faveolata.

    KAUST Repository

    Polato, Nicholas R

    2010-06-23

    The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations.

  17. Bottlenecks to coral recovery in the Seychelles

    Science.gov (United States)

    Chong-Seng, K. M.; Graham, N. A. J.; Pratchett, M. S.

    2014-06-01

    Processes that affect recovery of coral assemblages require investigation because coral reefs are experiencing a diverse array of more frequent disturbances. Potential bottlenecks to coral recovery include limited larval supply, low rates of settlement, and high mortality of new recruits or juvenile corals. We investigated spatial variation in local abundance of scleractinian corals in the Seychelles at three distinct life history stages (recruits, juveniles, and adults) on reefs with differing benthic conditions. Following widespread coral loss due to the 1998 bleaching event, some reefs are recovering (i.e., relatively high scleractinian coral cover: `coral-dominated'), some reefs have low cover of living macrobenthos and unconsolidated rubble substrates (`rubble-dominated'), and some reefs have high cover of macroalgae (`macroalgal-dominated'). Rates of coral recruitment to artificial settlement tiles were similar across all reef conditions, suggesting that larval supply does not explain differential coral recovery across the three reef types. However, acroporid recruits were absent on macroalgal-dominated reefs (0.0 ± 0.0 recruits tile-1) in comparison to coral-dominated reefs (5.2 ± 1.6 recruits tile-1). Juvenile coral colony density was significantly lower on macroalgal-dominated reefs (2.4 ± 1.1 colonies m-2), compared to coral-dominated reefs (16.8 ± 2.4 m-2) and rubble-dominated reefs (33.1 ± 7.3 m-2), suggesting that macroalgal-dominated reefs have either a bottleneck to successful settlement on the natural substrates or a high post-settlement mortality bottleneck. Rubble-dominated reefs had very low cover of adult corals (10.0 ± 1.7 %) compared to coral-dominated reefs (33.4 ± 3.6 %) despite no statistical difference in their juvenile coral densities. A bottleneck caused by low juvenile colony survivorship on unconsolidated rubble-dominated reefs is possible, or alternatively, recruitment to rubble-dominated reefs has only recently begun. This

  18. Reef-fish larval dispersal patterns validate no-take marine reserve network connectivity that links human communities

    KAUST Repository

    Abesamis, Rene A.; Saenz-Agudelo, Pablo; Berumen, Michael L.; Bode, Michael; Jadloc, Claro Renato L.; Solera, Leilani A.; Villanoy, Cesar L.; Bernardo, Lawrence Patrick C.; Alcala, Angel C.; Russ, Garry R.

    2017-01-01

    Networks of no-take marine reserves (NTMRs) are a widely advocated strategy for managing coral reefs. However, uncertainty about the strength of population connectivity between individual reefs and NTMRs through larval dispersal remains a major

  19. Coral thermal tolerance: tuning gene expression to resist thermal stress.

    Directory of Open Access Journals (Sweden)

    Anthony J Bellantuono

    Full Text Available The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs

  20. Survival dynamics of scleractinian coral larvae and implications for dispersal

    Science.gov (United States)

    Graham, E. M.; Baird, A. H.; Connolly, S. R.

    2008-09-01

    Survival of pelagic marine larvae is an important determinant of dispersal potential. Despite this, few estimates of larval survival are available. For scleractinian corals, few studies of larval survival are long enough to provide accurate estimates of longevity. Moreover, changes in mortality rates during larval life, expected on theoretical grounds, have implications for the degree of connectivity among reefs and have not been quantified for any coral species. This study quantified the survival of larvae from five broadcast-spawning scleractinian corals ( Acropora latistella, Favia pallida, Pectinia paeonia, Goniastrea aspera, and Montastraea magnistellata) to estimate larval longevity, and to test for changes in mortality rates as larvae age. Maximum lifespans ranged from 195 to 244 d. These longevities substantially exceed those documented previously for coral larvae that lack zooxanthellae, and they exceed predictions based on metabolic rates prevailing early in larval life. In addition, larval mortality rates exhibited strong patterns of variation throughout the larval stage. Three periods were identified in four species: high initial rates of mortality; followed by a low, approximately constant rate of mortality; and finally, progressively increasing mortality after approximately 100 d. The lifetimes observed in this study suggest that the potential for long-distance dispersal may be substantially greater than previously thought. Indeed, detection of increasing mortality rates late in life suggests that energy reserves do not reach critically low levels until approximately 100 d after spawning. Conversely, increased mortality rates early in life decrease the likelihood that larvae transported away from their natal reef will survive to reach nearby reefs, and thus decrease connectivity at regional scales. These results show how variation in larval survivorship with age may help to explain the seeming paradox of high genetic structure at metapopulation scales

  1. Corals like it waxed: paraffin-based antifouling technology enhances coral spat survival.

    Directory of Open Access Journals (Sweden)

    Jan Tebben

    Full Text Available The early post-settlement stage is the most sensitive during the life history of reef building corals. However, few studies have examined the factors that influence coral mortality during this period. Here, the impact of fouling on the survival of newly settled coral spat of Acropora millepora was investigated by manipulating the extent of fouling cover on settlement tiles using non-toxic, wax antifouling coatings. Survival of spat on coated tiles was double that on control tiles. Moreover, there was a significant negative correlation between percentage cover of fouling and spat survival across all tiles types, suggesting that fouling in direct proximity to settled corals has detrimental effects on early post-settlement survival. While previous studies have shown that increased fouling negatively affects coral larval settlement and health of juvenile and adult corals, to the best of our knowledge, this is the first study to show a direct relationship between fouling and early post-settlement survival for a broadcast spawning scleractinian coral. The negative effects of fouling on this sensitive life history stage may become more pronounced in the future as coastal eutrophication increases. Our results further suggest that targeted seeding of coral spat on artificial surfaces in combination with fouling control could prove useful to improve the efficiency of sexual reproduction-based coral propagation for reef rehabilitation.

  2. RNA-Seq of the Caribbean reef-building coral Orbicella faveolata (Scleractinia-Merulinidae under bleaching and disease stress expands models of coral innate immunity

    Directory of Open Access Journals (Sweden)

    David A. Anderson

    2016-02-01

    Full Text Available Climate change-driven coral disease outbreaks have led to widespread declines in coral populations. Early work on coral genomics established that corals have a complex innate immune system, and whole-transcriptome gene expression studies have revealed mechanisms by which the coral immune system responds to stress and disease. The present investigation expands bioinformatic data available to study coral molecular physiology through the assembly and annotation of a reference transcriptome of the Caribbean reef-building coral, Orbicella faveolata. Samples were collected during a warm water thermal anomaly, coral bleaching event and Caribbean yellow band disease outbreak in 2010 in Puerto Rico. Multiplex sequencing of RNA on the Illumina GAIIx platform and de novo transcriptome assembly by Trinity produced 70,745,177 raw short-sequence reads and 32,463 O. faveolata transcripts, respectively. The reference transcriptome was annotated with gene ontologies, mapped to KEGG pathways, and a predicted proteome of 20,488 sequences was generated. Protein families and signaling pathways that are essential in the regulation of innate immunity across Phyla were investigated in-depth. Results were used to develop models of evolutionarily conserved Wnt, Notch, Rig-like receptor, Nod-like receptor, and Dicer signaling. O. faveolata is a coral species that has been studied widely under climate-driven stress and disease, and the present investigation provides new data on the genes that putatively regulate its immune system.

  3. Bacterial acquisition in juveniles of several broadcast spawning coral species.

    Directory of Open Access Journals (Sweden)

    Koty H Sharp

    Full Text Available Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals.

  4. Bacterial acquisition in juveniles of several broadcast spawning coral species.

    Science.gov (United States)

    Sharp, Koty H; Ritchie, Kim B; Schupp, Peter J; Ritson-Williams, Raphael; Paul, Valerie J

    2010-05-28

    Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH) using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals.

  5. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages

    KAUST Repository

    Hoey, Andrew; Pratchett, Morgan S.; Cvitanovic, Christopher

    2011-01-01

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32?S, 159°04?E), the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m -2), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha -1), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances. © 2011 Hoey et al.

  6. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages

    KAUST Repository

    Hoey, Andrew

    2011-10-03

    Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience) is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32?S, 159°04?E), the worlds\\' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment), and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4%) and fleshy macroalgae (20.9%). Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m -2), however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha -1), and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1%) with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands\\' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances. © 2011 Hoey et al.

  7. High macroalgal cover and low coral recruitment undermines the potential resilience of the world's southernmost coral reef assemblages.

    Directory of Open Access Journals (Sweden)

    Andrew S Hoey

    Full Text Available Coral reefs are under increasing pressure from anthropogenic and climate-induced stressors. The ability of reefs to reassemble and regenerate after disturbances (i.e., resilience is largely dependent on the capacity of herbivores to prevent macroalgal expansion, and the replenishment of coral populations through larval recruitment. Currently there is a paucity of this information for higher latitude, subtropical reefs. To assess the potential resilience of the benthic reef assemblages of Lord Howe Island (31°32'S, 159°04'E, the worlds' southernmost coral reef, we quantified the benthic composition, densities of juvenile corals (as a proxy for coral recruitment, and herbivorous fish communities. Despite some variation among habitats and sites, benthic communities were dominated by live scleractinian corals (mean cover 37.4% and fleshy macroalgae (20.9%. Live coral cover was higher than in most other subtropical reefs and directly comparable to lower latitude tropical reefs. Juvenile coral densities (0.8 ind.m(-2, however, were 5-200 times lower than those reported for tropical reefs. Overall, macroalgal cover was negatively related to the cover of live coral and the density of juvenile corals, but displayed no relationship with herbivorous fish biomass. The biomass of herbivorous fishes was relatively low (204 kg.ha(-1, and in marked contrast to tropical reefs was dominated by macroalgal browsing species (84.1% with relatively few grazing species. Despite their extremely low biomass, grazing fishes were positively related to both the density of juvenile corals and the cover of bare substrata, suggesting that they may enhance the recruitment of corals through the provision of suitable settlement sites. Although Lord Howe Islands' reefs are currently coral-dominated, the high macroalgal cover, coupled with limited coral recruitment and low coral growth rates suggest these reefs may be extremely susceptible to future disturbances.

  8. Crowning corals

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    and build-awareness about the rich, diverse biological resources is warranted and a plea is made to manage the sewage, oil and thermal pollution to help preserve the biodiversity of coral and associated flora and fauna....

  9. Coral settlement on a highly disturbed equatorial reef system.

    Science.gov (United States)

    Bauman, Andrew G; Guest, James R; Dunshea, Glenn; Low, Jeffery; Todd, Peter A; Steinberg, Peter D

    2015-01-01

    Processes occurring early in the life stages of corals can greatly influence the demography of coral populations, and successful settlement of coral larvae that leads to recruitment is a critical life history stage for coral reef ecosystems. Although corals in Singapore persist in one the world's most anthropogenically impacted reef systems, our understanding of the role of coral settlement in the persistence of coral communities in Singapore remains limited. Spatial and temporal patterns of coral settlement were examined at 7 sites in the southern islands of Singapore, using settlement tiles deployed and collected every 3 months from 2011 to 2013. Settlement occurred year round, but varied significantly across time and space. Annual coral settlement was low (~54.72 spat m(-2) yr(-1)) relative to other equatorial regions, but there was evidence of temporal variation in settlement rates. Peak settlement occurred between March-May and September-November, coinciding with annual coral spawning periods (March-April and October), while the lowest settlement occurred from December-February during the northeast monsoon. A period of high settlement was also observed between June and August in the first year (2011/12), possibly due to some species spawning outside predicted spawning periods, larvae settling from other locations or extended larval settlement competency periods. Settlement rates varied significantly among sites, but spatial variation was relatively consistent between years, suggesting the strong effects of local coral assemblages or environmental conditions. Pocilloporidae were the most abundant coral spat (83.6%), while Poritidae comprised only 6% of the spat, and Acroporidae coral spat. These results indicate that current settlement patterns are reinforcing the local adult assemblage structure ('others'; i.e. sediment-tolerant coral taxa) in Singapore, but that the replenishment capacity of Singapore's reefs appears relatively constrained, which could lead

  10. Water contamination reduces the tolerance of coral larvae to thermal stress.

    Directory of Open Access Journals (Sweden)

    Andrew P Negri

    Full Text Available Coral reefs are highly susceptible to climate change, with elevated sea surface temperatures (SST posing one of the main threats to coral survival. Successful recruitment of new colonies is important for the recovery of degraded reefs following mortality events. Coral larvae require relatively uncontaminated substratum on which to metamorphose into sessile polyps, and the increasing pollution of coastal waters therefore constitutes an additional threat to reef resilience. Here we develop and analyse a model of larval metamorphosis success for two common coral species to quantify the interactive effects of water pollution (copper contamination and SST. We identify thresholds of temperature and pollution that prevent larval metamorphosis, and evaluate synergistic interactions between these stressors. Our analyses show that halving the concentration of Cu can protect corals from the negative effects of a 2-3°C increase in SST. These results demonstrate that effective mitigation of local impacts can reduce negative effects of global stressors.

  11. Differential larval settlement responses of Porites astreoides and Acropora palmata in the presence of the green alga Halimeda opuntia

    Science.gov (United States)

    Olsen, K.; Sneed, J. M.; Paul, V. J.

    2016-06-01

    Settlement is critical to maintaining coral cover on reefs, yet interspecific responses of coral planulae to common benthic macroalgae are not well characterized. Larval survival and settlement of two Caribbean reef-building corals, the broadcast-spawner Acropora palmata and the planulae-brooder Porites astreoides, were quantified following exposure to plastic algae controls and the green macroalga Halimeda opuntia. Survival and settlement rates were not significantly affected by the presence of H. opuntia in either species. However, ~10 % of P. astreoides larvae settled on the surface of the macroalga, whereas larvae of A. palmata did not. It is unlikely that corals that settle on macroalgae will survive post-settlement; therefore, H. opuntia may reduce the number of P. astreoides and other non-discriminatory larvae that survive to adulthood. Our results suggest that the presence of macroalgae on impacted reefs can have unexpected repercussions for coral recruitment and highlight discrepancies in settlement specificity between corals with distinct life history strategies.

  12. Variation in habitat soundscape characteristics influences settlement of a reef-building coral.

    Science.gov (United States)

    Lillis, Ashlee; Bohnenstiehl, DelWayne; Peters, Jason W; Eggleston, David

    2016-01-01

    Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata , was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase). These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  13. Variation in habitat soundscape characteristics influences settlement of a reef-building coral

    Directory of Open Access Journals (Sweden)

    Ashlee Lillis

    2016-10-01

    Full Text Available Coral populations, and the productive reef ecosystems they support, rely on successful recruitment of reef-building species, beginning with settlement of dispersing larvae into habitat favourable to survival. Many substrate cues have been identified as contributors to coral larval habitat selection; however, the potential for ambient acoustic cues to influence coral settlement responses is unknown. Using in situ settlement chambers that excluded other habitat cues, larval settlement of a dominant Caribbean reef-building coral, Orbicella faveolata, was compared in response to three local soundscapes, with differing acoustic and habitat properties. Differences between reef sites in the number of larvae settled in chambers isolating acoustic cues corresponded to differences in sound levels and reef characteristics, with sounds at the loudest reef generating significantly higher settlement during trials compared to the quietest site (a 29.5 % increase. These results suggest that soundscapes could be an important influence on coral settlement patterns and that acoustic cues associated with reef habitat may be related to larval settlement. This study reports an effect of soundscape variation on larval settlement for a key coral species, and adds to the growing evidence that soundscapes affect marine ecosystems by influencing early life history processes of foundational species.

  14. Developmental transcriptome of Aplysia californica'

    KAUST Repository

    Heyland, Andreas

    2010-12-06

    Genome-wide transcriptional changes in development provide important insight into mechanisms underlying growth, differentiation, and patterning. However, such large-scale developmental studies have been limited to a few representatives of Ecdysozoans and Chordates. Here, we characterize transcriptomes of embryonic, larval, and metamorphic development in the marine mollusc Aplysia californica and reveal novel molecular components associated with life history transitions. Specifically, we identify more than 20 signal peptides, putative hormones, and transcription factors in association with early development and metamorphic stages-many of which seem to be evolutionarily conserved elements of signal transduction pathways. We also characterize genes related to biomineralization-a critical process of molluscan development. In summary, our experiment provides the first large-scale survey of gene expression in mollusc development, and complements previous studies on the regulatory mechanisms underlying body plan patterning and the formation of larval and juvenile structures. This study serves as a resource for further functional annotation of transcripts and genes in Aplysia, specifically and molluscs in general. A comparison of the Aplysia developmental transcriptome with similar studies in the zebra fish Danio rerio, the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans, and other studies on molluscs suggests an overall highly divergent pattern of gene regulatory mechanisms that are likely a consequence of the different developmental modes of these organisms. © 2010 Wiley-Liss, Inc., A Wiley Company.

  15. Review on hard coral recruitment (Cnidaria: Scleractinia in Colombia

    Directory of Open Access Journals (Sweden)

    Luisa F. Dueñas

    2011-12-01

    Full Text Available Recruitment, defined and measured as the incorporation of new individuals (i.e. coral juveniles into a population, is a fundamentalprocess for ecologists, evolutionists and conservationists due to its direct effect on population structure and function. Because most coralpopulations are self-feeding, a breakdown in recruitment would lead to local extinction. Recruitment indirectly affects both renewal andmaintenance of existing and future coral communities, coral reef biodiversity (bottom-up effect and therefore coral reef resilience. This process has been used as an indirect measure of individual reproductive success (fitness and is the final stage of larval dispersal leading to population connectivity. As a result, recruitment has been proposed as an indicator of coral-reef health in marine protected areas, as well as a central aspect of the decision-making process concerning management and conservation. The creation of management plans to promote impact mitigation, rehabilitation and conservation of the Colombian coral reefs is a necessity that requires firstly, a review and integration of existing literature on scleractinian coral recruitment in Colombia and secondly, larger scale field studies. This motivated us to summarize and analyze all existing information on coral recruitment to determine the state of knowledge, isolate patterns, identify gaps, and suggest future lines of research.

  16. Biology of corals and coral reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Rajkumar, R.; Parulekar, A.H.

    on the systematic position is presented. The general structure is depicted with illustrations. Physiology part is updated to current knowledge on reproduction, nutrition and excretion of corals. The coral reefs section begins with status of world reefs...

  17. Mesophotic coral-reef environments depress the reproduction of the coral Paramontastraea peresi in the Red Sea

    Science.gov (United States)

    Feldman, Bar; Shlesinger, Tom; Loya, Yossi

    2018-03-01

    With more than 450 studied species, coral reproduction is a well-known research field. However, the vast majority of coral reproduction research has focused exclusively on shallow reefs. The incentive for the present study was: (1) the recent accelerated global degradation of coral reefs; (2) the growing interest in mesophotic coral ecosystems (MCEs; 30-120 m depth) and their potential to serve as a larval source for shallow reefs; and (3) the lack of information on MCE coral reproduction. Here, we compare the reproduction and ecology of the depth-generalist coral Paramontastraea peresi between shallow (5-10 m) and mesophotic (40-45 m) habitats in the Gulf of Eilat/Aqaba, Red Sea. Field surveys were conducted to assess the living cover, abundance, and size frequency distribution of P. peresi. Four to six colonies from each habitat were sampled monthly between April 2015 and January 2017, and the gametogenesis cycles, fecundity, and oocyte sizes were measured. The reproductive cycle in the MCEs was shorter than in the shallow reef. Despite having larger polyps, the mesophotic colonies contained significantly smaller and fewer oocytes per polyp. In spite of the relatively stable environmental conditions of the MCEs, which may contribute to coral survival, scarcity of sunlight is probably a major energetic impediment to investment in reproduction by P. peresi at mesophotic depths. Further intensive reproductive studies in mesophotic reefs are thus required to assess the ability of corals in this environment to reproduce and constitute a larval source for depleted shallow-water reefs.

  18. No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks.

    Science.gov (United States)

    Schill, Steven R; Raber, George T; Roberts, Jason J; Treml, Eric A; Brenner, Jorge; Halpin, Patrick N

    2015-01-01

    We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA) network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008-2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ) and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future.

  19. No Reef Is an Island: Integrating Coral Reef Connectivity Data into the Design of Regional-Scale Marine Protected Area Networks.

    Directory of Open Access Journals (Sweden)

    Steven R Schill

    Full Text Available We integrated coral reef connectivity data for the Caribbean and Gulf of Mexico into a conservation decision-making framework for designing a regional scale marine protected area (MPA network that provides insight into ecological and political contexts. We used an ocean circulation model and regional coral reef data to simulate eight spawning events from 2008-2011, applying a maximum 30-day pelagic larval duration and 20% mortality rate. Coral larval dispersal patterns were analyzed between coral reefs across jurisdictional marine zones to identify spatial relationships between larval sources and destinations within countries and territories across the region. We applied our results in Marxan, a conservation planning software tool, to identify a regional coral reef MPA network design that meets conservation goals, minimizes underlying threats, and maintains coral reef connectivity. Our results suggest that approximately 77% of coral reefs identified as having a high regional connectivity value are not included in the existing MPA network. This research is unique because we quantify and report coral larval connectivity data by marine ecoregions and Exclusive Economic Zones (EZZ and use this information to identify gaps in the current Caribbean-wide MPA network by integrating asymmetric connectivity information in Marxan to design a regional MPA network that includes important reef network connections. The identification of important reef connectivity metrics guides the selection of priority conservation areas and supports resilience at the whole system level into the future.

  20. Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae

    Science.gov (United States)

    Ritson-Williams, R.; Arnold, S. N.; Paul, V. J.; Steneck, R. S.

    2014-03-01

    Settlement specificity can regulate recruitment but remains poorly understood for coral larvae. We studied larvae of the corals, Acropora palmata and Montastraea faveolata, to determine their rates of settlement and metamorphosis in the presence of ten species of red algae, including eight species of crustose coralline algae, one geniculated coralline and one encrusting peyssonnelid. Twenty to forty percent of larvae of A. palmata settled on coralline surfaces of Hydrolithon boergesenii, Lithoporella atlantica, Neogoniolithon affine, and Titanoderma prototypum, whereas none settled and metamorphosed on Neogoniolithon mamillare. Larvae of M. faveolata had 13-25 % settlement onto the surface of Amphiroa tribulus, H. boergesenii, N. affine, N. munitum, and T. prototypum, but had no settlement on the surface of N. mamillare, Porolithon pachydermum, and a noncoralline crust Peyssonnelia sp. Some of these algal species were common on Belizean reefs, but the species that induced the highest rates of larval settlement and metamorphosis tended to be rare and primarily found in low-light environments. The shallow coral, A. palmata, and the deeper coral, M. faveolata, both had increased larval settlement rates in the presence of only a few species of red algae found at deeper depths suggesting that patterns of coral distribution can only sometimes be related to the distribution of red algae species.

  1. NOAA Coral Reef Watch Larval Connectivity, Florida Reef Tract

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climate change threatens even the best-protected and most remote reefs. Reef recovery following catastrophic disturbance usually requires disturbed sites be reseeded...

  2. Genetic Signature of Resistance to White Band Disease in the Caribbean Staghorn Coral Acropora cervicornis.

    Directory of Open Access Journals (Sweden)

    Silvia Libro

    Full Text Available Coral reefs are declining worldwide due to multiple factors including rising sea surface temperature, ocean acidification, and disease outbreaks. Over the last 30 years, White Band Disease (WBD alone has killed up to 95% of the Caribbean`s dominant shallow-water corals--the staghorn coral Acropora cervicornis and the elkhorn coral A. palmata. Both corals are now listed on the US Endangered Species Act, and while their recovery has been slow, recent transmission surveys indicate that more than 5% of staghorn corals are disease resistant. Here we compared transcriptome-wide gene expression between resistant and susceptible staghorn corals exposed to WBD using in situ transmission assays. We identified constitutive gene expression differences underlying disease resistance that are independent from the immune response associated with disease exposure. Genes involved in RNA interference-mediated gene silencing, including Argonaute were up-regulated in resistant corals, whereas heat shock proteins (HSPs were down-regulated. Up-regulation of Argonaute proteins indicates that post-transcriptional gene silencing plays a key, but previously unsuspected role in coral immunity and disease resistance. Constitutive expression of HSPs has been linked to thermal resilience in other Acropora corals, suggesting that the down-regulation of HSPs in disease resistant staghorn corals may confer a dual benefit of thermal resilience.

  3. Genetic Signature of Resistance to White Band Disease in the Caribbean Staghorn Coral Acropora cervicornis.

    Science.gov (United States)

    Libro, Silvia; Vollmer, Steven V

    2016-01-01

    Coral reefs are declining worldwide due to multiple factors including rising sea surface temperature, ocean acidification, and disease outbreaks. Over the last 30 years, White Band Disease (WBD) alone has killed up to 95% of the Caribbean`s dominant shallow-water corals--the staghorn coral Acropora cervicornis and the elkhorn coral A. palmata. Both corals are now listed on the US Endangered Species Act, and while their recovery has been slow, recent transmission surveys indicate that more than 5% of staghorn corals are disease resistant. Here we compared transcriptome-wide gene expression between resistant and susceptible staghorn corals exposed to WBD using in situ transmission assays. We identified constitutive gene expression differences underlying disease resistance that are independent from the immune response associated with disease exposure. Genes involved in RNA interference-mediated gene silencing, including Argonaute were up-regulated in resistant corals, whereas heat shock proteins (HSPs) were down-regulated. Up-regulation of Argonaute proteins indicates that post-transcriptional gene silencing plays a key, but previously unsuspected role in coral immunity and disease resistance. Constitutive expression of HSPs has been linked to thermal resilience in other Acropora corals, suggesting that the down-regulation of HSPs in disease resistant staghorn corals may confer a dual benefit of thermal resilience.

  4. Modeled differences of coral life-history traits influence the refugium potential of a remote Caribbean reef

    Science.gov (United States)

    Davies, Sarah W.; Strader, Marie E.; Kool, Johnathan T.; Kenkel, Carly D.; Matz, Mikhail V.

    2017-09-01

    Remote populations can influence connectivity and may serve as refugia from climate change. We investigated two reef-building corals ( Pseudodiploria strigosa and Orbicella franksi) from the Flower Garden Banks (FGB), the most isolated, high-latitude Caribbean reef system, which, until recently, retained high coral cover. We characterized coral size-frequency distributions, quantified larval mortality rates and onset of competence ex situ, estimated larval production, and created detailed biophysical models incorporating these parameters to evaluate the source-sink dynamics at the FGB from 2009 to 2012. Estimated mortality rates were similar between species, but pre-competency differed dramatically; P. strigosa was capable of metamorphosis within 2.5 d post-fertilization (dpf) and was competent at least until 8 dpf, while O. franksi was not competent until >20 dpf and remained competent up to 120 dpf. To explore the effect of such contrasting life histories on connectivity, we modeled larval dispersal from the FGB assuming pelagic larval durations (PLD) of either 3-20 d, approximating laboratory-measured pre-competency of P. strigosa, or 20-120 d, approximating pre-competency observed in O. franksi. Surprisingly, both models predicted similar probabilities of local retention at the FGB, either by direct rapid reseeding or via long-term persistence in the Loop Current with larvae returning to the FGB within a month. However, our models predicted that short PLDs would result in complete isolation from the rest of the Caribbean, while long PLDs allowed for larval export to more distant northern Caribbean reefs, highlighting the importance of quantifying larval pre-competency dynamics when parameterizing biophysical models to predict larval connectivity. These simulations suggest that FGB coral populations are likely to be largely self-sustaining and highlight the potential of long-PLD corals, such as endangered Orbicella, to act as larval sources for other degraded

  5. Functional genomics identifies regulators of the phototransduction machinery in the Drosophila larval eye and adult ocelli.

    Science.gov (United States)

    Mishra, Abhishek Kumar; Bargmann, Bastiaan O R; Tsachaki, Maria; Fritsch, Cornelia; Sprecher, Simon G

    2016-02-15

    Sensory perception of light is mediated by specialized Photoreceptor neurons (PRs) in the eye. During development all PRs are genetically determined to express a specific Rhodopsin (Rh) gene and genes mediating a functional phototransduction pathway. While the genetic and molecular mechanisms of PR development is well described in the adult compound eye, it remains unclear how the expression of Rhodopsins and the phototransduction cascade is regulated in other visual organs in Drosophila, such as the larval eye and adult ocelli. Using transcriptome analysis of larval PR-subtypes and ocellar PRs we identify and study new regulators required during PR differentiation or necessary for the expression of specific signaling molecules of the functional phototransduction pathway. We found that the transcription factor Krüppel (Kr) is enriched in the larval eye and controls PR differentiation by promoting Rh5 and Rh6 expression. We also identified Camta, Lola, Dve and Hazy as key genes acting during ocellar PR differentiation. Further we show that these transcriptional regulators control gene expression of the phototransduction cascade in both larval eye and adult ocelli. Our results show that PR cell type-specific transcriptome profiling is a powerful tool to identify key transcriptional regulators involved during several aspects of PR development and differentiation. Our findings greatly contribute to the understanding of how combinatorial action of key transcriptional regulators control PR development and the regulation of a functional phototransduction pathway in both larval eye and adult ocelli. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Climate, bleaching and connectivity in the Coral Triangle.

    Science.gov (United States)

    Curchitser, E. N.; Kleypas, J. A.; Castruccio, F. S.; Drenkard, E.; Thompson, D. M.; Pinsky, M. L.

    2016-12-01

    The Coral Triangle (CT) is the apex of marine biodiversity and supports the livelihoods of millions of people. It is also one of the most threatened of all reef regions in the world. We present results from a series of high-resolution, numerical ocean models designed to address physical and ecological questions relevant to the region's coral communities. The hierarchy of models was designed to optimize the model performance in addressing questions ranging from the role of internal tides in larval connectivity to distinguishing the role of interannual variability from decadal trends in thermal stress leading to mass bleaching events. In this presentation we will show how combining ocean circulation with models of larval dispersal leads to new insights into the interplay of physics and ecology in this complex oceanographic region, which can ultimately be used to inform conservation efforts.

  7. Coral reefs - Specialized ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    This paper discusses briefly some aspects that characterize and differentiate coral reef ecosystems from other tropical marine ecosystems. A brief account on the resources that are extractable from coral reefs, their susceptibility to natural...

  8. Reef-fish larval dispersal patterns validate no-take marine reserve network connectivity that links human communities

    Science.gov (United States)

    Abesamis, Rene A.; Saenz-Agudelo, Pablo; Berumen, Michael L.; Bode, Michael; Jadloc, Claro Renato L.; Solera, Leilani A.; Villanoy, Cesar L.; Bernardo, Lawrence Patrick C.; Alcala, Angel C.; Russ, Garry R.

    2017-09-01

    Networks of no-take marine reserves (NTMRs) are a widely advocated strategy for managing coral reefs. However, uncertainty about the strength of population connectivity between individual reefs and NTMRs through larval dispersal remains a major obstacle to effective network design. In this study, larval dispersal among NTMRs and fishing grounds in the Philippines was inferred by conducting genetic parentage analysis on a coral-reef fish ( Chaetodon vagabundus). Adult and juvenile fish were sampled intensively in an area encompassing approximately 90 km of coastline. Thirty-seven true parent-offspring pairs were accepted after screening 1978 juveniles against 1387 adults. The data showed all types of dispersal connections that may occur in NTMR networks, with assignments suggesting connectivity among NTMRs and fishing grounds ( n = 35) far outnumbering those indicating self-recruitment ( n = 2). Critically, half (51%) of the inferred occurrences of larval dispersal linked reefs managed by separate, independent municipalities and constituent villages, emphasising the need for nested collaborative management arrangements across management units to sustain NTMR networks. Larval dispersal appeared to be influenced by wind-driven seasonal reversals in the direction of surface currents. The best-fit larval dispersal kernel estimated from the parentage data predicted that 50% of larvae originating from a population would attempt to settle within 33 km, and 95% within 83 km. Mean larval dispersal distance was estimated to be 36.5 km. These results suggest that creating a network of closely spaced (less than a few tens of km apart) NTMRs can enhance recruitment for protected and fished populations throughout the NTMR network. The findings underscore major challenges for regional coral-reef management initiatives that must be addressed with priority: (1) strengthening management of NTMR networks across political or customary boundaries; and (2) achieving adequate population

  9. Reef-fish larval dispersal patterns validate no-take marine reserve network connectivity that links human communities

    KAUST Repository

    Abesamis, Rene A.

    2017-03-24

    Networks of no-take marine reserves (NTMRs) are a widely advocated strategy for managing coral reefs. However, uncertainty about the strength of population connectivity between individual reefs and NTMRs through larval dispersal remains a major obstacle to effective network design. In this study, larval dispersal among NTMRs and fishing grounds in the Philippines was inferred by conducting genetic parentage analysis on a coral-reef fish (Chaetodon vagabundus). Adult and juvenile fish were sampled intensively in an area encompassing approximately 90 km of coastline. Thirty-seven true parent-offspring pairs were accepted after screening 1978 juveniles against 1387 adults. The data showed all types of dispersal connections that may occur in NTMR networks, with assignments suggesting connectivity among NTMRs and fishing grounds (n = 35) far outnumbering those indicating self-recruitment (n = 2). Critically, half (51%) of the inferred occurrences of larval dispersal linked reefs managed by separate, independent municipalities and constituent villages, emphasising the need for nested collaborative management arrangements across management units to sustain NTMR networks. Larval dispersal appeared to be influenced by wind-driven seasonal reversals in the direction of surface currents. The best-fit larval dispersal kernel estimated from the parentage data predicted that 50% of larvae originating from a population would attempt to settle within 33 km, and 95% within 83 km. Mean larval dispersal distance was estimated to be 36.5 km. These results suggest that creating a network of closely spaced (less than a few tens of km apart) NTMRs can enhance recruitment for protected and fished populations throughout the NTMR network. The findings underscore major challenges for regional coral-reef management initiatives that must be addressed with priority: (1) strengthening management of NTMR networks across political or customary boundaries; and (2) achieving adequate population

  10. Effects of coal contamination on early life history processes of a reef-building coral, Acropora tenuis.

    Science.gov (United States)

    Berry, Kathryn L E; Hoogenboom, Mia O; Brinkman, Diane L; Burns, Kathryn A; Negri, Andrew P

    2017-01-15

    Successful reproduction and larval dispersal are important for the persistence of marine invertebrate populations, and these early life history processes can be sensitive to marine pollution. Coal is emerging as a contaminant of interest due to the proximity of ports and shipping lanes to coral reefs. To assess the potential hazard of this contaminant, gametes, newly developed embryos, larvae and juveniles of the coral Acropora tenuis were exposed to a range of coal leachate, suspended coal, and coal smothering treatments. Fertilisation was the most sensitive reproductive process tested. Embryo survivorship decreased with increasing suspended coal concentrations and exposure duration, effects on larval settlement varied between treatments, while effects on juvenile survivorship were minimal. Leachate exposures had negligible effects on fertilisation and larval settlement. These results indicate that coral recruitment could be affected by spills that produce plumes of suspended coal particles which interact with gametes and embryos soon after spawning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Climate change impacts on coral reefs: synergies with local effects, possibilities for acclimation, and management implications.

    Science.gov (United States)

    Ateweberhan, Mebrahtu; Feary, David A; Keshavmurthy, Shashank; Chen, Allen; Schleyer, Michael H; Sheppard, Charles R C

    2013-09-30

    Most reviews concerning the impact of climate change on coral reefs discuss independent effects of warming or ocean acidification. However, the interactions between these, and between these and direct local stressors are less well addressed. This review underlines that coral bleaching, acidification, and diseases are expected to interact synergistically, and will negatively influence survival, growth, reproduction, larval development, settlement, and post-settlement development of corals. Interactions with local stress factors such as pollution, sedimentation, and overfishing are further expected to compound effects of climate change. Reduced coral cover and species composition following coral bleaching events affect coral reef fish community structure, with variable outcomes depending on their habitat dependence and trophic specialisation. Ocean acidification itself impacts fish mainly indirectly through disruption of predation- and habitat-associated behavior changes. Zooxanthellate octocorals on reefs are often overlooked but are substantial occupiers of space; these also are highly susceptible to bleaching but because they tend to be more heterotrophic, climate change impacts mainly manifest in terms of changes in species composition and population structure. Non-calcifying macroalgae are expected to respond positively to ocean acidification and promote microbe-induced coral mortality via the release of dissolved compounds, thus intensifying phase-shifts from coral to macroalgal domination. Adaptation of corals to these consequences of CO2 rise through increased tolerance of corals and successful mutualistic associations between corals and zooxanthellae is likely to be insufficient to match the rate and frequency of the projected changes. Impacts are interactive and magnified, and because there is a limited capacity for corals to adapt to climate change, global targets of carbon emission reductions are insufficient for coral reefs, so lower targets should be

  12. Identification of microRNAs in the coral Stylophora pistillata.

    KAUST Repository

    Liew, Yi Jin

    2014-03-21

    Coral reefs are major contributors to marine biodiversity. However, they are in rapid decline due to global environmental changes such as rising sea surface temperatures, ocean acidification, and pollution. Genomic and transcriptomic analyses have broadened our understanding of coral biology, but a study of the microRNA (miRNA) repertoire of corals is missing. miRNAs constitute a class of small non-coding RNAs of ∼22 nt in size that play crucial roles in development, metabolism, and stress response in plants and animals alike. In this study, we examined the coral Stylophora pistillata for the presence of miRNAs and the corresponding core protein machinery required for their processing and function. Based on small RNA sequencing, we present evidence for 31 bona fide microRNAs, 5 of which (miR-100, miR-2022, miR-2023, miR-2030, and miR-2036) are conserved in other metazoans. Homologues of Argonaute, Piwi, Dicer, Drosha, Pasha, and HEN1 were identified in the transcriptome of S. pistillata based on strong sequence conservation with known RNAi proteins, with additional support derived from phylogenetic trees. Examination of putative miRNA gene targets indicates potential roles in development, metabolism, immunity, and biomineralisation for several of the microRNAs. Here, we present first evidence of a functional RNAi machinery and five conserved miRNAs in S. pistillata, implying that miRNAs play a role in organismal biology of scleractinian corals. Analysis of predicted miRNA target genes in S. pistillata suggests potential roles of miRNAs in symbiosis and coral calcification. Given the importance of miRNAs in regulating gene expression in other metazoans, further expression analyses of small non-coding RNAs in transcriptional studies of corals should be informative about miRNA-affected processes and pathways.

  13. Allelochemicals Produced by Brown Macroalgae of the Lobophora Genus Are Active against Coral Larvae and Associated Bacteria, Supporting Pathogenic Shifts to Vibrio Dominance.

    Science.gov (United States)

    Morrow, Kathleen M; Bromhall, Katrina; Motti, Cherie A; Munn, Colin B; Bourne, David G

    2017-01-01

    Pervasive environmental stressors on coral reefs are attributed with shifting the competitive balance in favor of alternative dominants, such as macroalgae. Previous studies have demonstrated that macroalgae compete with corals via a number of mechanisms, including the production of potent primary and secondary metabolites that can influence coral-associated microbial communities. The present study investigates the effects of the Pacific brown macroalga Lobophora sp. (due to the shifting nature of the Lobophora species complex, it will be referred to here as Lobophora sp.) on coral bacterial isolates, coral larvae, and the microbiome associated with the coral Porites cylindrica. Crude aqueous and organic macroalgal extracts were found to inhibit the growth of coral-associated bacteria. Extracts and fractions were also shown to inhibit coral larval settlement and cause mortality at concentrations lower (pathogenic. Macroalgae (e.g., seaweeds) can physically and chemically interact with corals, causing abrasion, bleaching, and overall stress. This study contributes to a growing body of evidence suggesting that macroalgae play a critical role in shifting the coral holobiont equilibrium, which may promote the invasion of opportunistic pathogens and cause coral mortality, facilitating additional macroalgal growth and invasion in the reef. Thus, macroalgae not only contribute to a decline in coral fitness but also influence coral reef ecosystem structure. © Crown copyright 2016.

  14. Impacts of ocean acidification on early life-history stages and settlement of the coral-eating sea star Acanthaster planci.

    Science.gov (United States)

    Uthicke, Sven; Pecorino, Danilo; Albright, Rebecca; Negri, Andrew Peter; Cantin, Neal; Liddy, Michelle; Dworjanyn, Symon; Kamya, Pamela; Byrne, Maria; Lamare, Miles

    2013-01-01

    Coral reefs are marine biodiversity hotspots, but their existence is threatened by global change and local pressures such as land-runoff and overfishing. Population explosions of coral-eating crown of thorns sea stars (COTS) are a major contributor to recent decline in coral cover on the Great Barrier Reef. Here, we investigate how projected near-future ocean acidification (OA) conditions can affect early life history stages of COTS, by investigating important milestones including sperm motility, fertilisation rates, and larval development and settlement. OA (increased pCO2 to 900-1200 µatm pCO2) significantly reduced sperm motility and, to a lesser extent, velocity, which strongly reduced fertilization rates at environmentally relevant sperm concentrations. Normal development of 10 d old larvae was significantly lower under elevated pCO2 but larval size was not significantly different between treatments. Settlement of COTS larvae was significantly reduced on crustose coralline algae (known settlement inducers of COTS) that had been exposed to OA conditions for 85 d prior to settlement assays. Effect size analyses illustrated that reduced settlement may be the largest bottleneck for overall juvenile production. Results indicate that reductions in fertilisation and settlement success alone would reduce COTS population replenishment by over 50%. However, it is unlikely that this effect is sufficient to provide respite for corals from other negative anthropogenic impacts and direct stress from OA and warming on corals.

  15. Coral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis

    Directory of Open Access Journals (Sweden)

    F. Joseph Pollock

    2017-09-01

    Full Text Available Here we describe an efficient and effective technique for rearing sexually-derived coral propagules from spawning through larval settlement and symbiont uptake with minimal impact on natural coral populations. We sought to maximize larval survival while minimizing expense and daily husbandry maintenance by experimentally determining optimized conditions and protocols for gamete fertilization, larval cultivation, induction of larval settlement by crustose coralline algae, and inoculation of newly settled juveniles with their dinoflagellate symbiont Symbiodinium. Larval rearing densities at or below 0.2 larvae mL−1 were found to maximize larval survival and settlement success in culture tanks while minimizing maintenance effort. Induction of larval settlement via the addition of a ground mixture of diverse crustose coralline algae (CCA is recommended, given the challenging nature of in situ CCA identification and our finding that non settlement-inducing CCA assemblages do not inhibit larval settlement if suitable assemblages are present. Although order of magnitude differences in infectivity were found between common Great Barrier Reef Symbiodinium clades C and D, no significant differences in Symbiodinium uptake were observed between laboratory-cultured and wild-harvested symbionts in each case. The technique presented here for Acropora millepora can be adapted for research and restoration efforts in a wide range of broadcast spawning coral species.

  16. Variation in the transcriptional response of threatened coral larvae to elevated temperatures.

    Science.gov (United States)

    Polato, Nicholas R; Altman, Naomi S; Baums, Iliana B

    2013-03-01

    Coral populations have declined worldwide largely due to increased sea surface temperatures. Recovery of coral populations depends in part upon larval recruitment. Many corals reproduce during the warmest time of year when further increases in temperature can lead to low fertilization rates of eggs and high larval mortality. Microarray experiments were designed to capture and assess variability in the thermal stress responses of Acropora palmata larvae from Puerto Rico. Transcription profiles showed a striking acceleration of normal developmental gene expression patterns with increased temperature. The transcriptional response to heat suggested rapid depletion of larval energy stores via peroxisomal lipid oxidation and included key enzymes that indicated the activation of the glyoxylate cycle. High temperature also resulted in expression differences in key developmental signalling genes including the conserved WNT pathway that is critical for pattern formation and tissue differentiation in developing embryos. Expression of these and other important developmental and thermal stress genes such as ferritin, heat shock proteins, cytoskeletal components, cell adhesion and autophagy proteins also varied among larvae derived from different parent colonies. Disruption of normal developmental and metabolic processes will have negative impacts on larval survival and dispersal as temperatures rise. However, it appears that variation in larval response to high temperature remains despite the dramatic population declines. Further research is needed to determine whether this variation is heritable or attributable to maternal effects. © 2013 Blackwell Publishing Ltd.

  17. The chemical cue tetrabromopyrrole from a biofilm bacterium induces settlement of multiple Caribbean corals.

    Science.gov (United States)

    Sneed, Jennifer M; Sharp, Koty H; Ritchie, Kimberly B; Paul, Valerie J

    2014-07-07

    Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  18. Corals diseases are a major cause of coral death

    Science.gov (United States)

    Corals, like humans, are susceptible to diseases. Some coral diseases are associated with pathogenic bacteria; however, the causes of most remain unknown. Some diseases trigger rapid and extensive mortality, while others slowly cause localized color changes or injure coral tiss...

  19. Review: Current trends in coral transplantation – an approach to preserve biodiversity

    Directory of Open Access Journals (Sweden)

    ABDELNABY ORABI

    2013-04-01

    Full Text Available Ammar MSA,El-Gammal F, Nassar M, Belal A, Farag W, El-Mesiry G, El-Haddad K, Orabi A, Abdelreheem A, Shaaban A. 2013. Review: Current trends in coral transplantation – an approach to preserve biodiversity. Biodiversitas 14: 43-53. The increasing rates of coral mortality associated with the rise in stress factors and the lack of adequate recovery worldwide have urged recent calls for actions by the scientific, conservation, and reef management communities. This work reviews the current trends in coral transplantation. Transplantation of coral colonies or fragments, whether from aqua-, mariculture or harvesting from a healthy colony, has been the most frequently recommended action for increasing coral abundance on damaged or degraded reefs and for conserving listed or “at-risk” species. Phytoplanktons are important for providing transplanted corals with complex organic compounds through photosynthesis. Artificial surfaces like concrete blocks, wrecks or other purpose-designed structures can be introduced for larval settlement. New surfaces can also be created through electrolysis. Molecular biological tools can be used to select sites for rehabilitation by asexual recruits. Surface chemistry and possible inputs of toxic leachate from artificial substrates are considered as important factors affecting natural recruitment. Transplants should be carefully maintained , revisited and reattached at least weekly in the first month and at least fortnightly in the next three months. Studies on survivorship and the reproductive ability of transplanted coral fragments are important for coral reef restoration. A coral nursery may be considered as a pool for local species that supplies reef-managers with unlimited coral colonies for sustainable management. Transplanting corals for making artificial reefs can be useful for increasing biodiversity, providing tourist diving, fishing and surfing; creating new artisanal and commercial fishing opportunities

  20. Differential gene expression during thermal stress and bleaching in the Caribbean coral Montastraea faveolata.

    Science.gov (United States)

    DeSalvo, M K; Voolstra, C R; Sunagawa, S; Schwarz, J A; Stillman, J H; Coffroth, M A; Szmant, A M; Medina, M

    2008-09-01

    The declining health of coral reefs worldwide is likely to intensify in response to continued anthropogenic disturbance from coastal development, pollution, and climate change. In response to these stresses, reef-building corals may exhibit bleaching, which marks the breakdown in symbiosis between coral and zooxanthellae. Mass coral bleaching due to elevated water temperature can devastate coral reefs on a large geographical scale. In order to understand the molecular and cellular basis of bleaching in corals, we have measured gene expression changes associated with thermal stress and bleaching using a complementary DNA microarray containing 1310 genes of the Caribbean coral Montastraea faveolata. In a first experiment, we identified differentially expressed genes by comparing experimentally bleached M. faveolata fragments to control non-heat-stressed fragments. In a second experiment, we identified differentially expressed genes during a time course experiment with four time points across 9 days. Results suggest that thermal stress and bleaching in M. faveolata affect the following processes: oxidative stress, Ca(2+) homeostasis, cytoskeletal organization, cell death, calcification, metabolism, protein synthesis, heat shock protein activity, and transposon activity. These results represent the first medium-scale transcriptomic study focused on revealing the cellular foundation of thermal stress-induced coral bleaching. We postulate that oxidative stress in thermal-stressed corals causes a disruption of Ca(2+) homeostasis, which in turn leads to cytoskeletal and cell adhesion changes, decreased calcification, and the initiation of cell death via apoptosis and necrosis.

  1. Coral reefs and eutrophication

    International Nuclear Information System (INIS)

    Stambler, N.

    1999-01-01

    Coral reefs are found in oligotrophic waters, which are poor in nutrients such as nitrogen, phosphate, and possibly iron. In spite of this, coral reefs exhibit high gross primary productivity rates. They thrive in oligotrophic conditions because of the symbiotic relationship between corals and dinoflagellate algae (zooxanthellae) embedded in the coral tissue. In their mutualistic symbiosis, the zooxanthellae contribute their photosynthetic capability as the basis for the metabolic energy of the whole association, and eventually of a great part of the entire reef ecosystem

  2. The transcriptomic and evolutionary signature of social interactions regulating honey bee caste development.

    Science.gov (United States)

    The caste fate of developing female honey bee larvae is strictly socially regulated by adult nurse workers. As a result of this social regulation, nurse-expressed genes as well as larval-expressed genes may affect caste expression and evolution. We used a novel transcriptomic approach to identify ge...

  3. De novo transcriptome assembly of shrimp Palaemon serratus

    Directory of Open Access Journals (Sweden)

    Alejandra Perina

    2017-03-01

    Full Text Available The shrimp Palaemon serratus is a coastal decapod crustacean with a high commercial value. It is harvested for human consumption. In this study, we used Illumina sequencing technology (HiSeq 2000 to sequence, assemble and annotate the transcriptome of P. serratus. RNA was isolated from muscle of adults individuals and, from a pool of larvae. A total number of 4 cDNA libraries were constructed, using the TruSeq RNA Sample Preparation Kit v2. The raw data in this study was deposited in NCBI SRA database with study accession number of SRP090769. The obtained data were subjected to de novo transcriptome assembly using Trinity software, and coding regions were predicted by TransDecoder. We used Blastp and Sma3s to annotate the identified proteins. The transcriptome data could provide some insight into the understanding of genes involved in the larval development and metamorphosis.

  4. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    Science.gov (United States)

    Markey, Kathryn L; Abdo, Dave A; Evans, Scott N; Bosserelle, Cyprien

    2016-01-01

    In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI) coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile) compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile). Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011) has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them.

  5. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.

    Directory of Open Access Journals (Sweden)

    Kathryn L Markey

    Full Text Available In 2011 the first recorded bleaching event for the high latitude Houtman Abrolhos Islands (HAI coral communities was documented. This bleaching event highlighted the question of whether a supply of 'heat tolerant' coral recruits from the tropical north would be sufficient to provide a level of resistance for these reefs to future warming events. Using Lagrangian modelling we showed that due to its regional isolation, large-scale larval input from potential tropical northern source populations to the HAI is unlikely, despite the southward flowing Leeuwin current. Successful recruitment to artificial substrates was recorded following the bleaching event. However, this was negligible (0.4 ± 0.1 recruits per tile compared to 2013 post impact recruitment (128.8 ± 15.8 recruits per tile. Our data therefore provides preliminary evidence suggesting that the connectivity of the HAI with coral communities in the north is limited, and population maintenance and recovery is likely driven primarily by self-recruitment. Given the low thermal tolerance of the HAI coral communities, the dominance of Acropora, and the apparent reliance on self-recruitment, an increased frequency of thermally anomalous conditions at the HAI (such as experienced in 2011 has the potential to reduce the long-term stability of the HAI coral populations and species that depend upon them.

  6. Larval helminths in intermediate hosts

    DEFF Research Database (Denmark)

    Fredensborg, Brian Lund; Poulin, R

    2005-01-01

    Density-dependent effects on parasite fitness have been documented from adult helminths in their definitive hosts. There have, however, been no studies on the cost of sharing an intermediate host with other parasites in terms of reduced adult parasite fecundity. Even if larval parasites suffer a ...

  7. Larval outbreaks in West Greenland

    DEFF Research Database (Denmark)

    Lund, Magnus; Raundrup, Katrine; Westergaard-Nielsen, Andreas

    2017-01-01

    effects of a larval outbreak in 2011 on vegetation productivity and CO2 exchange. We estimate a decreased carbon (C) sink strength in the order of 118–143 g C m−2, corresponding to 1210–1470 tonnes C at the Kobbefjord catchment scale. The decreased C sink was, however, counteracted the following years...

  8. Kauri seeds and larval somersaults

    DEFF Research Database (Denmark)

    Dupont, Steen Thorleif

    2012-01-01

    The trunk morphology of the larvae of the kauri pine (Agathis) seed infesting moth Agathiphaga is described using conventional, polarization, and scanning electron microscopy. The pine seed chamber formed by the larva is also described and commented on. The simple larval chaetotaxy includes more ...

  9. Gene expression patterns during the larval development of European sea bass (dicentrarchus labrax) by microarray analysis.

    Science.gov (United States)

    Darias, M J; Zambonino-Infante, J L; Hugot, K; Cahu, C L; Mazurais, D

    2008-01-01

    During the larval period, marine teleosts undergo very fast growth and dramatic changes in morphology, metabolism, and behavior to accomplish their metamorphosis into juvenile fish. Regulation of gene expression is widely thought to be a key mechanism underlying the management of the biological processes required for harmonious development over this phase of life. To provide an overall analysis of gene expression in the whole body during sea bass larval development, we monitored the expression of 6,626 distinct genes at 10 different points in time between 7 and 43 days post-hatching (dph) by using heterologous hybridization of a rainbow trout cDNA microarray. The differentially expressed genes (n = 485) could be grouped into two categories: genes that were generally up-expressed early, between 7 and 23 dph, and genes up-expressed between 25 and 43 dph. Interestingly, among the genes regulated during the larval period, those related to organogenesis, energy pathways, biosynthesis, and digestion were over-represented compared with total set of analyzed genes. We discuss the quantitative regulation of whole-body contents of these specific transcripts with regard to the ontogenesis and maturation of essential functions that take place over larval development. Our study is the first utilization of a transcriptomic approach in sea bass and reveals dynamic changes in gene expression patterns in relation to marine finfish larval development.

  10. Cryobiology of coral fragments.

    Science.gov (United States)

    Hagedorn, Mary; Farrell, Ann; Carter, Virginia L

    2013-02-01

    Around the world, coral reefs are dying due to human influences, and saving habitat alone may not stop this destruction. This investigation focused on the biological processes that will provide the first steps in understanding the cryobiology of whole coral fragments. Coral fragments are a partnership of coral tissue and endosymbiotic algae, Symbiodinium sp., commonly called zooxanthellae. These data reflected their separate sensitivities to chilling and a cryoprotectant (dimethyl sulfoxide) for the coral Pocillopora damicornis, as measured by tissue loss and Pulse Amplitude Modulated fluorometry 3weeks post-treatment. Five cryoprotectant treatments maintained the viability of the coral tissue and zooxanthellae at control values (1M dimethyl sulfoxide at 1.0, 1.5 and 2.0h exposures, and 1.5M dimethyl sulfoxide at 1.0 and 1.5h exposures, P>0.05, ANOVA), whereas 2M concentrations did not (Pzooxanthellae. During the winter when the fragments were chilled, the coral tissue remained relatively intact (∼25% loss) post-treatment, but the zooxanthellae numbers in the tissue declined after 5min of chilling (Pzooxanthellae numbers declined in response to chilling alone (P0.05, ANOVA), but it did not protect against the loss of zooxanthellae (Pzooxanthellae are the most sensitive element in the coral fragment complex and future cryopreservation protocols must be guided by their greater sensitivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Coral Reefs: Beyond Mortality?

    Directory of Open Access Journals (Sweden)

    Charles Sheppard

    2000-01-01

    Full Text Available The scale of the collapse of coral reef communities in 1998 following a warming episode (Wilkinson, 2000 was unprecedented, and took many people by surprise. The Indian Ocean was the worst affected with a coral mortality over 75% in many areas such as the Chagos Archipelago (Sheppard, 1999, Seychelles (Spencer et al., 2000 and Maldives (McClanahan, 2000. Several other locations were affected at least as much, with mortality reaching 100% (to the nearest whole number; this is being compiled by various authors (e.g., CORDIO, in press. For example, in the Arabian Gulf, coral mortality is almost total across many large areas of shallow water (Sheppard, unpublished; D. George and D. John, personal communication. The mortality is patchy of course, depending on currents, location inside or outside lagoons, etc., but it is now possible to swim for over 200 m and see not one remaining living coral or soft coral on some previously rich reefs.

  12. Location-specific responses to thermal stress in larvae of the reef-building coral Montastraea faveolata.

    Directory of Open Access Journals (Sweden)

    Nicholas R Polato

    2010-06-01

    Full Text Available The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations.To test the hypothesis that larval transcription profiles reflect location-specific responses to thermal stress, symbiont-free gametes from three to four colonies of the scleractinian coral Montastraea faveolata were collected from Florida and Mexico, fertilized, and raised under mean and elevated (up 1 to 2 degrees C above summer mean temperatures. These locations have been shown to exchange larvae frequently enough to prevent significant differentiation of neutral loci. Differences among 1,310 unigenes were simultaneously characterized using custom cDNA microarrays, allowing investigation of gene expression patterns among larvae generated from wild populations under stress. Results show both conserved and location-specific variation in key processes including apoptosis, cell structuring, adhesion and development, energy and protein metabolism, and response to stress, in embryos of a reef-building coral.These results provide first insights into location-specific variation in gene expression in the face of gene flow, and support the hypothesis that coral host genomes may house adaptive potential needed to deal with changing environmental conditions.

  13. First feeding of larval herring

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Munk, Peter; Støttrup, Josianne

    1985-01-01

    The transition period from endogenous to exogenous feeding by larval herring was investigated in the laboratory for four herring stocks in order to evaluate the chances of survival at the time of fiest feeding. Observations on larval activity, feeding and growth were related to amount of yolk......, visual experience with potential prey organisms prior to first feeding and prey density. Herring larvae did not initiate exogenous feeding until around the time of yolk resorption. The timing of first feeding was not influenced by prior exposure to potential prey organisms during the yolk sac stage....... In the light of these observations, the ecological significance of the yolk sac stage is discussed. Initiation of exogenous feeding was delayed by 1-4 days at a low (7.5 nauplii .cntdot. l-1) compared to a high (120 nauplii .cntdot. l-1) prey density, but even at prey densities corresponding to the lower end...

  14. Bathymetric variation in recruitment and relative importance of pre- and post-settlement processes in coral assemblages at Lyudao (Green Island, Taiwan.

    Directory of Open Access Journals (Sweden)

    Yoko Nozawa

    Full Text Available Studies on coral communities have typically been conducted in shallow waters (∼5 m. However, in the face of climate change, and as shallow coral communities become degraded, a greater understanding of deeper coral communities is needed as they become the main reef remnants, playing a central role in the future of coral reefs. To understand the dynamics of deeper coral assemblages, the recruitment and taxonomic composition of different life-stages at 5 and 15 m depths were compared at three locations in Lyudao, southeastern Taiwan in 2010. Coral recruits (5 cm, several years to decades old were examined using transect lines. Pocilloporid and poritid corals had similar and higher numbers of recruits at 5 m compared to 15 m, whereas acroporid recruits were more abundant at 15 m. The primary cause for the former may be larval behavior, such that they position themselves in shallow waters, while that for the latter may be the dominance of brooding acroporid species (Isopora spp. at 15 m. The taxonomic composition, especially between recruits and juveniles/adults, was more similar at 15 m than at 5 m. These results suggest a change in the relative importance of pre- and post-settlement processes in assemblage determinants with depth; coral assemblages in shallow habitats (more disturbed are more influenced by post-settlement processes (mortality events, while those in deeper habitats (more protected are more influenced by pre-settlement processes (larval supply.

  15. Elevated temperature alters the lunar timing of Planulation in the brooding coral Pocillopora damicornis.

    Directory of Open Access Journals (Sweden)

    Camerron M Crowder

    Full Text Available Reproductive timing in corals is associated with environmental variables including temperature, lunar periodicity, and seasonality. Although it is clear that these variables are interrelated, it remains unknown if one variable in particular acts as the proximate signaler for gamete and or larval release. Furthermore, in an era of global warming, the degree to which increases in ocean temperatures will disrupt normal reproductive patterns in corals remains unknown. Pocillopora damicornis, a brooding coral widely distributed in the Indo-Pacific, has been the subject of multiple reproductive ecology studies that show correlations between temperature, lunar periodicity, and reproductive timing. However, to date, no study has empirically measured changes in reproductive timing associated with increased seawater temperature. In this study, the effect of increased seawater temperature on the timing of planula release was examined during the lunar cycles of March and June 2012. Twelve brooding corals were removed from Hobihu reef in Nanwan Bay, southern Taiwan and placed in 23 and 28°C controlled temperature treatment tanks. For both seasons, the timing of planulation was found to be plastic, with the high temperature treatment resulting in significantly earlier peaks of planula release compared to the low temperature treatment. This suggests that temperature alone can influence the timing of larval release in Pocillopora damicornis in Nanwan Bay. Therefore, it is expected that continued increases in ocean temperature will result in earlier timing of reproductive events in corals, which may lead to either variations in reproductive success or phenotypic acclimatization.

  16. 'Peer pressure' in larval Drosophila?

    Science.gov (United States)

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-06-06

    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. © 2014. Published by The Company of Biologists Ltd.

  17. Boat noise prevents soundscape-based habitat selection by coral planulae.

    Science.gov (United States)

    Lecchini, David; Bertucci, Frédéric; Gache, Camille; Khalife, Adam; Besson, Marc; Roux, Natacha; Berthe, Cecile; Singh, Shubha; Parmentier, Eric; Nugues, Maggy M; Brooker, Rohan M; Dixson, Danielle L; Hédouin, Laetitia

    2018-06-18

    Understanding the relationship between coral reef condition and recruitment potential is vital for the development of effective management strategies that maintain coral cover and biodiversity. Coral larvae (planulae) have been shown to use certain sensory cues to orient towards settlement habitats (e.g. the odour of live crustose coralline algae - CCA). However, the influence of auditory cues on coral recruitment, and any effect of anthropogenic noise on this process, remain largely unknown. Here, we determined the effect of protected reef (MPA), exploited reef (non-MPA) soundscapes, and a source of anthropogenic noise (boat) on the habitat preference for live CCA over dead CCA in the planula of two common Indo-Pacific coral species (Pocillopora damicornis and Acropora cytherea). Soundscapes from protected reefs significantly increased the phonotaxis of planulae of both species towards live CCA, especially when compared to boat noise. Boat noise playback prevented this preferential selection of live CCA as a settlement substrate. These results suggest that sources of anthropogenic noise such as motor boat can disrupt the settlement behaviours of coral planulae. Acoustic cues should be accounted for when developing management strategies aimed at maximizing larval recruitment to coral reefs.

  18. Comparative genomics explains the evolutionary success of reef-forming corals

    KAUST Repository

    Bhattacharya, Debashish

    2016-05-24

    Transcriptome and genome data from twenty stony coral species and a selection of reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on which the organisms live, and revealed a network of environmental sensors that coordinate responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of stress-related pathways, including apoptotic pathways that allow the host animals to detoxify reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic symbionts, and determine the fate of corals under environmental stress. Some of these genes arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory. Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and thrive for hundreds of millions of years.

  19. Comparative genomics explains the evolutionary success of reef-forming corals

    KAUST Repository

    Bhattacharya, Debashish; Agrawal, Shobhit; Aranda, Manuel; Baumgarten, Sebastian; Belcaid, Mahdi; Drake, Jeana L; Erwin, Douglas; Foret, Sylvian; Gates, Ruth D; Gruber, David F; Kamel, Bishoy; Lesser, Michael P; Levy, Oren; Liew, Yi Jin; MacManes, Matthew; Mass, Tali; Medina, Monica; Mehr, Shaadi; Meyer, Eli; Price, Dana C; Putnam, Hollie M; Qiu, Huan; Shinzato, Chuya; Shoguchi, Eiichi; Stokes, Alexander J; Tambutté , Sylvie; Tchernov, Dan; Voolstra, Christian R.; Wagner, Nicole; Walker, Charles W; Weber, Andreas PM; Weis, Virginia; Zelzion, Ehud; Zoccola, Didier; Falkowski, Paul G

    2016-01-01

    Transcriptome and genome data from twenty stony coral species and a selection of reference bilaterians were studied to elucidate coral evolutionary history. We identified genes that encode the proteins responsible for the precipitation and aggregation of the aragonite skeleton on which the organisms live, and revealed a network of environmental sensors that coordinate responses of the host animals to temperature, light, and pH. Furthermore, we describe a variety of stress-related pathways, including apoptotic pathways that allow the host animals to detoxify reactive oxygen and nitrogen species that are generated by their intracellular photosynthetic symbionts, and determine the fate of corals under environmental stress. Some of these genes arose through horizontal gene transfer and comprise at least 0.2% of the animal gene inventory. Our analysis elucidates the evolutionary strategies that have allowed symbiotic corals to adapt and thrive for hundreds of millions of years.

  20. Exploring the larval fish community of the central Red Sea with an integrated morphological and molecular approach

    KAUST Repository

    Isari, Stamatina

    2017-08-03

    An important aspect of population dynamics for coral reef fishes is the input of new individuals from the pelagic larval pool. However, the high biodiversity and the difficulty of identifying larvae of closely related species represent obstacles to more fully understanding these populations. In this study, we combined morphology and genetic barcoding (Cytochrome Oxidase I gene) to characterize the seasonal patterns of the larval fish community at two sites in close proximity to coral reefs in the central-north Red Sea: one shallower inshore location (50 m depth) and a nearby site located in deeper and more offshore waters (~ 500 m depth). Fish larvae were collected using oblique tows of a 60 cm-bongo net (500 μm mesh size) every month for one year (2013). During the warmer period of the year (June-November), the larval fish stock was comparable between sampling sites. However, during the colder months, abundances were higher in the inshore than in the offshore waters. Taxonomic composition and temporal variation of community structure differed notably between sites, potentially reflecting habitat differences, reproductive patterns of adults, and/or advective processes in the area. Eleven out of a total of 62 recorded families comprised 69–94% of the fish larval community, depending on sampling site and month. Richness of taxa was notably higher in the inshore station compared to the offshore, particularly during the colder period of the year and especially for the gobiids and apogonids. Two mesopelagic taxa (Vinciguerria sp. and Benthosema spp.) comprised an important component of the larval community at the deeper site with only a small and sporadic occurrence in the shallower inshore waters. Our data provide an important baseline reference for the larval fish communities of the central Red Sea, representing the first such study from Saudi Arabian waters.

  1. Patterns and persistence of larval retention and connectivity in a marine fish metapopulation

    KAUST Repository

    Saenz Agudelo, Pablo

    2012-08-14

    Connectivity, the demographic linking of local populations through the dispersal of individuals, is one of the most poorly understood processes in population dynamics, yet has profound implications for conservation and harvest strategies. For marine species with pelagic larvae, direct estimation of connectivity remains logistically challenging and has mostly been limited to single snapshots in time. Here, we document seasonal and interannual patterns of larval dispersal in a metapopulation of the coral reef fish Amphiprion polymnus. A 3-year record of larval trajectories within and among nine discrete local populations from an area of approximately 35 km was established by determining the natal origin of settled juveniles through DNA parentage analysis. We found that spatial patterns of both self-recruitment and connectivity were remarkably consistent over time, with a low level of self-recruitment at the scale of individual sites. Connectivity among sites was common and multidirectional in all years and was not significantly influenced by seasonal variability of predominant surface current directions. However, approximately 75% of the sampled juveniles could not be assigned to parents within the study area, indicating high levels of immigrations from sources outside the study area. The data support predictions that the magnitude and temporal stability of larval connectivity decreases significantly with increasing distance between subpopulations, but increases with the size of subpopulations. Given the considerable effort needed to directly measure larval exchange, the consistent patterns suggest snapshot parentage analyses can provide useful dispersal estimates to inform spatial management decisions. © 2012 Blackwell Publishing Ltd.

  2. Bikini Atoll coral biodiversity resilience five decades after nuclear testing

    International Nuclear Information System (INIS)

    Richards, Zoe T.; Beger, Maria; Pinca, Silvia; Wallace, Carden C.

    2008-01-01

    Five decades after a series of nuclear tests began, we provide evidence that 70% of the Bikini Atoll zooxanthellate coral assemblage is resilient to large-scale anthropogenic disturbance. Species composition in 2002 was assessed and compared to that seen prior to nuclear testing. A total of 183 scleractinian coral species was recorded, compared to 126 species recorded in the previous study (excluding synonomies, 148 including synonomies). We found that 42 coral species may be locally extinct at Bikini. Fourteen of these losses may be pseudo-losses due to inconsistent taxonomy between the two studies or insufficient sampling in the second study, however 28 species appear to represent genuine losses. Of these losses, 16 species are obligate lagoonal specialists and 12 have wider habitat compatibility. Twelve species are recorded from Bikini for the first time. We suggest the highly diverse Rongelap Atoll to the east of Bikini may have contributed larval propagules to facilitate the partial resilience of coral biodiversity in the absence of additional anthropogenic threats

  3. Bikini Atoll coral biodiversity resilience five decades after nuclear testing

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Zoe T. [Museum of Tropical Queensland, Flinders St, Townsville, QLD 4810 (Australia) and Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811 (Australia) and School of Marine and Tropical Biology, James Cook University, Townsville QLD 4811 (Australia); NRAS - Marshall Islands: Natural Resource Assessment Surveys (Australia)], E-mail: zoe.richards@jcu.edu.au; Beger, Maria [Ecology Centre and Commonwealth Research Facility for Applied Environmental Decision Analysis, University of Queensland, St Lucia, QLD 4072 (Australia); NRAS - Marshall Islands: Natural Resource Assessment Surveys (Australia); Pinca, Silvia [College of the Marshall Islands, Majuro, Marshall Islands, NRAS - Marshall Islands: Natural Resource Assessment Surveys (Australia); Wallace, Carden C. [Museum of Tropical Queensland, Flinders St, Townsville, QLD 4810 (Australia)

    2008-03-15

    Five decades after a series of nuclear tests began, we provide evidence that 70% of the Bikini Atoll zooxanthellate coral assemblage is resilient to large-scale anthropogenic disturbance. Species composition in 2002 was assessed and compared to that seen prior to nuclear testing. A total of 183 scleractinian coral species was recorded, compared to 126 species recorded in the previous study (excluding synonomies, 148 including synonomies). We found that 42 coral species may be locally extinct at Bikini. Fourteen of these losses may be pseudo-losses due to inconsistent taxonomy between the two studies or insufficient sampling in the second study, however 28 species appear to represent genuine losses. Of these losses, 16 species are obligate lagoonal specialists and 12 have wider habitat compatibility. Twelve species are recorded from Bikini for the first time. We suggest the highly diverse Rongelap Atoll to the east of Bikini may have contributed larval propagules to facilitate the partial resilience of coral biodiversity in the absence of additional anthropogenic threats.

  4. Coral Reef Guidance

    Science.gov (United States)

    Guidance prepared by EPA and Army Corps of Engineers concerning coral reef protection under the Clean Water Act, Marine Protection, Research, and Sanctuaries Act, Rivers and Harbors Act, and Federal Project Authorities.

  5. All Framing Corals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data represent predicted habitat suitability for several taxa of deep-sea corals. Predictions were modeled using a statistical machine-learning algorithm called...

  6. Corals and Sclerosponges

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past climate and ocean environment derived from stable isotope, trace metal, and other measurements made on corals and sclerosponges. Parameter keywords...

  7. Web services for transcriptomics

    NARCIS (Netherlands)

    Neerincx, P.

    2009-01-01

    Transcriptomics is part of a family of disciplines focussing on high throughput molecular biology experiments. In the case of transcriptomics, scientists study the expression of genes resulting in transcripts. These transcripts can either perform a biological function themselves or function as

  8. Occurrence of thraustochytrid fungi in corals and coral mucus

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.; Balasubramanian

    Occurrence of thraustochytrid fungi in corals, fresh coral mucus and floating and attached mucus detritus from the Lakshadweep Islands in the Arabian Sea was studied. Corallochytrium limacisporum Raghukumar, Thraustochytrium motivum Goldstein...

  9. Cumulative Effects of Nutrient Enrichment and Elevated Temperature Compromise the Early Life History Stages of the Coral Acropora tenuis.

    Science.gov (United States)

    Humanes, Adriana; Noonan, Sam H C; Willis, Bette L; Fabricius, Katharina E; Negri, Andrew P

    2016-01-01

    Inshore coral reefs are experiencing the combined pressures of excess nutrient availability associated with coastal activities and warming seawater temperatures. Both pressures are known to have detrimental effects on the early life history stages of hard corals, but studies of their combined effects on early demographic stages are lacking. We conducted a series of experiments to test the combined effects of nutrient enrichment (three levels) and elevated seawater temperature (up to five levels) on early life history stages of the inshore coral Acropora tenuis, a common species in the Indo-Pacific and Red Sea. Gamete fertilization, larval survivorship and larval settlement were all significantly reduced as temperature increased, but only fertilization was further affected by simultaneous nutrient enrichment. Combined high temperatures and nutrient enrichment affected fertilization in an additive manner, whereas embryo abnormalities increased synergistically. Higher than normal temperatures (32°C) increased coral juvenile growth rates 1.6-fold, but mortality also increased by 50%. The co-occurrence of nutrient enrichment with high temperatures reduced juvenile mortality to 36%, ameliorating temperature stress (antagonistic interaction). Overall, the types of effect (additive vs synergistic or antagonistic) and their magnitude varied among life stages. Gamete and embryo stages were more affected by temperature stress and, in some cases, also by nutrient enrichment than juveniles. The data suggest that coastal runoff events might exacerbate the impacts of warming temperatures on fertilization if these events co-occur during corals spawning. The cumulative impacts of simultaneous exposure to nutrient enrichment and elevated temperatures over all early life history stages increases the likelihood for failure of larval supply and recruitment for this coral species. Our results suggest that improving the water quality of river discharges into coastal areas might help to

  10. Cumulative Effects of Nutrient Enrichment and Elevated Temperature Compromise the Early Life History Stages of the Coral Acropora tenuis

    Science.gov (United States)

    Noonan, Sam H. C.; Willis, Bette L.; Fabricius, Katharina E.; Negri, Andrew P.

    2016-01-01

    Inshore coral reefs are experiencing the combined pressures of excess nutrient availability associated with coastal activities and warming seawater temperatures. Both pressures are known to have detrimental effects on the early life history stages of hard corals, but studies of their combined effects on early demographic stages are lacking. We conducted a series of experiments to test the combined effects of nutrient enrichment (three levels) and elevated seawater temperature (up to five levels) on early life history stages of the inshore coral Acropora tenuis, a common species in the Indo-Pacific and Red Sea. Gamete fertilization, larval survivorship and larval settlement were all significantly reduced as temperature increased, but only fertilization was further affected by simultaneous nutrient enrichment. Combined high temperatures and nutrient enrichment affected fertilization in an additive manner, whereas embryo abnormalities increased synergistically. Higher than normal temperatures (32°C) increased coral juvenile growth rates 1.6-fold, but mortality also increased by 50%. The co-occurrence of nutrient enrichment with high temperatures reduced juvenile mortality to 36%, ameliorating temperature stress (antagonistic interaction). Overall, the types of effect (additive vs synergistic or antagonistic) and their magnitude varied among life stages. Gamete and embryo stages were more affected by temperature stress and, in some cases, also by nutrient enrichment than juveniles. The data suggest that coastal runoff events might exacerbate the impacts of warming temperatures on fertilization if these events co-occur during corals spawning. The cumulative impacts of simultaneous exposure to nutrient enrichment and elevated temperatures over all early life history stages increases the likelihood for failure of larval supply and recruitment for this coral species. Our results suggest that improving the water quality of river discharges into coastal areas might help to

  11. Habitat selection, facilitation, and biotic settlement cues affect distribution and performance of coral recruits in French Polynesia.

    Science.gov (United States)

    Price, Nichole

    2010-07-01

    Habitat selection can determine the distribution and performance of individuals if the precision with which sites are chosen corresponds with exposure to risks or resources. Contrastingly, facilitation can allow persistence of individuals arriving by chance and potentially maladapted to local abiotic conditions. For marine organisms, selection of a permanent attachment site at the end of their larval stage or the presence of a facilitator can be a critical determinant of recruitment success. In coral reef ecosystems, it is well known that settling planula larvae of reef-building corals use coarse environmental cues (i.e., light) for habitat selection. Although laboratory studies suggest that larvae can also use precise biotic cues produced by crustose coralline algae (CCA) to select attachment sites, the ecological consequences of biotic cues for corals are poorly understood in situ. In a field experiment exploring the relative importance of biotic cues and variability in habitat quality to recruitment of hard corals, pocilloporid and acroporid corals recruited more frequently to one species of CCA, Titanoderma prototypum, and significantly less so to other species of CCA; these results are consistent with laboratory assays from other studies. The provision of the biotic cue accurately predicted coral recruitment rates across habitats of varying quality. At the scale of CCA, corals attached to the "preferred" CCA experienced increased survivorship while recruits attached elsewhere had lower colony growth and survivorship. For reef-building corals, the behavioral selection of habitat using chemical cues both reduces the risk of incidental mortality and indicates the presence of a facilitator.

  12. Osmoadjustment in the Coral Holobiont

    KAUST Repository

    Rö thig, Till

    2017-01-01

    and amino acids to be putatively involved in the osmoadjustment. Importantly, under high salinity the osmolyte floridoside was consistently increased. This could be corroborated in the coral model Aiptasia and in corals from the Persian/Arabian Gulf, where

  13. Host adaptation and unexpected symbiont partners enable reef-building corals to tolerate extreme temperatures.

    Science.gov (United States)

    Howells, Emily J; Abrego, David; Meyer, Eli; Kirk, Nathan L; Burt, John A

    2016-08-01

    Understanding the potential for coral adaptation to warming seas is complicated by interactions between symbiotic partners that define stress responses and the difficulties of tracking selection in natural populations. To overcome these challenges, we characterized the contribution of both animal host and symbiotic algae to thermal tolerance in corals that have already experienced considerable warming on par with end-of-century projections for most coral reefs. Thermal responses in Platygyra daedalea corals from the hot Persian Gulf where summer temperatures reach 36°C were compared with conspecifics from the milder Sea of Oman. Persian Gulf corals had higher rates of survival at elevated temperatures (33 and 36°C) in both the nonsymbiotic larval stage (32-49% higher) and the symbiotic adult life stage (51% higher). Additionally, Persian Gulf hosts had fixed greater potential to mitigate oxidative stress (31-49% higher) and their Symbiodinium partners had better retention of photosynthetic performance under elevated temperature (up to 161% higher). Superior thermal tolerance of Persian Gulf vs. Sea of Oman corals was maintained after 6-month acclimatization to a common ambient environment and was underpinned by genetic divergence in both the coral host and symbiotic algae. In P. daedalea host samples, genomewide SNP variation clustered into two discrete groups corresponding with Persian Gulf and Sea of Oman sites. Symbiodinium within host tissues predominantly belonged to ITS2 rDNA type C3 in the Persian Gulf and type D1a in the Sea of Oman contradicting patterns of Symbiodinium thermal tolerance from other regions. Our findings provide evidence that genetic adaptation of both host and Symbiodinium has enabled corals to cope with extreme temperatures in the Persian Gulf. Thus, the persistence of coral populations under continued warming will likely be determined by evolutionary rates in both, rather than single, symbiotic partners. © 2016 John Wiley & Sons Ltd.

  14. Coral Carbonic Anhydrases: Regulation by Ocean Acidification.

    Science.gov (United States)

    Zoccola, Didier; Innocenti, Alessio; Bertucci, Anthony; Tambutté, Eric; Supuran, Claudiu T; Tambutté, Sylvie

    2016-06-03

    Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA) involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1) a change in gene expression under OA (2) an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  15. Coral Carbonic Anhydrases: Regulation by Ocean Acidification

    Directory of Open Access Journals (Sweden)

    Didier Zoccola

    2016-06-01

    Full Text Available Global change is a major threat to the oceans, as it implies temperature increase and acidification. Ocean acidification (OA involving decreasing pH and changes in seawater carbonate chemistry challenges the capacity of corals to form their skeletons. Despite the large number of studies that have investigated how rates of calcification respond to ocean acidification scenarios, comparatively few studies tackle how ocean acidification impacts the physiological mechanisms that drive calcification itself. The aim of our paper was to determine how the carbonic anhydrases, which play a major role in calcification, are potentially regulated by ocean acidification. For this we measured the effect of pH on enzyme activity of two carbonic anhydrase isoforms that have been previously characterized in the scleractinian coral Stylophora pistillata. In addition we looked at gene expression of these enzymes in vivo. For both isoforms, our results show (1 a change in gene expression under OA (2 an effect of OA and temperature on carbonic anhydrase activity. We suggest that temperature increase could counterbalance the effect of OA on enzyme activity. Finally we point out that caution must, thus, be taken when interpreting transcriptomic data on carbonic anhydrases in ocean acidification and temperature stress experiments, as the effect of these stressors on the physiological function of CA will depend both on gene expression and enzyme activity.

  16. Coral lipids and environmental stress.

    Science.gov (United States)

    Harriott, V J

    1993-04-01

    Environmental monitoring of coral reefs is presently limited by difficulties in recognising coral stress, other than by monitoring coral mortality over time. A recent report described an experiment demonstrating that a measured lipid index declined in shaded corals. The technique described might have application in monitoring coral health, with a decline in coral lipid index as an indicator of coral stress. The application of the technique as a practical monitoring tool was tested for two coral species from the Great Barrier Reef. Consistent with the previous results, lipid index for Pocillopora damicornis initially declined over a period of three weeks in corals maintained in filtered seawater in the dark, indicating possible utilization of lipid stored as energy reserves. However, lipid index subsequently rose to near normal levels. In contrast, lipid index of Acropora formosa increased after four weeks in the dark in filtered seawater. The results showed considerable variability in lipid content between samples from the same colony. Results were also found to be dependent on fixation times and sample weight, introducing potential error into the practical application of the technique. The method as described would be unsuitable for monitoring environmental stress in corals, but the search for a practical method to monitor coral health should continue, given its importance in coral reef management.

  17. Models of prey capture in larval fish

    NARCIS (Netherlands)

    Drost, M.R.

    1986-01-01

    The food uptake of larval carp and pike is described from high speed movies with synchronous lateral and ventral views.

    During prey intake by larval fishes the velocities of the created suction flow are high relative to their own size: 0.3 m/s for carp larvae of 6

  18. [Canine peritoneal larval cestodosis caused by Mesocestoides spp. larval stages].

    Science.gov (United States)

    Häußler, T C; Peppler, C; Schmitz, S; Bauer, C; Hirzmann, J; Kramer, M

    2016-01-01

    In a female dog with unspecific clinical symptoms, sonography detected a hyperechoic mass in the middle abdomen and blood analysis a middle grade systemic inflammatory reaction. Laparotomy revealed a peritoneal larval cestodosis (PLC). The diagnosis of an infection with tetrathyridia of Mesocestoides spp. was confirmed by parasitological examination and molecularbiological analysis. Reduction of the intra-abdominal parasitic load as well as a high dose administration of fenbendazole over 3 months led to a successful treatment which could be documented sonographically and by decreased concentrations of C-reactive protein (CRP). Seven months after discontinuation of fenbendazole administration, PLC recurred, pre-empted by an elevation of serum CRP values. According to the literature a life-long fenbendazole treatment was initiated. In cases of unclear chronic granulomatous inflammations in the abdominal cavity in dogs, PLC should be considered. CRP concentration and sonographic examinations are suitable to control for treatment success and a possibly occurring relapse.

  19. Oceanographic and behavioural assumptions in models of the fate of coral and coral reef fish larvae.

    Science.gov (United States)

    Wolanski, Eric; Kingsford, Michael J

    2014-09-06

    A predictive model of the fate of coral reef fish larvae in a reef system is proposed that combines the oceanographic processes of advection and turbulent diffusion with the biological process of horizontal swimming controlled by olfactory and auditory cues within the timescales of larval development. In the model, auditory cues resulted in swimming towards the reefs when within hearing distance of the reef, whereas olfactory cues resulted in the larvae swimming towards the natal reef in open waters by swimming against the concentration gradients in the smell plume emanating from the natal reef. The model suggested that the self-seeding rate may be quite large, at least 20% for the larvae of rapidly developing reef fish species, which contrasted with a self-seeding rate less than 2% for non-swimming coral larvae. The predicted self-recruitment rate of reefs was sensitive to a number of parameters, such as the time at which the fish larvae reach post-flexion, the pelagic larval duration of the larvae, the horizontal turbulent diffusion coefficient in reefal waters and the horizontal swimming behaviour of the fish larvae in response to auditory and olfactory cues, for which better field data are needed. Thus, the model suggested that high self-seeding rates for reef fish are possible, even in areas where the 'sticky water' effect is minimal and in the absence of long-term trapping in oceanic fronts and/or large-scale oceanic eddies or filaments that are often argued to facilitate the return of the larvae after long periods of drifting at sea. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  20. Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change.

    Directory of Open Access Journals (Sweden)

    Karen J Miller

    Full Text Available Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS, the mitochondrial ribosomal subunit (16S and mitochondrial control region (MtC to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow 1500 m even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations.

  1. Out of their depth? Isolated deep populations of the cosmopolitan coral Desmophyllum dianthus may be highly vulnerable to environmental change.

    Science.gov (United States)

    Miller, Karen J; Rowden, Ashley A; Williams, Alan; Häussermann, Vreni

    2011-01-01

    Deep sea scleractinian corals will be particularly vulnerable to the effects of climate change, facing loss of up to 70% of their habitat as the Aragonite Saturation Horizon (below which corals are unable to form calcium carbonate skeletons) rises. Persistence of deep sea scleractinian corals will therefore rely on the ability of larvae to disperse to, and colonise, suitable shallow-water habitat. We used DNA sequence data of the internal transcribed spacer (ITS), the mitochondrial ribosomal subunit (16S) and mitochondrial control region (MtC) to determine levels of gene flow both within and among populations of the deep sea coral Desmophyllum dianthus in SE Australia, New Zealand and Chile to assess the ability of corals to disperse into different regions and habitats. We found significant genetic subdivision among the three widely separated geographic regions consistent with isolation and limited contemporary gene flow. Furthermore, corals from different depth strata (shallow 1500 m) even on the same or nearby seamounts were strongly differentiated, indicating limited vertical larval dispersal. Genetic differentiation with depth is consistent with the stratification of the Subantarctic Mode Water, Antarctic Intermediate Water, the Circumpolar Deep and North Pacific Deep Waters in the Southern Ocean, and we propose that coral larvae will be retained within, and rarely migrate among, these water masses. The apparent absence of vertical larval dispersal suggests deep populations of D. dianthus are unlikely to colonise shallow water as the aragonite saturation horizon rises and deep waters become uninhabitable. Similarly, assumptions that deep populations will act as refuges for shallow populations that are impacted by activities such as fishing or mining are also unlikely to hold true. Clearly future environmental management strategies must consider both regional and depth-related isolation of deep-sea coral populations.

  2. Larval export from marine reserves and the recruitment benefit for fish and fisheries

    KAUST Repository

    Harrison, Hugo B.; Williamson, David H.; Evans, Richard D.; Almany, Glenn R.; Thorrold, Simon R.; Russ, Garry Ronald; Feldheim, Kevin Andrew; Van Herwerden, Lynne Van; Planes, Serge; Srinivasan, Maya; Berumen, Michael L.; Jones, Geoffrey P.

    2012-01-01

    Marine reserves, areas closed to all forms of fishing, continue to be advocated and implemented to supplement fisheries and conserve populations [1-4]. However, although the reproductive potential of important fishery species can dramatically increase inside reserves [5-8], the extent to which larval offspring are exported and the relative contribution of reserves to recruitment in fished and protected populations are unknown [4, 9-11]. Using genetic parentage analyses, we resolve patterns of larval dispersal for two species of exploited coral reef fish within a network of marine reserves on the Great Barrier Reef. In a 1,000 km 2 study area, populations resident in three reserves exported 83% (coral trout, Plectropomus maculatus) and 55% (stripey snapper, Lutjanus carponotatus) of assigned offspring to fished reefs, with the remainder having recruited to natal reserves or other reserves in the region. We estimate that reserves, which account for just 28% of the local reef area, produced approximately half of all juvenile recruitment to both reserve and fished reefs within 30 km. Our results provide compelling evidence that adequately protected reserve networks can make a significant contribution to the replenishment of populations on both reserve and fished reefs at a scale that benefits local stakeholders. © 2012 Elsevier Ltd.

  3. Larval export from marine reserves and the recruitment benefit for fish and fisheries

    KAUST Repository

    Harrison, Hugo B.

    2012-06-01

    Marine reserves, areas closed to all forms of fishing, continue to be advocated and implemented to supplement fisheries and conserve populations [1-4]. However, although the reproductive potential of important fishery species can dramatically increase inside reserves [5-8], the extent to which larval offspring are exported and the relative contribution of reserves to recruitment in fished and protected populations are unknown [4, 9-11]. Using genetic parentage analyses, we resolve patterns of larval dispersal for two species of exploited coral reef fish within a network of marine reserves on the Great Barrier Reef. In a 1,000 km 2 study area, populations resident in three reserves exported 83% (coral trout, Plectropomus maculatus) and 55% (stripey snapper, Lutjanus carponotatus) of assigned offspring to fished reefs, with the remainder having recruited to natal reserves or other reserves in the region. We estimate that reserves, which account for just 28% of the local reef area, produced approximately half of all juvenile recruitment to both reserve and fished reefs within 30 km. Our results provide compelling evidence that adequately protected reserve networks can make a significant contribution to the replenishment of populations on both reserve and fished reefs at a scale that benefits local stakeholders. © 2012 Elsevier Ltd.

  4. Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata.

    Science.gov (United States)

    Albright, Rebecca; Mason, Benjamin; Miller, Margaret; Langdon, Chris

    2010-11-23

    Ocean acidification (OA) refers to the ongoing decline in oceanic pH resulting from the uptake of atmospheric CO(2). Mounting experimental evidence suggests that OA will have negative consequences for a variety of marine organisms. Whereas the effect of OA on the calcification of adult reef corals is increasingly well documented, effects on early life history stages are largely unknown. Coral recruitment, which necessitates successful fertilization, larval settlement, and postsettlement growth and survivorship, is critical to the persistence and resilience of coral reefs. To determine whether OA threatens successful sexual recruitment of reef-building corals, we tested fertilization, settlement, and postsettlement growth of Acropora palmata at pCO(2) levels that represent average ambient conditions during coral spawning (∼400 μatm) and the range of pCO(2) increases that are expected to occur in this century [∼560 μatm (mid-CO(2)) and ∼800 μatm (high-CO(2))]. Fertilization, settlement, and growth were all negatively impacted by increasing pCO(2), and impairment of fertilization was exacerbated at lower sperm concentrations. The cumulative impact of OA on fertilization and settlement success is an estimated 52% and 73% reduction in the number of larval settlers on the reef under pCO(2) conditions projected for the middle and the end of this century, respectively. Additional declines of 39% (mid-CO(2)) and 50% (high-CO(2)) were observed in postsettlement linear extension rates relative to controls. These results suggest that OA has the potential to impact multiple, sequential early life history stages, thereby severely compromising sexual recruitment and the ability of coral reefs to recover from disturbance.

  5. Next-generation transcriptome assembly

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey A.; Wang, Zhong

    2011-09-01

    Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalog of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies-along with some perspectives on transcriptome assembly in the near future.

  6. Revealing Holobiont Structure and Function of Three Red Sea Deep-Sea Corals

    KAUST Repository

    Yum, Lauren

    2014-12-01

    Deep-sea corals have long been regarded as cold-water coral; however a reevaluation of their habitat limitations has been suggested after the discovery of deep-sea coral in the Red Sea where temperatures exceed 20˚C. To gain further insight into the biology of deep-sea corals at these temperatures, the work in this PhD employed a holotranscriptomic approach, looking at coral animal host and bacterial symbiont gene expression in Dendrophyllia sp., Eguchipsammia fistula, and Rhizotrochus sp. sampled from the deep Red Sea. Bacterial community composition was analyzed via amplicon-based 16S surveys and cultured bacterial strains were subjected to bioprospecting in order to gauge the pharmaceutical potential of coralassociated microbes. Coral host transcriptome data suggest that coral can employ mitochondrial hypometabolism, anaerobic glycolysis, and surface cilia to enhance mass transport rates to manage the low oxygen and highly oligotrophic Red Sea waters. In the microbial community associated with these corals, ribokinases and retron-type reverse transcriptases are abundantly expressed. In its first application to deep-sea coral associated microbial communities, 16S-based next-generation sequencing found that a single operational taxonomic unit can comprise the majority of sequence reads and that a large number of low abundance populations are present, which cannot be visualized with first generation sequencing. Bioactivity testing of selected bacterial isolates was surveyed over 100 cytological parameters with high content screening, covering several major organelles and key proteins involved in a variety of signaling cascades. Some of these cytological profiles were similar to those of several reference pharmacologically active compounds, which suggest that the bacteria isolates produce compounds with similar mechanisms of action as the reference compounds. The sum of this work offers several mechanisms by which Red Sea deep-sea corals cope with environmental

  7. Transcriptome and proteome dynamics in larvae of the barnacle Balanus Amphitrite from the Red Sea

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2015-12-15

    Background The barnacle Balanus amphitrite is widely distributed in marine shallow and tidal waters, and has significant economic and ecological importance. Nauplii, the first larval stage of most crustaceans, are extremely abundant in the marine zooplankton. However, a lack of genome information has hindered elucidation of the molecular mechanisms of development, settlement and survival strategies in extreme marine environments. We sequenced and constructed the genome dataset for nauplii to obtain comprehensive larval genetic information. We also investigated iTRAQ-based protein expression patterns to reveal the molecular basis of nauplii development, and to gain information on larval survival strategies in the Red Sea marine environment. Results A nauplii larval transcript dataset, containing 92,117 predicted open reading frames (ORFs), was constructed and used as a reference for the proteome analysis. Genes related to translation, oxidative phosphorylation and cytoskeletal development were highly abundant. We observed remarkable plasticity in the proteome of Red Sea larvae. The proteins associated with development, stress responses and osmoregulation showed the most significant differences between the two larval populations studied. The synergistic overexpression of heat shock and osmoregulatory proteins may facilitate larval survival in intertidal habitats or in extreme environments. Conclusions We presented, for the first time, comprehensive transcriptome and proteome datasets for Red Sea nauplii. The datasets provide a foundation for future investigations focused on the survival mechanisms of other crustaceans in extreme marine environments.

  8. Differential responses of the coral host and their algal symbiont to thermal stress.

    Directory of Open Access Journals (Sweden)

    William Leggat

    Full Text Available The success of any symbiosis under stress conditions is dependent upon the responses of both partners to that stress. The coral symbiosis is particularly susceptible to small increases of temperature above the long term summer maxima, which leads to the phenomenon known as coral bleaching, where the intracellular dinoflagellate symbionts are expelled. Here we for the first time used quantitative PCR to simultaneously examine the gene expression response of orthologs of the coral Acropora aspera and their dinoflagellate symbiont Symbiodinium. During an experimental bleaching event significant up-regulation of genes involved in stress response (HSP90 and HSP70 and carbon metabolism (glyceraldehyde-3-phosphate dehydrogenase, α-ketoglutarate dehydrogenase, glycogen synthase and glycogen phosphorylase from the coral host were observed. In contrast in the symbiont, HSP90 expression decreased, while HSP70 levels were increased on only one day, and only the α-ketoglutarate dehydrogenase expression levels were found to increase. In addition the changes seen in expression patterns of the coral host were much larger, up to 10.5 fold, compared to the symbiont response, which in all cases was less than 2-fold. This targeted study of the expression of key metabolic and stress genes demonstrates that the response of the coral and their symbiont vary significantly, also a response in the host transcriptome was observed prior to what has previously been thought to be the temperatures at which thermal stress events occur.

  9. Linking larval history to juvenile demography in the bicolor damselfish Stegastes partitus (Perciformes:Pomacentridae

    Directory of Open Access Journals (Sweden)

    Richard S Nemeth

    2005-05-01

    Full Text Available Otolith-based reconstructions of daily larval growth increments were used to examine the effect of variation in larval growth on size and age at settlement and post-settlement growth,survival and habitat preferences of juvenile bicolor damselfish (Stegastes partitus Poey.During August 1992 and 1994,newly settled S. partitus were collected from Montastraea coral heads and Porites rubble piles in Tague Bay,St.Croix,U.S. Virgin Islands (17 °45 ’ N,64 °42 ’ W.Daily lapillar otolith increments from each fish were counted and measured with Optimas image analysis software.S.partitus pelagic larval duration was 23.7 d in 1992 (n =70and 24.6 d in 1994 (n =38and larval age at settlement averaged 13.0 mm total length both years.Analysis of daily otolith increments demonstrated that variation in larval growth rates and size and age at settlement had no detectable effect on post-settlement survivorship but that larger larvae showed a preference for Montastraea coral at settlement.Late larval and early juvenile growth rates showed a significant positive relationship indicating that growth patterns established during the planktonic stage can span metamorphosis and continue into the benthic juvenile phase.Larval growth rates during the first two weeks post-hatching also had a strong effect on age to developmental competence (ability to undergo metamorphosisin both 1992 and 1994 with the fastest growing larvae being 8 d younger and 0.8 mm smaller at settlement than the slowest growing larvae.These differential growth rates in early stage larvae established trajectories toward larval developmental competence and may prove important in biogeographical studies of larval dispersal.Reconstruyendo aumentos diarios de otolitos se compará la variación en crecimiento larval sobre el tamaño y la edad de asentamiento,y el crecimiento post-acentamiento, sobrevivencia y preferencia de hábitat,del pez damisela bicolor (Stegastes partitus Poeyjoven.En agosto de 1992

  10. Coral Reef Biological Criteria

    Science.gov (United States)

    Coral reefs worldwide are experiencing decline from a variety of stressors. Some important stressors are land-based sources of pollution and human activities in the coastal zone. However, few tools are available to offset the impact of these stressors. The Clean Water Act (CWA...

  11. Raiding the Coral Nurseries?

    Directory of Open Access Journals (Sweden)

    Alison M. Jones

    2011-08-01

    Full Text Available A recent shift in the pattern of commercial harvest in the Keppel Island region of the southern inshore Great Barrier Reef raises concern about the depletion of a number of relatively rare restricted range taxa. The shift appears to be driven by demand from the United States (US for corals for domestic aquaria. Data from the annual status reports from the Queensland Coral Fishery were compared with export trade data to the US from the Convention on International Trade in Endangered Species (CITES. Evidence was found of recent increases in the harvest of species from the Mussidae family (Acanthastrea spp. which appears to be largely driven by demand from the US. On present trends, the industry runs the risk of localized depletion of Blastomussa and Scolymia; evidenced by an increase in the harvest of small specimens and the trend of decreasing harvest despite a concurrent increase in demand. Considering their relatively high sediment tolerance compared to other reef-building species, and the current lack of information about their functional role in reef stability, the trend raises concerns about the impact of the harvest on local coral communities. The recent shift in harvest patterns could have impacts on slow-growing species by allowing harvest beyond the rate of population regeneration. In light of these factors, combined with the value of such species to local tourism, a commercial coral fishery based on uncommon but highly sought-after species may not be ecologically sustainable or economically viable in the Keppels.

  12. Identifying the ichthyoplankton of a coral reef using DNA barcodes.

    Science.gov (United States)

    Hubert, Nicolas; Espiau, Benoit; Meyer, Christopher; Planes, Serge

    2015-01-01

    Marine fishes exhibit spectacular phenotypic changes during their ontogeny, and the identification of their early stages is challenging due to the paucity of diagnostic morphological characters at the species level. Meanwhile, the importance of early life stages in dispersal and connectivity has recently experienced an increasing interest in conservation programmes for coral reef fishes. This study aims at assessing the effectiveness of DNA barcoding for the automated identification of coral reef fish larvae through large-scale ecosystemic sampling. Fish larvae were mainly collected using bongo nets and light traps around Moorea between September 2008 and August 2010 in 10 sites distributed in open waters. Fish larvae ranged from 2 to 100 mm of total length, with the most abundant individuals being <5 mm. Among the 505 individuals DNA barcoded, 373 larvae (i.e. 75%) were identified to the species level. A total of 106 species were detected, among which 11 corresponded to pelagic and bathypelagic species, while 95 corresponded to species observed at the adult stage on neighbouring reefs. This study highlights the benefits and pitfalls of using standardized molecular systems for species identification and illustrates the new possibilities enabled by DNA barcoding for future work on coral reef fish larval ecology. © 2014 John Wiley & Sons Ltd.

  13. Soundscapes and Larval Settlement: Larval Bivalve Responses to Habitat-Associated Underwater Sounds.

    Science.gov (United States)

    Eggleston, David B; Lillis, Ashlee; Bohnenstiehl, DelWayne R

    2016-01-01

    We quantified the effects of habitat-associated sounds on the settlement response of two species of bivalves with contrasting habitat preferences: (1) Crassostrea virginicia (oyster), which prefers to settle on other oysters, and (2) Mercenaria mercenaria (clam), which settles on unstructured habitats. Oyster larval settlement in the laboratory was significantly higher when exposed to oyster reef sound compared with either off-reef or no-sound treatments. Clam larval settlement did not vary according to sound treatments. Similar to laboratory results, field experiments showed that oyster larval settlement in "larval housings" suspended above oyster reefs was significantly higher compared with off-reef sites.

  14. Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience.

    Directory of Open Access Journals (Sweden)

    Roberta M Bonaldo

    Full Text Available Tropical reefs are in global decline with seaweeds commonly replacing corals. Negative associations between macroalgae and corals are well documented, but the mechanisms involved, the dynamics of the interactions, and variance in effects of different macroalgal-coral pairings are poorly investigated. We assessed the frequency, magnitude, and dynamics of macroalgal-coral competition involving allelopathic and non-allelopathic macroalgae on three, spatially grouped pairs of no-take Marine Protected Areas (MPAs and non-MPAs in Fiji. In non-MPAs, biomass of herbivorous fishes was 70-80% lower, macroalgal cover 4-9 fold higher, macroalgal-coral contacts 5-15 fold more frequent and 23-67 fold more extensive (measured as % of colony margin contacted by macroalgae, and coral cover 51-68% lower than in MPAs. Coral contacts with allelopathic macroalgae occurred less frequently than expected by chance across all sites, while contact with non-allelopathic macroalgae tended to occur more frequently than expected. Transplants of allelopathic macroalgae (Chlorodesmis fastigiata and Galaxaura filamentosa against coral edges inflicted damage to Acropora aspera and Pocillopora damicornis more rapidly and extensively than to Porites cylindrica and Porites lobata, which appeared more resistant to these macroalgae. Montipora digitata experienced intermediate damage. Extent of damage from macroalgal contact was independent of coral colony size for each of the 10 macroalgal-coral pairings we established. When natural contacts with Galaxaura filamentosa were removed in the field, recovery was rapid for Porites lobata, but Pocillopora damicornis did not recover and damage continued to expand. As macroalgae increase on overfished tropical reefs, allelopathy could produce feedbacks that suppress coral resilience, prevent coral recovery, and promote the stability of algal beds in habitats previously available to corals.

  15. Reproductive biology of the deep brooding coral Seriatopora hystrix: Implications for shallow reef recovery.

    Science.gov (United States)

    Prasetia, Rian; Sinniger, Frederic; Hashizume, Kaito; Harii, Saki

    2017-01-01

    Mesophotic coral ecosystems (MCEs, between 30 and 150 m depth) are hypothesized to contribute to the recovery of degraded shallow reefs through sexually produced larvae (referred to as Deep Reef Refuge Hypothesis). In Okinawa, Japan, the brooder coral Seriatopora hystrix was reported to be locally extinct in a shallow reef while it was found abundant at a MCE nearby. In this context, S. hystrix represents a key model to test the Deep Reef Refuge Hypothesis and to understand the potential contribution of mesophotic corals to shallow coral reef recovery. However, the reproductive biology of mesophotic S. hystrix and its potential to recolonize shallow reefs is currently unknown. This study reports for the first time, different temporal scales of reproductive periodicity and larval settlement of S. hystrix from an upper mesophotic reef (40 m depth) in Okinawa. We examined reproductive seasonality, lunar, and circadian periodicity (based on polyp dissection, histology, and ex situ planula release observations) and larval settlement rates in the laboratory. Mesophotic S. hystrix reproduced mainly in July and early August, with a small number of planulae being released at the end of May, June and August. Compared to shallow colonies in the same region, mesophotic S. hystrix has a 4-month shorter reproductive season, similar circadian periodicity, and smaller planula size. In addition, most of the planulae settled rapidly, limiting larval dispersal potential. The shorter reproductive season and smaller planula size may result from limited energy available for reproduction at deeper depths, while the similar circadian periodicity suggests that this reproductive aspect is not affected by environmental conditions differing with depth. Overall, contribution of mesophotic S. hystrix to shallow reef rapid recovery appears limited, although they may recruit to shallow reefs through a multistep process over a few generations or through random extreme mixing such as typhoons.

  16. Immunity to community: what can immune pathways tell us about disease patterns in corals?

    Science.gov (United States)

    Mydlarz, L. D.; Fuess, L.; Pinzon, J. C.; Weil, E.

    2016-02-01

    Predicting species composition and abundances is one of the most fundamental questions in ecology. This question is even more pressing in marine ecology and coral reefs since communities are changing at a rapid pace due to climate-related changes. Increases in disease prevalence and severity are just some of the consequences of these environmental changes. Particularly in coral reef ecosystems, diseases are increasing and driving region-wide population collapses. It has become clear, however, that not all reefs or coral species are affected by disease equally. In fact, the Caribbean is a concentrated area for diseases. The patterns in which disease manifests itself on an individual reef are also proving interesting, as not all coral species are affected by disease equally. Some species are host to different diseases, but seem to successfully fight them reducing mortality. Other species are disproportionately infected on any given reef and experience high mortality due to disease. We are interested in the role immunity can play in directing these patterns and are evaluating coral immunity using several novel approaches. We exposed 4 species of corals with different disease susceptibilities to immune stimulators and quantified of coral immunity using a combination of full transcriptome sequencing and protein activity assays for gene to phenotype analysis. We also mapped gene expression changes onto immune pathways (i.e. melanin-cascade, antimicrobial peptide synthesis, complement cascade, lectin-opsonization) to evaluate expression of immune pathways between species. In our preliminary data we found many immune genes in the disease susceptible Orbicella faveolata underwent changes in gene expression opposite of the predictions and may disply `dysfunctional' patterns of expression. We will present expression data for 4 species of coral and assess how these transcriptional and protein immune responses are related to disease susceptibility in nature, thus scaling up

  17. Spectral response of the coral rubble, living corals, and dead corals: study case on the Spermonde Archipelago, Indonesia

    Science.gov (United States)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Yamano, Hiroya; Arafat, Gulam; Rani, Chair; Akbar AS, M.

    2012-10-01

    Coral reefs play important ecological services such as providing foods, biodiversity, nutrient recycling etc. for human society. On the other hand, they are threatened by human impacts such as illegal fishing and environmental changes such as rises of sea water temperature and sea level due to global warming. Thus, it is very important to monitor dynamic spatial distributions of coral reefs and related habitats such as coral rubble, dead coral, bleached corals, seagrass, etc. Hyperspectral data, in particular, offer high potential for characterizing and mapping coral reefs because of their capability to identify individual reef components based on their detailed spectral response. We studied the optical properties by measuring in situ spectra of living corals, dead coral and coral rubble covered with algae. Study site was selected in Spermonde archipelago, South Sulawesi, Indonesia because this area is included in the highest diversity of corals in the world named as Coral Triangle, which is recognized as the global centre of marine biodiversity and a global priority for conservation. Correlation analysis and cluster analysis support that there are distinct differences in reflectance spectra among categories. Common spectral characteristic of living corals, dead corals and coral rubble covered with algae was a reflectance minimum at 674 nm. Healthy corals, dead coral covered with algae and coral rubble covered with algae showed high similarity of spectral reflectance. It is estimated that this is due to photsynthetic pigments.

  18. Short-term and latent post-settlement effects associated with elevated temperature and oxidative stress on larvae from the coral Porites astreoides

    Science.gov (United States)

    Ross, C.; Ritson-Williams, R.; Olsen, K.; Paul, V. J.

    2013-03-01

    Coral reefs across the Caribbean are undergoing unprecedented rates of decline in coral cover during the last three decades, and coral recruitment is one potential process that could aid the recovery of coral populations. To better understand the effects of climate change on coral larval ecology, the larvae of Porites astreoides were studied to determine the immediate and post-settlement effects of elevated temperature and associated oxidative stress. Larvae of Porites astreoides were exposed to 27 °C (ambient) and +3.0 °C (elevated temperature) seawater for a short duration of 24 h; then, a suite of physiological parameters were measured to determine the extent of sublethal stress. Following the +3.0 °C treatment, larvae did not show a significant difference in maximum quantum yield of PSII ( F v/ F m) or respiratory demand when compared to controls maintained at 27 °C. The addition of micromolar concentrations of hydrogen peroxide did not impact respiration or photochemical efficiency. Catalase activity in the larvae increased (>60 %) following exposure to elevated temperature when compared to the controls. Short-term larval survival and settlement and metamorphosis were not affected by increased temperature or the H2O2 treatment. However, the settled spat that were exposed to elevated temperature underwent a 99 % reduction in survival compared to 90 % reduction for the control spat when examined 24 days following the deployment of 4-day-old settled spat on settlement tiles in the field. These results show that short-term exposure to some stressors might have small impacts on coral physiology, and no effects on larval survival, settlement and metamorphosis. However, due to post-settlement mortality, these stressors can cause a significant reduction in coral recruitment.

  19. Biotic control of skeletal growth by scleractinian corals in aragonite-calcite seas.

    Directory of Open Access Journals (Sweden)

    Tomihiko Higuchi

    Full Text Available Modern scleractinian coral skeletons are commonly composed of aragonite, the orthorhombic form of CaCO3. Under certain conditions, modern corals produce calcite as a secondary precipitate to fill pore space. However, coral construction of primary skeletons from calcite has yet to be demonstrated. We report a calcitic primary skeleton produced by the modern scleractinian coral Acropora tenuis. When uncalcified juveniles were incubated from the larval stage in seawater with low mMg/Ca levels, the juveniles constructed calcitic crystals in parts of the primary skeleton such as the septa; the deposits were observable under Raman microscopy. Using scanning electron microscopy, we observed different crystal morphologies of aragonite and calcite in a single juvenile skeleton. Quantitative analysis using X-ray diffraction showed that the majority of the skeleton was composed of aragonite even though we had exposed the juveniles to manipulated seawater before their initial crystal nucleation and growth processes. Our results indicate that the modern scleractinian coral Acropora mainly produces aragonite skeletons in both aragonite and calcite seas, but also has the ability to use calcite for part of its skeletal growth when incubated in calcite seas.

  20. Depth-Independent Reproduction in the Reef Coral Porites astreoides from Shallow to Mesophotic Zones.

    Directory of Open Access Journals (Sweden)

    Daniel M Holstein

    Full Text Available Mesophotic coral ecosystems between 30-150 m may be important refugia habitat for coral reefs and associated benthic communities from climate change and coastal development. However, reduced light at mesophotic depths may present an energetic challenge to the successful reproduction of light-dependent coral organisms, and limit this refugia potential. Here, the relationship of depth and fecundity was investigated in a brooding depth-generalist scleractinian coral, Porites astreoides from 5-37 m in the U.S. Virgin Islands (USVI using paraffin tissue histology. Despite a trend of increasing planulae production with depth, no significant differences were found in mean peak planulae density between shallow, mid-depth and mesophotic sites. Differential planulae production over depth is thus controlled by P. astreoides coral cover, which peaks at 10 m and ~35 m in the USVI. These results suggest that mesophotic ecosystems are reproductive refuge for P. astreoides in the USVI, and may behave as refugia for P. astreoides metapopulations providing that vertical larval exchanges are viable.

  1. Gene expression microarray analysis encompassing metamorphosis and the onset of calcification in the scleractinian coral Montastraea faveolata.

    Science.gov (United States)

    Reyes-Bermudez, Alejandro; Desalvo, Michael K; Voolstra, Christian R; Sunagawa, Shinichi; Szmant, Alina M; Iglesias-Prieto, Roberto; Medina, Mónica

    2009-01-01

    Similar to many marine invertebrates, scleractinian corals experience a dramatic morphological transformation, as well as a habitat switch, upon settlement and metamorphosis. At this time, planula larvae transform from non-calcifying, demersal, motile organisms into sessile, calcifying, benthic juvenile polyps. We performed gene expression microarray analyses between planulae, aposymbiotic primary polyps, and symbiotic adult tissue to elucidate the molecular mechanisms underlying coral metamorphosis and early stages of calcification in the Robust/Short clade scleractinian coral Montastraea faveolata. Among the annotated genes, the most abundant upregulated transcripts in the planula stage are involved in protein synthesis, chromatin assembly and mitochondrial metabolism; the polyp stage, morphogenesis, protein catabolism and organic matrix synthesis; and the adult stage, sexual reproduction, stress response and symbiosis. We also present evidence showing that the planula and adult transcriptomes are more similar to each other than to the polyp transcriptome. Our results also point to a large number of uncharacterized adult coral-specific genes likely involved in coral-specific functions such as symbiosis and calcification.

  2. Characterizing Ancylostoma caninum transcriptome and exploring nematode parasitic adaptation

    Directory of Open Access Journals (Sweden)

    Hawdon John

    2010-05-01

    Full Text Available Abstract Background Hookworm infection is one of the most important neglected diseases in developing countries, with approximately 1 billion people infected worldwide. To better understand hookworm biology and nematode parasitism, the present study generated a near complete transcriptome of the canine hookworm Ancylostoma caninum to a very high coverage using high throughput technology, and compared it to those of the free-living nematode Caenorhabditis elegans and the parasite Brugia malayi. Results The generated transcripts from four developmental stages, infective L3, serum stimulated L3, adult male and adult female, covered 93% of the A. caninum transcriptome. The broad diversity among nematode transcriptomes was confirmed, and an impact of parasitic adaptation on transcriptome diversity was inferred. Intra-population analysis showed that A. caninum has higher coding sequence diversity than humans. Examining the developmental expression profiles of A. caninum revealed major transitions in gene expression from larval stages to adult. Adult males expressed the highest number of selectively expressed genes, but adult female expressed the highest number of selective parasitism-related genes. Genes related to parasitism adaptation and A. caninum specific genes exhibited more expression selectivity while those conserved in nematodes tend to be consistently expressed. Parasitism related genes were expressed more selectively in adult male and female worms. The comprehensive analysis of digital expression profiles along with transcriptome comparisons enabled identification of a set of parasitism genes encoding secretory proteins in animal parasitic nematode. Conclusions This study validated the usage of deep sequencing for gene expression profiling. Parasitic adaptation of the canine hookworm is related to its diversity and developmental dynamics. This comprehensive comparative genomic and expression study substantially improves our understanding of

  3. Nitrification in reef corals

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.; David, J.J.

    . An estimate of the density of nitrifying bacteria on living corals can be made by comparing the nitrifying rates of bacterial cells and the rate of production of NO,-. Kaplan (1983) summarized the growth con- stants of marine nitrifying bacteria... Reef Con=. 3: 395-399. -, C. R. WILKINSON, V. p. VICENTE, J. M. MORELL, AND E. OTERO. 1988. Nitrate release by Carib- bean reef sponges. Limnol. Oceanogr. 33: 114- 120. CROSSLAND, C. J., AND D. J. BARNES. 1983. Dissolved nutrients and organic...

  4. Evaluation of Stony Coral Indicators for Coral Reef Management.

    Science.gov (United States)

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for ...

  5. Assessing Coral Community Recovery from Coral Bleaching by ...

    African Journals Online (AJOL)

    The densities of small colonies were lowest at the northern sites, and small colonies of genera of corals that suffered from high bleaching and mortality during the El Niño Southern Oscillation in 1998 were less abundant in the north. These northern reefs are relatively isolated from sources of coral larvae from reefs in the ...

  6. Osmoadjustment in the Coral Holobiont

    KAUST Repository

    Röthig, Till

    2017-04-01

    Coral reefs are under considerable decline. The framework builders in coral reefs are scleractinian corals, which comprise so-called holobionts, consisting of cnidarian host, algal symbionts (genus Symbiodinium), and other associated microbes. Corals are commonly considered stenohaline osmoconformers, possessing limited capability to adjust to salinity changes. However, corals differ in their ability to cope with different salinities. The underlying mechanisms have not yet been addressed. To further understand putative mechanisms involved, I examined coral holobiont osmoregulation conducting a range of experiments on the coral Fungia granulosa. In my research F. granulosa from the Red Sea exhibited pronounced physiological reactions (decreased photosynthesis, cessation of calcification) upon short-term incubations (4 h) to high salinity (55). However, during a 29-day in situ salinity transect experiment, coral holobiont photosynthesis was unimpaired under high salinity (49) indicating acclimatization. F. granulosa microbiome changes after the 29-day high salinity exposure aligned with a bacterial community restructuring that putatively supports the coral salinity acclimatization (osmolyte synthesis, nutrient fixation/cycling). Long-term incubations (7 d) of cultured Symbiodinium exhibited cell growth even at ‘extreme’ salinity levels of 25 and 55. Metabolic profiles of four Symbiodinium strains exposed to increased (55) and decreased (25) salinities for 4 h indicated distinct carbohydrates and amino acids to be putatively involved in the osmoadjustment. Importantly, under high salinity the osmolyte floridoside was consistently increased. This could be corroborated in the coral model Aiptasia and in corals from the Persian/Arabian Gulf, where floridoside was also markedly increased upon short- (15 h) and long-term (>24 months) exposure to high salinity, confirming an important role of floridoside in the osmoadjustment of cnidarian holobionts. This thesis

  7. Fungal invasion of massive corals

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Raghukumar, S.

    Five species of corals from the Andaman Islands in the Bay of Bengal (Indian Ocean) have been regularly found to have single or multiple necrotic patches. The occurrence of such corals with necrotic patches varied from 10-50% in the field. Sections...

  8. The Biology and Economics of Coral Growth

    NARCIS (Netherlands)

    Osinga, R.; Schutter, M.; Griffioen, B.; Wijffels, R.H.; Verreth, J.A.J.; Shafit, S.; Henard, S.; Taruffi, M.; Gili, C.; Lavorano, S.

    2011-01-01

    To protect natural coral reefs, it is of utmost importance to understand how the growth of the main reef-building organisms-the zooxanthellate scleractinian corals-is controlled. Understanding coral growth is also relevant for coral aquaculture, which is a rapidly developing business. This review

  9. Anopheline larval habitats seasonality and species distribution: a prerequisite for effective targeted larval habitats control programmes.

    Directory of Open Access Journals (Sweden)

    Eliningaya J Kweka

    Full Text Available Larval control is of paramount importance in the reduction of malaria vector abundance and subsequent disease transmission reduction. Understanding larval habitat succession and its ecology in different land use managements and cropping systems can give an insight for effective larval source management practices. This study investigated larval habitat succession and ecological parameters which influence larval abundance in malaria epidemic prone areas of western Kenya.A total of 51 aquatic habitats positive for anopheline larvae were surveyed and visited once a week for a period of 85 weeks in succession. Habitats were selected and identified. Mosquito larval species, physico-chemical parameters, habitat size, grass cover, crop cycle and distance to nearest house were recorded. Polymerase chain reaction revealed that An. gambiae s.l was the most dominant vector species comprised of An.gambiae s.s (77.60% and An.arabiensis (18.34%, the remaining 4.06% had no amplification by polymerase chain reaction. Physico-chemical parameters and habitat size significantly influenced abundance of An. gambiae s.s (P = 0.024 and An. arabiensis (P = 0.002 larvae. Further, larval species abundance was influenced by crop cycle (P≤0.001, grass cover (P≤0.001, while distance to nearest houses significantly influenced the abundance of mosquito species larvae (r = 0.920;P≤0.001. The number of predator species influenced mosquito larval abundance in different habitat types. Crop weeding significantly influenced with the abundance of An.gambiae s.l (P≤0.001 when preceded with fertilizer application. Significantly higher anopheline larval abundance was recorded in habitats in pasture compared to farmland (P = 0.002. When habitat stability and habitat types were considered, hoof print were the most productive followed by disused goldmines.These findings suggest that implementation of effective larval control programme should be targeted with larval

  10. Large-scale coral recruitment patterns on Mona Island, Puerto Rico: evidence of a transitional community trajectory after massive coral bleaching and mortality

    Directory of Open Access Journals (Sweden)

    Edwin A. Hernández-Delgado

    2014-09-01

    Full Text Available Coral reefs have largely declined across the northeastern Caribbean following the 2005 massive bleaching event. Climate change-related sea surface warming and coral disease outbreaks of a white plague-like syndrome and of yellow band disease (YBD have caused significant coral decline affecting massive reef building species (i.e., Orbicella annularis species complex which show no apparent signs of recovery through larval sexual recruitment. We addressed coral recruit densities across three spur and groove reef locations along the western shelf of remote Mona Island, Puerto Rico: Punta Capitán (PCA, Pasa de Las Carmelitas (PLC, and Las Carmelitas-South (LCS. Data were collected during November 2012 along 93 haphazard transects across three depth zones (<5m, 5-10m, 10-15m. A total of 32 coral species (9 octocorals, 1 hydrocoral, 22 scleractinians were documented among the recruit community. Communities had low densities and dominance by short-lived brooder species seven years after the 2005 event. Mean coral recruit density ranged from 1.2 to 10.5/m2 at PCA, 6.3 to 7.2/m² at LCS, 4.5 to 9.5/m² at PLC. Differences in coral recruit community structure can be attributed to slight variation in percent macroalgal cover and composition as study sites had nearly similar benthic spatial heterogeneity. Dominance by ephemeral coral species was widespread. Recovery of largely declining massive reef-building species such as the O. annularis species complex was limited or non-existent. The lack of recovery could be the combined result of several mechanisms involving climate change, YBD disease, macroalgae, fishing, urchins and Mona Island’s reefs limited connectivity to other reef systems. There is also for rehabilitation of fish trophic structure, with emphasis in recovering herbivore guilds and depleted populations of D. antillarum. Failing to recognize the importance of ecosystem-based management and resilience rehabilitation may deem remote coral reefs

  11. [Progress of heterotrophic studies on symbiotic corals].

    Science.gov (United States)

    Yang, Yang-Chu-Qiao; Hong, Wen Ting; Wang, Shu Hong

    2017-12-01

    Heterotrophy of zooxanthellae symbiotic corals refers to the nutrition directly coming from food absorption, not the nutrition obtained from photosynthesis. Most ex situ propagation of symbiotic corals focused on the effects of irradiation, flow rate and water quality on corals, few of them involved in the demand and supply of coral heterotrophic nutrition. This paper reviewed the significance of heterotrophic nutrient supply to symbiotic corals from the sources of coral heterotrophic nutrition, the factors affecting the supply of coral heterotrophic nutrient, and the methods of how to study the coral heterotrophy. In general, the research of coral heterotrophy is just at the beginning stage, and future studies should focus on the inherent mechanism of coral feeding selection and developing more effective research methods.

  12. Coral reef bleaching: ecological perspectives

    Science.gov (United States)

    Glynn, P. W.

    1993-03-01

    Coral reef bleaching, the whitening of diverse invertebrate taxa, results from the loss of symbiotic zooxanthellae and/or a reduction in photosynthetic pigment concentrations in zooxanthellae residing within the gastrodermal tissues of host animals. Of particular concern are the consequences of bleaching of large numbers of reef-building scleractinian corals and hydrocorals. Published records of coral reef bleaching events from 1870 to the present suggest that the frequency (60 major events from 1979 to 1990), scale (co-occurrence in many coral reef regions and often over the bathymetric depth range of corals) and severity (>95% mortality in some areas) of recent bleaching disturbances are unprecedented in the scientific literature. The causes of small scale, isolated bleaching events can often be explained by particular stressors (e.g., temperature, salinity, light, sedimentation, aerial exposure and pollutants), but attempts to explain large scale bleaching events in terms of possible global change (e.g., greenhouse warming, increased UV radiation flux, deteriorating ecosystem health, or some combination of the above) have not been convincing. Attempts to relate the severity and extent of large scale coral reef bleaching events to particular causes have been hampered by a lack of (a) standardized methods to assess bleaching and (b) continuous, long-term data bases of environmental conditions over the periods of interest. An effort must be made to understand the impact of bleaching on the remainder of the reef community and the long-term effects on competition, predation, symbioses, bioerosion and substrate condition, all factors that can influence coral recruitment and reef recovery. If projected rates of sea warming are realized by mid to late AD 2000, i.e. a 2°C increase in high latitude coral seas, the upper thermal tolerance limits of many reef-building corals could be exceeded. Present evidence suggests that many corals would be unable to adapt

  13. Current Knowledge and Recent Advances in Marine Dinoflagellate Transcriptomic Research

    Directory of Open Access Journals (Sweden)

    Muhamad Afiq Akbar

    2018-02-01

    Full Text Available Dinoflagellates are essential components in marine ecosystems, and they possess two dissimilar flagella to facilitate movement. Dinoflagellates are major components of marine food webs and of extreme importance in balancing the ecosystem energy flux in oceans. They have been reported to be the primary cause of harmful algae bloom (HABs events around the world, causing seafood poisoning and therefore having a direct impact on human health. Interestingly, dinoflagellates in the genus Symbiodinium are major components of coral reef foundations. Knowledge regarding their genes and genome organization is currently limited due to their large genome size and other genetic and cytological characteristics that hinder whole genome sequencing of dinoflagellates. Transcriptomic approaches and genetic analyses have been employed to unravel the physiological and metabolic characteristics of dinoflagellates and their complexity. In this review, we summarize the current knowledge and findings from transcriptomic studies to understand the cell growth, effects on environmental stress, toxin biosynthesis, dynamic of HABs, phylogeny and endosymbiosis of dinoflagellates. With the advancement of high throughput sequencing technologies and lower cost of sequencing, transcriptomic approaches will likely deepen our understanding in other aspects of dinoflagellates’ molecular biology such as gene functional analysis, systems biology and development of model organisms.

  14. Rehydration of forensically important larval Diptera specimens.

    Science.gov (United States)

    Sanford, Michelle R; Pechal, Jennifer L; Tomberlin, Jeffery K

    2011-01-01

    Established procedures for collecting and preserving evidence are essential for all forensic disciplines to be accepted in court and by the forensic community at large. Entomological evidence, such as Diptera larvae, are primarily preserved in ethanol, which can evaporate over time, resulting in the dehydration of specimens. In this study, methods used for rehydrating specimens were compared. The changes in larval specimens with respect to larval length and weight for three forensically important blow fly (Diptera: Calliphoridae) species in North America were quantified. Phormia regina (Meigen), Cochliomyia macellaria (F.), and Chrysomya rufifacies (Macquart) third-instar larvae were collected from various decomposing animals and preserved with three preservation methods (80% ethanol, 70% isopropyl alcohol, and hot-water kill then 80% ethanol). Preservative solutions were allowed to evaporate. Rehydration was attempted with either of the following: 80% ethanol, commercial trisodium phosphate substitute solution, or 0.5% trisodium phosphate solution. All three methods partially restored weight and length of specimens recorded before preservation. Analysis of variance results indicated that effects of preservation, rehydration treatment, and collection animal were different in each species. The interaction between preservative method and rehydration treatment had a significant effect on both P. regina and C. macellaria larval length and weight. In addition, there was a significant interaction effect of collection animal on larval C. macellaria measurements. No significant effect was observed in C. rufifacies larval length or weight among the preservatives or treatments. These methods could be used to establish a standard operating procedure for dealing with dehydrated larval specimens in forensic investigations.

  15. Circadian cycles of gene expression in the coral, Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Aisling K Brady

    Full Text Available Circadian rhythms regulate many physiological, behavioral and reproductive processes. These rhythms are often controlled by light, and daily cycles of solar illumination entrain many clock regulated processes. In scleractinian corals a number of different processes and behaviors are associated with specific periods of solar illumination or non-illumination--for example, skeletal deposition, feeding and both brooding and broadcast spawning.We have undertaken an analysis of diurnal expression of the whole transcriptome and more focused studies on a number of candidate circadian genes in the coral Acropora millepora using deep RNA sequencing and quantitative PCR. Many examples of diurnal cycles of RNA abundance were identified, some of which are light responsive and damped quickly under constant darkness, for example, cryptochrome 1 and timeless, but others that continue to cycle in a robust manner when kept in constant darkness, for example, clock, cryptochrome 2, cycle and eyes absent, indicating that their transcription is regulated by an endogenous clock entrained to the light-dark cycle. Many other biological processes that varied between day and night were also identified by a clustering analysis of gene ontology annotations.Corals exhibit diurnal patterns of gene expression that may participate in the regulation of circadian biological processes. Rhythmic cycles of gene expression occur under constant darkness in both populations of coral larvae that lack zooxanthellae and in individual adult tissue containing zooxanthellae, indicating that transcription is under the control of a biological clock. In addition to genes potentially involved in regulating circadian processes, many other pathways were found to display diel cycles of transcription.

  16. Evaluation of Stony Coral Indicators for Coral Reef ...

    Science.gov (United States)

    Colonies of reef-building stony corals at 57 stations around St. Croix, U.S. Virgin Islands were characterized by species, size and percentage of living tissue. Taxonomic, biological and physical indicators of coral condition were derived from these measurements and assessed for their response to gradients of human disturbance. The purpose of the study was to identify indicators that could be used for regulatory assessments under authority of the Clean Water Act--this requires that indicators distinguish anthropogenic disturbances from natural variation. Stony coral indicators were tested for correlation with human disturbance across gradients located on three different sides of the island. At the most intensely disturbed location, five of eight primary indicators were highly correlated with distance from the source of disturbance: Coral taxa richness, average colony size, the coefficient of variation of colony size (an indicator of colony size heterogeneity), total topographic coral surface area, and live coral surface area. An additional set of exploratory indicators related to rarity, reproductive and spawning mode, and taxonomic identity were also screened for association with disturbance at the same location. For the other two locations, there were no significant changes in indicator values and therefore no discernible effects of human activity. Coral indicators demonstrated sufficient precision to detect levels of change that would be applicable in a regio

  17. Soundscapes and Larval Settlement: Characterizing the Stimulus from a Larval Perspective.

    Science.gov (United States)

    Lillis, Ashlee; Eggleston, David B; Bohnenstiehl, DelWayne R

    2016-01-01

    There is growing evidence that underwater sounds serve as a cue for the larvae of marine organisms to locate suitable settlement habitats; however, the relevant spatiotemporal scales of variability in habitat-related sounds and how this variation scales with larval settlement processes remain largely uncharacterized, particularly in estuarine habitats. Here, we provide an overview of the approaches we have developed to characterize an estuarine soundscape as it relates to larval processes, and a conceptual framework is provided for how habitat-related sounds may influence larval settlement, using oyster reef soundscapes as an example.

  18. Coral diseases and bleaching on Colombian Caribbean coral reefs.

    Science.gov (United States)

    Navas-Camacho, Raúl; Gil-Agudelo, Diego Luis; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina; Garzón-Ferreira, Jaime

    2010-05-01

    Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC) has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá). The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10 x 2m) with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters) are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2), and Urabá had high numbers with bleaching (54.4 colonies/m2). Of the seven reported coral diseases studied, Dark Spots Disease (DSD), and White Plague Disease (WPD) were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A. grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years) variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few long

  19. Genetic diversity, classification and comparative study on the larval ...

    African Journals Online (AJOL)

    Genetic diversity, classification and comparative study on the larval phenotypic ... B. mori showed different performance based on larval phenotypic data. The analysis of variance regarding the studied traits showed that different strains have ...

  20. Coral reef ecosystem

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Wafar, S.

    ), on submerged banks like Gave shani bank (13°24'N; 73°45'E) (Nair and Qasim 1978) andSidere~ko Bank (13°43.5' N; 73°42'E) (Rao 1972) and as stray individual units off Visakhapatnam (Bakus, G. personal communication) and Pondicherry (Ramesh, A. personal... communication). Fossil reefs, drowned as a result of the Holocene sea level rise, occur at 92, 85, 75 and 55 m depth along .. ~ !! ":2 0. ~ Figure 3.1 Graphical Representation of the SO-Box Model of a Caribbean Coral Reef Key: 1. Benthic producers. 2. Detritus...

  1. TCW: transcriptome computational workbench.

    Science.gov (United States)

    Soderlund, Carol; Nelson, William; Willer, Mark; Gang, David R

    2013-01-01

    The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. The Transcriptome Computational Workbench (TCW) provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms). The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina) or assembling long sequences (e.g. Sanger, 454, transcripts), annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the transcriptome. TCW is freely available from www.agcol.arizona.edu/software/tcw.

  2. Supplementary Material for: Transcriptome and proteome dynamics in larvae of the barnacle Balanus Amphitrite from the Red Sea

    KAUST Repository

    Chandramouli, Kondethimmanahalli; Al-Aqeel, Sarah; Ryu, Tae Woo; Zhang, Huoming; Seridi, Loqmane; Ghosheh, Yanal; Qian, Pei-Yuan; Ravasi, Timothy

    2015-01-01

    Abstract Background The barnacle Balanus amphitrite is widely distributed in marine shallow and tidal waters, and has significant economic and ecological importance. Nauplii, the first larval stage of most crustaceans, are extremely abundant in the marine zooplankton. However, a lack of genome information has hindered elucidation of the molecular mechanisms of development, settlement and survival strategies in extreme marine environments. We sequenced and constructed the genome dataset for nauplii to obtain comprehensive larval genetic information. We also investigated iTRAQ-based protein expression patterns to reveal the molecular basis of nauplii development, and to gain information on larval survival strategies in the Red Sea marine environment. Results A nauplii larval transcript dataset, containing 92,117 predicted open reading frames (ORFs), was constructed and used as a reference for the proteome analysis. Genes related to translation, oxidative phosphorylation and cytoskeletal development were highly abundant. We observed remarkable plasticity in the proteome of Red Sea larvae. The proteins associated with development, stress responses and osmoregulation showed the most significant differences between the two larval populations studied. The synergistic overexpression of heat shock and osmoregulatory proteins may facilitate larval survival in intertidal habitats or in extreme environments. Conclusions We presented, for the first time, comprehensive transcriptome and proteome datasets for Red Sea nauplii. The datasets provide a foundation for future investigations focused on the survival mechanisms of other crustaceans in extreme marine environments.

  3. Systemic response of the stony coral Pocillopora damicornis against acute cadmium stress.

    Science.gov (United States)

    Zhou, Zhi; Yu, Xiaopeng; Tang, Jia; Wu, Yibo; Wang, Lingui; Huang, Bo

    2018-01-01

    Heavy metals have become one of the main pollutants in the marine environment and a major threat to the growth and reproduction of stony corals. In the present study, the density of symbiotic zooxanthellae, levels of crucial physiological activities and the transcriptome were investigated in the stony coral Pocillopora damicornis after the acute exposure to elevated cadmium concentration. The density of symbiotic zooxanthellae decreased significantly during 12-24h period, and reached lowest at 24h after acute cadmium stress. No significant changes were observed in the activity of glutathione S-transferase during the entire stress exposure. The activities of superoxide dismutase and catalase, and the concentration of glutathione decreased significantly, but the activation level of caspase3 increased significantly after cadmium exposure. Furthermore, transcriptome sequencing and bioinformatics analysis revealed 3538 significantly upregulated genes and 8048 significantly downregulated genes at 12h after the treatment. There were 12 overrepresented GO terms for significantly upregulated genes, mostly related to unfolded protein response, endoplasmic reticulum stress and apoptosis. In addition, a total of 32 GO terms were overrepresented for significantly downregulated genes, and mainly correlated with macromolecular metabolic processes. These results collectively suggest that acute cadmium stress could induce apoptosis by repressing the production of the antioxidants, elevating oxidative stress and activating the unfolded protein response. This cascade of reactions would result to the collapse of the coral-zooxanthella symbiosis and the expulsion of symbiotic zooxanthellae in the stony coral P. damicornis, ultimately leading to coral bleaching. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. New perspectives on ecological mechanisms affecting coral recruitment on reefs

    NARCIS (Netherlands)

    Ritson-Williams, R.; Arnold, S.N.; Fogarty, N.D.; Steneck, R.S.; Vermeij, M.J.A.; Paul, V.J.

    2009-01-01

    Coral mortality has increased in recent decades, making coral recruitment more important than ever in sustaining coral reef ecosystems and contributing to their resilience. This review summarizes existing information on ecological factors affecting scleractinian coral recruitment. Successful

  5. Effects of alumina refinery wastewater and signature metal constituents at the upper thermal tolerance of: 2. The early life stages of the coral Acropora tenuis

    International Nuclear Information System (INIS)

    Negri, Andrew P.; Harford, Andrew J.; Parry, David L.; Dam, Rick A. van

    2011-01-01

    Research highlights: →Methodology to assess relevant toxicants to sensitive early life histories of coral. → Explored the thermal sensitivity of fertilisation and larval metamorphosis in a coral. → First study to identify IC 50 s for Al, Ga and V in corals (at summer temperature). → First study to test the effects of an alumina outfall wastewater on coral. → Found additive effects of wastewater and high SST on fertilisation and metamorphosis. - Abstract: The success of early life history transitions of the coral Acropora tenuis were used as endpoints to evaluate thermal stress and the effects of wastewater discharged to a tropical marine environment. The studies assessed the effects of: (i) temperature; (ii) three signature metals of the wastewater, aluminium (Al), vanadium (V) and gallium (Ga); and (iii) the wastewater (at 27 o C and 32 o C) on fertilisation and larval metamorphosis. The median inhibition temperatures for fertilisation and metamorphosis were 32.8 o C and 33.0 o C, respectively. Fertilisation IC 50 s for Al, V and Ga were 2997, 2884 and 3430 μg L -1 , respectively. Metamorphosis IC 50 s for Al, V and Ga were 1945, 675 and 3566 μg L -1 , respectively. The wastewater only affected fertilisation and metamorphosis at moderate concentrations (IC 50 s = 63% and 67%, v/v, respectively, at 27 o C), posing a low risk to this species in the field. The effects of wastewater and temperature on fertilisation and metamorphosis were additive.

  6. Human activities threaten coral reefs

    International Nuclear Information System (INIS)

    Tveitdal, Svein; Bjoerke, Aake

    2002-01-01

    Research indicates that 58 per cent of the coral reefs of the world are threatened by human activities. Pollution and global heating represent some of the threats. Coral reefs just beneath the surface of the sea are very sensitive to temperature changes. Since 1979, mass death of coral reefs has been reported increasingly often. More than 1000 marine species live in the coral reefs, among these are one fourth of all marine species of fish. It is imperative that the coral reefs be preserved, as coastal communities all over the world depend on them as sources of food and as they are the raw materials for important medicines. The article discusses the threats to the coral reefs in general and does not single out any particular energy-related activity as the principal threat. For instance, the El-Nino phenomenon of the Pacific Ocean is probably involved in mass death of coral reefs and in the North Sea large parts of deep-water reefs have been crushed by heavy beam trawlers fishing for bottom fish

  7. Biophysical models of larval dispersal in the Benguela Current ...

    African Journals Online (AJOL)

    We synthesise and update results from the suite of biophysical, larval-dispersal models developed in the Benguela Current ecosystem. Biophysical models of larval dispersal use outputs of physical hydrodynamic models as inputs to individual-based models in which biological processes acting during the larval life are ...

  8. Demographic Mechanisms of Reef Coral Species Winnowing from Communities under Increased Environmental Stress

    Directory of Open Access Journals (Sweden)

    Bernhard Riegl

    2017-10-01

    Full Text Available Winnowing of poorly-adapted species from local communities causes shifts/declines in species richness, making ecosystems increasingly ecologically depauperate. Low diversity can be associated with marginality of environments, which is increasing as climate change impacts ecosystems globally. This paper demonstrates the demographic mechanisms (size-specific mortality, growth, fertility; and metapopulation connectivity associated with population-level changes due to thermal stress extremes for five zooxanthellate reef-coral species. Effects vary among species, leading to predictable changes in population size and, consequently, community structure. The Persian/Arabian Gulf (PAG is an ecologically marginal reef environment with a subset of Indo-Pacific species, plus endemics. Local heating correlates with changes in coral population dynamics and community structure. Recent population dynamics of PAG corals were quantified in two phases (medium disturbed MD 1998–2010 and 2013–2017, severely disturbed SD 1996/8, 2010/11/12 with two stable states of declining coral frequency and cover. The strongest changes in life-dynamics, as expressed by transition matrices solved for MD and SD periods were in Acropora downingi and Porites harrisoni, which showed significant partial and whole-colony mortality (termed “shrinkers”. But in Dipsastrea pallida, Platygyra daedalea, Cyphastraea microphthalma the changes to life dynamics were more subtle, with only partial tissue mortality (termed “persisters”. Metapopulation models suggested recovery predominantly in species experiencing partial rather than whole-colony mortality. Increased frequency of disturbance caused progressive reduction in coral size, cover, and population fecundity. Also, the greater the frequency of disturbance, the more larval connectivity is required to maintain the metapopulation. An oceanographic model revealed important local larval retention and connectivity primarily between

  9. 75 FR 39917 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs off the...

    Science.gov (United States)

    2010-07-13

    ... the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs off the Southern Atlantic... regulations implementing the Fishery Management Plan for Coral, Coral Reefs, and Live/Hardbottom Habitat of... Cancer Institute (http:// [[Page 39918

  10. Self-recruitment in a coral reef fish population in a marine reserve

    KAUST Repository

    Herrera Sarrias, Marcela

    2014-12-01

    Marine protected areas (MPAs) have proliferated in the past decades to protect biodiversity and sustain fisheries. However, most of the MPA networks have been designed without taking into account a critical factor: the larval dispersal patterns of populations within and outside the reserves. The scale and predictability of larval dispersal, however, remain unknown due to the difficulty of measuring dispersal when larvae are minute (~ cm) compared to the potential scale of dispersal (~ km). Nevertheless, genetic approaches can now be used to make estimates of larval dispersal. The following thesis describes self-recruitment and connectivity patterns of a coral reef fish species (Centropyge bicolor) in Kimbe Bay, Papua New Guinea. To do this, microsatellite markers were developed to evaluate fine-scale genetics and recruit assignment via genetic parentage analysis. In this method, offspring are assigned to potential parents, so that larval dispersal distances can then be inferred for each individual larvae. From a total of 255 adults and 426 juveniles collected only 2 parentoffspring pairs were assigned, representing less than 1% self-recruitment. Previous data from the same study system showed that both Chaetodon vagagundus and Amphiprion percula have consistent high self-recuitment rates (~ 60%), despite having contrasting life history traits. Since C. bicolor and C. vagabundus have similar characteristics (e.g. reproductive mode, pelagic larval duration), comparable results were expected. On the contrary, the results of this study showed that dispersal patterns cannot be generalized across species. Hence the importance of studying different species and seascapes to better understand the patterns of larval dispersal. This, in turn, will be essential to improve the design and implementation of MPAs as conservation and management tools.

  11. Local stressors reduce coral resilience to bleaching.

    Science.gov (United States)

    Carilli, Jessica E; Norris, Richard D; Black, Bryan A; Walsh, Sheila M; McField, Melanie

    2009-07-22

    Coral bleaching, during which corals lose their symbiotic dinoflagellates, typically corresponds with periods of intense heat stress, and appears to be increasing in frequency and geographic extent as the climate warms. A fundamental question in coral reef ecology is whether chronic local stress reduces coral resistance and resilience from episodic stress such as bleaching, or alternatively promotes acclimatization, potentially increasing resistance and resilience. Here we show that following a major bleaching event, Montastraea faveolata coral growth rates at sites with higher local anthropogenic stressors remained suppressed for at least 8 years, while coral growth rates at sites with lower stress recovered in 2-3 years. Instead of promoting acclimatization, our data indicate that background stress reduces coral fitness and resilience to episodic events. We also suggest that reducing chronic stress through local coral reef management efforts may increase coral resilience to global climate change.

  12. Detailed transcriptome description of the neglected cestode Taenia multiceps.

    Science.gov (United States)

    Wu, Xuhang; Fu, Yan; Yang, Deying; Zhang, Runhui; Zheng, Wanpeng; Nie, Huaming; Xie, Yue; Yan, Ning; Hao, Guiying; Gu, Xiaobin; Wang, Shuxian; Peng, Xuerong; Yang, Guangyou

    2012-01-01

    The larval stage of Taenia multiceps, a global cestode, encysts in the central nervous system (CNS) of sheep and other livestock. This frequently leads to their death and huge socioeconomic losses, especially in developing countries. This parasite can also cause zoonotic infections in humans, but has been largely neglected due to a lack of diagnostic techniques and studies. Recent developments in next-generation sequencing provide an opportunity to explore the transcriptome of T. multiceps. We obtained a total of 31,282 unigenes (mean length 920 bp) using Illumina paired-end sequencing technology and a new Trinity de novo assembler without a referenced genome. Individual transcription molecules were determined by sequence-based annotations and/or domain-based annotations against public databases (Nr, UniprotKB/Swiss-Prot, COG, KEGG, UniProtKB/TrEMBL, InterPro and Pfam). We identified 26,110 (83.47%) unigenes and inferred 20,896 (66.8%) coding sequences (CDS). Further comparative transcripts analysis with other cestodes (Taenia pisiformis, Taenia solium, Echincoccus granulosus and Echincoccus multilocularis) and intestinal parasites (Trichinella spiralis, Ancylostoma caninum and Ascaris suum) showed that 5,100 common genes were shared among three Taenia tapeworms, 261 conserved genes were detected among five Taeniidae cestodes, and 109 common genes were found in four zoonotic intestinal parasites. Some of the common genes were genes required for parasite survival, involved in parasite-host interactions. In addition, we amplified two full-length CDS of unigenes from the common genes using RT-PCR. This study provides an extensive transcriptome of the adult stage of T. multiceps, and demonstrates that comparative transcriptomic investigations deserve to be further studied. This transcriptome dataset forms a substantial public information platform to achieve a fundamental understanding of the biology of T. multiceps, and helps in the identification of drug targets and

  13. Detailed transcriptome description of the neglected cestode Taenia multiceps.

    Directory of Open Access Journals (Sweden)

    Xuhang Wu

    Full Text Available BACKGROUND: The larval stage of Taenia multiceps, a global cestode, encysts in the central nervous system (CNS of sheep and other livestock. This frequently leads to their death and huge socioeconomic losses, especially in developing countries. This parasite can also cause zoonotic infections in humans, but has been largely neglected due to a lack of diagnostic techniques and studies. Recent developments in next-generation sequencing provide an opportunity to explore the transcriptome of T. multiceps. METHODOLOGY/PRINCIPAL FINDINGS: We obtained a total of 31,282 unigenes (mean length 920 bp using Illumina paired-end sequencing technology and a new Trinity de novo assembler without a referenced genome. Individual transcription molecules were determined by sequence-based annotations and/or domain-based annotations against public databases (Nr, UniprotKB/Swiss-Prot, COG, KEGG, UniProtKB/TrEMBL, InterPro and Pfam. We identified 26,110 (83.47% unigenes and inferred 20,896 (66.8% coding sequences (CDS. Further comparative transcripts analysis with other cestodes (Taenia pisiformis, Taenia solium, Echincoccus granulosus and Echincoccus multilocularis and intestinal parasites (Trichinella spiralis, Ancylostoma caninum and Ascaris suum showed that 5,100 common genes were shared among three Taenia tapeworms, 261 conserved genes were detected among five Taeniidae cestodes, and 109 common genes were found in four zoonotic intestinal parasites. Some of the common genes were genes required for parasite survival, involved in parasite-host interactions. In addition, we amplified two full-length CDS of unigenes from the common genes using RT-PCR. CONCLUSIONS/SIGNIFICANCE: This study provides an extensive transcriptome of the adult stage of T. multiceps, and demonstrates that comparative transcriptomic investigations deserve to be further studied. This transcriptome dataset forms a substantial public information platform to achieve a fundamental understanding of

  14. Fungi and their role in corals and coral reef ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.; Ravindran, J.

    fungal hyphae have on corals, their mechanism of penetration and the role their enzymes play in this process. 3.2. Fungi as pathogens in reef ecosystems Besides natural disasters and climate warming, diseases have contributed to coral decline... defence mechanisms against predation, biofouling, diseases, environmental perturbations and other stressors. These chemicals are either synthesized by the organisms themselves or their endobiontic microorganisms. If these valuable compounds...

  15. Validation of microsatellite multiplexes for parentage analysis in a coral reef fish (Lutjanus carponotatus, Lutjanidae)

    KAUST Repository

    Harrison, Hugo B.

    2014-05-25

    Parentage analysis is an important tool for identifying connectivity patterns in coral reef fishes, but often requires numerous highly polymorphic markers. We isolated 21 polymorphic microsatellite markers from the stripey snapper, Lutjanus carponotatus and describe their integration into three multiplex PCRs. All markers were highly polymorphic with a mean of 24.9 ± 1.8 SE alleles per locus and an average observed heterozygosity of 0.797 ± 0.038 SE across 285 genotyped individuals. Using a simulated dataset, we conclude that the complete marker set provides sufficient resolution to resolve parent–offspring relationships in natural populations with 99.6 ± 0.1 % accuracy in parentage assignments. This multiplex assay provides an effective means of investigating larval dispersal and population connectivity in this fishery-targeted coral reef fish species and informing the design of marine protected area networks for biodiversity conservation and fisheries management.

  16. Climate change and larval transport in the ocean: fractional effects from physical and physiological factors.

    Science.gov (United States)

    Kendall, Matthew S; Poti, Matt; Karnauskas, Kristopher B

    2016-04-01

    Changes in larval import, export, and self-seeding will affect the resilience of coral reef ecosystems. Climate change will alter the ocean currents that transport larvae and also increase sea surface temperatures (SST), hastening development, and shortening larval durations. Here, we use transport simulations to estimate future larval connectivity due to: (1) physical transport of larvae from altered circulation alone, and (2) the combined effects of altered currents plus physiological response to warming. Virtual larvae from islands throughout Micronesia were moved according to present-day and future ocean circulation models. The Hybrid Coordinate Ocean Model (HYCOM) spanning 2004-2012 represented present-day currents. For future currents, we altered HYCOM using analysis from the National Center for Atmospheric Research Community Earth System Model, version 1-Biogeochemistry, Representative Concentration Pathway 8.5 experiment. Based on the NCAR model, regional SST is estimated to rise 2.74 °C which corresponds to a ~17% decline in larval duration for some taxa. This reduction was the basis for a separate set of simulations. Results predict an increase in self-seeding in 100 years such that 62-76% of islands experienced increased self-seeding, there was an average domainwide increase of ~1-3% points in self-seeding, and increases of up to 25% points for several individual islands. When changed currents alone were considered, approximately half (i.e., random) of all island pairs experienced decreased connectivity but when reduced PLD was added as an effect, ~65% of connections were weakened. Orientation of archipelagos relative to currents determined the directional bias in connectivity changes. There was no universal relationship between climate change and connectivity applicable to all taxa and settings. Islands that presently export large numbers of larvae but that also maintain or enhance this role into the future should be the focus of conservation

  17. Post-settlement survivorship in two Caribbean broadcasting corals

    Science.gov (United States)

    Miller, Margaret W.

    2014-12-01

    The post-settlement phase of broadcast-spawned coral life histories is poorly known due to its almost complete undetectability and, hence, presumed low abundance in the field. We used lab-cultured settled polyps of two important Caribbean reef-building species with negligible larval recruitment to quantify early post-settlement survivorship (6-9 weeks) over multiple years/cohorts and differing orientation on a reef in the Florida Keys. Orbicella faveolata showed significantly and consistently better survivorship in vertical rather than horizontal orientation, but no discernable growth overall. Meanwhile, Acropora palmata showed no significant difference in survivorship between orientations, but significantly greater growth in the horizontal orientation. Both species showed significant variation in mean survivorship between cohorts of different years; 0-47 % for O. faveolata and 12-49 % for A. palmata over the observed duration. These results demonstrate wide variation in success of cohorts and important differences in the larval recruitment capacities of these two important but imperiled reef-building species.

  18. Chemical constituents of soft coral Sarcophyton infundibuliforme from the South China Sea

    KAUST Repository

    Wang, Chang Yun

    2011-08-01

    Chemical investigation on soft coral Sarcophyton infundibuliforme collected from the South China Sea led to the isolation and identification of 14 secondary metabolites, including ten cembrene diterpenoids (1-10), one α-tocopheryl quinone derivative (11), one prostaglandin (12), one lipid (13) and one carotinoid (14). Their structures were determined by extensive analysis of their spectroscopic data. All of these metabolites were isolated from this species for the first time. Diterpenoids 1, 2, 7 and 10 showed potent antifouling activity against the larval settlement of barnacle Balanus amphitrite. © 2011 Elsevier Ltd.

  19. Chemical constituents of soft coral Sarcophyton infundibuliforme from the South China Sea

    KAUST Repository

    Wang, Chang Yun; Chen, An Na; Shao, Chang Lun; Li, Liang; Xu, Ying; Qian, Pei Yuan

    2011-01-01

    Chemical investigation on soft coral Sarcophyton infundibuliforme collected from the South China Sea led to the isolation and identification of 14 secondary metabolites, including ten cembrene diterpenoids (1-10), one α-tocopheryl quinone derivative (11), one prostaglandin (12), one lipid (13) and one carotinoid (14). Their structures were determined by extensive analysis of their spectroscopic data. All of these metabolites were isolated from this species for the first time. Diterpenoids 1, 2, 7 and 10 showed potent antifouling activity against the larval settlement of barnacle Balanus amphitrite. © 2011 Elsevier Ltd.

  20. Larval development of Sabellastarte spectabilis (Grube, 1878 (Polychaeta: Sabellidae in Hawaiian waters

    Directory of Open Access Journals (Sweden)

    David R. Bybee

    2006-12-01

    Full Text Available The sabellid polychaete Sabellastarte spectabilis is common in bays and harbours throughout Hawaii. It has become one of the most harvested marine ornamental species in the State. Collection can be difficult and potentially damaging to the reef community. Understanding the reproduction and life history of this polychaete will benefit the marine ornamental trade by facilitating aquaculture of the species and coral reef conservation by decreasing destructive collecting practices. There is very little known about the biology of this species. Experiments were conducted at the Hawaii Institute of Marine Biology to induce and document spawning and larval development. Oocytes range between 150-200 µm in diameter and sperm have spherical heads. Cell division in fertilized eggs begins approximately twenty minutes after spawning. Developmental stages were documented using light and scanning electron microscopy. Swimming larvae are first seen 7-8 h after spawning. Larvae have a well-developed prototroch and a less conspicuous neurotroch and metatroch. Two chaetigers develop sequentially on days 4 and 5 and settlement occurs 6-7 days after spawning. Metamorphosis occurs gradually from days 6-8. This is the first reported induction of spawning and description of larval development from fertilized egg to settlement and metamorphosis for this species.

  1. DNA barcoding as a tool for coral reef conservation

    Science.gov (United States)

    Neigel, J.; Domingo, A.; Stake, J.

    2007-09-01

    DNA Barcoding (DBC) is a method for taxonomic identification of animals that is based entirely on the 5' portion of the mitochondrial gene, cytochrome oxidase subunit I ( COI-5). It can be especially useful for identification of larval forms or incomplete specimens lacking diagnostic morphological characters. DBC can also facilitate the discovery of species and in defining “molecular taxonomic units” in problematic groups. However, DBC is not a panacea for coral reef taxonomy. In two of the most ecologically important groups on coral reefs, the Anthozoa and Porifera, COI-5 sequences have diverged too little to be diagnostic for all species. Other problems for DBC include paraphyly in mitochondrial gene trees and lack of differentiation between hybrids and their maternal ancestors. DBC also depends on the availability of databases of COI-5 sequences, which are still in early stages of development. A global effort to barcode all fish species has demonstrated the importance of large-scale coordination and is yielding promising results. Whether or not COI-5 by itself is sufficient for species assignments has become a contentious question; it is generally advantageous to use sequences from multiple loci.

  2. Not finding Nemo: limited reef-scale retention in a coral reef fish

    KAUST Repository

    Nanninga, Gerrit B.

    2015-02-03

    The spatial scale of larval dispersal is a key predictor of marine metapopulation dynamics and an important factor in the design of reserve networks. Over the past 15 yr, studies of larval dispersal in coral reef fishes have generated accumulating evidence of consistently high levels of self-recruitment and local retention at various spatial scales. These findings have, to a certain degree, created a paradigm shift toward the perception that large fractions of locally produced recruitment may be the rule rather than the exception. Here we examined the degree of localized settlement in an anemonefish, Amphiprion bicinctus, at a solitary coral reef in the central Red Sea by integrating estimates of self-recruitment obtained from genetic parentage analysis with predictions of local retention derived from a biophysical dispersal model parameterized with real-time physical forcing. Self-recruitment at the reef scale (c. 0.7 km2) was virtually absent during two consecutive January spawning events (1.4 % in 2012 and 0 % in 2013). Predicted levels of local retention at the reef scale varied temporally, but were comparatively low for both simulations (7 % in 2012 and 0 % in 2013). At the same time, the spatial scale of simulated dispersal was restricted to approximately 20 km from the source. Model predictions of reef-scale larval retention were highly dependent on biological parameters, underlining the need for further empirical validations of larval traits over a range of species. Overall, our findings present an urgent caution when assuming the potential for self-replenishment in small marine reserves.

  3. Mechanisms for eco-immunity in a changing enviroment: how does the coral innate immune system contend with climate change?

    Science.gov (United States)

    Traylor-Knowles, N. G.

    2016-02-01

    Innate immunity plays a central role in maintaining homeostasis, and within the context of impending climate change scenarios, understanding how this system works is critical. However, the actual mechanisms involved in the evolution of the innate immune system are largely unknown. Cnidaria (including corals, sea anemones and jellyfish) are well suited for studying the fundamental functions of innate immunity because they share a common ancestor with bilaterians. This study will highlight the transcriptomic changes during a heat shock in the coral Acropora hyacinthus of American Samoa, examining the temporal changes, every half an hour for 5 hours. We hypothesize that genes involved in innate immunity, and extracellular matrix maintenance will be key components to the heat stress response. This presentation will highlight the novel role of the tumor necrosis factor receptor gene family as a responder to heat stress and present future directions for this developing field in coral reef research.

  4. Evidence for multiple phototransduction pathways in a reef-building coral.

    Directory of Open Access Journals (Sweden)

    Benjamin Mason

    Full Text Available Photosensitive behaviors and circadian rhythms are well documented in reef-building corals and their larvae, but the mechanisms responsible for photoreception have not been described in these organisms. Here we report the cloning, immunolocalization, and partial biochemical characterization of three opsins and four G proteins expressed in planulae of the Caribbean elkhorn coral, Acropora palmata. All three opsins (acropsins 1-3 possess conserved seven-pass transmembrane structure, and localize to distinct regions of coral planulae. Acropsin 1 was localized in the larval endoderm, while acropsin 2 was localized in solitary cells of the ectoderm. These rod-like cells displayed a remarkably polarized distribution, concentrated in the aboral end. We also cloned four A. palmata G protein alpha subunits. Three were homologs of vertebrate Gi, Go, and Gq. The fourth is presumably a novel G protein, which displays only 40% identity with the nearest known G protein, and we termed it Gc for "cnidarian". We show that Gc and Gq can be activated by acropsins in a light-dependent manner in vitro. This indicates that at least acropsins 1 and 3 can form functional photoreceptors and potentially may play a role in color preference during settlement, vertical positioning and other light-guided behaviors observed in coral larvae.

  5. Evidence for multiple phototransduction pathways in a reef-building coral.

    Science.gov (United States)

    Mason, Benjamin; Schmale, Michael; Gibbs, Patrick; Miller, Margaret W; Wang, Qiang; Levay, Konstantin; Shestopalov, Valery; Slepak, Vladlen Z

    2012-01-01

    Photosensitive behaviors and circadian rhythms are well documented in reef-building corals and their larvae, but the mechanisms responsible for photoreception have not been described in these organisms. Here we report the cloning, immunolocalization, and partial biochemical characterization of three opsins and four G proteins expressed in planulae of the Caribbean elkhorn coral, Acropora palmata. All three opsins (acropsins 1-3) possess conserved seven-pass transmembrane structure, and localize to distinct regions of coral planulae. Acropsin 1 was localized in the larval endoderm, while acropsin 2 was localized in solitary cells of the ectoderm. These rod-like cells displayed a remarkably polarized distribution, concentrated in the aboral end. We also cloned four A. palmata G protein alpha subunits. Three were homologs of vertebrate Gi, Go, and Gq. The fourth is presumably a novel G protein, which displays only 40% identity with the nearest known G protein, and we termed it Gc for "cnidarian". We show that Gc and Gq can be activated by acropsins in a light-dependent manner in vitro. This indicates that at least acropsins 1 and 3 can form functional photoreceptors and potentially may play a role in color preference during settlement, vertical positioning and other light-guided behaviors observed in coral larvae.

  6. Coral Reef Protection Implementation Plan

    National Research Council Canada - National Science Library

    Lobel, Lisa

    2000-01-01

    This document identify policies and actions to implement the Department of Defense's responsibilities under Executive Order 13089 on Coral Reef Protection, and are a requirement of the interim Task...

  7. Advancing Ocean Monitoring Near Coral Reefs

    Science.gov (United States)

    Heron, Scott F.; Steinberg, Craig R.; Heron, Mal L.; Mantovanelli, Alessandra; Jaffrés, Jasmine B. D.; Skirving, William J.; McAllister, Felicity; Rigby, Paul; Wisdom, Daniel; Bainbridge, Scott

    2010-10-01

    Corals, the foundation of tropical marine ecosystems, exist in a symbiotic relationship with zooxanthellae (algae). The corals obtain much of their energy by consuming compounds derived from photosynthesis by these microorganisms; the microorganisms, which reside in the coral tissue, in turn use waste products from the corals to sustain photosynthesis. This symbiosis is very sensitive to subtle changes in environment, such as increased ocean acidity, temperature, and light. When unduly stressed, the colorful algae are expelled from the corals, causing the corals to “bleach” and potentially die [e.g., van Oppen and Lough, 2009].

  8. Coral Sr-U Thermometry

    Science.gov (United States)

    DeCarlo, T. M.; Gaetani, G. A.; Cohen, A. L.; Foster, G. L.; Alpert, A.; Stewart, J.

    2016-12-01

    Coral skeletons archive the past two millennia of climate variability in the oceans with unrivaled temporal resolution. However, extracting accurate temperature information from coral skeletons is confounded by "vital effects", which often override the temperature dependence of geochemical proxies. Here, we present a new approach to coral paleothermometry based on results of abiogenic precipitation experiments interpreted within a framework provided by a quantitative model of the coral biomineralization process. We conducted laboratory experiments to test the temperature and carbonate chemistry controls on abiogenic partitioning of Sr/Ca and U/Ca between aragonite and seawater, and we modeled the sensitivity of skeletal composition to processes occurring at the site of calcification. The model predicts that temperature can be accurately reconstructed from coral skeleton by combining Sr/Ca and U/Ca ratios into a new proxy, Sr-U. We tested the model predictions with measured Sr/Ca and U/Ca ratios of fourteen Porites sp. corals collected from the tropical Pacific Ocean and the Red Sea, with a subset also analyzed using the boron isotope (δ11B) pH proxy. Observed relationships among Sr/Ca, U/Ca, and δ11B agree with model predictions, indicating that the model accounts for the key features of the coral biomineralization process. We calibrated Sr-U to instrumental temperature records and found that it captures 93% of mean annual variability (26-30 °C) and predicts temperature within 0.5 °C (1 σ). Conversely, Sr/Ca alone has an error of prediction of 1 °C and often diverges from observed temperature by 3 °C or more. Many of the problems afflicting Sr/Ca - including offsets among neighboring corals and decouplings from temperature during coral stress events - are reconciled by Sr-U. By accounting for the influence of the coral biomineralization process, the Sr-U thermometer may offer significantly improved reliability for reconstructing ocean temperatures from coral

  9. Expression of a symbiosis-specific gene in Symbiodinium type A1 associated with coral, nudibranch and giant clam larvae

    KAUST Repository

    Mies, M.

    2017-05-24

    Symbiodinium are responsible for the majority of primary production in coral reefs and found in a mutualistic symbiosis with multiple animal phyla. However, little is known about the molecular signals involved in the establishment of this symbiosis and whether it initiates during host larval development. To address this question, we monitored the expression of a putative symbiosis-specific gene (H+-ATPase) in Symbiodinium A1 ex hospite and in association with larvae of a scleractinian coral (Mussismilia hispida), a nudibranch (Berghia stephanieae) and a giant clam (Tridacna crocea). We acquired broodstock for each host, induced spawning and cultured the larvae. Symbiodinium cells were offered and larval samples taken for each host during the first 72 h after symbiont addition. In addition, control samples including free-living Symbiodinium and broodstock tissue containing symbionts for each host were collected. RNA extraction and RT-PCR were performed and amplified products cloned and sequenced. Our results show that H+-ATPase was expressed in Symbiodinium associated with coral and giant clam larvae, but not with nudibranch larvae, which digested the symbionts. Broodstock tissue for coral and giant clam also expressed H+-ATPase, but not the nudibranch tissue sample. Our results of the expression of H+-ATPase as a marker gene suggest that symbiosis between Symbiodinium and M. hispida and T. crocea is established during host larval development. Conversely, in the case of B. stephanieae larvae, evidence does not support a mutualistic relationship. Our study supports the utilization of H+-ATPase expression as a marker for assessing Symbiodinium-invertebrate relationships with applications for the differentiation of symbiotic and non-symbiotic associations. At the same time, insights from a single marker gene approach are limited and future studies should direct the identification of additional symbiosis-specific genes, ideally from both symbiont and host.

  10. Preconditioning in the reef-building coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions.

    Science.gov (United States)

    Putnam, Hollie M; Gates, Ruth D

    2015-08-01

    Coral reefs are globally threatened by climate change-related ocean warming and ocean acidification (OA). To date, slow-response mechanisms such as genetic adaptation have been considered the major determinant of coral reef persistence, with little consideration of rapid-response acclimatization mechanisms. These rapid mechanisms such as parental effects that can contribute to trans-generational acclimatization (e.g. epigenetics) have, however, been identified as important contributors to offspring response in other systems. We present the first evidence of parental effects in a cross-generational exposure to temperature and OA in reef-building corals. Here, we exposed adults to high (28.9°C, 805 µatm P(CO2)) or ambient (26.5°C, 417 µatm P(CO2)) temperature and OA treatments during the larval brooding period. Exposure to high treatment negatively affected adult performance, but their larvae exhibited size differences and metabolic acclimation when subsequently re-exposed, unlike larvae from parents exposed to ambient conditions. Understanding the innate capacity corals possess to respond to current and future climatic conditions is essential to reef protection and maintenance. Our results identify that parental effects may have an important role through (1) ameliorating the effects of stress through preconditioning and adaptive plasticity, and/or (2) amplifying the negative parental response through latent effects on future life stages. Whether the consequences of parental effects and the potential for trans-generational acclimatization are beneficial or maladaptive, our work identifies a critical need to expand currently proposed climate change outcomes for corals to further assess rapid response mechanisms that include non-genetic inheritance through parental contributions and classical epigenetic mechanisms. © 2015. Published by The Company of Biologists Ltd.

  11. Viruses: agents of coral disease?

    Science.gov (United States)

    Davy, S K; Burchett, S G; Dale, A L; Davies, P; Davy, J E; Muncke, C; Hoegh-Guldberg, O; Wilson, W H

    2006-03-23

    The potential role of viruses in coral disease has only recently begun to receive attention. Here we describe our attempts to determine whether viruses are present in thermally stressed corals Pavona danai, Acropora formosa and Stylophora pistillata and zoanthids Zoanthus sp., and their zooxanthellae. Heat-shocked P. danai, A. formosa and Zoanthus sp. all produced numerous virus-like particles (VLPs) that were evident in the animal tissue, zooxanthellae and the surrounding seawater; VLPs were also seen around heat-shocked freshly isolated zooxanthellae (FIZ) from P. danai and S. pistillata. The most commonly seen VLPs were tail-less, hexagonal and about 40 to 50 nm in diameter, though a diverse range of other VLP morphotypes (e.g. rounded, rod-shaped, droplet-shaped, filamentous) were also present around corals. When VLPs around heat-shocked FIZ from S. pistillata were added to non-stressed FIZ from this coral, they resulted in cell lysis, suggesting that an infectious agent was present; however, analysis with transmission electron microscopy provided no clear evidence of viral infection. The release of diverse VLPs was again apparent when flow cytometry was used to enumerate release by heat-stressed A. formosa nubbins. Our data support the infection of reef corals by viruses, though we cannot yet determine the precise origin (i.e. coral, zooxanthellae and/or surface microbes) of the VLPs seen. Furthermore, genome sequence data are required to establish the presence of viruses unequivocally.

  12. TCW: transcriptome computational workbench.

    Directory of Open Access Journals (Sweden)

    Carol Soderlund

    Full Text Available BACKGROUND: The analysis of transcriptome data involves many steps and various programs, along with organization of large amounts of data and results. Without a methodical approach for storage, analysis and query, the resulting ad hoc analysis can lead to human error, loss of data and results, inefficient use of time, and lack of verifiability, repeatability, and extensibility. METHODOLOGY: The Transcriptome Computational Workbench (TCW provides Java graphical interfaces for methodical analysis for both single and comparative transcriptome data without the use of a reference genome (e.g. for non-model organisms. The singleTCW interface steps the user through importing transcript sequences (e.g. Illumina or assembling long sequences (e.g. Sanger, 454, transcripts, annotating the sequences, and performing differential expression analysis using published statistical programs in R. The data, metadata, and results are stored in a MySQL database. The multiTCW interface builds a comparison database by importing sequence and annotation from one or more single TCW databases, executes the ESTscan program to translate the sequences into proteins, and then incorporates one or more clusterings, where the clustering options are to execute the orthoMCL program, compute transitive closure, or import clusters. Both singleTCW and multiTCW allow extensive query and display of the results, where singleTCW displays the alignment of annotation hits to transcript sequences, and multiTCW displays multiple transcript alignments with MUSCLE or pairwise alignments. The query programs can be executed on the desktop for fastest analysis, or from the web for sharing the results. CONCLUSION: It is now affordable to buy a multi-processor machine, and easy to install Java and MySQL. By simply downloading the TCW, the user can interactively analyze, query and view their data. The TCW allows in-depth data mining of the results, which can lead to a better understanding of the

  13. Natural disease resistance in threatened staghorn corals.

    Directory of Open Access Journals (Sweden)

    Steven V Vollmer

    Full Text Available Disease epidemics have caused extensive damage to tropical coral reefs and to the reef-building corals themselves, yet nothing is known about the abilities of the coral host to resist disease infection. Understanding the potential for natural disease resistance in corals is critically important, especially in the Caribbean where the two ecologically dominant shallow-water corals, Acropora cervicornis and A. palmata, have suffered an unprecedented mass die-off due to White Band Disease (WBD, and are now listed as threatened under the US Threatened Species Act and as critically endangered under the IUCN Red List criteria. Here we examine the potential for natural resistance to WBD in the staghorn coral Acropora cervicornis by combining microsatellite genotype information with in situ transmission assays and field monitoring of WBD on tagged genotypes. We show that six percent of staghorn coral genotypes (3 out of 49 are resistant to WBD. This natural resistance to WBD in staghorn corals represents the first evidence of host disease resistance in scleractinian corals and demonstrates that staghorn corals have an innate ability to resist WBD infection. These resistant staghorn coral genotypes may explain why pockets of Acropora have been able to survive the WBD epidemic. Understanding disease resistance in these corals may be the critical link to restoring populations of these once dominant corals throughout their range.

  14. THE CONDITION OF CORAL REEFS IN SOUTH FLORIDA (2000) USING CORAL DISEASE AND BLEACHING AS INDICATORS

    Science.gov (United States)

    The destruction for coral reef habitats is occurring at unprecedented levels. Coral disease epizootics in the Southwestern Atlantic have lead to coral replacement by turf algae, prompting a call to classify some coral species as endangered. In addition, a massive bleaching event ...

  15. Coral calcification and ocean acidification

    Science.gov (United States)

    Jokiel, Paul L.; Jury, Christopher P.; Kuffner, Ilsa B.

    2016-01-01

    Over 60 years ago, the discovery that light increased calcification in the coral plant-animal symbiosis triggered interest in explaining the phenomenon and understanding the mechanisms involved. Major findings along the way include the observation that carbon fixed by photosynthesis in the zooxanthellae is translocated to animal cells throughout the colony and that corals can therefore live as autotrophs in many situations. Recent research has focused on explaining the observed reduction in calcification rate with increasing ocean acidification (OA). Experiments have shown a direct correlation between declining ocean pH, declining aragonite saturation state (Ωarag), declining [CO32_] and coral calcification. Nearly all previous reports on OA identify Ωarag or its surrogate [CO32] as the factor driving coral calcification. However, the alternate “Proton Flux Hypothesis” stated that coral calcification is controlled by diffusion limitation of net H+ transport through the boundary layer in relation to availability of dissolved inorganic carbon (DIC). The “Two Compartment Proton Flux Model” expanded this explanation and synthesized diverse observations into a universal model that explains many paradoxes of coral metabolism, morphology and plasticity of growth form in addition to observed coral skeletal growth response to OA. It is now clear that irradiance is the main driver of net photosynthesis (Pnet), which in turn drives net calcification (Gnet), and alters pH in the bulk water surrounding the coral. Pnet controls [CO32] and thus Ωarag of the bulk water over the diel cycle. Changes in Ωarag and pH lag behind Gnet throughout the daily cycle by two or more hours. The flux rate Pnet, rather than concentration-based parameters (e.g., Ωarag, [CO3 2], pH and [DIC]:[H+] ratio) is the primary driver of Gnet. Daytime coral metabolism rapidly removes DIC from the bulk seawater. Photosynthesis increases the bulk seawater pH while providing the energy that drives

  16. Tradeoffs to Thermal Acclimation: Energetics and Reproduction of a Reef Coral with Heat Tolerant Symbiodinium Type-D

    Directory of Open Access Journals (Sweden)

    Alison M. Jones

    2011-01-01

    Full Text Available The photo-physiological characteristics of thermo-tolerant Symbiodinium types have been postulated to have negative effects on the energetics of the reef corals by reducing fitness. To investigate this, two key and inextricably coupled indicators of fitness, lipids and reproduction, were monitored in colonies of the broadcast-spawning coral Acropora millepora over a two-year period that included a natural bleaching event. In the absence of bleaching ITS1-type clade D predominant colonies had 26% lower stored lipids compared to C2 colonies. At spawning time, this correlated with 28% smaller eggs in type-D colonies. This energetic disparity is expected to have reduced larval duration and settlement-competency periods in type-D compared to type-C2 colonies. More importantly, irrespective of the effect of genotype, the fitness of all corals was adversely affected by the stress of the bleaching event which reduced prespawning lipids by 60% and halved the number of eggs compared to the previous year. Our results extend work that has shown that direct temperature stress and symbiont change are likely to work in concert on corals by demonstrating that the lipids and reproduction of the reef building corals on tropical reefs are likely to be impaired by these processes as our climate warms.

  17. RNA-Seq Reveals Extensive Transcriptional Response to Heat Stress in the Stony Coral Galaxea fascicularis

    Science.gov (United States)

    Hou, Jing; Xu, Tao; Su, Dingjia; Wu, Ying; Cheng, Li; Wang, Jun; Zhou, Zhi; Wang, Yan

    2018-01-01

    Galaxea fascicularis, a stony coral belonging to family Oculinidae, is widely distributed in Red Sea, the Gulf of Aden and large areas of the Indo-Pacific oceans. So far there is a lack of gene expression knowledge concerning this massive coral. In the present study, G. fascicularis was subjected to heat stress at 32.0 ± 0.5°C in the lab, we found that the density of symbiotic zooxanthellae decreased significantly; meanwhile apparent bleaching and tissue lysing were observed at 10 h and 18 h after heat stress. The transcriptome responses were investigated in the stony coral G. fascicularis during heat bleaching using RNA-seq. A total of 42,028 coral genes were assembled from over 439 million reads. Gene expressions were compared at 10 and 18 h after heat stress. The significantly upregulated genes found in the Control_10h vs. Heat_10h comparison, presented mainly in GO terms related with DNA integration and unfolded protein response; and for the Control_18h vs. Heat_18h comparison, the GO terms include DNA integration. In addition, comparison between groups of Control_10h vs. Heat_10h and Control_18h vs. Heat_18h revealed that 125 genes were significantly upregulated in common between the two groups, whereas 21 genes were significantly downregulated in common, all these differentially expressed genes were found to be involved in stress response, DNA integration and unfolded protein response. Taken together, our results suggest that high temperature could activate the stress response at the early stage, and subsequently induce the bleaching and lysing through DNA integration and unfolded protein response, which are able to disrupt the balance of coral-zooxanthella symbiosis in the stony coral G. fascicularis. PMID:29487614

  18. RNA-Seq Reveals Extensive Transcriptional Response to Heat Stress in the Stony Coral Galaxea fascicularis

    Directory of Open Access Journals (Sweden)

    Jing Hou

    2018-02-01

    Full Text Available Galaxea fascicularis, a stony coral belonging to family Oculinidae, is widely distributed in Red Sea, the Gulf of Aden and large areas of the Indo-Pacific oceans. So far there is a lack of gene expression knowledge concerning this massive coral. In the present study, G. fascicularis was subjected to heat stress at 32.0 ± 0.5°C in the lab, we found that the density of symbiotic zooxanthellae decreased significantly; meanwhile apparent bleaching and tissue lysing were observed at 10 h and 18 h after heat stress. The transcriptome responses were investigated in the stony coral G. fascicularis during heat bleaching using RNA-seq. A total of 42,028 coral genes were assembled from over 439 million reads. Gene expressions were compared at 10 and 18 h after heat stress. The significantly upregulated genes found in the Control_10h vs. Heat_10h comparison, presented mainly in GO terms related with DNA integration and unfolded protein response; and for the Control_18h vs. Heat_18h comparison, the GO terms include DNA integration. In addition, comparison between groups of Control_10h vs. Heat_10h and Control_18h vs. Heat_18h revealed that 125 genes were significantly upregulated in common between the two groups, whereas 21 genes were significantly downregulated in common, all these differentially expressed genes were found to be involved in stress response, DNA integration and unfolded protein response. Taken together, our results suggest that high temperature could activate the stress response at the early stage, and subsequently induce the bleaching and lysing through DNA integration and unfolded protein response, which are able to disrupt the balance of coral-zooxanthella symbiosis in the stony coral G. fascicularis.

  19. Assessing Oil Spill Impacts to Cold-Water Corals of the Deep Gulf of Mexico

    Science.gov (United States)

    DeLeo, D. M.; Lengyel, S. D.; Cordes, E. E.

    2016-02-01

    The Deepwater Horizon (DWH) disaster and subsequent cleanup efforts resulted in the release of an unprecedented amount of oil and chemical dispersants in the deep waters of the Gulf of Mexico (GoM). Over the years, numerous detrimental effects have been documented including impacts to cold-water coral ecosystems. Assessing and quantifying these effects is crucial to understanding the long-term consequences to affected coral populations as well as their resilience. We conducted live exposure experiments to investigate the toxicity of oil and dispersants on two deep-sea corals, Callogorgia delta and Paramuricea type B3. For both species, the treatments containing dispersants had a more pronounced effect than oil treatments alone. In addition, RNA from unexposed and DWH spill-impacted Paramuricea biscaya was extracted and sequenced using Illumina technology. A de novo reference transcriptome was produced and used to explore stress-induced variations in gene expression. Current findings show overexpression of genes coding for Cytochrome p450 (CYP1A1), Tumor necrosis factor receptor-associated factors (TRAFs), Peroxidasin and additional genes involved in innate immunity and apoptotic pathways. CYP1A1 is involved in the metabolism of xenobiotics and has been previously used as a diagnostic tool for aquatic pollution. TRAFs are responsible for regulating pathways involved in immune and inflammatory responses and were likewise overexpressed in thermally stressed shallow-water corals. Ribosomal proteins were also significantly underexpressed. These genes among others found in our expression data serve as useful biomarker candidates for assessing and monitoring future spill impacts as resource extraction continues in the deep waters of the GoM. Our results also provide insights into the responses of deep-sea corals to toxin exposure, implications of applying dispersants to oil spills and a novel reference assembly for a relatively under-studied group of cold-water corals.

  20. Status of coral reefs of India

    Digital Repository Service at National Institute of Oceanography (India)

    Muley, E.V.; Venkataraman, K.; Alfred, J.R.B.; Wafar, M.V.M.

    and economic significance of coral reefs and the threat perceptions, Government of India has initiated measures for their intensive conservation and management. Present paper deals with ecological status of coral reefs in the country and various national...

  1. Elkhorn and Staghorn Corals Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for elkhorn coral (Acropora palmata) and staghorn coral (A. cervicornis) as designated by 73 FR 72210, November 26, 2008,...

  2. Deep-Sea Soft Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  3. Deep-Sea Stony Coral Habitat Suitability

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Deep-sea corals, also known as cold water corals, create complex communities that provide habitat for a variety of invertebrate and fish species, such as grouper,...

  4. Coral Reef Watch, Hotspots, 50 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Coral Reef Watch provides Coral Bleaching hotspot maps derived from NOAA's Polar Operational Environmental Satellites (POES). This data provides global area...

  5. Effect of massing on larval growth rate.

    Science.gov (United States)

    Johnson, Aidan P; Wallman, James F

    2014-08-01

    Estimation of minimum postmortem interval commonly relies on predicting the age of blowfly larvae based on their size and an estimate of the temperatures to which they have been exposed throughout their development. The majority of larval growth rate data have been developed using small larval masses in order to avoid excess heat generation. The current study collected growth rate data for larvae at different mass volumes, and assessed the temperature production of these masses, for two forensically important blow fly species, Chrysomya rufifacies and Calliphora vicina. The growth rate of larvae in a small mass, exposed to the higher temperatures equivalent to those experienced by large masses, was also assessed to determine if observed differences were due to the known temperature effects of maggot masses. The results showed that temperature production increased with increasing mass volume, with temperature increases of 11 °C observed in the large Ch. rufifacies masses and increases of 5 °C in the large C. vicina masses. Similarly, the growth rate of the larvae was affected by mass size. The larvae from small masses grown at the higher temperatures experienced by large masses displayed an initial delay in growth, but then grew at a similar rate to those larvae at a constant 23 °C. Since these larvae from masses of equivalent sizes displayed similar patterns of growth rate, despite differing temperatures, and these growth rates differed from larger masses exposed to the same temperatures, it can be concluded that larval growth rate within a mass may be affected by additional factors other than temperature. Overall, this study highlights the importance of understanding the role of massing in larval development and provides initial developmental data for mass sizes of two forensically important blowfly species commonly encountered in Australian forensic casework. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. NOAA Coral Reef Watch Larval Connectivity, Hawaiian Archipelago (and Johnston Atoll)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Climate change threatens even the best-protected and most remote reefs. Reef recovery following catastrophic disturbance usually requires disturbed sites be reseeded...

  7. Granulomatous responses in larval taeniid infections.

    Science.gov (United States)

    Díaz, Á; Sagasti, C; Casaravilla, C

    2018-05-01

    Granulomas are responses to persistent nonliving bodies or pathogens, centrally featuring specialized macrophage forms called epithelioid and multinucleated giant cells. The larval stages of the cestode parasites of the Taeniidae family (Taenia, Echinococcus) develop for years in fixed tissue sites in mammals. In consequence, they are targets of granulomatous responses. The information on tissue responses to larval taeniids is fragmented among host and parasite species and scattered over many decades. We attempt to draw an integrated picture of these responses in solid tissues. The intensity of inflammation around live parasites spans a spectrum from minimal to high, parasite vitality correlating with low inflammation. The low end of the inflammatory spectrum features collagen capsules proximal to the parasites and moderate distal infiltration. The middle of the spectrum is dominated by classical granulomatous responses, whereas the high end features massive eosinophil invasions. Across the range of parasite species, much observational evidence suggests that eosinophils are highly effective at killing larval taeniids in solid tissues, before and during chronic granulomatous responses. The evidence available also suggests that these parasites are adapted to inhibit host granulomatous responses, in part through the exacerbation of host regulatory mechanisms including regulatory T cells and TGF-β. © 2018 John Wiley & Sons Ltd.

  8. Coral diseases and bleaching on Colombian Caribbean coral reefs

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá. The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10x2m with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2, and Urabá had high numbers with bleaching (54.4 colonies/m2. Of the seven reported coral diseases studied, Dark Spots Disease (DSD, and White Plague Disease (WPD were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A.grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few

  9. The transcriptomic and evolutionary signature of social interactions regulating honey bee caste development.

    Science.gov (United States)

    Vojvodic, Svjetlana; Johnson, Brian R; Harpur, Brock A; Kent, Clement F; Zayed, Amro; Anderson, Kirk E; Linksvayer, Timothy A

    2015-11-01

    The caste fate of developing female honey bee larvae is strictly socially regulated by adult nurse workers. As a result of this social regulation, nurse-expressed genes as well as larval-expressed genes may affect caste expression and evolution. We used a novel transcriptomic approach to identify genes with putative direct and indirect effects on honey bee caste development, and we subsequently studied the relative rates of molecular evolution at these caste-associated genes. We experimentally induced the production of new queens by removing the current colony queen, and we used RNA sequencing to study the gene expression profiles of both developing larvae and their caregiving nurses before and after queen removal. By comparing the gene expression profiles of queen-destined versus worker-destined larvae as well as nurses observed feeding these two types of larvae, we identified larval and nurse genes associated with caste development. Of 950 differentially expressed genes associated with caste, 82% were expressed in larvae with putative direct effects on larval caste, and 18% were expressed in nurses with putative indirect effects on caste. Estimated selection coefficients suggest that both nurse and larval genes putatively associated with caste are rapidly evolving, especially those genes associated with worker development. Altogether, our results suggest that indirect effect genes play important roles in both the expression and evolution of socially influenced traits such as caste.

  10. Exploring the role of Micronesian islands in the maintenance of coral genetic diversity in the Pacific Ocean.

    Science.gov (United States)

    Davies, S W; Treml, E A; Kenkel, C D; Matz, M V

    2015-01-01

    Understanding how genetic diversity is maintained across patchy marine environments remains a fundamental problem in marine biology. The Coral Triangle, located in the Indo-West Pacific, is the centre of marine biodiversity and has been proposed as an important source of genetic diversity for remote Pacific reefs. Several studies highlight Micronesia, a scattering of hundreds of small islands situated within the North Equatorial Counter Current, as a potentially important migration corridor. To test this hypothesis, we characterized the population genetic structure of two ecologically important congeneric species of reef-building corals across greater Micronesia, from Palau to the Marshall Islands. Genetic divergences between islands followed an isolation-by-distance pattern, with Acropora hyacinthus exhibiting greater genetic divergences than A. digitifera, suggesting different migration capabilities or different effective population sizes for these closely related species. We inferred dispersal distance using a biophysical larval transport model, which explained an additional 15-21% of the observed genetic variation compared to between-island geographical distance alone. For both species, genetic divergence accumulates and genetic diversity diminishes with distance from the Coral Triangle, supporting the hypothesis that Micronesian islands act as important stepping stones connecting the central Pacific with the species-rich Coral Triangle. However, for A. hyacinthus, the species with lower genetic connectivity, immigration from the subequatorial Pacific begins to play a larger role in shaping diversity than input from the Coral Triangle. This work highlights the enormous dispersal potential of broadcast-spawning corals and identifies the biological and physical drivers that influence coral genetic diversity on a regional scale. © 2014 John Wiley & Sons Ltd.

  11. 40 CFR 230.44 - Coral reefs.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Coral reefs. 230.44 Section 230.44... Aquatic Sites § 230.44 Coral reefs. (a) Coral reefs consist of the skeletal deposit, usually of calcareous... organisms present in growing portions of the reef. (b) Possible loss of values: The discharge of dredged or...

  12. Tribolium castaneum larval gut transcriptome and proteome: A resource for the study of the Coleopteran gut

    Czech Academy of Sciences Publication Activity Database

    Morris, K.; Lorenzen, M. D.; Hiromasa, Y.; Tomich, J. M.; Oppert, C.; Elpidina, E. N.; Vinokurov, Konstantin; Jurat-Fuentes, J. L.; Fabrick, J.; Oppert, B.

    2009-01-01

    Roč. 8, č. 8 (2009), s. 3889-3898 ISSN 1535-3893 Institutional research plan: CEZ:AV0Z50070508 Keywords : Tribolium castaneum * microarray * proteomics Subject RIV: ED - Physiology Impact factor: 5.132, year: 2009

  13. Transcriptome analysis of Schistosoma mansoni larval development using serial analysis of gene expression (SAGE).

    Science.gov (United States)

    Taft, A S; Vermeire, J J; Bernier, J; Birkeland, S R; Cipriano, M J; Papa, A R; McArthur, A G; Yoshino, T P

    2009-04-01

    Infection of the snail, Biomphalaria glabrata, by the free-swimming miracidial stage of the human blood fluke, Schistosoma mansoni, and its subsequent development to the parasitic sporocyst stage is critical to establishment of viable infections and continued human transmission. We performed a genome-wide expression analysis of the S. mansoni miracidia and developing sporocyst using Long Serial Analysis of Gene Expression (LongSAGE). Five cDNA libraries were constructed from miracidia and in vitro cultured 6- and 20-day-old sporocysts maintained in sporocyst medium (SM) or in SM conditioned by previous cultivation with cells of the B. glabrata embryonic (Bge) cell line. We generated 21 440 SAGE tags and mapped 13 381 to the S. mansoni gene predictions (v4.0e) either by estimating theoretical 3' UTR lengths or using existing 3' EST sequence data. Overall, 432 transcripts were found to be differentially expressed amongst all 5 libraries. In total, 172 tags were differentially expressed between miracidia and 6-day conditioned sporocysts and 152 were differentially expressed between miracidia and 6-day unconditioned sporocysts. In addition, 53 and 45 tags, respectively, were differentially expressed in 6-day and 20-day cultured sporocysts, due to the effects of exposure to Bge cell-conditioned medium.

  14. CORAL REEFS. Genomic determinants of coral heat tolerance across latitudes.

    Science.gov (United States)

    Dixon, Groves B; Davies, Sarah W; Aglyamova, Galina A; Meyer, Eli; Bay, Line K; Matz, Mikhail V

    2015-06-26

    As global warming continues, reef-building corals could avoid local population declines through "genetic rescue" involving exchange of heat-tolerant genotypes across latitudes, but only if latitudinal variation in thermal tolerance is heritable. Here, we show an up-to-10-fold increase in odds of survival of coral larvae under heat stress when their parents come from a warmer lower-latitude location. Elevated thermal tolerance was associated with heritable differences in expression of oxidative, extracellular, transport, and mitochondrial functions that indicated a lack of prior stress. Moreover, two genomic regions strongly responded to selection for thermal tolerance in interlatitudinal crosses. These results demonstrate that variation in coral thermal tolerance across latitudes has a strong genetic basis and could serve as raw material for natural selection. Copyright © 2015, American Association for the Advancement of Science.

  15. Metatranscriptome Sequencing of a Reef-building Coral Elucidates Holobiont Community Gene Functions in Health and Disease

    Science.gov (United States)

    Timberlake, S.; Helbig, T.; Fernando, S.; Penn, K.; Alm, E.; Thompson, F.; Thompson, J. R.

    2012-12-01

    other coral host genes whose expression differs in this disease. Our work provides a first glimpse into coral holobiont community gene function and its deviations in disease. Moreover, we hope that our bioinformatic protocol, designed to cope with the challenges of short-read transcriptomics from complex ecosystems with no close reference, will be a useful template to further understanding of the gene functions and ecological partnerships in coral reefs and other complex ecosystems.

  16. Global microbialization of coral reefs.

    Science.gov (United States)

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-04-25

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  17. Reproductive ecology and early life history traits of the brooding coral, Porites astreoides, from shallow to mesophotic zones

    Science.gov (United States)

    Goodbody-Gringley, Gretchen; Wong, Kevin H.; Becker, Danielle M.; Glennon, Keegan; de Putron, Samantha J.

    2018-06-01

    Early life history traits of brooding corals are often affected by the environmental conditions experienced by parental colonies. Such parental effects can impact offspring survival, which influences the overall success of a population as well as resilience to environmental challenges. This study examines the reproductive ecology and early life history traits of the brooding coral Porites astreoides across a depth gradient in Bermuda. Fecundity, larval size, larval Symbiodinium density, and settlement success, as well as post-metamorphic juvenile survival, growth, and Symbiodinium density were compared across three reef sites representing an inshore patch reef (2-5 m), an offshore rim reef (8-10 m), and an upper-mesophotic reef (30-33 m). Although fecundity did not differ across sites, larvae produced by colonies on the patch reef site were smaller, had lower Symbiodinium densities, and had lower rates of settlement and juvenile survival compared to larvae from colonies on the rim and upper-mesophotic reef sites. Larvae produced by colonies from the rim and upper-mesophotic sites did not differ in size or Symbiodinium densities; however, rates of settlement, growth, and survival were higher for larvae from the upper-mesophotic site compared to those from the rim reef site. These results indicate that offspring quality and success vary among sites with differing environmental conditions and may imply higher recruitment potential and resilience for upper-mesophotic corals.

  18. Establishing Substantial Equivalence: Transcriptomics

    Science.gov (United States)

    Baudo, María Marcela; Powers, Stephen J.; Mitchell, Rowan A. C.; Shewry, Peter R.

    Regulatory authorities in Western Europe require transgenic crops to be substantially equivalent to conventionally bred forms if they are to be approved for commercial production. One way to establish substantial equivalence is to compare the transcript profiles of developing grain and other tissues of transgenic and conventionally bred lines, in order to identify any unintended effects of the transformation process. We present detailed protocols for transcriptomic comparisons of developing wheat grain and leaf material, and illustrate their use by reference to our own studies of lines transformed to express additional gluten protein genes controlled by their own endosperm-specific promoters. The results show that the transgenes present in these lines (which included those encoding marker genes) did not have any significant unpredicted effects on the expression of endogenous genes and that the transgenic plants were therefore substantially equivalent to the corresponding parental lines.

  19. Developmental transcriptome of Aplysia californica'

    KAUST Repository

    Heyland, Andreas; Vue, Zer; Voolstra, Christian R.; Medina, Mó nica; Moroz, Leonid L.

    2010-01-01

    developmental transcriptome with similar studies in the zebra fish Danio rerio, the fruit fly Drosophila melanogaster, the nematode Caenorhabditis elegans, and other studies on molluscs suggests an overall highly divergent pattern of gene regulatory mechanisms

  20. Fish larval transport in the coastal waters through ecological modelling

    Digital Repository Service at National Institute of Oceanography (India)

    George, G.

    are as follows: (i) to find out the influence of environmental parameters on the biology of the given ecosystem (ii) to track larval transport and biological abundance in relation to environmental vari- ables (iii) to compare biological abundance and fish larval... include the following investigations: (i) analysis of satellite chlorophyll data along the southwest coastal waters of India to derive a biological calender for sardine (ii) tracking the larval survival and establish a link between food and sardine inter...

  1. Interspecific Variation in Coral Settlement and Fertilization Success in Response to Hydrogen Peroxide Exposure.

    Science.gov (United States)

    Ross, C; Fogarty, N D; Ritson-Williams, R; Paul, V J

    2017-12-01

    Hydrogen peroxide (H 2 O 2 ) is involved in the regulation of numerous reproductive and morphogenic processes across an array of taxa. Extracellular H 2 O 2 can be widespread in oceanic waters, and elevated sea surface temperatures can cause increased levels of intracellular H 2 O 2 within cnidarian tissue, but it remains unclear how this compound affects early life-history processes in corals, such as fertilization, metamorphosis, and settlement. To evaluate the effects of H 2 O 2 on multiple stages of recruitment, experiments were conducted using Caribbean corals with various reproductive modes, including the brooders Porites astreoides and Favia fragum and the broadcast-spawning species Acropora palmata and Orbicella franksi. H 2 O 2 accelerated settlement in all brooding species tested. Concentrations of 1000 µmol l -1 H 2 O 2 caused close to 100% settlement in all larval age classes, regardless of exposure duration. As larvae aged, the required threshold of H 2 O 2 capable of inducing settlement decreased. In contrast, H 2 O 2 concentrations of 100 µmol l -1 or greater caused a significant reduction in metamorphosis and settlement in the larvae of spawners. Furthermore, fertilization of their gametes was inhibited in the presence of H 2 O 2 concentrations as low as 100 µmol l -1 . In Porites astreoides larvae, internal levels of H 2 O 2 reached a maximal value of 75 µmol l -1 following 48 h of incubation at 31 °C. This concentration was found to significantly alter settlement rates in both brooding coral species and likely induced a cellular cascade in the settlement signaling pathway. The results of this study suggest that temperature stress influences H 2 O 2 production, which in turn impacts coral settlement. While it is unlikely that the current levels of externally derived concentrations of oceanic H 2 O 2 are affecting coral larvae, internal concentrations (produced under heat stress) have the capacity to impact recruitment under a changing climate.

  2. Oceanic forcing of coral reefs.

    Science.gov (United States)

    Lowe, Ryan J; Falter, James L

    2015-01-01

    Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.

  3. Evaluating sampling strategies for larval cisco (Coregonus artedi)

    Science.gov (United States)

    Myers, J.T.; Stockwell, J.D.; Yule, D.L.; Black, J.A.

    2008-01-01

    To improve our ability to assess larval cisco (Coregonus artedi) populations in Lake Superior, we conducted a study to compare several sampling strategies. First, we compared density estimates of larval cisco concurrently captured in surface waters with a 2 x 1-m paired neuston net and a 0.5-m (diameter) conical net. Density estimates obtained from the two gear types were not significantly different, suggesting that the conical net is a reasonable alternative to the more cumbersome and costly neuston net. Next, we assessed the effect of tow pattern (sinusoidal versus straight tows) to examine if propeller wash affected larval density. We found no effect of propeller wash on the catchability of larval cisco. Given the availability of global positioning systems, we recommend sampling larval cisco using straight tows to simplify protocols and facilitate straightforward measurements of volume filtered. Finally, we investigated potential trends in larval cisco density estimates by sampling four time periods during the light period of a day at individual sites. Our results indicate no significant trends in larval density estimates during the day. We conclude estimates of larval cisco density across space are not confounded by time at a daily timescale. Well-designed, cost effective surveys of larval cisco abundance will help to further our understanding of this important Great Lakes forage species.

  4. Reconnaissance dating: a new radiocarbon method applied to assessing the temporal distribution of Southern Ocean deep-sea corals

    Science.gov (United States)

    Burke, Andrea; Robinson, Laura F.; McNichol, Ann P.; Jenkins, William J.; Scanlon, Kathryn M.; Gerlach, Dana S.

    2010-01-01

    (continental shelf of Argentina) have ages ranging between 0 and 2500 calendar years, whereas most of the corals from the Sars Seamount in the Drake Passage have ages between 10,000 and 12,500 calendar years. Such differences may be caused in part by sampling biases, but may also be caused by changes in larval transport, nutrient supply, or other environmental pressures.

  5. CORAL Server and CORAL Server Proxy: Scalable Access to Relational Databases from CORAL Applications

    CERN Document Server

    Valassi, A; Kalkhof, A; Salnikov, A; Wache, M

    2011-01-01

    The CORAL software is widely used at CERN for accessing the data stored by the LHC experiments using relational database technologies. CORAL provides a C++ abstraction layer that supports data persistency for several backends and deployment models, including local access to SQLite files, direct client access to Oracle and MySQL servers, and read-only access to Oracle through the FroNTier web server and cache. Two new components have recently been added to CORAL to implement a model involving a middle tier "CORAL server" deployed close to the database and a tree of "CORAL server proxy" instances, with data caching and multiplexing functionalities, deployed close to the client. The new components are meant to provide advantages for read-only and read-write data access, in both offline and online use cases, in the areas of scalability and performance (multiplexing for several incoming connections, optional data caching) and security (authentication via proxy certificates). A first implementation of the two new c...

  6. Microbial Regulation in Gorgonian Corals

    Directory of Open Access Journals (Sweden)

    Laura D. Mydlarz

    2012-06-01

    Full Text Available Gorgonian corals possess many novel natural products that could potentially mediate coral-bacterial interactions. Since many bacteria use quorum sensing (QS signals to facilitate colonization of host organisms, regulation of prokaryotic cell-to-cell communication may represent an important bacterial control mechanism. In the present study, we examined extracts of twelve species of Caribbean gorgonian corals, for mechanisms that regulate microbial colonization, such as antibacterial activity and QS regulatory activity. Ethanol extracts of gorgonians collected from Puerto Rico and the Florida Keys showed a range of both antibacterial and QS activities using a specific Pseudomonas aeruginosa QS reporter, sensitive to long chain AHLs and a short chain N-acylhomoserine lactones (AHL biosensor, Chromobacterium violaceium. Overall, the gorgonian corals had higher antimicrobial activity against non-marine strains when compared to marine strains. Pseudopterogorgia americana, Pseusopterogorgia acerosa, and Pseudoplexuara flexuosa had the highest QS inhibitory effect. Interestingly, Pseudoplexuara porosa extracts stimulated QS activity with a striking 17-fold increase in signal. The stimulation of QS by P. porosa or other elements of the holobiont may encourage colonization or recruitment of specific microbial species. Overall, these results suggest the presence of novel stimulatory QS, inhibitory QS and bactericidal compounds in gorgonian corals. A better understanding of these compounds may reveal insight into coral-microbial ecology and whether a therapeutic potential exists.

  7. Coral reefs in the Anthropocene.

    Science.gov (United States)

    Hughes, Terry P; Barnes, Michele L; Bellwood, David R; Cinner, Joshua E; Cumming, Graeme S; Jackson, Jeremy B C; Kleypas, Joanie; van de Leemput, Ingrid A; Lough, Janice M; Morrison, Tiffany H; Palumbi, Stephen R; van Nes, Egbert H; Scheffer, Marten

    2017-05-31

    Coral reefs support immense biodiversity and provide important ecosystem services to many millions of people. Yet reefs are degrading rapidly in response to numerous anthropogenic drivers. In the coming centuries, reefs will run the gauntlet of climate change, and rising temperatures will transform them into new configurations, unlike anything observed previously by humans. Returning reefs to past configurations is no longer an option. Instead, the global challenge is to steer reefs through the Anthropocene era in a way that maintains their biological functions. Successful navigation of this transition will require radical changes in the science, management and governance of coral reefs.

  8. Turbulence-enhanced prey encounter rates in larval fish : Effects of spatial scale, larval behaviour and size

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; MacKenzie, Brian

    1995-01-01

    Turbulent water motion has several effects on the feeding ecology of larval fish and other planktivorous predators. In this paper, we consider the appropriate spatial scales for estimating relative velocities between larval fish predators and their prey, and the effect that different choices of s...... in the range in which turbulent intensity has an overall positive effect on larval fish ingestion rate probability. However, experimental data to test the model predictions are lacking. We suggest that the model inputs require further empirical study....

  9. Adaptive locomotor behavior in larval zebrafish.

    Science.gov (United States)

    Portugues, Ruben; Engert, Florian

    2011-01-01

    In this study we report that larval zebrafish display adaptive locomotor output that can be driven by unexpected visual feedback. We develop a new assay that addresses visuomotor integration in restrained larval zebrafish. The assay involves a closed-loop environment in which the visual feedback a larva receives depends on its own motor output in a way that resembles freely swimming conditions. The experimenter can control the gain of this closed feedback loop, so that following a given motor output the larva experiences more or less visual feedback depending on whether the gain is high or low. We show that increases and decreases in this gain setting result in adaptive changes in behavior that lead to a generalized decrease or increase of motor output, respectively. Our behavioral analysis shows that both the duration and tail beat frequency of individual swim bouts can be modified, as well as the frequency with which bouts are elicited. These changes can be implemented rapidly, following an exposure to a new gain of just 175 ms. In addition, modifications in some behavioral parameters accumulate over tens of seconds and effects last for at least 30 s from trial to trial. These results suggest that larvae establish an internal representation of the visual feedback expected from a given motor output and that the behavioral modifications are driven by an error signal that arises from the discrepancy between this expectation and the actual visual feedback. The assay we develop presents a unique possibility for studying visuomotor integration using imaging techniques available in the larval zebrafish.

  10. Microhabitat influence on larval fish assemblages within ...

    Science.gov (United States)

    We examined larval and juvenile fish assemblage structure in relation to microhabitat variables within the St. Louis River estuary, a drowned river mouth of Lake Superior. Fish were sampled in vegetated beds throughout the estuary, across a gradient of vegetation types and densities (including disturbed, preserved and post-restoration sites). Canonical correspondence analysis, relating species abundances to environmental variables revealed that plant species richness, turbidity and aquatic plant cover were most influential in structuring assemblages. Results from this microhabitat analysis at this crucial life stage has potential to inform wetland restoration efforts within the St. Louis River and other Great Lake coastal wetlands. not applicable

  11. RNA-Seq as an Emerging Tool for Marine Dinoflagellate Transcriptome Analysis: Process and Challenges

    Directory of Open Access Journals (Sweden)

    Muhamad Afiq Akbar

    2018-01-01

    Full Text Available Dinoflagellates are the large group of marine phytoplankton with primary studies interest regarding their symbiosis with coral reef and the abilities to form harmful algae blooms (HABs. Toxin produced by dinoflagellates during events of HABs cause severe negative impact both in the economy and health sector. However, attempts to understand the dinoflagellates genomic features are hindered by their complex genome organization. Transcriptomics have been employed to understand dinoflagellates genome structure, profile genes and gene expression. RNA-seq is one of the latest methods for transcriptomics study. This method is capable of profiling the dinoflagellates transcriptomes and has several advantages, including highly sensitive, cost effective and deeper sequence coverage. Thus, in this review paper, the current workflow of dinoflagellates RNA-seq starts with the extraction of high quality RNA and is followed by cDNA sequencing using the next-generation sequencing platform, dinoflagellates transcriptome assembly and computational analysis will be discussed. Certain consideration needs will be highlighted such as difficulty in dinoflagellates sequence annotation, post-transcriptional activity and the effect of RNA pooling when using RNA-seq.

  12. CORAL Server and CORAL Server Proxy: Scalable Access to Relational Databases from CORAL Applications

    International Nuclear Information System (INIS)

    Valassi, A; Kalkhof, A; Bartoldus, R; Salnikov, A; Wache, M

    2011-01-01

    The CORAL software is widely used at CERN by the LHC experiments to access the data they store on relational databases, such as Oracle. Two new components have recently been added to implement a model involving a middle tier 'CORAL server' deployed close to the database and a tree of 'CORAL server proxies', providing data caching and multiplexing, deployed close to the client. A first implementation of the two new components, released in the summer 2009, is now deployed in the ATLAS online system to read the data needed by the High Level Trigger, allowing the configuration of a farm of several thousand processes. This paper reviews the architecture of the software, its development status and its usage in ATLAS.

  13. The cumulative impact of annual coral bleaching can turn some coral species winners into losers.

    Science.gov (United States)

    Grottoli, Andréa G; Warner, Mark E; Levas, Stephen J; Aschaffenburg, Matthew D; Schoepf, Verena; McGinley, Michael; Baumann, Justin; Matsui, Yohei

    2014-12-01

    Mass coral bleaching events caused by elevated seawater temperatures result in extensive coral loss throughout the tropics, and are projected to increase in frequency and severity. If bleaching becomes an annual event later in this century, more than 90% of coral reefs worldwide may be at risk of long-term degradation. While corals can recover from single isolated bleaching and can acclimate to recurring bleaching events that are separated by multiple years, it is currently unknown if and how they will survive and possibly acclimatize to annual coral bleaching. Here, we demonstrate for the first time that annual coral bleaching can dramatically alter thermal tolerance in Caribbean corals. We found that high coral energy reserves and changes in the dominant algal endosymbiont type (Symbiodinium spp.) facilitated rapid acclimation in Porites divaricata, whereas low energy reserves and a lack of algal phenotypic plasticity significantly increased susceptibility in Porites astreoides to bleaching the following year. Phenotypic plasticity in the dominant endosymbiont type of Orbicella faveolata did not prevent repeat bleaching, but may have facilitated rapid recovery. Thus, coral holobiont response to an isolated single bleaching event is not an accurate predictor of its response to bleaching the following year. Rather, the cumulative impact of annual coral bleaching can turn some coral species 'winners' into 'losers', and can also facilitate acclimation and turn some coral species 'losers' into 'winners'. Overall, these findings indicate that cumulative impact of annual coral bleaching could result in some species becoming increasingly susceptible to bleaching and face a long-term decline, while phenotypically plastic coral species will acclimatize and persist. Thus, annual coral bleaching and recovery could contribute to the selective loss of coral diversity as well as the overall decline of coral reefs in the Caribbean. © 2014 John Wiley & Sons Ltd.

  14. Developing the anemone Aiptasia as a tractable model for cnidarian-dinoflagellate symbiosis: the transcriptome of aposymbiotic A. pallida.

    Science.gov (United States)

    Lehnert, Erik M; Burriesci, Matthew S; Pringle, John R

    2012-06-22

    Coral reefs are hotspots of oceanic biodiversity, forming the foundation of ecosystems that are important both ecologically and for their direct practical impacts on humans. Corals are declining globally due to a number of stressors, including rising sea-surface temperatures and pollution; such stresses can lead to a breakdown of the essential symbiotic relationship between the coral host and its endosymbiotic dinoflagellates, a process known as coral bleaching. Although the environmental stresses causing this breakdown are largely known, the cellular mechanisms of symbiosis establishment, maintenance, and breakdown are still largely obscure. Investigating the symbiosis using an experimentally tractable model organism, such as the small sea anemone Aiptasia, should improve our understanding of exactly how the environmental stressors affect coral survival and growth. We assembled the transcriptome of a clonal population of adult, aposymbiotic (dinoflagellate-free) Aiptasia pallida from ~208 million reads, yielding 58,018 contigs. We demonstrated that many of these contigs represent full-length or near-full-length transcripts that encode proteins similar to those from a diverse array of pathways in other organisms, including various metabolic enzymes, cytoskeletal proteins, and neuropeptide precursors. The contigs were annotated by sequence similarity, assigned GO terms, and scanned for conserved protein domains. We analyzed the frequency and types of single-nucleotide variants and estimated the size of the Aiptasia genome to be ~421 Mb. The contigs and annotations are available through NCBI (Transcription Shotgun Assembly database, accession numbers JV077153-JV134524) and at http://pringlelab.stanford.edu/projects.html. The availability of an extensive transcriptome assembly for A. pallida will facilitate analyses of gene-expression changes, identification of proteins of interest, and other studies in this important emerging model system.

  15. Developing the anemone Aiptasia as a tractable model for cnidarian-dinoflagellate symbiosis: the transcriptome of aposymbiotic A. pallida

    Directory of Open Access Journals (Sweden)

    Lehnert Erik M

    2012-06-01

    Full Text Available Abstract Background Coral reefs are hotspots of oceanic biodiversity, forming the foundation of ecosystems that are important both ecologically and for their direct practical impacts on humans. Corals are declining globally due to a number of stressors, including rising sea-surface temperatures and pollution; such stresses can lead to a breakdown of the essential symbiotic relationship between the coral host and its endosymbiotic dinoflagellates, a process known as coral bleaching. Although the environmental stresses causing this breakdown are largely known, the cellular mechanisms of symbiosis establishment, maintenance, and breakdown are still largely obscure. Investigating the symbiosis using an experimentally tractable model organism, such as the small sea anemone Aiptasia, should improve our understanding of exactly how the environmental stressors affect coral survival and growth. Results We assembled the transcriptome of a clonal population of adult, aposymbiotic (dinoflagellate-free Aiptasia pallida from ~208 million reads, yielding 58,018 contigs. We demonstrated that many of these contigs represent full-length or near-full-length transcripts that encode proteins similar to those from a diverse array of pathways in other organisms, including various metabolic enzymes, cytoskeletal proteins, and neuropeptide precursors. The contigs were annotated by sequence similarity, assigned GO terms, and scanned for conserved protein domains. We analyzed the frequency and types of single-nucleotide variants and estimated the size of the Aiptasia genome to be ~421 Mb. The contigs and annotations are available through NCBI (Transcription Shotgun Assembly database, accession numbers JV077153-JV134524 and at http://pringlelab.stanford.edu/projects.html. Conclusions The availability of an extensive transcriptome assembly for A. pallida will facilitate analyses of gene-expression changes, identification of proteins of interest, and other studies in this

  16. Quantifying Coral Reef Ecosystem Services

    Science.gov (United States)

    Coral reefs have been declining during the last four decades as a result of both local and global anthropogenic stresses. Numerous research efforts to elucidate the nature, causes, magnitude, and potential remedies for the decline have led to the widely held belief that the recov...

  17. Dispersal of grouper larvae drives local resource sharing in a coral reef fishery

    KAUST Repository

    Almany, Glenn R.; Hamilton, Richard J.; Bode, Michael; Matawai, Manuai; Potuku, Tapas; Saenz Agudelo, Pablo; Planes, Serge; Berumen, Michael L.; Rhodes, Kevin L.; Thorrold, Simon R.; Russ, Garry Ronald; Jones, Geoffrey P.

    2013-01-01

    In many tropical nations, fisheries management requires a community-based approach because small customary marine tenure areas define the spatial scale of management [1]. However, the fate of larvae originating from a community's tenure is unknown, and thus the degree to which a community can expect their management actions to replenish the fisheries within their tenure is unclear [2, 3]. Furthermore, whether and how much larval dispersal links tenure areas can provide a strong basis for cooperative management [4, 5]. Using genetic parentage analysis, we measured larval dispersal from a single, managed spawning aggregation of squaretail coral grouper (Plectropomus areolatus) and determined its contribution to fisheries replenishment within five community tenure areas up to 33 km from the aggregation at Manus Island, Papua New Guinea. Within the community tenure area containing the aggregation, 17%-25% of juveniles were produced by the aggregation. In four adjacent tenure areas, 6%-17% of juveniles were from the aggregation. Larval dispersal kernels predict that 50% of larvae settled within 14 km of the aggregation. These results strongly suggest that both local and cooperative management actions can provide fisheries benefits to communities over small spatial scales. © 2013 Elsevier Ltd.

  18. Genotypic variation influences reproductive success and thermal stress tolerance in the reef building coral, Acropora palmata

    Science.gov (United States)

    Baums, I. B.; Devlin-Durante, M. K.; Polato, N. R.; Xu, D.; Giri, S.; Altman, N. S.; Ruiz, D.; Parkinson, J. E.; Boulay, J. N.

    2013-09-01

    The branching coral Acropora palmata is a foundation species of Caribbean reefs that has been decimated in recent decades by anthropogenic and natural stressors. Declines in population density and genotypic diversity likely reduce successful sexual reproduction in this self-incompatible hermaphrodite and might impede recovery. We investigated variation among genotypes in larval development under thermally stressful conditions. Six two-parent crosses and three four-parent batches were reared under three temperatures and sampled over time. Fertilization rates differed widely with two-parent crosses having lower fertilization rates (5-56 %, mean 22 % ± 22 SD) than batches (from 31 to 87 %, mean 59 % ± 28 SD). Parentage analysis of larvae in batch cultures showed differences in gamete compatibility among parents, coinciding with significant variation in both sperm morphology and egg size. While all larval batches developed more rapidly at increased water temperatures, rate of progression through developmental stages varied among batches, as did swimming speed. Together, these results indicate that loss of genotypic diversity exacerbates already severe limitations in sexual reproductive success of A. palmata. Nevertheless, surviving parental genotypes produce larvae that do vary in their phenotypic response to thermal stress, with implications for adaptation, larval dispersal and population connectivity in the face of warming sea surface temperatures.

  19. Dispersal of grouper larvae drives local resource sharing in a coral reef fishery

    KAUST Repository

    Almany, Glenn R.

    2013-04-01

    In many tropical nations, fisheries management requires a community-based approach because small customary marine tenure areas define the spatial scale of management [1]. However, the fate of larvae originating from a community\\'s tenure is unknown, and thus the degree to which a community can expect their management actions to replenish the fisheries within their tenure is unclear [2, 3]. Furthermore, whether and how much larval dispersal links tenure areas can provide a strong basis for cooperative management [4, 5]. Using genetic parentage analysis, we measured larval dispersal from a single, managed spawning aggregation of squaretail coral grouper (Plectropomus areolatus) and determined its contribution to fisheries replenishment within five community tenure areas up to 33 km from the aggregation at Manus Island, Papua New Guinea. Within the community tenure area containing the aggregation, 17%-25% of juveniles were produced by the aggregation. In four adjacent tenure areas, 6%-17% of juveniles were from the aggregation. Larval dispersal kernels predict that 50% of larvae settled within 14 km of the aggregation. These results strongly suggest that both local and cooperative management actions can provide fisheries benefits to communities over small spatial scales. © 2013 Elsevier Ltd.

  20. Reduced larval feeding rate is a strong evolutionary correlate of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 85; Issue 3. Reduced larval feeding rate is a strong evolutionary correlate of rapid development in Drosophila melanogaster. M. Rajamani N. Raghavendra ... Keywords. life-history evolution; development time; larval feeding rate; competition; tradeoffs; Drosophila melanogaster.

  1. The larval development of the red mangrove crab Sesarma meinerti ...

    African Journals Online (AJOL)

    The larval stages of the red mangrove crab Sesarma meinerti de Man were reared in the laboratory. Larval development consists of five zoeal stages and one megalopa. Zoeal development lasts an average of 25 days at 25°C. The external morphology of larvae is described in detail and their relationship with larvae of.

  2. Fine-scale analysis of genetic structure in the brooding coral Seriatopora hystrix from the Red Sea

    Science.gov (United States)

    Maier, E.; Tollrian, R.; Nürnberger, B.

    2009-09-01

    The dispersal of gametes and larvae plays a key role in the population dynamics of sessile marine invertebrates. Species with internal fertilisation are often associated with very localised larval dispersal, which may cause small-scale patterns of neutral genetic variation. This study on the brooding coral Seriatopora hystrix from the Red Sea focused on the smallest possible scale: Two S. hystrix stands (~100 colonies each) near Dahab were completely sampled, mapped and analysed at five microsatellite markers. The sexual mode of reproduction, the likely occurrence of selfing and the level of immigration were in agreement with previous studies on this species. Contrary to previous findings, both stands were in Hardy-Weinberg proportions. Also, no evidence for spatially restricted larval dispersal within the sampled areas was found. Differences between this and previous studies on S. hystrix could reflect variation in life history or varying environmental conditions, which opens intriguing questions for future research.

  3. Sharing the slope: depth partitioning of agariciid corals and associated

    NARCIS (Netherlands)

    Bongaerts, P.; Frade, P.R.; Ogier, J.J.; Hay, K.B.; van Bleijswijk, J.; Englebert, N.; Vermeij, M.J.A.; Bak, R.P.M.; Visser, P.M.; Hoegh-Guldberg, O.

    2013-01-01

    Background: Scleractinian corals and their algal endosymbionts (genus Symbiodinium) exhibit distinct bathymetric distributions on coral reefs. Yet, few studies have assessed the evolutionary context of these ecological distributions by exploring the genetic diversity of closely related coral species

  4. Threatened corals provide underexplored microbial habitats.

    Directory of Open Access Journals (Sweden)

    Shinichi Sunagawa

    2010-03-01

    Full Text Available Contemporary in-depth sequencing of environmental samples has provided novel insights into microbial community structures, revealing that their diversity had been previously underestimated. Communities in marine environments are commonly composed of a few dominant taxa and a high number of taxonomically diverse, low-abundance organisms. However, studying the roles and genomic information of these "rare" organisms remains challenging, because little is known about their ecological niches and the environmental conditions to which they respond. Given the current threat to coral reef ecosystems, we investigated the potential of corals to provide highly specialized habitats for bacterial taxa including those that are rarely detected or absent in surrounding reef waters. The analysis of more than 350,000 small subunit ribosomal RNA (16S rRNA sequence tags and almost 2,000 nearly full-length 16S rRNA gene sequences revealed that rare seawater biosphere members are highly abundant or even dominant in diverse Caribbean corals. Closely related corals (in the same genus/family harbored similar bacterial communities. At higher taxonomic levels, however, the similarities of these communities did not correlate with the phylogenetic relationships among corals, opening novel questions about the evolutionary stability of coral-microbial associations. Large proportions of OTUs (28.7-49.1% were unique to the coral species of origin. Analysis of the most dominant ribotypes suggests that many uncovered bacterial taxa exist in coral habitats and await future exploration. Our results indicate that coral species, and by extension other animal hosts, act as specialized habitats of otherwise rare microbes in marine ecosystems. Here, deep sequencing provided insights into coral microbiota at an unparalleled resolution and revealed that corals harbor many bacterial taxa previously not known. Given that two of the coral species investigated are listed as threatened under

  5. Coupling Biophysical and Socioeconomic Models for Coral Reef Systems in Quintana Roo, Mexican Caribbean

    Directory of Open Access Journals (Sweden)

    Jessica Melbourne-Thomas

    2011-09-01

    Full Text Available Transdisciplinary approaches that consider both socioeconomic and biophysical processes are central to understanding and managing rapid change in coral reef systems worldwide. To date, there have been limited attempts to couple the two sets of processes in dynamic models for coral reefs, and these attempts are confined to reef systems in developed countries. We present an approach to coupling existing biophysical and socioeconomic models for coral reef systems in the Mexican state of Quintana Roo. The biophysical model is multiscale, using dynamic equations to capture local-scale ecological processes on individual reefs, with reefs connected at regional scales by the ocean transport of larval propagules. The agent-based socioeconomic model simulates changes in tourism, fisheries, and urbanization in the Quintana Roo region. Despite differences in the formulation and currencies of the two models, we were able to successfully modify and integrate them to synchronize and define information flows and feedbacks between them. A preliminary evaluation of the coupled model system indicates that the model gives reasonable predictions for fisheries and ecological variables and can be used to examine scenarios for future social-ecological change in Quintana Roo. We provide recommendations for where efforts might usefully be focused in future attempts to integrate models of biophysical and socioeconomic processes, based on the limitations of our coupled system.

  6. Living upside down: patterns of red coral settlement in a cave

    Science.gov (United States)

    Rugiu, Luca; Cerrano, Carlo; Abbiati, Marco

    2018-01-01

    Background Larval settlement and intra-specific interactions during the recruitment phase are crucial in determining the distribution and density of sessile marine populations. Marine caves are confined and stable habitats. As such, they provide a natural laboratory to study the settlement and recruitment processes in sessile invertebrates, including the valuable Mediterranean red coral Corallium rubrum. In the present study, the spatial and temporal variability of red coral settlers in an underwater cave was investigated by demographic and genetic approaches. Methods Sixteen PVC tiles were positioned on the walls and ceiling of the Colombara Cave, Ligurian Sea, and recovered after twenty months. A total of 372 individuals of red coral belonging to two different reproductive events were recorded. Basal diameter, height, and number of polyps were measured, and seven microsatellites loci were used to evaluate the genetic relationships among individuals and the genetic structure. Results Significant differences in the colonization rate were observed both between the two temporal cohorts and between ceiling and walls. No genetic structuring was observed between cohorts. Overall, high levels of relatedness among individuals were found. Conclusion The results show that C. rubrumindividuals on tiles are highly related at very small spatial scales, suggesting that nearby recruits are likely to be sibs. Self-recruitment and the synchronous settlement of clouds of larvae could be possible explanations for the observed pattern. PMID:29844950

  7. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum.

    Directory of Open Access Journals (Sweden)

    Federica Costantini

    Full Text Available While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58-118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.

  8. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum.

    Science.gov (United States)

    Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco

    2013-01-01

    While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58-118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.

  9. A picture on the wall: innovative mapping reveals cold-water coral refuge in submarine canyon.

    Directory of Open Access Journals (Sweden)

    Veerle A I Huvenne

    Full Text Available Cold-water corals are azooxanthellate species found throughout the ocean at water depths down to 5000 m. They occur in patches, reefs or large mound structures up to 380 m high, and as ecosystem engineers create important habitats for a diverse fauna. However, the majority of these habitats are now within reach of deep-sea bottom trawling. Many have been severely damaged or are under threat, despite recent protection initiatives. Here we present a cold-water coral habitat type that so far has been overlooked--quite literally--and that has received minimal impact from human activities. Vertical and overhanging cliffs in deep-sea canyons, revealed using an innovative approach to marine habitat mapping, are shown to provide the perfect substratum for extensive cold-water coral-based communities. Typical canyon-related processes, including locally enhanced internal tides and focussed downslope organic carbon transport, provide favourable environmental conditions (current regime, food input to sustain the communities, even outside the optimal depth and density envelopes reported elsewhere in the NE Atlantic. Our findings show that deep-sea canyons can form natural refuges for faunal communities sensitive to anthropogenic disturbance, and have the potential to fulfil the crucial role of larval sources for the recolonisation of damaged sites elsewhere on the margin.

  10. Faunal breaks and species composition of Indo-Pacific corals: the role of plate tectonics, environment and habitat distribution

    Science.gov (United States)

    Keith, S. A.; Baird, A. H.; Hughes, T. P.; Madin, J. S.; Connolly, S. R.

    2013-01-01

    Species richness gradients are ubiquitous in nature, but the mechanisms that generate and maintain these patterns at macroecological scales remain unresolved. We use a new approach that focuses on overlapping geographical ranges of species to reveal that Indo-Pacific corals are assembled within 11 distinct faunal provinces. Province limits are characterized by co-occurrence of multiple species range boundaries. Unexpectedly, these faunal breaks are poorly predicted by contemporary environmental conditions and the present-day distribution of habitat. Instead, faunal breaks show striking concordance with geological features (tectonic plates and mantle plume tracks). The depth range over which a species occurs, its larval development rate and genus age are important determinants of the likelihood that species will straddle faunal breaks. Our findings indicate that historical processes, habitat heterogeneity and species colonization ability account for more of the present-day biogeographical patterns of corals than explanations based on the contemporary distribution of reefs or environmental conditions. PMID:23698011

  11. NOAA's Coral Reef Conservation Program: 2016 projects to address coral reef conservation issues

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2016 the following projects will take place to address aspects of coral reef conservation: Enhancing Management of Pacific ESA-listed Corals with Improved Utility...

  12. EOP Settlement colonization and succession patterns of gold coral Kulamana haumeaae in Hawaiian deep coral assemblages

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Relational tabular data on corals relevant to the parasitic life history of gold coral. Surveys conducted throughout the Hawaiian Archipelago with attention on...

  13. Coral larvae settle at a higher frequency on red surfaces

    Science.gov (United States)

    Mason, B.; Beard, M.; Miller, M. W.

    2011-09-01

    Although chemical cues serve as the primary determinants of larval settlement and metamorphosis, light is also known to influence the behavior and the settlement of coral planulae. For example, Porites astreoides planulae settle preferentially on unconditioned red substrata. In order to test whether this behavior was a response to color and whether other species also demonstrate color preference, settlement choice experiments were conducted with P. astreoides and Acropora palmata. In these experiments, larvae were offered various types of plastic substrata representing three to seven different color choices. Both species consistently settled on red (or red and orange) substrata at a higher frequency than other colors. In one experiment, P. astreoides settled on 100% of red, plastic cable ties but failed to settle on green or white substrata. In a second experiment, 24% of larvae settled on red buttons, more than settled on six other colors combined. A. palmata settled on 80% of red and of orange cables ties but failed to settle on blue in one experiment and settled on a greater proportion of red acrylic squares than on four other colors or limestone controls in a second experiment. The consistency of the response across a variety of plastic materials suggests the response is related to long-wavelength photosensitivity. Fluorescence and reflectance spectra of experimental substrata demonstrated that the preferred substrata had spectra dominated by wavelengths greater than 550 nm with little or no reflection or emission of shorter wavelengths. These results suggest that some species of coral larvae may use spectral cues for fine-scale habitat selection during settlement. This behavior may be an adaptation to promote settlement in crustose coralline algae (CCA)-dominated habitats facilitating juvenile survival.

  14. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle

    KAUST Repository

    Aranda, Manuel

    2016-12-22

    Despite half a century of research, the biology of dinoflagellates remains enigmatic: they defy many functional and genetic traits attributed to typical eukaryotic cells. Genomic approaches to study dinoflagellates are often stymied due to their large, multi-gigabase genomes. Members of the genus Symbiodinium are photosynthetic endosymbionts of stony corals that provide the foundation of coral reef ecosystems. Their smaller genome sizes provide an opportunity to interrogate evolution and functionality of dinoflagellate genomes and endosymbiosis. We sequenced the genome of the ancestral Symbiodinium microadriaticum and compared it to the genomes of the more derived Symbiodinium minutum and Symbiodinium kawagutii and eukaryote model systems as well as transcriptomes from other dinoflagellates. Comparative analyses of genome and transcriptome protein sets show that all dinoflagellates, not only Symbiodinium, possess significantly more transmembrane transporters involved in the exchange of amino acids, lipids, and glycerol than other eukaryotes. Importantly, we find that only Symbiodinium harbor an extensive transporter repertoire associated with the provisioning of carbon and nitrogen. Analyses of these transporters show species-specific expansions, which provides a genomic basis to explain differential compatibilities to an array of hosts and environments, and highlights the putative importance of gene duplications as an evolutionary mechanism in dinoflagellates and Symbiodinium.

  15. Genomes of coral dinoflagellate symbionts highlight evolutionary adaptations conducive to a symbiotic lifestyle

    KAUST Repository

    Aranda, Manuel; Li, Yangyang; Liew, Yi Jin; Baumgarten, Sebastian; Simakov, O.; Wilson, M. C.; Piel, J.; Ashoor, Haitham; Bougouffa, Salim; Bajic, Vladimir B.; Ryu, Tae Woo; Ravasi, Timothy; Bayer, Till; Micklem, G.; Kim, H.; Bhak, J.; LaJeunesse, T. C.; Voolstra, Christian R.

    2016-01-01

    Despite half a century of research, the biology of dinoflagellates remains enigmatic: they defy many functional and genetic traits attributed to typical eukaryotic cells. Genomic approaches to study dinoflagellates are often stymied due to their large, multi-gigabase genomes. Members of the genus Symbiodinium are photosynthetic endosymbionts of stony corals that provide the foundation of coral reef ecosystems. Their smaller genome sizes provide an opportunity to interrogate evolution and functionality of dinoflagellate genomes and endosymbiosis. We sequenced the genome of the ancestral Symbiodinium microadriaticum and compared it to the genomes of the more derived Symbiodinium minutum and Symbiodinium kawagutii and eukaryote model systems as well as transcriptomes from other dinoflagellates. Comparative analyses of genome and transcriptome protein sets show that all dinoflagellates, not only Symbiodinium, possess significantly more transmembrane transporters involved in the exchange of amino acids, lipids, and glycerol than other eukaryotes. Importantly, we find that only Symbiodinium harbor an extensive transporter repertoire associated with the provisioning of carbon and nitrogen. Analyses of these transporters show species-specific expansions, which provides a genomic basis to explain differential compatibilities to an array of hosts and environments, and highlights the putative importance of gene duplications as an evolutionary mechanism in dinoflagellates and Symbiodinium.

  16. Pyrosequencing of Haliotis diversicolor transcriptomes: insights into early developmental molluscan gene expression.

    Directory of Open Access Journals (Sweden)

    Zi-Xia Huang

    Full Text Available BACKGROUND: The abalone Haliotis diversicolor is a good model for study of the settlement and metamorphosis, which are widespread marine ecological phenomena. However, information on the global gene backgrounds and gene expression profiles for the early development of abalones is lacking. METHODOLOGY/PRINCIPAL FINDINGS: In this study, eight non-normalized and multiplex barcode-labeled transcriptomes were sequenced using a 454 GS system to cover the early developmental stages of the abalone H. diversicolor. The assembly generated 35,415 unigenes, of which 7,566 were assigned GO terms. A global gene expression profile containing 636 scaffolds/contigs was constructed and was proven reliable using qPCR evaluation. It indicated that there may be existing dramatic phase transitions. Bioprocesses were proposed, including the 'lock system' in mature eggs, the collagen shells of the trochophore larvae and the development of chambered extracellular matrix (ECM structures within the earliest postlarvae. CONCLUSION: This study globally details the first 454 sequencing data for larval stages of H. diversicolor. A basic analysis of the larval transcriptomes and cluster of the gene expression profile indicates that each stage possesses a batch of specific genes that are indispensable during embryonic development, especially during the two-cell, trochophore and early postlarval stages. These data will provide a fundamental resource for future physiological works on abalones, revealing the mechanisms of settlement and metamorphosis at the molecular level.

  17. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems

    NARCIS (Netherlands)

    Rix, L.; de Goeij, J.M.; Mueller, C.E.; Struck, U.; Middelburg, J.J.; van Duyl, F.C.; Al-Horani, F.A.; Wild, C.; Naumann, M.S.; Van Oevelen, D.

    2016-01-01

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and

  18. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience.

    Science.gov (United States)

    Peixoto, Raquel S; Rosado, Phillipe M; Leite, Deborah Catharine de Assis; Rosado, Alexandre S; Bourne, David G

    2017-01-01

    The symbiotic association between the coral animal and its endosymbiotic dinoflagellate partner Symbiodinium is central to the success of corals. However, an array of other microorganisms associated with coral (i.e., Bacteria, Archaea, Fungi, and viruses) have a complex and intricate role in maintaining homeostasis between corals and Symbiodinium . Corals are sensitive to shifts in the surrounding environmental conditions. One of the most widely reported responses of coral to stressful environmental conditions is bleaching. During this event, corals expel Symbiodinium cells from their gastrodermal tissues upon experiencing extended seawater temperatures above their thermal threshold. An array of other environmental stressors can also destabilize the coral microbiome, resulting in compromised health of the host, which may include disease and mortality in the worst scenario. However, the exact mechanisms by which the coral microbiome supports coral health and increases resilience are poorly understood. Earlier studies of coral microbiology proposed a coral probiotic hypothesis, wherein a dynamic relationship exists between corals and their symbiotic microorganisms, selecting for the coral holobiont that is best suited for the prevailing environmental conditions. Here, we discuss the microbial-host relationships within the coral holobiont, along with their potential roles in maintaining coral health. We propose the term BMC (Beneficial Microorganisms for Corals) to define (specific) symbionts that promote coral health. This term and concept are analogous to the term Plant Growth Promoting Rhizosphere (PGPR), which has been widely explored and manipulated in the agricultural industry for microorganisms that inhabit the rhizosphere and directly or indirectly promote plant growth and development through the production of regulatory signals, antibiotics and nutrients. Additionally, we propose and discuss the potential mechanisms of the effects of BMC on corals, suggesting

  19. Algae as reservoirs for coral pathogens.

    Directory of Open Access Journals (Sweden)

    Michael J Sweet

    Full Text Available Benthic algae are associated with coral death in the form of stress and disease. It's been proposed that they release exudates, which facilitate invasion of potentially pathogenic microbes at the coral-algal interface, resulting in coral disease. However, the original source of these pathogens remains unknown. This study examined the ability of benthic algae to act as reservoirs of coral pathogens by characterizing surface associated microbes associated with major Caribbean and Indo-Pacific algal species/types and by comparing them to potential pathogens of two dominant coral diseases: White Syndrome (WS in the Indo-Pacific and Yellow Band Disease (YBD in the Caribbean. Coral and algal sampling was conducted simultaneously at the same sites to avoid spatial effects. Potential pathogens were defined as those absent or rare in healthy corals, increasing in abundance in healthy tissues adjacent to a disease lesion, and dominant in disease lesions. Potentially pathogenic bacteria were detected in both WS and YBD and were also present within the majority of algal species/types (54 and 100% for WS and YBD respectively. Pathogenic ciliates were associated only with WS and not YBD lesions and these were also present in 36% of the Indo-Pacific algal species. Although potential pathogens were associated with many algal species, their presence was inconsistent among replicate algal samples and detection rates were relatively low, suggestive of low density and occurrence. At the community level, coral-associated microbes irrespective of the health of their host differed from algal-associated microbes, supporting that algae and corals have distinctive microbial communities associated with their tissue. We conclude that benthic algae are common reservoirs for a variety of different potential coral pathogens. However, algal-associated microbes alone are unlikely to cause coral death. Initial damage or stress to the coral via other competitive mechanisms is

  20. High Throughput Transcriptomics @ USEPA (Toxicology ...

    Science.gov (United States)

    The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest. Responses should ideally be translated into tissue-, organ-, and organism-level effects. It must be economical and scalable. Using a High Throughput Transcriptomics platform within US EPA provides broader coverage of biological activity space and toxicological MOAs and helps fill the toxicological data gap. Slide presentation at the 2016 ToxForum on using High Throughput Transcriptomics at US EPA for broader coverage biological activity space and toxicological MOAs.

  1. GROWTH AND BEHAVIOR OF LARVAL ZEBRAFISH Danio ...

    Science.gov (United States)

    Because Zebrafish (Danio rerio) have become a popular and important model for scientific research, the capability to rear larval zebrafish to adulthood is of great importance. Recently research examining the effects of diet (live versus processed) have been published. In the current study we examined whether the larvae can be reared on a processed diet alone, live food alone, or the combination while maintaining normal locomotor behavior, and acceptable survival, length and weight at 14 dpf in a static system. A 14 day feeding trial was conducted in glass crystallizing dishes containing 500 ml of 4 ppt Instant Ocean. On day 0 pdf 450 embryos were selected as potential study subjects and placed in a 26○C incubator on a 14:10 (light:dark) light cycle. At 4 dpf 120 normally developing embryos were selected per treatment and divided into 3 bowls of 40 embryos (for an n=3 per treatment; 9 bowls total). Treatment groups were: G (Gemma Micro 75 only), R (L-type marine rotifers (Brachionus plicatilis) only) or B (Gemma and rotifers). Growth (length), survival, water quality and rotifer density were monitored on days 5-14. On day 14, weight of larva in each bowl was measured and 8 larva per bowl were selected for use in locomotor testing. This behavior paradigm tests individual larval zebrafish under both light and dark conditions in a 24-well plate.After 14 dpf, survival among the groups was not different (92-98%). By days 7 -14 R and B larvae were ~2X longer

  2. Amorphous calcium carbonate particles form coral skeletons

    Science.gov (United States)

    Mass, Tali; Giuffre, Anthony J.; Sun, Chang-Yu; Stifler, Cayla A.; Frazier, Matthew J.; Neder, Maayan; Tamura, Nobumichi; Stan, Camelia V.; Marcus, Matthew A.; Gilbert, Pupa U. P. A.

    2017-09-01

    Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed “vital effects,” that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.

  3. A too acid world for coral reefs

    International Nuclear Information System (INIS)

    Allemand, D.; Reynaud, St.; Salvat, B.

    2010-01-01

    While briefly presenting how corals grow and exchange with their environment and after having recalled that temperature increase was already a threat for them, this article outlines that ocean acidification is now considered as another danger. This acidification is due to the dissolution in sea water of CO 2 produced by human activities. This entails a slower calcification which is the process by which corals grow their skeleton. But, some researches showed that some corals manage to survive normally in such acid conditions, and even without skeleton for some other species. Anyhow, coral reefs will tend to disappear with environmental and socio-economical consequences

  4. Cyanobacteria in Coral Reef Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    L. Charpy

    2012-01-01

    Full Text Available Cyanobacteria have dominated marine environments and have been reef builders on Earth for more than three million years (myr. Cyanobacteria still play an essential role in modern coral reef ecosystems by forming a major component of epiphytic, epilithic, and endolithic communities as well as of microbial mats. Cyanobacteria are grazed by reef organisms and also provide nitrogen to the coral reef ecosystems through nitrogen fixation. Recently, new unicellular cyanobacteria that express nitrogenase were found in the open ocean and in coral reef lagoons. Furthermore, cyanobacteria are important in calcification and decalcification. All limestone surfaces have a layer of boring algae in which cyanobacteria often play a dominant role. Cyanobacterial symbioses are abundant in coral reefs; the most common hosts are sponges and ascidians. Cyanobacteria use tactics beyond space occupation to inhibit coral recruitment. Cyanobacteria can also form pathogenic microbial consortia in association with other microbes on living coral tissues, causing coral tissue lysis and death, and considerable declines in coral reefs. In deep lagoons, coccoid cyanobacteria are abundant and are grazed by ciliates, heteroflagellates, and the benthic coral reef community. Cyanobacteria produce metabolites that act as attractants for some species and deterrents for some grazers of the reef communities.

  5. Biological impacts of oil pollution: coral reefs

    Energy Technology Data Exchange (ETDEWEB)

    Knap, A H [Bermuda Biological Station, Ferry Reach (Bermuda)

    1992-01-01

    Coral reefs are the largest structures made by living things and exist as extremely productive ecosystems in tropical and sub-tropical areas of the world. Their location in nearshore waters means that there is a potential danger to corals from tanker accidents, refinery operations, oil exploration and production. There are now a number of published scientific papers concerning the effects of oils on corals. This report summarises and interprets the findings, and provides background information on the structure and ecology of coral reefs. Clean-up options and their implications are discussed in the light of the latest evidence from case histories and field experiments. (author)

  6. Mosquito larval source management for controlling malaria

    Science.gov (United States)

    Tusting, Lucy S; Thwing, Julie; Sinclair, David; Fillinger, Ulrike; Gimnig, John; Bonner, Kimberly E; Bottomley, Christian; Lindsay, Steven W

    2015-01-01

    Background Malaria is an important cause of illness and death in people living in many parts of the world, especially sub-Saharan Africa. Long-lasting insecticide treated bed nets (LLINs) and indoor residual spraying (IRS) reduce malaria transmission by targeting the adult mosquito vector and are key components of malaria control programmes. However, mosquito numbers may also be reduced by larval source management (LSM), which targets mosquito larvae as they mature in aquatic habitats. This is conducted by permanently or temporarily reducing the availability of larval habitats (habitat modification and habitat manipulation), or by adding substances to standing water that either kill or inhibit the development of larvae (larviciding). Objectives To evaluate the effectiveness of mosquito LSM for preventing malaria. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; CABS Abstracts; and LILACS up to 24 October 2012. We handsearched the Tropical Diseases Bulletin from 1900 to 2010, the archives of the World Health Organization (up to 11 February 2011), and the literature database of the Armed Forces Pest Management Board (up to 2 March 2011). We also contacted colleagues in the field for relevant articles. Selection criteria We included cluster randomized controlled trials (cluster-RCTs), controlled before-and-after trials with at least one year of baseline data, and randomized cross-over trials that compared LSM with no LSM for malaria control. We excluded trials that evaluated biological control of anopheline mosquitoes with larvivorous fish. Data collection and analysis At least two authors assessed each trial for eligibility. We extracted data and at least two authors independently determined the risk of bias in the included studies. We resolved all disagreements through discussion with a third author. We analyzed the data using Review Manager 5 software

  7. Characterization and analysis of a de novo transcriptome from the pygmy grasshopper Tetrix japonica.

    Science.gov (United States)

    Qiu, Zhongying; Liu, Fei; Lu, Huimeng; Huang, Yuan

    2017-05-01

    The pygmy grasshopper Tetrix japonica is a common insect distributed throughout the world, and it has the potential for use in studies of body colour polymorphism, genomics and the biology of Tetrigoidea (Insecta: Orthoptera). However, limited biological information is available for this insect. Here, we conducted a de novo transcriptome study of adult and larval T. japonica to provide a better understanding of its gene expression and develop genomic resources for future work. We sequenced and explored the characteristics of the de novo transcriptome of T. japonica using Illumina HiSeq 2000 platform. A total of 107 608 206 paired-end clean reads were assembled into 61 141 unigenes using the trinity software; the mean unigene size was 771 bp, and the N50 length was 1238 bp. A total of 29 225 unigenes were functionally annotated to the NCBI nonredundant protein sequences (Nr), NCBI nonredundant nucleotide sequences (Nt), a manually annotated and reviewed protein sequence database (Swiss-Prot), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. A large number of putative genes that are potentially involved in pigment pathways, juvenile hormone (JH) metabolism and signalling pathways were identified in the T. japonica transcriptome. Additionally, 165 769 and 156 796 putative single nucleotide polymorphisms occurred in the adult and larvae transcriptomes, respectively, and a total of 3162 simple sequence repeats were detected in this assembly. This comprehensive transcriptomic data for T. japonica will provide a usable resource for gene predictions, signalling pathway investigations and molecular marker development for this species and other pygmy grasshoppers. © 2016 John Wiley & Sons Ltd.

  8. Recent expansion of heat-activated retrotransposons in the coral symbiont Symbiodinium microadriaticum

    KAUST Repository

    Chen, Jit Ern

    2017-10-20

    Rising sea surface temperature is the main cause of global coral reef decline. Abnormally high temperatures trigger the breakdown of the symbiotic association between corals and their photosynthetic symbionts in the genus Symbiodinium. Higher genetic variation resulting from shorter generation times has previously been proposed to provide increased adaptability to Symbiodinium compared to the host. Retrotransposition is a significant source of genetic variation in eukaryotes and some transposable elements are specifically expressed under adverse environmental conditions. We present transcriptomic and phylogenetic evidence for the existence of heat stress-activated Ty1-copia-type LTR retrotransposons in the coral symbiont Symbiodinium microadriaticum. Genome-wide analyses of emergence patterns of these elements further indicate recent expansion events in the genome of S. microadriaticum. Our findings suggest that acute temperature increases can activate specific retrotransposons in the Symbiodinium genome with potential impacts on the rate of retrotransposition and the generation of genetic variation under heat stress.The ISME Journal advance online publication, 20 October 2017; doi:10.1038/ismej.2017.179.

  9. Genetic diversity and connectivity in the threatened staghorn coral (Acropora cervicornis in Florida.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Hemond

    2010-01-01

    Full Text Available Over the past three decades, populations of the dominant shallow water Caribbean corals, Acropora cervicornis and A. palmata, have been devastated by white-band disease (WBD, resulting in the listing of both species as threatened under the U.S. Endangered Species Act. A key to conserving these threatened corals is understanding how their populations are genetically interconnected throughout the greater Caribbean. Genetic research has demonstrated that gene flow is regionally restricted across the Caribbean in both species. Yet, despite being an important site of coral reef research, little genetic data has been available for the Florida Acropora, especially for the staghorn coral, A. cervicornis. In this study, we present new mitochondrial DNA sequence data from 52 A. cervicornis individuals from 22 sites spread across the upper and lower Florida Keys, which suggest that Florida's A. cervicornis populations are highly genetically interconnected (F(ST = -0.081. Comparison between Florida and existing mtDNA data from six regional Caribbean populations indicates that Florida possesses high levels of standing genetic diversity (h = 0.824 relative to the rest of the greater Caribbean (h = 0.701+/-0.043. We find that the contemporary level of gene flow across the greater Caribbean, including Florida, is restricted (Phi(CT = 0.117, but evidence from shared haplotypes suggests the Western Caribbean has historically been a source of genetic variation for Florida. Despite the current patchiness of A. cervicornis in Florida, the relatively high genetic diversity and connectivity within Florida suggest that this population may have sufficient genetic variation to be viable and resilient to environmental perturbation and disease. Limited genetic exchange across regional populations of the greater Caribbean, including Florida, indicates that conservation efforts for A. cervicornis should focus on maintaining and managing populations locally rather than

  10. Genetic diversity and connectivity in the threatened staghorn coral (Acropora cervicornis) in Florida.

    Science.gov (United States)

    Hemond, Elizabeth M; Vollmer, Steven V

    2010-01-11

    Over the past three decades, populations of the dominant shallow water Caribbean corals, Acropora cervicornis and A. palmata, have been devastated by white-band disease (WBD), resulting in the listing of both species as threatened under the U.S. Endangered Species Act. A key to conserving these threatened corals is understanding how their populations are genetically interconnected throughout the greater Caribbean. Genetic research has demonstrated that gene flow is regionally restricted across the Caribbean in both species. Yet, despite being an important site of coral reef research, little genetic data has been available for the Florida Acropora, especially for the staghorn coral, A. cervicornis. In this study, we present new mitochondrial DNA sequence data from 52 A. cervicornis individuals from 22 sites spread across the upper and lower Florida Keys, which suggest that Florida's A. cervicornis populations are highly genetically interconnected (F(ST) = -0.081). Comparison between Florida and existing mtDNA data from six regional Caribbean populations indicates that Florida possesses high levels of standing genetic diversity (h = 0.824) relative to the rest of the greater Caribbean (h = 0.701+/-0.043). We find that the contemporary level of gene flow across the greater Caribbean, including Florida, is restricted (Phi(CT) = 0.117), but evidence from shared haplotypes suggests the Western Caribbean has historically been a source of genetic variation for Florida. Despite the current patchiness of A. cervicornis in Florida, the relatively high genetic diversity and connectivity within Florida suggest that this population may have sufficient genetic variation to be viable and resilient to environmental perturbation and disease. Limited genetic exchange across regional populations of the greater Caribbean, including Florida, indicates that conservation efforts for A. cervicornis should focus on maintaining and managing populations locally rather than relying on larval

  11. Coral diseases and bleaching on Colombian Caribbean coral reefs

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá. The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10x2m with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2, and Urabá had high numbers with bleaching (54.4 colonies/m2. Of the seven reported coral diseases studied, Dark Spots Disease (DSD, and White Plague Disease (WPD were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A.grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few

  12. Loss of live coral compromises predator-avoidance behaviour in coral reef damselfish.

    Science.gov (United States)

    Boström-Einarsson, Lisa; Bonin, Mary C; Munday, Philip L; Jones, Geoffrey P

    2018-05-17

    Tropical reefs have experienced an unprecedented loss of live coral in the past few decades and the biodiversity of coral-dependent species is under threat. Many reef fish species decline in abundance as coral cover is lost, yet the mechanisms responsible for these losses are largely unknown. A commonly hypothesised cause of fish decline is the loss of shelter space between branches as dead corals become overgrown by algae. Here we tested this hypothesis by quantifying changes in predator-avoidance behaviour of a common damselfish, Pomacentrus moluccensis, before and after the death of their coral colony. Groups of P. moluccensis were placed on either healthy or degraded coral colonies, startled using a visual stimulus and their sheltering responses compared over a 7-week period. P. moluccensis stopped sheltering amongst the coral branches immediately following the death of the coral, despite the presence of ample shelter space. Instead, most individuals swam away from the dead coral, potentially increasing their exposure to predators. It appears that the presence of live coral rather than shelter per se is the necessary cue that elicits the appropriate behavioural response to potential predators. The disruption of this link poses an immediate threat to coral-associated fishes on degrading reefs.

  13. Competitive interactions between corals and turf algae depend on coral colony form.

    Science.gov (United States)

    Swierts, Thomas; Vermeij, Mark Ja

    2016-01-01

    Turf algae are becoming more abundant on coral reefs worldwide, but their effects on other benthic organisms remain poorly described. To describe the general characteristics of competitive interactions between corals and turf algae, we determined the occurrence and outcomes of coral-turf algal interactions among different coral growth forms (branching, upright, massive, encrusting, plating, and solitary) on a shallow reef in Vietnam. In total, the amount of turf algal interaction, i.e., the proportion of the coral boundary directly bordering turf algae, was quantified for 1,276 coral colonies belonging to 27 genera and the putative outcome of each interaction was noted. The amount of turf algal interaction and the outcome of these interactions differed predictably among the six growth forms. Encrusting corals interacted most often with turf algae, but also competed most successfully against turf algae. The opposite was observed for branching corals, which rarely interacted with turf algae and rarely won these competitive interactions. Including all other growth forms, a positive relationship was found between the amount of competitive interactions with neighboring turf algae and the percentage of such interaction won by the coral. This growth form dependent ability to outcompete turf algae was not only observed among coral species, but also among different growth forms in morphologically plastic coral genera (Acropora, Favia, Favites, Montastrea, Montipora, Porites) illustrating the general nature of this relationship.

  14. Spectral classifying base on color of live corals and dead corals covered with algae

    Science.gov (United States)

    Nurdin, Nurjannah; Komatsu, Teruhisa; Barille, Laurent; Akbar, A. S. M.; Sawayama, Shuhei; Fitrah, Muh. Nur; Prasyad, Hermansyah

    2016-05-01

    Pigments in the host tissues of corals can make a significant contribution to their spectral signature and can affect their apparent color as perceived by a human observer. The aim of this study is classifying the spectral reflectance of corals base on different color. It is expected that they can be used as references in discriminating between live corals, dead coral covered with algae Spectral reflectance data was collected in three small islands, Spermonde Archipelago, Indonesia by using a hyperspectral radiometer underwater. First and second derivative analysis resolved the wavelength locations of dominant features contributing to reflectance in corals and support the distinct differences in spectra among colour existed. Spectral derivative analysis was used to determine the specific wavelength regions ideal for remote identification of substrate type. The analysis results shown that yellow, green, brown and violet live corals are spectrally separable from each other, but they are similar with dead coral covered with algae spectral.

  15. Diversity and evolution of coral fluorescent proteins.

    Directory of Open Access Journals (Sweden)

    Naila O Alieva

    2008-07-01

    Full Text Available GFP-like fluorescent proteins (FPs are the key color determinants in reef-building corals (class Anthozoa, order Scleractinia and are of considerable interest as potential genetically encoded fluorescent labels. Here we report 40 additional members of the GFP family from corals. There are three major paralogous lineages of coral FPs. One of them is retained in all sampled coral families and is responsible for the non-fluorescent purple-blue color, while each of the other two evolved a full complement of typical coral fluorescent colors (cyan, green, and red and underwent sorting between coral groups. Among the newly cloned proteins are a "chromo-red" color type from Echinopora forskaliana (family Faviidae and pink chromoprotein from Stylophora pistillata (Pocilloporidae, both evolving independently from the rest of coral chromoproteins. There are several cyan FPs that possess a novel kind of excitation spectrum indicating a neutral chromophore ground state, for which the residue E167 is responsible (numeration according to GFP from A. victoria. The chromoprotein from Acropora millepora is an unusual blue instead of purple, which is due to two mutations: S64C and S183T. We applied a novel probabilistic sampling approach to recreate the common ancestor of all coral FPs as well as the more derived common ancestor of three main fluorescent colors of the Faviina suborder. Both proteins were green such as found elsewhere outside class Anthozoa. Interestingly, a substantial fraction of the all-coral ancestral protein had a chromohore apparently locked in a non-fluorescent neutral state, which may reflect the transitional stage that enabled rapid color diversification early in the history of coral FPs. Our results highlight the extent of convergent or parallel evolution of the color diversity in corals, provide the foundation for experimental studies of evolutionary processes that led to color diversification, and enable a comparative analysis of

  16. KrillDB: A de novo transcriptome database for the Antarctic krill (Euphausia superba.

    Directory of Open Access Journals (Sweden)

    Gabriele Sales

    Full Text Available Antarctic krill (Euphausia superba is a key species in the Southern Ocean with an estimated biomass between 100 and 500 million tonnes. Changes in krill population viability would have catastrophic effect on the Antarctic ecosystem. One looming threat due to elevated levels of anthropogenic atmospheric carbon dioxide (CO2 is ocean acidification (lowering of sea water pH by CO2 dissolving into the oceans. The genetics of Antarctic krill has long been of scientific interest for both for the analysis of population structure and analysis of functional genetics. However, the genetic resources available for the species are relatively modest. We have developed the most advanced genetic database on Euphausia superba, KrillDB, which includes comprehensive data sets of former and present transcriptome projects. In particular, we have built a de novo transcriptome assembly using more than 360 million Illumina sequence reads generated from larval krill including individuals subjected to different CO2 levels. The database gives access to: 1 the full list of assembled genes and transcripts; 2 their level of similarity to transcripts and proteins from other species; 3 the predicted protein domains contained within each transcript; 4 their predicted GO terms; 5 the level of expression of each transcript in the different larval stages and CO2 treatments. All references to external entities (sequences, domains, GO terms are equipped with a link to the appropriate source database. Moreover, the software implements a full-text search engine that makes it possible to submit free-form queries. KrillDB represents the first large-scale attempt at classifying and annotating the full krill transcriptome. For this reason, we believe it will constitute a cornerstone of future approaches devoted to physiological and molecular study of this key species in the Southern Ocean food web.

  17. Transcriptomic survey of the midgut of Anthonomus grandis (Coleoptera: Curculionidae).

    Science.gov (United States)

    Salvador, Ricardo; Príncipi, Darío; Berretta, Marcelo; Fernández, Paula; Paniego, Norma; Sciocco-Cap, Alicia; Hopp, Esteban

    2014-01-01

    Anthonomus grandis Boheman is a key pest in cotton crops in the New World. Its larval stage develops within the flower bud using it as food and as protection against its predators. This behavior limits the effectiveness of its control using conventional insecticide applications and biocontrol techniques. In spite of its importance, little is known about its genome sequence and, more important, its specific expression in key organs like the midgut. Total mRNA isolated from larval midguts was used for pyrosequencing. Sequence reads were assembled and annotated to generate a unigene data set. In total, 400,000 reads from A. grandis midgut with an average length of 237 bp were assembled and combined into 20,915 contigs. The assembled reads fell into 6,621 genes models. BlastX search using the NCBI-NR database showed that 3,006 unigenes had significant matches to known sequences. Gene Ontology (GO) mapping analysis evidenced that A. grandis is able to transcripts coding for proteins involved in catalytic processing of macromolecules that allows its adaptation to very different feeding source scenarios. Furthermore, transcripts encoding for proteins involved in detoxification mechanisms such as p450 genes, glutathione-S-transferase, and carboxylesterases are also expressed. This is the first report of a transcriptomic study in A. grandis and the largest set of sequence data reported for this species. These data are valuable resources to expand the knowledge of this insect group and could be used in the design of new control strategies based in molecular information. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  18. Transcriptome Analysis of the Emerald Ash Borer (EAB), Agrilus planipennis: De Novo Assembly, Functional Annotation and Comparative Analysis.

    Science.gov (United States)

    Duan, Jun; Ladd, Tim; Doucet, Daniel; Cusson, Michel; vanFrankenhuyzen, Kees; Mittapalli, Omprakash; Krell, Peter J; Quan, Guoxing

    2015-01-01

    The Emerald ash borer (EAB), Agrilus planipennis, is an invasive phloem-feeding insect pest of ash trees. Since its initial discovery near the Detroit, US- Windsor, Canada area in 2002, the spread of EAB has had strong negative economic, social and environmental impacts in both countries. Several transcriptomes from specific tissues including midgut, fat body and antenna have recently been generated. However, the relatively low sequence depth, gene coverage and completeness limited the usefulness of these EAB databases. High-throughput deep RNA-Sequencing (RNA-Seq) was used to obtain 473.9 million pairs of 100 bp length paired-end reads from various life stages and tissues. These reads were assembled into 88,907 contigs using the Trinity strategy and integrated into 38,160 unigenes after redundant sequences were removed. We annotated 11,229 unigenes by searching against the public nr, Swiss-Prot and COG. The EAB transcriptome assembly was compared with 13 other sequenced insect species, resulting in the prediction of 536 unigenes that are Coleoptera-specific. Differential gene expression revealed that 290 unigenes are expressed during larval molting and 3,911 unigenes during metamorphosis from larvae to pupae, respectively (FDR2). In addition, 1,167 differentially expressed unigenes were identified from larval and adult midguts, 435 unigenes were up-regulated in larval midgut and 732 unigenes were up-regulated in adult midgut. Most of the genes involved in RNA interference (RNAi) pathways were identified, which implies the existence of a system RNAi in EAB. This study provides one of the most fundamental and comprehensive transcriptome resources available for EAB to date. Identification of the tissue- stage- or species- specific unigenes will benefit the further study of gene functions during growth and metamorphosis processes in EAB and other pest insects.

  19. High tolerance to temperature and salinity change should enable scleractinian coral Platygyra acuta from marginal environments to persist under future climate change.

    Directory of Open Access Journals (Sweden)

    Apple Pui Yi Chui

    Full Text Available With projected changes in the marine environment under global climate change, the effects of single stressors on corals have been relatively well studied. However, more focus should be placed on the interactive effects of multiple stressors if their impacts upon corals are to be assessed more realistically. Elevation of sea surface temperature is projected under global climate change, and future increases in precipitation extremes related to the monsoon are also expected. Thus, the lowering of salinity could become a more common phenomenon and its impact on corals could be significant as extreme precipitation usually occurs during the coral spawning season. Here, we investigated the interactive effects of temperature [24, 27 (ambient, 30, 32°C] and salinity [33 psu (ambient, 30, 26, 22, 18, 14 psu] on larval settlement, post-settlement survival and early growth of the dominant coral Platygyra acuta from Hong Kong, a marginal environment for coral growth. The results indicate that elevated temperatures (+3°C and +5°C above ambient did not have any significant effects on larval settlement success and post-settlement survival for up to 56 days of prolonged exposure. Such thermal tolerance was markedly higher than that reported in the literature for other coral species. Moreover, there was a positive effect of these elevated temperatures in reducing the negative effects of lowered salinity (26 psu on settlement success. The enhanced settlement success brought about by elevated temperatures, together with the high post-settlement survival recorded up to 44 and 8 days of exposure under +3°C and +5°C ambient respectively, resulted in the overall positive effects of elevated temperatures on recruitment success. These results suggest that projected elevation in temperature over the next century should not pose any major problem for the recruitment success of P. acuta. The combined effects of higher temperatures and lowered salinity (26 psu could

  20. Calcifying algae maintain settlement cues to larval abalone following algal exposure to extreme ocean acidification.

    Science.gov (United States)

    O'Leary, Jennifer K; Barry, James P; Gabrielson, Paul W; Rogers-Bennett, Laura; Potts, Donald C; Palumbi, Stephen R; Micheli, Fiorenza

    2017-07-18

    Ocean acidification (OA) increasingly threatens marine systems, and is especially harmful to calcifying organisms. One important question is whether OA will alter species interactions. Crustose coralline algae (CCA) provide space and chemical cues for larval settlement. CCA have shown strongly negative responses to OA in previous studies, including disruption of settlement cues to corals. In California, CCA provide cues for seven species of harvested, threatened, and endangered abalone. We exposed four common CCA genera and a crustose calcifying red algae, Peyssonnelia (collectively CCRA) from California to three pCO 2 levels ranging from 419-2,013 µatm for four months. We then evaluated abalone (Haliotis rufescens) settlement under ambient conditions among the CCRA and non-algal controls that had been previously exposed to the pCO 2 treatments. Abalone settlement and metamorphosis increased from 11% in the absence of CCRA to 45-69% when CCRA were present, with minor variation among CCRA genera. Though all CCRA genera reduced growth during exposure to increased pCO 2 , abalone settlement was unaffected by prior CCRA exposure to increased pCO 2 . Thus, we find no impacts of OA exposure history on CCRA provision of settlement cues. Additionally, there appears to be functional redundancy in genera of CCRA providing cues to abalone, which may further buffer OA effects.

  1. Microbial disease and the coral holobiont

    Science.gov (United States)

    Bourne, David G.; Garren, Melissa; Work, Thierry M.; Rosenberg, Eugene; Smith, Garriet W.; Harvell, C. Drew

    2009-01-01

    Tropical coral reefs harbour a reservoir of enormous biodiversity that is increasingly threatened by direct human activities and indirect global climate shifts. Emerging coral diseases are one serious threat implicated in extensive reef deterioration through disruption of the integrity of the coral holobiont – a complex symbiosis between the coral animal, endobiotic alga and an array of microorganisms. In this article, we review our current understanding of the role of microorganisms in coral health and disease, and highlight the pressing interdisciplinary research priorities required to elucidate the mechanisms of disease. We advocate an approach that applies knowledge gained from experiences in human and veterinary medicine, integrated into multidisciplinary studies that investigate the interactions between host, agent and environment of a given coral disease. These approaches include robust and precise disease diagnosis, standardised ecological methods and application of rapidly developing DNA, RNA and protein technologies, alongside established histological, microbial ecology and ecological expertise. Such approaches will allow a better understanding of the causes of coral mortality and coral reef declines and help assess potential management options to mitigate their effects in the longer term.

  2. CORAL REEF BIOLOGICAL CRITERIA: USING THE CLEAN ...

    Science.gov (United States)

    Coral reefs are declining at unprecedented rates worldwide due to multiple interactive stressors including climate change and land-based sources of pollution. The Clean Water Act (CWA) can be a powerful legal instrument for protecting water resources, including the biological inhabitants of coral reefs. The objective of the CWA is to restore and maintain the chemical, physical and biological integrity of water resources. Coral reef protection and restoration under the Clean Water Act begins with water quality standards - provisions of state or Federal law that consist of a designated use(s) for the waters of the United States and water quality criteria sufficient to protect the uses. Aquatic life use is the designated use that is measured by biological criteria (biocriteria). Biocriteria are expectations set by a jurisdiction for the quality and quantity of living aquatic resources in a defined waterbody. Biocriteria are an important addition to existing management tools for coral reef ecosystems. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework to aid States and Territories in their development, adoption, and implementation of coral reef biocriteria in their respective water quality standards. The Technical Support Document “Coral Reef Biological Criteria: Using the Clean Water Act to Protect a National Treasure” will provide a framework for coral re

  3. The Stylasterine coral Allopora stellulata (Stewart)

    NARCIS (Netherlands)

    Boschma, H.

    1960-01-01

    The description of Stylaster stellulatus Stewart was based on a specimen obtained at Tahiti, the coral was stated to be extremely rare, and only found at one small island in the neighbourhood. The description contains all the peculiarities for a specific definition of the coral, the salient points

  4. Coral larvae move toward reef sounds

    NARCIS (Netherlands)

    Vermeij, M.J.A.; Marhaver, K.L.; Huijbers, C.M.; Nagelkerken, I.; Simpson, S.D.

    2010-01-01

    Free-swimming larvae of tropical corals go through a critical life-phase when they return from the open ocean to select a suitable settlement substrate. During the planktonic phase of their life cycle, the behaviours of small coral larvae (<1 mm) that influence settlement success are difficult to

  5. The mushroom coral as a habitat

    NARCIS (Netherlands)

    Hoeksema, B.W.; Meij, van der S.E.T.; Fransen, C.H.J.M.

    2012-01-01

    The evolution of symbiotic relationships involving reef corals has had much impact on tropical marine biodiversity. Because of their endosymbiotic algae (zooxanthellae) corals can grow fast in tropical shallow seas where they form reefs that supply food, substrate and shelter for other organisms.

  6. Mesopredator trophodynamics on thermally stressed coral reefs

    Science.gov (United States)

    Hempson, Tessa N.; Graham, Nicholas A. J.; MacNeil, M. Aaron; Hoey, Andrew S.; Almany, Glenn R.

    2018-03-01

    Ecosystems are becoming vastly modified through disturbance. In coral reef ecosystems, the differential susceptibility of coral taxa to climate-driven bleaching is predicted to shift coral assemblages towards reefs with an increased relative abundance of taxa with high thermal tolerance. Many thermally tolerant coral species are characterised by low structural complexity, with reduced habitat niche space for the small-bodied coral reef fishes on which piscivorous mesopredators feed. This study used a patch reef array to investigate the potential impacts of climate-driven shifts in coral assemblages on the trophodynamics of reef mesopredators and their prey communities. The `tolerant' reef treatment consisted only of coral taxa of low susceptibility to bleaching, while `vulnerable' reefs included species of moderate to high thermal vulnerability. `Vulnerable' reefs had higher structural complexity, and the fish assemblages that established on these reefs over 18 months had higher species diversity, abundance and biomass than those on `tolerant' reefs. Fish assemblages on `tolerant' reefs were also more strongly influenced by the introduction of a mesopredator ( Cephalopholis boenak). Mesopredators on `tolerant' reefs had lower lipid content in their muscle tissue by the end of the 6-week experiment. Such sublethal energetic costs can compromise growth, fecundity, and survivorship, resulting in unexpected population declines in long-lived mesopredators. This study provides valuable insight into the altered trophodynamics of future coral reef ecosystems, highlighting the potentially increased vulnerability of reef fish assemblages to predation as reef structure declines, and the cost of changing prey availability on mesopredator condition.

  7. Measurements and Counts for Larval and Juvenile Beryx Specimens

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Larval alfonsin (Beryx species) were collected in the vicinity of the Southeast Hancock Seamount. A three-net Tucker trawl (I m2 effective mouth opening and 0.333 mm...

  8. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts

    KAUST Repository

    Levin, Rachel Ashley

    2016-12-02

    Symbiodinium, the dinoflagellate photosymbiont of corals, is posited to become more susceptible to viral infections when heat-stressed. To investigate this hypothesis, we mined transcriptome data of a thermosensitive and a thermotolerant type C1 Symbiodinium population at ambient (27 °C) and elevated (32°C) temperatures. We uncovered hundreds of transcripts from nucleocytoplasmic large double-stranded DNA viruses (NCLDVs) and the genome of a novel positive-sense single-stranded RNA virus (+ssRNAV). In the transcriptome of the thermosensitive population only, +ssRNAV transcripts had remarkable expression levels in the top 0.03% of all transcripts at 27 °C, but at 32 °C, expression levels of +ssRNAV transcripts decreased, while expression levels of anti-viral transcripts increased. In both transcriptomes, expression of NCLDV transcripts increased at 32 °C, but thermal induction of NCLDV transcripts involved in DNA manipulation was restricted to the thermosensitive population. Our findings reveal that viruses infecting Symbiodinium are affected by heat stress and may contribute to Symbiodinium thermal sensitivity.

  9. Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts

    KAUST Repository

    Levin, Rachel Ashley; Voolstra, Christian R.; Weynberg, Karen Dawn; Oppen, Madeleine Josephine Henriette van

    2016-01-01

    Symbiodinium, the dinoflagellate photosymbiont of corals, is posited to become more susceptible to viral infections when heat-stressed. To investigate this hypothesis, we mined transcriptome data of a thermosensitive and a thermotolerant type C1 Symbiodinium population at ambient (27 °C) and elevated (32°C) temperatures. We uncovered hundreds of transcripts from nucleocytoplasmic large double-stranded DNA viruses (NCLDVs) and the genome of a novel positive-sense single-stranded RNA virus (+ssRNAV). In the transcriptome of the thermosensitive population only, +ssRNAV transcripts had remarkable expression levels in the top 0.03% of all transcripts at 27 °C, but at 32 °C, expression levels of +ssRNAV transcripts decreased, while expression levels of anti-viral transcripts increased. In both transcriptomes, expression of NCLDV transcripts increased at 32 °C, but thermal induction of NCLDV transcripts involved in DNA manipulation was restricted to the thermosensitive population. Our findings reveal that viruses infecting Symbiodinium are affected by heat stress and may contribute to Symbiodinium thermal sensitivity.

  10. Coral aquaculture: applying scientific knowledge to ex situ production

    NARCIS (Netherlands)

    Leal, M.C.; Ferrier-Pagès, C.; Petersen, D.; Osinga, R.

    2016-01-01

    Coral aquaculture is an activity of growing interest due to the degradation of coral reefs worldwide and concomitant growing demand for corals by three industries: marine ornamental trade, pharmaceutical industry and reef restoration. Although captive breeding and propagation of corals is a

  11. 75 FR 48934 - Coral Reef Conservation Program Implementation Guidelines

    Science.gov (United States)

    2010-08-12

    ...-01] RIN 0648-ZC19 Coral Reef Conservation Program Implementation Guidelines AGENCY: National Oceanic... Guidelines (Guidelines) for the Coral Reef Conservation Program (CRCP or Program) under the Coral Reef... assistance for coral reef conservation projects under the Act. NOAA revised the Implementation Guidelines for...

  12. Larval diet affects mosquito development and permissiveness to Plasmodium infection

    OpenAIRE

    Gendrin, MEM; Christophides; Linenberg, Inbar

    2016-01-01

    The larval stages of malaria vector mosquitoes develop in water pools, feeding mostly on microorganisms and environmental detritus. Richness in the nutrient supply to larvae influences the development and metabolism of larvae and adults. Here, we investigated the effects of larval diet on the development, microbiota content and permissiveness to Plasmodium of Anopheles coluzzii . We tested three fish diets often used to rear mosquitoes in the laboratory, including two pelleted diets, Dr. Clar...

  13. Contributions for larval development optimization of Homarus gammarus

    Directory of Open Access Journals (Sweden)

    Pedro Tiago Fonseca Sá

    2014-06-01

    The seawater rising temperature resulted in a decrease of intermoult period in all larval development stages and at all tested temperatures, ranging from 4.77 (Z1 to 16.5 days (Z3 at 16°C, whereas at 23°C, ranged from 3:02 (Z1 and 9.75 days (Z3. The results obtained are an extremely useful guide for future optimization of protocols on larval development of H. gammarus.

  14. Evidence for miRNA-mediated modulation of the host transcriptome in cnidarian-dinoflagellate symbiosis

    KAUST Repository

    Baumgarten, Sebastian

    2017-12-08

    Reef-building corals and other cnidarians living in symbiotic relationships with intracellular, photosynthetic dinoflagellates in the genus Symbiodinium undergo transcriptomic changes during infection with the algae and maintenance of the endosymbiont population. However, the precise regulatory mechanisms modulating the host transcriptome are unknown. Here we report apparent post-transcriptional gene regulation by miRNAs in the sea anemone Aiptasia, a model system for cnidarian-dinoflagellate endosymbiosis. Aiptasia encodes mainly species-specific miRNAs, and there appears to have been recent differentiation within the Aiptasia genome of miRNAs that are commonly conserved among anthozoan cnidarians. Analysis of miRNA expression showed that both conserved and species-specific miRNAs are differentially expressed in response to endosymbiont infection. Using cross-linking immunoprecipitation of Argonaute, the central protein of the miRNA-induced silencing complex, we identified miRNA binding sites on a transcriptome-wide scale and found that the targets of the miRNAs regulated in response to symbiosis include genes previously implicated in biological processes related to Symbiodinium infection. Our study shows that cnidarian miRNAs recognize their mRNA targets via high-complementarity target binding and suggests that miRNA-mediated modulations of genes and pathways are important during the onset and maintenance of cnidarian-dinoflagellate endosymbiosis. This article is protected by copyright. All rights reserved.

  15. Evidence for miRNA-mediated modulation of the host transcriptome in cnidarian-dinoflagellate symbiosis

    KAUST Repository

    Baumgarten, Sebastian; Cziesielski, Maha J.; Thomas, Ludivine; Michell, Craig; Esherick, Lisl Y.; Pringle, John R.; Aranda, Manuel; Voolstra, Christian R.

    2017-01-01

    Reef-building corals and other cnidarians living in symbiotic relationships with intracellular, photosynthetic dinoflagellates in the genus Symbiodinium undergo transcriptomic changes during infection with the algae and maintenance of the endosymbiont population. However, the precise regulatory mechanisms modulating the host transcriptome are unknown. Here we report apparent post-transcriptional gene regulation by miRNAs in the sea anemone Aiptasia, a model system for cnidarian-dinoflagellate endosymbiosis. Aiptasia encodes mainly species-specific miRNAs, and there appears to have been recent differentiation within the Aiptasia genome of miRNAs that are commonly conserved among anthozoan cnidarians. Analysis of miRNA expression showed that both conserved and species-specific miRNAs are differentially expressed in response to endosymbiont infection. Using cross-linking immunoprecipitation of Argonaute, the central protein of the miRNA-induced silencing complex, we identified miRNA binding sites on a transcriptome-wide scale and found that the targets of the miRNAs regulated in response to symbiosis include genes previously implicated in biological processes related to Symbiodinium infection. Our study shows that cnidarian miRNAs recognize their mRNA targets via high-complementarity target binding and suggests that miRNA-mediated modulations of genes and pathways are important during the onset and maintenance of cnidarian-dinoflagellate endosymbiosis. This article is protected by copyright. All rights reserved.

  16. Seascape and life-history traits do not predict self-recruitment in a coral reef fish

    KAUST Repository

    Herrera Sarrias, Marcela

    2016-08-10

    The persistence and resilience of many coral reef species are dependent on rates of connectivity among sub-populations. However, despite increasing research efforts, the spatial scale of larval dispersal remains unpredictable for most marine metapopulations. Here, we assess patterns of larval dispersal in the angelfish Centropyge bicolor in Kimbe Bay, Papua New Guinea, using parentage and sibling reconstruction analyses based on 23 microsatellite DNA loci. We found that, contrary to previous findings in this system, self-recruitment (SR) was virtually absent at both the reef (0.4-0.5% at 0.15 km2) and the lagoon scale (0.6-0.8% at approx. 700 km2). While approximately 25%of the collected juveniles were identified as potential siblings, the majority of sibling pairs were sampled from separate reefs. Integrating our findings with earlier research from the same system suggests that geographical setting and life-history traits alone are not suitable predictors of SR and that high levels of localized recruitment are not universal in coral reef fishes. © 2016 The Authors.

  17. Helminths parasitizing larval fish from Pantanal, Brazil.

    Science.gov (United States)

    Lacerda, A C F; Santin, M; Takemoto, R M; Pavanelli, G C; Bialetzki, A; Tavernari, F C

    2009-03-01

    Fish larvae of 'corvinas' (Pachyurus bonariensis and Plagioscion ternetzi) from Sinhá Mariana Lagoon, Mato Grosso State, were collected from March 2000 to March 2004, in order to determine the parasitic fauna of fishes. Larvae from the two species were parasitized by the same endoparasites: Contracaecum sp. Type 2 (larvae) (Nematoda: Anisakidae) in the mesentery and Neoechinorhynchus (Neoechinorhynchus) paraguayensis (Acanthocephala: Neoechinorhynchidae) in the stomach and the terminal portion of the intestine. Statistical analysis showed that there was a significant positive correlation between the standard length of hosts and the abundance of acanthocephalans and nematodes, and that the prevalence of nematodes presented a significant positive correlation with the standard length of the two species of hosts, indicating the presence of a cumulative process of infection. The present study constitutes the first record of nematodes and acanthocephalans parasitizing larval fish, as well as the first record of endoparasites in fish larvae in Brazil. In addition, it lists a new locality and two species of hosts for Contracaecum sp. Type 2 (larva) and N. (N.) paraguayensis.

  18. Arrested larval development in cattle nematodes.

    Science.gov (United States)

    Armour, J; Duncan, M

    1987-06-01

    Most economically important cattle nematodes are able to arrest their larval development within the host - entering a period of dormancy or hypobiosis. Arrested larvae have a low death rate, and large numbers can accumulate in infected cattle during the grazing season. Because of this, outbreaks of disease caused by such nematodes can occur at times when recent infection with the parasites could not have occurred, for example during winter in temperature northern climates when cattle are normally housed. The capacity to arrest is a heritable trait. It is seen as an adaptation by the parasite to avoid further development to its free-living stages during times when the climate is unsuitable for free-living survival. But levels of arrestment can vary markedly in different regions, in different cattle, and under different management regimes. Climatic factors, previous conditioning, host immune status, and farm management all seem to affect arrestment levels. In this article, James Armour and Mary Duncan review the biological basis of the phenomenon, and discuss the apparently conflicting views on how it is controlled.

  19. Assessment of sampling mortality of larval fishes

    International Nuclear Information System (INIS)

    Cada, G.F.; Hergenrader, G.L.

    1978-01-01

    A study was initiated to assess the mortality of larval fishes that were entrained in the condenser cooling systems of two nuclear power plants on the Missouri River in Nebraska. High mortalities were observed not only in the discharge collections but also in control samples taken upriver from the plants where no entrainment effects were possible. As a result, entrainment mortality generally could not be demonstrated. A technique was developed which indicated that (1) a significant portion of the observed mortality above the power plants was the result of net-induced sampling mortality, and (2) a direct relationship existed between observed mortality and water velocity in the nets when sampling at the control sites, which was described by linear regression equations. When these equations were subsequently used to remove the effects of wide differences in sampling velocities between control and discharge collections, significant entrainment mortality was noted in all cases. The equations were also used to derive estimates of the natural mortality of ichthyoplankton in this portion of the Missouri River

  20. 76 FR 30110 - Fisheries of the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the...

    Science.gov (United States)

    2011-05-24

    ... the Caribbean, Gulf of Mexico, and South Atlantic; Coral and Coral Reefs Off the Southern Atlantic..., Coral Reefs, and Live/Hardbottom Habitat of the South Atlantic Region. The applicant has requested.... HHSN261200900012C) between the National Cancer Institute ( http://www.cancer.gov/ ) and the Coral Reef Research...

  1. 76 FR 66273 - Snapper-Grouper Fishery Off the Southern Atlantic States and Coral and Coral Reefs Fishery in the...

    Science.gov (United States)

    2011-10-26

    ...-Grouper Fishery Off the Southern Atlantic States and Coral and Coral Reefs Fishery in the South Atlantic... the South Atlantic Region and the FMP for Coral, Coral Reefs, and Live/Hard Bottom Habitats of the... Aquariums to collect, with certain conditions, various species of reef fish and live rock in Federal waters...

  2. Transcriptome Analysis of Barbarea vulgaris Infested with Diamondback Moth (Plutella xylostella) Larvae

    Science.gov (United States)

    Shen, Di; Wang, Haiping; Wu, Qingjun; Lu, Peng; Qiu, Yang; Song, Jiangping; Zhang, Youjun; Li, Xixiang

    2013-01-01

    Background The diamondback moth (DBM, Plutella xylostella) is a crucifer-specific pest that causes significant crop losses worldwide. Barbarea vulgaris (Brassicaceae) can resist DBM and other herbivorous insects by producing feeding-deterrent triterpenoid saponins. Plant breeders have long aimed to transfer this insect resistance to other crops. However, a lack of knowledge on the biosynthetic pathways and regulatory networks of these insecticidal saponins has hindered their practical application. A pyrosequencing-based transcriptome analysis of B. vulgaris during DBM larval feeding was performed to identify genes and gene networks responsible for saponin biosynthesis and its regulation at the genome level. Principal Findings Approximately 1.22, 1.19, 1.16, 1.23, 1.16, 1.20, and 2.39 giga base pairs of clean nucleotides were generated from B. vulgaris transcriptomes sampled 1, 4, 8, 12, 24, and 48 h after onset of P. xylostella feeding and from non-inoculated controls, respectively. De novo assembly using all data of the seven transcriptomes generated 39,531 unigenes. A total of 37,780 (95.57%) unigenes were annotated, 14,399 of which were assigned to one or more gene ontology terms and 19,620 of which were assigned to 126 known pathways. Expression profiles revealed 2,016–4,685 up-regulated and 557–5188 down-regulated transcripts. Secondary metabolic pathways, such as those of terpenoids, glucosinolates, and phenylpropanoids, and its related regulators were elevated. Candidate genes for the triterpene saponin pathway were found in the transcriptome. Orthological analysis of the transcriptome with four other crucifer transcriptomes identified 592 B. vulgaris-specific gene families with a P-value cutoff of 1e−5. Conclusion This study presents the first comprehensive transcriptome analysis of B. vulgaris subjected to a series of DBM feedings. The biosynthetic and regulatory pathways of triterpenoid saponins and other DBM deterrent metabolites in this plant were

  3. Climate-driven coral reorganisation influences aggressive behaviour in juvenile coral-reef fishes

    Science.gov (United States)

    Kok, Judith E.; Graham, Nicholas A. J.; Hoogenboom, Mia O.

    2016-06-01

    Globally, habitat degradation is altering the abundance and diversity of species in a variety of ecosystems. This study aimed to determine how habitat degradation, in terms of changing coral composition under climate change, affected abundance, species richness and aggressive behaviour of juveniles of three damselfishes ( Pomacentrus moluccensis, P. amboinensis and Dischistodus perspicillatus, in order of decreasing reliance on coral). Patch reefs were constructed to simulate two types of reefs: present-day reefs that are vulnerable to climate-induced coral bleaching, and reefs with more bleaching-robust coral taxa, thereby simulating the likely future of coral reefs under a warming climate. Fish communities were allowed to establish naturally on the reefs during the summer recruitment period. Climate-robust reefs had lower total species richness of coral-reef fishes than climate-vulnerable reefs, but total fish abundance was not significantly different between reef types (pooled across all species and life-history stages). The nature of aggressive interactions, measured as the number of aggressive chases, varied according to coral composition; on climate-robust reefs, juveniles used the substratum less often to avoid aggression from competitors, and interspecific aggression became relatively more frequent than intraspecific aggression for juveniles of the coral-obligate P. moluccensis. This study highlights the importance of coral composition as a determinant of behaviour and diversity of coral-reef fishes.

  4. Sandeel ( Ammodytes marinus ) larval transport patterns in the North Sea from an individual-based hydrodynamic egg and larval model

    DEFF Research Database (Denmark)

    Christensen, Asbjørn; Jensen, Henrik; Mosegaard, Henrik

    2008-01-01

    We have calculated a time series of larval transport indices for the central and southern North Sea covering 1970-2004, using a combined three-dimensional hydrodynamic and individual-based modelling framework for studying sandeel (Ammodytes marinus) eggs, larval transport, and growth. The egg phase...... is modelled by a stochastic, nonlinear degree-day model describing the extended hatch period. The larval growth model is parameterized by individually back-tracking the local physical environment of larval survivors from their catch location and catch time. Using a detailed map of sandeel habitats...... analyzed, and we introduce novel a scheme to quantify direct and indirect connectivity on equal footings in terms of an interbank transit time scale....

  5. Big Data Approaches To Coral-Microbe Symbiosis

    Science.gov (United States)

    Zaneveld, J.; Pollock, F. J.; McMinds, R.; Smith, S.; Payet, J.; Hanna, B.; Welsh, R.; Foster, A.; Ohdera, A.; Shantz, A. A.; Burkepile, D. E.; Maynard, J. A.; Medina, M.; Vega Thurber, R.

    2016-02-01

    Coral reefs face increasing challenges worldwide, threatened by overfishing and nutrient pollution, which drive growth of algal competitors of corals, and periods of extreme temperature, which drive mass coral bleaching. I will discuss two projects that examine how coral's complex relationships with microorganisms affect the response of coral colonies and coral species to environmental challenge. Microbiological studies have documented key roles for coral's microbial symbionts in energy harvest and defense against pathogens. However, the evolutionary history of corals and their microbes is little studied. As part of the Global Coral Microbiome Project, we are characterizing bacterial, archaeal, fungal, and Symbiodinium diversity across >1400 DNA samples from all major groups of corals, collected from 15 locations worldwide. This collection will allow us to ask how coral- microbe associations evolved over evolutionary time, and to determine whether microbial symbiosis helps predict the relative vulnerability of certain coral species to environmental stress. In the second project, we experimentally characterized how the long-term effects of human impacts such as overfishing and nutrient pollution influence coral-microbe symbiosis. We conducted a three-year field experiment in the Florida Keys applying nutrient pollution or simulated overfishing to reef plots, and traced the effects on reef communities, coral microbiomes, and coral health. The results show that extremes of temperature and algal competition destabilize coral microbiomes, increasing pathogen blooms, coral disease, and coral death. Surprisingly, these local stressors interacted strongly with thermal stress: the greatest microbiome disruption, and >80% of coral mortality happened in the hottest periods. Thus, overfishing and nutrient pollution may interact with increased climate-driven episodes of sub-bleaching thermal stress to increase coral mortality by disrupt reef communities down to microbial scales.

  6. Pyrosequencing the Midgut Transcriptome of the Banana Weevil Cosmopolites sordidus (Germar (Coleoptera: Curculionidae Reveals Multiple Protease-Like Transcripts.

    Directory of Open Access Journals (Sweden)

    Arnubio Valencia

    Full Text Available The banana weevil Cosmopolites sordidus is an important and serious insect pest in most banana and plantain-growing areas of the world. In spite of the economic importance of this insect pest very little genomic and transcriptomic information exists for this species. In the present study, we characterized the midgut transcriptome of C. sordidus using massive 454-pyrosequencing. We generated over 590,000 sequencing reads that assembled into 30,840 contigs with more than 400 bp, representing a significant expansion of existing sequences available for this insect pest. Among them, 16,427 contigs contained one or more GO terms. In addition, 15,263 contigs were assigned an EC number. In-depth transcriptome analysis identified genes potentially involved in insecticide resistance, peritrophic membrane biosynthesis, immunity-related function and defense against pathogens, and Bacillus thuringiensis toxins binding proteins as well as multiple enzymes involved with protein digestion. This transcriptome will provide a valuable resource for understanding larval physiology and for identifying novel target sites and management approaches for this important insect pest.

  7. Pyrosequencing the Midgut Transcriptome of the Banana Weevil Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae) Reveals Multiple Protease-Like Transcripts.

    Science.gov (United States)

    Valencia, Arnubio; Wang, Haichuan; Soto, Alberto; Aristizabal, Manuel; Arboleda, Jorge W; Eyun, Seong-Il; Noriega, Daniel D; Siegfried, Blair

    2016-01-01

    The banana weevil Cosmopolites sordidus is an important and serious insect pest in most banana and plantain-growing areas of the world. In spite of the economic importance of this insect pest very little genomic and transcriptomic information exists for this species. In the present study, we characterized the midgut transcriptome of C. sordidus using massive 454-pyrosequencing. We generated over 590,000 sequencing reads that assembled into 30,840 contigs with more than 400 bp, representing a significant expansion of existing sequences available for this insect pest. Among them, 16,427 contigs contained one or more GO terms. In addition, 15,263 contigs were assigned an EC number. In-depth transcriptome analysis identified genes potentially involved in insecticide resistance, peritrophic membrane biosynthesis, immunity-related function and defense against pathogens, and Bacillus thuringiensis toxins binding proteins as well as multiple enzymes involved with protein digestion. This transcriptome will provide a valuable resource for understanding larval physiology and for identifying novel target sites and management approaches for this important insect pest.

  8. Characterization of receptor of activated C kinase 1 (RACK1) and functional analysis during larval metamorphosis of the oyster Crassostrea angulata.

    Science.gov (United States)

    Yang, Bingye; Pu, Fei; Qin, Ji; You, Weiwei; Ke, Caihuan

    2014-03-10

    During a large-scale screen of the larval transcriptome library of the Portuguese oyster, Crassostrea angulata, the oyster gene RACK, which encodes a receptor of activated protein kinase C protein was isolated and characterized. The cDNA is 1,148 bp long and has a predicted open reading frame encoding 317 aa. The predicted protein shows high sequence identity to many RACK proteins of different organisms including molluscs, fish, amphibians and mammals, suggesting that it is conserved during evolution. The structural analysis of the Ca-RACK1 genomic sequence implies that the Ca-RACK1 gene has seven exons and six introns, extending approximately 6.5 kb in length. It is expressed ubiquitously in many oyster tissues as detected by RT-PCR analysis. The Ca-RACK1 mRNA expression pattern was markedly increased at larval metamorphosis; and was further increased along with Ca-RACK1 protein synthesis during epinephrine-induced metamorphosis. These results indicate that the Ca-RACK1 plays an important role in tissue differentiation and/or in cell growth during larval metamorphosis in the oyster, C. angulata. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Global warming and coral reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.

    , notably at Ratnagiri. Malwan. Redi Port and Vizhingam. Relic reefs with living herm<:ltypic corals at depths ranging fror:l 25 to 45m are the Gaves hani Bank off~\\angalore,and the submerged banks (Bass<:ls de Pedro. Sesostris Bank and Cora Divh... the snore (Qaslm and Wafar, 1979). The other representative Sea le\\lel Variation 417 of the extensive reelS of the outer shelf that survived Pleistocene drowning is the Gaveshani Bank, fanhc: south (J 3° 24' N; 73° 45' E), about 100 km off \\1 ar:ga lore...

  10. Partial mortality in massive reef corals as an indicator of sediment stress on coral reefs

    International Nuclear Information System (INIS)

    Nugues, Maggy M.; Roberts, Callum M.

    2003-01-01

    Partial mortality and fission on colonies of four common massive coral species were examined at sites differing in their exposure to river sediments in St. Lucia, West Indies. Rates of partial mortality were higher close to the river mouths, where more sediments were deposited, than away from the rivers in two coral species. Frequency of fission showed no significant trend. The percent change in coral cover on reefs from 1995 to 1998 was negatively related to the rate of partial mortality estimated in 1998 in all species. This suggests that partial mortality rates could reflect longer-term temporal changes in coral communities. Similar conclusions could also be reached using a less precise measure and simply recording partial mortality on colonies as <50% and ≥50% dead tissue. We conclude that partial mortality in some species of massive reef corals, expressed as the amount of dead tissue per colony, could provide a rapid and effective means of detecting sediment stress on coral reefs

  11. Metagenomic and ecophysiological analysis of biofilms colonizing coral substrates: "Life after death of coral"

    Science.gov (United States)

    Sanchez, A., Sr.; Cerqueda-Garcia, D.; Falcón, L. I.; Iglesias-Prieto, R., Sr.

    2015-12-01

    Coral reefs are the most productive ecosystems on the planet and are the most important carbonated structures of biological origin. However, global warming is affecting the health and functionality of these ecosystems. Specifically, most of the Acropora sp. stony corals have declined their population all over the Mexican Caribbean in more than ~80% of their original coverage, resulting in vast extensions of dead coral rubble. When the coral dies, the skeleton begins to be colonized by algae, sponges, bacteria and others, forming a highly diverse biofilm. We analyzed the metagenomes of the dead A. palmata rubbles from Puerto Morelos, in the Mexican Caribbean. Also, we quantified the elemental composition of biomass and measured nitrogen fixation and emission of greenhouse gases over 24 hrs. This works provides information on how the community is composed and functions after the death of the coral, visualizing a possible picture for a world without coral reefs.

  12. Partial mortality in massive reef corals as an indicator of sediment stress on coral reefs

    Energy Technology Data Exchange (ETDEWEB)

    Nugues, Maggy M.; Roberts, Callum M

    2003-03-01

    Partial mortality and fission on colonies of four common massive coral species were examined at sites differing in their exposure to river sediments in St. Lucia, West Indies. Rates of partial mortality were higher close to the river mouths, where more sediments were deposited, than away from the rivers in two coral species. Frequency of fission showed no significant trend. The percent change in coral cover on reefs from 1995 to 1998 was negatively related to the rate of partial mortality estimated in 1998 in all species. This suggests that partial mortality rates could reflect longer-term temporal changes in coral communities. Similar conclusions could also be reached using a less precise measure and simply recording partial mortality on colonies as <50% and {>=}50% dead tissue. We conclude that partial mortality in some species of massive reef corals, expressed as the amount of dead tissue per colony, could provide a rapid and effective means of detecting sediment stress on coral reefs.

  13. Stable mucus-associated bacterial communities in bleached and healthy corals of Porites lobata from the Arabian Seas

    KAUST Repository

    Hadaidi, Ghaida Ali Hassan; Rö thig, Till; Yum, Lauren; Ziegler, Maren; Arif, Chatchanit; Roder, Cornelia; Burt, John; Voolstra, Christian R.

    2017-01-01

    Coral reefs are subject to coral bleaching manifested by the loss of endosymbiotic algae from coral host tissue. Besides algae, corals associate with bacteria. In particular, bacteria residing in the surface mucus layer are thought to mediate coral

  14. Arnfried Antonius, coral diseases, and the AMLC

    Directory of Open Access Journals (Sweden)

    Laurie L. Richardson

    2012-03-01

    Full Text Available The study of coral diseases, coral pathogens, and the effects of diseases on tropical and subtropical coral reefs are all current, high-profile research areas. This interest has grown steadily since the first report of a coral disease in 1973. The author of this report was Arnfried Antonius and the publication was an abstract in the proceedings of a scientific meeting of the Association of Marine Laboratories of the Caribbean, or AMLC (then known as the Association of Island Marine Laboratories of the Caribbean. Since Antonius’ pioneering communication he continued working on coral diseases on reefs throughout the world, often documenting the first observation of a novel pathology in a novel location. Each of the coral diseases Antonius first described, in particular black band disease, is the subject of current and ongoing investigations addressing pathogens, etiology, and their effects on coral reefs. Many of the points and observations he made in his early papers are highly relevant to research today. This paper reviews aspects of Antonius’ early work, highlighting contributions he made that include the first in situ experimental studies aimed at discerning coral epizootiology and the first quantitative assessments of the role of environmental factors in coral disease. Antonius’ early findings are discussed in terms of relevant current controversies in this research areaEl estudio de las enfermedades de los corales, los patogenos de los corales y los efectos de estas enfermedades sobre los arrecifes tropicales y subtropicales son actualmente areas importantes de investigacion. El interés en este tema ha crecido continuamente desde el primer informe sobre una enfermedad de coral que se publico en 1973. El autor de este informe fue Arnfried Antonius y la publicacion fue un resumen en el Libro de Programa y Resumenes de la Decima Reunion de la Asociacion de Laboratorios Marinos Islenos del Caribe (conocida ahora como la Asociacion de

  15. Reef corals bleach to resist stress.

    Science.gov (United States)

    Obura, David O

    2009-02-01

    A rationale is presented here for a primary role of bleaching in regulation of the coral-zooxanthellae symbiosis under conditions of stress. Corals and zooxanthellae have fundamentally different metabolic rates, requiring active homeostasis to limit zooxanthellae production and manage translocated products to maintain the symbiosis. The control processes for homeostasis are compromised by environmental stress, resulting in metabolic imbalance between the symbionts. For the coral-zooxanthella symbiosis the most direct way to minimize metabolic imbalance under stress is to reduce photosynthetic production by zooxanthellae. Two mechanisms have been demonstrated that do this: reduction of the chlorophyll concentration in individual zooxanthellae and reduction of the relative biomass of zooxanthellae. Both mechanisms result in visual whitening of the coral, termed bleaching. Arguments are presented here that bleaching provides the final control to minimize physiological damage from stress as an adversity response to metabolic imbalance. As such, bleaching meets the requirements of a stress response syndrome/general adaptive mechanism that is sensitive to internal states rather than external parameters. Variation in bleaching responses among holobionts reflects genotypic and phenotypic differentiation, allowing evolutionary change by natural selection. Thus, reef corals bleach to resist stress, and thereby have some capacity to adapt to and survive change. The extreme thermal anomalies causing mass coral bleaching worldwide lie outside the reaction norms for most coral-zooxanthellae holobionts, revealing the limitations of bleaching as a control mechanism.

  16. New directions in coral reef microbial ecology.

    Science.gov (United States)

    Garren, Melissa; Azam, Farooq

    2012-04-01

    Microbial processes largely control the health and resilience of coral reef ecosystems, and new technologies have led to an exciting wave of discovery regarding the mechanisms by which microbial communities support the functioning of these incredibly diverse and valuable systems. There are three questions at the forefront of discovery: What mechanisms underlie coral reef health and resilience? How do environmental and anthropogenic pressures affect ecosystem function? What is the ecology of microbial diseases of corals? The goal is to understand the functioning of coral reefs as integrated systems from microbes and molecules to regional and ocean-basin scale ecosystems to enable accurate predictions of resilience and responses to perturbations such as climate change and eutrophication. This review outlines recent discoveries regarding the microbial ecology of different microenvironments within coral ecosystems, and highlights research directions that take advantage of new technologies to build a quantitative and mechanistic understanding of how coral health is connected through microbial processes to its surrounding environment. The time is ripe for natural resource managers and microbial ecologists to work together to create an integrated understanding of coral reef functioning. In the context of long-term survival and conservation of reefs, the need for this work is immediate. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  17. Linking Wave Forcing to Coral Cover and Structural Complexity Across Coral Reef Flats

    Science.gov (United States)

    Harris, D. L.; Rovere, A.; Parravicini, V.; Casella, E.

    2015-12-01

    The hydrodynamic regime is a significant component in the geomorphic and ecological development of coral reefs. The energy gradients and flow conditions generated by the breaking and transformation of waves across coral reef crests and flats drive changes in geomorphic structure, and coral growth form and distribution. One of the key aspects in regulating the wave energy propagating across reef flats is the rugosity or roughness of the benthic substrate. Rugosity and structural complexity of coral reefs is also a key indicator of species diversity, ecological functioning, and reef health. However, the links between reef rugosity, coral species distribution and abundance, and hydrodynamic forcing are poorly understood. In this study we examine this relationship by using high resolution measurement of waves in the surf zone and coral reef benthic structure.Pressure transducers (logging at 4 Hz) were deployed in cross reef transects at two sites (Tiahura and Ha'apiti reef systems) in Moorea, French Polynesia with wave characteristics determined on a wave by wave basis. A one dimensional hydrodynamic model (XBeach) was calibrated from this data to determine wave processes on the reef flats under average conditions. Transects of the reef benthic structure were conducted using photographic analysis and the three dimensional reef surface was constructed using structure from motion procedures. From this analysis reef rugosity, changes in coral genus and growth form, and across reef shifts in benthic community were determined. The results show clear changes in benthic assemblages along wave energy gradients with some indication of threshold values of wave induced bed shear stress above which live coral cover was reduced. Reef rugosity was shown to be significantly along the cross-reef transect which has important implications for accurate assessment of wave dissipation across coral reef flats. Links between reef rugosity and coral genus were also observed and may indicate

  18. Cumulative Human Impacts on Coral Reefs: Assessing Risk and Management Implications for Brazilian Coral Reefs

    OpenAIRE

    Rafael A. Magris; Alana Grech; Robert L. Pressey

    2018-01-01

    Effective management of coral reefs requires strategies tailored to cope with cumulative disturbances from human activities. In Brazil, where coral reefs are a priority for conservation, intensifying threats from local and global stressors are of paramount concern to management agencies. Using a cumulative impact assessment approach, our goal was to inform management actions for coral reefs in Brazil by assessing their exposure to multiple stressors (fishing, land-based activities, coastal de...

  19. Transcriptome analysis elucidates key developmental components of bryozoan lophophore development

    KAUST Repository

    Wong, Yue Him

    2014-10-10

    The most recent phylogenomic study suggested that Bryozoa (Ectoprocta), Brachiopoda, and Phoronida are monophyletic, implying that the lophophore of bryozoans, phoronids and brachiopods is a synapomorphy. Understanding the molecular mechanisms of the lophophore development of the Lophophorata clade can therefore provide us a new insight into the formation of the diverse morphological traits in metazoans. In the present study, we profiled the transcriptome of the Bryozoan (Ectoproct) Bugula neritina during the swimming larval stage (SW) and the early (4 h) and late (24 h) metamorphic stages using the Illumina HiSeq2000 platform. Various genes that function in development, the immune response and neurogenesis showed differential expression levels during metamorphosis. In situ hybridization of 23 genes that participate in the Wnt, BMP, Notch, and Hedgehog signaling pathways revealed their regulatory roles in the development of the lophophore and the ancestrula digestive tract. Our findings support the hypothesis that developmental precursors of the lophophore and the ancestrula digestive tract are pre-patterned by the differential expression of key developmental genes according to their fate. This study provides a foundation to better understand the developmental divergence and/or convergence among developmental precursors of the lophophore of bryozoans, branchiopods and phoronids.

  20. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss

    KAUST Repository

    Pratchett, M.S.; Hoey, A.S.; Wilson, S.K.; Messmer, V.; Graham, N.A.J.

    2011-01-01

    Coral reef ecosystems are increasingly subject to severe, large-scale disturbances caused by climate change (e.g., coral bleaching) and other more direct anthropogenic impacts. Many of these disturbances cause coral loss and corresponding changes in habitat structure, which has further important effects on abundance and diversity of coral reef fishes. Declines in the abundance and diversity of coral reef fishes are of considerable concern, given the potential loss of ecosystem function. This study explored the effects of coral loss, recorded in studies conducted throughout the world, on the diversity of fishes and also on individual responses of fishes within different functional groups. Extensive (>60%) coral loss almost invariably led to declines in fish diversity. Moreover, most fishes declined in abundance following acute disturbances that caused >10% declines in local coral cover. Response diversity, which is considered critical in maintaining ecosystem function and promoting resilience, was very low for corallivores, but was much higher for herbivores, omnivores and carnivores. Sustained and ongoing climate change thus poses a significant threat to coral reef ecosystems and diversity hotspots are no less susceptible to projected changes in diversity and function.

  1. Coral reef fish assemblages at Clipperton Atoll (Eastern Tropical Pacific and their relationship with coral cover

    Directory of Open Access Journals (Sweden)

    Aurora M. Ricart

    2016-11-01

    Full Text Available Clipperton Atoll, one of the most isolated coral reefs worldwide, is of great scientific interest due to its geomorphology and high levels of endemism. This study explored the reef fish assemblage structure of Clipperton Atoll and its relationship with live coral cover. Nine stations were sampled at three sites and three depths (6, 12 and 20 m around the reef, measuring fish species richness and biomass and hermatypic coral cover (at genus level. We evaluated variation in species richness, biomass and diversity of fish assemblages among sites and depths, as well as the relationship between the entire fish assemblage composition and live coral cover. The results showed that species richness and biomass were similar among sites, but differed across depths, increasing with depth. In contrast, diversity differed among sites but not among depths. Multivariate analyses indicated that fish assemblage composition differed among sites and depths in relation to changes in cover of coral of the genera Pocillopora, Porites, Pavona and Leptoseris, which dominate at different depths. The results showed that fish species richness and diversity were low at Clipperton Atoll and that, in isolated coral reefs with a low habitat heterogeneity and low human disturbance, live coral cover has a significant influence on the spatial variation of the reef fish assemblages. This study highlights the importance of coral habitat structure in shaping coral reef fish assemblages.

  2. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss

    KAUST Repository

    Pratchett, M.S.

    2011-08-12

    Coral reef ecosystems are increasingly subject to severe, large-scale disturbances caused by climate change (e.g., coral bleaching) and other more direct anthropogenic impacts. Many of these disturbances cause coral loss and corresponding changes in habitat structure, which has further important effects on abundance and diversity of coral reef fishes. Declines in the abundance and diversity of coral reef fishes are of considerable concern, given the potential loss of ecosystem function. This study explored the effects of coral loss, recorded in studies conducted throughout the world, on the diversity of fishes and also on individual responses of fishes within different functional groups. Extensive (>60%) coral loss almost invariably led to declines in fish diversity. Moreover, most fishes declined in abundance following acute disturbances that caused >10% declines in local coral cover. Response diversity, which is considered critical in maintaining ecosystem function and promoting resilience, was very low for corallivores, but was much higher for herbivores, omnivores and carnivores. Sustained and ongoing climate change thus poses a significant threat to coral reef ecosystems and diversity hotspots are no less susceptible to projected changes in diversity and function.

  3. Sex Change in Clownfish: Molecular Insights from Transcriptome Analysis

    KAUST Repository

    Casas, Laura

    2016-10-17

    Sequential hermaphroditism is a unique reproductive strategy among teleosts that is displayed mainly in fish species living in the coral reef environment. The reproductive biology of hermaphrodites has long been intriguing; however, very little is known about the molecular pathways underlying their sex change. Here, we provide the first de novo transcriptome analyses of a hermaphrodite teleost´s undergoing sex change in its natural environment. Our study has examined relative gene expression across multiple groups—rather than just two contrasting conditions— and has allowed us to explore the differential expression patterns throughout the whole process. Our analysis has highlighted the rapid and complex genomic response of the brain associated with sex change, which is subsequently transmitted to the gonads, identifying a large number of candidate genes, some well-known and some novel, involved in the process. The present study provides strong evidence of the importance of the sex steroidogenic machinery during sex change in clownfish, with the aromatase gene playing a central role, both in the brain and the gonad. This work constitutes the first genome-wide study in a social sex-changing species and provides insights into the genetic mechanism governing social sex change and gonadal restructuring in protandrous hermaphrodites.

  4. Genome and Transcriptome Sequencing of the Ostreid herpesvirus 1 From Tomales Bay, California

    Science.gov (United States)

    Burge, C. A.; Langevin, S.; Closek, C. J.; Roberts, S. B.; Friedman, C. S.

    2016-02-01

    Mass mortalities of larval and seed bivalve molluscs attributed to the Ostreid herpesvirus 1 (OsHV-1) occur globally. OsHV-1 was fully sequenced and characterized as a member of the Family Malacoherpesviridae. Multiple strains of OsHV-1 exist and may vary in virulence, i.e. OsHV-1 µvar. For most global variants of OsHV-1, sequence data is limited to PCR-based sequencing of segments, including two recent genomes. In the United States, OsHV-1 is limited to detection in adjacent embayments in California, Tomales and Drakes bays. Limited DNA sequence data of OsHV-1 infecting oysters in Tomales Bay indicates the virus detected in Tomales Bay is similar but not identical to any one global variant of OsHV-1. In order to better understand both strain variation and virulence of OsHV-1 infecting oysters in Tomales Bay, we used genomic and transcriptomic sequencing. Meta-genomic sequencing (Illumina MiSeq) was conducted from infected oysters (n=4 per year) collected in 2003, 2007, and 2014, where full OsHV-1 genome sequences and low overall microbial diversity were achieved from highly infected oysters. Increased microbial diversity was detected in three of four samples sequenced from 2003, where qPCR based genome copy numbers of OsHV-1 were lower. Expression analysis (SOLiD RNA sequencing) of OsHV-1 genes expressed in oyster larvae at 24 hours post exposure revealed a nearly complete transcriptome, with several highly expressed genes, which are similar to recent transcriptomic analyses of other OsHV-1 variants. Taken together, our results indicate that genome and transcriptome sequencing may be powerful tools in understanding both strain variation and virulence of non-culturable marine viruses.

  5. Facilitation in Caribbean coral reefs: high densities of staghorn coral foster greater coral condition and reef fish composition.

    Science.gov (United States)

    Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee

    2017-05-01

    Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.

  6. Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816).

    Science.gov (United States)

    Randall, Carly J; Szmant, Alina M

    2009-12-01

    Elevated seawater temperatures during the late summer have the potential to negatively affect the development and survivorship of the larvae of reef corals that are reproductive during that time of year. Acropora palmata, a major Caribbean hermatype, reproduces annually during August and September. A. palmata populations have severely declined over the past three decades, and recovery will require high recruitment rates. Such recruitment will be limited if larval supply is reduced by elevated temperatures. The effects of elevated temperatures on development, survival, and larval settlement of A. palmata were investigated by culturing newly fertilized eggs at temperatures ranging from 27.5 to 31.5 degrees C. Development was accelerated and the percentage of developmental abnormalities increased at higher temperatures. Embryo mortality peaked during gastrulation, indicating that this complex developmental process is particularly sensitive to elevated temperatures. Larvae cultured at 30 and 31.5 degrees C experienced as much as an 8-fold decrease in survivorship compared to those at 28 degrees C. Additionally, settlement was 62% at 28 degrees C compared to 37% at 31.5 degrees C. These results indicate that embryos and larvae of A. palmata will be negatively affected as sea surface temperatures continue to warm, likely reducing recruitment and the recovery potential of A. palmata on Caribbean reefs.

  7. No gene flow across the Eastern Pacific Barrier in the reef-building coral Porites lobata.

    Science.gov (United States)

    Baums, Iliana B; Boulay, Jennifer N; Polato, Nicholas R; Hellberg, Michael E

    2012-11-01

    The expanse of deep water between the central Pacific islands and the continental shelf of the Eastern Tropical Pacific is regarded as the world's most potent marine biogeographic barrier. During recurrent climatic fluctuations (ENSO, El Niño Southern Oscillation), however, changes in water temperature and the speed and direction of currents become favourable for trans-oceanic dispersal of larvae from central Pacific to marginal eastern Pacific reefs. Here, we investigate the population connectivity of the reef-building coral Porites lobata across the Eastern Pacific Barrier (EPB). Patterns of recent gene flow in samples (n = 1173) from the central Pacific and the Eastern Tropical Pacific (ETP) were analysed with 12 microsatellite loci. Results indicated that P. lobata from the ETP are strongly isolated from those in the central Pacific and Hawaii (F(ct) ' = 0.509; P Clipperton Atoll, an oceanic island on the eastern side of the EPB, grouped with the central Pacific. Within the central Pacific, Hawaiian populations were strongly isolated from three co-occurring clusters found throughout the remainder of the central Pacific. No further substructure was evident in the ETP. Changes in oceanographic conditions during ENSO over the past several thousand years thus appear insufficient to support larval deliveries from the central Pacific to the ETP or strong postsettlement selection acts on ETP settlers from the central Pacific. Recovery of P. lobata populations in the frequently disturbed ETP thus must depend on local larval sources. © 2012 Blackwell Publishing Ltd.

  8. Strategic and Operational Plan for Integrating Transcriptomics ...

    Science.gov (United States)

    Plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT; the details are in the attached slide presentation presentation on plans for incorporating high throughput transcriptomics into the current high throughput screening activities at NCCT, given at the OECD meeting on June 23, 2016

  9. Phototoxic effects of PAH and UVA exposure on molecular responses and developmental success in coral larvae

    KAUST Repository

    Overmans, Sebastian

    2018-03-09

    Exposure to polycyclic aromatic carbons (PAHs) poses a growing risk to coral reefs due to increasing shipping and petroleum extraction in tropical waters. Damaging effects of specific PAHs can be further enhanced by the presence of ultraviolet radiation, known as phototoxicity. We tested phototoxic effects of the PAHs anthracene and phenanthrene on larvae of the scleractinian coral Acropora tenuis in the presence and absence of UVA (320–400 nm). Activity of superoxide dismutase (SOD) enzyme was reduced by anthracene while phenanthrene and UVA exposure did not have any effect. Gene expression of MnSod remained constant across all treatments. The genes Catalase, Hsp70 and Hsp90 showed increased expression levels in larvae exposed to anthracene, but not phenanthrene. Gene expression of p53 was upregulated in the presence of UVA, but downregulated when exposed to PAHs. The influence on stress-related biochemical pathways and gene expresson in A. tenuis larvae was considerably greater for anthracene than phenanthrene, and UVA-induced phototoxicity was only evident for anthracene. The combined effects of UVA and PAH exposure on larval survival and metamorphosis paralleled the sub-lethal stress responses, clearly highlighting the interaction of UVA on anthracene toxicity and ultimately the coral’s development.

  10. Phototoxic effects of PAH and UVA exposure on molecular responses and developmental success in coral larvae

    KAUST Repository

    Overmans, Sebastian; Nordborg, Mikaela; Rua, Ruben Diaz; Brinkman, Diane L.; Negri, Andrew P.; Agusti, Susana

    2018-01-01

    Exposure to polycyclic aromatic carbons (PAHs) poses a growing risk to coral reefs due to increasing shipping and petroleum extraction in tropical waters. Damaging effects of specific PAHs can be further enhanced by the presence of ultraviolet radiation, known as phototoxicity. We tested phototoxic effects of the PAHs anthracene and phenanthrene on larvae of the scleractinian coral Acropora tenuis in the presence and absence of UVA (320–400 nm). Activity of superoxide dismutase (SOD) enzyme was reduced by anthracene while phenanthrene and UVA exposure did not have any effect. Gene expression of MnSod remained constant across all treatments. The genes Catalase, Hsp70 and Hsp90 showed increased expression levels in larvae exposed to anthracene, but not phenanthrene. Gene expression of p53 was upregulated in the presence of UVA, but downregulated when exposed to PAHs. The influence on stress-related biochemical pathways and gene expresson in A. tenuis larvae was considerably greater for anthracene than phenanthrene, and UVA-induced phototoxicity was only evident for anthracene. The combined effects of UVA and PAH exposure on larval survival and metamorphosis paralleled the sub-lethal stress responses, clearly highlighting the interaction of UVA on anthracene toxicity and ultimately the coral’s development.

  11. NOAA Photo Library - The Coral Kingdom

    Science.gov (United States)

    has only begun within the past 200 years. Charles Darwin, James Dwight Dana, and Louis Agassiz were photographs found here that will help you learn more about coral reefs in this album, visit the following

  12. MANGROVE-DERIVED NUTRIENTS AND CORAL REEFS

    Science.gov (United States)

    Understanding the consequences of the declining global cover of mangroves due to anthropogenic disturbance necessitates consideration of how mangrove-derived nutrients contribute to threatened coral reef systems. We sampled potential sources of organic matter and a suite of sessi...

  13. EOP Gold Coral (Gerardia sp.) Growth Measurements

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Gold coral (Gerardia sp.) trees that were inspected years earlier on Pisces submersible dives were revisited and their change in size measured. The fishery for...

  14. EPA Field Manual for Coral Reef Assessments

    Science.gov (United States)

    The Water Quality Research Program (WQRP) supports development of coral reef biological criteria. Research is focused on developing methods and tools to support implementation of legally defensible biological standards for maintaining biological integrity, which is protected by ...

  15. Marine metabolites: The sterols of soft coral

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, N.S.; Krishna, M.S.; Pasha, Sk.G.; Rao, T.S.P.; Venkateswarlu, Y.; Parameswaran, P.S.

    Sterols constitute a major group of secondary metabolites of soft corals. Several of these compounds have the 'usual' 3 beta-hydroxy, delta sup(5) (or delta sup(0)) cholestane skeleton, a large number of these metabolites are polar sterols...

  16. Ecosystem function and biodiversity on coral reefs

    OpenAIRE

    Ogden, J.; Done, T.; Salvat, B.

    1994-01-01

    The article highlights a workshop held in Key West, Florida in November 1993 attended by a group of 35 international scientists where topics of ecosystem function and biodiversity on coral reefs were discussed.

  17. New protection initiatives announced for coral reefs

    Science.gov (United States)

    Showstack, Randy

    Off the coasts of some of the South Pacific's most idyllic-sounding atolls, Austin Bowden-Kerby has seen first-hand the heavy damage to coral reefs from dynamite and cyanide fishing. For instance, while snorkeling near Chuuk, an island in Micronesia, he has observed craters and rubble beds of coral, which locals have told him date to World War II ordnance.A marine biologist and project scientist for the Coral Gardens Initiative of the Foundation for the Peoples of the South Pacific, Bowden-Kerby has also identified what he says are some public health effects related to destroyed coral reefs and their dying fisheries. These problems include protein and vitamin A deficiency and blindness, all of which may—in some instances—be linked to poor nutrition resulting from lower reef fish consumption by islanders, according to Bowden-Kerby.

  18. Lithifying Microbes Associated to Coral Rubbles

    Science.gov (United States)

    Beltran, Y.

    2015-12-01

    Microbial communities taking part in calcium carbonate lithification processes are particularly relevant to coral reef formation in as much as this lithification allows the stabilization of secondary reef structure. This second framework promotes long-term permanence of the reef, favoring the establishment of macro-reef builders, including corals. The reef-bacterial crusts formed by microbial communities are composed of magnesium calcite. Although prokaryotes are not proper calcifiers, carbonate precipitation can be induced by their metabolic activity and EPS production. Coral reefs are rapidly declining due to several variables associated to environmental change. Specifically in the Caribbean, stony coral Acropora palmata have suffered damage due to diseases, bleaching and storms. Some reports show that in highly disturbed areas wide ridges of reef rubbles are formed by biological and physical lithification. In this study we explore microbial diversity associated to lithified rubbles left after the great decline of reef-building A. palmata.

  19. Carbonate chemistry, water quality, coral measurements

    Data.gov (United States)

    U.S. Environmental Protection Agency — Carbonate chemistry parameters (pH, total alkalinity, and pCO2), water quality parameters (Temperature, salinity, Ca, Mg, PO4, NH3 and NO3) as well as all coral...

  20. Coral Reef Status of Navassa Island 2004

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic and habitat data collected on the 2004 cruise to Navassa Islands National Wildlife Refuge. Parameters include benthic cover, coral disease prevalence,...

  1. Precious Coral Sales Report Data Set

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This is a federally mandated sales log which collects information on sales of raw coral, including weight and revenue. Also includes seller and buyer information....

  2. Effects of two stressors on amphibian larval development.

    Science.gov (United States)

    Stark, Karolina; Scott, David E; Tsyusko, Olga; Coughlin, Daniel P; Hinton, Thomas G

    2012-05-01

    In parallel with a renewed interest in nuclear power and its possible environmental impacts, a new environmental radiation protection system calls for environmental indicators of radiological stress. However, because environmental stressors seldom occur alone, this study investigated the combined effects of an ecological stressor (larval density) and an anthropogenic stressor (ionizing radiation) on amphibians. Scaphiopus holbrookii tadpoles reared at different larval densities were exposed to four low irradiation dose rates (0.13, 2.4, 21, and 222 mGy d(-1)) from (137)Cs during the sensitive period prior to and throughout metamorphosis. Body size at metamorphosis and development rate served as fitness correlates related to population dynamics. Results showed that increased larval density decreased body size but did not affect development rate. Low dose rate radiation had no impact on either endpoint. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus Symbiodinium

    KAUST Repository

    Parkinson, John Everett

    2016-02-11

    Reef-building corals depend on symbiotic mutualisms with photosynthetic dinoflagellates in the genus Symbiodinium. This large microalgal group comprises many highly divergent lineages (“Clades A-I”) and hundreds of undescribed species. Given their ecological importance, efforts have turned to genomic approaches to characterize the functional ecology of Symbiodinium. To date, investigators have only compared gene expression between representatives from separate clades—the equivalent of contrasting genera or families in other dinoflagellate groups—making it impossible to distinguish between clade-level and species-level functional differences. Here, we examined the transcriptomes of four species within one Symbiodinium clade (Clade B) at ~20,000 orthologous genes, as well as multiple isoclonal cell lines within species (i.e. cultured strains). These species span two major adaptive radiations within Clade B, each encompassing both host-specialized and ecologically cryptic taxa. Species-specific expression differences were consistently enriched for photosynthesis-related genes, likely reflecting selection pressures driving niche diversification. Transcriptional variation among strains involved fatty acid metabolism and biosynthesis pathways. Such differences among individuals are potentially a major source of physiological variation, contributing to the functional diversity of coral holobionts composed of unique host-symbiont genotype pairings. Our findings expand the genomic resources available for this important symbiont group and emphasize the power of comparative transcriptomics as a method for studying speciation processes and inter-individual variation in non-model organisms.

  4. Gene expression variation resolves species and individual strains among coral-associated dinoflagellates within the genus Symbiodinium

    KAUST Repository

    Parkinson, John Everett; Baumgarten, Sebastian; Michell, Craig; Baums, Iliana B.; LaJeunesse, Todd C.; Voolstra, Christian R.

    2016-01-01

    Reef-building corals depend on symbiotic mutualisms with photosynthetic dinoflagellates in the genus Symbiodinium. This large microalgal group comprises many highly divergent lineages (“Clades A-I”) and hundreds of undescribed species. Given their ecological importance, efforts have turned to genomic approaches to characterize the functional ecology of Symbiodinium. To date, investigators have only compared gene expression between representatives from separate clades—the equivalent of contrasting genera or families in other dinoflagellate groups—making it impossible to distinguish between clade-level and species-level functional differences. Here, we examined the transcriptomes of four species within one Symbiodinium clade (Clade B) at ~20,000 orthologous genes, as well as multiple isoclonal cell lines within species (i.e. cultured strains). These species span two major adaptive radiations within Clade B, each encompassing both host-specialized and ecologically cryptic taxa. Species-specific expression differences were consistently enriched for photosynthesis-related genes, likely reflecting selection pressures driving niche diversification. Transcriptional variation among strains involved fatty acid metabolism and biosynthesis pathways. Such differences among individuals are potentially a major source of physiological variation, contributing to the functional diversity of coral holobionts composed of unique host-symbiont genotype pairings. Our findings expand the genomic resources available for this important symbiont group and emphasize the power of comparative transcriptomics as a method for studying speciation processes and inter-individual variation in non-model organisms.

  5. Coral photobiology: new light on old views.

    Science.gov (United States)

    Iluz, David; Dubinsky, Zvy

    2015-04-01

    The relationship between reef-building corals and light-harvesting pigments of zooxanthellae (Symbiodinium sp.) has been acknowledged for decades. The photosynthetic activity of the algal endocellular symbionts may provide up to 90% of the energy needed for the coral holobiont. This relationship limits the bathymetric distribution of coral reefs to the upper 100 m of tropical shorelines. However, even corals growing under high light intensities have to supplement the photosynthates translocated from the algae by predation on nutrient-rich zooplankton. New information has revealed how the fate of carbon acquired through photosynthesis differs from that secured by predation, whose rates are controlled by light-induced tentacular extension. The Goreau paradigm of "light-enhanced calcification" is being reevaluated, based on evidence that blue light stimulates coral calcification independently from photosynthesis rates. Furthermore, under dim light, calcification rates were stoichiometrically uncoupled from photosynthesis. The rates of photosynthesis of the zooxanthellae exhibit a clear endogenous rhythmicity maintained by light patterns. This daily pattern is concomitant with a periodicity of all the antioxidant protective mechanisms that wax and wane to meet the concomitant fluctuation in oxygen evolution. The phases of the moon are involved in the triggering of coral reproduction and control the spectacular annual mass-spawning events taking place in several reefs. The intensity and directionality of the underwater light field affect the architecture of coral colonies, leading to an optimization of the exposure of the zooxanthellae to light. We present a summary of major gaps in our understanding of the relationship between light and corals as a roadmap for future research. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Metabolite Profiling of Red Sea Corals

    KAUST Repository

    Ortega, Jovhana Alejandra

    2016-12-01

    Looking at the metabolite profile of an organism provides insights into the metabolomic state of a cell and hence also into pathways employed. Little is known about the metabolites produced by corals and their algal symbionts. In particular, corals from the central Red Sea are understudied, but interesting study objects, as they live in one of the warmest and most saline environments and can provide clues as to the adjustment of corals to environmental change. In this study, we applied gas chromatography – mass spectrometry (GC–MS) metabolite profiling to analyze the metabolic profile of four coral species and their associated symbionts: Fungia granulosa, Acropora hemprichii, Porites lutea, and Pocillopora verrucosa. We identified and quantified 102 compounds among primary and secondary metabolites across all samples. F. granulosa and its symbiont showed a total of 59 metabolites which were similar to the 51 displayed by P. verrucosa. P. lutea and A. hemprichii both harbored 40 compounds in conjunction with their respective isolated algae. Comparing across species, 28 metabolites were exclusively present in algae, while 38 were exclusive to corals. A principal component and cluster analyses revealed that metabolite profiles clustered between corals and algae, but each species harbored a distinct catalog of metabolites. The major classes of compounds were carbohydrates and amino acids. Taken together, this study provides a first description of metabolites of Red Sea corals and their associated symbionts. As expected, the metabolites of coral hosts differ from their algal symbionts, but each host and algal species harbor a unique set of metabolites. This corroborates that host-symbiont species pairs display a fine-tuned complementary metabolism that provide insights into the specific nature of the symbiosis. Our analysis also revealed aquatic pollutants, which suggests that metabolite profiling might be used for monitoring pollution levels and assessing

  7. Effects of beach morphology and waves on onshore larval transport

    Science.gov (United States)

    Fujimura, A.; Reniers, A.; Paris, C. B.; Shanks, A.; MacMahan, J.; Morgan, S.

    2015-12-01

    Larvae of intertidal species grow offshore, and migrate back to the shore when they are ready to settle on their adult substrates. In order to reach the habitat, they must cross the surf zone, which is characterized as a semi-permeable barrier. This is accomplished through physical forcing (i.e., waves and current) as well as their own behavior. Two possible scenarios of onshore larval transport are proposed: Negatively buoyant larvae stay in the bottom boundary layer because of turbulence-dependent sinking behavior, and are carried toward the shore by streaming of the bottom boundary layer; positively buoyant larvae move to the shore during onshore wind events, and sink to the bottom once they encounter high turbulence (i.e., surf zone edge), where they are carried by the bottom current toward the shore (Fujimura et al. 2014). Our biophysical Lagrangian particle tracking model helps to explain how beach morphology and wave conditions affect larval distribution patterns and abundance. Model results and field observations show that larval abundance in the surf zone is higher at mildly sloped, rip-channeled beaches than at steep pocket beaches. Beach attributes are broken up to examine which and how beach configuration factors affect larval abundance. Modeling with alongshore uniform beaches with variable slopes reveal that larval populations in the surf zone are negatively correlated with beach steepness. Alongshore variability enhances onshore larval transport because of increased cross-shore water exchange by rip currents. Wave groups produce transient rip currents and enhance cross-shore exchange. Effects of other wave components, such as wave height and breaking wave rollers are also considered.

  8. The Effect of Ambient Temperatures of Two Threatened Caribbean Coral Species: a Proteomic Study

    Science.gov (United States)

    Ricaurte, M.; Schizas, N. V.; Weil, E.; Ciborowski, P.; Boukli, N. M.

    2016-02-01

    Coral reefs are among the most valuable ecosystems on the earth. Increasing water temperatures as a consequence of global warming have been identified, as an overriding cause of coral decline (e.g. increased incidence of diseases, bleaching), and one of the regions that has been identified vulnerable to climatic changes, is the Caribbean. Laboratory experiments have shown negative effects of different temperatures in coral growth, larval and adult survival, and gene expression. In order to understand the molecular and cellular basis in the protein regulation during changes in temperature in the field, a comparative proteomic analysis associated with thermal fluctuations was made from wet and dry season of 2014. In the study, we investigated alterations in proteins of Acropora palmata and Orbicella faveolata by two-dimensional gel electrophoresis (2D-GE) followed by liquid chromatography-tandem mass spectrometry, protein identification, and confirmation at the gene expression level by qRT-PCR.Proteomes of related samples demonstrated 195 differentially expressed proteins (DEP) in A. palmata during dry season and 108 (DEP) during wet season of 2014. O. faveolata overexpressed 62 (DEP) in dry season and 190 (DEP) during wet season of 2014. All proteins had a two-fold or greater change in expression due to temperature, altering several components of the cellular stress response that include chaperones, stress proteins, antioxidant enzymes, proteases, cytoskeletal and apoptosis regulating proteins. Our results suggest that A. palmata and O. faveolata display a distinct response by expressing these key protein signatures in dry and wet season. This proteomic approach may open new avenues of research to detect potential early biomarkers involved in response to these stressors, during seasonal changes in water temperatures. The results provide insight into targets and mechanistic strategies to detect potential markers involved in response to temperature change for A

  9. DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia

    KAUST Repository

    Li, Yong; Liew, Yi Jin; Cui, Guoxin; Cziesielski, Maha J; Zahran, Noura Ibrahim Omar; Michell, Craig T; Voolstra, Christian R.; Aranda, Manuel

    2017-01-01

    The symbiotic relationship between cnidarians and dinoflagellates is the cornerstone of coral reef ecosystems. Although research is focusing on the molecular mechanisms underlying this symbiosis, the role of epigenetic mechanisms, which have been implicated in transcriptional regulation and acclimation to environmental change, is unknown. To assess the role of DNA methylation in the cnidarian-dinoflagellate symbiosis, we analyzed genome-wide CpG methylation, histone associations, and transcriptomic states of symbiotic and aposymbiotic anemones in the model system Aiptasia. We find methylated genes are marked by histone H3K36me3 and show significant reduction of spurious transcription and transcriptional noise, revealing a role of DNA methylation in the maintenance of transcriptional homeostasis. Changes in DNA methylation and expression show enrichment for symbiosis-related processes such as immunity, apoptosis, phagocytosis recognition and phagosome formation, and unveil intricate interactions between the underlying pathways. Our results demonstrate that DNA methylation provides an epigenetic mechanism of transcriptional homeostasis during symbiosis.

  10. DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia

    KAUST Repository

    Li, Yong

    2017-11-03

    The symbiotic relationship between cnidarians and dinoflagellates is the cornerstone of coral reef ecosystems. Although research is focusing on the molecular mechanisms underlying this symbiosis, the role of epigenetic mechanisms, which have been implicated in transcriptional regulation and acclimation to environmental change, is unknown. To assess the role of DNA methylation in the cnidarian-dinoflagellate symbiosis, we analyzed genome-wide CpG methylation, histone associations, and transcriptomic states of symbiotic and aposymbiotic anemones in the model system Aiptasia. We find methylated genes are marked by histone H3K36me3 and show significant reduction of spurious transcription and transcriptional noise, revealing a role of DNA methylation in the maintenance of transcriptional homeostasis. Changes in DNA methylation and expression show enrichment for symbiosis-related processes such as immunity, apoptosis, phagocytosis recognition and phagosome formation, and unveil intricate interactions between the underlying pathways. Our results demonstrate that DNA methylation provides an epigenetic mechanism of transcriptional homeostasis during symbiosis.

  11. Polycystic echinococcosis in Colombia: the larval cestodes in infected rodents.

    Science.gov (United States)

    Morales, G A; Guzman, V H; Wells, E A; Angel, D

    1979-07-01

    Described are the characteristics of the polycystic larval cestodes found in an endemic area of echinococcosis in the Easter Plains of Colombia and the tissue reaction evoked in infected rodents. Of 848 free-ranging animals examined, polycystic hydatids were found in 44/93 Cuniculus paca and 1/369 Proechimys sp. None of 20 Dasyprocta fuliginosa examined was infected, but hunters provided a heart with hydatid cysts and information about two additional animals with infected livers. Recognition of an endemic area of polycystic echinococcosis provides a means to investigate the life cycle of the parasites and to study the histogenesis of the larval cestodes in susceptible laboratory animals.

  12. The neural basis of visual behaviors in the larval zebrafish.

    Science.gov (United States)

    Portugues, Ruben; Engert, Florian

    2009-12-01

    We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Organogénesis durante el periodo larval en peces

    OpenAIRE

    Zavala-Leal, I; Dumas, Silvie; Peña Martínez, Renato

    2011-01-01

    La presencia de un periodo larval caracteriza a los peces con ontogenia indirecta. Este periodo de desarrollo implica una serie de transformaciones encaminadas a la adquisición de las características biológicas y ecológicas propias de la especie; y en muchos casos culmina con cambios de distribución y hábitos alimenticios. El periodo larval incluye cuatro estadios de desarrollo: larva vitelina, larva pre-flexión, larva flexión y larva post-flexión. Cada estadio de desarrollo presenta caracter...

  14. Behaviourally mediated phenotypic selection in a disturbed coral reef environment.

    Directory of Open Access Journals (Sweden)

    Mark I McCormick

    2009-09-01

    Full Text Available Natural and anthropogenic disturbances are leading to changes in the nature of many habitats globally, and the magnitude and frequency of these perturbations are predicted to increase under climate change. Globally coral reefs are one of the most vulnerable ecosystems to climate change. Fishes often show relatively rapid declines in abundance when corals become stressed and die, but the processes responsible are largely unknown. This study explored the mechanism by which coral bleaching may influence the levels and selective nature of mortality on a juvenile damselfish, Pomacentrus amboinensis, which associates with hard coral. Recently settled fish had a low propensity to migrate small distances (40 cm between habitat patches, even when densities were elevated to their natural maximum. Intraspecific interactions and space use differ among three habitats: live hard coral, bleached coral and dead algal-covered coral. Large fish pushed smaller fish further from the shelter of bleached and dead coral thereby exposing smaller fish to higher mortality than experienced on healthy coral. Small recruits suffered higher mortality than large recruits on bleached and dead coral. Mortality was not size selective on live coral. Survival was 3 times as high on live coral as on either bleached or dead coral. Subtle behavioural interactions between fish and their habitats influence the fundamental link between life history stages, the distribution of phenotypic traits in the local population and potentially the evolution of life history strategies.

  15. Mass coral bleaching in the northern Persian Gulf, 2012

    Directory of Open Access Journals (Sweden)

    Javid Kavousi

    2014-09-01

    Full Text Available Coral bleaching events due to elevated temperatures are increasing in both frequency and magnitude worldwide. Mass bleaching was recorded at five sites in the northern Persian Gulf during August and September 2012. Based on available seawater temperature data from field, satellite and previous studies, we suggest that the coral bleaching threshold temperature in the northern Persian Gulf is between 33.5 and 34°C, which is about 1.5 to 2.5°C lower than that in the southern part. To assess the bleaching effects, coral genera counted during 60-minute dives were categorized into four groups including healthy, slightly bleached ( 50% bleached tissue and fully bleached colonies. The anomalously high sea surface temperature resulted in massive coral bleaching (~84% coral colonies affected. Acropora spp. colonies, which are known as the most vulnerable corals to thermal stress, were less affected by the bleaching than massive corals, such as Porites, which are among the most thermo-tolerant corals. Turbid waters, suggested as coral refugia against global warming, did not protect corals in this study since most affected corals were found in the most turbid waters. The 2012 bleaching in the northern Persian Gulf was relatively strong from the viewpoint of coral bleaching severity. Long-term monitoring is needed to understand the actual consequences of the bleaching event on the coral reefs and communities.

  16. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems.

    Science.gov (United States)

    Rix, Laura; de Goeij, Jasper M; Mueller, Christina E; Struck, Ulrich; Middelburg, Jack J; van Duyl, Fleur C; Al-Horani, Fuad A; Wild, Christian; Naumann, Malik S; van Oevelen, Dick

    2016-01-07

    Shallow warm-water and deep-sea cold-water corals engineer the coral reef framework and fertilize reef communities by releasing coral mucus, a source of reef dissolved organic matter (DOM). By transforming DOM into particulate detritus, sponges play a key role in transferring the energy and nutrients in DOM to higher trophic levels on Caribbean reefs via the so-called sponge loop. Coral mucus may be a major DOM source for the sponge loop, but mucus uptake by sponges has not been demonstrated. Here we used laboratory stable isotope tracer experiments to show the transfer of coral mucus into the bulk tissue and phospholipid fatty acids of the warm-water sponge Mycale fistulifera and cold-water sponge Hymedesmia coriacea, demonstrating a direct trophic link between corals and reef sponges. Furthermore, 21-40% of the mucus carbon and 32-39% of the nitrogen assimilated by the sponges was subsequently released as detritus, confirming a sponge loop on Red Sea warm-water and north Atlantic cold-water coral reefs. The presence of a sponge loop in two vastly different reef environments suggests it is a ubiquitous feature of reef ecosystems contributing to the high biogeochemical cycling that may enable coral reefs to thrive in nutrient-limited (warm-water) and energy-limited (cold-water) environments.

  17. INDICATORS OF UV EXPOSURE IN CORALS AND THEIR RELEVANCE TO GLOBAL CLIMATE CHANGE AND CORAL BLEACHING

    Science.gov (United States)

    A compelling aspect of the deterioration of coral reefs is the phenomenon of coral bleaching. Through interactions with other factors such as sedimentation, pollution, and bacterial infection, bleaching can impact large areas of a reef with limited recovery, and it might be induc...

  18. RESISTANCE AND RESILIENCE TO CORAL BLEACHING: IMPLICATIONS FOR CORAL REEF CONSERVATION AND MANAGEMENT

    Science.gov (United States)

    The massive scale of the 1997–1998 El Nino–associated coral bleaching event underscores the need for strategies to mitigate biodiversity losses resulting from temperature-induced coral mortality. As baseline sea surface temperatures continue to rise, climate change may represent ...

  19. Coral-bacterial communities before and after a coral mass spawning event on Ningaloo Reef.

    Directory of Open Access Journals (Sweden)

    Janja Ceh

    Full Text Available Bacteria associated with three coral species, Acropora tenuis, Pocillopora damicornis and Tubastrea faulkneri, were assessed before and after coral mass spawning on Ningaloo Reef in Western Australia. Two colonies of each species were sampled before and after the mass spawning event and two additional samples were collected for P. damicornis after planulation. A variable 470 bp region of the 16 S rRNA gene was selected for pyrosequencing to provide an understanding of potential variations in coral-associated bacterial diversity and community structure. Bacterial diversity increased for all coral species after spawning as assessed by Chao1 diversity indicators. Minimal changes in community structure were observed at the class level and data at the taxonomical level of genus incorporated into a PCA analysis indicated that despite bacterial diversity increasing after spawning, coral-associated community structure did not shift greatly with samples grouped according to species. However, interesting changes could be detected from the dataset; for example, α-Proteobacteria increased in relative abundance after coral spawning and particularly the Roseobacter clade was found to be prominent in all coral species, indicating that this group may be important in coral reproduction.

  20. Identification and prevalence of coral diseases on three Western Indian Ocean coral reefs.

    Science.gov (United States)

    Séré, Mathieu G; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2015-06-03

    Coral diseases have caused a substantial decline in the biodiversity and abundance of reef-building corals. To date, more than 30 distinct diseases of scleractinian corals have been reported, which cause progressive tissue loss and/or affect coral growth, reproductive capacity, recruitment, species diversity and the abundance of reef-associated organisms. While coral disease research has increased over the last 4 decades, very little is known about coral diseases in the Western Indian Ocean. Surveys conducted at multiple sites in Reunion, South Africa and Mayotte between August 2010 and June 2012 revealed the presence of 6 main coral diseases: black band disease (BBD), white syndrome (WS), pink line syndrome (PLS), growth anomalies (GA), skeleton eroding band (SEB) and Porites white patch syndrome (PWPS). Overall, disease prevalence was higher in Reunion (7.5 ± 2.2%; mean ± SE) compared to South Africa (3.9 ± 0.8%) and Mayotte (2.7 ± 0.3%). Across locations, Acropora and Porites were the genera most susceptible to disease. Spatial variability was detected in both Reunion and South Africa, with BBD and WS more prevalent on shallow than deep reefs. There was also evidence of seasonality in 2 diseases: the prevalence of BBD and WS was higher in summer than winter. This was the first study to investigate the ecology of coral diseases, providing both qualitative and quantitative data, on Western Indian Ocean reefs, and surveys should be expanded to confirm these patterns.

  1. Metatranscriptome analysis of the reef-building coral Orbicella faveolata indicates holobiont response to coral disease

    KAUST Repository

    Daniels, Camille Arian

    2015-09-11

    White Plague Disease (WPD) is implicated in coral reef decline in the Caribbean and is characterized by microbial community shifts in coral mucus and tissue. Studies thus far have focused on assessing microbial communities or the identification of specific pathogens, yet few have addressed holobiont response across metaorganism compartments in coral disease. Here, we report on the first metatranscriptomic assessment of the coral host, algal symbiont, and microbial compartment in order to survey holobiont structure and function in healthy and diseased samples from Orbicella faveolata collected at reef sites off Puerto Rico. Our data indicate holobiont-wide as well as compartment-specific responses to WPD. Gene expression changes in the diseased coral host involved proteins playing a role in innate immunity, cytoskeletal integrity, cell adhesion, oxidative stress, chemical defense, and retroelements. In contrast, the algal symbiont showed comparatively few expression changes, but of large magnitude, of genes related to stress, photosynthesis, and metal transport. Concordant with the coral host response, the bacterial compartment showed increased abundance of heat shock proteins, genes related to oxidative stress, DNA repair, and potential retroelement activity. Importantly, analysis of the expressed bacterial gene functions establishes the participation of multiple bacterial families in WPD pathogenesis and also suggests a possible involvement of viruses and/or phages in structuring the bacterial assemblage. In this study, we implement an experimental approach to partition the coral holobiont and resolve compartment- and taxa-specific responses in order to understand metaorganism function in coral disease.

  2. Metatranscriptome analysis of the reef-buidling coral Orbicella faveolata indicates holobiont response to coral disease

    Directory of Open Access Journals (Sweden)

    Camille eDaniels

    2015-09-01

    Full Text Available White Plague Disease (WPD is implicated in coral reef decline in the Caribbean and is characterized by microbial community shifts in coral mucus and tissue. Studies thus far have focused on assessing microbial communities or the identification of specific pathogens, yet few have addressed holobiont response across metaorganism compartments in coral disease. Here, we report on the first metatranscriptomic assessment of the coral host, algal symbiont, and microbial compartment in order to survey holobiont structure and function in healthy and diseased samples from Orbicella faveolata collected at reef sites off Puerto Rico. Our data indicate metaorganism-wide as well as compartment-specific responses to WPD. Gene expression changes in the diseased coral host involved proteins playing a role in innate immunity, cytoskeletal integrity, cell adhesion, oxidative stress, chemical defense, and retroelements. In contrast, the algal symbiont showed comparatively few expression changes, but of large magnitude, of genes related to stress, photosynthesis, and metal transport. Concordant with the coral host response, the bacterial compartment showed increased abundance of heat shock proteins, genes related to oxidative stress, DNA repair, and potential retroelement activity. Importantly, analysis of the expressed bacterial gene functions establishes the participation of multiple bacterial families in WPD pathogenesis and also suggests a possible involvement of viruses and/or phages in structuring the bacterial assemblage. In this study, we implement an experimental approach to partition the coral holobiont and resolve compartment- and taxa-specific responses in order to understand metaorganism function in coral disease.

  3. Metatranscriptome analysis of the reef-building coral Orbicella faveolata indicates holobiont response to coral disease

    KAUST Repository

    Daniels, Camille Arian; Baumgarten, Sebastian; Yum, Lauren; Michell, Craig; Bayer, Till; Arif, Chatchanit; Roder, Cornelia; Weil, Ernesto; Voolstra, Christian R.

    2015-01-01

    White Plague Disease (WPD) is implicated in coral reef decline in the Caribbean and is characterized by microbial community shifts in coral mucus and tissue. Studies thus far have focused on assessing microbial communities or the identification of specific pathogens, yet few have addressed holobiont response across metaorganism compartments in coral disease. Here, we report on the first metatranscriptomic assessment of the coral host, algal symbiont, and microbial compartment in order to survey holobiont structure and function in healthy and diseased samples from Orbicella faveolata collected at reef sites off Puerto Rico. Our data indicate holobiont-wide as well as compartment-specific responses to WPD. Gene expression changes in the diseased coral host involved proteins playing a role in innate immunity, cytoskeletal integrity, cell adhesion, oxidative stress, chemical defense, and retroelements. In contrast, the algal symbiont showed comparatively few expression changes, but of large magnitude, of genes related to stress, photosynthesis, and metal transport. Concordant with the coral host response, the bacterial compartment showed increased abundance of heat shock proteins, genes related to oxidative stress, DNA repair, and potential retroelement activity. Importantly, analysis of the expressed bacterial gene functions establishes the participation of multiple bacterial families in WPD pathogenesis and also suggests a possible involvement of viruses and/or phages in structuring the bacterial assemblage. In this study, we implement an experimental approach to partition the coral holobiont and resolve compartment- and taxa-specific responses in order to understand metaorganism function in coral disease.

  4. Coral Reef Coverage Percentage on Binor Paiton-Probolinggo Seashore

    Directory of Open Access Journals (Sweden)

    Dwi Budi Wiyanto

    2016-01-01

    Full Text Available The coral reef damage in Probolinggo region was expected to be caused by several factors. The first one comes from its society that exploits fishery by using cyanide toxin and bomb. The second one goes to the extraction of coral reef, which is used as decoration or construction materials. The other factor is likely caused by the existence of large industry on the seashore, such as Electric Steam Power Plant (PLTU Paiton and others alike. Related to the development of coral reef ecosystem, availability of an accurate data is crucially needed to support the manner of future policy, so the research of coral reef coverage percentage needs to be conducted continuously. The aim of this research is to collect biological data of coral reef and to identify coral reef coverage percentage in the effort of constructing coral reef condition basic data on Binor, Paiton, and Probolinggo regency seashore. The method used in this research is Line Intercept Transect (LIT method. LIT method is a method that used to decide benthic community on coral reef based on percentage growth, and to take note of benthic quantity along transect line. Percentage of living coral coverage in 3 meters depth on this Binor Paiton seashore that may be categorized in a good condition is 57,65%. While the rest are dead coral that is only 1,45%, other life form in 23,2%, and non-life form in 17,7%. A good condition of coral reef is caused by coral reef transplantation on the seashore, so this coral reef is dominated by Acropora Branching. On the other hand, Mortality Index (IM of coral reef resulted in 24,5%. The result from observation and calculation of coral reef is dominated by Hard Coral in Acropora Branching (ACB with coral reef coverage percentage of 39%, Coral Massive (CM with coral reef coverage percentage of 2,85%, Coral Foliose (CF with coral reef coverage percentage of 1,6%, and Coral Mushroom (CRM with coral reef coverage percentage of 8,5%. Observation in 10 meters depth

  5. Coral Reef Coverage Percentage on Binor Paiton-Probolinggo Seashore

    Directory of Open Access Journals (Sweden)

    Dwi Budi Wiyanto

    2016-02-01

    Full Text Available The coral reef damage in Probolinggo region was expected to be caused by several factors. The first one comes from its society that exploits fishery by using cyanide toxin and bomb. The second one goes to the extraction of coral reef, which is used as decoration or construction materials. The other factor is likely caused by the existence of large industry on the seashore, such as Electric Steam Power Plant (PLTU Paiton and others alike. Related to the development of coral reef ecosystem, availability of an accurate data is crucially needed to support the manner of future policy, so the research of coral reef coverage percentage needs to be conducted continuously. The aim of this research is to collect biological data of coral reef and to identify coral reef coverage percentage in the effort of constructing coral reef condition basic data on Binor, Paiton, and Probolinggo regency seashore. The method used in this research is Line Intercept Transect (LIT method. LIT method is a method that used to decide benthic community on coral reef based on percentage growth, and to take note of benthic quantity along transect line. Percentage of living coral coverage in 3 meters depth on this Binor Paiton seashore that may be categorized in a good condition is 57,65%. While the rest are dead coral that is only 1,45%, other life form in 23,2%, and non-life form in 17,7%. A good condition of coral reef is caused by coral reef transplantation on the seashore, so this coral reef is dominated by Acropora Branching. On the other hand, Mortality Index (IM of coral reef resulted in 24,5%. The result from observation and calculation of coral reef is dominated by Hard Coral in Acropora Branching (ACB with coral reef coverage percentage of 39%, Coral Massive (CM with coral reef coverage percentage of 2,85%, Coral Foliose (CF with coral reef coverage percentage of 1,6%, and Coral Mushroom (CRM with coral reef coverage percentage of 8,5%. Observation in 10 meters depth

  6. Factors affecting fungus-induced larval mortality in Anopheles gambiae and Anopheles stephensi

    NARCIS (Netherlands)

    Bukhari, S.T.; Middelman, A.; Koenraadt, C.J.M.; Takken, W.; Knols, B.G.J.

    2010-01-01

    Background Entomopathogenic fungi have shown great potential for the control of adult malaria vectors. However, their ability to control aquatic stages of anopheline vectors remains largely unexplored. Therefore, how larval characteristics (Anopheles species, age and larval density), fungus (species

  7. Arrecifes de Coral: Una Coleccion de Actividades en Espanol para Estudiantes de Escuela Intermedia (Coral Reefs: A Spanish Compilation of Activities for Middle School Students).

    Science.gov (United States)

    Walker, Sharon H.; Newton, R. Amanda; Ortiz, Alida

    This activity book for middle school students on coral reefs is divided into 10 sections. Section 1 is the introduction. Section 2 describes what coral reefs are while section 3 describes how coral reefs reproduce and grow. Section 4 describes where coral reefs are found, and section 5 describes life on a coral reef. Section 6 describes the…

  8. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching.

    Science.gov (United States)

    Cramer, Katie L; Jackson, Jeremy B C; Angioletti, Christopher V; Leonard-Pingel, Jill; Guilderson, Thomas P

    2012-06-01

    Caribbean reef corals have declined precipitously since the 1980s due to regional episodes of bleaching, disease and algal overgrowth, but the extent of earlier degradation due to localised historical disturbances such as land clearing and overfishing remains unresolved. We analysed coral and molluscan fossil assemblages from reefs near Bocas del Toro, Panama to construct a timeline of ecological change from the 19th century-present. We report large changes before 1960 in coastal lagoons coincident with extensive deforestation, and after 1960 on offshore reefs. Striking changes include the demise of previously dominant staghorn coral Acropora cervicornis and oyster Dendrostrea frons that lives attached to gorgonians and staghorn corals. Reductions in bivalve size and simplification of gastropod trophic structure further implicate increasing environmental stress on reefs. Our paleoecological data strongly support the hypothesis, from extensive qualitative data, that Caribbean reef degradation predates coral bleaching and disease outbreaks linked to anthropogenic climate change. © 2012 Blackwell Publishing Ltd/CNRS.

  9. Deep sequencing-based transcriptome analysis of Plutella xylostella larvae parasitized by Diadegma semiclausum

    Science.gov (United States)

    2011-01-01

    Background Parasitoid insects manipulate their hosts' physiology by injecting various factors into their host upon parasitization. Transcriptomic approaches provide a powerful approach to study insect host-parasitoid interactions at the molecular level. In order to investigate the effects of parasitization by an ichneumonid wasp (Diadegma semiclausum) on the host (Plutella xylostella), the larval transcriptome profile was analyzed using a short-read deep sequencing method (Illumina). Symbiotic polydnaviruses (PDVs) associated with ichneumonid parasitoids, known as ichnoviruses, play significant roles in host immune suppression and developmental regulation. In the current study, D. semiclausum ichnovirus (DsIV) genes expressed in P. xylostella were identified and their sequences compared with other reported PDVs. Five of these genes encode proteins of unknown identity, that have not previously been reported. Results De novo assembly of cDNA sequence data generated 172,660 contigs between 100 and 10000 bp in length; with 35% of > 200 bp in length. Parasitization had significant impacts on expression levels of 928 identified insect host transcripts. Gene ontology data illustrated that the majority of the differentially expressed genes are involved in binding, catalytic activity, and metabolic and cellular processes. In addition, the results show that transcription levels of antimicrobial peptides, such as gloverin, cecropin E and lysozyme, were up-regulated after parasitism. Expression of ichnovirus genes were detected in parasitized larvae with 19 unique sequences identified from five PDV gene families including vankyrin, viral innexin, repeat elements, a cysteine-rich motif, and polar residue rich protein. Vankyrin 1 and repeat element 1 genes showed the highest transcription levels among the DsIV genes. Conclusion This study provides detailed information on differential expression of P. xylostella larval genes following parasitization, DsIV genes expressed in the

  10. Transcriptomic signatures in cartilage ageing

    Science.gov (United States)

    2013-01-01

    Introduction Age is an important factor in the development of osteoarthritis. Microarray studies provide insight into cartilage aging but do not reveal the full transcriptomic phenotype of chondrocytes such as small noncoding RNAs, pseudogenes, and microRNAs. RNA-Seq is a powerful technique for the interrogation of large numbers of transcripts including nonprotein coding RNAs. The aim of the study was to characterise molecular mechanisms associated with age-related changes in gene signatures. Methods RNA for gene expression analysis using RNA-Seq and real-time PCR analysis was isolated from macroscopically normal cartilage of the metacarpophalangeal joints of eight horses; four young donors (4 years old) and four old donors (>15 years old). RNA sequence libraries were prepared following ribosomal RNA depletion and sequencing was undertaken using the Illumina HiSeq 2000 platform. Differentially expressed genes were defined using Benjamini-Hochberg false discovery rate correction with a generalised linear model likelihood ratio test (P ageing cartilage. Conclusion There was an age-related dysregulation of matrix, anabolic and catabolic cartilage factors. This study has increased our knowledge of transcriptional networks in cartilage ageing by providing a global view of the transcriptome. PMID:23971731

  11. Spatio-temporal patterns of coral recruitment at Vamizi Island ...

    African Journals Online (AJOL)

    Spatio-temporal patterns of coral recruitment at Vamizi Island, Quirimbas Archipelago, Mozambique. ... Spatial and temporal patterns of recruitment of reef corals were assessed for the first time in Mozambique ... AJOL African Journals Online.

  12. Deep-Sea Corals: A New Oceanic Archive

    National Research Council Canada - National Science Library

    Adkins, Jess

    1998-01-01

    Deep-sea corals are an extraordinary new archive of deep ocean behavior. The species Desmophyllum cristagalli is a solitary coral composed of uranium rich, density banded aragonite that I have calibrated for several paleoclimate tracers...

  13. The Alcyonacea (soft corals and sea fans) of Antsiranana Bay ...

    African Journals Online (AJOL)

    Alison J. Evans, Mark D. Steer and Elise M. S. Belle

    cal coral reef ecosystems than the reef - building Scleractinia. However ... Alcyonacea are vulnerable to the many potential threats facing coral .... of the indicator of characteristic Maximum Depth assigned to each site. ..... Marine and coastal.

  14. Zonation of uplifted pleistocene coral reefs on barbados, west indies.

    Science.gov (United States)

    Mesolella, K J

    1967-05-05

    The coral species composition of uplifted Pleistocene reefs on Barbados is very similar to Recent West Indian reefs. Acropora palmata, Acropora cervicornis, and Montastrea annularis are qtuantitatively the most important of the coral species.

  15. Can we measure beauty? Computational evaluation of coral reef aesthetics

    NARCIS (Netherlands)

    Haas, A.F.; Guibert, M.; Foerschner, A.; Co, T.; Calhoun, S.; George, E.; Hatay, M.; Dinsdale, E.; Sandin, S.A.; Smith, J.E.; Vermeij, M.J.A.; Felts, B.; Dustan, P.; Salamon, P.; Rohwer, F.

    2015-01-01

    The natural beauty of coral reefs attracts millions of tourists worldwide resulting in substantial revenues for the adjoining economies. Although their visual appearance is a pivotal factor attracting humans to coral reefs current monitoring protocols exclusively target biogeochemical parameters,

  16. Geographic differences in vertical connectivity in the Caribbean coral Montastraea cavernosa despite high levels of horizontal connectivity at shallow depths.

    Science.gov (United States)

    Serrano, X; Baums, I B; O'Reilly, K; Smith, T B; Jones, R J; Shearer, T L; Nunes, F L D; Baker, A C

    2014-09-01

    The deep reef refugia hypothesis proposes that deep reefs can act as local recruitment sources for shallow reefs following disturbance. To test this hypothesis, nine polymorphic DNA microsatellite loci were developed and used to assess vertical connectivity in 583 coral colonies of the Caribbean depth-generalist coral Montastraea cavernosa. Samples were collected from three depth zones (≤10, 15-20 and ≥25 m) at sites in Florida (within the Upper Keys, Lower Keys and Dry Tortugas), Bermuda, and the U.S. Virgin Islands. Migration rates were estimated to determine the probability of coral larval migration from shallow to deep and from deep to shallow. Finally, algal symbiont (Symbiodinium spp.) diversity and distribution were assessed in a subset of corals to test whether symbiont depth zonation might indicate limited vertical connectivity. Overall, analyses revealed significant genetic differentiation by depth in Florida, but not in Bermuda or the U.S. Virgin Islands, despite high levels of horizontal connectivity between these geographic locations at shallow depths. Within Florida, greater vertical connectivity was observed in the Dry Tortugas compared to the Lower or Upper Keys. However, at all sites, and regardless of the extent of vertical connectivity, migration occurred asymmetrically, with greater likelihood of migration from shallow to intermediate/deep habitats. Finally, most colonies hosted a single Symbiodinium type (C3), ruling out symbiont depth zonation of the dominant symbiont type as a structuring factor. Together, these findings suggest that the potential for shallow reefs to recover from deep-water refugia in M. cavernosa is location-specific, varying among and within geographic locations likely as a consequence of local hydrology. © 2014 John Wiley & Sons Ltd.

  17. File list: InP.Lar.10.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lar.10.AllAg.Larval_brain dm3 Input control Larvae Larval brain SRX1426944,SRX1...426946 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Lar.10.AllAg.Larval_brain.bed ...

  18. File list: His.Lar.50.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lar.50.AllAg.Larval_brain dm3 Histone Larvae Larval brain SRX1426943,SRX1426945... http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Lar.50.AllAg.Larval_brain.bed ...

  19. File list: ALL.Lar.50.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.50.AllAg.Larval_brain dm3 All antigens Larvae Larval brain SRX1426944,SRX14...26943,SRX1426945,SRX1426946 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.50.AllAg.Larval_brain.bed ...

  20. File list: InP.Lar.20.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lar.20.AllAg.Larval_brain dm3 Input control Larvae Larval brain SRX1426944,SRX1...426946 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Lar.20.AllAg.Larval_brain.bed ...

  1. Vegetative substrates used by larval northern pike in Rainy and Kabetogama Lakes, Minnesota

    Science.gov (United States)

    Anne L. Timm; Rodney B. Pierce

    2015-01-01

    Our objective was to identify characteristics of aquatic vegetative communities used as larval northern pike nursery habitat in Rainy and Kabetogama lakes, glacial shield reservoirs in northern Minnesota. Quatrefoil light traps fished at night were used to sample larval northern pike in 11 potential nursery areas. Larval northern pike were most commonly sampled among...

  2. File list: InP.Lar.50.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lar.50.AllAg.Larval_brain dm3 Input control Larvae Larval brain SRX1426944,SRX1...426946 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Lar.50.AllAg.Larval_brain.bed ...

  3. File list: ALL.Lar.20.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.20.AllAg.Larval_brain dm3 All antigens Larvae Larval brain SRX1426944,SRX14...26943,SRX1426945,SRX1426946 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.20.AllAg.Larval_brain.bed ...

  4. File list: ALL.Lar.05.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.05.AllAg.Larval_brain dm3 All antigens Larvae Larval brain SRX1426945,SRX14...26944,SRX1426946,SRX1426943 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.05.AllAg.Larval_brain.bed ...

  5. File list: ALL.Lar.10.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Lar.10.AllAg.Larval_brain dm3 All antigens Larvae Larval brain SRX1426945,SRX14...26944,SRX1426943,SRX1426946 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/ALL.Lar.10.AllAg.Larval_brain.bed ...

  6. File list: InP.Lar.05.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Lar.05.AllAg.Larval_brain dm3 Input control Larvae Larval brain SRX1426944,SRX1...426946 http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/InP.Lar.05.AllAg.Larval_brain.bed ...

  7. File list: His.Lar.10.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lar.10.AllAg.Larval_brain dm3 Histone Larvae Larval brain SRX1426945,SRX1426943... http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Lar.10.AllAg.Larval_brain.bed ...

  8. File list: His.Lar.20.AllAg.Larval_brain [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Lar.20.AllAg.Larval_brain dm3 Histone Larvae Larval brain SRX1426943,SRX1426945... http://dbarchive.biosciencedbc.jp/kyushu-u/dm3/assembled/His.Lar.20.AllAg.Larval_brain.bed ...

  9. Possible natural hybridization of two morphologically distinct species of Acropora (Cnidaria, Scleractinia in the Pacific: fertilization and larval survival rates.

    Directory of Open Access Journals (Sweden)

    Naoko Isomura

    Full Text Available Natural hybridization of corals in the Indo-Pacific has been considered rather rare. However, field studies have observed many corals with intermediate interspecific or unusual morphologies. Given that the existence of F1 hybrids with intermediate interspecific morphologies has been proven in the Caribbean, hybrids may also inhabit the Indo-Pacific and occur more frequently than expected. In this study, we focused on two morphologically different species, Acropora florida and A. intermedia, and performed crossing experiments at Akajima Island, Japan. Results showed that these species could hybridize in both directions via eggs and sperm, but that fertilization rates significantly differed according to which species provided eggs. These results are similar to those reported from the Caribbean. Although all embryos developed normally to the planular larval stage, the developmental processes of some hybrid embryos were delayed by approximately 1 h compared with conspecific embryos, suggesting that fertilization occurred 1 h later in interspecific crosses than in intraspecific crosses. More successful hybridization could occur under conditions with low numbers of conspecific colonies. Additionally, a comparison of survival rates between hybrid and intraspecific larvae revealed that intra- and interspecific larvae produced from eggs of A. florida survived for significantly longer than those produced from eggs of A. intermedia. Considering these data, under specific conditions, hybrids can be expected to be produced and survive in nature in the Pacific. Furthermore, we identified one colony with intermediate morphology between A. florida and A. intermedia in the field. This colony was fertilized only by eggs of A. florida, with high fertilization rates, suggesting that this colony would be a hybrid of these two species and might be backcrossed.

  10. Comparing deep-sea fish fauna between coral and non-coral "megahabitats" in the Santa Maria di Leuca cold-water coral province (Mediterranean Sea.

    Directory of Open Access Journals (Sweden)

    Gianfranco D'Onghia

    Full Text Available Two experimental longline surveys were carried out in the Santa Maria di Leuca (SML cold-water coral province (Mediterranean Sea during May-June and September-October 2010 to investigate the effect of corals on fish assemblages. Two types of "megahabitat" characterized by the virtual absence of fishing were explored. One was characterized by complex topography including mesohabitats with carbonate mounds and corals. The other type of megahabitat, although characterized by complex topographic features, lacks carbonate mounds and corals. The fishing vessel was equipped with a 3,000 m monofilament longline with 500 hooks and snoods of 2.5 m in length. A total of 9 hauls, using about 4,500 hooks, were carried out both in the coral megahabitat and in the non-coral megahabitat during each survey. The fish Leucoraja fullonica and Pteroplatytrygon violacea represent new records for the SML coral province. The coral by-catch was only obtained in the coral megahabitat in about 55% of the stations investigated in both surveys. The total catches and the abundance indices of several species were comparable between the two habitat typologies. The species contributing most to the dissimilarity between the two megahabitat fish assemblages were Pagellus bogaraveo, Galeus melastomus, Etmopterus spinax and Helicolenus dactylopterus for density and P. bogaraveo, Conger conger, Polyprion americanus and G. melastomus for biomass. P. bogaraveo was exclusively collected in the coral megahabitat, whereas C. conger, H. dactylopterus and P. americanus were found with greater abundance in the coral than in the non-coral megahabitat. Differences in the sizes between the two megahabitats were detected in E. spinax, G. melastomus, C. conger and H. dactylopterus. Although these differences most probably related to the presence-absence of corals, both megahabitats investigated play the role of attraction-refuge for deep-sea fish fauna, confirming the important role of the whole

  11. Integrated mosquito larval source management reduces larval numbers in two highland villages in western Kenya

    Directory of Open Access Journals (Sweden)

    Imbahale Susan S

    2012-05-01

    Full Text Available Abstract Background In western Kenya, malaria remains one of the major health problems and its control remains an important public health measure. Malaria control is by either use of drugs to treat patients infected with malaria parasites or by controlling the vectors. Vector control may target the free living adult or aquatic (larval stages of mosquito. The most commonly applied control strategies target indoor resting mosquitoes. However, because mosquitoes spend a considerable time in water, targeting the aquatic stages can complement well with existing adult control measures. Methods Larval source management (LSM of malaria vectors was examined in two villages i.e. Fort Ternan and Lunyerere, with the aim of testing strategies that can easily be accessed by the affected communities. Intervention strategies applied include environmental management through source reduction (drainage of canals, land levelling or by filling ditches with soil, habitat manipulation (by provision of shading from arrow root plant, application of Bacillus thuringiensis var israelensis (Bti and the use of predatory fish, Gambusia affinis. The abundance of immature stages of Anopheles and Culex within intervention habitats was compared to that within non-intervention habitats. Results The findings show that in Fort Ternan no significant differences were observed in the abundance of Anopheles early and late instars between intervention and non-intervention habitats. In Lunyerere, the abundance of Anopheles early instars was fifty five times more likely to be present within non-intervention habitats than in habitats under drainage. No differences in early instars abundance were observed between non-intervention and habitats applied with Bti. However, late instars had 89 % and 91 % chance of being sampled from non-intervention rather than habitats under drainage and those applied with Bti respectively. Conclusion Most of these interventions were applied in habitats

  12. Corals Form Characteristic Associations with Symbiotic Nitrogen-Fixing Bacteria

    Science.gov (United States)

    Lema, Kimberley A.; Willis, Bette L.

    2012-01-01

    The complex symbiotic relationship between corals and their dinoflagellate partner Symbiodinium is believed to be sustained through close associations with mutualistic bacterial communities, though little is known about coral associations with bacterial groups able to fix nitrogen (diazotrophs). In this study, we investigated the diversity of diazotrophic bacterial communities associated with three common coral species (Acropora millepora, Acropora muricata, and Pocillopora damicormis) from three midshelf locations of the Great Barrier Reef (GBR) by profiling the conserved subunit of the nifH gene, which encodes the dinitrogenase iron protein. Comparisons of diazotrophic community diversity among coral tissue and mucus microenvironments and the surrounding seawater revealed that corals harbor diverse nifH phylotypes that differ between tissue and mucus microhabitats. Coral mucus nifH sequences displayed high heterogeneity, and many bacterial groups overlapped with those found in seawater. Moreover, coral mucus diazotrophs were specific neither to coral species nor to reef location, reflecting the ephemeral nature of coral mucus. In contrast, the dominant diazotrophic bacteria in tissue samples differed among coral species, with differences remaining consistent at all three reefs, indicating that coral-diazotroph associations are species specific. Notably, dominant diazotrophs for all coral species were closely related to the bacterial group rhizobia, which represented 71% of the total sequences retrieved from tissue samples. The species specificity of coral-diazotroph associations further supports the coral holobiont model that bacterial groups associated with corals are conserved. Our results suggest that, as in terrestrial plants, rhizobia have developed a mutualistic relationship with corals and may contribute fixed nitrogen to Symbiodinium. PMID:22344646

  13. A trait-based approach to advance coral reef science

    DEFF Research Database (Denmark)

    Madin, Joshua S.; Hoogenboom, Mia O.; Connolly, Sean R.

    2016-01-01

    Coral reefs are biologically diverse and ecologically complex ecosystems constructed by stony corals. Despite decades of research, basic coral population biology and community ecology questions remain. Quantifying trait variation among species can help resolve these questions, but progress has been...... a large amount of variation for a range of biological and ecological processes. Such an approach can accelerate our understanding of coral ecology and our ability to protect critically threatened global ecosystems....

  14. Larval diet affects mosquito development and permissiveness to Plasmodium infection.

    Science.gov (United States)

    Linenberg, Inbar; Christophides, George K; Gendrin, Mathilde

    2016-12-02

    The larval stages of malaria vector mosquitoes develop in water pools, feeding mostly on microorganisms and environmental detritus. Richness in the nutrient supply to larvae influences the development and metabolism of larvae and adults. Here, we investigated the effects of larval diet on the development, microbiota content and permissiveness to Plasmodium of Anopheles coluzzii. We tested three fish diets often used to rear mosquitoes in the laboratory, including two pelleted diets, Dr. Clarke's Pool Pellets and Nishikoi Fish Pellets, and one flaked diet, Tetramin Fish-Flakes. Larvae grow and develop faster and produce bigger adults when feeding on both types of pellets compared with flakes. This correlates with a higher microbiota load in pellet-fed larvae, in agreement with the known positive effect of the microbiota on mosquito development. Larval diet also significantly influences the prevalence and intensity of Plasmodium berghei infection in adults, whereby Nishikoi Fish Pellets-fed larvae develop into adults that are highly permissive to parasites and survive longer after infection. This correlates with a lower amount of Enterobacteriaceae in the midgut microbiota. Together, our results shed light on the influence of larval feeding on mosquito development, microbiota and vector competence; they also provide useful data for mosquito rearing.

  15. Larval biology of the crab Rhithropanopeus harrisii (Gould): a synthesis.

    Science.gov (United States)

    Forward, Richard B

    2009-06-01

    This synthesis reviews the physiological ecology and behavior of larvae of the benthic crab Rhithropanopeus harrisii, which occurs in low-salinity areas of estuaries. Larvae are released rhythmically around the time of high tide in tidal estuaries and in the 2-h interval after sunset in nontidal estuaries. As in most subtidal crustaceans, the timing of larval release is controlled by the developing embryos, which release peptide pheromones that stimulate larval release behavior by the female to synchronize the time of egg hatching. Larvae pass through four zoeal stages and a postlarval or megalopal stage that are planktonic before metamorphosis. They are retained near the adult population by means of an endogenous tidal rhythm in vertical migration. Larvae have several safeguards against predation: they undergo nocturnal diel vertical migration (DVM) and have a shadow response to avoid encountering predators, and they bear long spines as a deterrent. Photoresponses during DVM and the shadow response are enhanced by exposure to chemical cues from the mucus of predator fishes and ctenophores. The primary visual pigment has a spectral sensitivity maximum at about 500 nm, which is typical for zooplankton and matches the ambient spectrum at twilight. Larvae can detect vertical gradients in temperature, salinity, and hydrostatic pressure, which are used for depth regulation and avoidance of adverse environmental conditions. Characteristics that are related to the larval habitat and are common to other crab larval species are considered.

  16. Basolateral Cl- channels in the larval bullfrog skin epithelium

    DEFF Research Database (Denmark)

    Hillyard, Stanley D.; Rios, K.; Larsen, Erik Hviid

    2002-01-01

    The addition of 150 U/ml nystatin to the mucosal surface of isolated skin from larval bullfrogs increases apical membrane permeability and allows a voltage clamp to be applied to the basolateral membrane. With identical Ringer's solutions bathing either side of the tissue the short-circuit curren...

  17. Silk formation mechanisms in the larval salivary glands of Apis ...

    Indian Academy of Sciences (India)

    Unknown

    The mechanism of silk formation in Apis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands were dissected and prepared for light and polarized light microscopy, as well as for scanning and transmission electron microscopy. The results showed that silk formation starts at the middle of the 5th ...

  18. A larval hunger signal in the bumblebee Bombus terrestris

    DEFF Research Database (Denmark)

    Den Boer, Susanne Petronella A; Duchateau, Marie-Jose

    2006-01-01

    Larvae of Bombus terrestris, a pollen-storing bumblebee, are dependent on progressive provisioning by workers. We test the hypothesis that larval cuticular chemicals can act as a hunger signal. We first show with a new classical conditioning experiment, using a Y-shaped tube, that workers can...

  19. Estimation of larval density of Liriomyza sativae Blanchard (Diptera ...

    African Journals Online (AJOL)

    This study was conducted to develop sequential sampling plans to estimate larval density of Liriomyza sativae Blanchard (Diptera: Agromyzidae) at three precision levels in cucumber greenhouse. The within- greenhouse spatial patterns of larvae were aggregated. The slopes and intercepts of both Iwao's patchiness ...

  20. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish

    Science.gov (United States)

    Heap, Lucy A.; Vanwalleghem, Gilles C.; Thompson, Andrew W.; Favre-Bulle, Itia; Rubinsztein-Dunlop, Halina; Scott, Ethan K.

    2018-01-01

    The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH) to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC)/stratum griseum periventriculare (SPV), and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil. PMID:29403362

  1. Study on Silkworm Bed Cleaning Frequency during Larval Growth ...

    African Journals Online (AJOL)

    Study on Silkworm Bed Cleaning Frequency during Larval Growth Period. Abiy Tilahun, Kedir Shifa, Ahmed Ibrahim, Metasebia Terefe. Abstract. No Abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/star.v4i2.5 · AJOL African ...

  2. Body shape, burst speed and escape behavior of larval anurans

    Science.gov (United States)

    Gage H. Dayton; Daniel Saenz; Kristen A. Baum; R. Brian Langerhans; Thomas J. DeWitt

    2005-01-01

    Variation in behavior, morphology and life history traits of larval anurans across predator gradients, and consequences of that variation, have been abundantly studied. Yet the functional link between morphology and burst-swimming speed is largely unknown. We conducted experiments with two divergent species of anurans, Scaphiopus holbrookii and

  3. Population dynamics and management implications of larval dispersal

    African Journals Online (AJOL)

    caused by the identified mechanism provides: (1) the basis for spatially explicit management, and (2) an explanation for the observed spatial variability in the degree of overfishing. Research on larval dispersal is also providing the information necessary to design spatially explicit management strategies involving either ...

  4. Mosquito larval habitats and public health implications in Abeokuta ...

    African Journals Online (AJOL)

    The larval habitats of mosquitoes were investigated in Abeokuta, Nigeria in order to determine the breeding sites of the existing mosquito fauna and its possible public health implications on the residents of the City. The habitats were sampled between August 2005 and July 2006 using plastic dippers and a pipette.

  5. Stretch-activated cation channel from larval bullfrog skin

    DEFF Research Database (Denmark)

    Hillyard, Stanley D; Willumsen, Niels J; Marrero, Mario B

    2010-01-01

    Cell-attached patches from isolated epithelial cells from larval bullfrog skin revealed a cation channel that was activated by applying suction (-1 kPa to -4.5 kPa) to the pipette. Activation was characterized by an initial large current spike that rapidly attenuated to a stable value and showed ...

  6. The larval development and population dynamics of Derocheilocaris ...

    African Journals Online (AJOL)

    Seven larval stages of Derocheilocaris algoensis have been described and appear to be identical with those of D. typica from North America. This stresses the remarkable conservativeness of this subclass of Crustacea. The population biology of D. algoensis has been studied over 16 months and reproduction has been ...

  7. Fruit Fly Liquid Larval Diet Technology Transfer and Update

    Science.gov (United States)

    Since October 2006, USDA-ARS has been implementing a fruit fly liquid larval diet technology transfer, which has proceeded according to the following steps: (1) Recruitment of interested groups through request; (2) Establishment of the Material Transfer Agreement (MTA) with ARS; (3) Fruit fly liquid...

  8. Hypothalamic Projections to the Optic Tectum in Larval Zebrafish

    Directory of Open Access Journals (Sweden)

    Lucy A. Heap

    2018-01-01

    Full Text Available The optic tectum of larval zebrafish is an important model for understanding visual processing in vertebrates. The tectum has been traditionally viewed as dominantly visual, with a majority of studies focusing on the processes by which tectal circuits receive and process retinally-derived visual information. Recently, a handful of studies have shown a much more complex role for the optic tectum in larval zebrafish, and anatomical and functional data from these studies suggest that this role extends beyond the visual system, and beyond the processing of exclusively retinal inputs. Consistent with this evolving view of the tectum, we have used a Gal4 enhancer trap line to identify direct projections from rostral hypothalamus (RH to the tectal neuropil of larval zebrafish. These projections ramify within the deepest laminae of the tectal neuropil, the stratum album centrale (SAC/stratum griseum periventriculare (SPV, and also innervate strata distinct from those innervated by retinal projections. Using optogenetic stimulation of the hypothalamic projection neurons paired with calcium imaging in the tectum, we find rebound firing in tectal neurons consistent with hypothalamic inhibitory input. Our results suggest that tectal processing in larval zebrafish is modulated by hypothalamic inhibitory inputs to the deep tectal neuropil.

  9. Silk formation mechanisms in the larval salivary glands of Apis ...

    Indian Academy of Sciences (India)

    Unknown

    The mechanism of silk formation in Apis mellifera salivary glands, during the 5th instar, was studied. Larval salivary glands .... be used in the silk-manufacture industry. This paper analyses .... (figure 3C); and are highly birefringent (figure 3D).

  10. The role of individual variation in marine larval dispersal

    KAUST Repository

    Nanninga, Gerrit B.

    2014-12-08

    The exchange of individuals among patchy habitats plays a central role in spatial ecology and metapopulation dynamics. Dispersal is frequently observed to vary non-randomly within populations (e.g., short vs. long), indicating that variability among individuals may shape heterogeneity in patterns of connectivity. The concept of context- and condition-dependent dispersal describes the balance between the costs and benefits of dispersal that arises from the interaction of temporal and spatial landscape heterogeneity (the context) with phenotypic variability among individuals (the condition). While this hypothesis is widely accepted in terrestrial theory, it remains questionable to what extent the concept of adaptive dispersal strategies may apply to marine larval dispersal, a process that is largely determined by stochastic forces. Yet, larvae of many taxa exhibit strong navigational capabilities and there is mounting evidence of widespread intra-specific variability in biological traits that are potentially correlated with dispersal potential. While so far there are few known examples of real larval dispersal polymorphisms, intra-specifically variable dispersal strategies may be common in marine systems. Whether adaptive or not, it is becoming apparent that inter-individual heterogeneity in morphology, behavior, condition, and life history traits may have critical effects on population-level heterogeneity in dispersal. Here, we explore the eco-evolutionary causes and consequences of intrinsic and extrinsic variability on larval dispersal by synthesizing the existing literature and drawing conceptual parallels from terrestrial theory. We emphasize the potential importance of larval dispersal polymorphisms in marine population dynamics.

  11. Fluctuations in coral health of four common inshore reef corals in response to seasonal and anthropogenic changes in water quality.

    Science.gov (United States)

    Browne, Nicola K; Tay, Jason K L; Low, Jeffrey; Larson, Ole; Todd, Peter A

    2015-04-01

    Environmental drivers of coral condition (maximum quantum yield, symbiont density, chlorophyll a content and coral skeletal growth rates) were assessed in the equatorial inshore coastal waters of Singapore, where the amplitude of seasonal variation is low, but anthropogenic influence is relatively high. Water quality variables (sediments, nutrients, trace metals, temperature, light) explained between 52 and 83% of the variation in coral condition, with sediments and light availability as key drivers of foliose corals (Merulina ampliata, Pachyseris speciosa), and temperature exerting a greater influence on a branching coral (Pocillopora damicornis). Seasonal reductions in water quality led to high chlorophyll a concentrations and maximum quantum yields in corals, but low growth rates. These marginal coral communities are potentially vulnerable to climate change, hence, we propose water quality thresholds for coral growth with the aim of mitigating both local and global environmental impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Coral transcriptome and bacterial community profiles reveal distinct Yellow Band Disease states in Orbicella faveolata

    KAUST Repository

    Closek, Collin J.; Sunagawa, Shinichi; DeSalvo, Michael K.; Piceno, Yvette M.; Desantis, Todd Z.; Brodie, Eoin L.; Weber, Michele X.; Voolstra, Christian R.; Andersen, Gary L.; Medina, Mó nica M.

    2014-01-01

    marked each health state. Diseased samples were associated with two to three times more bacterial diversity. HD samples had the highest bacterial richness, which included components associated with HH and DD, as well as additional unique families

  13. Coral Bleaching and Associated Mortality at Mayotte, Western Indian ...

    African Journals Online (AJOL)

    Mamoudzou 97600, Mayotte. Keywords: coral, bleaching, mortality, Mayotte, Western Indian Ocean. Abstract—Bleaching and associated coral mortality were assessed on fringing and barrier reefs on the north and east coasts of Mayotte from 1-24 May 2010. Major bleaching was encountered; nearly 80% of the corals were ...

  14. Exploring coral microbiome assemblages in the South China Sea.

    Science.gov (United States)

    Cai, Lin; Tian, Ren-Mao; Zhou, Guowei; Tong, Haoya; Wong, Yue Him; Zhang, Weipeng; Chui, Apple Pui Yi; Xie, James Y; Qiu, Jian-Wen; Ang, Put O; Liu, Sheng; Huang, Hui; Qian, Pei-Yuan

    2018-02-05

    Coral reefs are significant ecosystems. The ecological success of coral reefs relies on not only coral-algal symbiosis but also coral-microbial partnership. However, microbiome assemblages in the South China Sea corals remain largely unexplored. Here, we compared the microbiome assemblages of reef-building corals Galaxea (G. fascicularis) and Montipora (M. venosa, M. peltiformis, M. monasteriata) collected from five different locations in the South China Sea using massively-parallel sequencing of 16S rRNA gene and multivariate analysis. The results indicated that microbiome assemblages for each coral species were unique regardless of location and were different from the corresponding seawater. Host type appeared to drive the coral microbiome assemblages rather than location and seawater. Network analysis was employed to explore coral microbiome co-occurrence patterns, which revealed 61 and 80 co-occurring microbial species assembling the Galaxea and Montipora microbiomes, respectively. Most of these co-occurring microbial species were commonly found in corals and were inferred to play potential roles in host nutrient metabolism; carbon, nitrogen, sulfur cycles; host detoxification; and climate change. These findings suggest that the co-occurring microbial species explored might be essential to maintain the critical coral-microbial partnership. The present study provides new insights into coral microbiome assemblages in the South China Sea.

  15. Light gradients and optical microniches in coral tissues

    Directory of Open Access Journals (Sweden)

    Daniel eWangpraseurt

    2012-08-01

    Full Text Available Light quantity and quality are among the most important factors determining the physiology and stress response of zooxanthellate corals. Yet, almost nothing is known about the light field that Symbiodinium experiences within their coral host, and the basic optical properties of coral tissue are unknown. We used scalar irradiance microprobes to characterise vertical and lateral light gradients within and across tissues of several coral species. Our results revealed the presence of steep light gradients with PAR (photosynthetically available radiation decreasing by about one order of magnitude from the tissue surface to the coral skeleton. Surface scalar irradiance was consistently higher over polyp tissue than over coenosarc tissue in faviid corals. Coral bleaching increased surface scalar irradiance by ~150% (between 500-700 nm relative to a healthy coral. Photosynthesis peaked around 300 µm within the tissue, which corresponded to a zone exhibiting strongest depletion of scalar irradiance. Deeper coral tissue layers, e.g. ~1000 µm into aboral polyp tissues, harbor optical microniches, where only ~10% of the incident irradiance remains. We conclude that the optical microenvironment of corals exhibits strong lateral and vertical gradients of scalar irradiance, which are affected by both tissue and skeleton optical properties. Our results imply that zooxanthellae populations inhabit a strongly heterogeneous light environment and highlight the presence of different optical microniches in corals; an important finding for understanding the photobiology, stress response, as well as the phenotypic and genotypic plasticity of coral symbionts.

  16. Coral Reefs: A Gallery Program, Grades 7-12.

    Science.gov (United States)

    National Aquarium in Baltimore, MD. Dept. of Education.

    Gallery classes at the National Aquarium in Baltimore give the opportunity to study specific aquarium exhibits which demonstrate entire natural habitats. The coral reef gallery class features the gigantic western Atlantic coral reef (325,000 gallons) with over 1,000 fish. The exhibit simulates a typical Caribbean coral reef and nearby sandy…

  17. The contribution of microbial biotechnology to mitigating coral reef degradation.

    Science.gov (United States)

    Damjanovic, Katarina; Blackall, Linda L; Webster, Nicole S; van Oppen, Madeleine J H

    2017-09-01

    The decline of coral reefs due to anthropogenic disturbances is having devastating impacts on biodiversity and ecosystem services. Here we highlight the potential and challenges of microbial manipulation strategies to enhance coral tolerance to stress and contribute to coral reef restoration and protection. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Developing a multi-stressor gradient for coral reefs

    Science.gov (United States)

    Coral reefs are often found near coastal waters where multiple anthropogenic stressors co-occur at areas of human disturbance. Developing coral reef biocriteria under the U.S. Clean Water Act requires relationships between anthropogenic stressors and coral reef condition to be es...

  19. 78 FR 67128 - Coral Reef Conservation Program; Meeting

    Science.gov (United States)

    2013-11-08

    ... DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration Coral Reef Conservation Program; Meeting AGENCY: Coral Reef Conservation Program, Office of Ocean and Coastal Resource Management... meeting of the U.S. Coral Reef Task Force (USCRTF). The meeting will be held in Christiansted, U.S. Virgin...

  20. Diseases of corals with particular reference to Indian reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, J.; Raghukumar, C.

    Diseases are one of the factors that change the structure and functioning of coral-reef communities as they cause irreversible damage to the corals Reports on coral diseases describe the etiological agents responsible for the disease and in a few...

  1. Food selectivity and processing by the cold-water coral

    NARCIS (Netherlands)

    Van Oevelen, D.; Mueller, C.E.; Lundälv, T.; Middelburg, J.J.

    2016-01-01

    Cold-water corals form prominent reef ecosystemsalong ocean margins that depend on suspended resourcesproduced in surface waters. In this study, we investigatedfood processing of 13C and 15N labelled bacteria and algaeby the cold-water coral Lophelia pertusa. Coral respiration,tissue incorporation

  2. Coral restoration Bonaire : an evaluation of growth, regeneration and survival

    NARCIS (Netherlands)

    Meesters, H.W.G.; Boomstra, B.; Hurtado-Lopez, N.; Montbrun, A.; Virdis, F.

    2015-01-01

    The Coral restoration of Staghorn (Acropora cervicornis) and Elkhorn (A. palmata) as practiced by the Coral Restoration Foundation Bonaire (CRFB) is shown to be highly successful in terms of growth and survival of new colonies, in both nurseries and transplant locations. Coral restoration is

  3. Nitrogen uptake by phytoplankton and zooxanthellae in a coral atoll

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, M.V.M.; Devassy, V.P.; Slawyk, G.; Goes, J.I.; Jayakumar, D.A.; Rajendran, A.

    by corals, and the rates varied from 223 to 775 ng-at (mg coral tissue) @u-1@@h@u-1@@ in 4 species. Urea excretion forms about 5% of total N excreted. N balance (NH@d4@@, urea, NO@d3@@) calculated from 4 species of corals shows that zooxanthellae can derive...

  4. Patterns of coral species richness and reef connectivity in Malaysia

    NARCIS (Netherlands)

    Waheed, Z.

    2016-01-01

    Much remains to be discovered about the biodiversity of coral reefs in Malaysia, making this area a priority for coral reef research. This thesis aims to provide insights into the patterns of reef coral species richness and the degree of reef connectivity across Malaysia. For the species richness

  5. Larval and Juvenile Ascothoracida (Crustacea) from the Plankton

    OpenAIRE

    Grygier, Mark J.

    1988-01-01

    Two kinds of previously recorded ascothoracid larvae from plankton over coral reefs in Hawaii and the Virgin Islands are redescribed as possible representatives of the Lauridae and Petrarcidae, respectively. A bathyal, tropical Atlantic ascothoracid larva from an epibenthic sled sample cannot confidently be identified to family. A planktonic, juvenile ascothoracidan from the eastern Indian Ocean belongs to the genus Synagoga.

  6. Comparative transcriptomics in the Triticeae

    Directory of Open Access Journals (Sweden)

    Waugh Robbie

    2009-06-01

    Full Text Available Abstract Background Barley and particularly wheat are two grass species of immense agricultural importance. In spite of polyploidization events within the latter, studies have shown that genotypically and phenotypically these species are very closely related and, indeed, fertile hybrids can be created by interbreeding. The advent of two genome-scale Affymetrix GeneChips now allows studies of the comparison of their transcriptomes. Results We have used the Wheat GeneChip to create a "gene expression atlas" for the wheat transcriptome (cv. Chinese Spring. For this, we chose mRNA from a range of tissues and developmental stages closely mirroring a comparable study carried out for barley (cv. Morex using the Barley1 GeneChip. This, together with large-scale clustering of the probesets from the two GeneChips into "homologous groups", has allowed us to perform a genomic-scale comparative study of expression patterns in these two species. We explore the influence of the polyploidy of wheat on the results obtained with the Wheat GeneChip and quantify the correlation between conservation in gene sequence and gene expression in wheat and barley. In addition, we show how the conservation of expression patterns can be used to elucidate, probeset by probeset, the reliability of the Wheat GeneChip. Conclusion While there are many differences in expression on the level of individual genes and tissues, we demonstrate that the wheat and barley transcriptomes appear highly correlated. This finding is significant not only because given small evolutionary distance between the two species it is widely expected, but also because it demonstrates that it is possible to use the two GeneChips for comparative studies. This is the case even though their probeset composition reflects rather different design principles as well as, of course, the present incomplete knowledge of the gene content of the two species. We also show that, in general, the Wheat GeneChip is not able

  7. Remotely Sensing Larval Population Dynamics of Rice Field Anophelines

    Science.gov (United States)

    Beck, Louisa R.; Dister, Sheri W.; Wood, Byron L.; Washino, Robert K.

    1997-01-01

    The primary objective of both studies was to determine if RS and GIS techniques could be used to distinguish between high and low larval-producing rice fields in California. Results of the first study suggested that early-season green-up and proximity to livestock pastures were positively correlated with high larval abundance. Based on the early-season spectral differences between high and low larval-producing fields, it appeared that canopy development and tillering influenced mosquito habitat quality. At that time, rice fields consisted of a mixture of plants and water, a combination that allowed An. freeborni females to lay eggs in partial sunlight, protected from both predators and wind. This established a population earlier in the season than in other, 'less-green' fields where tillering and plant emergence was too minimal for ovipositioning. The study also indicated the importance of the distance that a mosquito would have to fly in order to take a bloodmeal prior to ovipositing. These associations were fully explored in an expanded study two years later. The second study confirmed the positive relationship between early season canopy development and larval abundance, and also demonstrated the relationship between abundance and distance-to-pasture. The association between greenness (as measured using NDVI), distance-to-pasture, and abundance is illustrated. The second study also indicated the siginificance of the landscape context of rice fields for larval production. Fields that included opportunities for feeding and resting within the flight range of the mosquito had higher abundances than did fields that were in a homogeneous rice area.

  8. Fitness consequences of larval exposure to Beauveria bassiana on adults of the malaria vector Anopheles stephensi.

    Science.gov (United States)

    Vogels, Chantal B F; Bukhari, Tullu; Koenraadt, Constantianus J M

    2014-06-01

    Entomopathogenic fungi have shown to be effective in biological control of both larval and adult stages of malaria mosquitoes. However, a small fraction of mosquitoes is still able to emerge after treatment with fungus during the larval stage. It remains unclear whether fitness of these adults is affected by the treatment during the larval stage and whether they are still susceptible for another treatment during the adult stage. Therefore, we tested the effects of larval exposure to the entomopathogenic fungus Beauveria bassiana on fitness of surviving Anopheles stephensi females. Furthermore, we tested whether larval exposed females were still susceptible to re-exposure to the fungus during the adult stage. Sex ratio, survival and reproductive success were compared between non-exposed and larval exposed A. stephensi. Comparisons were also made between survival of non-exposed and larval exposed females that were re-exposed to B. bassiana during the adult stage. Larval treatment did not affect sex ratio of emerging mosquitoes. Larval exposed females that were infected died significantly faster and laid equal numbers of eggs from which equal numbers of larvae hatched, compared to non-exposed females. Larval exposed females that were uninfected had equal survival, but laid a significantly larger number of eggs from which a significantly higher number of larvae hatched, compared to non-exposed females. Larval exposed females which were re-exposed to B. bassiana during the adult stage had equal survival as females exposed only during the adult stage. Our results suggest that individual consequences for fitness of larval exposed females depended on whether a fungal infection was acquired during the larval stage. Larval exposed females remained susceptible to re-exposure with B. bassiana during the adult stage, indicating that larval and adult control of malaria mosquitoes with EF are compatible. Copyright © 2014. Published by Elsevier Inc.

  9. Food selection in larval fruit flies: dynamics and effects on larval development

    Science.gov (United States)

    Schwarz, Sebastian; Durisko, Zachary; Dukas, Reuven

    2014-01-01

    Selecting food items and attaining a nutritionally balanced diet is an important challenge for all animals including humans. We aimed to establish fruit fly larvae ( Drosophila melanogaster) as a simple yet powerful model system for examining the mechanisms of specific hunger and diet selection. In two lab experiments with artificial diets, we found that larvae deprived of either sucrose or protein later selectively fed on a diet providing the missing nutrient. When allowed to freely move between two adjacent food patches, larvae surprisingly preferred to settle on one patch containing yeast and ignored the patch providing sucrose. Moreover, when allowed to move freely between three patches, which provided either yeast only, sucrose only or a balanced mixture of yeast and sucrose, the majority of larvae settled on the yeast-plus-sucrose patch and about one third chose to feed on the yeast only food. While protein (yeast) is essential for development, we also quantified larval success on diets with or without sucrose and show that larvae develop faster on diets containing sucrose. Our data suggest that fruit fly larvae can quickly assess major nutrients in food and seek a diet providing a missing nutrient. The larvae, however, probably prefer to quickly dig into a single food substrate for enhanced protection over achieving an optimal diet.

  10. The reproductive biology and early life ecology of a common Caribbean brain coral, Diploria labyrinthiformis (Scleractinia: Faviinae)

    Science.go