WorldWideScience

Sample records for coral acropora millepora

  1. The skeleton of the staghorn coral Acropora millepora: molecular and structural characterization

    NARCIS (Netherlands)

    Ramos-Silva, P.; Kaandorp, J.; Herbst, F.; Plasseraud, L.; Alcaraz, G.; Stern, C.; Corneillat, M.; Guichard, N.; Durlet, C.; Luquet, G.; Marin, F.

    2014-01-01

    The scleractinian coral Acropora millepora is one of the most studied species from the Great Barrier Reef. This species has been used to understand evolutionary, immune and developmental processes in cnidarians. It has also been subject of several ecological studies in order to elucidate reef respon

  2. Microarray analysis reveals transcriptional plasticity in the reef building coral Acropora millepora

    DEFF Research Database (Denmark)

    Bay, L. K.; Ulstrup, K. E.; Nielsen, H. B.

    2009-01-01

    We investigated variation in transcript abundance in the scleractinian coral, Acropora millepora, within and between populations characteristically exposed to different turbidity regimes and hence different levels of light and suspended particulate matter. We examined phenotypic plasticity...... exclusively downregulated; however, green fluorescent protein levels remained unchanged following translocation. Photophysiological responses of corals from both locations were characterized by a decline when introduced to the common laboratory environment but remained healthy (F-v/F-m > 0.6). Declines...... in total lipid content following translocation were the greatest for inshore corals, suggesting that turbid water corals have a strong reliance on heterotrophic feeding....

  3. Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora

    OpenAIRE

    Miller David J; Hayward David C; Lin Zhiyi; Reyes-Bermudez Alejandro; Ball Eldon E

    2009-01-01

    Abstract Background The coral skeleton consists of CaCO3 deposited upon an organic matrix primarily as aragonite. Currently galaxin, from Galaxea fascicularis, is the only soluble protein component of the organic matrix that has been characterized from a coral. Three genes related to galaxin were identified in the coral Acropora millepora. Results One of the Acropora genes (Amgalaxin) encodes a clear galaxin ortholog, while the others (Amgalaxin-like 1 and Amgalaxin-like 2) encode larger and ...

  4. The skeleton of the staghorn coral Acropora millepora: molecular and structural characterization.

    Directory of Open Access Journals (Sweden)

    Paula Ramos-Silva

    Full Text Available The scleractinian coral Acropora millepora is one of the most studied species from the Great Barrier Reef. This species has been used to understand evolutionary, immune and developmental processes in cnidarians. It has also been subject of several ecological studies in order to elucidate reef responses to environmental changes such as temperature rise and ocean acidification (OA. In these contexts, several nucleic acid resources were made available. When combined to a recent proteomic analysis of the coral skeletal organic matrix (SOM, they enabled the identification of several skeletal matrix proteins, making A. millepora into an emerging model for biomineralization studies. Here we describe the skeletal microstructure of A. millepora skeleton, together with a functional and biochemical characterization of its occluded SOM that focuses on the protein and saccharidic moieties. The skeletal matrix proteins show a large range of isoelectric points, compositional patterns and signatures. Besides secreted proteins, there are a significant number of proteins with membrane attachment sites such as transmembrane domains and GPI anchors as well as proteins with integrin binding sites. These features show that the skeletal proteins must have strong adhesion properties in order to function in the calcifying space. Moreover this data suggest a molecular connection between the calcifying epithelium and the skeletal tissue during biocalcification. In terms of sugar moieties, the enrichment of the SOM in arabinose is striking, and the monosaccharide composition exhibits the same signature as that of mucus of acroporid corals. Finally, we observe that the interaction of the acetic acid soluble SOM on the morphology of in vitro grown CaCO3 crystals is very pronounced when compared with the calcifying matrices of some mollusks. In light of these results, we wish to commend Acropora millepora as a model for biocalcification studies in scleractinians, from

  5. The skeleton of the staghorn coral Acropora millepora: molecular and structural characterization.

    Science.gov (United States)

    Ramos-Silva, Paula; Kaandorp, Jaap; Herbst, Frédéric; Plasseraud, Laurent; Alcaraz, Gérard; Stern, Christine; Corneillat, Marion; Guichard, Nathalie; Durlet, Christophe; Luquet, Gilles; Marin, Frédéric

    2014-01-01

    The scleractinian coral Acropora millepora is one of the most studied species from the Great Barrier Reef. This species has been used to understand evolutionary, immune and developmental processes in cnidarians. It has also been subject of several ecological studies in order to elucidate reef responses to environmental changes such as temperature rise and ocean acidification (OA). In these contexts, several nucleic acid resources were made available. When combined to a recent proteomic analysis of the coral skeletal organic matrix (SOM), they enabled the identification of several skeletal matrix proteins, making A. millepora into an emerging model for biomineralization studies. Here we describe the skeletal microstructure of A. millepora skeleton, together with a functional and biochemical characterization of its occluded SOM that focuses on the protein and saccharidic moieties. The skeletal matrix proteins show a large range of isoelectric points, compositional patterns and signatures. Besides secreted proteins, there are a significant number of proteins with membrane attachment sites such as transmembrane domains and GPI anchors as well as proteins with integrin binding sites. These features show that the skeletal proteins must have strong adhesion properties in order to function in the calcifying space. Moreover this data suggest a molecular connection between the calcifying epithelium and the skeletal tissue during biocalcification. In terms of sugar moieties, the enrichment of the SOM in arabinose is striking, and the monosaccharide composition exhibits the same signature as that of mucus of acroporid corals. Finally, we observe that the interaction of the acetic acid soluble SOM on the morphology of in vitro grown CaCO3 crystals is very pronounced when compared with the calcifying matrices of some mollusks. In light of these results, we wish to commend Acropora millepora as a model for biocalcification studies in scleractinians, from molecular and structural

  6. Expression of putative immune response genes during early ontogeny in the coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Eneour Puill-Stephan

    Full Text Available BACKGROUND: Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. METHODOLOGY/PRINCIPAL FINDINGS: Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR. Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria during winnowing processes as symbioses are fine-tuned. CONCLUSIONS/SIGNIFICANCE: Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies

  7. Gene expression patterns of the coral Acropora millepora in response to contact with macroalgae

    Science.gov (United States)

    Shearer, T. L.; Rasher, D. B.; Snell, T. W.; Hay, M. E.

    2012-12-01

    Contact with macroalgae often causes coral mortality, but the roles of abrasion versus shading versus allelopathy in these interactions are rarely clear, and effects on gene expression are unknown. Identification of gene expression changes within corals in response to contact with macroalgae can provide insight into the mode of action of allelochemicals, as well as reveal transcriptional strategies of the coral that mitigate damage from this competitive interaction, enabling the coral to survive. Gene expression responses of the coral Acropora millepora after long-term (20 days) direct contact with macroalgae ( Chlorodesmis fastigiata, Dictyota bartayresiana, Galaxaura filamentosa, and Turbinaria conoides) and short-term (1 and 24 h) exposure to C. fastigiata thalli and their hydrophobic extract were assessed. After 20 days of exposure, T. conoides thalli elicited no significant change in visual bleaching or zooxanthellae PSII quantum yield within A. millepora nubbins, but stimulated the greatest alteration in gene expression of all treatments. Chlorodesmis fastigiata, D. bartayresiana, and G. filamentosa caused significant visual bleaching of coral nubbins and reduced the PSII quantum yield of associated zooxanthellae after 20 days, but elicited fewer changes in gene expression relative to T. conoides at day 20. To evaluate initial molecular processes leading to reduction of zooxanthella PSII quantum yield, visual bleaching, and coral death, short-term exposures to C. fastigiata thalli and hydrophobic extracts were conducted; these interactions revealed protein degradation and significant changes in catalytic and metabolic activity within 24 h of contact. These molecular responses are consistent with the hypothesis that allelopathic interactions lead to alteration of signal transduction and an imbalance between reactive oxidant species production and antioxidant capabilities within the coral holobiont. This oxidative imbalance results in rapid protein degradation

  8. Unexpected complexity of the Reef-Building Coral Acropora millepora transcription factor network

    Directory of Open Access Journals (Sweden)

    Ravasi Timothy

    2011-04-01

    Full Text Available Abstract Background Coral reefs are disturbed on a global scale by environmental changes including rising sea surface temperatures and ocean acidification. Little is known about how corals respond or adapt to these environmental changes especially at the molecular level. This is mostly because of the paucity of genome-wide studies on corals and the application of systems approaches that incorporate the latter. Like in any other organism, the response of corals to stress is tightly controlled by the coordinated interplay of many transcription factors. Results Here, we develop and apply a new system-wide approach in order to infer combinatorial transcription factor networks of the reef-building coral Acropora millepora. By integrating sequencing-derived transcriptome measurements, a network of physically interacting transcription factors, and phylogenetic network footprinting we were able to infer such a network. Analysis of the network across a phylogenetically broad sample of five species, including human, reveals that despite the apparent simplicity of corals, their transcription factors repertoire and interaction networks seem to be largely conserved. In addition, we were able to identify interactions among transcription factors that appear to be species-specific lending strength to the novel concept of "Taxonomically Restricted Interactions". Conclusions This study provides the first look at transcription factor networks in corals. We identified a transcription factor repertoire encoded by the coral genome and found consistencies of the domain architectures of transcription factors and conserved regulatory subnetworks across eumetazoan species, providing insight into how regulatory networks have evolved.

  9. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium.

    Directory of Open Access Journals (Sweden)

    Jan Tebben

    Full Text Available The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora. The metamorphic cue was identified as tetrabromopyrrole (TBP in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm(-2 in laboratory assays, which is on the order of 0.1-1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae.

  10. Induction of larval metamorphosis of the coral Acropora millepora by tetrabromopyrrole isolated from a Pseudoalteromonas bacterium.

    Science.gov (United States)

    Tebben, Jan; Tapiolas, Dianne M; Motti, Cherie A; Abrego, David; Negri, Andrew P; Blackall, Linda L; Steinberg, Peter D; Harder, Tilmann

    2011-04-29

    The induction of larval attachment and metamorphosis of benthic marine invertebrates is widely considered to rely on habitat specific cues. While microbial biofilms on marine hard substrates have received considerable attention as specific signals for a wide and phylogenetically diverse array of marine invertebrates, the presumed chemical settlement signals produced by the bacteria have to date not been characterized. Here we isolated and fully characterized the first chemical signal from bacteria that induced larval metamorphosis of acroporid coral larvae (Acropora millepora). The metamorphic cue was identified as tetrabromopyrrole (TBP) in four bacterial Pseudoalteromonas strains among a culture library of 225 isolates obtained from the crustose coralline algae Neogoniolithon fosliei and Hydrolithon onkodes. Coral planulae transformed into fully developed polyps within 6 h, but only a small proportion of these polyps attached to the substratum. The biofilm cell density of the four bacterial strains had no influence on the ratio of attached vs. non-attached polyps. Larval bioassays with ethanolic extracts of the bacterial isolates, as well as synthetic TBP resulted in consistent responses of coral planulae to various doses of TBP. The lowest bacterial density of one of the Pseudoalteromonas strains which induced metamorphosis was 7,000 cells mm(-2) in laboratory assays, which is on the order of 0.1-1% of the total numbers of bacteria typically found on such surfaces. These results, in which an actual cue from bacteria has been characterized for the first time, contribute significantly towards understanding the complex process of acroporid coral larval settlement mediated through epibiotic microbial biofilms on crustose coralline algae.

  11. Settlement patterns of the coral Acropora millepora on sediment-laden surfaces.

    Science.gov (United States)

    Ricardo, Gerard F; Jones, Ross J; Nordborg, Mikaela; Negri, Andrew P

    2017-07-24

    Successful recruitment in corals is important for the sustenance of coral reefs, and is considered a demographic bottleneck in the recovery of reef populations following disturbance events. Yet several factors influence larval settlement behaviour, and here we quantified thresholds associated with light attenuation and accumulated sediments on settlement substrates. Sediments deposited on calcareous red algae (CRA) directly and indirectly impacted coral settlement patterns. Although not avoiding direct contact, Acropora millepora larvae were very reluctant to settle on surfaces layered with sediments, progressively shifting their settlement preference from upward to downward facing (sediment-free) surfaces under increasing levels of deposited sediment. When only upward-facing surfaces were presented, 10% of settlement was inhibited at thresholds from 0.9 to 16mgcm(-2) (EC10), regardless of sediment type (carbonate and siliciclastic) or particle size (fine and coarse silt). These levels equate to a very thin (<150μm) veneer of sediment that occurs within background levels on reefs. Grooves within settlement surfaces slightly improved options for settlement on sediment-coated surfaces (EC10: 29mgcm(-2)), but were quickly infilled at higher deposited sediment levels. CRA that was temporarily smothered by sediment for 6d became bleached (53% surface area), and inhibited settlement at ~7mgcm(-2) (EC10). A minor decrease in settlement was observed at high and very low light intensities when using suboptimal concentrations of a settlement inducer (CRA extract); however, no inhibition was observed when natural CRA surfaces along with more realistic diel-light patterns were applied. The low deposited sediment thresholds indicate that even a thin veneer of sediment can have consequences for larval settlement due to a reduction of optimal substrate. And while grooves and overhangs provide more settlement options in high deposition areas, recruits settling at these locations

  12. Lunar Phase Modulates Circadian Gene Expression Cycles in the Broadcast Spawning Coral Acropora millepora.

    Science.gov (United States)

    Brady, Aisling K; Willis, Bette L; Harder, Lawrence D; Vize, Peter D

    2016-04-01

    Many broadcast spawning corals in multiple reef regions release their gametes with incredible temporal precision just once per year, using the lunar cycle to set the night of spawning. Moonlight, rather than tides or other lunar-regulated processes, is thought to be the proximate factor responsible for linking the night of spawning to the phase of the Moon. We compared patterns of gene expression among colonies of the broadcast spawning coral Acropora millepora at different phases of the lunar cycle, and when they were maintained under one of three experimentally simulated lunar lighting treatments: i) lunar lighting conditions matching those on the reef, or lunar patterns mimicking either ii) constant full Moon conditions, or iii) constant new Moon conditions. Normal lunar illumination was found to shift both the level and timing of clock gene transcription cycles between new and full moons, with the peak hour of expression for a number of genes occurring earlier in the evening under a new Moon when compared to a full Moon. When the normal lunar cycle is replaced with nighttime patterns equivalent to either a full Moon or a new Moon every evening, the normal monthlong changes in the level of expression are destroyed for most genes. In combination, these results indicate that daily changes in moonlight that occur over the lunar cycle are essential for maintaining normal lunar periodicity of clock gene transcription, and this may play a role in regulating spawn timing. These data also show that low levels of light pollution may have an impact on coral biological clocks.

  13. Chimerism in wild adult populations of the broadcast spawning coral Acropora millepora on the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Eneour Puill-Stephan

    Full Text Available BACKGROUND: Chimeras are organisms containing tissues or cells of two or more genetically distinct individuals, and are known to exist in at least nine phyla of protists, plants, and animals. Although widespread and common in marine invertebrates, the extent of chimerism in wild populations of reef corals is unknown. METHODOLOGY/PRINCIPAL FINDINGS: The extent of chimerism was explored within two populations of a common coral, Acropora millepora, on the Great Barrier Reef, Australia, by using up to 12 polymorphic DNA microsatellite loci. At least 2% and 5% of Magnetic Island and Pelorus Island populations of A. millepora, respectively, were found to be chimeras (3% overall, based on conservative estimates. A slightly less conservative estimate indicated that 5% of colonies in each population were chimeras. These values are likely to be vast underestimates of the true extent of chimerism, as our sampling protocol was restricted to a maximum of eight branches per colony, while most colonies consist of hundreds of branches. Genotypes within chimeric corals showed high relatedness, indicating that genetic similarity is a prerequisite for long-term acceptance of non-self genotypes within coral colonies. CONCLUSIONS/SIGNIFICANCE: While some brooding corals have been shown to form genetic chimeras in their early life history stages under experimental conditions, this study provides the first genetic evidence of the occurrence of coral chimeras in the wild and of chimerism in a broadcast spawning species. We hypothesize that chimerism is more widespread in corals than previously thought, and suggest that this has important implications for their resilience, potentially enhancing their capacity to compete for space and respond to stressors such as pathogen infection.

  14. Sox genes in the coral Acropora millepora: divergent expression patterns reflect differences in developmental mechanisms within the Anthozoa.

    Science.gov (United States)

    Shinzato, Chuya; Iguchi, Akira; Hayward, David C; Technau, Ulrich; Ball, Eldon E; Miller, David J

    2008-11-12

    Sox genes encode transcription factors that function in a wide range of developmental processes across the animal kingdom. To better understand both the evolution of the Sox family and the roles of these genes in cnidarians, we are studying the Sox gene complement of the coral, Acropora millepora (Class Anthozoa). Based on overall domain structures and HMG box sequences, the Acropora Sox genes considered here clearly fall into four of the five major Sox classes. AmSoxC is expressed in the ectoderm during development, in cells whose morphology is consistent with their assignment as sensory neurons. The expression pattern of the Nematostella ortholog of this gene is broadly similar to that of AmSoxC, but there are subtle differences--for example, expression begins significantly earlier in Acropora than in Nematostella. During gastrulation, AmSoxBb and AmSoxB1 transcripts are detected only in the presumptive ectoderm while AmSoxE1 transcription is restricted to the presumptive endoderm, suggesting that these Sox genes might play roles in germ layer specification. A third type B Sox gene, AmSoxBa, and a Sox F gene AmSoxF also have complex and specific expression patterns during early development. Each of these genes has a clear Nematostella ortholog, but in several cases the expression pattern observed in Acropora differs significantly from that reported in Nematostella. These differences in expression patterns between Acropora and Nematostella largely reflect fundamental differences in developmental processes, underscoring the diversity of mechanisms within the anthozoan Sub-Class Hexacorallia (Zoantharia).

  15. Primary Life Stage Boron Isotope and Trace Elements Incorporation in Aposymbiotic Acropora millepora Coral under Ocean Acidification and Warming

    Directory of Open Access Journals (Sweden)

    Henry C. Wu

    2017-05-01

    Full Text Available Early-life stages of reef-building corals are vital to coral existence and reef maintenance. It is therefore crucial to study juvenile coral response to future climate change pressures. Moreover, corals are known to be reliable recorders of environmental conditions in their skeletal materials. Aposymbiotic Acropora millepora larvae were cultured in different seawater temperature (27 and 29°C and pCO2 (390 and 750 μatm conditions to understand the impacts of “end of century” ocean acidification (OA and ocean warming (OW conditions on skeletal morphology and geochemistry. The experimental conditions impacted primary polyp juvenile coral skeletal morphology and growth resulting in asymmetric translucent appearances with brittle skeleton features. The impact of OA resulted in microstructure differences with decreased precipitation or lengthening of fasciculi and disorganized aragonite crystals that led to more concentrations of centers of calcifications. The coral skeletal δ11B composition measured by laser ablation MC-ICP-MS was significantly affected by pCO2 (p = 0.0024 and water temperature (p = 1.46 × 10−5. Reconstructed pH of the primary polyp skeleton using the δ11B proxy suggests a difference in coral calcification site and seawater pH consistent with previously observed coral pH up-regulation. Similarly, trace element results measured by laser ablation ICP-MS indicate the impact of pCO2. Primary polyp juvenile Sr/Ca ratio indicates a bias in reconstructed sea surface temperature (SST under higher pCO2 conditions. Coral microstructure content changes (center of calcification and fasciculi due to OA possibly contributed to the variability in B/Ca ratios. Our results imply that increasing OA and OW may lead to coral acclimation issues and species-specific inaccuracies of the commonly used Sr/Ca-SST proxy.

  16. Gene expression patterns during the early stages of chemically induced larval metamorphosis and settlement of the coral Acropora millepora.

    Science.gov (United States)

    Siboni, Nachshon; Abrego, David; Motti, Cherie A; Tebben, Jan; Harder, Tilmann

    2014-01-01

    The morphogenetic transition of motile coral larvae into sessile primary polyps is triggered and genetically programmed upon exposure to environmental biomaterials, such as crustose coralline algae (CCA) and bacterial biofilms. Although the specific chemical cues that trigger coral larval morphogenesis are poorly understood there is much more information available on the genes that play a role in this early life phase. Putative chemical cues from natural biomaterials yielded defined chemical samples that triggered different morphogenetic outcomes: an extract derived from a CCA-associated Pseudoalteromonas bacterium that induced metamorphosis, characterized by non-attached metamorphosed juveniles; and two fractions of the CCA Hydrolithon onkodes (Heydrich) that induced settlement, characterized by attached metamorphosed juveniles. In an effort to distinguish the genes involved in these two morphogenetic transitions, competent larvae of the coral Acropora millepora were exposed to these predictable cues and the expression profiles of 47 coral genes of interest (GOI) were investigated after only 1 hour of exposure using multiplex RT-qPCR. Thirty-two GOI were differentially expressed, indicating a putative role during the early regulation of morphogenesis. The most striking differences were observed for immunity-related genes, hypothesized to be involved in cell recognition and adhesion, and for fluorescent protein genes. Principal component analysis of gene expression profiles resulted in separation between the different morphogenetic cues and exposure times, and not only identified those genes involved in the early response but also those which influenced downstream biological changes leading to larval metamorphosis or settlement.

  17. Gene expression patterns during the early stages of chemically induced larval metamorphosis and settlement of the coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Nachshon Siboni

    Full Text Available The morphogenetic transition of motile coral larvae into sessile primary polyps is triggered and genetically programmed upon exposure to environmental biomaterials, such as crustose coralline algae (CCA and bacterial biofilms. Although the specific chemical cues that trigger coral larval morphogenesis are poorly understood there is much more information available on the genes that play a role in this early life phase. Putative chemical cues from natural biomaterials yielded defined chemical samples that triggered different morphogenetic outcomes: an extract derived from a CCA-associated Pseudoalteromonas bacterium that induced metamorphosis, characterized by non-attached metamorphosed juveniles; and two fractions of the CCA Hydrolithon onkodes (Heydrich that induced settlement, characterized by attached metamorphosed juveniles. In an effort to distinguish the genes involved in these two morphogenetic transitions, competent larvae of the coral Acropora millepora were exposed to these predictable cues and the expression profiles of 47 coral genes of interest (GOI were investigated after only 1 hour of exposure using multiplex RT-qPCR. Thirty-two GOI were differentially expressed, indicating a putative role during the early regulation of morphogenesis. The most striking differences were observed for immunity-related genes, hypothesized to be involved in cell recognition and adhesion, and for fluorescent protein genes. Principal component analysis of gene expression profiles resulted in separation between the different morphogenetic cues and exposure times, and not only identified those genes involved in the early response but also those which influenced downstream biological changes leading to larval metamorphosis or settlement.

  18. Regulation of apoptotic mediators reveals dynamic responses to thermal stress in the reef building coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Mathieu Pernice

    Full Text Available BACKGROUND: Mass coral bleaching is increasing in scale and frequency across the world's coral reefs and is being driven primarily by increased levels of thermal stress arising from global warming. In order to understand the impacts of projected climate change upon corals reefs, it is important to elucidate the underlying cellular mechanisms that operate during coral bleaching and subsequent mortality. In this respect, increased apoptotic cell death activity is an important cellular process that is associated with the breakdown of the mutualistic symbiosis between the cnidarian host and their dinoflagellate symbionts. METHODOLOGY/PRINCIPAL FINDINGS: The PRESENT study reports the impacts of different stressors (colchicine and heat stress on three phases of apoptosis: (i the potential initiation by differential expression of Bcl-2 members, (ii the execution of apoptotic events by activation of caspase 3-like proteases and (iii and finally, the cell disposal indicated by DNA fragmentation in the reef building coral Acropora millepora. In corals incubated with colchicine, an increase in caspase 3-like activity and DNA fragmentation was associated with a relative down-regulation of Bcl-2, suggesting that the initiation of apoptosis may be mediated by the suppression of an anti-apoptotic mechanism. In contrast, in the early steps of heat stress, the induction of caspase-dependent apoptosis was related to a relative up-regulation of Bcl-2 consecutively followed by a delayed decrease in apoptosis activity. CONCLUSIONS/SIGNIFICANCE: In the light of these results, we propose a model of heat stress in coral hosts whereby increasing temperatures engage activation of caspase 3-dependent apoptosis in cells designated for termination, but also the onset of a delayed protective response involving overexpression of Bcl-2 in surviving cells. This mitigating response to thermal stress could conceivably be an important regulatory mechanism for cell survival in

  19. Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora

    Directory of Open Access Journals (Sweden)

    Miller David J

    2009-07-01

    Full Text Available Abstract Background The coral skeleton consists of CaCO3 deposited upon an organic matrix primarily as aragonite. Currently galaxin, from Galaxea fascicularis, is the only soluble protein component of the organic matrix that has been characterized from a coral. Three genes related to galaxin were identified in the coral Acropora millepora. Results One of the Acropora genes (Amgalaxin encodes a clear galaxin ortholog, while the others (Amgalaxin-like 1 and Amgalaxin-like 2 encode larger and more divergent proteins. All three proteins are predicted to be extracellular and share common structural features, most notably the presence of repetitive motifs containing dicysteine residues. In situ hybridization reveals distinct, but partially overlapping, spatial expression of the genes in patterns consistent with distinct roles in calcification. Both of the Amgalaxin-like genes are expressed exclusively in the early stages of calcification, while Amgalaxin continues to be expressed in the adult, consistent with the situation in the coral Galaxea. Conclusion Comparisons with molluscs suggest functional convergence in the two groups; lustrin A/pearlin proteins may be the mollusc counterparts of galaxin, whereas the galaxin-like proteins combine characteristics of two distinct proteins involved in mollusc calcification. Database searches indicate that, although sequences with high similarity to the galaxins are restricted to the Scleractinia, more divergent members of this protein family are present in other cnidarians and some other metazoans. We suggest that ancestral galaxins may have been secondarily recruited to roles in calcification in the Triassic, when the Scleractinia first appeared. Understanding the evolution of the broader galaxin family will require wider sampling and expression analysis in a range of cnidarians and other animals.

  20. The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling.

    Science.gov (United States)

    Ramos-Silva, Paula; Kaandorp, Jaap; Huisman, Lotte; Marie, Benjamin; Zanella-Cléon, Isabelle; Guichard, Nathalie; Miller, David J; Marin, Frédéric

    2013-09-01

    In corals, biocalcification is a major function that may be drastically affected by ocean acidification (OA). Scleractinian corals grow by building up aragonitic exoskeletons that provide support and protection for soft tissues. Although this process has been extensively studied, the molecular basis of biocalcification is poorly understood. Notably lacking is a comprehensive catalog of the skeleton-occluded proteins-the skeletal organic matrix proteins (SOMPs) that are thought to regulate the mineral deposition. Using a combination of proteomics and transcriptomics, we report the first survey of such proteins in the staghorn coral Acropora millepora. The organic matrix (OM) extracted from the coral skeleton was analyzed by mass spectrometry and bioinformatics, enabling the identification of 36 SOMPs. These results provide novel insights into the molecular basis of coral calcification and the macroevolution of metazoan calcifying systems, whereas establishing a platform for studying the impact of OA at molecular level. Besides secreted proteins, extracellular regions of transmembrane proteins are also present, suggesting a close control of aragonite deposition by the calicoblastic epithelium. In addition to the expected SOMPs (Asp/Glu-rich, galaxins), the skeletal repertoire included several proteins containing known extracellular matrix domains. From an evolutionary perspective, the number of coral-specific proteins is low, many SOMPs having counterparts in the noncalcifying cnidarians. Extending the comparison with the skeletal OM proteomes of other metazoans allowed the identification of a pool of functional domains shared between phyla. These data suggest that co-option and domain shuffling may be general mechanisms by which the trait of calcification has evolved.

  1. The Skeletal Proteome of the Coral Acropora millepora: The Evolution of Calcification by Co-Option and Domain Shuffling

    Science.gov (United States)

    Ramos-Silva, Paula; Kaandorp, Jaap; Huisman, Lotte; Marie, Benjamin; Zanella-Cléon, Isabelle; Guichard, Nathalie; Miller, David J.; Marin, Frédéric

    2013-01-01

    In corals, biocalcification is a major function that may be drastically affected by ocean acidification (OA). Scleractinian corals grow by building up aragonitic exoskeletons that provide support and protection for soft tissues. Although this process has been extensively studied, the molecular basis of biocalcification is poorly understood. Notably lacking is a comprehensive catalog of the skeleton-occluded proteins—the skeletal organic matrix proteins (SOMPs) that are thought to regulate the mineral deposition. Using a combination of proteomics and transcriptomics, we report the first survey of such proteins in the staghorn coral Acropora millepora. The organic matrix (OM) extracted from the coral skeleton was analyzed by mass spectrometry and bioinformatics, enabling the identification of 36 SOMPs. These results provide novel insights into the molecular basis of coral calcification and the macroevolution of metazoan calcifying systems, whereas establishing a platform for studying the impact of OA at molecular level. Besides secreted proteins, extracellular regions of transmembrane proteins are also present, suggesting a close control of aragonite deposition by the calicoblastic epithelium. In addition to the expected SOMPs (Asp/Glu-rich, galaxins), the skeletal repertoire included several proteins containing known extracellular matrix domains. From an evolutionary perspective, the number of coral-specific proteins is low, many SOMPs having counterparts in the noncalcifying cnidarians. Extending the comparison with the skeletal OM proteomes of other metazoans allowed the identification of a pool of functional domains shared between phyla. These data suggest that co-option and domain shuffling may be general mechanisms by which the trait of calcification has evolved. PMID:23765379

  2. Host Coenzyme Q Redox State Is an Early Biomarker of Thermal Stress in the Coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Adrian Lutz

    Full Text Available Bleaching episodes caused by increasing seawater temperatures may induce mass coral mortality and are regarded as one of the biggest threats to coral reef ecosystems worldwide. The current consensus is that this phenomenon results from enhanced production of harmful reactive oxygen species (ROS that disrupt the symbiosis between corals and their endosymbiotic dinoflagellates, Symbiodinium. Here, the responses of two important antioxidant defence components, the host coenzyme Q (CoQ and symbiont plastoquinone (PQ pools, are investigated for the first time in colonies of the scleractinian coral, Acropora millepora, during experimentally-induced bleaching under ecologically relevant conditions. Liquid chromatography-mass spectrometry (LC-MS was used to quantify the states of these two pools, together with physiological parameters assessing the general state of the symbiosis (including photosystem II photochemical efficiency, chlorophyll concentration and Symbiodinium cell densities. The results show that the responses of the two antioxidant systems occur on different timescales: (i the redox state of the Symbiodinium PQ pool remained stable until twelve days into the experiment, after which there was an abrupt oxidative shift; (ii by contrast, an oxidative shift of approximately 10% had occurred in the host CoQ pool after 6 days of thermal stress, prior to significant changes in any other physiological parameter measured. Host CoQ pool oxidation is thus an early biomarker of thermal stress in corals, and this antioxidant pool is likely to play a key role in quenching thermally-induced ROS in the coral-algal symbiosis. This study adds to a growing body of work that indicates host cellular responses may precede the bleaching process and symbiont dysfunction.

  3. Symbiodinium identity alters the temperature-dependent settlement behaviour of Acropora millepora coral larvae before the onset of symbiosis.

    Science.gov (United States)

    Winkler, Natalia S; Pandolfi, John M; Sampayo, Eugenia M

    2015-02-22

    The global distribution of marine species, many of which disperse during the larval stages, is influenced by ocean temperature regimes. Here, we test how temperature and the coral symbionts (Symbiodinium) affect survival, symbiont uptake, settlement success and habitat choice of Acropora millepora larvae. Experiments were conducted at Heron Island (Australia), where larvae were exposed to 22.5, 24.5, 26.5 and 28.5°C. Within each temperature treatment, larvae were offered symbionts with distinct characteristics: (i) homologous Symbiodinium type C3, (ii) regionally homologous thermo-tolerant type D1, and (iii) heterologous thermo-tolerant type C15, as well as controls of (iv) un-filtered and (v) filtered seawater. Results show that lower instead of higher temperatures adversely affected recruitment by reducing larval survival and settlement. Low temperatures also reduced recruit habitat choice and initial symbiont densities, both of which impact on post-settlement survival. At lower temperatures, larvae increasingly settle away from preferred vertical surfaces and not on crustose coralline algae (CCA). Surprisingly, substrate preference to CCA was modified by the presence of specific symbiont genotypes that were present ex-hospite (outside the coral larvae). When different symbionts were mixed, the outcomes were non-additive, indicating that symbiont interactions modify the response. We propose that the observed influence of ex-hospite symbionts on settlement behaviour may have evolved through ecological facilitation and the study highlights the importance of biological processes during coral settlement. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Unexpected complexity of the reef-building coral Acropora millepora transcription factor network.

    KAUST Repository

    Ryu, Tae Woo

    2011-04-28

    Coral reefs are disturbed on a global scale by environmental changes including rising sea surface temperatures and ocean acidification. Little is known about how corals respond or adapt to these environmental changes especially at the molecular level. This is mostly because of the paucity of genome-wide studies on corals and the application of systems approaches that incorporate the latter. Like in any other organism, the response of corals to stress is tightly controlled by the coordinated interplay of many transcription factors.

  5. Gene expression signatures of energetic acclimatisation in the reef building coral Acropora millepora.

    Directory of Open Access Journals (Sweden)

    Line K Bay

    Full Text Available BACKGROUND: Understanding the mechanisms by which natural populations cope with environmental stress is paramount to predict their persistence in the face of escalating anthropogenic impacts. Reef-building corals are increasingly exposed to local and global stressors that alter nutritional status causing reduced fitness and mortality, however, these responses can vary considerably across species and populations. METHODOLOGY/PRINCIPAL FINDINGS: We compare the expression of 22 coral host genes in individuals from an inshore and an offshore reef location using quantitative Reverse Transcription-PCR (qRT-PCR over the course of 26 days following translocation into a shaded, filtered seawater environment. Declines in lipid content and PSII activity of the algal endosymbionts (Symbiodinium ITS-1 type C2 over the course of the experiment indicated that heterotrophic uptake and photosynthesis were limited, creating nutritional deprivation conditions. Regulation of coral host genes involved in metabolism, CO2 transport and oxidative stress could be detected already after five days, whereas PSII activity took twice as long to respond. Opposing expression trajectories of Tgl, which releases fatty acids from the triacylglycerol storage, and Dgat1, which catalyses the formation of triglycerides, indicate that the decline in lipid content can be attributed, at least in part, by mobilisation of triacylglycerol stores. Corals from the inshore location had initially higher lipid content and showed consistently elevated expression levels of two genes involved in metabolism (aldehyde dehydrogenase and calcification (carbonic anhydrase. CONCLUSIONS/SIGNIFICANCE: Coral host gene expression adjusts rapidly upon change in nutritional conditions, and therefore can serve as an early signature of imminent coral stress. Consistent gene expression differences between populations indicate that corals acclimatize and/or adapt to local environments. Our results set the stage

  6. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    Directory of Open Access Journals (Sweden)

    Friedrich W Meyer

    Full Text Available Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8 and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1 availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth of the scleractinian coral Acropora millepora (Ehrenberg, 1834 from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world

  7. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef

    Science.gov (United States)

    Meyer, Friedrich W.; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian

    2016-01-01

    Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as

  8. Effects of High Dissolved Inorganic and Organic Carbon Availability on the Physiology of the Hard Coral Acropora millepora from the Great Barrier Reef.

    Science.gov (United States)

    Meyer, Friedrich W; Vogel, Nikolas; Diele, Karen; Kunzmann, Andreas; Uthicke, Sven; Wild, Christian

    2016-01-01

    Coral reefs are facing major global and local threats due to climate change-induced increases in dissolved inorganic carbon (DIC) and because of land-derived increases in organic and inorganic nutrients. Recent research revealed that high availability of labile dissolved organic carbon (DOC) negatively affects scleractinian corals. Studies on the interplay of these factors, however, are lacking, but urgently needed to understand coral reef functioning under present and near future conditions. This experimental study investigated the individual and combined effects of ambient and high DIC (pCO2 403 μatm/ pHTotal 8.2 and 996 μatm/pHTotal 7.8) and DOC (added as Glucose 0 and 294 μmol L-1, background DOC concentration of 83 μmol L-1) availability on the physiology (net and gross photosynthesis, respiration, dark and light calcification, and growth) of the scleractinian coral Acropora millepora (Ehrenberg, 1834) from the Great Barrier Reef over a 16 day interval. High DIC availability did not affect photosynthesis, respiration and light calcification, but significantly reduced dark calcification and growth by 50 and 23%, respectively. High DOC availability reduced net and gross photosynthesis by 51% and 39%, respectively, but did not affect respiration. DOC addition did not influence calcification, but significantly increased growth by 42%. Combination of high DIC and high DOC availability did not affect photosynthesis, light calcification, respiration or growth, but significantly decreased dark calcification when compared to both controls and DIC treatments. On the ecosystem level, high DIC concentrations may lead to reduced accretion and growth of reefs dominated by Acropora that under elevated DOC concentrations will likely exhibit reduced primary production rates, ultimately leading to loss of hard substrate and reef erosion. It is therefore important to consider the potential impacts of elevated DOC and DIC simultaneously to assess real world scenarios, as

  9. Coral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis

    Directory of Open Access Journals (Sweden)

    F. Joseph Pollock

    2017-09-01

    Full Text Available Here we describe an efficient and effective technique for rearing sexually-derived coral propagules from spawning through larval settlement and symbiont uptake with minimal impact on natural coral populations. We sought to maximize larval survival while minimizing expense and daily husbandry maintenance by experimentally determining optimized conditions and protocols for gamete fertilization, larval cultivation, induction of larval settlement by crustose coralline algae, and inoculation of newly settled juveniles with their dinoflagellate symbiont Symbiodinium. Larval rearing densities at or below 0.2 larvae mL−1 were found to maximize larval survival and settlement success in culture tanks while minimizing maintenance effort. Induction of larval settlement via the addition of a ground mixture of diverse crustose coralline algae (CCA is recommended, given the challenging nature of in situ CCA identification and our finding that non settlement-inducing CCA assemblages do not inhibit larval settlement if suitable assemblages are present. Although order of magnitude differences in infectivity were found between common Great Barrier Reef Symbiodinium clades C and D, no significant differences in Symbiodinium uptake were observed between laboratory-cultured and wild-harvested symbionts in each case. The technique presented here for Acropora millepora can be adapted for research and restoration efforts in a wide range of broadcast spawning coral species.

  10. Coral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis.

    Science.gov (United States)

    Pollock, F Joseph; Katz, Sefano M; van de Water, Jeroen A J M; Davies, Sarah W; Hein, Margaux; Torda, Gergely; Matz, Mikhail V; Beltran, Victor H; Buerger, Patrick; Puill-Stephan, Eneour; Abrego, David; Bourne, David G; Willis, Bette L

    2017-01-01

    Here we describe an efficient and effective technique for rearing sexually-derived coral propagules from spawning through larval settlement and symbiont uptake with minimal impact on natural coral populations. We sought to maximize larval survival while minimizing expense and daily husbandry maintenance by experimentally determining optimized conditions and protocols for gamete fertilization, larval cultivation, induction of larval settlement by crustose coralline algae, and inoculation of newly settled juveniles with their dinoflagellate symbiont Symbiodinium. Larval rearing densities at or below 0.2 larvae mL(-1) were found to maximize larval survival and settlement success in culture tanks while minimizing maintenance effort. Induction of larval settlement via the addition of a ground mixture of diverse crustose coralline algae (CCA) is recommended, given the challenging nature of in situ CCA identification and our finding that non settlement-inducing CCA assemblages do not inhibit larval settlement if suitable assemblages are present. Although order of magnitude differences in infectivity were found between common Great Barrier Reef Symbiodinium clades C and D, no significant differences in Symbiodinium uptake were observed between laboratory-cultured and wild-harvested symbionts in each case. The technique presented here for Acropora millepora can be adapted for research and restoration efforts in a wide range of broadcast spawning coral species.

  11. Expression of calcification and metabolism-related genes in response to elevated pCO2 and temperature in the reef-building coral Acropora millepora.

    Science.gov (United States)

    Rocker, Melissa M; Noonan, Sam; Humphrey, Craig; Moya, Aurelie; Willis, Bette L; Bay, Line K

    2015-12-01

    Declining health of scleractinian corals in response to deteriorating environmental conditions is widely acknowledged, however links between physiological and functional genomic responses of corals are less well understood. Here we explore growth and the expression of 20 target genes with putative roles in metabolism and calcification in the branching coral, Acropora millepora, in two separate experiments: 1) elevated pCO2 (464, 822, 1187 and 1638 μatm) and ambient temperature (27°C), and 2) elevated pCO2 (490 and 822 μatm) and temperature (28 and 31 °C). After 14 days of exposure to elevated pCO2 and ambient temperatures, no evidence of differential expression of either calcification or metabolism genes was detected between control and elevated pCO2 treatments. After 37 days of exposure to control and elevated pCO2, Ubiquinol-Cytochrome-C Reductase Subunit 2 gene (QCR2; a gene involved in complex III of the electron chain transport within the mitochondria and critical for generation of ATP) was significantly down-regulated in the elevated pCO2 treatment in both ambient and elevated temperature treatments. Overall, the general absence of a strong response to elevated pCO2 and temperature by the other 19 targeted calcification and metabolism genes suggests that corals may not be affected by these stressors on longer time scales (37 days). These results also highlight the potential for QCR2 to act as a biomarker of coral genomic responses to changing environments.

  12. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure.

    Science.gov (United States)

    Meyer, E; Aglyamova, G V; Matz, M V

    2011-09-01

    Elevated temperatures resulting from climate change pose a clear threat to reef-building corals; however, the traits that might influence corals' survival and dispersal during climate change remain poorly understood. Global gene expression profiling is a powerful hypothesis-forming tool that can help elucidate these traits. Here, we applied a novel RNA-Seq protocol to study molecular responses to heat and settlement inducers in aposymbiotic larvae of the reef-building coral Acropora millepora. This analysis of a single full-sibling family revealed contrasting responses between short- (4-h) and long-term (5-day) exposures to elevated temperatures. Heat shock proteins were up-regulated only in the short-term treatment, while the long-term treatment induced the down-regulation of ribosomal proteins and up-regulation of genes associated with ion transport and metabolism (Ca(2+) and CO(3)(2-)). We also profiled responses to settlement cues using a natural cue (crustose coralline algae, CCA) and a synthetic neuropeptide (GLW-amide). Both cues resulted in metamorphosis, accompanied by differential expression of genes with known developmental roles. Some genes were regulated only by the natural cue, which may correspond to the recruitment-associated behaviour and morphology changes that precede metamorphosis under CCA treatment, but are bypassed under GLW-amide treatment. Validation of these expression profiles using qPCR confirmed the quantitative accuracy of our RNA-Seq approach. Importantly, qPCR analysis of different larval families revealed extensive variation in these responses depending on genetic background, including qualitative differences (i.e. up-regulation in one family and down-regulation in another). Future studies of gene expression in corals will have to address this genetic variation, which could have important adaptive consequences for corals during global climate change. © 2011 Blackwell Publishing Ltd.

  13. The acute transcriptional response of the coral Acropora millepora to immune challenge: expression of GiMAP/IAN genes links the innate immune responses of corals with those of mammals and plants.

    Science.gov (United States)

    Weiss, Yvonne; Forêt, Sylvain; Hayward, David C; Ainsworth, Tracy; King, Rob; Ball, Eldon E; Miller, David J

    2013-06-14

    As a step towards understanding coral immunity we present the first whole transcriptome analysis of the acute responses of Acropora millepora to challenge with the bacterial cell wall derivative MDP and the viral mimic poly I:C, defined immunogens provoking distinct but well characterised responses in higher animals. These experiments reveal similarities with the responses both of arthropods and mammals, as well as coral-specific effects. The most surprising finding was that MDP specifically induced three members of the GiMAP gene family, which has been implicated in immunity in mammals but is absent from Drosophila and Caenorhabditis. Like their mammalian homologs, GiMAP genes are arranged in a tandem cluster in the coral genome. A phylogenomic survey of this gene family implies ancient origins, multiple independent losses and lineage-specific expansions during animal evolution. Whilst functional convergence cannot be ruled out, GiMAP expression in corals may reflect an ancestral role in immunity, perhaps in phagolysosomal processing.

  14. Modeled connectivity of Acropora millepora populations from reefs of the Spratly Islands and the greater South China Sea

    Science.gov (United States)

    Dorman, Jeffrey G.; Castruccio, Frederic S.; Curchitser, Enrique N.; Kleypas, Joan A.; Powell, Thomas M.

    2016-03-01

    The Spratly Island archipelago is a remote network of coral reefs and islands in the South China Sea that is a likely source of coral larvae to the greater region, but about which little is known. Using a particle-tracking model driven by oceanographic data from the Coral Triangle region, we simulated both spring and fall spawning events of Acropora millepora, a common coral species, over a 46-yr period (1960-2005). Simulated population biology of A. millepora included the acquisition and loss of competency, settlement over appropriate benthic habitat, and mortality based on experimental data. The simulations aimed to provide insights into the connectivity of reefs within the Spratly Islands, the settlement of larvae on reefs of the greater South China Sea, and the potential dispersal range of reef organisms from the Spratly Islands. Results suggest that (1) the Spratly Islands may be a significant source of A. millepora larvae for the Palawan reefs (Philippines) and some of the most isolated reefs of the South China Sea; and (2) the relatively isolated western Spratly Islands have limited source reefs supplying them with larvae and fewer of their larvae successfully settling on other reefs. Examination of particle dispersal without biology (settlement and mortality) suggests that larval connectivity is possible throughout the South China Sea and into the Coral Triangle region. Strong differences in the spring versus fall larval connectivity and dispersal highlight the need for a greater understanding of spawning dynamics of the region. This study confirms that the Spratly Islands are likely an important source of larvae for the South China Sea and Coral Triangle region.

  15. Using bacterial extract along with differential gene expression in Acropora millepora larvae to decouple the processes of attachment and metamorphosis.

    Science.gov (United States)

    Siboni, Nachshon; Abrego, David; Seneca, Francois; Motti, Cherie A; Andreakis, Nikos; Tebben, Jan; Blackall, Linda L; Harder, Tilmann

    2012-01-01

    Biofilms of the bacterium Pseudoalteromonas induce metamorphosis of acroporid coral larvae. The bacterial metabolite tetrabromopyrrole (TBP), isolated from an extract of Pseudoalteromonas sp. associated with the crustose coralline alga (CCA) Neogoniolithon fosliei, induced coral larval metamorphosis (100%) with little or no attachment (0-2%). To better understand the molecular events and mechanisms underpinning the induction of Acropora millepora larval metamorphosis, including cell proliferation, apoptosis, differentiation, migration, adhesion and biomineralisation, two novel coral gene expression assays were implemented. These involved the use of reverse-transcriptase quantitative PCR (RT-qPCR) and employed 47 genes of interest (GOI), selected based on putative roles in the processes of settlement and metamorphosis. Substantial differences in transcriptomic responses of GOI were detected following incubation of A. millepora larvae with a threshold concentration and 10-fold elevated concentration of TBP-containing extracts of Pseudoalteromonas sp. The notable and relatively abrupt changes of the larval body structure during metamorphosis correlated, at the molecular level, with significant differences (pcrustose coralline algae, biofilms or with GLW-amide neuropeptides that stimulate the entire onset of larval metamorphosis and attachment.

  16. Using bacterial extract along with differential gene expression in Acropora millepora larvae to decouple the processes of attachment and metamorphosis.

    Directory of Open Access Journals (Sweden)

    Nachshon Siboni

    Full Text Available Biofilms of the bacterium Pseudoalteromonas induce metamorphosis of acroporid coral larvae. The bacterial metabolite tetrabromopyrrole (TBP, isolated from an extract of Pseudoalteromonas sp. associated with the crustose coralline alga (CCA Neogoniolithon fosliei, induced coral larval metamorphosis (100% with little or no attachment (0-2%. To better understand the molecular events and mechanisms underpinning the induction of Acropora millepora larval metamorphosis, including cell proliferation, apoptosis, differentiation, migration, adhesion and biomineralisation, two novel coral gene expression assays were implemented. These involved the use of reverse-transcriptase quantitative PCR (RT-qPCR and employed 47 genes of interest (GOI, selected based on putative roles in the processes of settlement and metamorphosis. Substantial differences in transcriptomic responses of GOI were detected following incubation of A. millepora larvae with a threshold concentration and 10-fold elevated concentration of TBP-containing extracts of Pseudoalteromonas sp. The notable and relatively abrupt changes of the larval body structure during metamorphosis correlated, at the molecular level, with significant differences (p<0.05 in gene expression profiles of 24 GOI, 12 hours post exposure. Fourteen of those GOI also presented differences in expression (p<0.05 following exposure to the threshold concentration of bacterial TBP-containing extract. The specificity of the bacterial TBP-containing extract to induce the metamorphic stage in A. millepora larvae without attachment, using a robust, low cost, accurate, ecologically relevant and highly reproducible RT-qPCR assay, allowed partially decoupling of the transcriptomic processes of attachment and metamorphosis. The bacterial TBP-containing extract provided a unique opportunity to monitor the regulation of genes exclusively involved in the process of metamorphosis, contrasting previous gene expression studies that

  17. Structure of nematocysts isolated from the fire corals Millepora alcicornis and Millepora complanata (Cnidaria: Hydrozoa

    Directory of Open Access Journals (Sweden)

    A García-Arredondo

    2012-01-01

    Full Text Available Structural characteristics of discharged and undischarged nematocysts from the hydrozoans Millepora alcicornis and Millepora complanata, two fire corals collected in the Mexican Caribbean, were examined using transmission electron, scanning and light microscopy. In this study, we report for the first time images of the nematocysts found in these Mexican Caribbean venomous species. Two types of nematocysts were observed in both species, the more abundant identified as macrobasic mastigophore and the other a stenotele type. Macrobasic mastigophores were present in medium and large size classes while stenoteles appeared in only one size.

  18. Identification of fast-evolving genes in the scleractinian coral Acropora using comparative EST analysis.

    Directory of Open Access Journals (Sweden)

    Akira Iguchi

    Full Text Available To identify fast-evolving genes in reef-building corals, we performed direct comparative sequence analysis with expressed sequence tag (EST datasets from two acroporid species: Acropora palmata from the Caribbean Sea and A. millepora from the Great Barrier Reef in Australia. Comparison of 589 independent sequences from 1,421 A. palmata contigs, with 10,247 A. millepora contigs resulted in the identification of 196 putative homologues. Most of the homologous pairs demonstrated high amino acid similarities (over 90%. Comparisons of putative homologues showing low amino acid similarities (under 90% among the Acropora species to the near complete datasets from two other cnidarians (Hydra magnipapillata and Nematostella vectensis implied that some were non-orthologous. Within 86 homologous pairs, 39 exhibited dN/dS ratios significantly less than 1, suggesting that these genes are under purifying selection associated with functional constraints. Eight independent genes showed dN/dS ratios exceeding 1, while three deviated significantly from 1, suggesting that these genes may play important roles in the adaptive evolution of Acropora. Our results also indicated that CEL-III lectin was under positive selection, consistent with a possible role in immunity or symbiont recognition. Further studies are needed to clarify the possible functions of the genes under positive selection to provide insight into the evolutionary process of corals.

  19. White Band Disease transmission in the threatened coral, Acropora cervicornis

    OpenAIRE

    Gignoux-Wolfsohn, S. A.; Marks, Christopher J.; Steven V Vollmer

    2012-01-01

    The global rise in coral diseases has severely impacted coral reef ecosystems, yet often little is known about these diseases, including how they are transmitted. White Band Disease (WBD), for example, has caused unparalleled declines in live Acropora cover, spreading rapidly throughout the Caribbean by unknown means. Here we test four putative modes of WBD transmission to the staghorn coral Acropora cervicornis: two animal vectors (Coralliophila abbreviata and C. caribaea) and waterborne tra...

  20. Breakage and propagation of the stony coral Acropora cervicornis

    OpenAIRE

    Tunnicliffe, Verena

    1981-01-01

    Populations of the staghorn coral, Acropora cervicornis, often form dense monotypic stands on shallow Caribbean reefs. This coral species has a fragile structure that results in large numbers of broken branches and toppled colonies, especially in high wave activity. Although more than 80% of the corals in the studied population were broken from their bases, most had become reanchored to regrow rapidly. There is little evidence of sexual reproduction, and it appears that this coral has come to...

  1. White Band Disease transmission in the threatened coral, Acropora cervicornis.

    Science.gov (United States)

    Gignoux-Wolfsohn, S A; Marks, Christopher J; Vollmer, Steven V

    2012-01-01

    The global rise in coral diseases has severely impacted coral reef ecosystems, yet often little is known about these diseases, including how they are transmitted. White Band Disease (WBD), for example, has caused unparalleled declines in live Acropora cover, spreading rapidly throughout the Caribbean by unknown means. Here we test four putative modes of WBD transmission to the staghorn coral Acropora cervicornis: two animal vectors (Coralliophila abbreviata and C. caribaea) and waterborne transmission to intact and injured coral tissues. Using aquarium-based infection experiments, we determine that C. abbreviata, but not C. caribaea, acts as both a vector and reservoir for transmission of the WBD pathogen. We also demonstrate waterborne transmission to injured, but not intact staghorn coral tissues. The combination of transmission by both animal vectors and through the water column helps explain how WBD is spread locally and across the Caribbean.

  2. Breakage and Propagation of the Stony Coral Acropora cervicornis

    Science.gov (United States)

    Tunnicliffe, Verena

    1981-04-01

    Populations of the staghorn coral, Acropora cervicornis, often form dense monotypic stands on shallow Caribbean reefs. This coral species has a fragile structure that results in large numbers of broken branches and toppled colonies, especially in high wave activity. Although more than 80% of the corals in the studied population were broken from their bases, most had become reanchored to regrow rapidly. There is little evidence of sexual reproduction, and it appears that this coral has come to dominate much of the Jamaican reef community by propagation through fragmentation.

  3. Weak Prezygotic Isolating Mechanisms in Threatened Caribbean Acropora Corals

    OpenAIRE

    Fogarty, Nicole D.; Steven V Vollmer; Don R. Levitan

    2012-01-01

    The Caribbean corals, Acropora palmata and A. cervicornis, recently have undergone drastic declines primarily as a result of disease. Previous molecular studies have demonstrated that these species form a hybrid (A. prolifera) that varies in abundance throughout the range of the parental distribution. There is variable unidirectional introgression across loci and sites of A. palmata genes flowing into A. cervicornis. Here we examine the efficacy of prezygotic reproductive isolating mechanisms...

  4. Experimental data comparing two coral grow-out methods in nursery-raised Acropora cervicornis

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Staghorn coral, Acropora cervicornis, is a threatened species and the primary focus of western Atlantic reef-restoration efforts to date. As part of the USGS Coral...

  5. Biannual Spawning and Temporal Reproductive Isolation in Acropora Corals.

    Directory of Open Access Journals (Sweden)

    James P Gilmour

    Full Text Available Coral spawning on the oceanic reef systems of north-western Australia was recently discovered during autumn and spring, but the degree to which species and particularly colonies participated in one or both of these spawnings was unknown. At the largest of the oceanic reef systems, the participation by colonies in the two discrete spawning events was investigated over three years in 13 species of Acropora corals (n = 1,855 colonies. Seven species spawned during both seasons; five only in autumn and one only in spring. The majority of tagged colonies (n = 218 spawned once a year in the same season, but five colonies from three species spawned during spring and autumn during a single year. Reproductive seasonality was not influenced by spatial variation in habitat conditions, or by Symbiodinium partners in the biannual spawner Acropora tenuis. Colonies of A. tenuis spawning during different seasons separated into two distinct yet cryptic groups, in a bayesian clustering analysis based on multiple microsatellite markers. These groups were associated with a major genetic divergence (G"ST = 0.469, despite evidence of mixed ancestry in a small proportion of individuals. Our results confirm that temporal reproductive isolation is a common feature of Acropora populations at Scott Reef and indicate that spawning season is a genetically determined trait in at least A. tenuis. This reproductive isolation may be punctuated occasionally by interbreeding between genetic groups following favourable environmental conditions, when autumn spawners undergo a second annual gametogenic cycle and spawn during spring.

  6. Weak prezygotic isolating mechanisms in threatened Caribbean Acropora corals.

    Science.gov (United States)

    Fogarty, Nicole D; Vollmer, Steven V; Levitan, Don R

    2012-01-01

    The Caribbean corals, Acropora palmata and A. cervicornis, recently have undergone drastic declines primarily as a result of disease. Previous molecular studies have demonstrated that these species form a hybrid (A. prolifera) that varies in abundance throughout the range of the parental distribution. There is variable unidirectional introgression across loci and sites of A. palmata genes flowing into A. cervicornis. Here we examine the efficacy of prezygotic reproductive isolating mechanisms within these corals including spawning times and choice and no-choice fertilization crosses. We show that these species have subtly different mean but overlapping spawning times, suggesting that temporal isolation is likely not an effective barrier to hybridization. We found species-specific differences in gametic incompatibilities. Acropora palmata eggs were relatively resistant to hybridization, especially when conspecific sperm are available to outcompete heterospecific sperm. Acropora cervicornis eggs demonstrated no evidence for gametic incompatibility and no evidence of reduced viability after aging four hours. This asymmetry in compatibility matches previous genetic data on unidirectional introgression.

  7. Weak prezygotic isolating mechanisms in threatened Caribbean Acropora corals.

    Directory of Open Access Journals (Sweden)

    Nicole D Fogarty

    Full Text Available The Caribbean corals, Acropora palmata and A. cervicornis, recently have undergone drastic declines primarily as a result of disease. Previous molecular studies have demonstrated that these species form a hybrid (A. prolifera that varies in abundance throughout the range of the parental distribution. There is variable unidirectional introgression across loci and sites of A. palmata genes flowing into A. cervicornis. Here we examine the efficacy of prezygotic reproductive isolating mechanisms within these corals including spawning times and choice and no-choice fertilization crosses. We show that these species have subtly different mean but overlapping spawning times, suggesting that temporal isolation is likely not an effective barrier to hybridization. We found species-specific differences in gametic incompatibilities. Acropora palmata eggs were relatively resistant to hybridization, especially when conspecific sperm are available to outcompete heterospecific sperm. Acropora cervicornis eggs demonstrated no evidence for gametic incompatibility and no evidence of reduced viability after aging four hours. This asymmetry in compatibility matches previous genetic data on unidirectional introgression.

  8. Molecular evidence shows low species diversity of coral-associated hydroids in Acropora corals.

    Directory of Open Access Journals (Sweden)

    Silvia Fontana

    Full Text Available A novel symbiosis between scleractinians and hydroids (Zanclea spp. was recently discovered using taxonomic approaches for hydroid species identification. In this study, we address the question whether this is a species-specific symbiosis or a cosmopolitan association between Zanclea and its coral hosts. Three molecular markers, including mitochondrial 16S and nuclear 28S ribosomal genes, and internal transcribed spacer (ITS, were utilized to examine the existence of Zanclea species from 14 Acropora species and 4 other Acroporidae genera including 142 coral samples collected from reefs in Kenting and the Penghu Islands, Taiwan, Togian Island, Indonesia, and Osprey Reef and Orpheus Island on the Great Barrier Reef, Australia. Molecular phylogenetic analyses of the 16S and 28S genes showed that Acropora-associated Zanclea was monophyletic, but the genus Zanclea was not. Analysis of the ITS, and 16S and 28S genes showed either identical or extremely low genetic diversity (with mean pairwise distances of 0.009 and 0.006 base substitutions per site for the 16S and 28S genes, respectively among Zanclea spp. collected from diverse Acropora hosts in different geographic locations, suggesting that a cosmopolitan and probably genus-specific association occurs between Zanclea hydroids and their coral hosts.

  9. Characterization of geographically distinct bacterial communities associated with coral mucus produced by Acropora spp. and Porites spp.

    Science.gov (United States)

    McKew, B A; Dumbrell, A J; Daud, S D; Hepburn, L; Thorpe, E; Mogensen, L; Whitby, C

    2012-08-01

    Acropora and Porites corals are important reef builders in the Indo-Pacific and Caribbean. Bacteria associated with mucus produced by Porites spp. and Acropora spp. from Caribbean (Punta Maroma, Mexico) and Indo-Pacific (Hoga and Sampela, Indonesia) reefs were determined. Analysis of pyrosequencing libraries showed that bacterial communities from Caribbean corals were significantly more diverse (H', 3.18 to 4.25) than their Indonesian counterparts (H', 2.54 to 3.25). Dominant taxa were Gammaproteobacteria, Alphaproteobacteria, Firmicutes, and Cyanobacteria, which varied in relative abundance between coral genera and region. Distinct coral host-specific communities were also found; for example, Clostridiales were dominant on Acropora spp. (at Hoga and the Mexican Caribbean) compared to Porites spp. and seawater. Within the Gammproteobacteria, Halomonas spp. dominated sequence libraries from Porites spp. (49%) and Acropora spp. (5.6%) from the Mexican Caribbean, compared to the corresponding Indonesian coral libraries (<2%). Interestingly, with the exception of Porites spp. from the Mexican Caribbean, there was also a ubiquity of Psychrobacter spp., which dominated Acropora and Porites libraries from Indonesia and Acropora libraries from the Caribbean. In conclusion, there was a dominance of Halomonas spp. (associated with Acropora and Porites [Mexican Caribbean]), Firmicutes (associated with Acropora [Mexican Caribbean] and with Acropora and Porites [Hoga]), and Cyanobacteria (associated with Acropora and Porites [Hoga] and Porites [Sampela]). This is also the first report describing geographically distinct Psychrobacter spp. associated with coral mucus. In addition, the predominance of Clostridiales associated with Acropora spp. provided additional evidence for coral host-specific microorganisms.

  10. Genetic Signature of Resistance to White Band Disease in the Caribbean Staghorn Coral Acropora cervicornis.

    Science.gov (United States)

    Libro, Silvia; Vollmer, Steven V

    2016-01-01

    Coral reefs are declining worldwide due to multiple factors including rising sea surface temperature, ocean acidification, and disease outbreaks. Over the last 30 years, White Band Disease (WBD) alone has killed up to 95% of the Caribbean`s dominant shallow-water corals--the staghorn coral Acropora cervicornis and the elkhorn coral A. palmata. Both corals are now listed on the US Endangered Species Act, and while their recovery has been slow, recent transmission surveys indicate that more than 5% of staghorn corals are disease resistant. Here we compared transcriptome-wide gene expression between resistant and susceptible staghorn corals exposed to WBD using in situ transmission assays. We identified constitutive gene expression differences underlying disease resistance that are independent from the immune response associated with disease exposure. Genes involved in RNA interference-mediated gene silencing, including Argonaute were up-regulated in resistant corals, whereas heat shock proteins (HSPs) were down-regulated. Up-regulation of Argonaute proteins indicates that post-transcriptional gene silencing plays a key, but previously unsuspected role in coral immunity and disease resistance. Constitutive expression of HSPs has been linked to thermal resilience in other Acropora corals, suggesting that the down-regulation of HSPs in disease resistant staghorn corals may confer a dual benefit of thermal resilience.

  11. Genetic Signature of Resistance to White Band Disease in the Caribbean Staghorn Coral Acropora cervicornis.

    Directory of Open Access Journals (Sweden)

    Silvia Libro

    Full Text Available Coral reefs are declining worldwide due to multiple factors including rising sea surface temperature, ocean acidification, and disease outbreaks. Over the last 30 years, White Band Disease (WBD alone has killed up to 95% of the Caribbean`s dominant shallow-water corals--the staghorn coral Acropora cervicornis and the elkhorn coral A. palmata. Both corals are now listed on the US Endangered Species Act, and while their recovery has been slow, recent transmission surveys indicate that more than 5% of staghorn corals are disease resistant. Here we compared transcriptome-wide gene expression between resistant and susceptible staghorn corals exposed to WBD using in situ transmission assays. We identified constitutive gene expression differences underlying disease resistance that are independent from the immune response associated with disease exposure. Genes involved in RNA interference-mediated gene silencing, including Argonaute were up-regulated in resistant corals, whereas heat shock proteins (HSPs were down-regulated. Up-regulation of Argonaute proteins indicates that post-transcriptional gene silencing plays a key, but previously unsuspected role in coral immunity and disease resistance. Constitutive expression of HSPs has been linked to thermal resilience in other Acropora corals, suggesting that the down-regulation of HSPs in disease resistant staghorn corals may confer a dual benefit of thermal resilience.

  12. Using the Acropora digitifera genome to understand coral responses to environmental change.

    Science.gov (United States)

    Shinzato, Chuya; Shoguchi, Eiichi; Kawashima, Takeshi; Hamada, Mayuko; Hisata, Kanako; Tanaka, Makiko; Fujie, Manabu; Fujiwara, Mayuki; Koyanagi, Ryo; Ikuta, Tetsuro; Fujiyama, Asao; Miller, David J; Satoh, Nori

    2011-07-24

    Despite the enormous ecological and economic importance of coral reefs, the keystone organisms in their establishment, the scleractinian corals, increasingly face a range of anthropogenic challenges including ocean acidification and seawater temperature rise. To understand better the molecular mechanisms underlying coral biology, here we decoded the approximately 420-megabase genome of Acropora digitifera using next-generation sequencing technology. This genome contains approximately 23,700 gene models. Molecular phylogenetics indicate that the coral and the sea anemone Nematostella vectensis diverged approximately 500 million years ago, considerably earlier than the time over which modern corals are represented in the fossil record (∼240 million years ago). Despite the long evolutionary history of the endosymbiosis, no evidence was found for horizontal transfer of genes from symbiont to host. However, unlike several other corals, Acropora seems to lack an enzyme essential for cysteine biosynthesis, implying dependency of this coral on its symbionts for this amino acid. Corals inhabit environments where they are frequently exposed to high levels of solar radiation, and analysis of the Acropora genome data indicates that the coral host can independently carry out de novo synthesis of mycosporine-like amino acids, which are potent ultraviolet-protective compounds. In addition, the coral innate immunity repertoire is notably more complex than that of the sea anemone, indicating that some of these genes may have roles in symbiosis or coloniality. A number of genes with putative roles in calcification were identified, and several of these are restricted to corals. The coral genome provides a platform for understanding the molecular basis of symbiosis and responses to environmental changes.

  13. Bacterial communities associated with healthy and Acropora white syndrome-affected corals from American Samoa

    Science.gov (United States)

    Wilson, Bryan; Aeby, Greta S.; Work, Thierry M.; Bourne, David G.

    2012-01-01

    Acropora white syndrome (AWS) is characterized by rapid tissue loss revealing the white underlying skeleton and affects corals worldwide; however, reports of causal agents are conflicting. Samples were collected from healthy and diseased corals and seawater around American Samoa and bacteria associated with AWS characterized using both culture-dependent and culture-independent methods, from coral mucus and tissue slurries, respectively. Bacterial 16S rRNA gene clone libraries derived from coral tissue were dominated by the Gammaproteobacteria, and Jaccard's distances calculated between the clone libraries showed that those from diseased corals were more similar to each other than to those from healthy corals. 16S rRNA genes from 78 culturable coral mucus isolates also revealed a distinct partitioning of bacterial genera into healthy and diseased corals. Isolates identified as Vibrionaceae were further characterized by multilocus sequence typing, revealing that whilst several Vibrio spp. were found to be associated with AWS lesions, a recently described species, Vibrio owensii, was prevalent amongst cultured Vibrio isolates. Unaffected tissues from corals with AWS had a different microbiota than normal Acropora as found by others. Determining whether a microbial shift occurs prior to disease outbreaks will be a useful avenue of pursuit and could be helpful in detecting prodromal signs of coral disease prior to manifestation of lesions.

  14. Genetic Diversity and Connectivity in the Threatened Staghorn Coral (Acropora cervicornis) in Florida

    OpenAIRE

    Hemond, Elizabeth M; Steven V Vollmer

    2010-01-01

    Over the past three decades, populations of the dominant shallow water Caribbean corals, Acropora cervicornis and A. palmata, have been devastated by white-band disease (WBD), resulting in the listing of both species as threatened under the U.S. Endangered Species Act. A key to conserving these threatened corals is understanding how their populations are genetically interconnected throughout the greater Caribbean. Genetic research has demonstrated that gene flow is regionally restricted acros...

  15. Coral growth rates revisited after 31 years: what is causing lower extension rates in Acropora palmata?

    NARCIS (Netherlands)

    Bak, R.P.M.; Nieuwland, G.; Meesters, H.W.G.

    2009-01-01

    Linear extension of branches in the same Acropora palmata (Lamarck, 1816) population in Curaçao was measured, employing exactly the same methods, in 1971-1973 and in 2002-2004, and the resulting coral growth rates are compared. Linear growth shows the same pattern over seasons in both periods with g

  16. Consolidated Checklist of Hard Corals of the Genus Acropora Oken, 1815 (Scleractinia: Acroporidae) in North Borneo, East Malaysia.

    Science.gov (United States)

    Robert, Rolando; Lee, Dexter Jiunn Herng; Rodrigues, Kenneth Francis; Hussein, Muhammad Ali Syed; Waheed, Zarinah; Kumar, S Vijay

    2016-11-29

    Acropora is the most biologically diverse group of reef-building coral, and its richness peaks at the Indo-Malay-Philippine Archipelago, the centre of global coral reef biodiversity. In this paper, we describe the species richness of Acropora fauna of North Borneo, East Malaysia, based on review of literature and as corroborated by voucher specimens. Eighty-three species of Acropora are reported here; four species are literature based and 79 are supported by voucher specimens that were subsequently photographed. New records for North Borneo were recorded for 12 species, including Acropora suharsonoi Wallace 1994 that was previously thought to be confined to a few islands along Lombok Strait, Indonesia. The diversity of Acropora in North Borneo is comparable to that of Indonesia and the Philippines, despite the area's smaller reef areas. This further reinforces its inclusion as part the global hotspot of coral biodiversity.

  17. Juvenile corals can acquire more carbon from high-performance algal symbionts

    NARCIS (Netherlands)

    Cantin, N. E.; van Oppen, M. J. H.; Willis, B. L.; Mieog, J. C.; Negri, A. P.

    Algal endosymbionts of the genus Symbiodinium play a key role in the nutrition of reef building corals and strongly affect the thermal tolerance and growth rate of the animal host. This study reports that (14)C photosynthate incorporation into juvenile coral tissues was doubled in Acropora millepora

  18. Juvenile corals can acquire more carbon from high-performance algal symbionts

    NARCIS (Netherlands)

    Cantin, N. E.; van Oppen, M. J. H.; Willis, B. L.; Mieog, J. C.; Negri, A. P.

    2009-01-01

    Algal endosymbionts of the genus Symbiodinium play a key role in the nutrition of reef building corals and strongly affect the thermal tolerance and growth rate of the animal host. This study reports that (14)C photosynthate incorporation into juvenile coral tissues was doubled in Acropora millepora

  19. The corallivorous flatworm Amakusaplana acroporae: an invasive species threat to coral reefs?

    Science.gov (United States)

    Hume, Benjamin C. C.; D'Angelo, Cecilia; Cunnington, Anna; Smith, Edward G.; Wiedenmann, Jörg

    2014-03-01

    Fatal infestations of land-based Acropora cultures with so-called Acropora- eating flatworms (AEFWs) are a global phenomenon. We evaluate the hypothesis that AEFWs represent a risk to coral reefs by studying the biology and the invasive potential of an AEFW strain from the UK. Molecular analyses identified this strain as Amakusaplana acroporae, a new species described from two US aquaria and one natural location in Australia. Our molecular data together with life history strategies described here suggest that this species accounts for most reported cases of AEFW infestations. We show that local parasitic activity impairs the light-acclimation capacity of the whole host colony. A. acroporae acquires excellent camouflage by harbouring photosynthetically competent, host-derived zooxanthellae and pigments of the green-fluorescent protein family. It shows a preference for Acropora valida but accepts a broad host range. Parasite survival in isolation (5-7 d) potentially allows for an invasion when introduced as non-native species in coral reefs.

  20. Contrasting patterns of connectivity among endemic and widespread fire coral species ( Millepora spp.) in the tropical Southwestern Atlantic

    Science.gov (United States)

    de Souza, Júlia N.; Nunes, Flávia L. D.; Zilberberg, Carla; Sanchez, Juan A.; Migotto, Alvaro E.; Hoeksema, Bert W.; Serrano, Xaymara M.; Baker, Andrew C.; Lindner, Alberto

    2017-09-01

    Fire corals are the only branching corals in the South Atlantic and provide an important ecological role as habitat-builders in the region. With three endemic species ( Millepora brazilensis, M. nitida and M. laboreli) and one amphi-Atlantic species ( M. alcicornis), fire coral diversity in the Brazilian Province rivals that of the Caribbean Province. Phylogenetic relationships and patterns of population genetic structure and diversity were investigated in all four fire coral species occurring in the Brazilian Province to understand patterns of speciation and biogeography in the genus. A total of 273 colonies from the four species were collected from 17 locations spanning their geographic ranges. Sequences from the 16S ribosomal DNA (rDNA) were used to evaluate phylogenetic relationships. Patterns in genetic diversity and connectivity were inferred by measures of molecular diversity, analyses of molecular variance, pairwise differentiation, and by spatial analyses of molecular variance. Morphometrics of the endemic species M. braziliensis and M. nitida were evaluated by discriminant function analysis; macro-morphological characters were not sufficient to distinguish the two species. Genetic analyses showed that, although they are closely related, each species forms a well-supported clade. Furthermore, the endemic species characterized a distinct biogeographic barrier: M. braziliensis is restricted to the north of the São Francisco River, whereas M. nitida occurs only to the south. Millepora laboreli is restricted to a single location and has low genetic diversity. In contrast, the amphi-Atlantic species M. alcicornis shows high genetic connectivity within the Brazilian Province, and within the Caribbean Province (including Bermuda), despite low levels of gene flow between these populations and across the tropical Atlantic. These patterns reflect the importance of the Amazon-Orinoco Plume and the Mid-Atlantic Barrier as biogeographic barriers, and suggest that

  1. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (south Florida): Reef-building corals. [Acropora cervicornis; Acropora palmata; Montastraea annularis; Montastraea cavernosa

    Energy Technology Data Exchange (ETDEWEB)

    Porter, J.W.

    1987-08-01

    Four species of reef-building corals are considered: elkhorn coral, staghorn coral, common star coral, and large star coral. All four species spawn annually in the fall during hurricane season. Juvenile recruitment is low in all four species. Rapid growth rates of species in the genus Acropora (10 to 20 cm/yr) contrast with slower growth rates of species in the genus Montastraea (1.0 to 2.0 cm/yr), but both species of Montastraea are also important in reef development due to their form and great longevity. Shallow-water colonies of Montastraea survive hurricanes; shallow colonies of Acropora do not. Because of their dependence on photosynthesis for all of their carbon acquisition, the Acropora species reviewed here have a more restricted depth distribution (0 to 30 m) than do the Montastraea species considered (0 to 70 m). All four species are subject to intense predation by the snail predator, Coralliophila. Species of Montastraea are susceptible to infection from blue-green algae, which produce ''black band disease;'' species of Acropora are susceptible to a different, as yet unidentified pathogen, that produces ''white-band'' disease. Increased water turbidity and sedimentation cause reduced growth rates and partial or whole mortality in all four species.

  2. Diurnal and nocturnal transcriptomic variation in the Caribbean staghorn coral, Acropora cervicornis.

    Science.gov (United States)

    Hemond, Elizabeth M; Vollmer, Steven V

    2015-09-01

    Reef-building corals experience large diel shifts in their environment, both externally due to changes in light intensity, predator activity and prey availability, and internally as a result of diel fluctuations in photosynthesis by their endosymbiotic algae, Symbiodinium. Diel patterns of tentacle behaviour, skeletal growth and gene expression indicate reactions of the coral animal in response to light and through circadian regulation. Some corals, such as the Caribbean Acroporas, have strong within-colony division of labour, including specialized fast-growing apical polyps, accompanied by large gene expression differences. Here we use RNA-seq to evaluate how diel changes in gene expression vary within the branching Caribbean staghorn coral, Acropora cervicornis, between branch tips and branch bases. Multifactor generalized linear model analysis indicated that 6% (3005) of transcripts were differentially expressed between branch tips and bases, while 1% (441) of transcripts were differentially expressed between day and night. The gene expression patterns of 220 transcripts were affected by both time of day and location within the colony. In particular, photoreceptors, putative circadian genes, stress response genes and metabolic genes were differentially expressed between day and night, and some of these, including Amcry1, tef and hebp2, exhibited location-specific regulation within the coral colony as well. These findings indicate that the genetic response of the coral to day and night conditions varies within the colony. Both time of day and location within the colony are factors that should be considered in future coral gene expression experiments.

  3. Application of the coral health chart to determine bleaching status of Acropora downingi in a subtropical coral reef

    Science.gov (United States)

    Oladi, Mahshid; Shokri, Mohammad Reza; Rajabi-Maham, Hassan

    2017-06-01

    The `Coral Health Chart' has become a popular tool for monitoring coral bleaching worldwide. The scleractinian coral Acropora downingi (Wallace 1999) is highly vulnerable to temperature anomalies in the Persian Gulf. Our study tested the reliability of Coral Health Chart scores for the assessment of bleaching-related changes in the mitotic index (MI) and density of zooxanthellae cells in A. downingi in Qeshm Island, the Persian Gulf. The results revealed that, at least under severe conditions, it can be used as an effective proxy for detecting changes in the density of normal, transparent, or degraded zooxanthellae and MI. However, its ability to discern changes in pigment concentration and total zooxanthellae density should be viewed with some caution in the Gulf region, probably because the high levels of environmental variability in this region result in inherent variations in the characteristics of zooxanthellae among "healthy" looking corals.

  4. Calcification and photosynthesis of the coral acropora cervicornis under calcium limited conditions

    Science.gov (United States)

    Rathfon, Megan; Brewer, Debbie

    1997-01-01

    Differing hypothesis about the function of calcification are based on an interesting dilemma. Is the purpose of calcification mainly a structural and protective one or does calcification serve other functions? Does photosynthesis increase carbonate ion activity and cause calcification or does calcification increase CO2 levels and stimulate photsynthesis? It is proposed that calcification in corals is not dependent upon photosynthesis but upon calcium levels in the water. Under normal ocean conditions, corals convert a certain percentage of energy to photosynthesis and respiration and another percentage to calcification. As corals become nutrient stressed, particularly calcium limited, the ratio of photosynthesis to calcification shifts towards calcification in order to generate protons. The protons generated during calcification may stimulate photosynthesis and aid in the uptake of nutrients and biocarbonates. The results of the calcification experiment show a trend towards increased calcification and decreased photosynthesis when the coral Acropora cervicornis is calcium limited, but the data are inconclusive and further research is needed.

  5. Additive effects of the herbicide glyphosate and elevated temperature on the branched coral Acropora formosa in Nha Trang, Vietnam

    NARCIS (Netherlands)

    Amid, C.; Olstedt, M.; Gunnarsson, J.S.; Lan, Le H.; Tran Thi Minh, H.; Brink, van den P.J.; Hellström, M.; Tedengren, M.

    2017-01-01

    The combined effects of the herbicide glyphosate and elevated temperature were studied on the tropical staghorn coral Acropora formosa, in Nha Trang bay, Vietnam. The corals were collected from two different reefs, one close to a polluted fish farm and one in a marine-protected area (MPA). In the

  6. Additive effects of the herbicide glyphosate and elevated temperature on the branched coral Acropora formosa in Nha Trang, Vietnam

    NARCIS (Netherlands)

    Amid, C.; Olstedt, M.; Gunnarsson, J.S.; Lan, Le H.; Tran Thi Minh, H.; Brink, van den P.J.; Hellström, M.; Tedengren, M.

    2017-01-01

    The combined effects of the herbicide glyphosate and elevated temperature were studied on the tropical staghorn coral Acropora formosa, in Nha Trang bay, Vietnam. The corals were collected from two different reefs, one close to a polluted fish farm and one in a marine-protected area (MPA). In the

  7. Experimental data comparing two coral grow-out methods in nursery-raised Acropora cervicornis

    Science.gov (United States)

    Kuffner, Ilsa B.; Bartels, Erich; Stathakopoulos, Anastasios; Enochs, Ian C.; Kolodziej, Graham; Toth, Lauren; Manzello, Derek P.

    2017-01-01

    Staghorn coral, Acropora cervicornis, is a threatened species and the primary focus of western Atlantic reef-restoration efforts to date. As part of the USGS Coral Reef Ecosystems Studies project (http://coastal.er.usgs.gov/crest/), we investigated skeletal characteristics of nursery-grown staghorn coral reared using two commonly used grow-out methods at Mote Tropical Research Laboratory’s offshore nursery. We compared linear extension, calcification rate, and skeletal density of nursery-raised A. cervicornis branches reared for six months either on blocks attached to substratum or hanging from monofilament line (on PVC “trees”) in the water column. We demonstrate that branches grown on the substratum had significantly higher skeletal density, measured using computerized tomography (CT), and lower linear extension rates compared to water-column fragments. Calcification rates determined with buoyant weighing were not statistically different between the two grow-out methods, but did vary among coral genotypes. Whereas skeletal density and extension rates were plastic traits that depended on environment, calcification rate was conserved. Our results show that the two rearing methods generate the same amount of calcium-carbonate skeleton but produce colonies with different skeletal characteristics, and suggest that genetically based variability in coral-calcification performance exists. The data resulting from this experiment are provided in this data release and are interpreted in Kuffner et al. (2017).Kuffner, I.B., E. Bartels, A. Stathakopoulos, I.C. Enochs, G. Kolodziej, L.T. Toth, and D.P. Manzello, 2017, Plasticity in skeletal characteristics of nursery-raised staghorn coral, Acropora cervicornis: Coral Reefs, in press.

  8. Neogene reef coral assemblages of the Bocas del Toro region, Panama: the rise of Acropora palmata

    Science.gov (United States)

    Klaus, J. S.; McNeill, D. F.; Budd, A. F.; Coates, A. G.

    2012-03-01

    Temporal patterns are evaluated in Neogene reef coral assemblages from the Bocas del Toro Basin of Panama in order to understand how reef ecosystems respond to long-term environmental change. Analyses are based on a total of 1,702 zooxanthellate coral specimens collected from six coral-bearing units ranging in age from the earliest Late Miocene to the Early Pleistocene: (1) Valiente Formation (12-11 Ma), (2) Fish Hole Member of the Old Bank Formation (5.8-5.6 Ma), (3) La Gruta Member of the Isla Colon Formation (2.2-1.4 Ma), (4) Ground Creek Member of the Isla Colon Formation (2.2-1.4 Ma), (5) Mimitimbi Member of the Urracá Formation (1.2-0.8 Ma), and (6) Hill Point Member of the Urracá Formation (1.2-0.8 Ma). Over 100 coral species occur in the six units, with faunal assemblages ranging from less than 10% extant taxa (Valiente Formation) to over 85% extant taxa (Ground Creek Member). The collections provide new temporal constraints on the emergence of modern Caribbean reefs, with the La Gruta Member containing the earliest occurrence of large monospecific stands of the dominant Caribbean reef coral Acropora palmata, and the Urracá Formation containing the last fossil occurrences of 15 regionally extinct taxa. Canonical correspondence analysis of 41 Late Miocene to Recent reef coral assemblages from the Caribbean region suggests changes in community structure coincident with effective oceanic closure of the Central American Seaway (~3.5 Ma). These changes, including increased Acropora dominance, may have contributed to a protracted period of elevated extinction debt prior to the major peak in regional coral extinctions (~2-1 Ma).

  9. Patterns of fertility in the two Red Sea Corals Stylophora pistillata and Acropora humilis

    Directory of Open Access Journals (Sweden)

    AHMED H. OBUID-ALLAH

    2012-07-01

    Full Text Available Ammar MSA Obuid-Allah AH, Al-Hammady MAM. 2012. Patterns of fertility in the two Red Sea Corals Stylophora pistillata and Acropora humilis. Nusantara Bioscience 4: 62-75. Patterns of fertilities (total testes and total eggs for the hermatypic coral Acropora humilis were lower than those in Stylophora pistillata at the four studied sites. Site 3 (El-Hamraween harbor, the site impacted with phosphate, recorded the highest annual mean of testes number and egg number in the two studied species Acropora humilis and S. pistillata. However, site 1, the site impacted with oil pollution and fishing activities, recorded the lowest annual mean of testes number, total testes, egg number and total egg for the two studied species. Thus, phosphorus enrichment seems to be considerably less destructive than oil pollution, and thus may represent an ‘eco-friendly’. Testes were observed full of sperms during winter season in the sectioned polyps of A. humilis, while eggs were detected during autumn and winter. However, the lack of eggs in S. pistillata occurred only during spring season at all the studied sites. In the studied coral species, the ova were developed first before spermeria. The breeding season of coral reefs differs in both different localities and different species extending from December to July in the northern Red Sea, Gulf of Aqaba and Southern Red Sea (the present study. While in A. humilis, the breeding season extend from February to June in the Great Barrier Reef, in the Gulf of Aqaba and in Hurghada (the present study. Tough control, public awareness and continuous shore patrolling to the activities of oil pollution and fishing activities at the vicinity of site 1 (Ras El-Behar are urgent. Although existing corals may continue to grow and survive in an area with elevated nutrients levels, it is essential to maintain water quality on coral reefs within ecologically appropriate limits to ensure successful reproduction of coral and provide

  10. Pathology of tissue loss (white syndrome) in Acropora sp. corals from the Central Pacific

    Science.gov (United States)

    Work, Thierry M.; Aeby, Greta S.

    2011-01-01

    We performed histological examination of 69 samples of Acropora sp. manifesting different types of tissue loss (Acropora White Syndrome-AWS) from Hawaii, Johnston Atoll and American Samoa between 2002 and 2006. Gross lesions of tissue loss were observed and classified as diffuse acute, diffuse subacute, and focal to multifocal acute to subacute. Corals with acute tissue loss manifested microscopic evidence of necrosis sometimes associated with ciliates, helminths, fungi, algae, sponges, or cyanobacteria whereas those with subacute tissue loss manifested mainly wound repair. Gross lesions of AWS have multiple different changes at the microscopic level some of which involve various microorganisms and metazoa. Elucidating this disease will require, among other things, monitoring lesions over time to determine the pathogenesis of AWS and the potential role of tissue-associated microorganisms in the genesis of tissue loss. Attempts to experimentally induce AWS should include microscopic examination of tissues to ensure that potentially causative microorganisms associated with gross lesion are not overlooked.

  11. Transcriptomic responses to heat stress and bleaching in the elkhorn coral Acropora palmata

    KAUST Repository

    DeSalvo, MK

    2010-03-08

    The emergence of genomic tools for reef-building corals and symbiotic anemones comes at a time when alarming losses in coral cover are being observed worldwide. These tools hold great promise in elucidating novel and unforeseen cellular processes underlying the successful mutualism between corals and their dinoflagellate endosymbionts Symbiodinium spp. Since thermal stress triggers a breakdown in the symbiosis (coral bleaching), measuring the transcriptomic response to thermal stress-induced bleaching offers an extraordinary view of cellular processes that are specific to coral–algal symbioses. In the present study, we utilized a cDNA microarray containing 2059 genes of the threatened Caribbean elkhorn coral Acropora palmata to identify genes that are differentially expressed upon thermal stress. Fragments from replicate colonies were exposed to elevated temperature for 2 d, and samples were frozen for microarray analysis after 24 and 48 h. Totals of 204 and 104 genes were differentially expressed in samples that were collected 1 and 2 d after thermal stress, respectively. Analysis of the differentially expressed genes indicates a cellular stress response in A. palmata involving (1) growth arrest, (2) chaperone activity, (3) nucleic acid stabilization and repair, and (4) removal of damaged macromolecules. Other differentially expressed processes include sensory perception, metabolite transfer between host and endosymbiont, nitric oxide signaling, and modifications to the actin cytoskeleton and extracellular matrix. The results are compared with those from a previous coral microarray study of thermal stress in Montastraea faveolata, and point to an overall evolutionary conserved bleaching response in scleractinian corals.

  12. Plasticity in skeletal characteristics of nursery-raised staghorn coral, Acropora cervicornis

    Science.gov (United States)

    Kuffner, Ilsa B.; Bartels, Erich; Stathakopoulos, Anastasios; Enochs, Ian C.; Kolodziej, G.; Toth, Lauren T.; Manzello, Derek P.

    2017-09-01

    Staghorn coral, Acropora cervicornis, is a threatened species and the primary focus of western Atlantic reef restoration efforts to date. We compared linear extension, calcification rate, and skeletal density of nursery-raised A. cervicornis branches reared for 6 months either on blocks attached to substratum or hanging from PVC trees in the water column. We demonstrate that branches grown on the substratum had significantly higher skeletal density, measured using computerized tomography, and lower linear extension rates compared to water-column fragments. Calcification rates determined with buoyant weighing were not statistically different between the two grow-out methods, but did vary among coral genotypes. Whereas skeletal density and extension rates were plastic traits that depended on grow-out method, calcification rate was conserved. Our results show that the two rearing methods generate the same amount of calcium carbonate skeleton but produce colonies with different skeletal characteristics and suggest that there is genetically based variability in coral calcification performance.

  13. Calcification responses to diurnal variation in seawater carbonate chemistry by the coral Acropora formosa

    Science.gov (United States)

    Chan, W. Y.; Eggins, S. M.

    2017-09-01

    Significant diurnal variation in seawater carbonate chemistry occurs naturally in many coral reef environments, yet little is known of its effect on coral calcification. Laboratory studies on the response of corals to ocean acidification have manipulated the carbonate chemistry of experimental seawater to compare calcification rate changes under present-day and predicted future mean pH/Ωarag conditions. These experiments, however, have focused exclusively on differences in mean chemistry and have not considered diurnal variation. The aim of this study was to compare calcification responses of branching coral Acropora formosa under conditions with and without diurnal variation in seawater carbonate chemistry. To achieve this aim, we explored (1) a method to recreate natural diurnal variation in a laboratory experiment using the biological activities of a coral-reef mesocosm, and (2) a multi-laser 3D scanning method to accurately measure coral surface areas, essential to normalize their calcification rates. We present a cost- and time-efficient method of coral surface area estimation that is reproducible within 2% of the mean of triplicate measurements. Calcification rates were compared among corals subjected to a diurnal range in pH (total scale) from 7.8 to 8.2, relative to those at constant pH values of 7.8, 8.0 or 8.2. Mean calcification rates of the corals at the pH 7.8-8.2 (diurnal variation) treatment were not statistically different from the pH 8.2 treatment and were 34% higher than the pH 8.0 treatment despite similar mean seawater pH and Ωarag. Our results suggest that calcification of adult coral colonies may benefit from diurnal variation in seawater carbonate chemistry. Experiments that compare calcification rates at different constant pH without considering diurnal variation may have limitations.

  14. Can benthic algae mediate larval behavior and settlement of the coral Acropora muricata?

    Science.gov (United States)

    Denis, V.; Loubeyres, M.; Doo, S. S.; de Palmas, S.; Keshavmurthy, S.; Hsieh, H. J.; Chen, C. A.

    2014-06-01

    The resilience of coral reefs relies significantly on the ability of corals to recover successfully in algal-dominated environments. Larval settlement is a critical but highly vulnerable stage in the early life history of corals. In this study, we analyzed how the presence of two upright fleshy algae, Sargassum mcclurei (SM) and Padina australis (PA), and one crustose coralline algae, Mesophyllum simulans (MS), affects the settlement of Acropora muricata larvae. Coral larvae were exposed to seawater flowing over these algae at two concentrations. Larval settlement and mortality were assessed daily through four variables related to their behavior: swimming, substratum testing, metamorphosis, and stresses. Temperature, dissolved oxygen, pH, algal growth, and photosynthetic efficiency were monitored throughout the experiment. Results showed that A. muricata larvae can settle successfully in the absence of external stimuli (63 ± 6 % of the larvae settled in control treatments). While algae such as MS may stimulate substrate testing and settlement of larvae in the first day after competency, they ultimately had a lower settlement rate than controls. Fleshy algae such as PA, and in a lesser measure SM, induced more metamorphosis than controls and seemed to eventually stimulate settlement. A diverse combination of signals and/or modifications of microenvironments by algae and their associated microbial communities may explain the pattern observed in coral settlement. Overall, this study contributes significantly to the knowledge of the interaction between coral and algae, which is critical for the resilience of the reefs.

  15. Human pathogen shown to cause disease in the threatened eklhorn coral Acropora palmata.

    Directory of Open Access Journals (Sweden)

    Kathryn Patterson Sutherland

    Full Text Available Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS, a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine "reverse zoonosis" involving the transmission of a human pathogen (S. marcescens to a marine invertebrate (A. palmata. These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival.

  16. Linear extension rates and gross carbonate production of Acropora cervicornis at Coral Gardens, Belize.

    Science.gov (United States)

    Peeling, E.; Greer, L.; Lescinsky, H.; Humston, R.; Wirth, K. R.; Baums, I. B.; Curran, A.

    2014-12-01

    Branching Acropora coral species have fast growth and carbonate production rates, and thus have functioned as important reef-building species throughout the Pleistocene and Holocene. Recently, net carbonate production (kg CaCO3 m-2 year-1) has been recognized as an important measure of reef health, especially when monitoring endangered species, such as Acropora cervicornis. This study examines carbonate production in a thriving population of A. cervicornis at the Coral Gardens reef in Belize. Photographic surveys were conducted along five transects of A. cervicornis-dominated reefs from 2011-2014. Matching photographs from 2013 and 2014 were scaled to 1 m2 and compared to calculate 84 individual A. cervicornis linear extension rates across the reef. Linear extension rates averaged 12.4 cm/yr and were as high as 17 cm/yr in some areas of the reef. Carbonate production was calculated two ways. The first followed the standard procedure of multiplying percent live coral cover, by the linear extension rate and skeletal density. The second used the number of live coral tips per square meter in place of percent live coral multiplied by the average cross-sectional area of the branches. The standard method yielded a carbonate production rate of 113 kg CaCO3 m-2 year-1 for the reef, and the tip method yielded a rate of 6 kg m-2 year-1. We suggest that the tip method is a more accurate measure of production, because A. cervicornis grows primarily from the live tips, with only limited radial growth and resheeting over dead skeleton. While this method omits the contributions of radial growth and resheeting, and is therefore somewhat of an underestimate, our future work will quantify these aspects of growth in a more complete carbonate budget. Still, our estimate suggests a carbonate production rate per unit area of A. cervicornis that is on par with other Caribbean coral species, rather than two orders of magnitude higher as reported by Perry et al (2013). Although gross coral

  17. RNA-seq profiles of immune related genes in the staghorn coral Acropora cervicornis infected with white band disease.

    Science.gov (United States)

    Libro, Silvia; Kaluziak, Stefan T; Vollmer, Steven V

    2013-01-01

    Coral diseases are among the most serious threats to coral reefs worldwide, yet most coral diseases remain poorly understood. How the coral host responds to pathogen infection is an area where very little is known. Here we used next-generation RNA-sequencing (RNA-seq) to produce a transcriptome-wide profile of the immune response of the Staghorn coral Acropora cervicornis to White Band Disease (WBD) by comparing infected versus healthy (asymptomatic) coral tissues. The transcriptome of A. cervicornis was assembled de novo from A-tail selected Illumina mRNA-seq data from whole coral tissues, and parsed bioinformatically into coral and non-coral transcripts using existing Acropora genomes in order to identify putative coral transcripts. Differentially expressed transcripts were identified in the coral and non-coral datasets to identify genes that were up- and down-regulated due to disease infection. RNA-seq analyses indicate that infected corals exhibited significant changes in gene expression across 4% (1,805 out of 47,748 transcripts) of the coral transcriptome. The primary response to infection included transcripts involved in macrophage-mediated pathogen recognition and ROS production, two hallmarks of phagocytosis, as well as key mediators of apoptosis and calcium homeostasis. The strong up-regulation of the enzyme allene oxide synthase-lipoxygenase suggests a key role of the allene oxide pathway in coral immunity. Interestingly, none of the three primary innate immune pathways--Toll-like receptors (TLR), Complement, and prophenoloxydase pathways, were strongly associated with the response of A. cervicornis to infection. Five-hundred and fifty differentially expressed non-coral transcripts were classified as metazoan (n = 84), algal or plant (n = 52), fungi (n = 24) and protozoans (n = 13). None of the 52 putative Symbiodinium or algal transcript had any clear immune functions indicating that the immune response is driven by the coral host, and not its algal

  18. RNA-seq profiles of immune related genes in the staghorn coral Acropora cervicornis infected with white band disease.

    Directory of Open Access Journals (Sweden)

    Silvia Libro

    Full Text Available Coral diseases are among the most serious threats to coral reefs worldwide, yet most coral diseases remain poorly understood. How the coral host responds to pathogen infection is an area where very little is known. Here we used next-generation RNA-sequencing (RNA-seq to produce a transcriptome-wide profile of the immune response of the Staghorn coral Acropora cervicornis to White Band Disease (WBD by comparing infected versus healthy (asymptomatic coral tissues. The transcriptome of A. cervicornis was assembled de novo from A-tail selected Illumina mRNA-seq data from whole coral tissues, and parsed bioinformatically into coral and non-coral transcripts using existing Acropora genomes in order to identify putative coral transcripts. Differentially expressed transcripts were identified in the coral and non-coral datasets to identify genes that were up- and down-regulated due to disease infection. RNA-seq analyses indicate that infected corals exhibited significant changes in gene expression across 4% (1,805 out of 47,748 transcripts of the coral transcriptome. The primary response to infection included transcripts involved in macrophage-mediated pathogen recognition and ROS production, two hallmarks of phagocytosis, as well as key mediators of apoptosis and calcium homeostasis. The strong up-regulation of the enzyme allene oxide synthase-lipoxygenase suggests a key role of the allene oxide pathway in coral immunity. Interestingly, none of the three primary innate immune pathways--Toll-like receptors (TLR, Complement, and prophenoloxydase pathways, were strongly associated with the response of A. cervicornis to infection. Five-hundred and fifty differentially expressed non-coral transcripts were classified as metazoan (n = 84, algal or plant (n = 52, fungi (n = 24 and protozoans (n = 13. None of the 52 putative Symbiodinium or algal transcript had any clear immune functions indicating that the immune response is driven by the coral host, and not

  19. Transfer of intracolonial genetic variability through gametes in Acropora hyacinthus corals

    Science.gov (United States)

    Schweinsberg, M.; González Pech, R. A.; Tollrian, R.; Lampert, K. P.

    2014-03-01

    In recent years, the new phenomenon of intracolonial genetic variability within a single coral colony has been described. This connotes that coral colonies do not necessarily consist of only a single genotype, but may contain several distinct genotypes. Harboring more than one genotype could improve survival under stressful environmental conditions, e.g., climate change. However, so far it remained unclear whether the intracolonial genetic variability of the adult coral is also present in the gametes. We investigated the occurrence of intracolonial genetic variability in 14 mature colonies of the coral Acropora hyacinthus using eight microsatellite loci. A grid was placed over each colony before spawning, and the emerging egg/sperm bundles were collected separately in each grid. The underlying tissues as well as the egg/sperm bundles were genotyped to determine whether different genotypes were present. Within the 14 mature colonies, we detected 10 colonies with more than one genotype (intracolonial genetic variability). Four out of these 10 mature colonies showed a transfer of different genotypes via the eggs to the next generation. In two out of these four cases, we found additional alleles, and in the two other cases, we found only a subset of alleles in the unfertilized eggs. Our results suggest that during reproduction of A. hyacinthus, more than one genotype per colony is able to reproduce. We discuss the occurrence of different genotypes within a single coral colony and the ability for those to release eggs which are genetically distinct.

  20. Integral Light-Harvesting Complex Expression In Symbiodinium Within The Coral Acropora aspera Under Thermal Stress

    Science.gov (United States)

    Gierz, Sarah L.; Gordon, Benjamin R.; Leggat, William

    2016-04-01

    Coral reef success is largely dependent on the symbiosis between coral hosts and dinoflagellate symbionts belonging to the genus Symbiodinium. Elevated temperatures can result in the expulsion of Symbiodinium or loss of their photosynthetic pigments and is known as coral bleaching. It has been postulated that the expression of light-harvesting protein complexes (LHCs), which bind chlorophylls (chl) and carotenoids, are important in photobleaching. This study explored the effect a sixteen-day thermal stress (increasing daily from 25-34 °C) on integral LHC (chlorophyll a-chlorophyll c2-peridinin protein complex (acpPC)) gene expression in Symbiodinium within the coral Acropora aspera. Thermal stress leads to a decrease in Symbiodinium photosynthetic efficiency by day eight, while symbiont density was significantly lower on day sixteen. Over this time period, the gene expression of five Symbiodinium acpPC genes was quantified. Three acpPC genes exhibited up-regulated expression when corals were exposed to temperatures above 31.5 °C (acpPCSym_1:1, day sixteen; acpPCSym_15, day twelve; and acpPCSym_18, day ten and day sixteen). In contrast, the expression of acpPCSym_5:1 and acpPCSym_10:1 was unchanged throughout the experiment. Interestingly, the three acpPC genes with increased expression cluster together in a phylogenetic analysis of light-harvesting complexes.

  1. Small-scale mapping of indeterminate arborescent acroporid coral ( Acropora cervicornis) patches

    Science.gov (United States)

    Walker, B. K.; Larson, E. A.; Moulding, A. L.; Gilliam, D. S.

    2012-09-01

    Western Atlantic populations of the staghorn coral Acropora cervicornis have drastically declined over the past few decades. Hence, interest in its ecology and spatial extent has increased. Acroporid corals with indeterminate arborescent growth like A. cervicornis primarily reproduce asexually by fragmentation, which can lead to extensive monotypic patches. Since fragmentation is a major component in indeterminate acroporid reproduction, these patches may expand or move over time. Periodic perimeter mapping facilitates comparison of patch areas to determine movement or expansion. A repeatable, low-cost method using a differential GPS carried by a snorkeler was employed to map the perimeter of A. cervicornis patches in southeast Florida. Perimeters were mapped over a 3-year period. Patch boundaries were dynamic, expanding in one or more directions. Patch areas increased by up to 7.5 times their original size and moved up to 51 m. Results were corroborated by spatial cluster analyses of in situ live coral cover measurements. Getis-Ord Gi* statistic and Anselin Local Moran's I spatial cluster analyses of live coral cover within an array of in situ monitoring plots indicated that significant high cover clusters moved in the direction of mapped patch perimeter expansion. Expansion was coupled by more than 50 % decreases in total live cover. Information gained herein shows that A. cervicornis patches are spatially and temporally dynamic, having implications to long-term permanent transect monitoring studies and framework development. Results may be applicable to other shallow water indeterminate arborescent acroporid coral species.

  2. Genetic diversity and connectivity in the threatened staghorn coral (Acropora cervicornis in Florida.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Hemond

    Full Text Available Over the past three decades, populations of the dominant shallow water Caribbean corals, Acropora cervicornis and A. palmata, have been devastated by white-band disease (WBD, resulting in the listing of both species as threatened under the U.S. Endangered Species Act. A key to conserving these threatened corals is understanding how their populations are genetically interconnected throughout the greater Caribbean. Genetic research has demonstrated that gene flow is regionally restricted across the Caribbean in both species. Yet, despite being an important site of coral reef research, little genetic data has been available for the Florida Acropora, especially for the staghorn coral, A. cervicornis. In this study, we present new mitochondrial DNA sequence data from 52 A. cervicornis individuals from 22 sites spread across the upper and lower Florida Keys, which suggest that Florida's A. cervicornis populations are highly genetically interconnected (F(ST = -0.081. Comparison between Florida and existing mtDNA data from six regional Caribbean populations indicates that Florida possesses high levels of standing genetic diversity (h = 0.824 relative to the rest of the greater Caribbean (h = 0.701+/-0.043. We find that the contemporary level of gene flow across the greater Caribbean, including Florida, is restricted (Phi(CT = 0.117, but evidence from shared haplotypes suggests the Western Caribbean has historically been a source of genetic variation for Florida. Despite the current patchiness of A. cervicornis in Florida, the relatively high genetic diversity and connectivity within Florida suggest that this population may have sufficient genetic variation to be viable and resilient to environmental perturbation and disease. Limited genetic exchange across regional populations of the greater Caribbean, including Florida, indicates that conservation efforts for A. cervicornis should focus on maintaining and managing populations locally rather than

  3. Genetic diversity and connectivity in the threatened staghorn coral (Acropora cervicornis) in Florida.

    Science.gov (United States)

    Hemond, Elizabeth M; Vollmer, Steven V

    2010-01-11

    Over the past three decades, populations of the dominant shallow water Caribbean corals, Acropora cervicornis and A. palmata, have been devastated by white-band disease (WBD), resulting in the listing of both species as threatened under the U.S. Endangered Species Act. A key to conserving these threatened corals is understanding how their populations are genetically interconnected throughout the greater Caribbean. Genetic research has demonstrated that gene flow is regionally restricted across the Caribbean in both species. Yet, despite being an important site of coral reef research, little genetic data has been available for the Florida Acropora, especially for the staghorn coral, A. cervicornis. In this study, we present new mitochondrial DNA sequence data from 52 A. cervicornis individuals from 22 sites spread across the upper and lower Florida Keys, which suggest that Florida's A. cervicornis populations are highly genetically interconnected (F(ST) = -0.081). Comparison between Florida and existing mtDNA data from six regional Caribbean populations indicates that Florida possesses high levels of standing genetic diversity (h = 0.824) relative to the rest of the greater Caribbean (h = 0.701+/-0.043). We find that the contemporary level of gene flow across the greater Caribbean, including Florida, is restricted (Phi(CT) = 0.117), but evidence from shared haplotypes suggests the Western Caribbean has historically been a source of genetic variation for Florida. Despite the current patchiness of A. cervicornis in Florida, the relatively high genetic diversity and connectivity within Florida suggest that this population may have sufficient genetic variation to be viable and resilient to environmental perturbation and disease. Limited genetic exchange across regional populations of the greater Caribbean, including Florida, indicates that conservation efforts for A. cervicornis should focus on maintaining and managing populations locally rather than relying on larval

  4. Restoration of critically endangered elkhorn coral (Acropora palmata) populations using larvae reared from wild-caught gametes

    NARCIS (Netherlands)

    Chamberland, V.F.; Vermeij, M.J.A.; Brittsan, M.; Carl, M.; Schick, M.; Snowden, S.; Schrier, A.; Petersen, D.

    2015-01-01

    Elkhorn coral (Acropora palmata) populations provide important ecological functions on shallow Caribbean reefs, many of which were lost when a disease reduced their abundance by more than 95% beginning in the mid-1970s. Since then, a lack of significant recovery has prompted rehabilitation initiativ

  5. Gene discovery in the threatened elkhorn coral: 454 sequencing of the Acropora palmata transcriptome.

    Directory of Open Access Journals (Sweden)

    Nicholas R Polato

    Full Text Available BACKGROUND: Cnidarians, including corals and anemones, offer unique insights into metazoan evolution because they harbor genetic similarities with vertebrates beyond that found in model invertebrates and retain genes known only from non-metazoans. Cataloging genes expressed in Acropora palmata, a foundation-species of reefs in the Caribbean and western Atlantic, will advance our understanding of the genetic basis of ecologically important traits in corals and comes at a time when sequencing efforts in other cnidarians allow for multi-species comparisons. RESULTS: A cDNA library from a sample enriched for symbiont free larval tissue was sequenced on the 454 GS-FLX platform. Over 960,000 reads were obtained and assembled into 42,630 contigs. Annotation data was acquired for 57% of the assembled sequences. Analysis of the assembled sequences indicated that 83-100% of all A. palmata transcripts were tagged, and provided a rough estimate of the total number genes expressed in our samples (~18,000-20,000. The coral annotation data contained many of the same molecular components as in the Bilateria, particularly in pathways associated with oxidative stress and DNA damage repair, and provided evidence that homologs of p53, a key player in DNA repair pathways, has experienced selection along the branch separating Cnidaria and Bilateria. Transcriptome wide screens of paralog groups and transition/transversion ratios highlighted genes including: green fluorescent proteins, carbonic anhydrase, and oxidative stress proteins; and functional groups involved in protein and nucleic acid metabolism, and the formation of structural molecules. These results provide a starting point for study of adaptive evolution in corals. CONCLUSIONS: Currently available transcriptome data now make comparative studies of the mechanisms underlying coral's evolutionary success possible. Here we identified candidate genes that enable corals to maintain genomic integrity despite

  6. Cryptobiota associated to dead Acropora palmata (Scleractinia: Acroporidae coral, Isla Grande, Colombian Caribbean

    Directory of Open Access Journals (Sweden)

    Silvia K. Moreno-Forero

    1998-06-01

    Full Text Available Cryptobiota of dead fragments of five branches in live position and five fallen pieces of the coral Acropora palmata each one of approximate 1dm3, covered by filamentous algae were extracted from the north reef crest of Isla Grande (Colombian Caribbean, in April 1991. There were three groups of organisms according to size and position (on and within the coral: 1 mobile epibenthos, mainly microcrustaceans that live among the filamentous algae 2 boring microcryptobiota, located in the layer between the epilithic organisms and the coral skeleton itself and, 3 perforating macrocryptobionts that bore and penetrate the coral skeleton. Polychaetes, sipuncu-lids, mollusks and crustaceans were most abundant in the last group. There were no differences in macrocryptobiont composition between standing dead branches and fallen fragments. There was a large variation in total biomass and type and density of macro-cryptobionts, possibly associated to stochastic factors such as placement and thickness of branches and small scale variations in recruitmentLa criptobiota de diez fragmentos coralinos muertos de Acropora palmata, de 10 dm3 cada uno, cubiertos de algas filamentosas, se colectó en abril de 1991en la cresta arrecifal de Isla Grande (Caribe colombiano. Se halló tres grupos: 1 móviles epibentónicos asociados a las algas filamentosas y conformados principalmente por microcrustáceos; 2 microcriptobiontes perforantes, ubicados en la capa intermedia entre los organismos epilíticos y el esqueleto del coral y 3 macrocriptobiontes que perforan todo el cuerpo del esqueleto coralino (principalmente poliquetos, sipuncúlidos, moluscos y crustáceos. No se encontraron diferencias en la composición de los macrocriptobiontes que habitan los corales en posición de vida y los fragmentos caidos sobre el fondo. Se presentó una amplia variación en biomasa total, tipo y densidad de macrocriptobiontes, posiblemente asociada a factores estocásticos tales como la

  7. Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata.

    Science.gov (United States)

    Albright, Rebecca; Mason, Benjamin; Miller, Margaret; Langdon, Chris

    2010-11-23

    Ocean acidification (OA) refers to the ongoing decline in oceanic pH resulting from the uptake of atmospheric CO(2). Mounting experimental evidence suggests that OA will have negative consequences for a variety of marine organisms. Whereas the effect of OA on the calcification of adult reef corals is increasingly well documented, effects on early life history stages are largely unknown. Coral recruitment, which necessitates successful fertilization, larval settlement, and postsettlement growth and survivorship, is critical to the persistence and resilience of coral reefs. To determine whether OA threatens successful sexual recruitment of reef-building corals, we tested fertilization, settlement, and postsettlement growth of Acropora palmata at pCO(2) levels that represent average ambient conditions during coral spawning (∼400 μatm) and the range of pCO(2) increases that are expected to occur in this century [∼560 μatm (mid-CO(2)) and ∼800 μatm (high-CO(2))]. Fertilization, settlement, and growth were all negatively impacted by increasing pCO(2), and impairment of fertilization was exacerbated at lower sperm concentrations. The cumulative impact of OA on fertilization and settlement success is an estimated 52% and 73% reduction in the number of larval settlers on the reef under pCO(2) conditions projected for the middle and the end of this century, respectively. Additional declines of 39% (mid-CO(2)) and 50% (high-CO(2)) were observed in postsettlement linear extension rates relative to controls. These results suggest that OA has the potential to impact multiple, sequential early life history stages, thereby severely compromising sexual recruitment and the ability of coral reefs to recover from disturbance.

  8. The microbial biosphere of the coral Acropora cervicornis in Northeastern Puerto Rico.

    Science.gov (United States)

    Godoy-Vitorino, Filipa; Ruiz-Diaz, Claudia P; Rivera-Seda, Abigail; Ramírez-Lugo, Juan S; Toledo-Hernández, Carlos

    2017-01-01

    Coral reefs are the most biodiverse ecosystems in the marine realm, and they not only contribute a plethora of ecosystem services to other marine organisms, but they also are beneficial to humankind via, for instance, their role as nurseries for commercially important fish species. Corals are considered holobionts (host + symbionts) since they are composed not only of coral polyps, but also algae, other microbial eukaryotes and prokaryotes. In recent years, Caribbean reef corals, including the once-common scleractinian coral Acropora cervicornis, have suffered unprecedented mortality due to climate change-related stressors. Unfortunately, our basic knowledge of the molecular ecophysiology of reef corals, particularly with respect to their complex bacterial microbiota, is currently too poor to project how climate change will affect this species. For instance, we do not know how light influences microbial communities of A. cervicornis, arguably the most endangered of all Caribbean coral species. To this end, we characterized the microbiota of A. cervicornis inhabiting water depths with different light regimes. Six A. cervicornis fragments from different individuals were collected at two different depths (three at 1.5 m and three at 11 m) from a reef 3.2 km off the northeastern coast of Puerto Rico. We characterized the microbial communities by sequencing the 16S rRNA gene region V4 with the Illumina platform. A total of 173,137 good-quality sequences were binned into 803 OTUs with a 97% similarity. We uncovered eight bacterial phyla at both depths with a dominance of 725 Rickettsiales OTUs (Proteobacteria). A fewer number (38) of low dominance OTUs varied by depth and taxa enriched in shallow water corals included Proteobacteria (e.g. Rhodobacteraceae and Serratia) and Firmicutes (Streptococcus). Those enriched in deeper water corals featured different Proteobacterial taxa (Campylobacterales and Bradyrhizobium) and Firmicutes (Lactobacillus). Our results confirm that

  9. Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification

    OpenAIRE

    Guowei Zhou; Tao Yuan; Lin Cai; Weipeng Zhang; Renmao Tian; Haoya Tong; Lei Jiang; Xiangcheng Yuan; Sheng Liu; Peiyuan Qian; Hui Huang

    2016-01-01

    With the increasing anthropogenic CO2 concentration, ocean acidification (OA) can have dramatic effects on coral reefs. However, the effects of OA on coral physiology and the associated microbes remain largely unknown. In the present study, reef-building coral Acropora gemmifera collected from a reef flat with highly fluctuating environmental condition in the South China Sea were exposed to three levels of partial pressure of carbon dioxide (pCO2) (i.e., 421, 923, and 2070 μatm) for four week...

  10. The microbial biosphere of the coral Acropora cervicornis in Northeastern Puerto Rico

    Directory of Open Access Journals (Sweden)

    Filipa Godoy-Vitorino

    2017-08-01

    Full Text Available Background Coral reefs are the most biodiverse ecosystems in the marine realm, and they not only contribute a plethora of ecosystem services to other marine organisms, but they also are beneficial to humankind via, for instance, their role as nurseries for commercially important fish species. Corals are considered holobionts (host + symbionts since they are composed not only of coral polyps, but also algae, other microbial eukaryotes and prokaryotes. In recent years, Caribbean reef corals, including the once-common scleractinian coral Acropora cervicornis, have suffered unprecedented mortality due to climate change-related stressors. Unfortunately, our basic knowledge of the molecular ecophysiology of reef corals, particularly with respect to their complex bacterial microbiota, is currently too poor to project how climate change will affect this species. For instance, we do not know how light influences microbial communities of A. cervicornis, arguably the most endangered of all Caribbean coral species. To this end, we characterized the microbiota of A. cervicornis inhabiting water depths with different light regimes. Methods Six A. cervicornis fragments from different individuals were collected at two different depths (three at 1.5 m and three at 11 m from a reef 3.2 km off the northeastern coast of Puerto Rico. We characterized the microbial communities by sequencing the 16S rRNA gene region V4 with the Illumina platform. Results A total of 173,137 good-quality sequences were binned into 803 OTUs with a 97% similarity. We uncovered eight bacterial phyla at both depths with a dominance of 725 Rickettsiales OTUs (Proteobacteria. A fewer number (38 of low dominance OTUs varied by depth and taxa enriched in shallow water corals included Proteobacteria (e.g. Rhodobacteraceae and Serratia and Firmicutes (Streptococcus. Those enriched in deeper water corals featured different Proteobacterial taxa (Campylobacterales and Bradyrhizobium and Firmicutes

  11. Acropora corals in Florida: status, trends, conservation, and prospects for recovery

    Science.gov (United States)

    Miller, Margaret W.; Jaap, Walt C.; Chiappone, Mark; Vargas-Angel, Bernardo; Keller, Brian; Aronson, Richard B.; Shinn, Eugene A.; Bruckner, Andrew W.

    2003-01-01

    Despite representing the northern extent of Acropora spp. in the Caribbean, most of the Florida reef line from Palm Beach through the Keys was built by these species. Climatic factors appear to have bee important agents of Acropora loss within historic (century) time frames. In the recent past (1980-present), available quantitative evidence suggests dramatic declines occurred in A. cervicornis first (late 70's to 84) with collapse of A. palmata occuring later (1981-86). However, recent monitoring studies (1996-2001) show continued decline of remnant populations of A. palmata. Current trends in A. cervicornis in the Florida Keys are hard to assess given its exceedingly low abundance, except in Broward County, FL where recently discovered A. cervicornis thickets are thriving. While the State of Florida recognizes A. palmata and A. cervicornis as endangered species (Deyrup and Franz 1994), this designation carries no management implications. The current management plan of the FKNMS provides many strategies for coral conservation, among them minimizing the threat of vessel groundings and anchor damage, and prohibitions on collection, touching, and damage from fishery and recreational users. Although Acropopra spp. are not explicitly given any special consideration, they are implicitly by Santuary management. Restoration approaches undertaken in the Florida Keys include rescue of fragments damaged by groudings and experimental work to culture broadcast-spawned larvae to re-seed natural substrates. Neither of these efforts have yet realized full success.

  12. Dynamics of bacterial community development in the reef coral Acropora muricata following experimental antibiotic treatment

    Science.gov (United States)

    Sweet, M. J.; Croquer, A.; Bythell, J. C.

    2011-12-01

    Development of the bacterial community associated with the coral Acropora muricata (= formosa) was monitored using 16S rRNA gene-based techniques and abundance counts over time following experimental modification of the existing microbial community using the antibiotic ciprofloxacin. Abundance of bacteria was reduced >99% by the treatment, resulting in significant changes in bacterial community structure. Following redeployment to their natural environment, some settlement and re-growth of bacteria took place within a few hours, including ribosomal types that were not present, or in low abundance, in the natural microbiota. However, complete recovery of the bacterial community required longer than 96 h, which indicates a relatively slow settlement and growth of bacteria from the water column and suggests that turnover of the natural community is similarly slow. The early developing community was dominated by antibiotic-resistant bacteria from the natural microbiota that survived the treatment and proliferated in the absence of natural competitors, but also included some non-resident ribotypes colonizing from the water column. Almost, all these opportunists were significantly reduced or eliminated within 96 h after treatment, demonstrating a high resilience in the natural bacterial community. Potential pathogens, including a Clostridium sp., inhabited the coral at low abundances, only becoming prevalent when the natural microbiota was disturbed by the treatment. The healthy coral-associated microbiota appears to be strongly controlled by microbial interactions.

  13. Plasticity in skeletal characteristics of nursery-raised staghorn coral, Acropora cervicornis

    Science.gov (United States)

    Kuffner, Ilsa B.; Bartels, Erich; Stathakopoulos, Anastasios; Enochs, Ian C.; Kolodziej, Graham; Toth, Lauren; Manzello, Derek P.

    2017-01-01

    Staghorn coral, Acropora cervicornis, is a threatened species and the primary focus of western Atlantic reef restoration efforts to date. We compared linear extension, calcification rate, and skeletal density of nursery-raised A. cervicornis branches reared for 6 months either on blocks attached to substratum or hanging from PVC trees in the water column. We demonstrate that branches grown on the substratum had significantly higher skeletal density, measured using computerized tomography, and lower linear extension rates compared to water-column fragments. Calcification rates determined with buoyant weighing were not statistically different between the two grow-out methods, but did vary among coral genotypes. Whereas skeletal density and extension rates were plastic traits that depended on grow-out method, calcification rate was conserved. Our results show that the two rearing methods generate the same amount of calcium carbonate skeleton but produce colonies with different skeletal characteristics and suggest that there is genetically based variability in coral calcification performance.

  14. The northern limit of corals of the genus Acropora in temperate zones is determined by their resilience to cold bleaching.

    Science.gov (United States)

    Higuchi, Tomihiko; Agostini, Sylvain; Casareto, Beatriz Estela; Suzuki, Yoshimi; Yuyama, Ikuko

    2015-12-18

    The distribution of corals in Japan covers a wide range of latitudes, encompassing tropical to temperate zones. However, coral communities in temperate zones contain only a small subset of species. Among the parameters that determine the distribution of corals, temperature plays an important role. We tested the resilience to cold stress of three coral species belonging to the genus Acropora in incubation experiments. Acropora pruinosa, which is the northernmost of the three species, bleached at 13 °C, but recovered once temperatures were increased. The two other species, A. hyacinthus and A. solitaryensis, which has a more southerly range than A. pruinosa, died rapidly after bleaching at 13 °C. The physiological effects of cold bleaching on the corals included decreased rates of photosynthesis, respiration, and calcification, similar to the physiological effects observed with bleaching due to high temperature stress. Contrasting hot bleaching, no increases in antioxidant enzyme activities were observed, suggesting that reactive oxygen species play a less important role in bleaching under cold stress. These results confirmed the importance of resilience to cold stress in determining the distribution and northern limits of coral species, as cold events causing coral bleaching and high mortality occur regularly in temperate zones.

  15. Potential spawn induction and suppression agents in Caribbean Acropora cervicornis corals of the Florida Keys

    Directory of Open Access Journals (Sweden)

    Mark Flint

    2016-04-01

    Full Text Available The enhanced ability to direct sexual reproduction may lead to improved restoration outcomes for Acropora cervicornis. Gravid fragments of A. cervicornis were maintained in a laboratory for two sequential trials in the seven days prior to natural spawning in the Florida Keys. Ten replicates of five chemicals known to affect spawning in various invertebrate taxa were tested. Hydrogen peroxide at 2 mM (70% and L-5-hydroxytryptophan (5-HTP at 5 (40% and 20 µM (30% induced spawning within 15.4 h, 38.8 h and 26.9 h of dosing at or above the rate of release of the control (30% within 14.6 h. Serotonin acetate monohydrate at 1 µM (20% and 10 µM (20%, naloxone hydrochloride dihydrate at 0.01 µM (10% and potassium phosphate monobasic at 0.25 µM (0% induced spawning at rates less than the control. Although the greatest number of fragments spawned using hydrogen peroxide, it was with 100% mortality. There was a significantly higher induction rate closer to natural spawn (Trial 2 compared with Trial 1 and no genotype effect. Mechanisms of action causing gamete release were not elucidated. In Caribbean staghorn corals, 5-HTP shows promise as a spawning induction agent if administered within 72 h of natural spawn and it will not result in excessive mortality. Phosphate chemicals may inhibit spawning. This is the first study of its kind on Caribbean acroporid corals and may offer an important conservation tool for biologists currently charged with restoring the imperiled Acropora reefs of the Florida Keys.

  16. Potential spawn induction and suppression agents in Caribbean Acropora cervicornis corals of the Florida Keys.

    Science.gov (United States)

    Flint, Mark; Than, John T

    2016-01-01

    The enhanced ability to direct sexual reproduction may lead to improved restoration outcomes for Acropora cervicornis. Gravid fragments of A. cervicornis were maintained in a laboratory for two sequential trials in the seven days prior to natural spawning in the Florida Keys. Ten replicates of five chemicals known to affect spawning in various invertebrate taxa were tested. Hydrogen peroxide at 2 mM (70%) and L-5-hydroxytryptophan (5-HTP) at 5 (40%) and 20 µM (30%) induced spawning within 15.4 h, 38.8 h and 26.9 h of dosing at or above the rate of release of the control (30%) within 14.6 h. Serotonin acetate monohydrate at 1 µM (20%) and 10 µM (20%), naloxone hydrochloride dihydrate at 0.01 µM (10%) and potassium phosphate monobasic at 0.25 µM (0%) induced spawning at rates less than the control. Although the greatest number of fragments spawned using hydrogen peroxide, it was with 100% mortality. There was a significantly higher induction rate closer to natural spawn (Trial 2) compared with Trial 1 and no genotype effect. Mechanisms of action causing gamete release were not elucidated. In Caribbean staghorn corals, 5-HTP shows promise as a spawning induction agent if administered within 72 h of natural spawn and it will not result in excessive mortality. Phosphate chemicals may inhibit spawning. This is the first study of its kind on Caribbean acroporid corals and may offer an important conservation tool for biologists currently charged with restoring the imperiled Acropora reefs of the Florida Keys.

  17. Density dependence drives habitat production and survivorship of Acropora cervicornis used for restoration on a Caribbean coral reef

    Directory of Open Access Journals (Sweden)

    Mark C Ladd

    2016-12-01

    Full Text Available AbstractCoral restoration is gaining traction as a viable strategy to help restore degraded reefs. While the nascent field of coral restoration has rapidly progressed in the past decade, significant knowledge gaps remain regarding the drivers of restoration success that may impede our ability to effectively restore coral reef communities. Here, we conducted a field experiment to investigate the influence of coral density on the growth, habitat production, and survival of corals outplanted for restoration. We used nursery-raised colonies of Acropora cervicornis to experimentally establish populations of corals with either 3, 6, 12, or 24 corals within 4m2 plots, generating a gradient of coral densities ranging from 0.75 corals m-2 to 12 corals m-2. After 13 months we found that density had a significant effect on the growth, habitat production, and survivorship of restored corals. We found that coral survivorship increased as colony density decreased. Importantly, the signal of density dependent effects was context dependent. Our data suggest that positive density dependent effects influenced habitat production at densities of 3 corals m-2, but further increases in density resulted in negative density dependent effects with decreasing growth and survivorship of corals. These findings highlight the importance of density dependence for coral restoration planning and demonstrate the need to evaluate the influence of density for other coral species used for restoration. Further work focused on the mechanisms causing density dependence such as increased herbivory, rapid disease transmission, or altered predation rates are important next steps to advance our ability to effectively restore coral reefs.

  18. Acropora_CH_po

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data represent the critical habitat for elkhorn coral (Acropora palmata) and staghorn coral (A. cervicornis) as designated by 73 FR 72210, November 26, 2008,...

  19. Acropora_CH_po

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — These data represent the critical habitat for elkhorn coral (Acropora palmata) and staghorn coral (A. cervicornis) as designated by 73 FR 72210, November 26, 2008,...

  20. Experimental antibiotic treatment identifies potential pathogens of white band disease in the endangered Caribbean coral Acropora cervicornis.

    Science.gov (United States)

    Sweet, M J; Croquer, A; Bythell, J C

    2014-08-07

    Coral diseases have been increasingly reported over the past few decades and are a major contributor to coral decline worldwide. The Caribbean, in particular, has been noted as a hotspot for coral disease, and the aptly named white syndromes have caused the decline of the dominant reef building corals throughout their range. White band disease (WBD) has been implicated in the dramatic loss of Acropora cervicornis and Acropora palmata since the 1970s, resulting in both species being listed as critically endangered on the International Union for Conservation of Nature Red list. The causal agent of WBD remains unknown, although recent studies based on challenge experiments with filtrate from infected hosts concluded that the disease is probably caused by bacteria. Here, we report an experiment using four different antibiotic treatments, targeting different members of the disease-associated microbial community. Two antibiotics, ampicillin and paromomycin, arrested the disease completely, and by comparing with community shifts brought about by treatments that did not arrest the disease, we have identified the likely candidate causal agent or agents of WBD. Our interpretation of the experimental treatments is that one or a combination of up to three specific bacterial types, detected consistently in diseased corals but not detectable in healthy corals, are likely causal agents of WBD. In addition, a histophagous ciliate (Philaster lucinda) identical to that found consistently in association with white syndrome in Indo-Pacific acroporas was also consistently detected in all WBD samples and absent in healthy coral. Treatment with metronidazole reduced it to below detection limits, but did not arrest the disease. However, the microscopic disease signs changed, suggesting a secondary role in disease causation for this ciliate. In future studies to identify a causal agent of WBD via tests of Henle-Koch's postulates, it will be vital to experimentally control for populations

  1. Genotype and local environment dynamically influence growth, disturbance response and survivorship in the threatened coral, Acropora cervicornis

    Science.gov (United States)

    Drury, Crawford; Manzello, Derek; Lirman, Diego

    2017-01-01

    The relationship between the coral genotype and the environment is an important area of research in degraded coral reef ecosystems. We used a reciprocal outplanting experiment with 930 corals representing ten genotypes on each of eight reefs to investigate the influence of genotype and the environment on growth and survivorship in the threatened Caribbean staghorn coral, Acropora cervicornis. Coral genotype and site were strong drivers of coral growth and individual genotypes exhibited flexible, non-conserved reaction norms, complemented by ten-fold differences in growth between specific G-E combinations. Growth plasticity may diminish the influence of local adaptation, where foreign corals grew faster than native corals at their home sites. Novel combinations of environment and genotype also significantly affected disturbance response during and after the 2015 bleaching event, where these factors acted synergistically to drive variation in bleaching and recovery. Importantly, small differences in temperature stress elicit variable patterns of survivorship based on genotype and illustrate the importance of novel combinations of coral genetics and small differences between sites representing habitat refugia. In this context, acclimatization and flexibility is especially important given the long lifespan of corals coping with complex environmental change. The combined influence of site and genotype creates short-term differences in growth and survivorship, contributing to the standing genetic variation needed for adaptation to occur over longer timescales and the recovery of degraded reefs through natural mechanisms. PMID:28319134

  2. Genotype and local environment dynamically influence growth, disturbance response and survivorship in the threatened coral, Acropora cervicornis.

    Science.gov (United States)

    Drury, Crawford; Manzello, Derek; Lirman, Diego

    2017-01-01

    The relationship between the coral genotype and the environment is an important area of research in degraded coral reef ecosystems. We used a reciprocal outplanting experiment with 930 corals representing ten genotypes on each of eight reefs to investigate the influence of genotype and the environment on growth and survivorship in the threatened Caribbean staghorn coral, Acropora cervicornis. Coral genotype and site were strong drivers of coral growth and individual genotypes exhibited flexible, non-conserved reaction norms, complemented by ten-fold differences in growth between specific G-E combinations. Growth plasticity may diminish the influence of local adaptation, where foreign corals grew faster than native corals at their home sites. Novel combinations of environment and genotype also significantly affected disturbance response during and after the 2015 bleaching event, where these factors acted synergistically to drive variation in bleaching and recovery. Importantly, small differences in temperature stress elicit variable patterns of survivorship based on genotype and illustrate the importance of novel combinations of coral genetics and small differences between sites representing habitat refugia. In this context, acclimatization and flexibility is especially important given the long lifespan of corals coping with complex environmental change. The combined influence of site and genotype creates short-term differences in growth and survivorship, contributing to the standing genetic variation needed for adaptation to occur over longer timescales and the recovery of degraded reefs through natural mechanisms.

  3. Population genetic structure between Yap and Palau for the coral Acropora hyacinthus.

    Science.gov (United States)

    Cros, Annick; Toonen, Robert J; Davies, Sarah W; Karl, Stephen A

    2016-01-01

    Information on connectivity is becoming increasingly in demand as marine protected areas are being designed as an integral part of a network to protect marine resources at the ecosystem level. Larval dispersal and population structure, however, remain very difficult to assess. Here, we tested the predictions of a detailed oceanographic connectivity model of larval dispersal and coral recruitment within Palau and between Palau and Yap, which was developed to support the review of the existing network of marine protected areas in Palau. We used high throughput microsatellite genotyping of the coral Acropora hyacinthus to characterize population genetic structure. Pairwise F' ST values between Palau and Yap (0.10), Palau and Ngulu (0.09) and Yap and Ngulu (0.09) were all significant and similar to pairwise F' ST values of sites within Palau (0.02-0.12) and within Yap (0.02-0.09) highlighting structure at island scale and indicating that recruitment may be even more localized than previously anticipated. A bottleneck test did not reveal any signs of a founder effect between Yap and Palau. Overall, the data supports the idea that recovery of A. hyacinthus in Palau did not come exclusively from a single source but most likely came from a combination of areas, including sites within Palau. In light of these results there seems to be very little connectivity around the barrier reef and management recommendation would be to increase the number or the size of MPAs within Palau.

  4. Development of novel, cross-species microsatellite markers for Acropora corals using next-generation sequencing technology

    Directory of Open Access Journals (Sweden)

    Chuya eShinzato

    2014-05-01

    Full Text Available The genus Acropora (Scleractinia, Acroporidae is one of the most widespread coral genera, comprising the largest number of extant species among scleractinian (reef-building corals. Molecular phylogenetic studies have suggested that A. tenuis belongs to the most basal clade (clade I while A. digitifera belongs to a derived clade (clade IV. In order to develop microsatellite markers that would be useful for most Acropora species, we sequenced the genomic DNA of A. tenuis, using a next generation sequencer (Illumina MiSeq, and designed primer sets that amplify microsatellite loci. Afterward we selected primer pairs with perfectly matched nucleotide sequences from which at least one primer was uniquely mapped to the A. digitifera genome. Fourteen microsatellite markers showed non-significant departure from Hardy–Weinberg equilibrium (HWE in both A. tenuis and A. digitifera. Thus these markers could be used for wide range of species and may provide powerful tools for population genetics studies and conservation of Acropora corals.

  5. Cold induces acute stress but heat is ultimately more deleterious for the reef-building coral Acropora yongei.

    Science.gov (United States)

    Roth, Melissa S; Goericke, Ralf; Deheyn, Dimitri D

    2012-01-01

    Climate change driven increases in intensity and frequency of both hot and cold extreme events contribute to coral reef decline by causing widespread coral bleaching and mortality. Here, we show that hot and cold temperature changes cause distinct physiological responses on different time scales in reef-building corals. We exposed the branching coral Acropora yongei in individual aquaria to a ± 5°C temperature change. Compared to heat-treated corals, cold-treated corals initially show greater declines in growth and increases in photosynthetic pressure. However, after 2-3 weeks, cold-treated corals acclimate and show improvements in physiological state. In contrast, heat did not initially harm photochemical efficiency, but after a delay, photosynthetic pressure increased rapidly and corals experienced severe bleaching and cessation of growth. These results suggest that short-term cold temperature is more damaging for branching corals than short-term warm temperature, whereas long-term elevated temperature is more harmful than long-term depressed temperature.

  6. Restricted gene flow in the Caribbean staghorn coral Acropora cervicornis: implications for the recovery of endangered reefs.

    Science.gov (United States)

    Vollmer, Steven V; Palumbi, Stephen R

    2007-01-01

    Coral reef conservation requires information about the distance over which healthy reefs can rescue damaged reefs through input of coral larvae. This information is desperately needed in the Caribbean where the 2 dominant shallow water corals Acropora cervicornis and Acropora palmata have suffered unprecedented declines. Here we compare the population genetic structure in the staghorn coral A. cervicornis across the greater Caribbean using DNA sequence data from 1 mitochondrial and 3 nuclear genes. Data from 160 individuals from 22 populations and 9 regions show that A. cervicornis exhibits significant population genetic structure across the greater Caribbean in both the mitochondrial (Phi(st) = 0.130) and nuclear data (Phi(st) = 0.067). The highest population structure was observed in the species' own, native mtDNA haplotypes (Phi(st) = 0.235). Introgressed alleles from A. palmata tempered higher population structure in A. cervicornis over regional scales but in some cases generated highly localized "introgression hot spots" and fine-scale genetic structure among reefs separated by as few as 2 km. These data show that larval dispersal over moderate or long distances (>500 km) is limited for this threatened species and in some cases locally limited as well. Thus, the endangered Caribbean staghorn corals require local source populations for their recovery and targeted conservation efforts over spatial scales much smaller than the hundreds to thousands of kilometers usually proposed for marine reserves.

  7. Density of Diadema antillarum (Echinodermata: Echinoidea) on live coral patch reefs and dead Acropora cervicornis rubble patches near Loggerhead Key, Dry Tortugas National Park, Florida, USA

    Science.gov (United States)

    Density of adult Diadema antillarum was assessed on live coral patch reefs and dead Acropora cervicornis rubble patches next to Loggerhead Key, Dry Tortugas National Park, Florida, USA in June 2009. Mean density on live coral patch reefs (0.49 individuals m-2) was not statistical...

  8. Effects of drilling fluids (muds) and turbidity on the metabolic state of the coral Acropora cervicornis: calcification rate and protein concentration

    Energy Technology Data Exchange (ETDEWEB)

    Kendall, J.J. Jr.

    1983-01-01

    The effects of ten used drilling muds on coral health have been examined by monitoring changes in calcification rates and soluble tissue protein in the coral Acropora cervicornis. Exposure to 25-ppm (v/v) of one mud for 24 h reduced calcification rate in the growing tips by as much as 63%. Soluble tissue protein concentration dropped sig

  9. Comparative 16S rRNA signatures and multilocus sequence analysis for the genus Salinicola and description of Salinicola acroporae sp. nov., isolated from coral Acropora digitifera.

    Science.gov (United States)

    Lepcha, Rinchen T; Poddar, Abhijit; Schumann, Peter; Das, Subrata K

    2015-07-01

    A novel Gram-negative, aerobic, motile marine bacterium, strain S4-41(T), was isolated from mucus of the coral Acropora digitifera from the Andaman Sea. Heterotrophic growth was observed in 0-25 % NaCl, at 15-45 °C and pH 4.5-9. In phylogenetic trees, strain S4-41(T) was grouped within the genus Salinicola but formed a separate branch distant from a cluster composed of Salinicola salarius M27(T) and Salinicola socius SMB35(T). DNA-DNA relatedness between strain S4-41(T) and these reference strains were well below 70 %. Q-9 was the sole respiratory quinone. The DNA G+C content was determined to be 63.6 mol%. Based on a polyphasic analysis, strain S4-41(T) is concluded to represent a novel species in the genus Salinicola for which the name Salinicola acroporae sp. nov. is proposed. The type strain is S4-41(T) (=JCM 30412(T) = LMG 28587(T)). Comparative 16S rRNA analysis of the genera Salinicola, Kushneria, Chromohalobacter and Cobetia revealed the presence of genus specific sequence signatures. Multilocus sequence analysis based on concatenated sequences of rRNAs (16S and 23S) and four protein coding housekeeping genes (atpA, gyrB, secA, rpoD) was found to be unnecessary for phylogenetic studies of the genus Salinicola.

  10. Propagation of the threatened staghorn coral Acropora cervicornis: methods to minimize the impacts of fragment collection and maximize production

    Science.gov (United States)

    Lirman, D.; Thyberg, T.; Herlan, J.; Hill, C.; Young-Lahiff, C.; Schopmeyer, S.; Huntington, B.; Santos, R.; Drury, C.

    2010-09-01

    Coral reef restoration methods such as coral gardening are becoming increasingly considered as viable options to mitigate reef degradation and enhance recovery of depleted coral populations. In this study, we describe several aspects of the coral gardening approach that demonstrate this methodology is an effective way of propagating the threatened Caribbean staghorn coral Acropora cervicornis: (1) the growth of colonies within the nursery exceeded the growth rates of wild staghorn colonies in the same region; (2) the collection of branch tips did not result in any further mortality to the donor colonies beyond the coral removed for transplantation; (3) decreases in linear extension of the donor branches were only temporary and donor branches grew faster than control branches after an initial recovery period of approximately 3-6 weeks; (4) fragmentation did not affect the growth rates of non-donor branches within the same colony; (5) small branch tips experienced initial mortality due to handling and transportation but surviving tips grew well over time; and (6) when the growth of the branch tips is added to the regrowth of the fragmented donor branches, the new coral produced was 1.4-1.8 times more than new growth in undisturbed colonies. Based on these results, the collection of small (2.5-3.5 cm) branch tips was an effective propagation method for this branching coral species resulting in increased biomass accumulation and limited damage to parental stocks.

  11. Comparison of the effects of thermal stress and CO₂-driven acidified seawater on fertilization in coral Acropora digitifera.

    Science.gov (United States)

    Iguchi, Akira; Suzuki, Atsushi; Sakai, Kazuhiko; Nojiri, Yukihiro

    2015-08-01

    Global warming (GW) and ocean acidification (OA) have been recognized as severe threats for reef-building corals that support coral reef ecosystems, but these effects on the early life history stage of corals are relatively unknown compared with the effects on calcification of adult corals. In this study, we evaluated the effects of thermal stress and CO2-driven acidified seawater on fertilization in a reef-building coral, Acropora digitifera. The fertilization rates of A. digitifera decreased in response to thermal stress compared with those under normal seawater conditions. In contrast, the changes of fertilization rates were not evident in the acidified seawater. Generalized Linear Mixed Model (GLMM) predicted that sperm/egg crosses and temperature were explanatory variables in the best-fitted model for the fertilization data. In the best model, interactions between thermal stress and acidified seawater on the fertilization rates were not selected. Our results suggested that coral fertilization is more sensitive to future GW than OA. Taking into consideration the previous finding that sperm motility of A. digitifera was decreased by acidified seawater, the decrease in coral cover followed by that of sperm concentration might cause the interacting effects of GW and OA on coral fertilization.

  12. Population genetic structure between Yap and Palau for the coral Acropora hyacinthus

    Directory of Open Access Journals (Sweden)

    Annick Cros

    2016-08-01

    Full Text Available Information on connectivity is becoming increasingly in demand as marine protected areas are being designed as an integral part of a network to protect marine resources at the ecosystem level. Larval dispersal and population structure, however, remain very difficult to assess. Here, we tested the predictions of a detailed oceanographic connectivity model of larval dispersal and coral recruitment within Palau and between Palau and Yap, which was developed to support the review of the existing network of marine protected areas in Palau. We used high throughput microsatellite genotyping of the coral Acropora hyacinthus to characterize population genetic structure. Pairwise F′ST values between Palau and Yap (0.10, Palau and Ngulu (0.09 and Yap and Ngulu (0.09 were all significant and similar to pairwise F′ST values of sites within Palau (0.02–0.12 and within Yap (0.02–0.09 highlighting structure at island scale and indicating that recruitment may be even more localized than previously anticipated. A bottleneck test did not reveal any signs of a founder effect between Yap and Palau. Overall, the data supports the idea that recovery of A. hyacinthus in Palau did not come exclusively from a single source but most likely came from a combination of areas, including sites within Palau. In light of these results there seems to be very little connectivity around the barrier reef and management recommendation would be to increase the number or the size of MPAs within Palau.

  13. Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata

    KAUST Repository

    Portune, Kevin J.

    2010-03-01

    Projected elevation of seawater temperatures poses a threat to the reproductive success of Caribbean reef-building corals that have planktonic development during the warmest months of the year. This study examined the transcriptomic changes that occurred during embryonic and larval development of the elkhorn coral, Acropora palmata, at a non-stressful temperature (28 °C) and further assessed the effects of two elevated temperatures (30 °C and 31.5 °C) on these expression patterns. Using cDNA microarrays, we compared expression levels of 2051 genes from early embryos and larvae at multiple developmental stages (including pre-blastula, blastula, gastrula, and planula stages) at each of the three temperatures. At 12 h post-fertilization in 28 °C treatments, genes involved in cell replication/cell division and transcription were up-regulated in A. palmata embryos, followed by a reduction in expression of these genes during later growth stages. From 24.5 to 131 h post-fertilization at 28 °C, A. palmata altered its transcriptome by up-regulating genes involved in protein synthesis and metabolism. Temperatures of 30 °C and 31.5 °C caused major changes to the A. palmata embryonic transcriptomes, particularly in the samples from 24.5 hpf post-fertilization, characterized by down-regulation of numerous genes involved in cell replication/cell division, metabolism, cytoskeleton, and transcription, while heat shock genes were up-regulated compared to 28 °C treatments. These results suggest that increased temperature may cause a breakdown in proper gene expression during development in A. palmata by down-regulation of genes involved in essential cellular processes, which may lead to the abnormal development and reduced survivorship documented in other studies. © 2010 Elsevier B.V. All rights reserved.

  14. Demography of the threatened coral Acropora cervicornis: implications for its management and conservation

    Science.gov (United States)

    Mercado-Molina, Alex E.; Ruiz-Diaz, Claudia P.; Pérez, María E.; Rodríguez-Barreras, Ruber; Sabat, Alberto M.

    2015-12-01

    Populations of Acropora cervicornis have collapsed throughout the Caribbean. This situation has prompted the initiation of many restoration efforts; yet, there are insufficient demographic data and analyses to effectively guide these initiatives. In this study we assessed the spatiotemporal variability of A. cervicornis vital rates. We also developed a population matrix model to (1) evaluate the risk of population extinction, (2) estimate population growth rates (λ) considering different rates of colony fragmentation and fragment survival, (3) determine the demographic transition(s) that contribute the most to spatiotemporal differences in λs, and (4) analyze the effectiveness of outplanting coral fragments of different sizes. The model was parameterized by following the fate of 300 colonies from 2011 to 2013 at two localities in Puerto Rico. Demographic transitions varied spatiotemporally, with a significant interaction between location and time period on colony fate. Spatiotemporal variations in λ were also observed. During the first year, populations exhibited λs below equilibrium (0.918 and 0.948), followed by a dramatic decline at both sites (0.535 and 0.709) during the second year. The lower λs were caused by a decrease in the probability of stasis of large-sized colonies coupled with lack of sexual recruits and a meager contribution of asexual recruitment. Spatial variations in λs were largely due to differences in the probability of medium-sized colonies advancing to the largest size class. The viability analysis forecasts that the populations will reach quasi-extinction levels of 25 % of the initial population size in ≤16 yrs. Numerical simulations indicate that outplanting fragments ≥250 cm in total linear length (TLL) would result in a higher asymptotic population size than outplanting smaller fragments. We argue, however, that transplanting colonies ≤100 cm TLL will be a better management strategy because they can be produced faster and in

  15. Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck

    Directory of Open Access Journals (Sweden)

    Allan Joseph Bright

    2016-05-01

    Full Text Available Disturbances such as tropical storms cause coral mortality and reduce coral cover as a direct result of physical damage. Storms can be one of the most important disturbances in coral reef ecosystems, and it is crucial to understand their long-term impacts on coral populations. The primary objective of this study was to determine trends in disease prevalence and snail predation on damaged and undamaged colonies of the threatened coral species, Acropora palmata, following an episode of heavy ocean swells in the US Virgin Islands (USVI. At three sites on St. Thomas and St. John, colonies of A. palmata were surveyed monthly over one year following a series of large swells in March 2008 that fragmented 30 to 93% of colonies on monitored reefs. Post-disturbance surveys conducted from April 2008 through March 2009 showed that swell-generated damage to A. palmata caused negative indirect effects that compounded the initial direct effects of physical disturbance. During the 12 months after the swell event, white pox disease prevalence was 41% higher for colonies that sustained damage from the swells than for undamaged colonies (df = 207, p = 0.01 with greatest differences in disease prevalence occurring during warm water months. In addition, the corallivorous snail, Coralliophila abbreviata, was 46% more abundant on damaged corals than undamaged corals during the 12 months after the swell event (df = 207, p = 0.006.

  16. Disease prevalence and snail predation associated with swell-generated damage on the threatened coral, Acropora palmata (Lamarck)

    Science.gov (United States)

    Bright, Allan J.; Rogers, Caroline S.; Brandt, Marilyn E.; Muller, Erinn; Smith, Tyler B.

    2016-01-01

    Disturbances such as tropical storms cause coral mortality and reduce coral cover as a direct result of physical damage. Storms can be one of the most important disturbances in coral reef ecosystems, and it is crucial to understand their long-term impacts on coral populations. The primary objective of this study was to determine trends in disease prevalence and snail predation on damaged and undamaged colonies of the threatened coral species, Acropora palmata, following an episode of heavy ocean swells in the US Virgin Islands (USVI). At three sites on St. Thomas and St. John, colonies of A. palmata were surveyed monthly over 1 year following a series of large swells in March 2008 that fragmented 30–93% of colonies on monitored reefs. Post-disturbance surveys conducted from April 2008 through March 2009 showed that swell-generated damage to A. palmata caused negative indirect effects that compounded the initial direct effects of physical disturbance. During the 12 months after the swell event, white pox disease prevalence was 41% higher for colonies that sustained damage from the swells than for undamaged colonies (df = 207, p = 0.01) with greatest differences in disease prevalence occurring during warm water months. In addition, the corallivorous snail, Coralliophila abbreviata, was 46% more abundant on damaged corals than undamaged corals during the 12 months after the swell event (df = 207, p = 0.006).

  17. Effects of coal contamination on early life history processes of a reef-building coral, Acropora tenuis.

    Science.gov (United States)

    Berry, Kathryn L E; Hoogenboom, Mia O; Brinkman, Diane L; Burns, Kathryn A; Negri, Andrew P

    2017-01-15

    Successful reproduction and larval dispersal are important for the persistence of marine invertebrate populations, and these early life history processes can be sensitive to marine pollution. Coal is emerging as a contaminant of interest due to the proximity of ports and shipping lanes to coral reefs. To assess the potential hazard of this contaminant, gametes, newly developed embryos, larvae and juveniles of the coral Acropora tenuis were exposed to a range of coal leachate, suspended coal, and coal smothering treatments. Fertilisation was the most sensitive reproductive process tested. Embryo survivorship decreased with increasing suspended coal concentrations and exposure duration, effects on larval settlement varied between treatments, while effects on juvenile survivorship were minimal. Leachate exposures had negligible effects on fertilisation and larval settlement. These results indicate that coral recruitment could be affected by spills that produce plumes of suspended coal particles which interact with gametes and embryos soon after spawning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. The functional importance of Acropora austera as nursery areas for juvenile reef fish on South African coral reefs

    Science.gov (United States)

    Floros, C.; Schleyer, M. H.

    2017-03-01

    Many coral reef fish species use mangrove and seagrass beds as nursery areas. However, in certain regions, the absence or scarcity of such habitats suggests that juvenile coral reef fish may be seeking refuge elsewhere. The underlying biogenic substratum of most coral reefs is structurally complex and provides many types of refuge. However, on young or subtropical coral reefs, species may be more reliant on the living coral layer as nursery areas. Such is the case on the high-latitude coral reefs of South Africa where the coral communities consist of a thin veneer of coral overlaying late Pleistocene bedrock. Thus, the morphology of coral species may be a major determinant in the availability of refuge space. Acropora austera is a branching species that forms large patches with high structural complexity. Associated with these patches is a diverse community of fish species, particularly juveniles. Over the past decade, several large (>100 m2) A. austera patches at Sodwana Bay have been diminishing for unknown reasons and there is little evidence of their replacement or regrowth. Seven patches of A. austera (AP) and non- A. austera (NAP) were selected and monitored for 12 months using visual surveys to investigate the importance of AP as refugia and nursery areas. There were significant differences in fish communities between AP and NAP habitats. In total, 110 species were recorded within the patches compared to 101 species outside the patches. Labrids and pomacentrids were the dominant species in the AP habitats, while juvenile scarids, acanthurids, chaetodons and serranids were also abundant. The diversity and abundance of fish species increased significantly with AP size. As the most structurally complex coral species on the reefs, the loss of APs may have significant implications for the recruitment and survival of certain fish species.

  19. Genetic seascape of the threatened Caribbean elkhorn coral, Acropora palmata, on the Puerto Rico Shelf.

    Science.gov (United States)

    Mège, Pascal; Schizas, Nikolaos V; Reyes, Joselyd García; Hrbek, Tomas

    2015-06-01

    It has been proposed that the elkhorn coral, Acropora palmata, is genetically separated into two distinct provinces in the Caribbean, an Eastern and a Western population admixing in western Puerto Rico and around the Mona Passage. In this study, the genetic structure of A. palmata sampled at 11 Puerto Rican localities and localities from Curaçao, the Bahamas and Guadeloupe were examined. Analyses using five microsatellite markers showed that 75% of sampled colonies had unique genotypes, the rest being clone mates. Genetic diversity among genets was high (HE = 0.761) and consistent across localities (0.685 to 0.844). FST ranged from -0.011 to 0.047 supporting low but significant genetic differentiation between localities within the previously reported Eastern and Western genetic provinces. Plots of genetic per geographic distances and significant Mantel tests supported isolation-by-distance (IBD) within Puerto Rico. Analysis with the software Structure favored a scenario with weak differentiation between two populations, assigning eastern Puerto Rican locations (Fajardo and Culebra), Guadeloupe and Curaçao to the Caribbean Eastern population and western Puerto Rican locations (west of Vega Baja and Ponce), Mona and the Bahamas to the Caribbean Western population. Vieques and San Juan area harbored admixed profiles. Standardized FSTs per 1,000 km unit further supported higher differentiation between localities belonging to different Structure populations, with IBD being stronger within Puerto Rico than on larger regional scales. This stronger genetic transition seems to separate localities between putative Eastern and Western provinces in the eastern Puerto Rican region, not around the Mona Passage.

  20. Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis

    Directory of Open Access Journals (Sweden)

    Margaret W. Miller

    2014-08-01

    Full Text Available The threatened status (both ecologically and legally of Caribbean staghorn coral, Acropora cervicornis, has prompted rapidly expanding efforts in culture and restocking, although tissue loss diseases continue to affect populations. In this study, disease surveillance and histopathological characterization were used to compare disease dynamics and conditions in both restored and extant wild populations. Disease had devastating effects on both wild and restored populations, but dynamics were highly variable and appeared to be site-specific with no significant differences in disease prevalence between wild versus restored sites. A subset of 20 haphazardly selected colonies at each site observed over a four-month period revealed widely varying disease incidence, although not between restored and wild sites, and a case fatality rate of 8%. A tropical storm was the only discernable environmental trigger associated with a consistent spike in incidence across all sites. Lastly, two field mitigation techniques, (1 excision of apparently healthy branch tips from a diseased colony, and (2 placement of a band of epoxy fully enclosing the diseased margin, gave equivocal results with no significant benefit detected for either treatment compared to controls. Tissue condition of associated samples was fair to very poor; unsuccessful mitigation treatment samples had severe degeneration of mesenterial filament cnidoglandular bands. Polyp mucocytes in all samples were infected with suspect rickettsia-like organisms; however, no bacterial aggregates were found. No histological differences were found between disease lesions with gross signs fitting literature descriptions of white-band disease (WBD and rapid tissue loss (RTL. Overall, our results do not support differing disease quality, quantity, dynamics, nor health management strategies between restored and wild colonies of A. cervicornis in the Florida Keys.

  1. Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis.

    Science.gov (United States)

    Miller, Margaret W; Lohr, Kathryn E; Cameron, Caitlin M; Williams, Dana E; Peters, Esther C

    2014-01-01

    The threatened status (both ecologically and legally) of Caribbean staghorn coral, Acropora cervicornis, has prompted rapidly expanding efforts in culture and restocking, although tissue loss diseases continue to affect populations. In this study, disease surveillance and histopathological characterization were used to compare disease dynamics and conditions in both restored and extant wild populations. Disease had devastating effects on both wild and restored populations, but dynamics were highly variable and appeared to be site-specific with no significant differences in disease prevalence between wild versus restored sites. A subset of 20 haphazardly selected colonies at each site observed over a four-month period revealed widely varying disease incidence, although not between restored and wild sites, and a case fatality rate of 8%. A tropical storm was the only discernable environmental trigger associated with a consistent spike in incidence across all sites. Lastly, two field mitigation techniques, (1) excision of apparently healthy branch tips from a diseased colony, and (2) placement of a band of epoxy fully enclosing the diseased margin, gave equivocal results with no significant benefit detected for either treatment compared to controls. Tissue condition of associated samples was fair to very poor; unsuccessful mitigation treatment samples had severe degeneration of mesenterial filament cnidoglandular bands. Polyp mucocytes in all samples were infected with suspect rickettsia-like organisms; however, no bacterial aggregates were found. No histological differences were found between disease lesions with gross signs fitting literature descriptions of white-band disease (WBD) and rapid tissue loss (RTL). Overall, our results do not support differing disease quality, quantity, dynamics, nor health management strategies between restored and wild colonies of A. cervicornis in the Florida Keys.

  2. Early transcriptional changes in the reef-building coral Acropora aspera in response to thermal and nutrient stress.

    Science.gov (United States)

    Rosic, Nedeljka; Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Ling, Edmund Yew Siang; Edwards, David; Dove, Sophie; Hoegh-Guldberg, Ove

    2014-12-02

    Changes to the environment as a result of human activities can result in a range of impacts on reef building corals that include coral bleaching (reduced concentrations of algal symbionts), decreased coral growth and calcification, and increased incidence of diseases and mortality. Understanding how elevated temperatures and nutrient concentration affect early transcriptional changes in corals and their algal endosymbionts is critically important for evaluating the responses of coral reefs to global changes happening in the environment. Here, we investigated the expression of genes in colonies of the reef-building coral Acropora aspera exposed to short-term sub-lethal levels of thermal (+6°C) and nutrient stress (ammonium-enrichment: 20 μM). The RNA-Seq data provided hundreds of differentially expressed genes (DEGs) corresponding to various stress regimes, with 115 up- and 78 down-regulated genes common to all stress regimes. A list of DEGs included up-regulated coral genes like cytochrome c oxidase and NADH-ubiquinone oxidoreductase and up-regulated photosynthetic genes of algal origin, whereas coral GFP-like fluorescent chromoprotein and sodium/potassium-transporting ATPase showed reduced transcript levels. Taxonomic analyses of the coral holobiont disclosed the dominant presence of transcripts from coral (~70%) and Symbiodinium (~10-12%), as well as ~15-20% of unknown sequences which lacked sequence identity to known genes. Gene ontology analyses revealed enriched pathways, which led to changes in the dynamics of protein networks affecting growth, cellular processes, and energy requirement. In corals with preserved symbiont physiological performance (based on Fv/Fm, photo-pigment and symbiont density), transcriptomic changes and DEGs provided important insight into early stages of the stress response in the coral holobiont. Although there were no signs of coral bleaching after exposure to short-term thermal and nutrient stress conditions, we managed to detect

  3. Prevalence of virus-like particles within a staghorn scleractinian coral ( Acropora muricata) from the Great Barrier Reef

    Science.gov (United States)

    Patten, N. L.; Harrison, P. L.; Mitchell, J. G.

    2008-09-01

    Transmission electron microscopy (TEM) was used to determine whether Acropora muricata coral colonies from the Great Barrier Reef (GBR), Australia, harboured virus-like particles (VLPs). VLPs were present in all coral colonies sampled at Heron Island (southern GBR) and in tagged coral colonies sampled in at least two of the three sampling periods at Lizard Island (northern GBR). VLPs were observed within gastrodermal and epidermal tissues, and on rarer occasions, within the mesoglea. These VLPs had similar morphologies to known prokaryotic and eukaryotic viruses in other systems. Icosahedral VLPs were observed most frequently, however, filamentous VLPs (FVLPs) and phage were also noted. There were no clear differences in VLP size, morphology or location within the tissues with respect to sample date, coral health status or site. The most common VLP morphotype exhibited icosahedral symmetry, 120-150 nm in diameter, with an electron-dense core and an electronlucent membrane. Larger VLPs of similar morphology were also common. VLPs occurred as single entities, in groups, or in dense clusters, either as free particles within coral tissues, or within membrane-bound vacuoles. VLPs were commonly observed within the perinuclear region, with mitochondria, golgi apparatus and crescent-shaped particles frequently observed within close proximity. The host(s) of these observed VLPs was not clear; however, the different sizes and morphologies of VLPs observed within A. muricata tissues suggest that viruses are infecting either the coral animal, zooxanthellae, intracellular bacteria and/or other coral-associated microbiota, or that the one host is susceptible to infection from more than one type of virus. These results add to the limited but emerging body of evidence that viruses represent another potentially important component of the coral holobiont.

  4. Gene expression in the scleractinian Acropora microphthalma exposed to high solar irradiance reveals elements of photoprotection and coral bleaching.

    Science.gov (United States)

    Starcevic, Antonio; Dunlap, Walter C; Cullum, John; Shick, J Malcolm; Hranueli, Daslav; Long, Paul F

    2010-11-12

    The success of tropical reef-building corals depends on the metabolic co-operation between the animal host and the photosynthetic performance of endosymbiotic algae residing within its cells. To examine the molecular response of the coral Acropora microphthalma to high levels of solar irradiance, a cDNA library was constructed by PCR-based suppression subtractive hybridisation (PCR-SSH) from mRNA obtained by transplantation of a colony from a depth of 12.7 m to near-surface solar irradiance, during which the coral became noticeably paler from loss of endosymbionts in sun-exposed tissues. A novel approach to sequence annotation of the cDNA library gave genetic evidence for a hypothetical biosynthetic pathway branching from the shikimic acid pathway that leads to the formation of 4-deoxygadusol. This metabolite is a potent antioxidant and expected precursor of the UV-protective mycosporine-like amino acids (MAAs), which serve as sunscreens in coral phototrophic symbiosis. Empirical PCR based evidence further upholds the contention that the biosynthesis of these MAA sunscreens is a 'shared metabolic adaptation' between the symbiotic partners. Additionally, gene expression induced by enhanced solar irradiance reveals a cellular mechanism of light-induced coral bleaching that invokes a Ca(2+)-binding synaptotagmin-like regulator of SNARE protein assembly of phagosomal exocytosis, whereby algal partners are lost from the symbiosis. Bioinformatics analyses of DNA sequences obtained by differential gene expression of a coral exposed to high solar irradiance has revealed the identification of putative genes encoding key steps of the MAA biosynthetic pathway. Revealed also by this treatment are genes that implicate exocytosis as a cellular process contributing to a breakdown in the metabolically essential partnership between the coral host and endosymbiotic algae, which manifests as coral bleaching.

  5. Gene expression in the scleractinian Acropora microphthalma exposed to high solar irradiance reveals elements of photoprotection and coral bleaching.

    Directory of Open Access Journals (Sweden)

    Antonio Starcevic

    Full Text Available BACKGROUND: The success of tropical reef-building corals depends on the metabolic co-operation between the animal host and the photosynthetic performance of endosymbiotic algae residing within its cells. To examine the molecular response of the coral Acropora microphthalma to high levels of solar irradiance, a cDNA library was constructed by PCR-based suppression subtractive hybridisation (PCR-SSH from mRNA obtained by transplantation of a colony from a depth of 12.7 m to near-surface solar irradiance, during which the coral became noticeably paler from loss of endosymbionts in sun-exposed tissues. METHODOLOGY/PRINCIPAL FINDINGS: A novel approach to sequence annotation of the cDNA library gave genetic evidence for a hypothetical biosynthetic pathway branching from the shikimic acid pathway that leads to the formation of 4-deoxygadusol. This metabolite is a potent antioxidant and expected precursor of the UV-protective mycosporine-like amino acids (MAAs, which serve as sunscreens in coral phototrophic symbiosis. Empirical PCR based evidence further upholds the contention that the biosynthesis of these MAA sunscreens is a 'shared metabolic adaptation' between the symbiotic partners. Additionally, gene expression induced by enhanced solar irradiance reveals a cellular mechanism of light-induced coral bleaching that invokes a Ca(2+-binding synaptotagmin-like regulator of SNARE protein assembly of phagosomal exocytosis, whereby algal partners are lost from the symbiosis. CONCLUSIONS/SIGNIFICANCE: Bioinformatics analyses of DNA sequences obtained by differential gene expression of a coral exposed to high solar irradiance has revealed the identification of putative genes encoding key steps of the MAA biosynthetic pathway. Revealed also by this treatment are genes that implicate exocytosis as a cellular process contributing to a breakdown in the metabolically essential partnership between the coral host and endosymbiotic algae, which manifests as coral

  6. Restriction Fragment Length Polymorphism Analysis of Large Subunit rDNA of Symbiotic Dinoflagellates from Scleractinian Corals in the Zhubi Coral Reef of the Nansha Islands

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Zooxanthellae are very important for the coral reef ecosystem. The diversity of coral hosts is high in the South China Sea, but the diversity of zooxanthellae has not yet been investigated. We chose the Zhubi Coral Reef of the Nansha Islands as the region to be surveyed in the present study because it represents a typical tropical coral reef of the South China Sea and we investigated zooxanthellae diversity in 10 host scleractinian coral species using polymerase chain reaction (PCR) of the large subunit rRNA and restriction fragment length polymorphism (RFLP) patterns. Pocillopora verrucosa, Acropora pelifera, Acropora millepora, Fungia fungites, Galaxea fascicularis, and Acropora pruinosa harbor Clade C, Goniastrea aspera harbors Clade D, and Acropora formosa harbors Clades D and C. Therefore, the Clade C is the dominant type in the Zhubi Coral Reef of the NanshaIslands. Furthermore, the results of the present also disprove what has been widely accepted, namely that one coral host harbors only one algal symbiont. The coral-algal symbiosis is flexible, which may be an important mechanism for surviving coral bleaching. Meanwhile, on the basis of the results of the present study, we think that Symbiodinium Clade D may be more tolerant to stress than Symbiodinium Clade C.

  7. 78 FR 12702 - Endangered and Threatened Species; Proposed Rule To List 66 Reef-Building Coral Species; Proposed...

    Science.gov (United States)

    2013-02-25

    ... Elkhorn Acropora palmata and Staghorn Acropora cervicornis Under the Endangered Species Act (ESA... (Acropora palmata) and staghorn (Acropora cervicornis) corals under the ESA until April 6, 2013,...

  8. First frozen repository for the Great Barrier Reef coral created.

    Science.gov (United States)

    Hagedorn, Mary; van Oppen, Madeleine J H; Carter, Virginia; Henley, Mike; Abrego, David; Puill-Stephan, Eneour; Negri, Andrew; Heyward, Andrew; MacFarlane, Doug; Spindler, Rebecca

    2012-10-01

    To build new tools for the continued protection and propagation of coral from the Great Barrier Reef (GBR), an international group of coral and cryopreservation scientists known as the Reef Recovery Initiative joined forces during the November 2011 mass-spawning event. The outcome was the creation of the first frozen bank for Australian coral from two important GBR reef-building species, Acropora tenuis and Acropora millepora. Approximately 190 frozen samples each with billions of cells were placed into long-term storage. Sperm cells were successfully cryopreserved, and after thawing, samples were used to fertilize eggs, resulting in functioning larvae. Additionally, developing larvae were dissociated, and these pluripotent cells were cryopreserved and viable after thawing. Now, we are in a unique position to move our work from the laboratory to the reefs to develop collaborative, practical conservation management tools to help secure Australia's coral biodiversity.

  9. Coral Diseases Following Massive Bleaching in 2005 Cause 60 Percent Decline in Coral Cover and Mortality of the Threatened Species, Acropora Palmata, on Reefs in the U.S. Virgin Islands

    Science.gov (United States)

    Rogers, Caroline S.

    2008-01-01

    Record-high seawater temperatures and calm seas in the summer of 2005 led to the most severe coral bleaching (greater than 90 percent bleached coral cover) ever observed in the U.S. Virgin Islands (USVI) (figs. 1 and 2). All but a few coral species bleached, including the threatened species, Acropora palmata. Bleaching was seen from the surface to depths over 20 meters.

  10. Experimental effect of temperature and sedimentation on bleaching of the two Red Sea corals Stylophora pistillata and Acropora humilis

    Directory of Open Access Journals (Sweden)

    MOHAMMED S.A. AMMAR

    2013-11-01

    Full Text Available Ammar MSA, Obuid-Allah AH, Al-Hammady MAM. 2013. Experimental effect of temperature and sedimentation on bleaching of the two Red Sea corals Stylophora pistillata and Acropora humilis. Nusantara Bioscience 5: 73-83. At 26°C (the control sample, the loss of zooxanthellae by each of the two studied corals Stylophora pistillata and Acropora humilis was very low. Cell viability of the two studied corals was similar at 26 and 29°C, but depicted a sharp decline of zooxanthellae lost at 31°C through time. As the temperature increased to 35°C, the loss of zooxanthellae from each host increased both with time and temperature elevation. The coral A. humilis had a higher decrease in its zooxanthellae densities than S. pistillata at the same treatment. Bleaching temperature threshold was 33°C or less for the two species S. pistillata and A. humilis where 51% of their zooxanthellae were lost after 24 h of exposure. In samples exposed to sediment concentration of 0.1 mg/cm2/L, zooxanthellae densities of A. humilis and S. pistillata did not show any decrease after 1 day. However, after 1 days of exposure to 0.5 mg/cm2/L, zooxanthellae densities were significantly different from those of the controls. Increases in sediment concentration to 1 mg/cm2/L caused a decrease in zooxanthellae densities that vary greatly over time. Measurements of zooxanthellae densities of A. humilis and S. pistillata at this stage revealed a highly significant difference between exposed and control sample. At 1 g/cm2/L, the number of zooxanthellae lost from A. humilis was higher than those lost from S. pistillata at same time. It is suggested that, the normal sedimentation rate for A. humilis and S. pistillata to be in an order of 1 mg/cm2/L or less.

  11. Transcriptomic variation in a coral reveals pathways of clonal organisation

    DEFF Research Database (Denmark)

    K Bay, Line; Nielsen, Henrik Bjørn; Jarmer, Hanne Østergaard

    2009-01-01

    A microarray study was undertaken to examine the potential for clonal gene expression variation in a branching reef building coral, Acropora millepora. The role of small-scale gradients in light and water flow was examined by comparing gene expression levels between branch elevation (tip and base......) and position (centre and edge) of replicate coral colonies (n=3). Analyses of variance revealed that almost 60% of variation in gene expression was present between colonies and 34 genes were considered differentially expressed between colonies (minimum P=6.5 x 10(-4)). These genes are associated with energy...... of corymbose-like branching coral colonies such as A. millepora. Four genes were differentially expressed between the tip and base of branches (P=3.239 x 10(-4)) and were associated with lysosome lipase activity and fluorescence, suggesting that branch tips may encounter higher pathogen loads or levels...

  12. Occupation Dynamics and Impacts of Damselfish Territoriality on Recovering Populations of the Threatened Staghorn Coral, Acropora cervicornis.

    Science.gov (United States)

    Schopmeyer, Stephanie A; Lirman, Diego

    2015-01-01

    Large-scale coral reef restoration is needed to help recover structure and function of degraded coral reef ecosystems and mitigate continued coral declines. In situ coral propagation and reef restoration efforts have scaled up significantly in past decades, particularly for the threatened Caribbean staghorn coral, Acropora cervicornis, but little is known about the role that native competitors and predators, such as farming damselfishes, have on the success of restoration. Steep declines in A. cervicornis abundance may have concentrated the negative impacts of damselfish algal farming on a much lower number of coral prey/colonies, thus creating a significant threat to the persistence and recovery of depleted coral populations. This is the first study to document the prevalence of resident damselfishes and negative effects of algal lawns on A. cervicornis along the Florida Reef Tract (FRT). Impacts of damselfish lawns on A. cervicornis colonies were more prevalent (21.6% of colonies) than those of other sources of mortality (i.e., disease (1.6%), algal/sponge overgrowth (5.6%), and corallivore predation (7.9%)), and damselfish activities caused the highest levels of tissue mortality (34.6%) among all coral stressors evaluated. The probability of damselfish occupation increased as coral colony size and complexity increased and coral growth rates were significantly lower in colonies with damselfish lawns (15.4 vs. 29.6 cm per year). Reduced growth and mortality of existing A. cervicornis populations may have a significant effect on population dynamics by potentially reducing important genetic diversity and the reproductive potential of depleted populations. On a positive note, however, the presence of resident damselfishes decreased predation by other corallivores, such as Coralliophila and Hermodice, and may offset some negative impacts caused by algal farming. While most negative impacts of damselfishes identified in this study affected large individual colonies and

  13. Occupation Dynamics and Impacts of Damselfish Territoriality on Recovering Populations of the Threatened Staghorn Coral, Acropora cervicornis.

    Directory of Open Access Journals (Sweden)

    Stephanie A Schopmeyer

    Full Text Available Large-scale coral reef restoration is needed to help recover structure and function of degraded coral reef ecosystems and mitigate continued coral declines. In situ coral propagation and reef restoration efforts have scaled up significantly in past decades, particularly for the threatened Caribbean staghorn coral, Acropora cervicornis, but little is known about the role that native competitors and predators, such as farming damselfishes, have on the success of restoration. Steep declines in A. cervicornis abundance may have concentrated the negative impacts of damselfish algal farming on a much lower number of coral prey/colonies, thus creating a significant threat to the persistence and recovery of depleted coral populations. This is the first study to document the prevalence of resident damselfishes and negative effects of algal lawns on A. cervicornis along the Florida Reef Tract (FRT. Impacts of damselfish lawns on A. cervicornis colonies were more prevalent (21.6% of colonies than those of other sources of mortality (i.e., disease (1.6%, algal/sponge overgrowth (5.6%, and corallivore predation (7.9%, and damselfish activities caused the highest levels of tissue mortality (34.6% among all coral stressors evaluated. The probability of damselfish occupation increased as coral colony size and complexity increased and coral growth rates were significantly lower in colonies with damselfish lawns (15.4 vs. 29.6 cm per year. Reduced growth and mortality of existing A. cervicornis populations may have a significant effect on population dynamics by potentially reducing important genetic diversity and the reproductive potential of depleted populations. On a positive note, however, the presence of resident damselfishes decreased predation by other corallivores, such as Coralliophila and Hermodice, and may offset some negative impacts caused by algal farming. While most negative impacts of damselfishes identified in this study affected large individual

  14. In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the red sea coral Acropora hemprichii.

    Science.gov (United States)

    Jessen, Christian; Villa Lizcano, Javier Felipe; Bayer, Till; Roder, Cornelia; Aranda, Manuel; Wild, Christian; Voolstra, Christian R

    2013-01-01

    Coral reefs of the Central Red Sea display a high degree of endemism, and are increasingly threatened by anthropogenic effects due to intense local coastal development measures. Overfishing and eutrophication are among the most significant local pressures on these reefs, but there is no information available about their potential effects on the associated microbial community. Therefore, we compared holobiont physiology and 16S-based bacterial communities of tissue and mucus of the hard coral Acropora hemprichii after 1 and 16 weeks of in-situ inorganic nutrient enrichment (via fertilizer diffusion) and/or herbivore exclusion (via caging) in an offshore reef of the Central Red Sea. Simulated eutrophication and/or overfishing treatments did not affect coral physiology with respect to coral respiration rates, chlorophyll a content, zooxanthellae abundance, or δ (15)N isotopic signatures. The bacterial community of A. hemprichii was rich and uneven, and diversity increased over time in all treatments. While distinct bacterial species were identified as a consequence of eutrophication, overfishing, or both, two bacterial species that could be classified to the genus Endozoicomonas were consistently abundant and constituted two thirds of bacteria in the coral. Several nitrogen-fixing and denitrifying bacteria were found in the coral specimens that were exposed to experimentally increased nutrients. However, no particular bacterial species was consistently associated with the coral under a given treatment and the single effects of manipulated eutrophication and overfishing could not predict the combined effect. Our data underlines the importance of conducting field studies in a holobiont framework, taking both, physiological and molecular measures into account.

  15. In-situ effects of eutrophication and overfishing on physiology and bacterial diversity of the red sea coral Acropora hemprichii.

    KAUST Repository

    Jessen, Christian

    2013-04-22

    Coral reefs of the Central Red Sea display a high degree of endemism, and are increasingly threatened by anthropogenic effects due to intense local coastal development measures. Overfishing and eutrophication are among the most significant local pressures on these reefs, but there is no information available about their potential effects on the associated microbial community. Therefore, we compared holobiont physiology and 16S-based bacterial communities of tissue and mucus of the hard coral Acropora hemprichii after 1 and 16 weeks of in-situ inorganic nutrient enrichment (via fertilizer diffusion) and/or herbivore exclusion (via caging) in an offshore reef of the Central Red Sea. Simulated eutrophication and/or overfishing treatments did not affect coral physiology with respect to coral respiration rates, chlorophyll a content, zooxanthellae abundance, or δ (15)N isotopic signatures. The bacterial community of A. hemprichii was rich and uneven, and diversity increased over time in all treatments. While distinct bacterial species were identified as a consequence of eutrophication, overfishing, or both, two bacterial species that could be classified to the genus Endozoicomonas were consistently abundant and constituted two thirds of bacteria in the coral. Several nitrogen-fixing and denitrifying bacteria were found in the coral specimens that were exposed to experimentally increased nutrients. However, no particular bacterial species was consistently associated with the coral under a given treatment and the single effects of manipulated eutrophication and overfishing could not predict the combined effect. Our data underlines the importance of conducting field studies in a holobiont framework, taking both, physiological and molecular measures into account.

  16. Larval settlement preferences and post-settlement survival of the threatened Caribbean corals Acropora palmata and A. cervicornis

    Science.gov (United States)

    Ritson-Williams, R.; Paul, Valerie J.; Arnold, S. N.; Steneck, R. S.

    2010-03-01

    The settlement specificity of two threatened Caribbean corals, Acropora palmata and A. cervicornis, was tested by measuring their rates of larval metamorphosis in response to crustose coralline algae (CCA) and other substrata. In the no-choice experiments, the coral larvae were placed in six treatments: filtered seawater (FSW), a fragment of biofilmed dead skeleton of A. palmata, or a fragment of one of four species of CCA ( Hydrolithon boergesenii, Porolithon pachydermum, Paragoniolithon solubile, and Titanoderma prototypum). Within each CCA treatment, there were three different substrata on which to settle and metamorphose: (1) the CCA surface, (2) the rock under the CCA, or (3) the plastic dish. The 5-day-old larvae of both A. palmata and A. cervicornis had similar rates of total metamorphosis (all substrata combined) in every treatment (excluding FSW) even in the absence of CCA. However, there were differences in larval behavior among the CCA species since the larvae settled and metamorphosed on different substrata in the presence of different CCA species. In the no-choice experiments the larvae of both corals had higher rates of metamorphosis on the top surfaces of H. boergesenii and/or T. prototypum than on P. pachydermum. In the choice experiments, the coral larvae were offered two species of CCA in the same dish. When given a choice, both species of coral larvae had more settlement and metamorphosis on the surface of H. boergesenii or T. prototypum or clean rock than onto the surface of P. solubile. After 6 weeks in the field, transplanted A. palmata recruits had approximately 15% survival on both T. prototypum and H. boergesenii, but A. cervicornis recruits only survived on T. prototypum (13%). Some, but not all, CCA species facilitated the larval settlement and post-settlement survival of these two threatened corals, highlighting the importance of benthic community composition for successful coral recruitment.

  17. Growth anomalies on the coral genera Acropora and Porites are strongly associated with host density and human population size across the Indo-Pacific

    Science.gov (United States)

    Aeby, G.S.; Williams, G.J.; Franklin, E.C.; Haapkyla, J.; Harvell, C.D.; Neale, S.; Page, C.A.; Raymundo, L.; Vargas-Angel, B.; Willis, B.L.; Work, T.M.; Davy, S.K.

    2011-01-01

    Growth anomalies (GAs) are common, tumor-like diseases that can cause significant morbidity and decreased fecundity in the major Indo-Pacific reef-building coral genera, Acropora and Porites. GAs are unusually tractable for testing hypotheses about drivers of coral disease because of their pan-Pacific distributions, relatively high occurrence, and unambiguous ease of identification. We modeled multiple disease-environment associations that may underlie the prevalence of Acropora growth anomalies (AGA) (n = 304 surveys) and Porites growth anomalies (PGA) (n = 602 surveys) from across the Indo-Pacific. Nine predictor variables were modeled, including coral host abundance, human population size, and sea surface temperature and ultra-violet radiation anomalies. Prevalence of both AGAs and PGAs were strongly host density-dependent. PGAs additionally showed strong positive associations with human population size. Although this association has been widely posited, this is one of the first broad-scale studies unambiguously linking a coral disease with human population size. These results emphasize that individual coral diseases can show relatively distinct patterns of association with environmental predictors, even in similar diseases (growth anomalies) found on different host genera (Acropora vs. Porites). As human densities and environmental degradation increase globally, the prevalence of coral diseases like PGAs could increase accordingly, halted only perhaps by declines in host density below thresholds required for disease establishment.

  18. Highly infectious symbiont dominates initial uptake in coral juveniles.

    Science.gov (United States)

    Abrego, David; VAN Oppen, Madeleine J H; Willis, Bette L

    2009-08-01

    The majority of reef-building corals acquire their obligate algal symbionts (Symbiodinium) from the environment. However, factors shaping the initial establishment of coral-algal symbioses, including parental effects, local environmental conditions and local availability of symbionts, are not well understood. This study monitored the uptake and maintenance of Symbiodinium in juveniles of two common corals, Acropora tenuis and Acropora millepora, that were reciprocally explanted between sites where adult colonies host different types of Symbiodinium. We found that coral juveniles were rapidly dominated by type D Symbiodinium, even though this type is not found in adult colonies (including the parental colonies) in four out of the five study populations. Furthermore, type D Symbiodinium was found in less than one-third of a wide range of coral species (n > 50) sampled at the two main study sites, suggesting that its dominance in the acroporid juveniles is not because it is the most abundant local endosymbiotic type. Moreover, dominance by type D was observed irrespective of the light intensity to which juveniles were exposed in a field study. In summary, despite its relatively low abundance in coral assemblages at the study sites and irrespective of the surrounding light environment, type D Symbiodinium is the main symbiont type initially acquired by juveniles of A. millepora and A. tenuis. We conclude that during early ontogeny in these corals, there are few barriers to the uptake of Symbiodinium types which differ from those found in parental colonies, resulting in dominance by a highly infectious and potentially opportunistic symbiont.

  19. Phylogenetic characterization of culturable actinomycetes associated with the mucus of the coral Acropora digitifera from Gulf of Mannar.

    Science.gov (United States)

    Nithyanand, Paramasivam; Manju, Sivalingam; Karutha Pandian, Shunmugiah

    2011-01-01

    The marine environment is a virtually untapped source of novel actinomycete diversity and its metabolites. Investigating the diversity of actinomycetes in other marine macroorganisms, like seaweeds and sponges, have resulted in isolation of novel bioactive metabolites. Actinomycetes diversity associated with corals and their produced metabolites have not yet been explored. Hence, in this study we attempted to characterize the culturable actinomycetes population associated with the coral Acropora digitifera. Actinomycetes were isolated from the mucus of the coral wherein the actinomycetes count was much higher when compared with the surrounding seawater and sediment. Actinobacteria-specific 16S rRNA gene primers were used for identifying the isolates at the molecular level in addition to biochemical tests. Amplified ribosomal DNA restriction analysis using three restriction enzymes revealed several polymorphic groups within the isolates. Sequencing and blast analysis of the isolates revealed that some isolates had only 96.7% similarity with its nearest match in GenBank indicating that they may be novel isolates at the species level. The isolated actinomycetes exhibited good antibacterial activity against various human pathogens. This study offers for the first time a prelude about the unexplored culturable actinomycetes diversity associated with a scleractinian coral and their bioactive capabilities. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Changes in microbial communities, photosynthesis and calcification of the coral Acropora gemmifera in response to ocean acidification

    Science.gov (United States)

    Zhou, Guowei; Yuan, Tao; Cai, Lin; Zhang, Weipeng; Tian, Renmao; Tong, Haoya; Jiang, Lei; Yuan, Xiangcheng; Liu, Sheng; Qian, Peiyuan; Huang, Hui

    2016-10-01

    With the increasing anthropogenic CO2 concentration, ocean acidification (OA) can have dramatic effects on coral reefs. However, the effects of OA on coral physiology and the associated microbes remain largely unknown. In the present study, reef-building coral Acropora gemmifera collected from a reef flat with highly fluctuating environmental condition in the South China Sea were exposed to three levels of partial pressure of carbon dioxide (pCO2) (i.e., 421, 923, and 2070 μatm) for four weeks. The microbial community structures associated with A. gemmifera under these treatments were analyzed using 16S rRNA gene barcode sequencing. The results revealed that the microbial community associated with A. gemmifera was highly diverse at the genus level and dominated by Alphaproteobacteria. More importantly, the microbial community structure remained rather stable under different pCO2 treatments. Photosynthesis and calcification in A. gemmifera, as indicated by enrichment of δ18O and increased depletion of δ13C in the coral skeleton, were significantly impaired only at the high pCO2 (2070 μatm). These results suggest that A. gemmifera can maintain a high degree of stable microbial communities despite of significant physiological changes in response to extremely high pCO2.

  1. Restoration of critically endangered elkhorn coral (Acropora palmata populations using larvae reared from wild-caught gametes

    Directory of Open Access Journals (Sweden)

    Valérie F. Chamberland

    2015-07-01

    Full Text Available Elkhorn coral (Acropora palmata populations provide important ecological functions on shallow Caribbean reefs, many of which were lost when a disease reduced their abundance by more than 95% beginning in the mid-1970s. Since then, a lack of significant recovery has prompted rehabilitation initiatives throughout the Caribbean. Here, we report the first successful outplanting and long-term survival of A. palmata settlers reared from gametes collected in the field. A. palmata larvae were settled on clay substrates (substrate units and either outplanted on the reef two weeks after settlement or kept in a land-based nursery. After 2.5 years, the survival rate of A. palmata settlers outplanted two weeks after settlement was 6.8 times higher (3.4% than that of settlers kept in a land-based nursery (0.5%. Furthermore, 32% of the substrate units on the reef still harbored one or more well-developed recruit compared to 3% for substrate units kept in the nursery. In addition to increasing survival, outplanting A. palmata settlers shortly after settlement reduced the costs to produce at least one 2.5-year-old A. palmata individual from $325 to $13 USD. Thus, this study not only highlights the first successful long-term rearing of this critically endangered coral species, but also shows that early outplanting of sexually reared coral settlers can be more cost-effective than the traditional approach of nursery rearing for restoration efforts aimed at rehabilitating coral populations.

  2. Algal symbiont type affects gene expression in juveniles of the coral Acropora tenuis exposed to thermal stress.

    Science.gov (United States)

    Yuyama, Ikuko; Harii, Saki; Hidaka, Michio

    2012-05-01

    Reef-building corals harbor symbiotic dinoflagellates, Symbiodinium spp., which are currently divided into several clades. The responses of corals associated with different Symbiodinium clades to thermal stress are not well understood, especially at a gene expression level. Juveniles of the coral Acropora tenuis inoculated with different algal types (clade A or D) were exposed to thermal stress and the expression levels of four putative stress-responsive genes, including genes coding green and red fluorescent proteins, an oxidative stress-responsive protein, and an ascorbic acid transporter, were analyzed by quantitative real-time PCR. The expression levels of the four genes decreased at high temperatures if juveniles were associated with clade A symbionts but increased if the symbionts were in clade D. The intensity of green fluorescence increased with temperature in clade D symbionts harboring juveniles, but not in juveniles associated with clade A symbionts. The present results suggest that genotypes of endosymbiotic algae affect the thermal stress responses of the coral juveniles.

  3. Bleaching, disease and recovery in the threatened scleractinian coral Acropora palmata in St. John, US Virgin Islands: 2003-2010

    Science.gov (United States)

    Rogers, C.S.; Muller, E.M.

    2012-01-01

    A long-term study of the scleractinian coral Acropora palmata in the US Virgin Islands (USVI) showed that diseases, particularly white pox, are limiting the recovery of this threatened species. Colonies of A. palmata in Haulover Bay, within Virgin Islands National Park, St. John, were examined monthly in situ for signs of disease and other stressors from January 2003 through December 2009. During the study, 89.9 % of the colonies (n = 69) exhibited disease, including white pox (87 %), white band (13 %), and unknown (9 %). Monthly disease prevalence ranged from 0 to 57 %, and disease was the most significant cause of complete colony mortality (n = 17). A positive correlation was found between water temperature and disease prevalence, but not incidence. Annual average disease prevalence and incidence remained constant during the study. Colonies generally showed an increase in the estimated amount of total living tissue from growth, but 25 (36.2 %) of the colonies died. Acropora palmata bleached in the USVI for the first time during the 2005 Caribbean bleaching event. Only one of the 23 colonies that bleached appeared to die directly from bleaching. In 2005, corals that bleached had greater disease prevalence than those that did not bleach. Just over half (52 %) of the colonies incurred some physical damage. Monitoring of fragments (broken branches) that were generated by physical damage through June 2007 showed that 46.1 % died and 28.4 % remained alive; the fragments that attached to the substrate survived longer than those that did not. Recent surveys showed an increase in the total number of colonies within the reef area, formed from both asexual and sexual reproduction. Genotype analysis of 48 of the originally monitored corals indicated that 43 grew from sexual recruits supporting the conclusion that both asexual and sexual reproduction are contributing to an increase in colony density at this site.

  4. Bleaching, disease and recovery in the threatened scleractinian coral Acropora palmata in St. John, US Virgin Islands: 2003-2010

    Science.gov (United States)

    Rogers, C. S.; Muller, E. M.

    2012-09-01

    A long-term study of the scleractinian coral Acropora palmata in the US Virgin Islands (USVI) showed that diseases, particularly white pox, are limiting the recovery of this threatened species. Colonies of A. palmata in Haulover Bay, within Virgin Islands National Park, St. John, were examined monthly in situ for signs of disease and other stressors from January 2003 through December 2009. During the study, 89.9 % of the colonies ( n = 69) exhibited disease, including white pox (87 %), white band (13 %), and unknown (9 %). Monthly disease prevalence ranged from 0 to 57 %, and disease was the most significant cause of complete colony mortality ( n = 17). A positive correlation was found between water temperature and disease prevalence, but not incidence. Annual average disease prevalence and incidence remained constant during the study. Colonies generally showed an increase in the estimated amount of total living tissue from growth, but 25 (36.2 %) of the colonies died. Acropora palmata bleached in the USVI for the first time during the 2005 Caribbean bleaching event. Only one of the 23 colonies that bleached appeared to die directly from bleaching. In 2005, corals that bleached had greater disease prevalence than those that did not bleach. Just over half (52 %) of the colonies incurred some physical damage. Monitoring of fragments (broken branches) that were generated by physical damage through June 2007 showed that 46.1 % died and 28.4 % remained alive; the fragments that attached to the substrate survived longer than those that did not. Recent surveys showed an increase in the total number of colonies within the reef area, formed from both asexual and sexual reproduction. Genotype analysis of 48 of the originally monitored corals indicated that 43 grew from sexual recruits supporting the conclusion that both asexual and sexual reproduction are contributing to an increase in colony density at this site.

  5. Light effects on the isotopic fractionation of skeletal oxygen and carbon in the cultured zooxanthellate coral, Acropora: implications for coral-growth rates

    Directory of Open Access Journals (Sweden)

    S. Reynaud

    2010-03-01

    Full Text Available Skeletal isotopic and metabolic measurements of the branching coral Acropora cultured in constant conditions and subjected to two light intensities were revisited. We individually compared the data recorded at low light (LL and high light (HL for 24 colonies, all derived from the same parent colony. Metabolic and isotopic responses to the different light levels were highly variable. High light led to productivity enhancement, reduction of surface extension, doubling of aragonite deposited weight and increased δ18O levels in all nubbins; responses in respiration and δ13C were not clear. The partitioning of the colonies cultured at HL into two groups, one showing a δ13C enrichment and the other a δ13C decrease revealed common behaviors. Samples showing an increase in δ13C were associated with the co-variation of low surface extension and high productivity while samples showing a decrease in δ13C were associated with the co-variation of higher surface extension and limited productivity. This experiment, which allowed for the separation of temperature and light effects on the coral, highlighted the significant light influences on both skeletal δ18O and δ13C. The high scattering of inter-colony δ18O observed at one site could be due to the differing photosynthetic responses of symbiotic algal assemblages. We compared our results with observations by Gladfelter on Acropora cervicornis (1982. Both set of results highlight the relationships between coral-growth rates, micro-structures and photosynthetic activity. It appears that extension growth and skeleton thickening are two separate growth modes, and thickening is light-enhanced while extension is light-suppressed. There are multiple consequences of these findings for paleoclimatic reconstructions involving corals.

  6. Light effects on the isotopic fractionation of skeletal oxygen and carbon in the cultured zooxanthellate coral, Acropora: implications for coral-growth rates

    Science.gov (United States)

    Juillet-Leclerc, A.; Reynaud, S.

    2010-03-01

    Skeletal isotopic and metabolic measurements of the branching coral Acropora cultured in constant conditions and subjected to two light intensities were revisited. We individually compared the data recorded at low light (LL) and high light (HL) for 24 colonies, all derived from the same parent colony. Metabolic and isotopic responses to the different light levels were highly variable. High light led to productivity enhancement, reduction of surface extension, doubling of aragonite deposited weight and increased δ18O levels in all nubbins; responses in respiration and δ13C were not clear. The partitioning of the colonies cultured at HL into two groups, one showing a δ13C enrichment and the other a δ13C decrease revealed common behaviors. Samples showing an increase in δ13C were associated with the co-variation of low surface extension and high productivity while samples showing a decrease in δ13C were associated with the co-variation of higher surface extension and limited productivity. This experiment, which allowed for the separation of temperature and light effects on the coral, highlighted the significant light influences on both skeletal δ18O and δ13C. The high scattering of inter-colony δ18O observed at one site could be due to the differing photosynthetic responses of symbiotic algal assemblages. We compared our results with observations by Gladfelter on Acropora cervicornis (1982). Both set of results highlight the relationships between coral-growth rates, micro-structures and photosynthetic activity. It appears that extension growth and skeleton thickening are two separate growth modes, and thickening is light-enhanced while extension is light-suppressed. There are multiple consequences of these findings for paleoclimatic reconstructions involving corals.

  7. Light effects on the isotopic fractionation of skeletal oxygen and carbon in the cultured zooxanthellate coral, Acropora: implications for coral-growth rates

    Directory of Open Access Journals (Sweden)

    S. Reynaud

    2009-11-01

    Full Text Available Skeletal isotopic and metabolic measurements of the branching coral Acropora cultured in constant conditions and subjected to two light intensities were revisited. We individually compared the data recorded at low light (LL and high light (HL for 24 colonies, all derived from the same parent colony. Metabolic and isotopic responses to the different light levels were highly variable. High light led to productivity enhancement, reduction of surface extension, doubling of aragonite deposited weight and increased δ18O levels in all nubbins; responses in respiration and δ13C were not clear. The partitioning of the colonies into two groups, one showing a δ13C increase and the other a δ13C decrease with increased light, revealed common behaviors. Samples showing an increase in δ13C were associated with the co-variation of low surface extension and high productivity while samples showing a decrease in δ13C were associated with the co-variation of higher surface extension and limited productivity. This experiment, which allowed for the separation of temperature and light effects on the coral, highlighted the significant light influences on both skeletal δ18O and δ13C. The high scattering of inter-colony δ18O observed at one site could be due to the differing photosynthetic responses of symbiotic algal assemblages. The δ13C responses could also be related to differing algal distributions in different skeletal portions. Our results were compared to observations by Gladfelter on Acropora cervicornis (1982. Both set of results highlight the relationships between coral-growth rates, micro-structures and photosynthetic activity. It appears that extension growth and accretion are two separate growth modes, and accretion is light-enhanced while extension is light-repressed. There are multiple consequences of these findings for paleoclimatic reconstructions involving corals.

  8. The future of coral reefs in the US Virgin Islands: is Acropora palmata more likely to recover than Montastraea annularis complex?

    Science.gov (United States)

    Rogers, Caroline S.; Muller, Erinn; Spitzack, Tony; Miller, Jeff

    2008-01-01

    Coral diseases have played a major role in the degradation of coral reefs in the Caribbean, including those in the US Virgin Islands (USVI). In 2005, bleaching affected reefs throughout the Caribbean, and was especially severe on USVI reefs. Some corals began to regain their color as water temperatures cooled, but an outbreak of disease (primarily white plague) led to losses of over 60% of the total live coral cover. Montastraea annularis, the most abundant coral, was disproportionately affected, and decreased in relative abundance. The threatened species Acropora palmata bleached for the first time on record in the USVI but suffered less bleaching and less mortality from disease than M. annularis. Acropora palmata and M. annularis are the two most significant species in the USVI because of their structural role in the architecture of the reefs, the large size of their colonies, and their complex morphology. The future of the USVI reefs depends largely on their fate. Acropora palmata is more likely to recover than M. annularis for many reasons, including its faster growth rate, and its lower vulnerability to bleaching and disease.

  9. Effect of eight outer continental shelf drilling muds on the calcification rate and free amino acid pool of the coral Acropora cervicornis

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.N.; Kendall, J.J. Jr.; Connor, S.J.; Zastrow, C.E.; Bright, T.J.

    1984-09-01

    During most offshore drilling operations, drilling muds are routinely discharged into surrounding waters. Because corals are relatively sensitive to many environmental perturbations and can be adversely affected by offshore drilling operations, the effects of drilling muds on corals have received considerable attention. Because drilling muds are discharged intermittently, only periodic exposures of short duration should impact nearby coral reefs. To fully assess the impact of a drilling mud discharge on corals requires an assessment of the capacity for corals to recover from short-term exposure. The purpose of this study was to assess the relative toxicity of a number of muds that were slated for marine disposal for the coral Acropora cervicornis after a 48-hr recovery period. Calcification rate and free amino acid pool were investigated.

  10. Ecological and genetic data indicate recovery of the endangered coral Acropora palmata in Los Roques, Southern Caribbean

    Science.gov (United States)

    Zubillaga, A. L.; Márquez, L. M.; Cróquer, A.; Bastidas, C.

    2008-03-01

    The rapid decline of Acropora cervicornis and Acropora palmata has often been linked with coral reef deterioration in the Caribbean; yet, it remains controversial whether these species are currently recovering or still declining. In this study, the status of ten populations of A. palmata in Los Roques National Park (LRNP), Venezuela is presented. Six of these populations showed signs of recovery. Ten 80 m2 belt-transects were surveyed at each of the ten reef sites. Within belt-transects, each colony was measured (maximum diameter and height) and its status (healthy, diseased or injured) was recorded. Populations in recovery were defined by a dominance of small to medium-sized colonies in densities >1 colony per 10 m2, together with 75% undamaged colonies, a low prevalence of diseases (<10%), and a low density of predators (0.25 snails per colony). Based on allozyme analysis of seven polymorphic loci in four populations ( N = 30), a moderate to high-genetic connectivity among these populations ( F ST = 0.048) was found with a predominance of sexual over asexual reproduction ( N* : N = 1; N go : N = 0.93-1). Both ecological and molecular data support a good prognosis for the recovery of this species in Los Roques.

  11. A Study of the Pelagic Larval Duration of Acropora humilis, Coral Recruitment and Connectivity in the Saudi Arabian Red Sea

    KAUST Repository

    Khalil, Maha

    2011-12-12

    Combined knowledge of the pelagic larval duration of coral species and coral recruitment patterns can provide evidence of inter-reef connectivity and indicate a reef’s ability to recover. We attempted to determine the maximum pelagic larval duration of Acropora humilis. Larvae were reared in a controlled environment unfavorable for settlement. The larvae lived in a pelagic state for a maximum of 29 days, although this is probably an underestimate of actual longevity for this species. Given the information available from the literature with respect to larval dispersal rates, it is not expected that larvae with this longevity will disperse further than 10-20 km from their natal reef, if at all. A long-term recruitment monitoring project was also set up on Abu Shosha Reef, which suffered nearly complete coral loss due to a bleaching event in summer of 2010. In April 2011, 60 settlement plates were placed on the reef. In July, a total of 102 living scleractinian recruits were counted on the plates. While pocilloporids were the most dominant recruits on the reef (57.8%), about 20.6% of living recruits belonged to Acroporidae, a family whose live cover on the reef is extremely low (0.67%). However, the overall mean density of recruits was very low (1.7 living recruits/100cm2) compared to similar studies around the world despite the spawning season having just ended. Fish surveys showed herbivore biomass to be very low compared to other reef systems in the world, but densities were significantly higher than another reef in the Red Sea with about 10 times more live coral cover. Recovery from bleaching for Abu Shosha and similar reefs in the region may be very slow relative to rates observed in other parts of the world if recruitment rates and herbivore communities remain low.

  12. Influence of fish grazing and sedimentation on the early post-settlement survival of the tabular coral Acropora cytherea

    Science.gov (United States)

    Trapon, M. L.; Pratchett, M. S.; Hoey, A. S.; Baird, A. H.

    2013-12-01

    Processes operating in the early life stages of corals are critical in ultimately establishing patterns of adult abundance. Mortality, in particular, is assumed to be very high during the first few months to years post-settlement, but the sources of this mortality are largely unknown. This study quantified early post-settlement survival for Acropora cytherea, spawned and reared in captivity and settled onto terracotta tiles. Replicate tiles were then deployed in the field at Lizard Island, in northern section of the Great Barrier Reef to examine the effects of grazing and sedimentation on survival of corals in two different habitats, the exposed reef crest and sheltered back reef. Overall, survivorship was broadly comparable between habitats, ranging from 37.7 to 64.5 % per month on the exposed reef crest and 53.1-64.3 % on the sheltered back reef. On the reef crest, the exclusion of herbivores increased survivorship by 22.4 %, from 42.1 to 64.5 % per month. Moreover, survivorship within the reef crest was negatively correlated with the density of parrotfish feeding scars on tiles after 4 weeks. In contrast, the exclusion of herbivores had no detectable effect on survivorship within the back reef, and no feeding scars were observed on tiles in this habitat. Difference in grazing-induced mortality between habitats is most likely related to differences in herbivore size and abundance, with parrotfish biomass being 5.5-fold greater on the reef crest than the back reef. Surprisingly, tile orientation had no effect on survivorship of A. cytherea in either habitat, despite a marked difference in the sediment cover on vertical (0 %) versus horizontal tiles (30 %) in the back reef. This is in marked contrast to previous studies that have reported sedimentation is a major cause of early post-settlement mortality in corals. Clearly, processes that cause mortality of newly settled corals, such as grazing and sedimentation, vary spatially.

  13. Acute tissue death (white syndrome) affects the microenvironment of tabular Acropora corals

    DEFF Research Database (Denmark)

    Andersen, Sandra Breum; Vestergaard, Maj; Ainsworth, Tracy D.

    2010-01-01

    White syndrome (WS) is a collective term for coral diseases that cause acute tissue loss, resulting in apparently healthy tissue bordering on exposed skeleton. In this study, the microenvironmental condition and tissue structure of WS-affected tabular acroporid corals were assessed by O2 microele......White syndrome (WS) is a collective term for coral diseases that cause acute tissue loss, resulting in apparently healthy tissue bordering on exposed skeleton. In this study, the microenvironmental condition and tissue structure of WS-affected tabular acroporid corals were assessed by O2...

  14. Dimethylsulphoniopropionate (DMSP as an Indicator of Bleaching Tolerance in Scleractinian Corals

    Directory of Open Access Journals (Sweden)

    Graham B. Jones

    2015-06-01

    Full Text Available Thermal tolerance tests on Acropora millepora, a common Indo-Pacific hard coral, have shown that adult corals can acquire increased thermal tolerance by shuffling existing type C to type D Symbiodinium zooxanthellae when subjected to increased seawater temperatures. We report here dimethylsulphoniopropionate (DMSP concentrations in A. millepora and examine links between DMSP concentrations, zooxanthellae clade, and bleaching tolerance. DMSP analysis on native and transplanted corals from three locations in the Great Barrier Reef indicated that the lower thermal tolerance in type C zooxanthellae coincided with variable DMSP concentrations, whilst the more thermal tolerant type D zooxanthellae had more stable areal DMSP concentrations as seawater temperatures increased. Our results suggest this increased thermal tolerance in type D zooxanthellae may reflect the ability of these coral symbionts to conserve their antioxidant DMSP levels to relatively constant concentrations, enabling the coral to overcome the build-up of oxygen free radicals in the cytoplasm of A. millepora. A conceptual diagram illustrates how the antioxidants DMS (P participate in the bleaching process by scavenging oxygen free radicals and form DMSO, thus moderating coral bleaching and increasing thermotolerance.

  15. Growth dynamics of the threatened Caribbean staghorn coral Acropora cervicornis: influence of host genotype, symbiont identity, colony size, and environmental setting.

    Directory of Open Access Journals (Sweden)

    Diego Lirman

    Full Text Available BACKGROUND: The drastic decline in the abundance of Caribbean acroporid corals (Acropora cervicornis, A. palmata has prompted the listing of this genus as threatened as well as the development of a regional propagation and restoration program. Using in situ underwater nurseries, we documented the influence of coral genotype and symbiont identity, colony size, and propagation method on the growth and branching patterns of staghorn corals in Florida and the Dominican Republic. METHODOLOGY/PRINCIPAL FINDINGS: Individual tracking of> 1700 nursery-grown staghorn fragments and colonies from 37 distinct genotypes (identified using microsatellites in Florida and the Dominican Republic revealed a significant positive relationship between size and growth, but a decreasing rate of productivity with increasing size. Pruning vigor (enhanced growth after fragmentation was documented even in colonies that lost 95% of their coral tissue/skeleton, indicating that high productivity can be maintained within nurseries by sequentially fragmenting corals. A significant effect of coral genotype was documented for corals grown in a common-garden setting, with fast-growing genotypes growing up to an order of magnitude faster than slow-growing genotypes. Algal-symbiont identity established using qPCR techniques showed that clade A (likely Symbiodinium A3 was the dominant symbiont type for all coral genotypes, except for one coral genotype in the DR and two in Florida that were dominated by clade C, with A- and C-dominated genotypes having similar growth rates. CONCLUSION/SIGNIFICANCE: The threatened Caribbean staghorn coral is capable of extremely fast growth, with annual productivity rates exceeding 5 cm of new coral produced for every cm of existing coral. This species benefits from high fragment survivorship coupled by the pruning vigor experienced by the parent colonies after fragmentation. These life-history characteristics make A. cervicornis a successful candidate

  16. Gene expression of corals in response to macroalgal competitors.

    Directory of Open Access Journals (Sweden)

    Tonya L Shearer

    Full Text Available As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora versus the more resistant (M. digitata coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens.

  17. Gene expression of corals in response to macroalgal competitors.

    Science.gov (United States)

    Shearer, Tonya L; Snell, Terry W; Hay, Mark E

    2014-01-01

    As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora) versus the more resistant (M. digitata) coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens.

  18. Gene Expression of Corals in Response to Macroalgal Competitors

    Science.gov (United States)

    Shearer, Tonya L.; Snell, Terry W.; Hay, Mark E.

    2014-01-01

    As corals decline and macroalgae proliferate on coral reefs, coral-macroalgal competition becomes more frequent and ecologically important. Whether corals are damaged by these interactions depends on susceptibility of the coral and traits of macroalgal competitors. Investigating changes in gene expression of corals and their intracellular symbiotic algae, Symbiodinium, in response to contact with different macroalgae provides insight into the biological processes and cellular pathways affected by competition with macroalgae. We evaluated the gene expression profiles of coral and Symbiodinium genes from two confamilial corals, Acropora millepora and Montipora digitata, after 6 h and 48 h of contact with four common macroalgae that differ in their allelopathic potency to corals. Contacts with macroalgae affected different biological pathways in the more susceptible (A. millepora) versus the more resistant (M. digitata) coral. Genes of coral hosts and of their associated Symbiodinium also responded in species-specific and time-specific ways to each macroalga. Changes in number and expression intensity of affected genes were greater after 6 h compared to 48 h of contact and were greater following contact with Chlorodesmis fastigiata and Amphiroa crassa than following contact with Galaxaura filamentosa or Turbinaria conoides. We documented a divergence in transcriptional responses between two confamilial corals and their associated Symbiodinium, as well as a diversity of dynamic responses within each coral species with respect to the species of macroalgal competitor and the duration of exposure to that competitor. These responses included early initiation of immune processes by Montipora, which is more resistant to damage after long-term macroalgal contact. Activation of the immune response by corals that better resist algal competition is consistent with the hypothesis that some macroalgal effects on corals may be mediated by microbial pathogens. PMID:25500576

  19. Temperature Dependence of Respiration in Larvae and Adult Colonies of the Corals Acropora tenuis and Pocillopora damicornis

    Directory of Open Access Journals (Sweden)

    Dwi Haryanti

    2015-06-01

    Full Text Available Although algal symbionts can become a source of reactive oxygen species under stressful conditions, symbiotic planulae of the coral Pocillopora damicornis are highly tolerant to thermal stress compared with non-symbiotic planulae of Acropora tenuis. As a first step to understand how P. damicornis planulae attain high stress tolerance, we compared the respiration rate and temperature dependence between symbiotic planulae of P. damicornis and non-symbiotic planulae of A. tenuis, as well as between larvae and adult branches within each species. Larvae and adult branches of both species had similar temperature dependency of respiration rate, with the temperature coefficient (Q10 values of about 2. Planula larvae of P. damicornis had a significantly lower respiration rate than that of A. tenuis larvae at 25–30 °C, but not at 32 °C, whereas adult branches of P. damicornis had a significantly higher respiration rate than that of A. tenuis branches at all temperatures. Thus, P. damicornis larvae appear to be capable of reducing their respiration rate to a greater extent than A. tenuis larvae, which could partly explain why P. damicornis larvae had high survivorship under thermal stress, although other antioxidant or photoprotective mechanisms should be investigated in the future.

  20. The importance of monitoring metabolic recovery in the coral Acropora cervicornis after short-term exposure to drilling muds: Calcification rate and protein concentration

    Science.gov (United States)

    Kendall, J. J.; Powell, E. N.; Connor, S. J.; Bright, T. J.; Zastrow, C. E.

    1984-04-01

    The effect of used drilling muds on coral health was examined by monitoring changes in calcification rate and soluble tissue protein concentration in the coral Acropora cervicornis. Exposure to 25 ppm (v/v) of one mud for 24 h reduced calcification rate in the growing tips by as much as 62%. In recovery experiments, corals were exposed to drilling muds for 24 h; some of them were allowed to recover in clean seawater for 48 h. After the 24-hour exposure, calcification rates were significantly less than those of the controls. After a 48-hour recovery period, calcification rates returned to control levels for one mud but were still significantly below control levels for another. The results indicate that the capacity for recovery after exposure cannot be predicted from the results of experiments on exposure only. Recovery capacity must be independently verified for all studies on the effects of short-term exposure to drilling muds.

  1. Corals form characteristic associations with symbiotic nitrogen-fixing bacteria.

    Science.gov (United States)

    Lema, Kimberley A; Willis, Bette L; Bourne, David G

    2012-05-01

    The complex symbiotic relationship between corals and their dinoflagellate partner Symbiodinium is believed to be sustained through close associations with mutualistic bacterial communities, though little is known about coral associations with bacterial groups able to fix nitrogen (diazotrophs). In this study, we investigated the diversity of diazotrophic bacterial communities associated with three common coral species (Acropora millepora, Acropora muricata, and Pocillopora damicormis) from three midshelf locations of the Great Barrier Reef (GBR) by profiling the conserved subunit of the nifH gene, which encodes the dinitrogenase iron protein. Comparisons of diazotrophic community diversity among coral tissue and mucus microenvironments and the surrounding seawater revealed that corals harbor diverse nifH phylotypes that differ between tissue and mucus microhabitats. Coral mucus nifH sequences displayed high heterogeneity, and many bacterial groups overlapped with those found in seawater. Moreover, coral mucus diazotrophs were specific neither to coral species nor to reef location, reflecting the ephemeral nature of coral mucus. In contrast, the dominant diazotrophic bacteria in tissue samples differed among coral species, with differences remaining consistent at all three reefs, indicating that coral-diazotroph associations are species specific. Notably, dominant diazotrophs for all coral species were closely related to the bacterial group rhizobia, which represented 71% of the total sequences retrieved from tissue samples. The species specificity of coral-diazotroph associations further supports the coral holobiont model that bacterial groups associated with corals are conserved. Our results suggest that, as in terrestrial plants, rhizobia have developed a mutualistic relationship with corals and may contribute fixed nitrogen to Symbiodinium.

  2. Species specificity of bacteria associated to the brown seaweeds Lobophora (Dictyotales, Phaeophyceae and their potential for induction of rapid coral bleaching in Acropora muricata

    Directory of Open Access Journals (Sweden)

    Christophe William Vieira

    2016-03-01

    Full Text Available While reef degradation is occurring worldwide, it is not uncommon to see phase shifts from coral to macroalgal dominated reefs. Numerous studies have addressed the mechanisms by which macroalgae may outcompete corals and a few recent studies highlighted the putative role of bacteria at the interface between macroalgae and corals. Some studies suggest that macroalgae may act as vectors and/or foster proliferation of microorganisms pathogenic for corals. Using a combination of high throughput sequencing, bacterial culturing and in situ bioassays we question if the adversity of macroalgal-associated bacteria to corals is mediated by specific bacterial taxa. Using Illumina sequencing, we characterized and compared the bacterial community from two Lobophora (Dictyotales, Phaeophyceae species. The two species presented distinctive bacterial communities. Both species shared approximately half of their OTUs, mainly the most abundant bacteria. Species-specific OTUs belong to Planctomycetes, Proteobacteria and Bacteroidetes. In total, 16 culturable bacterial strain were isolated and identified from the Lobophora surface, consisting of 10 genera (from 9 families, 4 classes and 3 phyla, some of which are not known as, but are related to pathogens involved in coral diseases, and others naturally associated to corals. When patches of marine agar with 24 h cultures of each of these bacteria were placed in direct contact with the branches of the scleractinian coral Acropora muricata, they caused severe bleaching after 24 h exposure. Results suggest that regardless of taxonomic affinities, increase in density of any bacteria can be adverse to corals. Nevertheless, the microbial community associated to macroalgal surface may not represent a threat to corals, because the specific bacterial screening and control exerted by the alga preventing specific bacterial proliferation.

  3. Differential coral bleaching-Contrasting the activity and response of enzymatic antioxidants in symbiotic partners under thermal stress.

    Science.gov (United States)

    Krueger, Thomas; Hawkins, Thomas D; Becker, Susanne; Pontasch, Stefanie; Dove, Sophie; Hoegh-Guldberg, Ove; Leggat, William; Fisher, Paul L; Davy, Simon K

    2015-12-01

    Mass coral bleaching due to thermal stress represents a major threat to the integrity and functioning of coral reefs. Thermal thresholds vary, however, between corals, partly as a result of the specific type of endosymbiotic dinoflagellate (Symbiodinium sp.) they harbour. The production of reactive oxygen species (ROS) in corals under thermal and light stress has been recognised as one mechanism that can lead to cellular damage and the loss of their symbiont population (Oxidative Theory of Coral Bleaching). Here, we compared the response of symbiont and host enzymatic antioxidants in the coral species Acropora millepora and Montipora digitata at 28°C and 33°C. A. millepora at 33°C showed a decrease in photochemical efficiency of photosystem II (PSII) and increase in maximum midday excitation pressure on PSII, with subsequent bleaching (declining photosynthetic pigment and symbiont density). M. digitata exhibited no bleaching response and photochemical changes in its symbionts were minor. The symbiont antioxidant enzymes superoxide dismutase, ascorbate peroxidase, and catalase peroxidase showed no significant upregulation to elevated temperatures in either coral, while only catalase was significantly elevated in both coral hosts at 33°C. Increased host catalase activity in the susceptible coral after 5days at 33°C was independent of antioxidant responses in the symbiont and preceded significant declines in PSII photochemical efficiencies. This finding suggests a potential decoupling of host redox mechanisms from symbiont photophysiology and raises questions about the importance of symbiont-derived ROS in initiating coral bleaching.

  4. Recovery by the coral Acropora cervicornis after drilling mud exposure. The free amino acid pool

    Energy Technology Data Exchange (ETDEWEB)

    Powell, E.N.; Connor, S.J.; Kendall, J.J. Jr.; Zastrow, C.E.; Bright, T.J.

    1984-03-01

    Corals were exposed to drilling mud for 24 hr then allowed to recover for 48 hr in clean seawater. Depending on the concentration and the mud used, exposure produced either an increase or decrease in free amino acid (FAA) pool size. Aspartate was affected to a greater degree than other amino acids. No clear instance of recovery could be ascertained after 48 hr in clean seawater. In several cases, corals, apparently unaffected by a 24 hr exposure, nevertheless suffered significant changes in the FAA pool during the 48 hr recovery period. Thus, the degree of toxicity of the drilling mud could not be accurately predicted from the 24 hr exposure data. In many cases, the choice of a normalizing parameter determined whether two sets of data were significantly different or not. Accurate effects assessment depends on a comparison of several methods of normalization to confirm statistical results.

  5. Metabolite profiling of symbiont and host during thermal stress and bleaching in the coral Acropora aspera

    Science.gov (United States)

    Hillyer, Katie E.; Dias, Daniel A.; Lutz, Adrian; Wilkinson, Shaun P.; Roessner, Ute; Davy, Simon K.

    2017-03-01

    Rising seawater temperatures pose a significant threat to the persistence of coral reefs. Despite the importance of these systems, major gaps remain in our understanding of how thermal stress and bleaching affect the metabolic networks that underpin holobiont function. We applied gas chromatography-mass spectrometry (GC-MS) metabolomics to detect changes in the intracellular free metabolite pools (polar and semi-polar compounds) of in hospite dinoflagellate symbionts and their coral hosts (and any associated microorganisms) during early- and late-stage thermal bleaching (a reduction of approximately 50 and 70% in symbiont density, respectively). We detected characteristic changes to the metabolite profiles of each symbiotic partner associated with individual cellular responses to thermal, oxidative and osmotic stress, which progressed with the severity of bleaching. Alterations were also indicative of changes to energy-generating and biosynthesis pathways in both partners, with a shift to the increased catabolism of lipid stores. Specifically, in symbiont intracellular metabolite pools, we observed accumulations of multiple free fatty acids, plus the chloroplast-associated antioxidant alpha-tocopherol. In the host, we detected a decline in the abundance of pools of multiple carbohydrates, amino acids and intermediates, in addition to the antioxidant ascorbate. These findings further our understanding of the metabolic changes that occur to symbiont and host (and its associated microorganisms) during thermal bleaching. These findings also provide further insight into the largely undescribed roles of free metabolite pools in cellular homeostasis, signalling and acclimation to thermal stress in the cnidarian-dinoflagellate symbiosis.

  6. Local extinction of a coral reef fish explained by inflexible prey choice

    Science.gov (United States)

    Brooker, R. M.; Munday, P. L.; Brandl, S. J.; Jones, G. P.

    2014-12-01

    While global extinctions of marine species are infrequent, local extinctions are becoming common. However, the role of habitat degradation and resource specialisation in explaining local extinction is unknown. On coral reefs, coral bleaching is an increasingly frequent cause of coral mortality that can result in dramatic changes to coral community composition. Coral-associated fishes are often specialised on a limited suite of coral species and are therefore sensitive to these changes. This study documents the local extinction of a corallivorous reef fish, Oxymonacanthus longirostris, following a mass bleaching event that altered the species composition of associated coral communities. Local extinction only occurred on reefs that also completely lost a key prey species, Acropora millepora, even though coral cover remained high. In an experimental test, fish continued to select bleached A. millepora over the healthy, but less-preferred prey species that resisted bleaching. These results suggest that behavioural inflexibility may limit the ability of specialists to cope with even subtle changes to resource availability.

  7. Proteomics links the redox state to calcium signaling during bleaching of the scleractinian coral Acropora microphthalma on exposure to high solar irradiance and thermal stress.

    Science.gov (United States)

    Weston, Andrew J; Dunlap, Walter C; Beltran, Victor H; Starcevic, Antonio; Hranueli, Daslav; Ward, Malcolm; Long, Paul F

    2015-03-01

    Shipboard experiments were each performed over a 2 day period to examine the proteomic response of the symbiotic coral Acropora microphthalma exposed to acute conditions of high temperature/low light or high light/low temperature stress. During these treatments, corals had noticeably bleached. The photosynthetic performance of residual algal endosymbionts was severely impaired but showed signs of recovery in both treatments by the end of the second day. Changes in the coral proteome were determined daily and, using recently available annotated genome sequences, the individual contributions of the coral host and algal endosymbionts could be extracted from these data. Quantitative changes in proteins relevant to redox state and calcium metabolism are presented. Notably, expression of common antioxidant proteins was not detected from the coral host but present in the algal endosymbiont proteome. Possible roles for elevated carbonic anhydrase in the coral host are considered: to restore intracellular pH diminished by loss of photosynthetic activity, to indirectly limit intracellular calcium influx linked with enhanced calmodulin expression to impede late-stage symbiont exocytosis, or to enhance inorganic carbon transport to improve the photosynthetic performance of algal symbionts that remain in hospite. Protein effectors of calcium-dependent exocytosis were present in both symbiotic partners. No caspase-family proteins associated with host cell apoptosis, with exception of the autophagy chaperone HSP70, were detected, suggesting that algal loss and photosynthetic dysfunction under these experimental conditions were not due to host-mediated phytosymbiont destruction. Instead, bleaching occurred by symbiont exocytosis and loss of light-harvesting pigments of algae that remain in hospite. These proteomic data are, therefore, consistent with our premise that coral endosymbionts can mediate their own retention or departure from the coral host, which may manifest as

  8. Light and temperature effects on δ11B and B / Ca ratios of the zooxanthellate coral Acropora sp.: results from culturing experiments

    Directory of Open Access Journals (Sweden)

    P. Louvat

    2012-11-01

    Full Text Available The boron isotopic composition (δ11B of marine carbonates (e.g. corals is increasingly utilised as a proxy for paleo-pH, with the strong correlation between δ11B of marine calcifiers and seawater pH now well documented. However, the potential roles of other environmental parameters that may also influence both the boron isotopic composition and boron concentration into coral aragonite are poorly known. To overcome this, the tropical scleractinian coral Acropora sp. was cultured under 3 different temperatures (22, 25 and 28 °C and two light conditions (200 and 400 μmol photon m−2 s−1. The δ11B indicates an increase in internal pH that is dependent on the light conditions. Changes in light intensities from 200 to 400 μmol photon m−2 s−1 seem to indicate an apparent decrease in pH at the site of calcification, contrary to what is expected in most models of light-enhanced calcification. Thus, variations in light conditions chosen to mimic average annual variations of the natural environments where Acropora sp. colonies can be found could bias pH reconstructions by about 0.05 units. For both light conditions, a significant impact of temperature on δ11B can be observed between 22 and 25 °C, corresponding to an increase of about 0.02 pH-units, while no further δ11B increase can be observed from 25 to 28 °C. This non-linear temperature effect complicates the determination of a correction factor. B / Ca ratios decrease with increasing light, consistent with the decrease in pH at the site of calcification under enhanced light intensities. When all the other parameters are constant, boron concentrations in Acropora sp. increase with increasing temperatures and increasing carbonate ion concentrations. These observations contradict previous studies where B / Ca in corals was found to vary inversely with temperature, suggesting that the controlling factors driving boron concentrations have not yet been adequately identified and might be

  9. Corals like it waxed: paraffin-based antifouling technology enhances coral spat survival.

    Science.gov (United States)

    Tebben, Jan; Guest, James R; Sin, Tsai M; Steinberg, Peter D; Harder, Tilmann

    2014-01-01

    The early post-settlement stage is the most sensitive during the life history of reef building corals. However, few studies have examined the factors that influence coral mortality during this period. Here, the impact of fouling on the survival of newly settled coral spat of Acropora millepora was investigated by manipulating the extent of fouling cover on settlement tiles using non-toxic, wax antifouling coatings. Survival of spat on coated tiles was double that on control tiles. Moreover, there was a significant negative correlation between percentage cover of fouling and spat survival across all tiles types, suggesting that fouling in direct proximity to settled corals has detrimental effects on early post-settlement survival. While previous studies have shown that increased fouling negatively affects coral larval settlement and health of juvenile and adult corals, to the best of our knowledge, this is the first study to show a direct relationship between fouling and early post-settlement survival for a broadcast spawning scleractinian coral. The negative effects of fouling on this sensitive life history stage may become more pronounced in the future as coastal eutrophication increases. Our results further suggest that targeted seeding of coral spat on artificial surfaces in combination with fouling control could prove useful to improve the efficiency of sexual reproduction-based coral propagation for reef rehabilitation.

  10. Corals like it waxed: paraffin-based antifouling technology enhances coral spat survival.

    Directory of Open Access Journals (Sweden)

    Jan Tebben

    Full Text Available The early post-settlement stage is the most sensitive during the life history of reef building corals. However, few studies have examined the factors that influence coral mortality during this period. Here, the impact of fouling on the survival of newly settled coral spat of Acropora millepora was investigated by manipulating the extent of fouling cover on settlement tiles using non-toxic, wax antifouling coatings. Survival of spat on coated tiles was double that on control tiles. Moreover, there was a significant negative correlation between percentage cover of fouling and spat survival across all tiles types, suggesting that fouling in direct proximity to settled corals has detrimental effects on early post-settlement survival. While previous studies have shown that increased fouling negatively affects coral larval settlement and health of juvenile and adult corals, to the best of our knowledge, this is the first study to show a direct relationship between fouling and early post-settlement survival for a broadcast spawning scleractinian coral. The negative effects of fouling on this sensitive life history stage may become more pronounced in the future as coastal eutrophication increases. Our results further suggest that targeted seeding of coral spat on artificial surfaces in combination with fouling control could prove useful to improve the efficiency of sexual reproduction-based coral propagation for reef rehabilitation.

  11. Parameterization of the response of calcification to temperature and pCO2 in the coral Acropora pulchra and the alga Lithophyllum kotschyanum

    Science.gov (United States)

    Comeau, S.; Carpenter, R. C.; Lantz, C. A.; Edmunds, P. J.

    2016-09-01

    The response of tropical corals and calcifying algae to ocean acidification (OA) and warming has received much attention in the past decade. However, most studies have evaluated the response of organisms to two or three temperature treatments, which does not allow the functional relationship between calcification and temperature under ambient and future pCO2 to be determined. This study tested the hypothesis that the relationship between calcification and temperature is affected by OA in the coral Acropora pulchra and the calcified alga Lithophyllum kotschyanum. Pieces of each organism were incubated under five (24-30 °C) or six (24-31.5 °C) temperatures crossed with two pCO2 levels (400 and 1000 μatm), and calcification was assessed in trials conducted in the spring and summer. The response of coral calcification to temperature was a positive asymmetric parabola with a maximum at ~28 °C under both pCO2 levels and in both seasons; the effects of pCO2 on calcification were largest at ~28 °C and lowest in both cool and warm temperatures. In contrast, calcification of the alga at both levels of pCO2 was unaffected by temperature in spring, but declined linearly with temperature in summer. This study demonstrates that the calcification response of coral reef organisms to the crossed effect of warming and OA is complex and cannot be fully assessed without using multiple temperature treatments that are ecologically relevant.

  12. Expression of hsp70, hsp90 and hsf1 in the reef coral Acropora digitifera under prospective acidified conditions over the next several decades

    Directory of Open Access Journals (Sweden)

    Masako Nakamura

    2012-02-01

    Ocean acidification is an ongoing threat for marine organisms due to the increasing atmospheric CO2 concentration. Seawater acidification has a serious impact on physiologic processes in marine organisms at all life stages. On the other hand, potential tolerance to external pH changes has been reported in coral larvae. Information about the possible mechanisms underlying such tolerance responses, however, is scarce. In the present study, we examined the effects of acidified seawater on the larvae of Acropora digitifera at the molecular level. We targeted two heat shock proteins, Hsp70 and Hsp90, and a heat shock transcription factor, Hsf1, because of their importance in stress responses and in early life developmental stages. Coral larvae were maintained under the ambient and elevated CO2 conditions that are expected to occur within next 100 years, and then we evaluated the expression of hsps and hsf1 by quantitative real-time polymerase chain reaction (PCR. Expression levels of these molecules significantly differed among target genes, but they did not change significantly between CO2 conditions. These findings indicate that the expression of hsps is not changed due to external pH changes, and suggest that tolerance to acidified seawater in coral larvae may not be related to hsp expression.

  13. CRCP-Acropora palmata fragment outlpants

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Much progress has been made in the last decade in the propagation of Acropora spp. corals for restoration. Since 2008, much effort in Florida and US Caribbean...

  14. Coral diversity and the severity of disease outbreaks: a cross-regional comparison of Acropora white syndrome in a species-rich region (American Samoa) with a species-poor region (Northwestern Hawaiian Islands).

    Science.gov (United States)

    Aeby, G.S.; Bourne, D.G.; Wilson, B.; Work, Thierry M.

    2011-01-01

    The dynamics of the coral disease, Acropora white syndrome (AWS), was directly compared on reefs in the species-poor region of the Northwestern Hawaiian Islands (NWHI) and the species-rich region of American Samoa (AS) with results suggesting that biodiversity, which can affect the abundance of susceptible hosts, is important in influencing the impacts of coral disease outbreaks. The diversity-disease hypothesis predicts that decreased host species diversity should result in increased disease severity of specialist pathogens. We found that AWS was more prevalent and had a higher incidence within the NWHI as compared to AS. Individual Acropora colonies affected by AWS showed high mortality in both regions, but case fatality rate and disease severity was higher in the NWHI. The site within the NWHI had a monospecific stand of A. cytherea; a species that is highly susceptible to AWS. Once AWS entered the site, it spread easily amongst the abundant susceptible hosts. The site within AS contained numerous Acropora species, which differed in their apparent susceptibility to infection and disease severity, which in turn reduced disease spread. Manipulative studies showed AWS was transmissible through direct contact in three Acropora species. These results will help managers predict and respond to disease outbreaks.

  15. First record of multi-species synchronous coral spawning from Malaysia

    Directory of Open Access Journals (Sweden)

    Alvin Chelliah

    2015-02-01

    Full Text Available Knowledge about the timing and synchrony of coral spawning has important implications for both the ecology and management of coral reef ecosystems. Data on the timing of spawning and extent of synchrony, however, are still lacking for many coral reefs, particularly from equatorial regions and from locations within the coral triangle. Here we present the first documentation of a multi-species coral spawning event from reefs around Pulau Tioman, Peninsular Malaysia, a popular diving and tourist destination located on the edge of the coral triangle. At least 8 coral species from 3 genera (Acropora, Montipora and Porites participated in multi-species spawning over five nights in April 2014, between two nights before and two nights after the full moon. In addition, two Acropora species were witnessed spawning one night prior to the full moon in October 2014. While two of the Acropora species that reproduced in April (A. millepora and A. nasuta exhibited highly synchronous spawning (100% of sampled colonies, two other common species (A. hyacinthus and A. digitifera did not contain visible eggs in the majority of colonies sampled (i.e., <15% of colonies in either April or October, suggesting that these species spawn at other times of the year. To the best of our knowledge, this is the first detailed documented observation of multi-species coral spawning from reefs in Malaysia. These data provide further support for the contention that this phenomenon is a feature of all speciose coral assemblages, including equatorial reefs. More research is needed, however, to determine the seasonal cycles and extent of spawning synchrony on these reefs and elsewhere in Malaysia.

  16. First record of multi-species synchronous coral spawning from Malaysia.

    Science.gov (United States)

    Chelliah, Alvin; Amar, Halimi Bin; Hyde, Julian; Yewdall, Katie; Steinberg, Peter D; Guest, James R

    2015-01-01

    Knowledge about the timing and synchrony of coral spawning has important implications for both the ecology and management of coral reef ecosystems. Data on the timing of spawning and extent of synchrony, however, are still lacking for many coral reefs, particularly from equatorial regions and from locations within the coral triangle. Here we present the first documentation of a multi-species coral spawning event from reefs around Pulau Tioman, Peninsular Malaysia, a popular diving and tourist destination located on the edge of the coral triangle. At least 8 coral species from 3 genera (Acropora, Montipora and Porites) participated in multi-species spawning over five nights in April 2014, between two nights before and two nights after the full moon. In addition, two Acropora species were witnessed spawning one night prior to the full moon in October 2014. While two of the Acropora species that reproduced in April (A. millepora and A. nasuta) exhibited highly synchronous spawning (100% of sampled colonies), two other common species (A. hyacinthus and A. digitifera) did not contain visible eggs in the majority of colonies sampled (i.e., <15% of colonies) in either April or October, suggesting that these species spawn at other times of the year. To the best of our knowledge, this is the first detailed documented observation of multi-species coral spawning from reefs in Malaysia. These data provide further support for the contention that this phenomenon is a feature of all speciose coral assemblages, including equatorial reefs. More research is needed, however, to determine the seasonal cycles and extent of spawning synchrony on these reefs and elsewhere in Malaysia.

  17. Recovery from bleaching is mediated by threshold densities of background thermo-tolerant symbiont types in a reef-building coral.

    Science.gov (United States)

    Bay, Line K; Doyle, Jason; Logan, Murray; Berkelmans, Ray

    2016-06-01

    Sensitive molecular analyses show that most corals host a complement of Symbiodinium genotypes that includes thermo-tolerant types in low abundance. While tolerant symbiont types are hypothesized to facilitate tolerance to temperature and recovery from bleaching, empirical data on their distribution and relative abundance in corals under ambient and stress conditions are still rare. We quantified visual bleaching and mortality of coral hosts, along with relative abundance of C- and D-type Symbiodinium cells in 82 Acropora millepora colonies from three locations on the Great Barrier Reef transplanted to a central inshore site over a 13 month period. Our analyses reveal dynamic change in symbiont associations within colonies and among populations over time. Coral bleaching and declines in C- but not D-type symbionts were observed in transplanted corals. Survival and recovery of 25% of corals from one population was associated with either initial D-dominance or an increase in D-type symbionts that could be predicted by a minimum pre-stress D : C ratio of 0.003. One-third of corals from this population became D dominated at the bleached stage despite no initial detection of this symbiont type, but failed to recover and died in mid to late summer. These results provide a predictive threshold minimum density of background D-type symbionts in A. millepora, above which survival following extreme thermal stress is increased.

  18. Geologic history of Grecian Rocks, Key Largo Coral Reef Marine Sanctuary.

    Science.gov (United States)

    Shinn, E.A.

    1980-01-01

    Two transects were drilled across the major ecologic zones of the c. 750 by 200 m reef, whose accumulation was controlled by a local Pleistocene topographic feature. The Reef is composed of 5 major ecologic zones: 1) a deep seaward rubble zone, 6-8 m depth; 2) a poorly developed spur and groove zone composed of massive head corals and Millepora (4-6 m water depth); 3) a characteristic high-energy oriented Acropora palmata zone extending from the surface down to 4 m; 4) a distinct broad reef flat composed of in situ A. palmata and coral rubble, followed by 5) a narrow low- energy back-reef zone of unoriented A. palmata, thickets of A. cervicornis, and various massive head corals in water 0-3 m deep. An extensive grass-covered carbonate sand flat 3-4 m deep extends in a landward direction from zone 5. - from Author

  19. Diversity and evolution of coral fluorescent proteins.

    Directory of Open Access Journals (Sweden)

    Naila O Alieva

    Full Text Available GFP-like fluorescent proteins (FPs are the key color determinants in reef-building corals (class Anthozoa, order Scleractinia and are of considerable interest as potential genetically encoded fluorescent labels. Here we report 40 additional members of the GFP family from corals. There are three major paralogous lineages of coral FPs. One of them is retained in all sampled coral families and is responsible for the non-fluorescent purple-blue color, while each of the other two evolved a full complement of typical coral fluorescent colors (cyan, green, and red and underwent sorting between coral groups. Among the newly cloned proteins are a "chromo-red" color type from Echinopora forskaliana (family Faviidae and pink chromoprotein from Stylophora pistillata (Pocilloporidae, both evolving independently from the rest of coral chromoproteins. There are several cyan FPs that possess a novel kind of excitation spectrum indicating a neutral chromophore ground state, for which the residue E167 is responsible (numeration according to GFP from A. victoria. The chromoprotein from Acropora millepora is an unusual blue instead of purple, which is due to two mutations: S64C and S183T. We applied a novel probabilistic sampling approach to recreate the common ancestor of all coral FPs as well as the more derived common ancestor of three main fluorescent colors of the Faviina suborder. Both proteins were green such as found elsewhere outside class Anthozoa. Interestingly, a substantial fraction of the all-coral ancestral protein had a chromohore apparently locked in a non-fluorescent neutral state, which may reflect the transitional stage that enabled rapid color diversification early in the history of coral FPs. Our results highlight the extent of convergent or parallel evolution of the color diversity in corals, provide the foundation for experimental studies of evolutionary processes that led to color diversification, and enable a comparative analysis of

  20. Coral energy reserves and calcification in a high-CO2 world at two temperatures.

    Science.gov (United States)

    Schoepf, Verena; Grottoli, Andréa G; Warner, Mark E; Cai, Wei-Jun; Melman, Todd F; Hoadley, Kenneth D; Pettay, D Tye; Hu, Xinping; Li, Qian; Xu, Hui; Wang, Yongchen; Matsui, Yohei; Baumann, Justin H

    2013-01-01

    Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA) and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate) together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm), and two temperature regimes (26.5, 29.0 °C) within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53%) in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.

  1. Coral energy reserves and calcification in a high-CO2 world at two temperatures.

    Directory of Open Access Journals (Sweden)

    Verena Schoepf

    Full Text Available Rising atmospheric CO2 concentrations threaten coral reefs globally by causing ocean acidification (OA and warming. Yet, the combined effects of elevated pCO2 and temperature on coral physiology and resilience remain poorly understood. While coral calcification and energy reserves are important health indicators, no studies to date have measured energy reserve pools (i.e., lipid, protein, and carbohydrate together with calcification under OA conditions under different temperature scenarios. Four coral species, Acropora millepora, Montipora monasteriata, Pocillopora damicornis, Turbinaria reniformis, were reared under a total of six conditions for 3.5 weeks, representing three pCO2 levels (382, 607, 741 µatm, and two temperature regimes (26.5, 29.0 °C within each pCO2 level. After one month under experimental conditions, only A. millepora decreased calcification (-53% in response to seawater pCO2 expected by the end of this century, whereas the other three species maintained calcification rates even when both pCO2 and temperature were elevated. Coral energy reserves showed mixed responses to elevated pCO2 and temperature, and were either unaffected or displayed nonlinear responses with both the lowest and highest concentrations often observed at the mid-pCO2 level of 607 µatm. Biweekly feeding may have helped corals maintain calcification rates and energy reserves under these conditions. Temperature often modulated the response of many aspects of coral physiology to OA, and both mitigated and worsened pCO2 effects. This demonstrates for the first time that coral energy reserves are generally not metabolized to sustain calcification under OA, which has important implications for coral health and bleaching resilience in a high-CO2 world. Overall, these findings suggest that some corals could be more resistant to simultaneously warming and acidifying oceans than previously expected.

  2. The demise of a major Acropora palmata bank-barrier reef off the southeast coast of Barbados, West Indies

    Science.gov (United States)

    MacIntyre, I. G.; Glynn, P. W.; Toscano, M. A.

    2007-12-01

    Formerly attributed to human activity, the demise of a bank-barrier reef off southeastern Barbados known as Cobbler’s Reef is now thought to be largely the result of late Holocene, millennial-scale storm damage. Eleven surface samples of the reef crest coral Acropora palmata from nine sites along its 15-km length plot above the western Atlantic sea-level curve from 3,000 to 4,500 cal years ago (calibrated, calendar 14C years). These elevated clusters suggest that the reef complex suffered extensive storm damage during this period. The constant heavy wave action typical of this area and consequent low herbivory maintain conditions favoring algal growth, thereby limiting the reestablishment of post-storm reef framework. Site descriptions and detailed line surveys show a surface now composed mainly of reworked fragments of A. palmata covered with algal turf, macroalgae and crustose coralline algae. The reef contains no live A. palmata and only a few scattered coral colonies consisting primarily of Diploria spp . and Porites astreoides, along with the hydrocoral Millepora complanata. A few in situ framework dates plot at expected depths for normal coral growth below the sea-level curve during and after the period of intense storm activity. The most recent of these in situ samples are 320 and 400 cal years old. Corals of this late period likely succumbed to high turbidity associated with land clearance for sugarcane agriculture in the mid-1600s.

  3. Taxonomy and life history of the Acropora-eating flatworm Amakusaplana acroporae nov. sp. (Polycladida: Prosthiostomidae)

    Science.gov (United States)

    Rawlinson, K. A.; Gillis, J. A.; Billings, R. E.; Borneman, E. H.

    2011-09-01

    Efforts to culture and conserve acroporid corals in aquaria have led to the discovery of a corallivorous polyclad flatworm (known as AEFW - Acropora-eating flatworm), which, if not removed, can eat entire colonies. Live observations of the AEFW, whole mounts, serial histological sections and comparison of 28S rDNA sequences with other polyclads reveal that this is a new species belonging to the family Prosthiostomidae Lang, 1884 and previously monospecific genus Amakusaplana (Kato 1938). Amakusaplana acroporae is distinguished from Amakusaplana ohshimai by a different arrangement and number of eyes, a large seminal vesicle and dorsoventrally compressed shell gland pouch. Typical of the genus, A. acroporae, lacks a ventral sucker and has a small notch at the midline of the anterior margin. Nematocysts and a Symbiodinium sp. of dinoflagellate from the coral are abundantly distributed in the gut and parenchyma. Individual adults lay multiple egg batches on the coral skeleton, each egg batch has 20-26 egg capsules, and each capsule contains between 3-7 embryos. Embryonic development takes approximately 21 days, during which time characteristics of a pelagic life stage (lobes and ciliary tufts) develop but are lost before hatching. The hatchling is capable of swimming but settles to the benthos quickly, and no zooxanthellae were observed in the animal at this stage. We suggest that intracapsular metamorphosis limits the dispersal potential of hatchlings and promotes recruitment of offspring into the natal habitat. The evolutionary and ecological significance of retaining lobes and ciliary tufts in the embryo are discussed. Camouflage, high fecundity and possible dispersal dimorphisms probably explain how Amakusaplana acroporae can cause Acropora sp. mortality in aquaria where natural predators may be absent.

  4. Plasticity of larval pre-competency in response to temperature: observations on multiple broadcast spawning coral species

    Science.gov (United States)

    Heyward, A. J.; Negri, A. P.

    2010-09-01

    The pre-competency period of coral larvae influences dispersal, and this may be affected under projected climate change conditions. In this laboratory study, we examined the influence of sea water temperature on the duration of pre-competency of larvae of four broadcast spawning coral species. Fungia repanda, Acropora millepora, A. spathulata and Symphyllia recta larvae demonstrated large differences in cohort competency levels when cultured over a 4°C range during the first 4 days post fertilisation. Warmer temperatures reduced pre-competency periods by at least a day for all species, but there were also indications of an upper temperature threshold of less than 32°C for the development of F. repanda, A. millepora and S. recta. These data suggest a general flexibility in ontogenic response to ambient water temperatures. Sea surface temperatures (SST) that differ at spawning time by as little as 2°C, due to inter-annual or latitudinal variation, are likely to alter coral larval dispersal ranges. In some locations, notably the central Indo-Pacific, where major coral spawning activity can coincide with seasonal SST maxima, a future 2°C increase due to climate change may have serious negative effects on coral development and distribution.

  5. Coral thermal tolerance: tuning gene expression to resist thermal stress.

    Directory of Open Access Journals (Sweden)

    Anthony J Bellantuono

    Full Text Available The acclimatization capacity of corals is a critical consideration in the persistence of coral reefs under stresses imposed by global climate change. The stress history of corals plays a role in subsequent response to heat stress, but the transcriptomic changes associated with these plastic changes have not been previously explored. In order to identify host transcriptomic changes associated with acquired thermal tolerance in the scleractinian coral Acropora millepora, corals preconditioned to a sub-lethal temperature of 3°C below bleaching threshold temperature were compared to both non-preconditioned corals and untreated controls using a cDNA microarray platform. After eight days of hyperthermal challenge, conditions under which non-preconditioned corals bleached and preconditioned corals (thermal-tolerant maintained Symbiodinium density, a clear differentiation in the transcriptional profiles was revealed among the condition examined. Among these changes, nine differentially expressed genes separated preconditioned corals from non-preconditioned corals, with 42 genes differentially expressed between control and preconditioned treatments, and 70 genes between non-preconditioned corals and controls. Differentially expressed genes included components of an apoptotic signaling cascade, which suggest the inhibition of apoptosis in preconditioned corals. Additionally, lectins and genes involved in response to oxidative stress were also detected. One dominant pattern was the apparent tuning of gene expression observed between preconditioned and non-preconditioned treatments; that is, differences in expression magnitude were more apparent than differences in the identity of genes differentially expressed. Our work revealed a transcriptomic signature underlying the tolerance associated with coral thermal history, and suggests that understanding the molecular mechanisms behind physiological acclimatization would be critical for the modeling of reefs

  6. The roles and interactions of symbiont, host and environment in defining coral fitness.

    Directory of Open Access Journals (Sweden)

    Jos C Mieog

    Full Text Available BACKGROUND: Reef-building corals live in symbiosis with a diverse range of dinoflagellate algae (genus Symbiodinium that differentially influence the fitness of the coral holobiont. The comparative role of symbiont type in holobiont fitness in relation to host genotype or the environment, however, is largely unknown. We addressed this knowledge gap by manipulating host-symbiont combinations and comparing growth, survival and thermal tolerance among the resultant holobionts in different environments. METHODOLOGY/PRINCIPAL FINDINGS: Offspring of the coral, Acropora millepora, from two thermally contrasting locations, were experimentally infected with one of six Symbiodinium types, which spanned three phylogenetic clades (A, C and D, and then outplanted to the two parental field locations (central and southern inshore Great Barrier Reef, Australia. Growth and survival of juvenile corals were monitored for 31-35 weeks, after which their thermo-tolerance was experimentally assessed. Our results showed that: (1 Symbiodinium type was the most important predictor of holobiont fitness, as measured by growth, survival, and thermo-tolerance; (2 growth and survival, but not heat-tolerance, were also affected by local environmental conditions; and (3 host population had little to no effect on holobiont fitness. Furthermore, coral-algal associations were established with symbiont types belonging to clades A, C and D, but three out of four symbiont types belonging to clade C failed to establish a symbiosis. Associations with clade A had the lowest fitness and were unstable in the field. Lastly, Symbiodinium types C1 and D were found to be relatively thermo-tolerant, with type D conferring the highest tolerance in A. millepora. CONCLUSIONS/SIGNIFICANCE: These results highlight the complex interactions that occur between the coral host, the algal symbiont, and the environment to shape the fitness of the coral holobiont. An improved understanding of the factors

  7. Zonation of uplifted pleistocene coral reefs on barbados, west indies.

    Science.gov (United States)

    Mesolella, K J

    1967-05-05

    The coral species composition of uplifted Pleistocene reefs on Barbados is very similar to Recent West Indian reefs. Acropora palmata, Acropora cervicornis, and Montastrea annularis are qtuantitatively the most important of the coral species.

  8. Differential nitric oxide synthesis and host apoptotic events correlate with bleaching susceptibility in reef corals

    Science.gov (United States)

    Hawkins, T. D.; Krueger, T.; Becker, S.; Fisher, P. L.; Davy, S. K.

    2014-03-01

    Coral bleaching poses a threat to coral reefs worldwide. As a consequence of the temperature-induced breakdown in coral-dinoflagellate symbiosis, bleaching can have extensive effects on reef communities. However, our understanding of bleaching at a cellular level is limited, and this is particularly true regarding differential susceptibility among coral species. Recent work suggests that bleaching may represent a host innate immune-like response to symbiont dysfunction that involves synthesis of the signalling compound nitric oxide (NO) and the induction of host apoptotic-like cell death. In this study, we examined the activity of apoptosis-regulating enzymes alongside oxidised NO accumulation (a proxy for NO synthesis) in the reef corals Acropora millepora, Montipora digitata, and Pocillopora damicornis during experimental thermal stress. P. damicornis was the most sensitive species, suffering mortality (tissue sloughing) after 5 days at 33 °C but non-lethal bleaching after 9 days at 31.5 °C. A. millepora bleached at 33 °C but remained structurally intact, while M. digitata showed little evidence of bleaching. P. damicornis and A. millepora both exhibited evidence of temperature-induced NO synthesis and, after 5 days of heating, levels of oxidised NO in both species were fivefold higher than in controls maintained at 28.5 °C. These responses preceded bleaching by a number of days and may have occurred before symbiont dysfunction (measured as chlorophyll a degradation and oxidised NO accumulation). In A. millepora, apparent NO synthesis correlated with the induction of host apoptotic-like pathways, while in P. damicornis, the upregulation of apoptotic pathways occurred later. No evidence of elevated NO production or apoptosis was observed in M. digitata at 33 °C and baseline activity of apoptosis-regulating enzymes was negligible in this species. These findings provide important physiological data in the context of the responses of corals to global change and

  9. CRCP-Acropora palmata snail corallivore removal evaluation

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Corallivorous snail feeding scars are a common source of tissue loss for the threatened coral Acropora palmata, accounting for roughly one quarter of tissue loss in...

  10. Impact of light and temperature on the uptake of algal symbionts by coral juveniles.

    Science.gov (United States)

    Abrego, David; Willis, Bette L; van Oppen, Madeleine J H

    2012-01-01

    The effects of temperature and light on the breakdown of the coral-Symbiodinium symbiosis are well documented but current understanding of their roles during initial uptake and establishment of symbiosis is limited. In this study, we investigate how temperature and light affect the uptake of the algal symbionts, ITS1 types C1 and D, by juveniles of the broadcast-spawning corals Acropora tenuis and A. millepora. Elevated temperatures had a strong negative effect on Symbiodinium uptake in both coral species, with corals at 31 °C showing as little as 8% uptake compared to 87% at 28 °C. Juveniles in high light treatments (390 µmol photons m(-2) s(-1)) had lower cell counts across all temperatures, emphasizing the importance of the light environment during the initial uptake phase. The proportions of the two Symbiodinium types taken up, as quantified by a real time PCR assay using clade C- and D-specific primers, were also influenced by temperature, although variation in uptake dynamics between the two coral species indicates a host effect. At 28 °C, A. tenuis juveniles were dominated by C1 Symbiodinium, and while the number of D Symbiodinium cells increased at 31 °C, they never exceeded the number of C1 cells. In contrast, juveniles of A. millepora had approximately equal numbers of C1 and D cells at 28 °C, but were dominated by D at 30 °C and 31 °C. This study highlights the significant role that environmental factors play in the establishment of coral-Symbiodinium symbiosis and provides insights into how potentially competing Symbiodinium types take up residence in coral juveniles.

  11. Metagenomic analysis of the coral holobiont during a natural bleaching event on the Great Barrier Reef.

    Science.gov (United States)

    Littman, Raechel; Willis, Bette L; Bourne, David G

    2011-12-01

    Understanding the effects of elevated seawater temperatures on each member of the coral holobiont (the complex comprised of coral polyps and associated symbiotic microorganisms, including Bacteria, viruses, Fungi, Archaea and endolithic algae) is becoming increasingly important as evidence accumulates that microbial members contribute to overall coral health, particularly during thermal stress. Here we use a metagenomic approach to identify metabolic and taxonomic shifts in microbial communities associated with the hard coral Acropora millepora throughout a natural thermal bleaching event at Magnetic Island (Great Barrier Reef). A direct comparison of metagenomic data sets from healthy versus bleached corals indicated major shifts in microbial associates during heat stress, including Bacteria, Archaea, viruses, Fungi and micro-algae. Overall, metabolism of the microbial community shifted from autotrophy to heterotrophy, including increases in genes associated with the metabolism of fatty acids, proteins, simple carbohydrates, phosphorus and sulfur. In addition, the proportion of virulence genes was higher in the bleached library, indicating an increase in microorganisms capable of pathogenesis following bleaching. These results demonstrate that thermal stress results in shifts in coral-associated microbial communities that may lead to deteriorating coral health.

  12. Estimating the potential for adaptation of corals to climate warming.

    Directory of Open Access Journals (Sweden)

    Nikolaus B M Császár

    Full Text Available The persistence of tropical coral reefs is threatened by rapidly increasing climate warming, causing a functional breakdown of the obligate symbiosis between corals and their algal photosymbionts (Symbiodinium through a process known as coral bleaching. Yet the potential of the coral-algal symbiosis to genetically adapt in an evolutionary sense to warming oceans is unknown. Using a quantitative genetics approach, we estimated the proportion of the variance in thermal tolerance traits that has a genetic basis (i.e. heritability as a proxy for their adaptive potential in the widespread Indo-Pacific reef-building coral Acropora millepora. We chose two physiologically different populations that associate respectively with one thermo-tolerant (Symbiodinium clade D and one less tolerant symbiont type (Symbiodinium C2. In both symbiont types, pulse amplitude modulated (PAM fluorometry and high performance liquid chromatography (HPLC analysis revealed significant heritabilities for traits related to both photosynthesis and photoprotective pigment profile. However, quantitative real-time polymerase chain reaction (qRT-PCR assays showed a lack of heritability in both coral host populations for their own expression of fundamental stress genes. Coral colony growth, contributed to by both symbiotic partners, displayed heritability. High heritabilities for functional key traits of algal symbionts, along with their short clonal generation time and high population sizes allow for their rapid thermal adaptation. However, the low overall heritability of coral host traits, along with the corals' long generation time, raise concern about the timely adaptation of the coral-algal symbiosis in the face of continued rapid climate warming.

  13. A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization.

    Science.gov (United States)

    Jones, A M; Berkelmans, R; van Oppen, M J H; Mieog, J C; Sinclair, W

    2008-06-22

    The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthellae they harbour and, when multiple types are present, the relative abundance of types can be experimentally manipulated to increase the thermal limits of individual corals. Although the potential exists for this to translate into substantial thermal acclimatization of coral communities, to date there is no evidence to show that this takes place under natural conditions. In this study, we show field evidence of a dramatic change in the symbiont community of Acropora millepora, a common and widespread Indo-Pacific hard coral species, after a natural bleaching event in early 2006 in the Keppel Islands (Great Barrier Reef). Before bleaching, 93.5% (n=460) of the randomly sampled and tagged colonies predominantly harboured the thermally sensitive Symbiodinium type C2, while the remainder harboured a tolerant Symbiodinium type belonging to clade D or mixtures of C2 and D. After bleaching, 71% of the surviving tagged colonies that were initially C2 predominant changed to D or C1 predominance. Colonies that were originally C2 predominant suffered high mortality (37%) compared with D-predominant colonies (8%). We estimate that just over 18% of the original A. millepora population survived unchanged leaving 29% of the population C2 and 71% D or C1 predominant six months after the bleaching event. This change in the symbiont community structure, while it persists, is likely to have substantially increased the thermal tolerance of this coral population. Understanding the processes that underpin the temporal changes in symbiont communities is key to assessing the acclimatization potential of reef corals.

  14. Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef.

    Science.gov (United States)

    Lukoschek, Vimoksalehi; Riginos, Cynthia; van Oppen, Madeleine J H

    2016-07-01

    Connectivity underpins the persistence and recovery of marine ecosystems. The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem and managed by an extensive network of no-take zones; however, information about connectivity was not available to optimize the network's configuration. We use multivariate analyses, Bayesian clustering algorithms and assignment tests of the largest population genetic data set for any organism on the GBR to date (Acropora tenuis, >2500 colonies; >50 reefs, genotyped for ten microsatellite loci) to demonstrate highly congruent patterns of connectivity between this common broadcast spawning reef-building coral and its congener Acropora millepora (~950 colonies; 20 reefs, genotyped for 12 microsatellite loci). For both species, there is a genetic divide at around 19°S latitude, most probably reflecting allopatric differentiation during the Pleistocene. GBR reefs north of 19°S are essentially panmictic whereas southern reefs are genetically distinct with higher levels of genetic diversity and population structure, most notably genetic subdivision between inshore and offshore reefs south of 19°S. These broadly congruent patterns of higher genetic diversities found on southern GBR reefs most likely represent the accumulation of alleles via the southward flowing East Australia Current. In addition, signatures of genetic admixture between the Coral Sea and outer-shelf reefs in the northern, central and southern GBR provide evidence of recent gene flow. Our connectivity results are consistent with predictions from recently published larval dispersal models for broadcast spawning corals on the GBR, thereby providing robust connectivity information about the dominant reef-building genus Acropora for coral reef managers.

  15. The reproductive season of Acropora in Socotra, Yemen

    Science.gov (United States)

    Baird, Andrew H.; Abrego, David; Howells, Emily J.; Cumbo, Vivian R.

    2014-01-01

    Determining when corals reproduce has clear management and economic implications. Here we document the reproductive condition of corals in the genus Acropora on the island of Socotra in Yemen during February 2014. Twenty percent of colonies (n = 143) contained mature gametes and 28% had immature gametes indicating that spawning will occur in both February and March in 2014, confirming previous anecdotal reports of coral spawning at this time in Socotra. Acropora typically reproduce in synchrony with many other broadcast spawning scleractinian corals, and we therefore predict that many other species are reproductively active at this time of year. PMID:25075295

  16. Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress.

    Science.gov (United States)

    Kenkel, C D; Traylor, M R; Wiedenmann, J; Salih, A; Matz, M V

    2011-09-07

    Multi-coloured homologues of the green fluorescent protein generate some of the most striking visual phenomena in the ocean. Despite their natural prominence in reef-building corals and widespread use in biotechnology, their biological role remains obscure. Here, we experimented with larvae of Acropora millepora to determine what can be learned about a coral larva or recruit from its fluorescent colour. We performed 12 crosses between seven A. millepora colonies representing differing fluorescence phenotypes, the larvae of which were exposed to a natural settlement cue (crustose coralline algae) and heat-light stress. Parental effects explained 18 per cent of variation in colour and 47 per cent of variation in settlement. The colour of the larval family emerged as a predictor of the settlement success: redder families were significantly less responsive to the provided settlement cue (p = 0.006). This relationship was owing to a correlation between parental effects on settlement and colour (r(2) = 0.587, p = 0.045). We also observed pronounced (16%) decline in settlement rate, as well as subtle (2%), but a statistically significant decrease in red fluorescence, as a consequence of heat-light stress exposure. Variation in settlement propensity in A. millepora is largely owing to additive genetic effects, and is thought to reflect variation in dispersal potential. Our results suggest an optical signature to discriminate between long- and short-range dispersing genotypes, as well as to evaluate stress. Further research in this direction may lead to the development of field applications to trace changes in coral life history and physiology caused by global warming.

  17. Comment on "Younger Dryas sea level and meltwater pulse 1B recorded in Barbados reefal crest coral Acropora palmata" by N. A. Abdul et al.

    Science.gov (United States)

    Bard, Edouard; Hamelin, Bruno; Deschamps, Pierre; Camoin, Gilbert

    2016-12-01

    Based on new U-Th ages of corals drilled offshore Barbados, Abdul et al. (2016) have confirmed the existence of the abrupt stratigraphic feature called meltwater pulse 1B (MWP-1B), which they interpret as being due to a very large and global sea level step change dated at about 11.3 kyr before present (approximately 15 m and equivalent to twice the amount of water stored in the present Greenland ice sheet). This contrasts with the Tahiti record, in which MWP-1B is essentially absent or very small, as Carlson and Clark (2012) and Lambeck et al. (2014) also conclude in their recent reviews of deglacial sea levels at the global scale. However, the evidence provided by Abdul et al. and their main conclusions are not convincing as they are affected by the following three main problems, which may explain the apparent discrepancies: Problem #1/Barbados is located in a subduction zone, which was also active throughout the Late Glacial period. Furthermore, the Barbados cores studied by Abdul et al. were drilled on both sides of the extension of a tectonic feature identified at the southern tip of Barbados (South Point) as underlined by several studies of the Barbados stratigraphy. Problem #2/Fossil samples of Acropora palmata may not be reliable sea level markers during rapid and large sea level rises. Indeed, the asexual reproduction strategy of this species may not be optimal to keep up when the water depth is increasing very rapidly. This may in part explain why the living depth of A. palmata at Barbados was significantly greater than 5 m during some periods of the last deglaciation, notably between 14.5 and 14 kyr B.P. and possibly between 14 and 11.5 kyr B.P. Problem #3/The slow glacio-isostatic adjustment and the rapid responses due to gravitational changes of ice and water masses complicate the interpretation of individual relative sea level (RSL) records at specific locations. Therefore, the Barbados and Tahiti record cannot be compared directly in terms of absolute

  18. Historical thermal regimes define limits to coral acclimatization.

    Science.gov (United States)

    Howells, Emily J; Berkelmans, Ray; van Oppen, Madeleine J H; Willis, Bette L; Bay, Line K

    2013-05-01

    Knowledge of the degree to which corals undergo physiological acclimatization or genetic adaptation in response to changes in their thermal environment is crucial to the success of coral reef conservation strategies. The potential of corals to acclimatize to temperatures exceeding historical thermal regimes was investigated by reciprocal transplantation of Acropora millepora colonies between the warm central and cool southern regions of the Great Barrier Reef (GBR) for a duration of 14 months. Colony fragments retained at native sites remained healthy, whereas transplanted fragments, although healthy over initial months when temperatures remained within native thermal regimes, subsequently bleached and suffered mortality during seasonal temperature extremes. Corals hosting Symbiodinium D transplanted to the southern GBR bleached in winter and the majority suffered whole (40%; n=20 colonies) or partial (50%) mortality at temperatures 1.1 degrees C below their 15-year native minimum. In contrast, corals hosting Symbiodinium C2 transplanted to the central GBR bleached in summer and suffered whole (50%; n=10 colonies) or partial (42%) mortality at temperatures 2.5 degrees C above their 15-year native maximum. During summer bleaching, the dominant Symbiodinium type changed from C2 to D within corals transplanted to the central GBR. Corals transplanted to the cooler, southern GBR grew 74-80% slower than corals at their native site, and only 50% of surviving colonies reproduced, at least partially because of cold water bleaching of transplants. Despite the absence of any visual signs of stress, corals transplanted to the warmer, central GBR grew 52-59% more slowly than corals at their native site before the summer bleaching (i.e., from autumn to spring). Allocation of energy to initial acclimatization or reproduction may explain this pattern, as the majority (65%) of transplants reproduced one month earlier than portions of the same colonies retained at the southern

  19. Identification of Scleractinian Coral Recruits Using Fluorescent Censusing and DNA Barcoding Techniques

    Science.gov (United States)

    Hsu, Chia-Min; de Palmas, Stéphane; Kuo, Chao-Yang; Denis, Vianney; Chen, Chaolun Allen

    2014-01-01

    The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm2) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies. PMID:25211345

  20. Rapid Evolution of Coral Proteins Responsible for Interaction with the Environment

    Energy Technology Data Exchange (ETDEWEB)

    Voolstra, Christian R.; Sunagawa, Shinichi; Matz, Mikhail V.; Bayer, Till; Aranda, Manuel; Buschiazzo, Emmanuel; DeSalvo, Michael K.; Lindquist, Erika; Szmant, Alina M.; Coffroth, Mary Alice; Medina, Monica

    2011-01-31

    Background: Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures), pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably. Methodology/Principal Findings: We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7percent of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineagespecific) genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium. Conclusion/Relevance: This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals? evolutionary response to global climate change.

  1. Biogeochemical responses following coral mass spawning on the Great Barrier Reef: pelagic-benthic coupling

    Science.gov (United States)

    Wild, C.; Jantzen, C.; Struck, U.; Hoegh-Guldberg, O.; Huettel, M.

    2008-03-01

    This study quantified how the pulse of organic matter from the release of coral gametes triggered a chain of pelagic and benthic processes during an annual mass spawning event on the Australian Great Barrier Reef. Particulate organic matter (POM) concentrations in reef waters increased by threefold to 11-fold the day after spawning and resulted in a stimulation of pelagic oxygen consumption rates that lasted for at least 1 week. Water column microbial communities degraded the organic carbon of gametes of the broadcast-spawning coral Acropora millepora at a rate of >15% h-1, which is about three times faster than the degradation rate measured for larvae of the brooding coral Stylophora pistillata. Stable isotope signatures of POM in the water column reflected the fast transfer of organic matter from coral gametes into higher levels of the food chain, and the amount of POM reaching the seafloor immediately increased after coral spawning and then tailed-off in the next 2 weeks. Short-lasting phytoplankton blooms developed within a few days after the spawning event, indicating a prompt recycling of nutrients released through the degradation of spawning products. These data show the profound effects of coral mass spawning on the reef community and demonstrate the tight recycling of nutrients in this oligotrophic ecosystem.

  2. High spatial variability of coral, sponges and gorgonian assemblages in a well preserved reef

    Directory of Open Access Journals (Sweden)

    Patricia González-Díaz

    2010-06-01

    Full Text Available The main goal of this research was to obtain baseline field data of the composition of sponges, corals, and gorgonian assemblages that can be used as a reference for future analyses of anthropogenic impact. We tested the hypothesis that relatively homogeneous and well preserved reef units can present notable natural variability in the composition of their communities which are unassociated with changes in land proximity or a human impact gradient. Research was carried out in July 2006 at Los Colorados reef, located in the northwestern region of Pinar del Río Province, Cuba at 12 sampling stations. The biotopes selected were crest, terrace edge and spur and grove. Ecological indicators were diversity of corals, species composition, density of corals, hydrocorals, gorgonians and sponges, and density of selected coral species. A total of 2659 colonies of scleractineans corals representing 36 species were counted. The most abundant species in the crest biotope were Millepora alcicornis, Acropora palmata and Porites astreoides; in the terrace edge and spur and grove, the most abundant species were Siderastrea siderea, Stephanocoenia intersepta, Porites astreoides, Agaricia agaricites and Montastraea cavernosa. We found differences among sites for several indicators (e.g. density of corals, sponges and gorgonians and for selected species, but they could not be associated to any gradient of land influence or human impact. Therefore, sites inside a relatively homogeneous reef unit can present notable natural differences in the composition of their communities. Rev. Biol. Trop. 58 (2: 621-634. Epub 2010 June 02.

  3. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions.

    Science.gov (United States)

    Doropoulos, Christopher; Ward, Selina; Diaz-Pulido, Guillermo; Hoegh-Guldberg, Ove; Mumby, Peter J

    2012-04-01

    Ecology Letters (2012) 15: 338-346 ABSTRACT: Successful recruitment in shallow reef ecosystems often involves specific cues that connect planktonic invertebrate larvae with particular crustose coralline algae (CCA) during settlement. While ocean acidification (OA) can reduce larval settlement and the abundance of CCA, the impact of OA on the interactions between planktonic larvae and their preferred settlement substrate are unknown. Here, we demonstrate that CO2 concentrations (800 and 1300 μatm) predicted to occur by the end of this century significantly reduce coral (Acropora millepora) settlement and CCA cover by ≥ 45%. The CCA important for inducing coral settlement (Titanoderma spp., Hydrolithon spp.) were the most deleteriously affected by OA. Surprisingly, the only preferred settlement substrate (Titanoderma) in the experimental controls was avoided by coral larvae as pCO2 increased, and other substrata selected. Our results suggest OA may reduce coral population recovery by reducing coral settlement rates, disrupting larval settlement behaviour, and reducing the availability of the most desirable coralline algal species for successful coral recruitment. © 2012 Blackwell Publishing Ltd/CNRS.

  4. Coral associations of the Pleistocene Ironshore Formation, Grand Cayman

    Science.gov (United States)

    Hunter, I. G.; Jones, B.

    1996-11-01

    The 125-ka sea level, which was approximately 6 m above present-day sea level, led to the partial flooding of many Caribbean islands. On Grand. Cayman, this event led to the formation of the large Ironshore Lagoon that covered most of the western half of the island and numerous, small embayments along the south, east, and north coasts. At that time, at least 33 coral species grew in waters around Grand Cayman. This fauna, like the modern coral fauna of Grand Cayman, was dominated by Montastrea annularis, Porites porites, Acropora polmata, and A. cervicornis. Scolymia cubensis and Mycetophyllia ferox, not previously identified from the Late Pleistocene, are found in the Pleistocene patch reefs. Madracis mirabilis, Colpophyllia breviserialis, Agaricia tenuifolia, A. lamarcki, A. undata, Millepora spp., Mycetophyllia reesi, M. aliciae, and M. danaana, found on modern reefs, have not been identified from the Late Pleistocene reefs. Conversely, Pocillopora sp. cf. P. palmata, which is found in Late Pleistocene reefs, is absent on the modern reefs around Grand Cayman. The corals in the Ironshore Formation of Grand Cayman have been divided into 10 associations according to their dominant species, overall composition, and faunal diversity. Many of these associations are similar to the modern associations around Grand Cayman. Each of the Pleistocene coral associations, which can be accurately located on the known Late Pleistocene paleogeography of Grand Cayman, developed in distinct environmental settings. Overall trends identified in the modern settings are also apparent in the Late Pleistocene faunas. Thus, the diversity of the coral faunas increased from the interior of the Ironshore Lagoon to the reef crest. Similarly, the coral diversity in the Pleistocene patch reefs was related to the size of the reefs and their position relative to breaks in the barrier reef. The barrier reef included corals that are incapable of sediment rejection; whereas the patch reefs lacked

  5. Coral choreography

    Science.gov (United States)

    Showstack, Randy

    Viewers clicking onto the Waikiki Aquarium's “Coral Research Cam” any time during daylight hours in Hawaii can catch the latest action of three species of living corals (Acropora sp., Acropora elseyi,and Montipora digitata) and the yellow tang and blue tang fish swimming amongst them in an outdoor aquarium.Waikiki Aquarium Director Bruce Carlson says the camera is part of a new exhibit, “Corals Are Alive!,” which encourages people to view living corals close-up at the aquarium or via the Internet, in order to gain a better appreciation of the corals. “Hopefully through education and awareness, people will be more interested and willing to help with conservation efforts to preserve coral reefs,” says Carlson.

  6. Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework.

    Science.gov (United States)

    Fabricius, Katharina E; Cséke, Szilvia; Humphrey, Craig; De'ath, Glenn

    2013-01-01

    Global warming, and nutrient and sediment runoff from coastal development, both exert increasing pressures on coastal coral reefs. The objective of this study was to resolve the question of whether coastal eutrophication may protect corals from thermal stress by improving their nutritional status, or rather diminish their thermal tolerance through the synergy of dual stressors. A review of previous studies on the topic of combined trophic status and heat exposure on the thermal tolerance of corals reveals a broad range of outcomes, including synergistic, additive and antagonistic effects. We conducted a 90-day long experiment exposing corals to realistic levels of elevated nutrients and sediments, and heat stress. Colonies of two common scleractinian corals (Acropora millepora and Montipora tuberculosa) were kept in coastal seawater, or coastal seawater that was further organically and nutrient enriched (OE), and/or enriched with nitrate. Batches of OE were created daily, facilitating nutrient uptake, plankton succession and organic enrichment as observed in coastal waters. After 10 days of acclimation, 67% of the colonies had their temperature gradually increased from 27° to 31.2°C. After 3-7 weeks of heat stress, colonies of both species had significantly greater reductions in fluorescence yields and lower survival in OE than without addition of OE. Furthermore, photophysiological recovery was incomplete 31-38 days after ending the heat stress only in the OE treatments. Nitrate alone had no measurable effect on survival, bleaching and recovery in either species. Skeletal growth rates were reduced by 45% in heat-stressed A. millepora and by 24% in OE-exposed M. tuberculosa. We propose a conceptual trophic framework that resolves some of the apparently contradictory outcomes revealed by the review. Our study shows that management actions to reduce coastal eutrophication can improve the resistance and resilience of vulnerable coastal coral reefs to warming

  7. Does trophic status enhance or reduce the thermal tolerance of scleractinian corals? A review, experiment and conceptual framework.

    Directory of Open Access Journals (Sweden)

    Katharina E Fabricius

    Full Text Available Global warming, and nutrient and sediment runoff from coastal development, both exert increasing pressures on coastal coral reefs. The objective of this study was to resolve the question of whether coastal eutrophication may protect corals from thermal stress by improving their nutritional status, or rather diminish their thermal tolerance through the synergy of dual stressors. A review of previous studies on the topic of combined trophic status and heat exposure on the thermal tolerance of corals reveals a broad range of outcomes, including synergistic, additive and antagonistic effects. We conducted a 90-day long experiment exposing corals to realistic levels of elevated nutrients and sediments, and heat stress. Colonies of two common scleractinian corals (Acropora millepora and Montipora tuberculosa were kept in coastal seawater, or coastal seawater that was further organically and nutrient enriched (OE, and/or enriched with nitrate. Batches of OE were created daily, facilitating nutrient uptake, plankton succession and organic enrichment as observed in coastal waters. After 10 days of acclimation, 67% of the colonies had their temperature gradually increased from 27° to 31.2°C. After 3-7 weeks of heat stress, colonies of both species had significantly greater reductions in fluorescence yields and lower survival in OE than without addition of OE. Furthermore, photophysiological recovery was incomplete 31-38 days after ending the heat stress only in the OE treatments. Nitrate alone had no measurable effect on survival, bleaching and recovery in either species. Skeletal growth rates were reduced by 45% in heat-stressed A. millepora and by 24% in OE-exposed M. tuberculosa. We propose a conceptual trophic framework that resolves some of the apparently contradictory outcomes revealed by the review. Our study shows that management actions to reduce coastal eutrophication can improve the resistance and resilience of vulnerable coastal coral reefs

  8. Re-introduction and supplementation of species of Acropora and Pocillopora into the lagoons of Lakshadweep Islands, India

    Digital Repository Service at National Institute of Oceanography (India)

    Venkatesh, M.; Koya, S.I.; Wafar, M.V.M.

    The genera Acropora and Pocillopora are represented by a large number of species in most coral reefs They are more sensitive to environmental changes and anthropogenic effects and hence are more at risk than other coral species For example...

  9. Corals differential susceptibilities to bleaching along the Red Sea Coast, Egypt

    Directory of Open Access Journals (Sweden)

    MONTASER ALY MAHMOUD AL-HAMMADY

    2011-07-01

    Full Text Available Ammar MSA, Obuid-Allah AH, Al-Hammady MAM. 2011. Corals differential susceptibilities to bleaching along the Red Sea Coast, Egypt. Nusantara Bioscience 3: 73-81. Coral bleaching was studied at four sites in four widely geographically separated areas. Three of these sites are subjected to different human activities and the fourth one is considered as a control site. Data were collected by using SCUBA diving equipments and the line transects method. A total of 3940 coral colonies, representing 62 species in 21genera and 10 families, were recorded on transects on the reefs of four studied sites.20.11% of all corals were affected by bleaching: 5.4% were moderately affected; 2.7% severely affected and 12.007% were dead. Overall, there were differences in the proportion of colonies affected by bleaching between the studied sites. Ras El-Behar, the site impacted by petroleum oil, has the maximum average proportion of moderately, severely bleached and dead colonies. While, the lowest average proportions of severely bleached colonies and dead colonies were found at Kalawy bay. Surprisingly, coral reef taxa at El-Hamraween harbor showed high resistance to bleaching probably because of having a new different clade of Symbiodinium which can withstand sea water temperature. Species with highest susceptibilities to bleaching in areas of oil pollution, increased sedimentation and heavy load of phosphate are Stylophora pistillata, Acropora granulosa and Montipora meandrina, respectively while species with lowest susceptibilities are Fungia fungites, Alveopora daedalea and Millepora dichotoma, respectively.

  10. Comparisons of the 1995 and 1998 coral bleaching events on the patch reefs of San Salvador Island, Bahamas.

    Science.gov (United States)

    McGrath, Thomas A; Smith, Garriet W

    2003-06-01

    Coral patch reefs around San Salvador Island, Bahamas have been monitored with the aid of Earthwatch volunteers three times a year since 1992. During that period two significant mass bleaching events occurred: autumn 1995, and late summer 1998. Elsewhere in 1995, bleaching was caused by higher-than-normal summer sea temperatures; in San Salvador, however, temperatures were normal. In 1998 a prolonged period of higher-than-normal sea temperatures preceded bleaching on San Salvador and worldwide. During the 1995 event, one of the monitored reefs had twice the percentage of coral colonies bleached as the other two. Bleaching was more evenly distributed among the reefs during the 1998 event. In 1995 Agaricia agaricites was significantly more affected than other coral species, with almost 50% of all its colonies showing bleaching. Bleaching was more evenly spread among coral species in 1998, with five species showing bleaching on more than 40% of their colonies. Bleaching began on Millepora as early as August during the 1998 event and progressed to other species through the remainder of the autumn. In 1995 bleaching was not seen until late autumn and appeared to impact all affected species at about the same time. Recovery from the 1995 event was complete: no coral death or damage above normal background levels were seen. In the 1998 event, all Acropora cervicornis on the monitored reefs died and A. palmata was severely damaged. Millepora sp. lost almost half of their live tissue, and Montastraea sp. showed significant tissue damage following this event. Phototransect analysis suggests that more than 20% of total live tissue on affected species died during the 1998 event. A. cervicornis has demonstrated no re-growth from 1998 to 2000 on monitored reefs. Monitoring has suggested significant differences in causes and courses in these two events.

  11. Patterns of gene expression in a scleractinian coral undergoing natural bleaching.

    Science.gov (United States)

    Seneca, Francois O; Forêt, Sylvain; Ball, Eldon E; Smith-Keune, Carolyn; Miller, David J; van Oppen, Madeleine J H

    2010-10-01

    Coral bleaching is a major threat to coral reefs worldwide and is predicted to intensify with increasing global temperature. This study represents the first investigation of gene expression in an Indo-Pacific coral species undergoing natural bleaching which involved the loss of algal symbionts. Quantitative real-time polymerase chain reaction experiments were conducted to select and evaluate coral internal control genes (ICGs), and to investigate selected coral genes of interest (GOIs) for changes in gene expression in nine colonies of the scleractinian coral Acropora millepora undergoing bleaching at Magnetic Island, Great Barrier Reef, Australia. Among the six ICGs tested, glyceraldehyde 3-phosphate dehydrogenase and the ribosomal protein genes S7 and L9 exhibited the most constant expression levels between samples from healthy-looking colonies and samples from the same colonies when severely bleached a year later. These ICGs were therefore utilised for normalisation of expression data for seven selected GOIs. Of the seven GOIs, homologues of catalase, C-type lectin and chromoprotein genes were significantly up-regulated as a result of bleaching by factors of 1.81, 1.46 and 1.61 (linear mixed models analysis of variance, P coral bleaching response genes. In contrast, three genes, including one putative ICG, showed highly variable levels of expression between coral colonies. Potential variation in microhabitat, gene function unrelated to the stress response and individualised stress responses may influence such differences between colonies and need to be better understood when designing and interpreting future studies of gene expression in natural coral populations.

  12. Gene expression of a green fluorescent protein homolog as a host-specific biomarker of heat stress within a reef-building coral.

    Science.gov (United States)

    Smith-Keune, C; Dove, S

    2008-01-01

    Recent incidences of mass coral bleaching indicate that major reef building corals are increasingly suffering thermal stress associated with climate-related temperature increases. The development of pulse amplitude modulated (PAM) fluorometry has enabled rapid detection of the onset of thermal stress within coral algal symbionts, but sensitive biomarkers of thermal stress specific to the host coral have been slower to emerge. Differential display reverse transcription polymerase chain reaction (DDRT-PCR) was used to produce fingerprints of gene expression for the reef-building coral Acropora millepora exposed to 33 degrees C. Changes in the expression of 23 out of 399 putative genes occurred within 144 h. Down-regulation of one host-specific gene (AmA1a) occurred within just 6 h. Full-length sequencing revealed the product of this gene to be an all-protein chromatophore (green fluorescent protein [GFP]-homolog). RT-PCR revealed consistent down-regulation of this GFP-homolog for three replicate colonies within 6 h at both 32 degrees C and 33 degrees C but not at lower temperatures. Down-regulation of this host gene preceded significant decreases in the photosynthetic activity of photosystem II (dark-adapted F (v)/F (m)) of algal symbionts as measured by PAM fluorometry. Gene expression of host-specific genes such as GFP-homologs may therefore prove to be highly sensitive indicators for the onset of thermal stress within host coral cells.

  13. Tradeoffs to Thermal Acclimation: Energetics and Reproduction of a Reef Coral with Heat Tolerant Symbiodinium Type-D

    Directory of Open Access Journals (Sweden)

    Alison M. Jones

    2011-01-01

    Full Text Available The photo-physiological characteristics of thermo-tolerant Symbiodinium types have been postulated to have negative effects on the energetics of the reef corals by reducing fitness. To investigate this, two key and inextricably coupled indicators of fitness, lipids and reproduction, were monitored in colonies of the broadcast-spawning coral Acropora millepora over a two-year period that included a natural bleaching event. In the absence of bleaching ITS1-type clade D predominant colonies had 26% lower stored lipids compared to C2 colonies. At spawning time, this correlated with 28% smaller eggs in type-D colonies. This energetic disparity is expected to have reduced larval duration and settlement-competency periods in type-D compared to type-C2 colonies. More importantly, irrespective of the effect of genotype, the fitness of all corals was adversely affected by the stress of the bleaching event which reduced prespawning lipids by 60% and halved the number of eggs compared to the previous year. Our results extend work that has shown that direct temperature stress and symbiont change are likely to work in concert on corals by demonstrating that the lipids and reproduction of the reef building corals on tropical reefs are likely to be impaired by these processes as our climate warms.

  14. Major cellular and physiological impacts of ocean acidification on a reef building coral.

    Directory of Open Access Journals (Sweden)

    Paulina Kaniewska

    Full Text Available As atmospheric levels of CO(2 increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO(2 conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.

  15. Major cellular and physiological impacts of ocean acidification on a reef building coral.

    Science.gov (United States)

    Kaniewska, Paulina; Campbell, Paul R; Kline, David I; Rodriguez-Lanetty, Mauricio; Miller, David J; Dove, Sophie; Hoegh-Guldberg, Ove

    2012-01-01

    As atmospheric levels of CO(2) increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO(2) conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.

  16. Coral zonation and diagenesis of an emergent Pleistocene patch reef, Belize, Central America

    Energy Technology Data Exchange (ETDEWEB)

    Lighty, R.G.; Russell, K.L.

    1985-01-01

    Transect mapping and petrologic studies reveal a new depositional model and limited diagenesis of a well-exposed Pleistocene reef outcrop at Ambergris Cay, northern Belize. This emergent shelf-edge reef forms a rocky wave-washed headland at the northern terminus of the present-day 250 km long flourishing Belize Barrier Reef. Previously, the Belize reef outcrop was thought to extend southward in the subsurface beneath the modern barrier reef as a Pleistocene equivalent. The authors study indicate that this outcrop is a large, coral patch reef and not part of a barrier reef trend. Sixteen transects 12.5 m apart described in continuous cm increments from fore reef to back reef identified: extensive deposits of broken Acropora cervicornis; small thickets of A. palmata with small, oriented branches; and muddy skeletal sediments with few corals or reef rubble. Thin section and SEM studies show three phases of early submarine cementation: syntaxial and rosette aragonite; Mg-calcite rim cement and peloids; and colloidal Mg-calcite geopetal fill. Subaerial exposure in semi-arid northern Belize caused only minor skeletal dissolution, some precipitation of vadose whisker calcite, and no meteoric phreatic diagenesis. Facies geometry, coral assemblages, lack of rubble deposits, coralline algal encrustations and Millepora framework, and recognition of common but discrete submarine cements, all indicate that this Pleistocene reef was an isolated, coral-fringed sediment buildup similar to may large patch reefs existing today in moderate-energy shelf environments behind the modern barrier reef in central and southern Belize.

  17. Effects of the herbicide diuron on the early life history stages of coral

    Energy Technology Data Exchange (ETDEWEB)

    Negri, Andrew [Australian Institute of Marine Science, PMB 3 Townsville, QLD 4810 (Australia)]. E-mail: a.negri@aims.gov.au; Vollhardt, Claudia [Australian Institute of Marine Science, PMB 3 Townsville, QLD 4810 (Australia); Humphrey, Craig [Australian Institute of Marine Science, PMB 3 Townsville, QLD 4810 (Australia); Heyward, Andrew [Australian Institute of Marine Science, PMB 3 Townsville, QLD 4810 (Australia); Jones, Ross [Centre for Marine Studies, University of Queensland, St Lucia, QLD 4072 (Australia); Queensland Health Scientific Services, 39 Kessels Road, Coopers Plains 4108 (Australia); Eaglesham, Geoff [Bermuda Biological Station for Research, Inc, Ferry Reach, St George' s GE 01 (Bermuda); Fabricius, Katharina [Australian Institute of Marine Science, PMB 3 Townsville, QLD 4810 (Australia)

    2005-07-01

    The effects of the herbicide diuron on the early life history stages of broadcast spawning and brooding corals were examined in laboratory experiments. Fertilisation of Acropora millepora and Montipora aequituberculata oocytes were not inhibited at diuron concentrations of up to 1000{mu}gl{sup -1}. Metamorphosis of symbiont-free A. millepora larvae was only significantly inhibited at 300{mu}gl{sup -1} diuron. Pocillopora damicornis larvae, which contain symbiotic dinoflagellates, were able to undergo metamorphosis after 24h exposure to diuron at 1000{mu}gl{sup -1}. Two-week old P. damicornis recruits on the other hand were as susceptible to diuron as adult colonies, with expulsion of symbiotic dinoflagellates (bleaching) evident at 10{mu}gl{sup -1} diuron after 96h exposure. Reversible metamorphosis was observed at high diuron concentrations, with fully bleached polyps escaping from their skeletons. Pulse amplitude modulation (PAM) chlorophyll fluorescence techniques demonstrated a reduction in photosynthetic efficiency ({delta}F/F{sub m}{sup '}) in illuminated P. damicornis recruits after a 2h exposure to 1{mu}gl{sup -1} diuron. The dark-adapted quantum yields (F{sub v}/F{sub m}) also declined, indicating chronic photoinhibition and damage to photosystem II.

  18. Photosystem II recovery in the presence and absence of chloroplast protein repair in the symbionts of corals exposed to bleaching conditions

    Science.gov (United States)

    Hill, R.; Takahashi, S.

    2014-12-01

    Increased seawater temperature causes photoinhibition due to accumulation of photodamaged photosystem II (PSII) in symbiotic algae (genus Symbiodinium) within corals, and it is assumed to be associated with coral bleaching. To avoid photoinhibition, photosynthetic organisms repair the photodamaged PSII through replacing the PSII proteins, primarily the D1 protein, with newly synthesised proteins. However, in experiments using cultured Symbiodinium strains, the PSII repair of Symbiodinium has been suggested not to be related to the synthesis of the D1 protein. In this study, we examined the relationship between the recovery of PSII photochemical efficiency ( F V/ F M) and the content of D1 protein after high-light and high-temperature treatments using the bleaching-sensitive coral species, Pocillopora damicornis and Acropora millepora, and the bleaching-tolerant coral species, Montipora digitata and Pavona decussata. When corals were exposed to strong light (600 µmol photons m-2 s-1) at elevated temperature (32 °C) for 8 h, significant bleaching occurred in bleaching-sensitive coral species although an almost similar extent of reduced PSII function was found across all coral species tested. During a subsequent 15-h recovery under low light (10 µmol photons m-2 s-1) at optimal temperature (22 °C), the reduced F V/ F M recovered close to initial levels in all coral species, but the reduced D1 content recovered only in one coral species ( Pavona decussata). D1 content was therefore not strongly linked to chloroplast protein synthesis-dependent PSII repair. These results demonstrate that the recovery of photodamaged PSII does not always correspond with the recovery of D1 protein content in Symbiodinium within corals, suggesting that photodamaged PSII can be repaired by a unique mechanism in Symbiodinium within corals.

  19. Elkhorn and Staghorn Corals Critical Habitat

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — These data represent the critical habitat for elkhorn coral (Acropora palmata) and staghorn coral (A. cervicornis) as designated by 73 FR 72210, November 26, 2008,...

  20. Comparative immune responses of corals to stressors associated with offshore reef-based tourist platforms.

    Science.gov (United States)

    van de Water, Jeroen A J M; Lamb, Joleah B; van Oppen, Madeleine J H; Willis, Bette L; Bourne, David G

    2015-01-01

    Unravelling the contributions of local anthropogenic and seasonal environmental factors in suppressing the coral immune system is important for prioritizing management actions at reefs exposed to high levels of human activities. Here, we monitor health of the model coral Acropora millepora adjacent to a high-use and an unused reef-based tourist platform, plus a nearby control site without a platform, over 7 months spanning a typical austral summer. Comparisons of temporal patterns in a range of biochemical and genetic immune parameters (Toll-like receptor signalling pathway, lectin-complement system, prophenoloxidase-activating system and green fluorescent protein-like proteins) among healthy, injured and diseased corals revealed that corals exhibit a diverse array of immune responses to environmental and anthropogenic stressors. In healthy corals at the control site, expression of genes involved in the Toll-like receptor signalling pathway (MAPK p38, MEKK1, cFos and ATF4/5) and complement system (C3 and Bf) was modulated by seasonal environmental factors in summer months. Corals at reef platform sites experienced additional stressors over the summer, as evidenced by increased expression of various immune genes, including MAPK p38 and MEKK1. Despite increased expression of immune genes, signs of white syndromes were detected in 31% of study corals near tourist platforms in the warmest summer month. Evidence that colonies developing disease showed reduced expression of genes involved in the complement pathway prior to disease onset suggests that their immune systems may have been compromised. Responses to disease and physical damage primarily involved the melanization cascade and GFP-like proteins, and appeared to be sufficient for recovery when summer heat stress subsided. Overall, seasonal and anthropogenic factors may have interacted synergistically to overwhelm the immune systems of corals near reef platforms, leading to increased disease prevalence in summer at

  1. Changes in growth, vitality, and habitat value of Acropora cervicornis in the US Caribbean

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The project was planned to document the habitat value of Acropora cervicornis, staghorn coral, colonies or stands/thickets as they changed in configuration through...

  2. CRCP-Acropora spp. distribution in the upper Florida Keys 2013-2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set is derived from visual surveys by snorkelers using handheld GPS units to map extant live colonies of the threatened corals Acropora palmata and A....

  3. Acropora Presence/Absence in Surveyed Waters of Florida 1996-2008

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — On May 9, 2006, NOAA's National Marine Fisheries Service (NOAA Fisheries Service) listed staghorn and elkhorn corals (Acropora cervicornis and A. palmata) as...

  4. Chemical and physical environmental conditions underneath mat- and canopy-forming macroalgae, and their effects on understorey corals.

    Directory of Open Access Journals (Sweden)

    Claudine Hauri

    Full Text Available Disturbed coral reefs are often dominated by dense mat- or canopy-forming assemblages of macroalgae. This study investigated how such dense macroalgal assemblages change the chemical and physical microenvironment for understorey corals, and how the altered environmental conditions affect the physiological performance of corals. Field measurements were conducted on macroalgal-dominated inshore reefs in the Great Barrier Reef in quadrats with macroalgal biomass ranging from 235 to 1029 g DW m(-2 dry weight. Underneath mat-forming assemblages, the mean concentration of dissolved oxygen was reduced by 26% and irradiance by 96% compared with conditions above the mat, while concentrations of dissolved organic carbon and soluble reactive phosphorous increased by 26% and 267%, respectively. The difference was significant but less pronounced under canopy-forming assemblages. Dissolved oxygen declined and dissolved inorganic carbon and alkalinity increased with increasing algal biomass underneath mat-forming but not under canopy-forming assemblages. The responses of corals to conditions similar to those found underneath algal assemblages were investigated in an aquarium experiment. Coral nubbins of the species Acropora millepora showed reduced photosynthetic yields and increased RNA/DNA ratios when exposed to conditions simulating those underneath assemblages (pre-incubating seawater with macroalgae, and shading. The magnitude of these stress responses increased with increasing proportion of pre-incubated algal water. Our study shows that mat-forming and, to a lesser extent, canopy-forming macroalgal assemblages alter the physical and chemical microenvironment sufficiently to directly and detrimentally affect the metabolism of corals, potentially impeding reef recovery from algal to coral-dominated states after disturbance. Macroalgal dominance on coral reefs therefore simultaneously represents a consequence and cause of coral reef degradation.

  5. Spatial and temporal genetic structure of Symbiodinium populations within a common reef-building coral on the Great Barrier Reef.

    Science.gov (United States)

    Howells, Emily J; Willis, Bette L; Bay, Line K; van Oppen, Madeleine J H

    2013-07-01

    The dinoflagellate photosymbiont Symbiodinium plays a fundamental role in defining the physiological tolerances of coral holobionts, but little is known about the dynamics of these endosymbiotic populations on coral reefs. Sparse data indicate that Symbiodinium populations show limited spatial connectivity; however, no studies have investigated temporal dynamics for in hospite Symbiodinium populations following significant mortality and recruitment events in coral populations. We investigated the combined influences of spatial isolation and disturbance on the population dynamics of the generalist Symbiodinium type C2 (ITS1 rDNA) hosted by the scleractinian coral Acropora millepora in the central Great Barrier Reef. Using eight microsatellite markers, we genotyped Symbiodinium in a total of 401 coral colonies, which were sampled from seven sites across a 12-year period including during flood plume-induced coral bleaching. Genetic differentiation of Symbiodinium was greatest within sites, explaining 70-86% of the total genetic variation. An additional 9-27% of variation was explained by significant differentiation of populations among sites separated by 0.4-13 km, which is consistent with low levels of dispersal via water movement and historical disturbance regimes. Sampling year accounted for 6-7% of total genetic variation and was related to significant coral mortality following severe bleaching in 1998 and a cyclone in 2006. Only 3% of the total genetic variation was related to coral bleaching status, reflecting generally small (8%) reductions in allelic diversity within bleached corals. This reduction probably reflected a loss of genotypes in hospite during bleaching, although no site-wide changes in genetic diversity were observed. Combined, our results indicate the importance of disturbance regimes acting together with limited oceanographic transport to determine the genetic composition of Symbiodinium types within reefs.

  6. Potential Habitat of Acropora spp. on Reefs of Florida, Puerto Rico, and the US Virgin Islands

    OpenAIRE

    Katherine E. Wirt; Pamela Hallock; David Palandro; Kathleen Semon Lunz

    2015-01-01

    Elkhorn and staghorn corals (Acropora palmata, Acropora cervicornis) were listed in 2006 as threatened under the Endangered Species Act. The goal of this study was to create model potential-habitat maps for A. palmata and A. cervicornis, while identifying areas for possible re-establishment. These maps were created using a database of reported field observations in combination with existing benthic habitat maps. The mapped coral reef and hardbottom classifications throughout Florida, Puerto R...

  7. Skeletal development in Acropora cervicornis

    Science.gov (United States)

    Gladfelter, Elizabeth H.

    1984-08-01

    Monthly linear extension and calcium carbonate accretion were measured over a year in the Caribbean staghorn coral, Acropora cervicornis. X-radiographs were made of cross sections of branches to analyze radial growth. Correlations were made between parameters of skeletal growth and four environmental parameters monitored over the same sampling periods: temperature, daylight hours, sun hours, plankton abundance. The results indicate that linear extension does not change during the year with the possible exception of April. It is suggested that temperatures outside an optimal range (ca. 26° 29°C for staghorn Acroporas) might cause a decrease in linear extension, however. Specific accretion (mg. mm-1) does show significant variations through the year. Calcium carbonate accretion (mean specific accretion times mean linear extension, mg. tip-1) is most strongly correlated with number of sun hours. A comparison is made between diel patterns of extension and accretion and longer term measurements. It is suggested that the accretion process is probably most influenced by some activity influenced by light. There are no annual growth bands in X-radiographs of cross-sections of the branches of A. cervicornis. This may result from secondary infilling in the skeleton.

  8. A comparison of two common sample preparation techniques for lipid and fatty acid analysis in three different coral morphotypes reveals quantitative and qualitative differences.

    Science.gov (United States)

    Conlan, Jessica A; Rocker, Melissa M; Francis, David S

    2017-01-01

    Lipids are involved in a host of biochemical and physiological processes in corals. Therefore, changes in lipid composition reflect changes in the ecology, nutrition, and health of corals. As such, accurate lipid extraction, quantification, and identification is critical to obtain comprehensive insight into a coral's condition. However, discrepancies exist in sample preparation methodology globally, and it is currently unknown whether these techniques generate analogous results. This study compared the two most common sample preparation techniques for lipid analysis in corals: (1) tissue isolation by air-spraying and (2) crushing the coral in toto. Samples derived from each preparation technique were subsequently analysed to quantify lipids and their constituent classes and fatty acids in four common, scleractinian coral species representing three distinct morphotypes (Acropora millepora, Montipora crassotuberculata, Porites cylindrica, and Pocillopora damicornis). Results revealed substantial amounts of organic material, including lipids, retained in the skeletons of all species following air-spraying, causing a marked underestimation of total lipid concentration using this method. Moreover, lipid class and fatty acid compositions between the denuded skeleton and sprayed tissue were substantially different. In particular, the majority of the total triacylglycerol and total fatty acid concentrations were retained in the skeleton (55-69% and 56-64%, respectively). As such, the isolated, sprayed tissue cannot serve as a reliable proxy for lipid quantification or identification in the coral holobiont. The in toto crushing method is therefore recommended for coral sample preparation prior to lipid analysis to capture the lipid profile of the entire holobiont, permitting accurate diagnoses of coral condition.

  9. Discovery of a strongly-interrelated gene network in corals under constant darkness by correlation analysis after wavelet transform on complex network model.

    Directory of Open Access Journals (Sweden)

    Longlong Liu

    Full Text Available Coral reefs occupy a relatively small portion of sea area, yet serve as a crucial source of biodiversity by establishing harmonious ecosystems with marine plants and animals. Previous researches mainly focused on screening several key genes induced by stress. Here we proposed a novel method--correlation analysis after wavelet transform of complex network model, to explore the effect of light on gene expression in the coral Acropora millepora based on microarray data. In this method, wavelet transform and the conception of complex network were adopted, and 50 key genes with large differences were finally captured, including both annotated genes and novel genes without accurate annotation. These results shed light on our understanding of coral's response toward light changes and the genome-wide interaction among genes under the control of biorhythm, and hence help us to better protect the coral reef ecosystems. Further studies are needed to explore how functional connections are related to structural connections, and how connectivity arises from the interactions within and between different systems. The method introduced in this study for analyzing microarray data will allow researchers to explore genome-wide interaction network with their own dataset and understand the relevant biological processes.

  10. Reply to comment by E. Bard et al. on "Younger Dryas sea level and meltwater pulse 1B recorded in Barbados reef crest coral Acropora palmata" by N. A. Abdul et al.

    Science.gov (United States)

    Mortlock, Richard A.; Abdul, Nicole A.; Wright, James D.; Fairbanks, Richard G.

    2016-12-01

    Abdul et al. (2016) presented a detailed record of sea level at Barbados (13.9-9 kyr B.P.) tightly constraining the timing and amplitude during the Younger Dryas and Meltwater Pulse 1B (MWP-1B) based on U-Th dated reef crest coral species Acropora palmata. The Younger Dryas slow stand and the large (14 m) rapid sea level jump are not resolved in the Tahiti record. Tahiti sea level estimates are remarkably close to the Barbados sea level curve between 13.9 and 11.6 kyr but fall below the Barbados sea level curve for a few thousand years following MWP-1B. By 9 kyr the Tahiti sea level estimates again converge with the Barbados sea level curve. Abdul et al. (2016) concluded that Tahiti reefs at the core sites did not keep up with intervals of rapidly rising sea level during MWP-1B. We counter Bard et al. (2016) by showing (1) that there is no evidence for a hypothetical fault in Oistins Bay affecting one of the Barbados coring locations, (2) that the authors confuse the rare occurrences of A. palmata at depths >5 m with the "thickets" of A. palmata fronds representing the reef-crest facies, and (3) that uncertainties in depth habitat proxies largely account for differences in Barbados and Tahiti sea level differences curves with A. palmata providing the most faithful proxy. Given the range in Tahiti paleodepth uncertainties at the cored sites, the most parsimonious explanation remains that Tahiti coralgal ridges did not keep up with the sea level rise of MWP-1B.

  11. Acropora Presence/Absence in Surveyed Waters of Puerto Rico and US Virgin Islands 2001-2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — On May 9, 2006, NOAA's National Marine Fisheries Service (NOAA Fisheries Service) listed staghorn and elkhorn corals (Acropora cervicornis and A. palmata) as...

  12. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef.

    Science.gov (United States)

    van Oppen, Madeleine J H; Lukoschek, Vimoksalehi; Berkelmans, Ray; Peplow, Lesa M; Jones, Alison M

    2015-01-01

    Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR) in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative isolation and contributes

  13. A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef

    Directory of Open Access Journals (Sweden)

    Madeleine J.H. van Oppen

    2015-07-01

    Full Text Available Coral reefs surrounding the islands lying close to the coast are unique to the Great Barrier Reef (GBR in that they are frequently exposed to disturbance events including floods caused by cyclonic rainfall, strong winds and occasional periods of prolonged above-average temperatures during summer. In one such group of islands in the southern GBR, the Keppel Island archipelago, climate-driven disturbances frequently result in major coral mortality. Whilst these island reefs have clearly survived such dramatic disturbances in the past, the consequences of extreme mortality events may include the loss of genetic diversity, and hence adaptive potential, and a reduction in fitness due to inbreeding, especially if new recruitment from external sources is limited. Here we examined the level of isolation of the Keppel Island group as well as patterns of gene flow within the Keppel Islands using 10 microsatellite markers in nine populations of the coral, Acropora millepora. Bayesian cluster analysis and assignment tests indicated gene flow is restricted, but not absent, between the outer and inner Keppel Island groups, and that extensive gene flow exists within each of these island groups. Comparison of the Keppel Island data with results from a previous GBR-wide study that included a single Keppel Island population, confirmed that A. millepora in the Keppel Islands is genetically distinct from populations elsewhere on the GBR, with exception of the nearby inshore High Peak Reef just north of the Keppel Islands. We compared patterns of genetic diversity in the Keppel Island populations with those from other GBR populations and found them to be slightly, but significantly lower, consistent with the archipelago being geographically isolated, but there was no evidence for recent bottlenecks or deviation from mutation-drift equilibrium. A high incidence of private alleles in the Keppel Islands, particularly in the outer islands, supports their relative

  14. Changes in coral-associated microbial communities during a bleaching event.

    Science.gov (United States)

    Bourne, David; Iida, Yuki; Uthicke, Sven; Smith-Keune, Carolyn

    2008-04-01

    Environmental stressors such as increased sea surface temperatures are well-known for contributing to coral bleaching; however, the effect of increased temperatures and subsequent bleaching on coral-associated microbial communities is poorly understood. Colonies of the hard coral Acropora millepora were tagged on a reef flat off Magnetic Island (Great Barrier Reef) and surveyed over 2.5 years, which included a severe bleaching event in January/February 2002. Daily average water temperatures exceeded the previous 10-year average by more than 1 degrees C for extended periods with field-based visual surveys recording all tagged colonies displaying signs of bleaching. During the bleaching period, direct counts of coral zooxanthellae densities decreased by approximately 64%, before recovery to pre-bleaching levels after the thermal stress event. A subset of three tagged coral colonies were sampled through the bleaching event and changes in the microbial community elucidated. Denaturing gradient gel electrophoresis (DGGE) analysis demonstrated conserved bacterial banding profiles between the three coral colonies, confirming previous studies highlighting specific microbial associations. As coral colonies bleached, the microbial community shifted and redundancy analysis (RDA) of DGGE banding patterns revealed a correlation of increasing temperature with the appearance of Vibrio-affiliated sequences. Interestingly, this shift to a Vibrio-dominated community commenced prior to visual signs of bleaching. Clone libraries hybridized with Vibrio-specific oligonucleotide probes confirmed an increase in the fraction of Vibrio-affiliated clones during the bleaching period. Post bleaching, the coral microbial associations again shifted, returning to a profile similar to the fingerprints prior to bleaching. This provided further evidence for corals selecting and shaping their microbial partners. For non-bleached samples, a close association with Spongiobacter-related sequences were

  15. Coral calcification under daily oxygen saturation and pH dynamics reveals the important role of oxygen

    Directory of Open Access Journals (Sweden)

    Tim Wijgerde

    2014-05-01

    Full Text Available Coral reefs are essential to many nations, and are currently in global decline. Although climate models predict decreases in seawater pH (∼0.3 units and oxygen saturation (∼5 percentage points, these are exceeded by the current daily pH and oxygen fluctuations on many reefs (pH 7.8–8.7 and 27–241% O2 saturation. We investigated the effect of oxygen and pH fluctuations on coral calcification in the laboratory using the model species Acropora millepora. Light calcification rates were greatly enhanced (+178% by increased seawater pH, but only at normoxia; hyperoxia completely negated this positive effect. Dark calcification rates were significantly inhibited (51–75% at hypoxia, whereas pH had no effect. Our preliminary results suggest that within the current oxygen and pH range, oxygen has substantial control over coral growth, whereas the role of pH is limited. This has implications for reef formation in this era of rapid climate change, which is accompanied by a decrease in seawater oxygen saturation owing to higher water temperatures and coastal eutrophication.

  16. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification.

    Science.gov (United States)

    Webster, N S; Negri, A P; Botté, E S; Laffy, P W; Flores, F; Noonan, S; Schmidt, C; Uthicke, S

    2016-01-13

    Key calcifying reef taxa are currently threatened by thermal stress associated with elevated sea surface temperatures (SST) and reduced calcification linked to ocean acidification (OA). Here we undertook an 8 week experimental exposure to near-future climate change conditions and explored the microbiome response of the corals Acropora millepora and Seriatopora hystrix, the crustose coralline algae Hydrolithon onkodes, the foraminifera Marginopora vertebralis and Heterostegina depressa and the sea urchin Echinometra sp. Microbial communities of all taxa were tolerant of elevated pCO2/reduced pH, exhibiting stable microbial communities between pH 8.1 (pCO2 479-499 μatm) and pH 7.9 (pCO2 738-835 μatm). In contrast, microbial communities of the CCA and foraminifera were sensitive to elevated seawater temperature, with a significant microbial shift involving loss of specific taxa and appearance of novel microbial groups occurring between 28 and 31 °C. An interactive effect between stressors was also identified, with distinct communities developing under different pCO2 conditions only evident at 31 °C. Microbiome analysis of key calcifying coral reef species under near-future climate conditions highlights the importance of assessing impacts from both increased SST and OA, as combinations of these global stressors can amplify microbial shifts which may have concomitant impacts for coral reef structure and function.

  17. Effects of herbivory, nutrients, and reef protection on algal proliferation and coral growth on a tropical reef.

    Science.gov (United States)

    Rasher, Douglas B; Engel, Sebastian; Bonito, Victor; Fraser, Gareth J; Montoya, Joseph P; Hay, Mark E

    2012-05-01

    Maintaining coral reef resilience against increasing anthropogenic disturbance is critical for effective reef management. Resilience is partially determined by how processes, such as herbivory and nutrient supply, affect coral recovery versus macroalgal proliferation following disturbances. However, the relative effects of herbivory versus nutrient enrichment on algal proliferation remain debated. Here, we manipulated herbivory and nutrients on a coral-dominated reef protected from fishing, and on an adjacent macroalgal-dominated reef subject to fishing and riverine discharge, over 152 days. On both reefs, herbivore exclusion increased total and upright macroalgal cover by 9-46 times, upright macroalgal biomass by 23-84 times, and cyanobacteria cover by 0-27 times, but decreased cover of encrusting coralline algae by 46-100% and short turf algae by 14-39%. In contrast, nutrient enrichment had no effect on algal proliferation, but suppressed cover of total macroalgae (by 33-42%) and cyanobacteria (by 71% on the protected reef) when herbivores were excluded. Herbivore exclusion, but not nutrient enrichment, also increased sediment accumulation, suggesting a strong link between herbivory, macroalgal growth, and sediment retention. Growth rates of the corals Porites cylindrica and Acropora millepora were 30-35% greater on the protected versus fished reef, but nutrient and herbivore manipulations within a site did not affect coral growth. Cumulatively, these data suggest that herbivory rather than eutrophication plays the dominant role in mediating macroalgal proliferation, that macroalgae trap sediments that may further suppress herbivory and enhance macroalgal dominance, and that corals are relatively resistant to damage from some macroalgae but are significantly impacted by ambient reef condition.

  18. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types.

    Science.gov (United States)

    Jones, Alison; Berkelmans, Ray

    2010-05-03

    One of the principle ways in which reef building corals are likely to cope with a warmer climate is by changing to more thermally tolerant endosymbiotic algae (zooxanthellae) genotypes. It is highly likely that hosting a more heat-tolerant algal genotype will be accompanied by tradeoffs in the physiology of the coral. To better understand one of these tradeoffs, growth was investigated in the Indo-Pacific reef-building coral Acropora millepora in both the laboratory and the field. In the Keppel Islands in the southern Great Barrier Reef this species naturally harbors nrDNA ITS1 thermally sensitive type C2 or thermally tolerant type D zooxanthellae of the genus Symbiodinium and can change dominant type following bleaching. We show that under controlled conditions, corals with type D symbionts grow 29% slower than those with type C2 symbionts. In the field, type D colonies grew 38% slower than C2 colonies. These results demonstrate the magnitude of trade-offs likely to be experienced by this species as they acclimatize to warmer conditions by changing to more thermally tolerant type D zooxanthellae. Irrespective of symbiont genotype, corals were affected to an even greater degree by the stress of a bleaching event which reduced growth by more than 50% for up to 18 months compared to pre-bleaching rates. The processes of symbiont change and acute thermal stress are likely to act in concert on coral growth as reefs acclimatize to more stressful warmer conditions, further compromising their regeneration capacity following climate change.

  19. Potential costs of acclimatization to a warmer climate: growth of a reef coral with heat tolerant vs. sensitive symbiont types.

    Directory of Open Access Journals (Sweden)

    Alison Jones

    Full Text Available One of the principle ways in which reef building corals are likely to cope with a warmer climate is by changing to more thermally tolerant endosymbiotic algae (zooxanthellae genotypes. It is highly likely that hosting a more heat-tolerant algal genotype will be accompanied by tradeoffs in the physiology of the coral. To better understand one of these tradeoffs, growth was investigated in the Indo-Pacific reef-building coral Acropora millepora in both the laboratory and the field. In the Keppel Islands in the southern Great Barrier Reef this species naturally harbors nrDNA ITS1 thermally sensitive type C2 or thermally tolerant type D zooxanthellae of the genus Symbiodinium and can change dominant type following bleaching. We show that under controlled conditions, corals with type D symbionts grow 29% slower than those with type C2 symbionts. In the field, type D colonies grew 38% slower than C2 colonies. These results demonstrate the magnitude of trade-offs likely to be experienced by this species as they acclimatize to warmer conditions by changing to more thermally tolerant type D zooxanthellae. Irrespective of symbiont genotype, corals were affected to an even greater degree by the stress of a bleaching event which reduced growth by more than 50% for up to 18 months compared to pre-bleaching rates. The processes of symbiont change and acute thermal stress are likely to act in concert on coral growth as reefs acclimatize to more stressful warmer conditions, further compromising their regeneration capacity following climate change.

  20. Density-dependent coral recruitment displays divergent responses during distinct early life-history stages.

    Science.gov (United States)

    Doropoulos, Christopher; Evensen, Nicolas R; Gómez-Lemos, Luis A; Babcock, Russell C

    2017-05-01

    Population growth involves demographic bottlenecks that regulate recruitment success during various early life-history stages. The success of each early life-history stage can vary in response to population density, interacting with intrinsic (e.g. behavioural) and environmental (e.g. competition, predation) factors. Here, we used the common reef-building coral Acropora millepora to investigate how density-dependence influences larval survival and settlement in laboratory experiments that isolated intrinsic effects, and post-settlement survival in a field experiment that examined interactions with environmental factors. Larval survival was exceptionally high (greater than 80%) and density-independent from 2.5 to 12 days following spawning. By contrast, there was a weak positive effect of larval density on settlement, driven by gregarious behaviour at the highest density. When larval supply was saturated, settlement was three times higher in crevices compared with exposed microhabitats, but a negative relationship between settler density and post-settlement survival in crevices and density-independent survival on exposed surfaces resulted in similar recruit densities just one month following settlement. Moreover, a negative relationship was found between turf algae and settler survival in crevices, whereas gregarious settlement improved settler survival on exposed surfaces. Overall, our findings reveal divergent responses by coral larvae and newly settled recruits to density-dependent regulation, mediated by intrinsic and environmental interactions.

  1. Adaptation to local thermal regimes by crustose coralline algae does not affect rates of recruitment in coral larvae

    Science.gov (United States)

    Siboni, Nachshon; Abrego, David; Evenhuis, Christian; Logan, Murray; Motti, Cherie A.

    2015-12-01

    Crustose coralline algae (CCA) are well known for their ability to induce settlement in coral larvae. While their wide distribution spans reefs that differ substantially in temperature regimes, the extent of local adaptation to these regimes and the impact they have on CCA inductive ability are unknown. CCA Porolithon onkodes from Heron (southern) and Lizard (northern) islands on Australia's Great Barrier Reef (separated by 1181 km) were experimentally exposed to acute or prolonged thermal stress events and their thermal tolerance and recruitment capacity determined. A sudden onset bleaching model was developed to determine the health status of CCA based on the rate of change in the CCA live surface area (LSA). The interaction between location and temperature was significant ( F (2,119) = 6.74, p = 0.0017), indicating that thermally driven local adaptation had occurred. The southern population remained healthy after prolonged exposure to 28 °C and exhibited growth compared to the northern population ( p = 0.022), with its optimum temperature determined to be slightly below 28 °C. As expected, at the higher temperatures (30 and 32 °C) the Lizard Island population performed better that those from Heron Island, with an optimum temperature of 30 °C. Lizard Island CCA displayed the lowest bleaching rates at 30 °C, while levels consistently increased with temperature in their southern counterparts. The ability of those CCA deemed thermally tolerant (based on LSA) to induce Acropora millepora larval settlement was then assessed. While spatial differences influenced the health and bleaching levels of P. onkodes during prolonged and acute thermal exposure, thermally tolerant fragments, regardless of location, induced similar rates of coral larval settlement. This confirmed that recent thermal history does not influence the ability of CCA to induce settlement of A. millepora larvae.

  2. A genetic approach to the origin of Millepora sp. in the eastern Atlantic

    Science.gov (United States)

    López, C.; Clemente, S.; Almeida, C.; Brito, A.; Hernández, M.

    2015-06-01

    Many species have experienced recent range expansions due to human-mediated processes, such as the unintentional transport on ships or plastic waste and ocean warming, which facilitates many tropical species to tolerate living beyond their normal limit of distribution, with a potential impact on autochthonous assemblages. In September 2008, three colonies of the fire coral Millepora sp. (Cnidaria: Hydrozoa) were found on the southeastern coast of Tenerife (Canary Islands), though this species had been previously described to have a circumtropical distribution with Cape Verde Islands as its northern limit of distribution in the eastern Atlantic. The aim of this study was to determine the origin of these new colonies in the Canary Islands (11°N of its previously known northernmost limit of distribution) using variation in the cytochrome oxidase subunit I (COI) gene as a molecular marker. In order to do that, Millepora samples from Tenerife and Cape Verde Islands were collected for molecular analyses, and COI sequences from Caribbean samples listed in GenBank were also included in the analysis. Our results showed that all the specimens from Tenerife were genetically identical, suggesting that the colonization of the Canary Islands was the result of a very recent and strong founder effect. The nucleotide sequences of the samples from the Cape Verde and the Canary Islands were closer to the Caribbean than between themselves, pointing to the Caribbean population as the source population for both archipelagos, through independent founder events. The fact that Millepora sp. arrived to Cape Verde long before arriving to the Canaries (pleistocene fossils have been found in that archipelago) suggests that the habitat requirements for this species did not exist before in the Canarian archipelago. Therefore, the rising seawater temperatures recently registered in the Canary Islands could have facilitated the settlement of reef-forming corals drifting across the two basins of

  3. The hydrocoral genus Millepora (Hydrozoa: Capitata: Milleporidae) in Indonesia

    NARCIS (Netherlands)

    Razak, T.B.; Hoeksema, B.W.

    2003-01-01

    This revision of Indonesian Millepora species is based on the morphology of museum specimens and photographed specimens in the field. Based on the use of pore characters and overall skeleton growth forms, which are normally used for the classification of Millepora, the present study concludes that s

  4. The hydrocoral genus Millepora (Hydrozoa: Capitata: Milleporidae) in Indonesia

    NARCIS (Netherlands)

    Razak, T.B.; Hoeksema, B.W.

    2003-01-01

    This revision of Indonesian Millepora species is based on the morphology of museum specimens and photographed specimens in the field. Based on the use of pore characters and overall skeleton growth forms, which are normally used for the classification of Millepora, the present study concludes that s

  5. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change.

    Directory of Open Access Journals (Sweden)

    Paulina Kaniewska

    Full Text Available Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5 decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification.

  6. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change

    Science.gov (United States)

    Kaniewska, Paulina; Chan, Chon-Kit Kenneth; Kline, David; Ling, Edmund Yew Siang; Rosic, Nedeljka; Edwards, David; Hoegh-Guldberg, Ove; Dove, Sophie

    2015-01-01

    Tropical reef-building coral stress levels will intensify with the predicted rising atmospheric CO2 resulting in ocean temperature and acidification increase. Most studies to date have focused on the destabilization of coral-dinoflagellate symbioses due to warming oceans, or declining calcification due to ocean acidification. In our study, pH and temperature conditions consistent with the end-of-century scenarios of the Intergovernmental Panel on Climate Change (IPCC) caused major changes in photosynthesis and respiration, in addition to decreased calcification rates in the coral Acropora millepora. Population density of symbiotic dinoflagellates (Symbiodinium) under high levels of ocean acidification and temperature (Representative Concentration Pathway, RCP8.5) decreased to half of that found under present day conditions, with photosynthetic and respiratory rates also being reduced by 40%. These physiological changes were accompanied by evidence for gene regulation of calcium and bicarbonate transporters along with components of the organic matrix. Metatranscriptomic RNA-Seq data analyses showed an overall down regulation of metabolic transcripts, and an increased abundance of transcripts involved in circadian clock control, controlling the damage of oxidative stress, calcium signaling/homeostasis, cytoskeletal interactions, transcription regulation, DNA repair, Wnt signaling and apoptosis/immunity/ toxins. We suggest that increased maintenance costs under ocean acidification and warming, and diversion of cellular ATP to pH homeostasis, oxidative stress response, UPR and DNA repair, along with metabolic suppression, may underpin why Acroporid species tend not to thrive under future environmental stress. Our study highlights the potential increased energy demand when the coral holobiont is exposed to high levels of ocean warming and acidification. PMID:26510159

  7. Molecular phylogenetics of geographically restricted Acropora species: implications for threatened species conservation.

    Science.gov (United States)

    Richards, Z T; Miller, D J; Wallace, C C

    2013-12-01

    To better understand the underlying causes of rarity and extinction risk in Acropora (staghorn coral), we contrast the minimum divergence ages and nucleotide diversity of an array of species with different range sizes and levels of threat. Time-calibrated Bayesian analyses based upon concatenated nuclear and mitochondrial sequence data implied contemporary range size and vulnerability are linked to species age. However, contrary to previous hypotheses that suggest geographically restricted Acropora species evolved in the Plio-Pleistocene, the molecular phylogeny depicts some Indo-Australian species have greater antiquity, diverging in the Miocene. Species age is not related to range size as a simple positive linear function and interpreting the precise tempo of evolution in this genus is greatly complicated by morphological homoplasy and a sparse fossil record. Our phylogenetic reconstructions provide new examples of how morphology conceals cryptic evolutionary relationships in this keystone genus, and offers limited support for the species groupings currently used in Acropora systematics. We hypothesize that in addition to age, other mechanisms (such as a reticulate ancestry) delimit the contemporary range of some Acropora species, as evidenced by the complex patterns of allele sharing and paraphyly we uncover. Overall, both new and ancient evolutionary information may be lost if geographically restricted and threatened Acropora species are forced to extinction. In order to protect coral biodiversity and resolve the evolutionary history of staghorn coral, further analyses based on comprehensive and heterogeneous morphological and molecular data utilizing reticulate models of evolution are needed. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Natural disease resistance in threatened staghorn corals.

    Science.gov (United States)

    Vollmer, Steven V; Kline, David I

    2008-01-01

    Disease epidemics have caused extensive damage to tropical coral reefs and to the reef-building corals themselves, yet nothing is known about the abilities of the coral host to resist disease infection. Understanding the potential for natural disease resistance in corals is critically important, especially in the Caribbean where the two ecologically dominant shallow-water corals, Acropora cervicornis and A. palmata, have suffered an unprecedented mass die-off due to White Band Disease (WBD), and are now listed as threatened under the US Threatened Species Act and as critically endangered under the IUCN Red List criteria. Here we examine the potential for natural resistance to WBD in the staghorn coral Acropora cervicornis by combining microsatellite genotype information with in situ transmission assays and field monitoring of WBD on tagged genotypes. We show that six percent of staghorn coral genotypes (3 out of 49) are resistant to WBD. This natural resistance to WBD in staghorn corals represents the first evidence of host disease resistance in scleractinian corals and demonstrates that staghorn corals have an innate ability to resist WBD infection. These resistant staghorn coral genotypes may explain why pockets of Acropora have been able to survive the WBD epidemic. Understanding disease resistance in these corals may be the critical link to restoring populations of these once dominant corals throughout their range.

  9. Natural disease resistance in threatened staghorn corals.

    Directory of Open Access Journals (Sweden)

    Steven V Vollmer

    Full Text Available Disease epidemics have caused extensive damage to tropical coral reefs and to the reef-building corals themselves, yet nothing is known about the abilities of the coral host to resist disease infection. Understanding the potential for natural disease resistance in corals is critically important, especially in the Caribbean where the two ecologically dominant shallow-water corals, Acropora cervicornis and A. palmata, have suffered an unprecedented mass die-off due to White Band Disease (WBD, and are now listed as threatened under the US Threatened Species Act and as critically endangered under the IUCN Red List criteria. Here we examine the potential for natural resistance to WBD in the staghorn coral Acropora cervicornis by combining microsatellite genotype information with in situ transmission assays and field monitoring of WBD on tagged genotypes. We show that six percent of staghorn coral genotypes (3 out of 49 are resistant to WBD. This natural resistance to WBD in staghorn corals represents the first evidence of host disease resistance in scleractinian corals and demonstrates that staghorn corals have an innate ability to resist WBD infection. These resistant staghorn coral genotypes may explain why pockets of Acropora have been able to survive the WBD epidemic. Understanding disease resistance in these corals may be the critical link to restoring populations of these once dominant corals throughout their range.

  10. The reproductive season of Acropora in Socotra, Yemen [v2; ref status: indexed, http://f1000r.es/392

    Directory of Open Access Journals (Sweden)

    Andrew H. Baird

    2014-04-01

    Full Text Available Determining when corals reproduce has clear management and economic implications. Here we document the reproductive condition of corals in the genus Acropora on the island of Socotra in Yemen during February 2014. Twenty percent of colonies (n = 143 contained mature gametes and 28% had immature gametes indicating that spawning will occur in both February and March in 2014, confirming previous anecdotal reports of coral spawning at this time in Socotra. Acropora typically reproduce in synchrony with many other broadcast spawning scleractinian corals, and we therefore predict that many other species are reproductively active at this time of year.

  11. Reef-scale trends in Florida Acropora spp. abundance and the effects of population enhancement

    OpenAIRE

    Margaret W. Miller; Katryna Kerr; Williams, Dana E.

    2016-01-01

    Since the listing of Acropora palmata and A. cervicornis under the US Endangered Species Act in 2006, increasing investments have been made in propagation of listed corals (primarily A. cervicornis, A. palmata to a much lesser extent) in offshore coral nurseries and outplanting cultured fragments to reef habitats. This investment is superimposed over a spatiotemporal patchwork of ongoing disturbances (especially storms, thermal bleaching, and disease) as well as the potential for natural popu...

  12. Abundance and composition of juvenile corals reveals divergent trajectories for coral assemblages across the United Arab Emirates.

    Science.gov (United States)

    Pratchett, Morgan S; Baird, Andrew H; Bauman, Andrew G; Burt, John A

    2017-01-30

    Marked shifts in the composition of coral assemblages are occurring at many locations, but it is unknown whether these are permanent shifts reinforced by patterns of population replenishment. This study examined the composition of juvenile coral assemblages across the United Arab Emirates (UAE). Densities of juvenile corals varied significantly among locations, but were highest where coral cover was highest. Juvenile coral assemblages within the Persian Gulf were dominated by Porites, while no Acropora were recorded. We expect therefore, continued declines in Acropora abundance, while observed dominance of Porites is likely to persist. In the Oman Sea, Pocillopora was the dominant juvenile coral, with Acropora and Stylophora also recorded. This study shows that taxonomic differences in replenishment are reinforcing temporal shifts in coral composition within the southern Persian Gulf, but not in the Oman Sea. Differences in environmental conditions and disturbance regimes likely explain the divergent responses between regions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Nota sobre la densidad y tasa de depredación de Coralliophila abbreviata y Coralliophila caribaea sobre colonias jóvenes de Acropora palmata en un arrecife deteriorado de Cayo Sombrero, Parque Nacional Morrocoy, Venezuela Note on density and predation rate of Coralliophila abbreviata and Coralliophila caribaea on juvenile colonies of Acropora palmata in a deteriorated coral reef of Cayo Sombrero, Morrocoy National Park, Venezuela

    Directory of Open Access Journals (Sweden)

    Carlos del Mónaco

    2011-01-01

    Full Text Available Los arrecifes del Parque Nacional Morrocoy (PNM se encuentran actualmente impactados. Posterior a la mortandad masiva ocurrida en 1996, ha habido indicios de recuperación de Acropora palmata. Este proceso podría ser retrasado por Coralliophila. Se observaron solamente tres colonias de A. palmata en todo un arrecife de Cayo Sombrero. En julio 2005 estas presentaron densidades de Coralliophila abbreviata de 4, 0 y 2 ind/col y de Coralliophila caribaea de 22, 14 y 0 ind/col y, en enero 2006 las densidades fueron: 8, 0 y 4 ind/col de C abbreviata y 22, 14 y 0 ind/col de C caribaea. En las tres colonias se observaron cuatro lesiones (dos de cada depredador. Hubo pérdida de tejido de 66,14 cm a 162,85 cm en las lesiones ocasionadas por C abbreviata, con tasa de depredación de 0,52 cm día-1 en una de ellas, mientras que en otra fue de 37,41 a 72,50 cm con tasa de depredación de 0,19 cm día-1 . Las lesiones generadas por C caribaea no cambiaron. Es probable que el efecto de Coralliophila afecte la recuperación de A. palmata en el PNM, considerando la alta densidad de depredadores y la escasa abundancia de este coral en este parque.The coral reefs of Morrocoy National Park are currently deteriorated. After the massive mortality of 1996, Acropora palmata has shown some signs of recovery, a process that could be hampered by Coralliophila. We observed only three colonies of A. palmata in an entire reef in Cayo Sombrero. In July 2005, these colonies registered Coralliophila abbreviata densities of 4, 0, and 2 ind/col and Coralliophila caribaea densities of 22, 14, and 0 ind/col; in January 2006, said densities were 8, 0, and 4 ind/col (C. abbreviaté and 22, 14, and 0 ind/col (C. caribaea. Four sites of damage (two per predator were observed in the three colonies. In one colony, C abbreviata caused a loss of tissue of 66.14 to 162.85 cm , indicating a predation rate of 0.52 cm² day-1. In the other colony, the damage ranged from 37.41 to 72.50 cm2

  14. Coral restoration Bonaire : an evaluation of growth, regeneration and survival

    NARCIS (Netherlands)

    Meesters, H.W.G.; Boomstra, B.; Hurtado-Lopez, N.; Montbrun, A.; Virdis, F.

    2015-01-01

    The Coral restoration of Staghorn (Acropora cervicornis) and Elkhorn (A. palmata) as practiced by the Coral Restoration Foundation Bonaire (CRFB) is shown to be highly successful in terms of growth and survival of new colonies, in both nurseries and transplant locations. Coral restoration is expecte

  15. Population assessment of Acropora palmata (Scleractinia: Acroporidae: relationship between habitat and reef associated species

    Directory of Open Access Journals (Sweden)

    K. Martínez

    2014-09-01

    Full Text Available Three decades ago, Acropora palmata was one of the main reef-building coral species throughout the Caribbean, forming an essential component of the structural complexity of shallow coral reef habitats. These colonies still provide microhabitats for settlement, food and shelter to many vertebrates and invertebrates. The recent decline of A. palmata has been followed by a significant loss in spatial heterogeneity and possibly in species diversity. Studies addressing whether dead and living stands of Acropora hold different fish and benthic assemblages are scarce. The status of Acropora colonies and their associated species were assessed in October 2012, at two reef zones of Cayo Sombrero, Venezuela. Visual censuses of fish abundance and the number of macrofaunal individuals were recorded for both live and dead zones. Living Acropora colonies had the lowest abundance (˂31%. In both zoned the fish community was dominated by damselfishes (˂53% and wrasses (˂36%, the benthic macrofauna by peracarid crustaceans (˂40% and polychaetes (˂38%. Fish and benthic communities were not correlated with the condition (live or dead of the Acropora habitats; possibly branching structures provide the necessary shelter and protection no matter if they are dead or alive. More replication is necessary to test this unexpected result.

  16. Discovery of the corallivorous polyclad flatworm, Amakusaplana acroporae, on the Great Barrier Reef, Australia--the first report from the wild.

    Directory of Open Access Journals (Sweden)

    Kate A Rawlinson

    Full Text Available The role of corallivory is becoming increasingly recognised as an important factor in coral health at a time when coral reefs around the world face a number of other stressors. The polyclad flatworm, Amakusaplana acroporae, is a voracious predator of Indo-Pacific acroporid corals in captivity, and its inadvertent introduction into aquaria has lead to the death of entire coral colonies. While this flatworm has been a pest to the coral aquaculture community for over a decade, it has only been found in aquaria and has never been described from the wild. Understanding its biology and ecology in its natural environment is crucial for identifying viable biological controls for more successful rearing of Acropora colonies in aquaria, and for our understanding of what biotic interactions are important to coral growth and fitness on reefs. Using morphological, histological and molecular techniques we determine that a polyclad found on Acropora valida from Lizard Island, Australia is A. acroporae. The presence of extracellular Symbiodinium in the gut and parenchyma and spirocysts in the gut indicates that it is a corallivore in the wild. The examination of a size-range of individuals shows maturation of the sexual apparatus and increases in the number of eyes with increased body length. Conservative estimates of abundance show that A. acroporae occurred on 7 of the 10 coral colonies collected, with an average of 2.6±0.65 (mean ±SE animals per colony. This represents the first report of A. acroporae in the wild, and sets the stage for future studies of A. acroporae ecology and life history in its natural habitat.

  17. Genetic diversity and differentiation in reef-building Millepora species, as revealed by cross-species amplification of fifteen novel microsatellite loci

    Science.gov (United States)

    Planes, Serge; Zhou, Yuxiang; Berteaux-Lecellier, Véronique; Boissin, Emilie

    2017-01-01

    Quantifying the genetic diversity in natural populations is crucial to address ecological and evolutionary questions. Despite recent advances in whole-genome sequencing, microsatellite markers have remained one of the most powerful tools for a myriad of population genetic approaches. Here, we used the 454 sequencing technique to develop microsatellite loci in the fire coral Millepora platyphylla, an important reef-builder of Indo-Pacific reefs. We tested the cross-species amplification of these loci in five other species of the genus Millepora and analysed its success in correlation with the genetic distances between species using mitochondrial 16S sequences. We succeeded in discovering fifteen microsatellite loci in our target species M. platyphylla, among which twelve were polymorphic with 2–13 alleles and a mean observed heterozygosity of 0.411. Cross-species amplification in the five other Millepora species revealed a high probability of amplification success (71%) and polymorphism (59%) of the loci. Our results show no evidence of decreased heterozygosity with increasing genetic distance. However, only one locus enabled measures of genetic diversity in the Caribbean species M. complanata due to high proportions of null alleles for most of the microsatellites. This result indicates that our novel markers may only be useful for the Indo-Pacific species of Millepora. Measures of genetic diversity revealed significant linkage disequilibrium, moderate levels of observed heterozygosity (0.323–0.496) and heterozygote deficiencies for the Indo-Pacific species. The accessibility to new polymorphic microsatellite markers for hydrozoan Millepora species creates new opportunities for future research on processes driving the complexity of their colonisation success on many Indo-Pacific reefs. PMID:28243525

  18. High reproductive synchrony of Acropora (Anthozoa: Scleractinia) in the Gulf of Aqaba, Red Sea.

    Science.gov (United States)

    Bouwmeester, Jessica; Berumen, Michael L

    2015-01-01

    Coral spawning in the northern Gulf of Aqaba has been reported to be asynchronous, making it almost unique when compared to other regions in the world. Here, we document the reproductive condition of Acropora corals in early June 2014 in Dahab, in the Gulf of Aqaba, 125 km south of previous studies conducted in Eilat, Israel. Seventy-eight percent of Acropora colonies from 14 species had mature eggs, indicating that most colonies will spawn on or around the June full moon, with a very high probability of multi-species synchronous spawning. Given the proximity to Eilat, we predict that a comparable sampling protocol would detect similar levels of reproductive synchrony throughout the Gulf of Aqaba consistent with the hypothesis that high levels of spawning synchrony are a feature of all speciose coral assemblages.

  19. High reproductive synchrony of Acropora (Anthozoa: Scleractinia) in the Gulf of Aqaba, Red Sea

    KAUST Repository

    Bouwmeester, Jessica

    2015-01-05

    Coral spawning in the northern Gulf of Aqaba has been reported to be asynchronous, making it almost unique when compared to other regions in the world. Here, we document the reproductive condition of Acropora corals in early June 2014 in Dahab, in the Gulf of Aqaba, 125 km south of previous studies conducted in Eilat, Israel. Seventy-eight percent of Acropora colonies from 14 species had mature eggs, indicating that most colonies will spawn on or around the June full moon, with a very high probability of multi-species synchronous spawning. Given the proximity to Eilat, we predict that a comparable sampling protocol would detect similar levels of reproductive synchrony throughout the Gulf of Aqaba consistent with the hypothesis that high levels of spawning synchrony are a feature of all speciose coral assemblages.

  20. Genetic diversity of the Acropora-associated hydrozoans: new insight from the Red Sea

    KAUST Repository

    Maggioni, Davide

    2017-01-21

    To date, four nominal species and several other unidentified species of Zanclea hydrozoans are known to live symbiotically with scleractinians, and recent surveys reported this association also in the Red Sea. Previous molecular studies showed that each coral genus involved in this association hosts only one species or molecular clade of Zanclea, with the only exception being the genus Acropora, which hosts at least two Zanclea species. Moreover, some of the detected genetic lineages were morphologically undistinguishable in the polyp stage, suggesting the presence of cryptic species. In this study, we investigated the morphology and genetic diversity of Acropora-associated Zanclea specimens collected in previous studies in Egypt and Israel, as well as new samples collected in Saudi Arabia. Based on the current data, all the analysed samples were morphologically identical to Zanclea gallii, a species associated with Acropora corals from the Maldives. However, molecular analyses separated the samples collected in the Red Sea from all other coral-associated hydroids. Therefore, phylogenetic reconstructions, haplotype networks, genetic distance analyses and distribution data allowed us to identify a previously unknown cryptic species of Acropora-associated hydroid, here named Zanclea gallii IIa, following a recently proposed molecular nomenclature.

  1. Calibration and Assessment of the New Acropora 'Inter-Branch Skeleton' Palaeothermometer.

    Science.gov (United States)

    Sadler, J.; Webb, G. E.; Zhao, J. X.; Nothdurft, L. D.

    2014-12-01

    Coral reefs provide an increasingly important archive of palaeoclimate data that can be used to constrain climate model simulations. Reconstructing past environments may also provide insights into the potential of reef systems to survive changes in the Earth's climate. Geochemically based climate reconstructions are predominately acquired from massive Porites colonies, yet there remain significant spatial and temporal gaps in our understanding of climate evolution where no suitable coralla have been recovered. Branching corals are commonly the dominant species in modern reef facies and their abundance suggests an untapped source for this missing information. The potential of 'inter-branch skeleton' in corymbose Acropora to act as a new palaeoclimate archive is significant. Scanning Electron Microscopy of inter-branch skeleton in Acropora from Heron Reef, southern Great Barrier Reef, reveals a lack of secondary thickening deposits that typically characterize Acropora branches and renders them unsuitable for geochemical archives. Annual density banding, similar to that used for chronological determination of geochemical sampling in massive corals, is also observed within Acropora inter-branch skeleton. Clear seasonal signals in Sr/Ca within the skeletal structure will be correlated against the network of in situ temperature recorders in Heron lagoon and on the southern reef slope to provide a new palaeotemperature transfer equation.

  2. Influence of Coral Bleaching on the Fauna of Tutia Reef, Tanzania

    OpenAIRE

    Öhman, M.C.; Lindahl, U.; Schelten, C.K.

    1999-01-01

    In 1998, coral reefs of Tanzania were severely affected by bleaching. The coral mortality that followed caused a concern for coral reef degradation and overall resource depletion. In this study, we investigated coral bleaching effects on the coral reef fauna at Tutia Reef in Mafia Island Marine Park, Tanzania. Corals from adjacent reef patches of the species Acropora formosa were transplanted into plots, and reef structure and associated fish assemblages were examined before and after the ble...

  3. Effects of cold stress and heat stress on coral fluorescence in reef-building corals.

    Science.gov (United States)

    Roth, Melissa S; Deheyn, Dimitri D

    2013-01-01

    Widespread temperature stress has caused catastrophic coral bleaching events that have been devastating for coral reefs. Here, we evaluate whether coral fluorescence could be utilized as a noninvasive assessment for coral health. We conducted cold and heat stress treatments on the branching coral Acropora yongei, and found that green fluorescent protein (GFP) concentration and fluorescence decreased with declining coral health, prior to initiation of bleaching. Ultimately, cold-treated corals acclimated and GFP concentration and fluorescence recovered. In contrast, heat-treated corals eventually bleached but showed strong fluorescence despite reduced GFP concentration, likely resulting from the large reduction in shading from decreased dinoflagellate density. Consequently, GFP concentration and fluorescence showed distinct correlations in non-bleached and bleached corals. Green fluorescence was positively correlated with dinoflagellate photobiology, but its closest correlation was with coral growth suggesting that green fluorescence could be used as a physiological proxy for health in some corals.

  4. Decapod crustaceans inhabiting live and dead colonies of three species of Acropora in the Roques Archipelago, Venezuela

    NARCIS (Netherlands)

    Grajal, P. Alejandro; Laughlin, G. Roger

    1984-01-01

    A systematic account is given of the decapod crustaceans found in live and dead colonies of three species of the scleractinian coral Acropora (A. cervicornis, A. palmata, A. prolifera), collected during a 9 month period in a shallow reef flat in the southwestern portion of the Archipelago Los Roques

  5. Evidence for Autoinduction and Quorum Sensing in White Band Disease-Causing Microbes on Acropora cervicornis

    Science.gov (United States)

    Certner, Rebecca H.; Vollmer, Steven V.

    2015-06-01

    Coral reefs have entered a state of global decline party due to an increasing incidence of coral disease. However, the diversity and complexity of coral-associated bacterial communities has made identifying the mechanisms underlying disease transmission and progression extremely difficult. This study explores the effects of coral cell-free culture fluid (CFCF) and autoinducer (a quorum sensing signaling molecule) on coral-associated bacterial growth and on coral tissue loss respectively. All experiments were conducted using the endangered Caribbean coral Acropora cervicornis. Coral-associated microbes were grown on selective media infused with CFCF derived from healthy and white band disease-infected A. cervicornis. Exposure to diseased CFCF increased proliferation of Cytophaga-Flavobacterium spp. while exposure to healthy CFCF inhibited growth of this group. Exposure to either CFCF did not significantly affect Vibrio spp. growth. In order to test whether disease symptoms can be induced in healthy corals, A. cervicornis was exposed to bacterial assemblages supplemented with exogenous, purified autoinducer. Incubation with autoinducer resulted in complete tissue loss in all corals tested in less than one week. These findings indicate that white band disease in A. cervicornis may be caused by opportunistic pathogenesis of resident microbes.

  6. Are coral reefs victims of their own past success?

    Science.gov (United States)

    Renema, Willem; Pandolfi, John M; Kiessling, Wolfgang; Bosellini, Francesca R; Klaus, James S; Korpanty, Chelsea; Rosen, Brian R; Santodomingo, Nadiezhda; Wallace, Carden C; Webster, Jody M; Johnson, Kenneth G

    2016-04-01

    As one of the most prolific and widespread reef builders, the staghorn coral Acropora holds a disproportionately large role in how coral reefs will respond to accelerating anthropogenic change. We show that although Acropora has a diverse history extended over the past 50 million years, it was not a dominant reef builder until the onset of high-amplitude glacioeustatic sea-level fluctuations 1.8 million years ago. High growth rates and propagation by fragmentation have favored staghorn corals since this time. In contrast, staghorn corals are among the most vulnerable corals to anthropogenic stressors, with marked global loss of abundance worldwide. The continued decline in staghorn coral abundance and the mounting challenges from both local stress and climate change will limit the coral reefs' ability to provide ecosystem services.

  7. Potential Habitat of Acropora spp. on Reefs of Florida, Puerto Rico, and the US Virgin Islands

    Directory of Open Access Journals (Sweden)

    Katherine E. Wirt

    2015-01-01

    Full Text Available Elkhorn and staghorn corals (Acropora palmata, Acropora cervicornis were listed in 2006 as threatened under the Endangered Species Act. The goal of this study was to create model potential-habitat maps for A. palmata and A. cervicornis, while identifying areas for possible re-establishment. These maps were created using a database of reported field observations in combination with existing benthic habitat maps. The mapped coral reef and hardbottom classifications throughout Florida, Puerto Rico, and the US Virgin Island reef tracts were used to generate potential-habitat polygons using buffers that incorporated 95% and 99% of reported observations of Acropora spp. Locations of 92% of A. palmata observations and 84% of A. cervicornis observations coincided with mapped coral reef or hard-bottom habitat throughout the study area. These results indicate that potential habitat for A. palmata is currently well defined throughout this region, but that potential habitat for A. cervicornis is more variable and has a wider range than that for A. palmata. This study provides a novel method of combining data sets at various geographic spatial scales and may be used to inform and refine the current National Oceanic and Atmospheric Administration critical habitat map.

  8. Microbial composition of biofilms associated with lithifying rubble of Acropora palmata branches.

    Science.gov (United States)

    Beltrán, Yislem; Cerqueda-García, Daniel; Taş, Neslihan; Thomé, Patricia E; Iglesias-Prieto, Roberto; Falcón, Luisa I

    2016-01-01

    Coral reefs are among the most productive ecosystems on the planet, but are rapidly declining due to global-warming-mediated changes in the oceans. Particularly for the Caribbean region, Acropora sp. stony corals have lost ∼80% of their original coverage, resulting in vast extensions of dead coral rubble. We analyzed the microbial composition of biofilms that colonize and lithify dead Acropora palmata rubble in the Mexican Caribbean and identified the microbial assemblages that can persist under scenarios of global change, including high temperature and low pH. Lithifying biofilms have a mineral composition that includes aragonite and magnesium calcite (16 mole% MgCO(3)) and calcite, while the mineral phase corresponding to coral skeleton is basically aragonite. Microbial composition of the lithifying biofilms are different in comparison to surrounding biotopes, including a microbial mat, water column, sediments and live A. palmata microbiome. Significant shifts in biofilm composition were detected in samples incubated in mesocosms. The combined effect of low pH and increased temperature showed a strong effect after two-week incubations for biofilm composition. Findings suggest that lithifying biofilms could remain as a secondary structure on reef rubble possibly impacting the functional role of coral reefs.

  9. High CO2 enhances the competitive strength of seaweeds over corals

    Science.gov (United States)

    Diaz-Pulido, Guillermo; Gouezo, Marine; Tilbrook, Bronte; Dove, Sophie; Anthony, Kenneth R N

    2011-01-01

    Space competition between corals and seaweeds is an important ecological process underlying coral-reef dynamics. Processes promoting seaweed growth and survival, such as herbivore overfishing and eutrophication, can lead to local reef degradation. Here, we present the case that increasing concentrations of atmospheric CO2 may be an additional process driving a shift from corals to seaweeds on reefs. Coral (Acropora intermedia) mortality in contact with a common coral-reef seaweed (Lobophora papenfussii) increased two- to threefold between background CO2 (400 ppm) and highest level projected for late 21st century (1140 ppm). The strong interaction between CO2 and seaweeds on coral mortality was most likely attributable to a chemical competitive mechanism, as control corals with algal mimics showed no mortality. Our results suggest that coral (Acropora) reefs may become increasingly susceptible to seaweed proliferation under ocean acidification, and processes regulating algal abundance (e.g. herbivory) will play an increasingly important role in maintaining coral abundance. PMID:21155961

  10. Differential larval settlement responses of Porites astreoides and Acropora palmata in the presence of the green alga Halimeda opuntia

    Science.gov (United States)

    Olsen, K.; Sneed, J. M.; Paul, V. J.

    2016-06-01

    Settlement is critical to maintaining coral cover on reefs, yet interspecific responses of coral planulae to common benthic macroalgae are not well characterized. Larval survival and settlement of two Caribbean reef-building corals, the broadcast-spawner Acropora palmata and the planulae-brooder Porites astreoides, were quantified following exposure to plastic algae controls and the green macroalga Halimeda opuntia. Survival and settlement rates were not significantly affected by the presence of H. opuntia in either species. However, ~10 % of P. astreoides larvae settled on the surface of the macroalga, whereas larvae of A. palmata did not. It is unlikely that corals that settle on macroalgae will survive post-settlement; therefore, H. opuntia may reduce the number of P. astreoides and other non-discriminatory larvae that survive to adulthood. Our results suggest that the presence of macroalgae on impacted reefs can have unexpected repercussions for coral recruitment and highlight discrepancies in settlement specificity between corals with distinct life history strategies.

  11. Settlement induction of Acropora palmata planulae by a GLW-amide neuropeptide

    Science.gov (United States)

    Erwin, P. M.; Szmant, A. M.

    2010-12-01

    Complex environmental cues dictate the settlement of coral planulae in situ; however, simple artificial cues may be all that is required to induce settlement of ex situ larval cultures for reef re-seeding and restoration projects. Neuropeptides that transmit settlement signals and initiate the metamorphic cascade have been isolated from hydrozoan taxa and shown to induce metamorphosis of reef-building Acropora spp. in the Indo-Pacific, providing a reliable and efficient settlement cue. Here, the metamorphic activity of six GLW-amide cnidarian neuropeptides was tested on larvae of the Caribbean corals Acropora palmata, Montastraea faveolata and Favia fragum. A. palmata planulae were induced to settle by the exogenous application of the neuropeptide Hym-248 (concentrations ≥1 × 10-6 M), achieving 40-80% attachment and 100% metamorphosis of competent planulae (≥6 days post-fertilization) during two spawning seasons; the remaining neuropeptides exhibited no activity. Hym-248 exposure rapidly altered larval swimming behavior (96% metamorphosis after 6 h. In contrast , M. faveolata and F. fragum planulae did not respond to any GLW-amides tested, suggesting a high specificity of neuropeptide activators on lower taxonomic scales in corals. Subsequent experiments for A. palmata revealed that (1) the presence of a biofilm did not enhance attachment efficiency when coupled with Hym-248 treatment, (2) neuropeptide-induced settlement had no negative effects on early life-history developmental processes: zooxanthellae acquisition and skeletal secretion occurred within 12 days, colonial growth occurred within 36 days, and (3) Hym-248 solutions maintained metamorphic activity following storage at room temperature (10 days), indicating its utility in remote field settings. These results corroborate previous studies on Indo-Pacific Acropora spp. and extend the known metamorphic activity of Hym-248 to Caribbean acroporids. Hym-248 allows for directed and reliable settlement of

  12. Physiological responses of Acropora cervicornis to increased solar irradiance.

    Science.gov (United States)

    Torres, Juan L; Armstrong, Roy A; Corredor, Jorge E; Gilbes, Fernando

    2007-01-01

    The effects of increased UV radiation (UV-B [280-320 nm] + UV-A [320-400 nm]; hereafter UVR) on the growth, production of photosynthetic pigments and photoprotective mycosporine-like amino acids (MAAs) were studied in the threatened Caribbean coral Acropora cervicornis transplanted from 20 to 1 m depth in La Parguera, Puerto Rico. The UVR exposure by the transplanted colonies was significantly higher than that at 20 m, while photosynthetically active radiation (PAR) only increased by 9%. Photosynthetic pigments, quantified with HPLC, as well as linear extension rates and skeletal densities, were significantly reduced 1 month after transplantation to 1 m depth, while MAAs increased significantly despite immediate paling experienced by transplanted colonies. While these colonies showed a significant reduction in photosynthetic pigments, there were no significant reductions in zooxanthellae densities suggesting photoacclimation of the coral's symbionts to the new radiation conditions. The results suggest that while corals might be able to survive sudden increases in UVR and PAR, their skeletal structure can be greatly debilitated due to a reduction in the photosynthetic capacity of their symbionts and a possible relocation of resources.

  13. Gene expression profiles of cytosolic heat shock proteins Hsp70 and Hsp90 from symbiotic dinoflagellates in response to thermal stress: possible implications for coral bleaching.

    Science.gov (United States)

    Rosic, Nedeljka N; Pernice, Mathieu; Dove, Sophie; Dunn, Simon; Hoegh-Guldberg, Ove

    2011-01-01

    Unicellular photosynthetic dinoflagellates of the genus Symbiodinium are the most common endosymbionts of reef-building scleractinian corals, living in a symbiotic partnership known to be highly susceptible to environmental changes such as hyperthermic stress. In this study, we identified members of two major heat shock proteins (HSPs) families, Hsp70 and Hsp90, in Symbiodinium sp. (clade C) with full-length sequences that showed the highest similarity and evolutionary relationship with other known HSPs from dinoflagellate protists. Regulation of HSPs gene expression was examined in samples of the scleractinian coral Acropora millepora subjected to elevated temperatures progressively over 18 h (fast) and 120 h (gradual thermal stress). Moderate to severe heat stress at 26°C and 29°C (+3°C and +6°C above average sea temperature) resulted in an increase in algal Hsp70 gene expression from 39% to 57%, while extreme heat stress (+9°C) reduced Hsp70 transcript abundance by 60% (after 18 h) and 70% (after 120 h). Elevated temperatures decreased an Hsp90 expression under both rapid and gradual heat stress scenarios. Comparable Hsp70 and Hsp90 gene expression patterns were observed in Symbiodinium cultures and in hospite, indicating their independent regulation from the host. Differential gene expression profiles observed for Hsp70 and Hsp90 suggests diverse roles of these molecular chaperones during heat stress response. Reduced expression of the Hsp90 gene under heat stress can indicate a reduced role in inhibiting the heat shock transcription factor which may lead to activation of heat-inducible genes and heat acclimation.

  14. Recent disturbances augment community shifts in coral assemblages in Moorea, French Polynesia

    KAUST Repository

    Pratchett, Morgan S.

    2010-09-19

    Coral reefs are often subject to disturbances that can cause enduring changes in community structure and abundance of coral reef organisms. In Moorea, French Polynesia, frequent disturbances between 1979 and 2003 caused marked shifts in taxonomic composition of coral assemblages. This study explores recent changes in live cover and taxonomic structure of coral communities on the north coast of Moorea, French Polynesia, to assess whether coral assemblages are recovering (returning to a previous Acropora-dominated state) or continuing to move towards an alternative community structure. Coral cover declined by 29.7% between July 2003 and March 2009, mostly due to loss of Acropora and Montipora spp. Coral mortality varied among habitats, with highest levels of coral loss on the outer reef slope (7-20 m depth). In contrast, there was limited change in coral cover within the lagoon, and coral cover actually increased on the reef crest. Observed changes in coral cover and composition correspond closely with the known feeding preferences and observed spatial patterns of Acanthaster planci L., though observed coral loss also coincided with at least one episode of coral bleaching, as well as persistent populations of the corallivorous starfish Culcita novaeguineae Muller & Troschel. While climate change poses an important and significant threat to the future structure and dynamics coral reef communities, outbreaks of A. planci remain a significant cause of coral loss in Moorea. More importantly, these recent disturbances have followed long-term shifts in the structure of coral assemblages, and the relative abundance of both Pocillopora and Porites continue to increase due to disproportionate losses of Acropora and Montipora. Moreover, Pocillopora and Porites dominate assemblages of juvenile corals, suggesting that there is limited potential for a return to an Acropora-dominated state, last recorded in 1979. © 2010 Springer-Verlag.

  15. Recent disturbances augment community shifts in coral assemblages in Moorea, French Polynesia

    Science.gov (United States)

    Pratchett, M. S.; Trapon, M.; Berumen, M. L.; Chong-Seng, K.

    2011-03-01

    Coral reefs are often subject to disturbances that can cause enduring changes in community structure and abundance of coral reef organisms. In Moorea, French Polynesia, frequent disturbances between 1979 and 2003 caused marked shifts in taxonomic composition of coral assemblages. This study explores recent changes in live cover and taxonomic structure of coral communities on the north coast of Moorea, French Polynesia, to assess whether coral assemblages are recovering (returning to a previous Acropora-dominated state) or continuing to move towards an alternative community structure. Coral cover declined by 29.7% between July 2003 and March 2009, mostly due to loss of Acropora and Montipora spp. Coral mortality varied among habitats, with highest levels of coral loss on the outer reef slope (7-20 m depth). In contrast, there was limited change in coral cover within the lagoon, and coral cover actually increased on the reef crest. Observed changes in coral cover and composition correspond closely with the known feeding preferences and observed spatial patterns of Acanthaster planci L., though observed coral loss also coincided with at least one episode of coral bleaching, as well as persistent populations of the corallivorous starfish Culcita novaeguineae Muller & Troschel. While climate change poses an important and significant threat to the future structure and dynamics coral reef communities, outbreaks of A. planci remain a significant cause of coral loss in Moorea. More importantly, these recent disturbances have followed long-term shifts in the structure of coral assemblages, and the relative abundance of both Pocillopora and Porites continue to increase due to disproportionate losses of Acropora and Montipora. Moreover, Pocillopora and Porites dominate assemblages of juvenile corals, suggesting that there is limited potential for a return to an Acropora-dominated state, last recorded in 1979.

  16. Population structure of the hydrocoral Millepora platyphylla in habitats experiencing different flow regimes in Moorea, French Polynesia

    Science.gov (United States)

    Mercière, Alexandre; Vermeij, Mark J. A.; Planes, Serge

    2017-01-01

    While the fire coral Millepora platyphylla is an important component of Indo-Pacific reefs, where it thrives in a wide range of environments, the ecological and biological processes driving its distribution and population structure are not well understood. Here, we quantified this species’ population structure in five habitats with contrasting hydrodynamic regimes in Moorea, French Polynesia; two in the fore reef: mid and upper slopes, and three in the lagoon: back, fringing and patch reefs. A total of 3651 colonies of fire corals were mapped and measured over 45,000 m2 of surveyed reef. Due to the species’ sensitivity to fragmentation in response to strong water movement, hydrodynamic conditions (e.g. waves, pass and lagoonal circulation) corresponded to marked differences in colony size distributions, morphology and recruitment dynamics among habitats. The size structure varied among reef habitats with higher proportions of larger colonies in calm nearshore reefs (fringing and patch reefs), while populations were dominated by smaller colonies in the exposed fore reefs. The highest densities of fire corals were recorded in fore reef habitats (0.12–0.20 n.m-2) where the proportion of recruits and juveniles was higher at mid slope populations (49.3%) than on the upper slope near where waves break (29.0%). In the latter habitat, most colonies grew as vertical sheets on encrusting bases making them more vulnerable to colony fragmentation, whereas fire corals were encrusting or massive in all other habitats. The lowest densities of M. platyphylla occurred in lagoonal habitats (0.02–0.04 n.m-2) characterized by a combination of low water movement and other physical and biological stressors. This study reports the first evidence of population structure of fire corals in two common reef environments and illustrates the importance of water flow in driving population dynamic processes of these reef-building species. PMID:28273119

  17. Cross-amplification and characterization of microsatellite loci in Acropora austera from the south-western Indian Ocean.

    Science.gov (United States)

    Montoya-Maya, P H; Macdonald, A H H; Schleyer, M H

    2014-02-27

    Here, we report the successful cross-species amplification of previously published acroporid microsatellite markers in the coral Acropora austera from the south-western Indian Ocean. This fast-growing species is a major reef-building coral on South African reefs; however, it is the most damaged coral by scuba diving activity, and is known to be very susceptible to coral bleaching. Neither genetic information nor symbiont-free host tissue was available to develop novel microsatellite markers for this species. Cross-species amplification of previously published microsatellite markers was considered as an alternative to overcome these problems. Of the 21 microsatellite markers tested, 6 were reliably amplified, scored, and found to contain polymorphic loci (3-15 alleles). Although microsatellite sequences are believed to be scarce in the Acropora genome because of its small size, the results of this study and previous research indicate that the microsatellite sequences are well conserved across Acropora species. A detailed screening process identified and quantified the sources of error and bias in the application of these markers (e.g., allele scoring error, failure rates, frequency of null alleles), and may be accounted for in the study of the contemporary gene flow of A. austera in the south-western Indian Ocean.

  18. Reef-scale trends in Florida Acropora spp. abundance and the effects of population enhancement

    Directory of Open Access Journals (Sweden)

    Margaret W. Miller

    2016-09-01

    Full Text Available Since the listing of Acropora palmata and A. cervicornis under the US Endangered Species Act in 2006, increasing investments have been made in propagation of listed corals (primarily A. cervicornis, A. palmata to a much lesser extent in offshore coral nurseries and outplanting cultured fragments to reef habitats. This investment is superimposed over a spatiotemporal patchwork of ongoing disturbances (especially storms, thermal bleaching, and disease as well as the potential for natural population recovery. In 2014 and 2015, we repeated broad scale (>50 ha, low precision Acropora spp. censuses (i.e., direct observation by snorkelers documented via handheld GPS originally conducted in appropriate reef habitats during 2005–2007 to evaluate the trajectory of local populations and the effect of population enhancement. Over the decade-long study, A. palmata showed a cumulative proportional decline of 0.4 –0.7x in colony density across all sites, despite very low levels of outplanting at some sites. A. cervicornis showed similar proportional declines at sites without outplanting. In contrast, sites that received A. cervicornis outplants showed a dramatic increase in density (over 13x. Indeed, change in A. cervicornis colony density was significantly positively correlated with cumulative numbers of outplants across sites. This study documents a substantive reef-scale benefit of Acropora spp. population enhancement in the Florida Keys, when performed at adequate levels, against a backdrop of ongoing population decline.

  19. Reef-scale trends in Florida Acropora spp. abundance and the effects of population enhancement.

    Science.gov (United States)

    Miller, Margaret W; Kerr, Katryna; Williams, Dana E

    2016-01-01

    Since the listing of Acropora palmata and A. cervicornis under the US Endangered Species Act in 2006, increasing investments have been made in propagation of listed corals (primarily A. cervicornis, A. palmata to a much lesser extent) in offshore coral nurseries and outplanting cultured fragments to reef habitats. This investment is superimposed over a spatiotemporal patchwork of ongoing disturbances (especially storms, thermal bleaching, and disease) as well as the potential for natural population recovery. In 2014 and 2015, we repeated broad scale (>50 ha), low precision Acropora spp. censuses (i.e., direct observation by snorkelers documented via handheld GPS) originally conducted in appropriate reef habitats during 2005-2007 to evaluate the trajectory of local populations and the effect of population enhancement. Over the decade-long study, A. palmata showed a cumulative proportional decline of 0.4 -0.7x in colony density across all sites, despite very low levels of outplanting at some sites. A. cervicornis showed similar proportional declines at sites without outplanting. In contrast, sites that received A. cervicornis outplants showed a dramatic increase in density (over 13x). Indeed, change in A. cervicornis colony density was significantly positively correlated with cumulative numbers of outplants across sites. This study documents a substantive reef-scale benefit of Acropora spp. population enhancement in the Florida Keys, when performed at adequate levels, against a backdrop of ongoing population decline.

  20. First report of folliculinid ciliates affecting Caribbean scleractinian corals

    Science.gov (United States)

    Cróquer, A.; Bastidas, C.; Lipscomp, D.; Rodríguez-Martínez, R. E.; Jordan-Dahlgren, E.; Guzman, H. M.

    2006-05-01

    This is the first report of a ciliate of the genus Halofolliculina infecting hard coral species of six families (Acroporidae, Agaricidae, Astrocoeniidae, Faviidae, Meandrinidae and Poritidae) and milleporids in the Caribbean. Surveys conducted during 2004 2005 in Venezuela, Panama and México confirmed that this ciliate affects up to 25 scleractinian species. The prevalence of this ciliate at the coral community level was variable across sites, being most commonly found at Los Roques, Venezuela, and at Bocas del Toro, Panama (prevalence 0.2 2.5%), but rarely observed in the Mexican Caribbean. Ciliates were more prevalent within populations of acroporids ( Acropora palmata, Acropora cervicornis and Acropora prolifera) in Los Roques. Recent observations also corroborate the presence of these ciliates in Curacao and Puerto Rico. Our observations indicate that ciliates affecting corals have a wider distribution than previously thought, and are no longer exclusively found in the Indo-Pacific and Red Sea.

  1. The influence of fire-coral colony size and agonistic behaviour of territorial damselfish on associated coral reef fish communities.

    Science.gov (United States)

    Leal, Isabela Carolina Silva; de Araújo, Maria Elisabeth; da Cunha, Simone Rabelo; Pereira, Pedro Henrique Cipresso

    2015-07-01

    Branching hydrocorals from the genus Millepora play an important ecological role in South Atlantic reefs, where branching scleractinian corals are absent. Previous studies have shown a high proportion of reef fish species using branching fire-coral colonies as shelter, breeding, and feeding sites. However, the effects of Millepora spp. colony size and how the agonistic behaviour of a competitive damselfish affect the associated reef fish community are still unknown. The present study examined how fire-coral colony volume and the presence of a highly territorial and aggressive damselfish (Brazilian endemic Stegastes fuscus) affects the reef fish community associated with the fire-coral Millepora alcicornis. M. alcicornis colonies were surveyed from September 2012 to April 2013 at Tamandaré Reefs off Northeast Brazil. Our results show that the abundance and richness of coral associated fish was positively correlated with M. alcicornis coral colony volume. Additionally, behaviour of S. fuscus, the most abundant reef fish species found associated with fire-coral colonies (almost 57% of the fish community), was also influenced by fire-coral colony volume. There was a clear trend of increased agonistic behaviour and feeding on coral polyps as colony volume increased. This trend was reversed for the non-occupational swimming category, which decreased as M. alcicornis colony volume increased. Behavioural ontogenetic changes were also detected for S. fuscus individuals. Juveniles mainly showed two distinct behaviours: sheltered on coral branches and feeding on coral polyps. In contrast, adults presented greater equitability among the behavioural categories, mostly non-occupational swimming around coral colonies and agonistic behaviour. Lastly, S. fuscus individuals actively defended fire-coral colonies from intruders. A large number of agonistic interactions occurred against potential food competitors, which were mainly roving herbivores, omnivores, and sessile

  2. Hybridization and the evolution of reef coral diversity.

    Science.gov (United States)

    Vollmer, Steven V; Palumbi, Stephen R

    2002-06-14

    Hundreds of coral species coexist sympatrically on reefs, reproducing in mass-spawning events where hybridization appears common. In the Caribbean, DNA sequence data from all three sympatric Acropora corals show that mass spawning does not erode species barriers. Species A. cervicornis and A. palmata are distinct at two nuclear loci or share ancestral alleles. Morphotypes historically given the name Acropora prolifera are entirely F(1) hybrids of these two species, showing morphologies that depend on which species provides the egg for hybridization. Although selection limits the evolutionary potential of hybrids, F(1) individuals can reproduce asexually and form long-lived, potentially immortal hybrids with unique morphologies.

  3. Colony geometry and structural complexity of the endangered species Acropora cervicornis partly explains the structure of their associated fish assemblage

    OpenAIRE

    Esteban A. Agudo-Adriani; Jose Cappelletto; Francoise Cavada-Blanco; Aldo Croquer

    2016-01-01

    In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometr...

  4. Secondary structure of the rRNA ITS2 region reveals key evolutionary patterns in acroporid corals.

    Science.gov (United States)

    Coleman, Annette W; van Oppen, Madeleine J H

    2008-10-01

    This study investigates the ribosomal RNA transcript secondary structure in corals as confirmed by compensatory base changes in Isopora/Acropora species. These species are unique versus all other corals in the absence of a eukaryote-wide conserved structural component, the helix III in internal transcriber spacer (ITS) 2, and their variability in the 5.8S-LSU helix basal to ITS2, a helix with pairings identical among all other scleractinian corals. Furthermore, Isopora/Acropora individuals display at least two, and as many as three, ITS sequence isotypes in their genome which appear to be capable of function. From consideration of the conserved elements in ITS2 and flanking regions, it appears that there are three major groups within the IsoporaAcropora lineage: the Isopora + Acropora "longi" group, the large group including Caribbean Acropora + the Acropora "carib" types plus the bulk of the Indo-Pacific Acropora species, and the remaining enigmatic "pseudo" group found in the Pacific. Interbreeding is possible among Caribbean A. palmata and A. cervicornis and among some species of Indo-Pacific Acropora. Recombinant ITS sequences are obvious among these latter, such that morphology (as represented by species name) does not correlate with common ITS sequence. The combination of characters revealed by RNA secondary structure analyses suggests a recent past/current history of interbreeding among the Indo-Pacific Acropora species and a shared ancestry of some of these with the Caribbean Acropora. The unusual absence of helix III of ITS2 of Isopora/Acropora species may have some causative role in the equally unusual instability in the 5.8S-LSU helix basal to ITS2 of this species complex.

  5. on the growth and photochemical efficiency of Acropora cervicornis

    Science.gov (United States)

    Enochs, I. C.; Manzello, D. P.; Carlton, R.; Schopmeyer, S.; van Hooidonk, R.; Lirman, D.

    2014-06-01

    The effects of light and elevated pCO2 on the growth and photochemical efficiency of the critically endangered staghorn coral, Acropora cervicornis, were examined experimentally. Corals were subjected to high and low treatments of CO2 and light in a fully crossed design and monitored using 3D scanning and buoyant weight methodologies. Calcification rates, linear extension, as well as colony surface area and volume of A. cervicornis were highly dependent on light intensity. At pCO2 levels projected to occur by the end of the century from ocean acidification (OA), A. cervicornis exhibited depressed calcification, but no change in linear extension. Photochemical efficiency ( F v / F m ) was higher at low light, but unaffected by CO2. Amelioration of OA-depressed calcification under high-light treatments was not observed, and we suggest that the high-light intensity necessary to reach saturation of photosynthesis and calcification in A. cervicornis may limit the effectiveness of this potentially protective mechanism in this species. High CO2 causes depressed skeletal density, but not linear extension, illustrating that the measurement of extension by itself is inadequate to detect CO2 impacts. The skeletal integrity of A. cervicornis will be impaired by OA, which may further reduce the resilience of the already diminished populations of this endangered species.

  6. Is Echinometra viridis facilitating a phase shift on an Acropora cervicornis patch reef in Belize?

    Science.gov (United States)

    Stefanic, C. M.; Greer, L.; Norvell, D.; Benson, W.; Curran, H.

    2012-12-01

    Coral reef health is in rapid decline across the Caribbean due to a number of anthropogenic and natural disturbances. A phase shift from coral- to macroalgae-dominant reefs is pervasive and has been well documented. Acropora cervicornis (Staghorn Coral) has been particularly affected by this shift due to mass mortality of this species since the 1980s. In recent years few Caribbean A. cervicornis refugia have been documented. This study characterizes the relationship between coral and grazing urchins on a rare patch reef system dominated by A. cervicornis off the coast of Belize. To assess relative abundance of live A. cervicornis and the urchin Echinometra viridis, photographs and urchin abundance data were collected from 132 meter square quadrats along five transects across the reef. Photographs were digitized and manually segmented using Adobe Illustrator, and percent live coral cover and branch tip densities were calculated using Matlab. Mean percent live coral cover across all transects was 24.4 % with a high of 65% live coral per meter square. Average urchin density was 18.5 per quadrat, with an average density per transect ranging from 22.1 to 0.5 per quadrat. Up to over 400 live A. cervicornis branch tips per quadrat were observed. Data show a positive correlation between E. viridis abundance and live A. cervicornis, suggesting that these urchins are facilitating recovery or persistence of this endangered coral species. These results suggest the relationship between E. viridis and A. cervicornis could be a key element in a future reversal of the coral to macroalgae phase shift on some Caribbean coral reefs.

  7. Coral diseases and bleaching on Colombian Caribbean coral reefs.

    Science.gov (United States)

    Navas-Camacho, Raúl; Gil-Agudelo, Diego Luis; Rodríguez-Ramírez, Alberto; Reyes-Nivia, María Catalina; Garzón-Ferreira, Jaime

    2010-05-01

    Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC) has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá). The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10 x 2m) with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters) are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2), and Urabá had high numbers with bleaching (54.4 colonies/m2). Of the seven reported coral diseases studied, Dark Spots Disease (DSD), and White Plague Disease (WPD) were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A. grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years) variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few long

  8. Acropora interbranch skeleton Sr/Ca ratios: Evaluation of a potential new high-resolution paleothermometer

    Science.gov (United States)

    Sadler, James; Nguyen, Ai D.; Leonard, Nicole D.; Webb, Gregory E.; Nothdurft, Luke D.

    2016-04-01

    The majority of coral geochemistry-based paleoclimate reconstructions in the Indo-Pacific are conducted on selectively cored colonies of massive Porites. This restriction to a single genus may make it difficult to amass the required paleoclimate data for studies that require deep reef coring techniques. Acropora, however, is a highly abundant coral genus in both modern and fossil reef systems and displays potential as a novel climate archive. Here we present a calibration study for Sr/Ca ratios recovered from interbranch skeleton in corymbose Acropora colonies from Heron Reef, southern Great Barrier Reef. Significant intercolony differences in absolute Sr/Ca ratios were normalized by producing anomaly plots of both coral geochemistry and instrumental water temperature records. Weighted linear regression of these anomalies from the lagoon and fore-reef slope provide a sensitivity of -0.05 mmol/mol °C-1, with a correlation coefficient (r2 = 0.65) comparable to those of genera currently used in paleoclimate reconstructions. Reconstructions of lagoon and reef slope mean seasonality in water temperature accurately identify the greater seasonal amplitude observed in the lagoon of Heron Reef. A longer calibration period is, however, required for reliable reconstructions of annual mean water temperatures.

  9. Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience.

    Science.gov (United States)

    Bonaldo, Roberta M; Hay, Mark E

    2014-01-01

    Tropical reefs are in global decline with seaweeds commonly replacing corals. Negative associations between macroalgae and corals are well documented, but the mechanisms involved, the dynamics of the interactions, and variance in effects of different macroalgal-coral pairings are poorly investigated. We assessed the frequency, magnitude, and dynamics of macroalgal-coral competition involving allelopathic and non-allelopathic macroalgae on three, spatially grouped pairs of no-take Marine Protected Areas (MPAs) and non-MPAs in Fiji. In non-MPAs, biomass of herbivorous fishes was 70-80% lower, macroalgal cover 4-9 fold higher, macroalgal-coral contacts 5-15 fold more frequent and 23-67 fold more extensive (measured as % of colony margin contacted by macroalgae), and coral cover 51-68% lower than in MPAs. Coral contacts with allelopathic macroalgae occurred less frequently than expected by chance across all sites, while contact with non-allelopathic macroalgae tended to occur more frequently than expected. Transplants of allelopathic macroalgae (Chlorodesmis fastigiata and Galaxaura filamentosa) against coral edges inflicted damage to Acropora aspera and Pocillopora damicornis more rapidly and extensively than to Porites cylindrica and Porites lobata, which appeared more resistant to these macroalgae. Montipora digitata experienced intermediate damage. Extent of damage from macroalgal contact was independent of coral colony size for each of the 10 macroalgal-coral pairings we established. When natural contacts with Galaxaura filamentosa were removed in the field, recovery was rapid for Porites lobata, but Pocillopora damicornis did not recover and damage continued to expand. As macroalgae increase on overfished tropical reefs, allelopathy could produce feedbacks that suppress coral resilience, prevent coral recovery, and promote the stability of algal beds in habitats previously available to corals.

  10. Seaweed-coral interactions: variance in seaweed allelopathy, coral susceptibility, and potential effects on coral resilience.

    Directory of Open Access Journals (Sweden)

    Roberta M Bonaldo

    Full Text Available Tropical reefs are in global decline with seaweeds commonly replacing corals. Negative associations between macroalgae and corals are well documented, but the mechanisms involved, the dynamics of the interactions, and variance in effects of different macroalgal-coral pairings are poorly investigated. We assessed the frequency, magnitude, and dynamics of macroalgal-coral competition involving allelopathic and non-allelopathic macroalgae on three, spatially grouped pairs of no-take Marine Protected Areas (MPAs and non-MPAs in Fiji. In non-MPAs, biomass of herbivorous fishes was 70-80% lower, macroalgal cover 4-9 fold higher, macroalgal-coral contacts 5-15 fold more frequent and 23-67 fold more extensive (measured as % of colony margin contacted by macroalgae, and coral cover 51-68% lower than in MPAs. Coral contacts with allelopathic macroalgae occurred less frequently than expected by chance across all sites, while contact with non-allelopathic macroalgae tended to occur more frequently than expected. Transplants of allelopathic macroalgae (Chlorodesmis fastigiata and Galaxaura filamentosa against coral edges inflicted damage to Acropora aspera and Pocillopora damicornis more rapidly and extensively than to Porites cylindrica and Porites lobata, which appeared more resistant to these macroalgae. Montipora digitata experienced intermediate damage. Extent of damage from macroalgal contact was independent of coral colony size for each of the 10 macroalgal-coral pairings we established. When natural contacts with Galaxaura filamentosa were removed in the field, recovery was rapid for Porites lobata, but Pocillopora damicornis did not recover and damage continued to expand. As macroalgae increase on overfished tropical reefs, allelopathy could produce feedbacks that suppress coral resilience, prevent coral recovery, and promote the stability of algal beds in habitats previously available to corals.

  11. Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea, French Polynesia.

    Directory of Open Access Journals (Sweden)

    Morgan S Pratchett

    Full Text Available BACKGROUND: Climate-induced coral bleaching poses a major threat to coral reef ecosystems, mostly because of the sensitivities of key habitat-forming corals to increasing temperature. However, susceptibility to bleaching varies greatly among coral genera and there are likely to be major changes in the relative abundance of different corals, even if the wholesale loss of corals does not occur for several decades. Here we document variation in bleaching susceptibility among key genera of reef-building corals in Moorea, French Polynesia, and compare bleaching incidence during mass-bleaching events documented in 1991, 1994, 2002 and 2007. METHODOLOGY/PRINCIPAL FINDINGS: This study compared the proportion of colonies that bleached for four major genera of reef-building corals (Acropora, Montipora, Pocillopora and Porites, during each of four well-documented bleaching events from 1991 to 2007. Acropora and Montipora consistently bleached in far greater proportions (up to 98% than Pocillopora and Porites. However, there was an apparent and sustained decline in the proportion of colonies that bleached during successive bleaching events, especially for Acropora and Montipora. In 2007, only 77% of Acropora colonies bleached compared with 98% in 1991. Temporal variation in the proportion of coral colonies bleached may be attributable to differences in environmental conditions among years. Alternately, the sustained declines in bleaching incidence among highly susceptible corals may be indicative of acclimation or adaptation. CONCLUSIONS/SIGNIFICANCE: Coral genera that are highly susceptible to coral bleaching, and especially Acropora and Montipora, exhibit temporal declines in their susceptibility to thermal anomalies at Moorea, French Polynesia. One possible explanation for these findings is that gradual removal of highly susceptible genotypes (through selective mortality of individuals, populations, and/or species is producing a coral assemblage that is

  12. Changes in bleaching susceptibility among corals subject to ocean warming and recurrent bleaching in Moorea, French Polynesia.

    Science.gov (United States)

    Pratchett, Morgan S; McCowan, Dominique; Maynard, Jeffrey A; Heron, Scott F

    2013-01-01

    Climate-induced coral bleaching poses a major threat to coral reef ecosystems, mostly because of the sensitivities of key habitat-forming corals to increasing temperature. However, susceptibility to bleaching varies greatly among coral genera and there are likely to be major changes in the relative abundance of different corals, even if the wholesale loss of corals does not occur for several decades. Here we document variation in bleaching susceptibility among key genera of reef-building corals in Moorea, French Polynesia, and compare bleaching incidence during mass-bleaching events documented in 1991, 1994, 2002 and 2007. This study compared the proportion of colonies that bleached for four major genera of reef-building corals (Acropora, Montipora, Pocillopora and Porites), during each of four well-documented bleaching events from 1991 to 2007. Acropora and Montipora consistently bleached in far greater proportions (up to 98%) than Pocillopora and Porites. However, there was an apparent and sustained decline in the proportion of colonies that bleached during successive bleaching events, especially for Acropora and Montipora. In 2007, only 77% of Acropora colonies bleached compared with 98% in 1991. Temporal variation in the proportion of coral colonies bleached may be attributable to differences in environmental conditions among years. Alternately, the sustained declines in bleaching incidence among highly susceptible corals may be indicative of acclimation or adaptation. Coral genera that are highly susceptible to coral bleaching, and especially Acropora and Montipora, exhibit temporal declines in their susceptibility to thermal anomalies at Moorea, French Polynesia. One possible explanation for these findings is that gradual removal of highly susceptible genotypes (through selective mortality of individuals, populations, and/or species) is producing a coral assemblage that is more resistant to sustained and ongoing ocean warming.

  13. High reproductive synchrony of Acropora (Anthozoa: Scleractinia in the Gulf of Aqaba, Red Sea [v1; ref status: indexed, http://f1000r.es/4yh

    Directory of Open Access Journals (Sweden)

    Jessica Bouwmeester

    2015-01-01

    Full Text Available Coral spawning in the northern Gulf of Aqaba has been reported to be asynchronous, making it almost unique when compared to other regions in the world. Here, we document the reproductive condition of Acropora corals in early June 2014 in Dahab, in the Gulf of Aqaba, 125 km south of previous studies conducted in Eilat, Israel. Seventy-eight percent of Acropora colonies from 14 species had mature eggs, indicating that most colonies will spawn on or around the June full moon, with a very high probability of multi-species synchronous spawning. Given the proximity to Eilat, we predict that a comparable sampling protocol would detect similar levels of reproductive synchrony throughout the Gulf of Aqaba consistent with the hypothesis that high levels of spawning synchrony are a feature of all speciose coral assemblages.

  14. Colony geometry and structural complexity of the endangered species Acropora cervicornis partly explains the structure of their associated fish assemblage

    Directory of Open Access Journals (Sweden)

    Esteban A. Agudo-Adriani

    2016-04-01

    Full Text Available In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height, structural complexity (i.e., volume, density of branches, etc. and biological features of the colonies (i.e., live coral tissue, algae. We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts.

  15. Colony geometry and structural complexity of the endangered species Acropora cervicornis partly explains the structure of their associated fish assemblage.

    Science.gov (United States)

    Agudo-Adriani, Esteban A; Cappelletto, Jose; Cavada-Blanco, Francoise; Croquer, Aldo

    2016-01-01

    In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts.

  16. Ocean circulation drives heterogeneous recruitments and connectivity among coral populations on the North West Shelf of Australia

    Science.gov (United States)

    Feng, Ming; Colberg, Frank; Slawinski, Dirk; Berry, Oliver; Babcock, Russ

    2016-12-01

    The North West Shelf (NWS) of Australia features extensive and globally significant fringing coral reef ecosystems with high levels of endemism and consequently has received significant conservation efforts in the form of Marine Parks. The shelf circulation on the NWS is dominated by the southwestward-flowing Holloway Current during austral autumn-winter and by the northeastward monsoonal currents during austral summer. Intraseasonal Oscillation and short-term wind variability also influence advection processes on the NWS. These circulation processes are likely to determine demographic inter-dependencies among reef systems in the region, but the extent and spatial variability of the inter-dependence are not well understood. In this study, we used a 3-dimensional, hydrostatic, primitive equations model, to simulate the shelf circulation on the NWS at 1 km horizontal resolution during 2004-2009. We then used a particle tracking model based on the shelf circulation model to simulate larval dispersal in a representative coral species, Acropora millepora, among the 3430 coral reefs on the NWS during its autumn mass spawning. Model results predicted that settling larvae typically reach suitable reef within 10 days of spawning, with a predominantly southwestward tendency of transport. There was significant spatial heterogeneity in larval settlements and the Dampier Archipelago areas seemed to be more isolated from the rest of the NWS. Year-to-year variations of larval dispersals were sensitive to the seasonal and intraseasonal variations of alongshore winds: mass spawning in late March would expose the Dampier Archipelago area to the Holloway Current onset, resulting in it being an occasional source region of larval supply for the rest of the NWS to the southwest; intraseasonal northeastward wind pulses coinciding with the mass larval spawning would bring larvae from coastal regions to the Dampier Archipelago on rare occasions. By aggregating the reefs into 47 subregions

  17. Metagenomic and ecophysiological analysis of biofilms colonizing coral substrates: "Life after death of coral"

    Science.gov (United States)

    Sanchez, A., Sr.; Cerqueda-Garcia, D.; Falcón, L. I.; Iglesias-Prieto, R., Sr.

    2015-12-01

    Coral reefs are the most productive ecosystems on the planet and are the most important carbonated structures of biological origin. However, global warming is affecting the health and functionality of these ecosystems. Specifically, most of the Acropora sp. stony corals have declined their population all over the Mexican Caribbean in more than ~80% of their original coverage, resulting in vast extensions of dead coral rubble. When the coral dies, the skeleton begins to be colonized by algae, sponges, bacteria and others, forming a highly diverse biofilm. We analyzed the metagenomes of the dead A. palmata rubbles from Puerto Morelos, in the Mexican Caribbean. Also, we quantified the elemental composition of biomass and measured nitrogen fixation and emission of greenhouse gases over 24 hrs. This works provides information on how the community is composed and functions after the death of the coral, visualizing a possible picture for a world without coral reefs.

  18. Coral recovery in the central Maldives archipelago since the last major mass-bleaching, in 1998.

    Science.gov (United States)

    Pisapia, C; Burn, D; Yoosuf, R; Najeeb, A; Anderson, K D; Pratchett, M S

    2016-10-03

    Increasing frequency and severity of disturbances is causing global degradation of coral reef ecosystems. This study examined temporal changes in live coral cover and coral composition in the central Maldives from 1997 to 2016, encompassing two bleaching events, a tsunami, and an outbreak of Acanthaster planci. We also examined the contemporary size structure for five dominant coral taxa (tabular Acropora, Acropora muricata, Acropora humilis, Pocillopora spp, and massive Porites). Total coral cover increased throughout the study period, with marked increases following the 1998 mass-bleaching. The relative abundance of key genera has changed through time, where Acropora and Pocillopora (which are highly susceptible to bleaching) were under-represented following 1998 mass-bleaching but increased until outbreaks of A. planci in 2015. The contemporary size-structure for all coral taxa was dominated by larger colonies with peaked distributions suggesting that recent disturbances had a disproportionate impact on smaller colonies, or that recruitment is currently limited. This may suggest that coral resilience has been compromised by recent disturbances, and further bleaching (expected in 2016) could lead to highly protracted recovery times. We showed that Maldivian reefs recovered following the 1998 mass-bleaching event, but it took up to a decade, and ongoing disturbances may be eroding reef resilience.

  19. The reproductive season of scleractinian corals in Socotra, Yemen [v1; ref status: indexed, http://f1000r.es/36f

    Directory of Open Access Journals (Sweden)

    Andrew H. Baird

    2014-03-01

    Full Text Available Determining when corals reproduce has clear management and economic implications. Here we document the reproductive condition of corals in the genus Acropora on the island of Socotra in Yemen during February 2014. Twenty percent of colonies (n = 143 contained mature gametes and 28% had immature gametes indicating that spawning will occur in both February and March in 2014, confirming previous anecdotal reports of coral spawning at this time in Socotra. Acropora typically reproduce in synchrony with many other broadcast spawning scleractinian corals, and we therefore predict that many other species are reproductively active at this time of year.

  20. Mucus sugar content shapes the bacterial community structure in thermally stressed Acropora muricata

    Directory of Open Access Journals (Sweden)

    Sonny T.M. Lee

    2016-03-01

    Full Text Available It has been proposed that the chemical composition of a coral’s mucus can influence the associated bacterial community. However, information on this topic is rare, and non-existent for corals that are under thermal stress. This study therefore compared the carbohydrate composition of mucus in the coral Acropora muricata when subjected to increasing thermal stress from 26°C to 31°C, and determined whether this composition correlated with any changes in the bacterial community. Results showed that, at lower temperatures, the main components of mucus were N-acetyl glucosamine and C6 sugars, but these constituted a significantly lower proportion of the mucus in thermally-stressed corals. The change in the mucus composition coincided with a shift from a γ-Proteobacteria- to a Verrucomicrobiae- and α-Proteobacteria-dominated community in the coral mucus. Bacteria in the class Cyanobacteria also started to become prominent in the mucus when the coral was thermally stressed. The increase in the relative abundance of the Verrucomicrobiae at higher temperature was strongly associated with a change in the proportion of fucose, glucose and mannose in the mucus. Increase in the relative abundance of α-Proteobacteria were associated with GalNAc and glucose, while the drop in relative abundance of γ-Proteobacteria at high temperature coincided with changes in fucose and mannose. Cyanobacteria were highly associated with arabinose and xylose. Changes in mucus composition and the bacterial community in the mucus layer occurred at 29°C, which were prior to visual signs of coral bleaching at 31°C. A compositional change in the coral mucus, induced by thermal stress could therefore be a key factor leading to a shift in the associated bacterial community. This, in turn, has the potential to impact the physiological function of the coral holobiont.

  1. Larval settlement preferences of Acropora palmata and Montastraea faveolata in response to diverse red algae

    Science.gov (United States)

    Ritson-Williams, R.; Arnold, S. N.; Paul, V. J.; Steneck, R. S.

    2014-03-01

    Settlement specificity can regulate recruitment but remains poorly understood for coral larvae. We studied larvae of the corals, Acropora palmata and Montastraea faveolata, to determine their rates of settlement and metamorphosis in the presence of ten species of red algae, including eight species of crustose coralline algae, one geniculated coralline and one encrusting peyssonnelid. Twenty to forty percent of larvae of A. palmata settled on coralline surfaces of Hydrolithon boergesenii, Lithoporella atlantica, Neogoniolithon affine, and Titanoderma prototypum, whereas none settled and metamorphosed on Neogoniolithon mamillare. Larvae of M. faveolata had 13-25 % settlement onto the surface of Amphiroa tribulus, H. boergesenii, N. affine, N. munitum, and T. prototypum, but had no settlement on the surface of N. mamillare, Porolithon pachydermum, and a noncoralline crust Peyssonnelia sp. Some of these algal species were common on Belizean reefs, but the species that induced the highest rates of larval settlement and metamorphosis tended to be rare and primarily found in low-light environments. The shallow coral, A. palmata, and the deeper coral, M. faveolata, both had increased larval settlement rates in the presence of only a few species of red algae found at deeper depths suggesting that patterns of coral distribution can only sometimes be related to the distribution of red algae species.

  2. Morphology offers no clues to asexual vs. sexual origin of small Acropora cervicornis (Scleractinia: Acroporidae colonies

    Directory of Open Access Journals (Sweden)

    D. E Williams

    2006-12-01

    Full Text Available Sexual recruitment of the staghorn coral, Acropora cervicornis, is accepted to be very rare. Instead, these branching corals proliferate through fragmentation leading to dense mono-specific and possibly monoclonal stands. For acroporid corals, which have suffered drastic population declines, dominance of asexual reproduction results in low levels of genotypic diversity and limited ability to re-colonize extirpated areas. Small colonies with a single encrusting, symmetrical base, and few incipient branches are frequently presumed to be the result of a settled planula (i.e. sexual reproduction. Here, we show that colonies fitting this description (i.e., presumed sexual recruits can result from asexual fragmentation. Acropora cervicornis colonies (~20 cm diameter were tagged and observed over eighteen months. In several cases, colony offshoots fused with the adjacent substrate forming secondary disc-like attachment points. Following natural fragmentation, these discs of tissue became separated from the original colony, and were observed to heal and give rise to smaller colonies with striking similarity to the expected morphology of a sexual recruit. Thus, presuming a colony is a sexual recruit based on appearance is unreliable and may lead to inflated expectations of genetic diversity among populations. The accurate assessment of recruitment and genetic diversity is crucial to predicting the recovery potential of these imperiled and ecologically irreplaceable reef corals. Rev. Biol. Trop. 54 (Suppl. 3: 145-151. Epub 2007 Jan. 15.Se ha aceptado que el reclutamiento sexual del coral asta de venado, Acropora cervicornis, es muy raro. Por el contrario, estos corales ramificados proliferan a través de fragmentación, generando densas bases monoespecíficas e incluso monoclonales. Para corales acropóridos, los cuales han sufrido disminuciones de población drásticas, la dominancia de reproducción asexual resulta en bajos niveles de diversidad genot

  3. Coral communities of the remote atoll reefs in the Nansha Islands, southern South China Sea.

    Science.gov (United States)

    Zhao, M X; Yu, K F; Shi, Q; Chen, T R; Zhang, H L; Chen, T G

    2013-09-01

    During the months of May and June in the year 2007, a survey was conducted regarding coral reef communities in the remote atolls (Zhubi Reef and Meiji Reef) of Nansha Islands, southern South China Sea. The goals of the survey were to: (1) for the first time, compile a scleractinian coral check-list; (2) estimate the total richness, coral cover, and growth forms of the community; and (3) describe preliminary patterns of community structure according to geomorphological units. Findings of this survey revealed a total of 120 species of scleractinia belonging to 40 genera, while the average coral cover was 21 %, ranging from less than 10 % to higher than 50 %. Branching and massive corals were also found to be the most important growth forms of the whole coral community, while Acropora, Montipora, and Porites were the three dominant genera in the overall region, with their contributions to total coral cover measuring 21, 22, and 23 %, respectively. Overall, coral communities of the Nansha Islands were in a relative healthy condition with high species diversity and coral cover. Spatial pattern of coral communities existed among various geomorphological units. Mean coral cover was highest in the patch reef within the lagoon, followed by the fore reef slope, reef flat, and lagoon slope. The greatest contributors to total coral cover were branching Acropora (45 %) in the lagoon slope, branching Montipora (44 %) in the reef flat, and massive Porites (51 %) in the patch reef. Coral cover in the fore reef revealed a greater range of genera than in other habitats. The leeward fore reef slope had higher coral cover (> 50 %) when compared with the windward slope (coral communities of the inner reef flat were characterized by higher coral cover (27 %) and dominant branching Montipora corals, while lower coral cover (4 %) was dominated by Psammocora with massive growth forms on the outer reef flat. Destructive fishing and coral bleaching were two major threats to coral communities

  4. Genet-specific spawning patterns in Acropora palmata

    Science.gov (United States)

    Miller, M. W.; Williams, D. E.; Fisch, J.

    2016-12-01

    The broadcast spawning elkhorn coral, Acropora palmata, requires outcrossing among different genets for effective fertilization. Hence, a low density of genets in parts of its range emphasizes the need for precise synchrony among neighboring genets as sperm concentration dilutes rapidly in open-ocean conditions. We documented the genet-specific nightly occurrence of spawning of A. palmata over 8 yr in a depauperate population in the Florida Keys to better understand this potential reproductive hurdle. The observed population failed to spawn within the predicted monthly window (nights 2-6 after the full moon in August) in three of the 8 yr of observation; negligible spawning was observed in a fourth year. Moreover, genet-specific patterns are evident in that (1) certain genets have significantly greater odds of spawning overall and (2) certain genets predictably spawn on the earlier and others on the later lunar nights within the predicted window. Given the already low genet density in this population, this pattern implies a substantial degree of wasted reproductive effort and supports the hypothesis that depensatory factors are impairing recovery in this species.

  5. Identification of Candidate Coral Pathogens on White Band Disease-Infected Staghorn Coral.

    Science.gov (United States)

    Gignoux-Wolfsohn, Sarah A; Vollmer, Steven V

    2015-01-01

    Bacterial diseases affecting scleractinian corals pose an enormous threat to the health of coral reefs, yet we still have a limited understanding of the bacteria associated with coral diseases. White band disease is a bacterial disease that affects the two Caribbean acroporid corals, the staghorn coral Acropora cervicornis and the elkhorn coral A. palmate. Species of Vibrio and Rickettsia have both been identified as putative WBD pathogens. Here we used Illumina 16S rRNA gene sequencing to profile the bacterial communities associated with healthy and diseased A. cervicornis collected from four field sites during two different years. We also exposed corals in tanks to diseased and healthy (control) homogenates to reduce some of the natural variation of field-collected coral bacterial communities. Using a combination of multivariate analyses, we identified community-level changes between diseased and healthy corals in both the field-collected and tank-exposed datasets. We then identified changes in the abundances of individual operational taxonomic units (OTUs) between diseased and healthy corals. By comparing the diseased and healthy-associated bacteria in field-collected and tank-exposed corals, we were able to identify 16 healthy-associated OTUs and 106 consistently disease-associated OTUs, which are good candidates for putative WBD pathogens. A large percentage of these disease-associated OTUs belonged to the order Flavobacteriales. In addition, two of the putative pathogens identified here belong to orders previously suggested as WBD pathogens: Vibronales and Rickettsiales.

  6. Identification of Candidate Coral Pathogens on White Band Disease-Infected Staghorn Coral.

    Directory of Open Access Journals (Sweden)

    Sarah A Gignoux-Wolfsohn

    Full Text Available Bacterial diseases affecting scleractinian corals pose an enormous threat to the health of coral reefs, yet we still have a limited understanding of the bacteria associated with coral diseases. White band disease is a bacterial disease that affects the two Caribbean acroporid corals, the staghorn coral Acropora cervicornis and the elkhorn coral A. palmate. Species of Vibrio and Rickettsia have both been identified as putative WBD pathogens. Here we used Illumina 16S rRNA gene sequencing to profile the bacterial communities associated with healthy and diseased A. cervicornis collected from four field sites during two different years. We also exposed corals in tanks to diseased and healthy (control homogenates to reduce some of the natural variation of field-collected coral bacterial communities. Using a combination of multivariate analyses, we identified community-level changes between diseased and healthy corals in both the field-collected and tank-exposed datasets. We then identified changes in the abundances of individual operational taxonomic units (OTUs between diseased and healthy corals. By comparing the diseased and healthy-associated bacteria in field-collected and tank-exposed corals, we were able to identify 16 healthy-associated OTUs and 106 consistently disease-associated OTUs, which are good candidates for putative WBD pathogens. A large percentage of these disease-associated OTUs belonged to the order Flavobacteriales. In addition, two of the putative pathogens identified here belong to orders previously suggested as WBD pathogens: Vibronales and Rickettsiales.

  7. Effects of temperature and UVR on organic matter fluxes and the metabolic activity of Acropora muricata

    Directory of Open Access Journals (Sweden)

    Lucile Courtial

    2017-08-01

    Full Text Available Coral bleaching events are predicted to occur more frequently in the coming decades with global warming. The susceptibility of corals to bleaching during thermal stress episodes depends on many factors, including the magnitude of thermal stress and irradiance. The interactions among these two factors, and in particular with ultra-violet radiation (UVR, the most harmful component of light, are more complex than assumed, and are not yet well understood. This paper explores the individual and combined effects of temperature and UVR on the metabolism of Acropora muricata, one of the most abundant coral species worldwide. Particulate and dissolved organic matter (POM/DOM fluxes and organic matter (OM degradation by the mucus-associated bacteria were also monitored in all conditions. The results show that UVR exposure exacerbated the temperature-induced bleaching, but did not affect OM fluxes, which were only altered by seawater warming. Temperature increase induced a shift from POM release and DOM uptake in healthy corals to POM uptake and DOM release in stressed ones. POM uptake was linked to a significant grazing of pico- and nanoplankton particles during the incubation, to fulfil the energetic requirements of A. muricata in the absence of autotrophy. Finally, OM degradation by mucus-associated bacterial activity was unaffected by UVR exposure, but significantly increased under high temperature. Altogether, our results demonstrate that seawater warming and UVR not only affect coral physiology, but also the way corals interact with the surrounding seawater, with potential consequences for coral reef biogeochemical cycles and food webs.

  8. Anthropogenic mortality on coral reefs in Caribbean Panama predates coral disease and bleaching.

    Science.gov (United States)

    Cramer, Katie L; Jackson, Jeremy B C; Angioletti, Christopher V; Leonard-Pingel, Jill; Guilderson, Thomas P

    2012-06-01

    Caribbean reef corals have declined precipitously since the 1980s due to regional episodes of bleaching, disease and algal overgrowth, but the extent of earlier degradation due to localised historical disturbances such as land clearing and overfishing remains unresolved. We analysed coral and molluscan fossil assemblages from reefs near Bocas del Toro, Panama to construct a timeline of ecological change from the 19th century-present. We report large changes before 1960 in coastal lagoons coincident with extensive deforestation, and after 1960 on offshore reefs. Striking changes include the demise of previously dominant staghorn coral Acropora cervicornis and oyster Dendrostrea frons that lives attached to gorgonians and staghorn corals. Reductions in bivalve size and simplification of gastropod trophic structure further implicate increasing environmental stress on reefs. Our paleoecological data strongly support the hypothesis, from extensive qualitative data, that Caribbean reef degradation predates coral bleaching and disease outbreaks linked to anthropogenic climate change. © 2012 Blackwell Publishing Ltd/CNRS.

  9. The Construction of a Coral Implantation Base and the Proof Experiment by Electrodeposition Method

    Science.gov (United States)

    Yoshitake, Masami; Nojima, Satoshi; Tokuyama, Hidekazu; Haraguchi, Satoru; Kadomoto, Yukio; Yoshida, Kazuo

    In recent years, we are facing a decline of coral reefs by bleaching and death of coral colonies, which is casued by rising of ocean temperatures presumably due to global warming and pollution due to human activity. It is our urgent issue to protect and reproduce coral reefs in a global scale. We propose an electrodeposition method using calcium and magnesium contained in natural seawater as a effective and way to revive coral reefs, because a product of electrodeposition characterized by porous texture provides suitable holes for implantation of coral larvae. We expect that the method creates a diverse coral reefs community similar to natural one comparing with other growth method. Since 2008, we have conducted coral growth experiments using electrodeposition in Yoronjima. As a result, Acropora sp., Porites sp. and Pocillopora sp. are observed, such as implantation of several types of coral larvae, and confirmed a growth of coral larvae.

  10. Mass coral bleaching in the northern Persian Gulf, 2012

    Directory of Open Access Journals (Sweden)

    Javid Kavousi

    2014-09-01

    Full Text Available Coral bleaching events due to elevated temperatures are increasing in both frequency and magnitude worldwide. Mass bleaching was recorded at five sites in the northern Persian Gulf during August and September 2012. Based on available seawater temperature data from field, satellite and previous studies, we suggest that the coral bleaching threshold temperature in the northern Persian Gulf is between 33.5 and 34°C, which is about 1.5 to 2.5°C lower than that in the southern part. To assess the bleaching effects, coral genera counted during 60-minute dives were categorized into four groups including healthy, slightly bleached ( 50% bleached tissue and fully bleached colonies. The anomalously high sea surface temperature resulted in massive coral bleaching (~84% coral colonies affected. Acropora spp. colonies, which are known as the most vulnerable corals to thermal stress, were less affected by the bleaching than massive corals, such as Porites, which are among the most thermo-tolerant corals. Turbid waters, suggested as coral refugia against global warming, did not protect corals in this study since most affected corals were found in the most turbid waters. The 2012 bleaching in the northern Persian Gulf was relatively strong from the viewpoint of coral bleaching severity. Long-term monitoring is needed to understand the actual consequences of the bleaching event on the coral reefs and communities.

  11. Coral reproduction in Western Australia

    Directory of Open Access Journals (Sweden)

    James Gilmour

    2016-05-01

    Full Text Available Larval production and recruitment underpin the maintenance of coral populations, but these early life history stages are vulnerable to extreme variation in physical conditions. Environmental managers aim to minimise human impacts during significant periods of larval production and recruitment on reefs, but doing so requires knowledge of the modes and timing of coral reproduction. Most corals are hermaphroditic or gonochoric, with a brooding or broadcast spawning mode of reproduction. Brooding corals are a significant component of some reefs and produce larvae over consecutive months. Broadcast spawning corals are more common and display considerable variation in their patterns of spawning among reefs. Highly synchronous spawning can occur on reefs around Australia, particularly on the Great Barrier Reef. On Australia’s remote north-west coast there have been fewer studies of coral reproduction. The recent industrial expansion into these regions has facilitated research, but the associated data are often contained within confidential reports. Here we combine information in this grey-literature with that available publicly to update our knowledge of coral reproduction in WA, for tens of thousands of corals and hundreds of species from over a dozen reefs spanning 20° of latitude. We identified broad patterns in coral reproduction, but more detailed insights were hindered by biased sampling; most studies focused on species of Acropora sampled over a few months at several reefs. Within the existing data, there was a latitudinal gradient in spawning activity among seasons, with mass spawning during autumn occurring on all reefs (but the temperate south-west. Participation in a smaller, multi-specific spawning during spring decreased from approximately one quarter of corals on the Kimberley Oceanic reefs to little participation at Ningaloo. Within these seasons, spawning was concentrated in March and/or April, and October and/or November, depending

  12. Life on the edge: corals in mangroves and climate change

    Science.gov (United States)

    Rogers, Caroline S.; Herlan, James J.

    2012-01-01

    Coral diseases have played a major role in the degradation of coral reefs in the Caribbean, including those in the US Virgin Islands (USVI). In 2005, bleaching affected reefs throughout the Caribbean, and was especially severe on USVI reefs. Some corals began to regain their color as water temperatures cooled, but an outbreak of disease (primarily white plague) led to losses of over 60% of the total live coral cover. Montastraea annularis, the most abundant coral, was disproportionately affected, and decreased in relative abundance. The threatened species Acropora palmata bleached for the first time on record in the USVI but suffered less bleaching and less mortality from disease than M. annularis. Acropora palmata and M. annularis are the two most significant species in the USVI because of their structural role in the architecture of the reefs, the large size of their colonies, and their complex morphology. The future of the USVI reefs depends largely on their fate. Acropora palmata is more likely to recover than M. annularis for many reasons, including its faster growth rate, and its lower vulnerability to bleaching and disease.

  13. Enhanced susceptibility to predation in corals of compromised condition

    Directory of Open Access Journals (Sweden)

    Allan J. Bright

    2015-09-01

    Full Text Available The marine gastropod, Coralliophila abbreviata, is an obligate corallivore that causes substantial mortality in Caribbean Acropora spp. Considering the imperiled status of Acropora cervicornis and A. palmata, a better understanding of ecological interactions resulting in tissue loss may enable more effective conservation strategies. We examined differences in susceptibility of A. cervicornis to C. abbreviata predation based on coral tissue condition. Coral tissue condition was a strong determinant of snail prey choice, with snails preferring A. cervicornis fragments that were diseased or mechanically damaged over healthy fragments. In addition, snails always chose fragments undergoing active predation by another snail, while showing no preference for a non-feeding snail when compared with an undisturbed prey fragment. These results indicate that the condition of A. cervicornis prey influenced foraging behavior of C. abbreviata, creating a potential feedback that may exacerbate damage from predation in coral populations compromised by other types of disturbance.

  14. Enhanced susceptibility to predation in corals of compromised condition.

    Science.gov (United States)

    Bright, Allan J; Cameron, Caitlin M; Miller, Margaret W

    2015-01-01

    The marine gastropod, Coralliophila abbreviata, is an obligate corallivore that causes substantial mortality in Caribbean Acropora spp. Considering the imperiled status of Acropora cervicornis and A. palmata, a better understanding of ecological interactions resulting in tissue loss may enable more effective conservation strategies. We examined differences in susceptibility of A. cervicornis to C. abbreviata predation based on coral tissue condition. Coral tissue condition was a strong determinant of snail prey choice, with snails preferring A. cervicornis fragments that were diseased or mechanically damaged over healthy fragments. In addition, snails always chose fragments undergoing active predation by another snail, while showing no preference for a non-feeding snail when compared with an undisturbed prey fragment. These results indicate that the condition of A. cervicornis prey influenced foraging behavior of C. abbreviata, creating a potential feedback that may exacerbate damage from predation in coral populations compromised by other types of disturbance.

  15. Trend in coral-algal phase shift in the Mandapam group of islands, Gulf of Mannar Marine Biosphere Reserve, India

    Science.gov (United States)

    Machendiranathan, M.; Senthilnathan, L.; Ranith, R.; Saravanakumar, A.; Thangaradjou, T.; Choudhry, S. B.; Sasamal, S. K.

    2016-12-01

    The present study revealed proliferation of macro-algae modifying coral reef ecosystems in a different manner due to diseases and sedimentations in the Mandapam group of islands in the Gulf of Mannar. Benthic surveys were conducted with major attack of seven coral reefs diseases with high sedimentation rate, nine species of fleshy macro-algae ( Turbinaria ornata, Turbinaria conaides, Caulerpa scalpelliformis, Caulerpa racemosa, Kappaphycus alvarezii, Padina gymnosphora, Sargassum wightii, Ulva reticulata and Calurpa lentillifera) proliferation against major corals life forms (Acropora branching, Acropora digitate, Acropora tabulate, coral massive, coral submassive, coral foliose and coral encrusting). The results confirm that diseased corals most favor to macro-algae growth (15.27%) rather than the sedimentation covered corals (8.24 %). In the degradation of coral life forms, massive corals were more highly damaged (7.05%) than any other forms. Within a short period of time (May to September), coral coverage shrank to 17.4% from 21.9%, macro-algae increased 23.51% and the average sedimentation rate attained 77.52 mg cm-2d-1 with persisting coral reef diseases of 17.59%. The Pearson correlation showed that the coral cover decreased with increasing macro-algae growth, which was statistically significant ( r = -0.774, n = 100, P < 0.0005). The proliferation of the various macro-algae C. scalpellifrmis, T. ornata, C. racemosa, T. conaides, U. reticulata, S. wightii, K. alvarezii, P. gymnosphora and C. lentillifera increased with percentages of 6.0, 5.8, 5.7, 4.9, 4.2, 3.7, 2.7 and 1.9, respectively. If this trend continues, the next generation of new recruit corals will undoubtedly lead to a phase shift in Gulf of Mannar corals.

  16. Trend in Coral-Algal Phase Shift in the Mandapam Group of Islands, Gulf of Mannar Marine Biosphere Reserve, India

    Institute of Scientific and Technical Information of China (English)

    M Machendiranathan; L Senthilnathan; R Ranith; A Saravanakumar; T Thangaradjou; S B Choudhry; S K Sasamal

    2016-01-01

    The present study revealed proliferation of macro-algae modifying coral reef ecosystems in a different manner due to diseases and sedimentations in the Mandapam group of islands in the Gulf of Mannar. Benthic surveys were conducted with major attack of seven coral reefs diseases with high sedimentation rate, nine species of fleshy macro-algae (Turbinaria ornata, Turbinaria conaides, Caulerpa scalpelliformis, Caulerpa racemosa, Kappaphycus alvarezii, Padina gymnosphora, Sargassum wightii, Ulva reticulata andCalurpa lentillifera) proliferation against major corals life forms (Acropora branching, Acropora digitate, Acropora tabulate, coral massive, coral submassive, coral foliose and coral encrusting). The results confirm that diseased corals most favor to macro-algae growth (15.27%) rather than the sedimentation covered corals (8.24 %). In the degradation of coral life forms, massive corals were more highly damaged (7.05%) than any other forms. Within a short period of time (May to September), coral coverage shrank to 17.4% from 21.9%, macro-algae increased 23.51% and the average sedimentation rate attained 77.52mgcm−2d−1 with per-sisting coral reef diseases of 17.59%. The Pearson correlation showed that the coral cover decreased with increasing macro-algae growth, which was statistically significant (r=−0.774,n=100,P<0.0005). The proliferation of the various macro-algaeC. scalpel-lifrmis, T.ornata, C. racemosa,T. conaides,U. reticulata, S. wightii, K. alvarezii,P. gymnosphoraand C. lentillifera increased with percentages of 6.0, 5.8, 5.7, 4.9, 4.2, 3.7, 2.7 and 1.9, respectively. If this trend continues, the next generation of new recruit corals will undoubtedly lead to a phase shift in Gulf of Mannar corals.

  17. Possible return of Acropora cervicornis at Pulaski Shoal, Dry Tortugas National Park, Florida

    Science.gov (United States)

    Lidz, Barbara H.; Zawada, David G.

    2013-01-01

    Seabed classification is essential to assessing environmental associations and physical status in coral reef ecosystems. At Pulaski Shoal in Dry Tortugas National Park, Florida, nearly continuous underwater-image coverage was acquired in 15.5 hours in 2009 along 70.2 km of transect lines spanning ~0.2 km2. The Along-Track Reef-Imaging System (ATRIS), a boat-based, high-speed, digital imaging system, was used. ATRIS-derived benthic classes were merged with a QuickBird satellite image to create a habitat map that defines areas of senile coral reef, carbonate sand, seagrasses, and coral rubble. This atypical approach of starting with extensive, high-resolution in situ imagery and extrapolating between transect lines using satellite imagery leverages the strengths of each remote-sensing modality. The ATRIS images also captured the spatial distribution of two species once common on now-degraded Florida-Caribbean coral reefs: the stony staghorn coral Acropora cervicornis, a designated threatened species, and the long-spined urchin Diadema antillarum. This article documents the utility of ATRIS imagery for quantifying number and estimating age of A. cervicornis colonies (n = 400, age range, 5–11 y) since the severe hypothermic die-off in the Dry Tortugas in 1976–77. This study is also the first to document the largest number of new colonies of A. cervicornis tabulated in an area of the park where coral-monitoring stations maintained by the Fish and Wildlife Research Institute have not been established. The elevated numbers provide an updated baseline for tracking revival of this species at Pulaski Shoal.

  18. Preliminary geochemical results of corals from the Puerto Morelos Reef, Southeastern Mexico

    Science.gov (United States)

    Marquez, N.; Kasper, J.

    2012-04-01

    A microprobe (MB), major, trace and rare earth elements (REE) analyses were carried out in three coral species Acropora palmata, Acropora cervicornis and Gorgonia ventalina at Puerto Morelos, Reef, Southeastern Mexico. This was done to assess the degree in which the corals developed under the different chemical-physical natural and artificial conditions. The corals were cut at the top and middle and based upon the observations by using the MB analysis, results showed the highest concentrations of Ag, Cu, Cr, Ni, S, Sr, Zn y Zr in Gorgonia Ventalina suggesting an impact coming from the industrial discharges and/or rusting of boats in the area. The results of X-ray fluorescence analysis for major and trace elements showed that the Fe , Sr and Zr increase their content in the skeletons of Acropora palmata y Gorgonia ventalina also asociated with the presence of human activity since the area is composed mainly by carbonate source sediments. The rare earth elements (REE) analysis showed that the negative anomaly of Ce suggests a well oxygenated, highly oxidative modern shallow waters, and high nutrients related to suspended matter for Acropora Palmata, Acropora cervicornis y Gorgonia ventalina, The Positive Eu anomaly in the corals are due to the development of the reef linked to the concentration of waters enriched in La. The Nd/Yb ratio indicates a shallow water development for the corals. This is also supported by the Ce/Ce* vs. Pr/Pr* ratios that indicate shallow marine waters in the development of the three corals studied (Ce*= 0.5La+0.5Pr and Pr*= 0.5Ce+0.5Nd). Enrichment of heavy rare earth elements (Gd-Lu) in the corals may be associated with high pH values and CO, OH- ions in the sea water.

  19. Some Physical, Chemical, and Biological Parameters of Samples of Scleractinium Coral Aquaculture Skeleton Used for Reconstruction/Engineering of the Bone Tissue.

    Science.gov (United States)

    Popov, A A; Sergeeva, N S; Britaev, T A; Komlev, V S; Sviridova, I K; Kirsanova, V A; Akhmedova, S A; Dgebuadze, P Yu; Teterina, A Yu; Kuvshinova, E A; Schanskii, Ya D

    2015-08-01

    Physical and chemical (phase and chemical composition, dynamics of resorption, and strength properties), and biological (cytological compatibility and scaffold properties of the surface) properties of samples of scleractinium coral skeletons from aquacultures of three types and corresponding samples of natural coral skeletons (Pocillopora verrucosa, Acropora formosa, and Acropora nobilis) were studied. Samples of scleractinium coral aquaculture skeleton of A. nobilis, A. formosa, and P. verrucosa met the requirements (all study parameters) to materials for osteoplasty and 3D-scaffolds for engineering of bone tissue.

  20. A new and presumably now extinct species of Millepora (Hydrozoa) in the eastern Pacific

    NARCIS (Netherlands)

    Weerdt, de W.H.; Glynn, P.W.

    1991-01-01

    A new species of hydrocoral, Millepora boschmai, is described from the Gulf of Chiriqui, Pacific Panamá. This species was first found in the early 1970's, but it has disappeared from this area as a result of the severe 1982-83 El Nino-Southern Oscillation (ENSO) event. Because the species has never

  1. Coral diseases and bleaching on Colombian Caribbean coral reefs

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá. The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10x2m with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2, and Urabá had high numbers with bleaching (54.4 colonies/m2. Of the seven reported coral diseases studied, Dark Spots Disease (DSD, and White Plague Disease (WPD were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A.grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few

  2. Sr/Ca and {delta} {sup 18}O ratios measured from Acropora nobilis and Porites lutea: Is Sr/Ca paleo-thermometry always reliable?; Mesures conjointes des rapports Sr/Ca et {delta} {sup 18}O effectuees sur Acropora nobilis et Porites lutea: le paleothermometre Sr/Ca est-il toujours fiable?

    Energy Technology Data Exchange (ETDEWEB)

    Boiseau, M.; Trupin, L.; Juillet-Leclerc, A. [Centre National de la Recherche Scientifique (CNRS), 91 - Gif-sur-Yvette (France). Centre des Faibles Radioactivites; Cornu, H. [Centre National de la Recherche Scientifique (CNRS), Lab. d' oceanographie dynamique et de climatologie, Unite mixte CNRS-ORSTOM-UPCM, 75 - Paris (France)

    1997-11-01

    We measured the Sr/Ca and {sup 18}O/{sup 16}O ratios in Acropora nobilis and Porites lutea, from the Mayotte lagoon. As the variations of {delta}{sup 18}O{sub seawater} are negligible, coral {delta}{sup 18}O{sub aragonite} reflects only seasonal temperature variations. While there is a good agreement between the Sr/Ca ratio and {delta}{sup 18}O for Acropora nobilis, it is not the case for Porites lutea. Coral biological and environmental parameters cannot explain the discrepancies between Sr/Ca ratios and isotopic measurements. However transport mechanisms of Sr{sup 2+} and Ca{sup 2+} and the presence of two mineralogical structures of strontium may affect the Sr/Ca ratio.

  3. Geochemical study of coral skeletons from the Puerto Morelos Reef, southeastern Mexico

    Science.gov (United States)

    Kasper-Zubillaga, Juan J.; Armstrong-Altrin, John S.; Rosales-Hoz, Leticia

    2014-12-01

    Geochemical analyses in coral skeletons have been used as a proxy of marine environmental conditions and to understand the mechanisms of adsorption of chemical elements into the coral skeletons and growth forms. However, little attention has been given to show the possible differences in the growth rates of corals based upon major, trace, rare earth element and microprobe analyses to examine the physical-chemical conditions influencing those differences. Our goal is to show how branch and fan corals incorporate elements into their skeletons comparing them with their coral growth rates. We determine the development of the skeletons of two branching (Acropora palmata, Acropora cervicornis) and one fan shaped (Gorgonia ventalina) colonies in the Puerto Morelos Reef, southeastern Mexico based upon geochemical data and the influence of terrigenous input into the species. Mg and Sr concentrations were the most statistically significant elements among the species studied suggesting that Mg concentration in Gorgonia ventalina is probably not linked to its growth rate. Mn content in the sea water is adsorbed by the three corals during past growth rates during high rainfall events. Sr concentration may be associated with the growth rate of Acropora palmata. Little differences in the growth rate in Acropora palmata may be associated with low rates of calcitization, negligible changes in the Sr concentration and little influence of temperature and water depth in its growth. Trace elements like Cr, Co, Ni and V adsorbed by the corals are influenced by natural concentration of these elements in the sea-water. Rare earth elements in the corals studied suggests abundant inorganic ions CO32- with variable pH in modern shallow well-oxygenated sea water. Lack of terrigenous input seawards is supported by geochemical, geomorphological and biological evidences. This study is an example of how geochemical data are useful to observe the differences in environmental conditions related to

  4. Genome-wide SNP analysis explains coral diversity and recovery in the Ryukyu Archipelago.

    Science.gov (United States)

    Shinzato, Chuya; Mungpakdee, Sutada; Arakaki, Nana; Satoh, Noriyuki

    2015-12-10

    Following a global coral bleaching event in 1998, Acropora corals surrounding most of Okinawa island (OI) were devastated, although they are now gradually recovering. In contrast, the Kerama Islands (KIs) only 30 km west of OI, have continuously hosted a great variety of healthy corals. Taking advantage of the decoded Acropora digitifera genome and using genome-wide SNP analyses, we clarified Acropora population structure in the southern Ryukyu Archipelago (sRA). Despite small genetic distances, we identified distinct clusters corresponding to specific island groups, suggesting infrequent long-distance dispersal within the sRA. Although the KIs were believed to supply coral larvae to OI, admixture analyses showed that such dispersal is much more limited than previously realized, indicating independent recovery of OI coral populations and the necessity of local conservation efforts for each region. We detected strong historical migration from the Yaeyama Islands (YIs) to OI, and suggest that the YIs are the original source of OI corals. In addition, migration edges to the KIs suggest that they are a historical sink population in the sRA, resulting in high diversity. This population genomics study provides the highest resolution data to date regarding coral population structure and history.

  5. Density-associated recruitment mediates coral population dynamics on a coral reef

    Science.gov (United States)

    Bramanti, Lorenzo; Edmunds, Peter J.

    2016-06-01

    Theory suggests that density-associated processes can modulate community resilience following declines in population size. Here, we demonstrate density-associated processes in two scleractinian populations on the outer reef of Moorea, French Polynesia, that are rapidly increasing in size following the effects of two catastrophic disturbances. Between 2006 and 2010, predation by the corallivorous crown-of-thorns sea star reduced coral cover by 93 %; in 2010, the dead coral skeletons were removed by a cyclone, and in 2011 and 2012, high coral recruitment initiated population recovery. Coral recruitment was associated with coral cover, but the relationship differed between two coral genera that are almost exclusively broadcast spawners in Moorea. Acroporids recruited at low densities, and the density of recruits was positively associated with cover of Acropora, whereas pocilloporids recruited at high densities, and densities of their recruits were negatively associated with cover of Pocillopora. Together, our results suggest that associations between adult cover and density of both juveniles and recruits can mediate rapid coral community recovery after large disturbances. The difference between taxa in sign of the relationships between recruit density and coral cover indicate that they reflect contrasting mechanisms with the potential to mediate temporal shifts in taxonomic composition of coral communities.

  6. Do tabular corals constitute keystone structures for fishes on coral reefs?

    Science.gov (United States)

    Kerry, J. T.; Bellwood, D. R.

    2015-03-01

    This study examined the changes in community composition of reef fishes by experimentally manipulating the availability of shelter provided by tabular structures on a mid-shelf reef on the Great Barrier Reef. At locations where access to tabular corals ( Acropora hyacinthus and Acropora cytherea) was excluded, a rapid and sustained reduction in the abundance of large reef fishes occurred. At locations where tabular structure was added, the abundance and diversity of large reef fishes increased and the abundance of small reef fishes tended to decrease, although over a longer time frame. Based on their response to changes in the availability of tabular structures, nine families of large reef fishes were separated into three categories; designated as obligate, facultative or non-structure users. This relationship may relate to the particular ecological demands of each family, including avoidance of predation and ultraviolet radiation, access to feeding areas and reef navigation. This study highlights the importance of tabular corals for large reef fishes in shallow reef environments and provides a possible mechanism for local changes in the abundance of reef fishes following loss of structural complexity on coral reefs. Keystone structures have a distinct structure and disproportionate effect on their ecosystem relative to their abundance, as such the result of this study suggests tabular corals may constitute keystone structures on shallow coral reefs.

  7. The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA

    Science.gov (United States)

    Vargas-Ángel, Bernardo; Colley, Susan B.; Hoke, S. Michael; Thomas, James D.

    2006-03-01

    Reproductive characters of the Caribbean reef-building coral Acropora cervicornis were investigated based on histological samples collected from April 2001 through October 2002. Oogenesis commenced in early to mid-October through November and spermatogenesis was initiated from January to March. The onset of gametogenesis was staggered, exhibiting up to approximately a 1-month delay within colonies. In the hermaphroditic polyps, the observed male-to-female gonad ratio was nearly 1:1 and ripe oocytes represented over 70% of the total gonadal volume. Fecundity estimates based on Stage IV ova ranged between 10.4 and 21.8 mm3 per square centimeter per year, comparable to A. cervicornis in Puerto Rico and other broadcasting Indo-Pacific Acropora. Fecundity estimates based on Stage III vitellogenic oocytes indicated statistically significant differences among study sites. Spawning in field conditions was observed in 2001, 2003, and 2004 from 2300 to 2330 h. Gamete release generally occurred synchronously between nights two and seven after the full moon of July or August. However in 2003, multiple, small-scale gamete release episodes occurred over more than one lunar cycle. This coincided with the full moon occurring early in the month of July. While prolific gamete production is reported in this study, low levels of recruitment have been reported for this species. Thus, the highly fragmenting A. cervicornis may rely heavily on asexual reproduction for population maintenance and expansion, and recovery after disturbance may be greatly protracted.

  8. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea

    KAUST Repository

    Ziegler, Maren

    2016-01-04

    Coral-associated bacteria play an increasingly recognized part in coral health. We investigated the effect of local anthropogenic impacts on coral microbial communities on reefs near Jeddah, the largest city on the Saudi Arabian coast of the central Red Sea. We analyzed the bacterial community structure of water and corals (Pocillopora verrucosa and Acropora hemprichii) at sites that were relatively unimpacted, exposed to sedimentation & local sewage, or in the discharge area of municipal wastewaters. Coral microbial communities were significantly different at impacted sites: in both corals the main symbiotic taxon decreased in abundance. In contrast, opportunistic bacterial families, such as e.g. Vibrionaceae and Rhodobacteraceae, were more abundant in corals at impacted sites. In conclusion, microbial community response revealed a measurable footprint of anthropogenic impacts to coral ecosystems close to Jeddah, even though the corals appeared visually healthy.

  9. Bacterial acquisition in juveniles of several broadcast spawning coral species.

    Directory of Open Access Journals (Sweden)

    Koty H Sharp

    Full Text Available Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals.

  10. Bacterial acquisition in juveniles of several broadcast spawning coral species.

    Science.gov (United States)

    Sharp, Koty H; Ritchie, Kim B; Schupp, Peter J; Ritson-Williams, Raphael; Paul, Valerie J

    2010-05-28

    Coral animals harbor diverse microorganisms in their tissues, including archaea, bacteria, viruses, and zooxanthellae. The extent to which coral-bacterial associations are specific and the mechanisms for their maintenance across generations in the environment are unknown. The high diversity of bacteria in adult coral colonies has made it challenging to identify species-specific patterns. Localization of bacteria in gametes and larvae of corals presents an opportunity for determining when bacterial-coral associations are initiated and whether they are dynamic throughout early development. This study focuses on the early onset of bacterial associations in the mass spawning corals Montastraea annularis, M. franksi, M. faveolata, Acropora palmata, A. cervicornis, Diploria strigosa, and A. humilis. The presence of bacteria and timing of bacterial colonization was evaluated in gametes, swimming planulae, and newly settled polyps by fluorescence in situ hybridization (FISH) using general eubacterial probes and laser-scanning confocal microscopy. The coral species investigated in this study do not appear to transmit bacteria via their gametes, and bacteria are not detectable in or on the corals until after settlement and metamorphosis. This study suggests that mass-spawning corals do not acquire, or are not colonized by, detectable numbers of bacteria until after larval settlement and development of the juvenile polyp. This timing lays the groundwork for developing and testing new hypotheses regarding general regulatory mechanisms that control bacterial colonization and infection of corals, and how interactions among bacteria and juvenile polyps influence the structure of bacterial assemblages in corals.

  11. Spatial dynamics of benthic competition on coral reefs.

    Science.gov (United States)

    Sandin, Stuart A; McNamara, Dylan E

    2012-04-01

    The community structure of sedentary organisms is largely controlled by the outcome of direct competition for space. Understanding factors defining competitive outcomes among neighbors is thus critical for predicting large-scale changes, such as transitions to alternate states within coral reefs. Using a spatially explicit model, we explored the importance of variation in two spatial properties in benthic dynamics on coral reefs: (1) patterns of herbivory are spatially distinct between fishes and sea urchins and (2) there is wide variation in the areal extent into which different coral species can expand. We reveal that the size-specific, competitive asymmetry of corals versus fleshy algae highlights the significance of spatial patterning of herbivory and of coral growth. Spatial dynamics that alter the demographic importance of coral recruitment and maturation have profound effects on the emergent structure of the reef benthic community. Spatially constrained herbivory (as by sea urchins) is more effective than spatially unconstrained herbivory (as by many fish) at opening space for the time needed for corals to settle and to recruit to the adult population. Further, spatially unconstrained coral growth (as by many branching coral species) reduces the number of recruitment events needed to fill a habitat with coral relative to more spatially constrained growth (as by many massive species). Our model predicts that widespread mortality of branching corals (e.g., Acropora spp) and herbivorous sea urchins (particularly Diadema antillarum) in the Caribbean has greatly reduced the potential for restoration across the region.

  12. The ecotoxicology of vegetable versus mineral based lubricating oils: 3. Coral fertilization and adult corals.

    Science.gov (United States)

    Mercurio, Philip; Negri, Andrew P; Burns, Kathryn A; Heyward, Andrew J

    2004-05-01

    Biodegradable vegetable-derived lubricants (VDL) might be less toxic to marine organisms than mineral-derived oils (MDL) due to the absence of high molecular weight aromatics, but this remains largely untested. In this laboratory study, adult corals and coral gametes were exposed to various concentrations of a two-stroke VDL-1A and a corresponding MDL to determine which lubricant type was more toxic to each life stage. In the fertilization experiment, gametes from the scleractinian coral Acropora microphthalma were exposed to water-accommodated fractions (WAF) of VDL-1A and MDL for four hours. The MDL and VDL-1A WAFs inhibited normal fertilization of the corals at 200 microg l(-1) total hydrocarbon content (THC) and 150 microg l(-1) THC respectively. Disturbance of a stable coral-dinoflagellate symbiosis is regarded as a valid measure of sub-lethal stress in adult corals. The state of the symbiosis in branchlets of adult colonies of Acropora formosa was monitored using indicators such as dinoflagellate expulsion and dark-adapted photosystem II yields of dinoflagellate (using pulse amplitude modulation fluorescence). An effect on symbiosis was measurable following 48 h exposure to the lubricants at concentrations of 190 microg l(-1) and 37 microg l(-1) THC for the MDL and VDL-1A respectively. GC/MS revealed that the main constituent of the VDL-1A WAF was the compound coumarin, added by the manufacturer to improve odour. The fragrance containing coumarin was removed from the lubricant formulation and the toxicity towards adult corals re-examined. The coumarin-free VDL-2 exhibited significantly less toxicity towards the adult corals than all of the other oil types tested, with the only measurable effect being a slight but significant drop in photosynthetic efficiency at 280 microg l(-1).

  13. Evolutionary insights into scleractinian corals using comparative genomic hybridizations.

    KAUST Repository

    Aranda, Manuel

    2012-09-21

    Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH) with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization).

  14. Through bleaching and tsunami: Coral reef recovery in the Maldives.

    Science.gov (United States)

    Morri, Carla; Montefalcone, Monica; Lasagna, Roberta; Gatti, Giulia; Rovere, Alessio; Parravicini, Valeriano; Baldelli, Giuseppe; Colantoni, Paolo; Bianchi, Carlo Nike

    2015-09-15

    Coral reefs are degrading worldwide, but little information exists on their previous conditions for most regions of the world. Since 1989, we have been studying the Maldives, collecting data before, during and after the bleaching and mass mortality event of 1998. As early as 1999, many newly settled colonies were recorded. Recruits shifted from a dominance of massive and encrusting corals in the early stages of recolonisation towards a dominance of Acropora and Pocillopora by 2009. Coral cover, which dropped to less than 10% after the bleaching, returned to pre-bleaching values of around 50% by 2013. The 2004 tsunami had comparatively little effect. In 2014, the coral community was similar to that existing before the bleaching. According to descriptors and metrics adopted, recovery of Maldivian coral reefs took between 6 and 15years, or may even be considered unachieved, as there are species that had not come back yet. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Spatial heterogeneity in active chlorophyll fluorescence and PSII activity of coral tissues

    DEFF Research Database (Denmark)

    Ralph, P.J.; Gademann, R.; Larkum, A.W.D.

    2002-01-01

    Chlorophyll-a fluorescence was measured in six species of coral, using pulse-amplitude-modulated fluorometers employing fibre-optic probes with diameters of 8 mm, 1 mm and 140 µm. The 8-mm probe integrated responses over a large area, giving more weight to coenosarc than polyp tissue for Acropora...

  16. Effects of temperature,hypoxia, ammonia and nitrate on the bleaching among three coral species

    Institute of Scientific and Technical Information of China (English)

    ZHU Baohua; WANG Guangce; HUANG Bo; C. K. Tseng

    2004-01-01

    Coral bleaching, which is defined as the loss of colour in corals due to the loss of their symbiotic algae (commonly called zooxanthellae) or pigments or both, is occurring globally at increasing rates, and its harm becomes more and more serious during these two decades. The significance of these bleaching events to the health of coral reef ecosystems is extreme, as bleached corals exhibited high mortality, reduced fecundity and productivity and increased susceptibility to diseases. This decreased coral fitness is easily to lead to reef degradation and ultimately to the breakdown of the coral reef ecosystems. Recently, the reasons leading to coral bleaching are thought to be as follows: too high or too low temperature, excess ultraviolet exposure, heavy metal pollution, cyanide poison and seasonal cycle. To date there has been little knowledge of whether mariculture can result in coral bleaching and which substance has the worst effect on corals. And no research was conducted on the effect of hypoxia on corals. To address these questions, effects of temperature, hypoxia, ammonia and nitrate on bleaching of three coral species were studied through examination of morphology and the measurement of the number of symbiotic algae of three coral species Acropora nobilis, Palythoa sp.and Alveopora verrilliana. Results showed that increase in temperature and decrease in dissolved oxygen could lead to increasing number of symbiotic algae and more serious bleaching. In addition, the concentration of 0.001 mmol/L ammonia or nitrate could increase significantly the expulsion of the symbiotic algae of the three coral species. Except for Acropora nobilis, the numbers of symbiotic algae of other two corals did not significantly increase with the increasing concentration of ammonia and nitrate. Furthermore, different hosts have different stress susceptibilities on coral bleaching.

  17. Generating viral metagenomes from the coral holobiont

    Directory of Open Access Journals (Sweden)

    Karen Dawn Weynberg

    2014-05-01

    Full Text Available Reef-building corals comprise multipartite symbioses where the cnidarian animal is host to an array of eukaryotic and prokaryotic organisms, and the viruses that infect them. These viruses are critical elements of the coral holobiont, serving not only as agents of mortality, but also as potential vectors for lateral gene flow, and as elements encoding a variety of auxiliary metabolic functions. Consequently, understanding the functioning and health of the coral holobiont requires detailed knowledge of the associated viral assemblage and its function. Currently, the most tractable way of uncovering viral diversity and function is through metagenomic approaches, which is inherently difficult in corals because of the complex holobiont community, an extracellular mucus layer that all corals secrete, and the variety of sizes and structures of nucleic acids found in viruses. Here we present the first protocol for isolating, purifying and amplifying viral nucleic acids from corals based on mechanical disruption of cells. This method produces at least 50% higher yields of viral nucleic acids, has very low levels of cellular sequence contamination and captures wider viral diversity than previously used chemical-based extraction methods. We demonstrate that our mechanical-based method profiles a greater diversity of DNA and RNA genomes, including virus groups such as Retro-transcribing and ssRNA viruses, which are absent from metagenomes generated via chemical-based methods. In addition, we briefly present (and make publically available the first paired DNA and RNA viral metagenomes from the coral Acropora tenuis.

  18. Identification and prevalence of coral diseases on three Western Indian Ocean coral reefs.

    Science.gov (United States)

    Séré, Mathieu G; Chabanet, Pascale; Turquet, Jean; Quod, Jean-Pascal; Schleyer, Michael H

    2015-06-03

    Coral diseases have caused a substantial decline in the biodiversity and abundance of reef-building corals. To date, more than 30 distinct diseases of scleractinian corals have been reported, which cause progressive tissue loss and/or affect coral growth, reproductive capacity, recruitment, species diversity and the abundance of reef-associated organisms. While coral disease research has increased over the last 4 decades, very little is known about coral diseases in the Western Indian Ocean. Surveys conducted at multiple sites in Reunion, South Africa and Mayotte between August 2010 and June 2012 revealed the presence of 6 main coral diseases: black band disease (BBD), white syndrome (WS), pink line syndrome (PLS), growth anomalies (GA), skeleton eroding band (SEB) and Porites white patch syndrome (PWPS). Overall, disease prevalence was higher in Reunion (7.5 ± 2.2%; mean ± SE) compared to South Africa (3.9 ± 0.8%) and Mayotte (2.7 ± 0.3%). Across locations, Acropora and Porites were the genera most susceptible to disease. Spatial variability was detected in both Reunion and South Africa, with BBD and WS more prevalent on shallow than deep reefs. There was also evidence of seasonality in 2 diseases: the prevalence of BBD and WS was higher in summer than winter. This was the first study to investigate the ecology of coral diseases, providing both qualitative and quantitative data, on Western Indian Ocean reefs, and surveys should be expanded to confirm these patterns.

  19. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment

    Science.gov (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L.; McCulloch, Malcolm T.

    2015-12-01

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  20. The coral triangle initiative: What are we missing? A case study from Aceh

    KAUST Repository

    Rudi, Edi

    2012-10-01

    Abstract The Coral Triangle Initiative is an ambitious attempt to conserve the marine biodiversity hotspot known as the Coral Triangle. However, the reef fauna in many nearby regions remains poorly explored and, consequently, the focus on the Coral Triangle risks overlooking other areas of high conservation significance. One region of potential significance, Aceh, Indonesia, has not been visited by coral taxonomists since the Dutch colonial period. Here we document the species richness of scleractinian corals of Pulau Weh, Aceh. We also compare the species richness of the genus Acropora at 3-5 sites in each of nine regions in Indonesia and Papua New Guinea. Although dominated by widespread Indo-Pacific species, the coral fauna of Pulau Weh is also the eastern and western boundary for many Indian Ocean and Pacific Ocean species, respectively. We identified a total of 133 scleractinian species, of which three have been previously recorded only in the western Indian Ocean and five are presently undescribed. The mean species richness of the Acropora at Pulau Weh is similar to regions within the Coral Triangle. This high species richness plus the high proportion of endemics suggests that the Andaman Sea is of similarly high conservation value to the Coral Triangle. We suggest that an international initiative similar to the Coral Triangle Initiative is required to conserve this region, which includes the territorial waters of six countries. © 2012 Fauna & Flora International.

  1. Limits to the thermal tolerance of corals adapted to a highly fluctuating, naturally extreme temperature environment.

    Science.gov (United States)

    Schoepf, Verena; Stat, Michael; Falter, James L; McCulloch, Malcolm T

    2015-12-02

    Naturally extreme temperature environments can provide important insights into the processes underlying coral thermal tolerance. We determined the bleaching resistance of Acropora aspera and Dipsastraea sp. from both intertidal and subtidal environments of the naturally extreme Kimberley region in northwest Australia. Here tides of up to 10 m can cause aerial exposure of corals and temperatures as high as 37 °C that fluctuate daily by up to 7 °C. Control corals were maintained at ambient nearshore temperatures which varied diurnally by 4-5 °C, while treatment corals were exposed to similar diurnal variations and heat stress corresponding to ~20 degree heating days. All corals hosted Symbiodinium clade C independent of treatment or origin. Detailed physiological measurements showed that these corals were nevertheless highly sensitive to daily average temperatures exceeding their maximum monthly mean of ~31 °C by 1 °C for only a few days. Generally, Acropora was much more susceptible to bleaching than Dipsastraea and experienced up to 75% mortality, whereas all Dipsastraea survived. Furthermore, subtidal corals, which originated from a more thermally stable environment compared to intertidal corals, were more susceptible to bleaching. This demonstrates that while highly fluctuating temperatures enhance coral resilience to thermal stress, they do not provide immunity to extreme heat stress events.

  2. The northernmost coral frontier of the Maldives: The coral reefs of Ihavandippolu Atoll under long-term environmental change.

    Science.gov (United States)

    Tkachenko, Konstantin S

    2012-12-01

    Ihavandippolu, the northernmost atoll of the Maldives, experienced severe coral bleaching and mortality in 1998 followed by several bleaching episodes in the last decade. Coral cover in the 11 study sites surveyed in July-December of 2011 in the 3-5 m depth range varied from 1.7 to 51%. Reefs of the islands located in the center of Ihavandippolu lagoon have exhibited a very low coral recovery since 1998 and remain mostly degraded 12 years after the impact. At the same time, some reefs, especially in the inner part of the eastern ring of the atoll, demonstrate a high coral cover (>40%) with a dominance of branching Acropora that is known to be one of the coral genera that is most susceptible to thermal stress. The last severe bleaching event in 2010 resulted in high coral mortality in some sites of the atoll. Differences in coral mortality rates and proportion between "susceptible" and "resistant" taxa in study sites are apparently related to long-term adaptation and local hydrological features that can mitigate thermal impacts. Abundant herbivorous fish observed in the atoll prevent coral overgrowth by macroalgae even on degraded reefs. Despite the frequent influence of temperature anomalies and having less geomorphologic refuges for coral survivals than other larger Maldivian atolls, a major part of observed coral communities in Ihavandippolu Atoll exhibits high resilience and potential for further acclimatization to a changing environment.

  3. Coral microbiology

    Science.gov (United States)

    Rosenberg, Eugene; Kellogg, Christina A.; Rohwer, Forest

    2007-01-01

    In the last 30 years, there has been approximately a 30% loss of corals worldwide, largely due to emerging diseases (Harvell et al., 2002, 2007; Hughes et al., 2003). Coral microbiology is a new field, driven largely by a desire to understand the interactions between corals and their symbiotic microorganisms and to use this knowledge to eventually prevent the spread of coral diseases.

  4. Hyposalinity stress compromises the fertilization of gametes more than the survival of coral larvae.

    Science.gov (United States)

    Hédouin, Laetitia; Pilon, Rosanne; Puisay, Antoine

    2015-03-01

    The life cycle of coral is affected by natural and anthropogenic perturbations occurring in the marine environment. In the context of global changes, it is likely that rainfall events will be more intense and that coastal reefs will be exposed to sudden drops in salinity. Therefore, a better understanding of how corals-especially during the pelagic life stages-are able to deal with declines in salinity is crucial. To fill this knowledge gap, this work investigated how gametes and larva stages of two species of Acropora (Acropora cytherea and Acropora pulchra) from French Polynesia cope with drops in salinity. An analysis of collected results highlights that both Acropora coral gametes displayed the same resistance to salinity changes, with 4h30-ES50 (effective salinity that decrease by 50% the fertilization success after 4h30 exposure) of 26.6 ± 0.1 and 27.5 ± 0.3‰ for A. cytherea and A. pulchra, respectively. This study also revealed that coral gametes were more sensitive to decreases in salinity than larvae, for which significant changes are only observed at 26‰ for A. cytherea after 14 d of exposure. Although rising seawater temperatures and ocean acidification are often perceived as the main threat for the survival of coral reefs, our work indicates that 70% of the gametes could be killed during a single night of spawning by a rainfall event that decreases salinity to 26‰. This suggests that changes in the frequency and intensity of rainfall events associated with climate changes should be taken seriously in efforts to both preserve coral gametes and ensure the persistence and renewal of coral populations. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Holocene key coral species in the Northwest Pacific: indicators of reef formation and reef ecosystem responses to global climate change and anthropogenic stresses in the near future

    Science.gov (United States)

    Hongo, Chuki

    2012-03-01

    The geological record of key coral species that contribute to reef formation and maintenance of reef ecosystems is important for understanding the ecosystem response to global-scale climate change and anthropogenic stresses in the near future. Future responses can be predicted from accumulated data on Holocene reef species identified in drillcore and from data on raised reef terraces. The present study analyzes a dataset based on 27 drillcores, raised reef terraces, and 134 radiocarbon and U-Th ages from reefs of the Northwest Pacific, with the aim of examining the role of key coral species in reef growth and maintenance for reef ecosystem during Holocene sea-level change. The results indicate a latitudinal change in key coral species: arborescent Acropora (Acropora intermedia and Acropora muricata) was the dominant reef builder at reef crests in the tropics, whereas Porites (Porites australiensis, Porites lutea, and Porites lobata) was the dominant contributor to reef growth in the subtropics between 10,000 and 7000 cal. years BP (when the rate of sea-level rise was 10 m/ka). Acropora digitifera, Acropora hyacinthus, Acropora robusta/A. abrotanoides, Isopora palifera, Favia stelligera, and Goniastrea retiformis from the corymbose and tabular Acropora facies were the main key coral species at reef crests between 7000 and 5000 cal. years BP (when the rate of sea-level rise was 5 m/ka) and during the following period of stable sea-level. Massive Porites (P. australiensis, P. lutea, and P. lobata) contributed to reef growth in shallow lagoons during the period of stable sea level. Key coral species from the corymbose and tabular Acropora facies have the potential to build reefs and maintain ecosystems in the near future under a global sea-level rise of 2-6 m/ka, as do key coral species from the arborescent Acropora facies and massive Porites facies, which show vigorous growth and are tolerant to relatively deep-water, low-energy environments. However, these species

  6. Abundance, composition and growth rate of coral recruits on dead corals following the 2010 bleaching event at Mu Ko Surin, the Andaman Sea

    Science.gov (United States)

    Yucharoen, Mathinee; Yeemin, Thamasak; Casareto, Beatriz E.; Suzuki, Yoshimi; Samsuvan, Watchara; Sangmanee, Kanwara; Klinthong, Wanlaya; Pengsakun, Sittiporn; Sutthacheep, Makamas

    2015-06-01

    Elevated seawater temperatures in the summer months of 2010 were associated with widespread coral mortality in Thailand. A large number of corals at Mu Ko Surin died following the bleaching event. Understanding of the recruitment of corals would improve our ability to predict the potential for coral recovery from the impacts of bleaching events, as well as the interpretation of spatio-temporal variability in coral community structure. This study aims to examine the composition, abundance and growth rate of juvenile corals and the potential of reef recovery at Mu Ko Surin in order to help to understand how reefs react to major disturbances. We found that the densities of coral recruits varied among years and study sites. In the year 2011, coral recruitments ranged between 0.18 ± 0.02 to 1.67 ± 0.07 recruits per m2 for 10 study sites. While in 2012, the monitoring revealed a range between 0.96 ± 0.16 and 2.19 ± 0.21 recruits per m2 from 5 study sites. Fungia, Acropora, Porites and Favites were the dominant groups of coral recruits. In terms substrate forms, they were significant differences between sampling years but the preferential dominant substrate forms did not differ. The Acropora recruits at Ko Torinla showed normal distributions of size class during the two periods. Their ranges in 2011 and 2012 were 4-30 and 13-54 mm, respectively. Six species of Acropora recruits, i.e. Acropora intermedia, A. nasuta, A. cerealis, A. subulata, A. muricata and A. latistella were found. They showed diverse growth rates due to the spatial distribution of 2.11 ± 0.59 to 7.47 ± 1.37 cm per year. This study provides useful data in terms of coral recruitment and recovery from degradation and disturbance, especially from temperature changes induced by coral bleaching. The findings suggest that there is the possibility for coral recovery around Mu Ko Surin following the 2010 bleaching event.

  7. Does use of tropical beaches by tourists and island residents result in damage to fringing coral reefs? A case study in Moorea French Polynesia.

    Science.gov (United States)

    Juhasz, Allison; Ho, Ellen; Bender, Erika; Fong, Peggy

    2010-12-01

    Although coral reefs worldwide are subject to increasing global threats, humans also impact coral reefs directly through localized activities such as snorkeling, kayaking and fishing. We investigated five sites on the northern shore of Moorea, French Polynesia, and quantified the number of visitors on the beach and in shallow water. In field surveys, we measured total coral cover and colony sizes of two common genera, Porites and Acropora, a massive and branching morphology, respectively. One site, which hosted over an order of magnitude more people than the other four, had significantly less total coral cover and supported very little branching Acropora. In addition, size frequency distributions of both the branching and massive genera were skewed toward smaller colony sizes at the high use site. Our results demonstrated that the use of tropical beaches may result in less coral cover, with branching colonies rare and small.

  8. Caribbean corals house shared and host-specific microbial symbionts over time and space.

    Science.gov (United States)

    Chu, Nathaniel D; Vollmer, Steven V

    2016-08-01

    The rise of coral diseases has triggered a surge of interest in coral microbial communities. But to fully understand how the coral microbiome may cause or respond to disease, we must first understand structure and variation in the healthy coral microbiome. We used 16S rRNA sequencing to characterize the microbiomes of 100 healthy coral colonies from six Caribbean coral species (Acropora cervicornis, A. palmata, Diploria labyrinthiformis, Diploria strigosa, Porites astreoides and P. furcata) across four reefs and three time points over 1 year. We found host species to be the strongest driver of coral microbiome structure across site and time. Analysis of the core microbiome revealed remarkable similarity in the bacterial taxa represented across coral hosts and many bacterial phylotypes shared across all corals sampled. Some of these widespread bacterial taxa have been identified in Pacific corals, indicating that a core coral microbiome may extend across oceans. Core bacterial phylotypes that were unique to each coral were taxonomically diverse, suggesting that different coral hosts provide persistent, divergent niches for bacteria.

  9. Assessment of Acropora palmata in the Mesoamerican Reef System.

    Directory of Open Access Journals (Sweden)

    Rosa E Rodríguez-Martínez

    Full Text Available The once-dominant shallow reef-building coral Acropora palmata has suffered drastic geographical declines in the wider Caribbean from a disease epidemic that began in the late 1970s. At present there is a lack of quantitative data to determine whether this species is recovering over large spatial scales. Here, we use quantitative surveys conducted in 107 shallow-water reef sites between 2010 and 2012 to investigate the current distribution and abundance of A. palmata along the Mesoamerican Reef System (MRS. Using historical data we also explored how the distribution and abundance of this species has changed in the northern portion of the MRS between 1985 and 2010-2012. A. palmata was recorded in only a fifth of the surveyed reef sites in 2010-2012. In the majority of these reef sites the presence of A. palmata was patchy and rare. Only one site (Limones reef, in the northernmost portion of the MRS, presented considerably high A. palmata cover (mean: 34.7%, SD: 24.5%. At this site, the size-frequency distribution of A. palmata colonies was skewed towards small colony sizes; 84% of the colonies were healthy, however disease prevalence increased with colony size. A comparison with historical data showed that in the northern portion of the MRS, in 1985, A. palmata occurred in 74% of the 31 surveyed sites and had a mean cover of 7.7% (SD = 9.0, whereas in 2010-2012 this species was recorded in 48% of the sites with a mean cover of 2.9% (SD = 7.5. A. palmata populations along the MRS are failing to recover the distribution and abundance they had prior to the 1980s. Investigating the biological (e.g., population genetics and environmental conditions (e.g., sources of stress of the few standing reefs with relatively high A. palmata cover is crucial for the development of informed restoration models for this species.

  10. The effect of structurally complex corals and herbivory on the dynamics of Halimeda

    Science.gov (United States)

    Castro-Sanguino, Carolina; Lovelock, Catherine; Mumby, Peter J.

    2016-06-01

    The calcareous green alga Halimeda is a key contributor to carbonate sediment production on coral reefs. As herbivores have a direct negative effect on the abundance of Halimeda, protection from herbivory is critical for Halimeda growth. Branching corals such as Acropora are likely to provide refugia for Halimeda from grazers, yet studies are scarce. Here, we investigated the vulnerability of two Halimeda species to herbivory using fish exclusion cages and assessed the contribution of coral structural complexity to seasonal changes in Halimeda biomass and morphometrics. While up to 50 % Halimeda abundance was depleted outside cages due to herbivory and the exclusion of large herbivores resulted in an increase in net growth up to threefold, Halimeda recruitment was positively affected by herbivory, more than two times greater outside cages. However, these responses differed between species and seasons; only one species was affected in winter but not summer. Coral structural complexity facilitated an increase of total algal biomass particularly in summer. At the individual level, thalli growing inside the Acropora canopy were always significantly larger (thallus biomass, volume and height) than those growing in exposed areas. We estimated that the carbonate production of Halimeda was nearly three times greater inside refuges provided by Acropora. Because Halimeda species differ in growth rates and susceptibility to grazing, we predict that the ongoing degradation of the habitat complexity provided by branching corals will alter Halimeda community structure and its contribution to local sediment budgets.

  11. The influence of colony size and coral health on the occupation of coral-associated gobies (Pisces: Gobiidae)

    Science.gov (United States)

    Schiemer, L.; Niedermüller, S.; Herler, J.

    2009-03-01

    Fishes of the genus Gobiodon are habitat specialists by their association with Acropora corals. Little is known about the parameters that define host coral quality for these fishes, in particular their breeding pairs. Data were collected in the northern Red Sea using 10 × 1-m belt transects in different reefs and zones. Gobiid density was highly correlated with coral density over all sites and zones, and the more specialized goby species preferred coral species that are less vulnerable to environmental stress. Moreover, the occupation rate of corals by goby breeding pairs significantly increased with colony size and decreased with partial mortality of colonies. Logistic regression showed that both coral size (being most important) and partial mortality are key factors influencing the occupation by breeding pairs. This study provides the first evidence that breeding pairs of coral-associated gobiids have more advanced habitat requirements than con-specifics in other social states. As coral reefs are threatened worldwide and habitat loss and degradation increase, this information will help predict the potential effects on those reef fishes obligatorily associated with live corals.

  12. The continuing decline of coral reefs in Bahrain.

    Science.gov (United States)

    Burt, John A; Al-Khalifa, Khalifa; Khalaf, Ebtesam; Alshuwaikh, Bassem; Abdulwahab, Ahmed

    2013-07-30

    Historically coral reefs of Bahrain were among the most extensive in the southern basin of the Arabian Gulf. However, Bahrain's reefs have undergone significant decline in the last four decades as a result of large-scale coastal development and elevated sea surface temperature events. Here we quantitatively surveyed six sites including most major coral reef habitats around Bahrain and a reef located 72 km offshore. Fleshy and turf algae now dominate Bahrain's reefs (mean: 72% cover), and live coral cover is low (mean: 5.1%). Formerly dominant Acropora were not observed at any site. The offshore Bulthama reef had the highest coral cover (16.3%) and species richness (22 of the 23 species observed, 13 of which were exclusive to this site). All reefs for which recent and historical data are available show continued degradation, and it is unlikely that they will recover under continuing coastal development and projected climate change impacts. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Status of Caribbean coral reefs in seven countries in 1986.

    Science.gov (United States)

    Wilkinson, Clive; Nowak, Madeleine; Miller, Ian; Baker, Valonna

    2013-05-15

    There are few long-term datasets available to make reliable statements about trends in cover and structure in many coral reefs around the world. We present 27year old summary data of the cover of corals and other biota on Caribbean and Western Atlantic coral reefs in 7 countries collected in late 1985 and early 1986. These data were collected to support research on sponge populations and show relatively low coral cover on many of these reefs with particularly low cover of Acropora spp. We present these summaries to encourage other researchers to compare with current conditions or repeat the surveys to show long-term trends; the raw data will be supplied on request. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Prey selection of corallivorous muricids at Koh Tao (Gulf of Thailand) four years after a major coral bleaching event

    NARCIS (Netherlands)

    Moerland, M.S.; Scott, C.M.; Hoeksema, B.W.

    2016-01-01

    Corallivorous Drupella (Muricidae) snails at Koh Tao are reported to have extended their range of prey species following a major coral bleaching event in 2010. Populations of their preferred Acropora prey had locally diminished in both size and abundance, and the snails had introduced free-living mu

  15. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem

    DEFF Research Database (Denmark)

    Wild, C.; Huettel, M.; Klueter, A.

    2004-01-01

    Zooxanthellae, endosymbiotic algae of reef-building corals, substantially contribute to the high gross primary production of coral reefs(1), but corals exude up to half of the carbon assimilated by their zooxanthellae as mucus(2,3). Here we show that released coral mucus efficiently traps organic...... matter from the water column and rapidly carries energy and nutrients to the reef lagoon sediment, which acts as a biocatalytic mineralizing filter. In the Great Barrier Reef, the dominant genus of hard corals, Acropora, exudes up to 4.8 litres of mucus per square metre of reef area per day. Between 56......% and 80% of this mucus dissolves in the reef water, which is filtered through the lagoon sands. Here, coral mucus is degraded at a turnover rate of at least 7% per hour. Detached undissolved mucus traps suspended particles, increasing its initial organic carbon and nitrogen content by three orders...

  16. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem

    DEFF Research Database (Denmark)

    Wild, C.; Huettel, M.; Klueter, A.

    2004-01-01

    Zooxanthellae, endosymbiotic algae of reef-building corals, substantially contribute to the high gross primary production of coral reefs(1), but corals exude up to half of the carbon assimilated by their zooxanthellae as mucus(2,3). Here we show that released coral mucus efficiently traps organic...... matter from the water column and rapidly carries energy and nutrients to the reef lagoon sediment, which acts as a biocatalytic mineralizing filter. In the Great Barrier Reef, the dominant genus of hard corals, Acropora, exudes up to 4.8 litres of mucus per square metre of reef area per day. Between 56......% and 80% of this mucus dissolves in the reef water, which is filtered through the lagoon sands. Here, coral mucus is degraded at a turnover rate of at least 7% per hour. Detached undissolved mucus traps suspended particles, increasing its initial organic carbon and nitrogen content by three orders...

  17. Chemotaxis by natural populations of coral reef bacteria.

    Science.gov (United States)

    Tout, Jessica; Jeffries, Thomas C; Petrou, Katherina; Tyson, Gene W; Webster, Nicole S; Garren, Melissa; Stocker, Roman; Ralph, Peter J; Seymour, Justin R

    2015-08-01

    Corals experience intimate associations with distinct populations of marine microorganisms, but the microbial behaviours underpinning these relationships are poorly understood. There is evidence that chemotaxis is pivotal to the infection process of corals by pathogenic bacteria, but this evidence is limited to experiments using cultured isolates under laboratory conditions. We measured the chemotactic capabilities of natural populations of coral-associated bacteria towards chemicals released by corals and their symbionts, including amino acids, carbohydrates, ammonium and dimethylsulfoniopropionate (DMSP). Laboratory experiments, using a modified capillary assay, and in situ measurements, using a novel microfabricated in situ chemotaxis assay, were employed to quantify the chemotactic responses of natural microbial assemblages on the Great Barrier Reef. Both approaches showed that bacteria associated with the surface of the coral species Pocillopora damicornis and Acropora aspera exhibited significant levels of chemotaxis, particularly towards DMSP and amino acids, and that these levels of chemotaxis were significantly higher than that of bacteria inhabiting nearby, non-coral-associated waters. This pattern was supported by a significantly higher abundance of chemotaxis and motility genes in metagenomes within coral-associated water types. The phylogenetic composition of the coral-associated chemotactic microorganisms, determined using 16S rRNA amplicon pyrosequencing, differed from the community in the seawater surrounding the coral and comprised known coral associates, including potentially pathogenic Vibrio species. These findings indicate that motility and chemotaxis are prevalent phenotypes among coral-associated bacteria, and we propose that chemotaxis has an important role in the establishment and maintenance of specific coral-microbe associations, which may ultimately influence the health and stability of the coral holobiont.

  18. Facilitation in Caribbean coral reefs: high densities of staghorn coral foster greater coral condition and reef fish composition.

    Science.gov (United States)

    Huntington, Brittany E; Miller, Margaret W; Pausch, Rachel; Richter, Lee

    2017-05-01

    Recovery of the threatened staghorn coral (Acropora cervicornis) is posited to play a key role in Caribbean reef resilience. At four Caribbean locations (including one restored and three extant populations), we quantified characteristics of contemporary staghorn coral across increasing conspecific densities, and investigated a hypothesis of facilitation between staghorn coral and reef fishes. High staghorn densities in the Dry Tortugas exhibited significantly less partial mortality, higher branch growth, and supported greater fish abundances compared to lower densities within the same population. In contrast, partial mortality, branch growth, and fish community composition did not vary with staghorn density at the three other study locations where staghorn densities were lower overall. This suggests that density-dependent effects between the coral and fish community may only manifest at high staghorn densities. We then evaluated one facilitative mechanism for such density-dependence, whereby abundant fishes sheltering in dense staghorn aggregations deliver nutrients back to the coral, fueling faster coral growth, thereby creating more fish habitat. Indeed, dense staghorn aggregations within the Dry Tortugas exhibited significantly higher growth rates, tissue nitrogen, and zooxanthellae densities than sparse aggregations. Similarly, higher tissue nitrogen was induced in a macroalgae bioassay outplanted into the same dense and sparse aggregations, confirming greater bioavailability of nutrients at high staghorn densities. Our findings inform staghorn restoration efforts, suggesting that the most effective targets may be higher coral densities than previously thought. These coral-dense aggregations may reap the benefits of positive facilitation between the staghorn and fish community, favoring the growth and survivorship of this threatened species.

  19. Genetic evidence of peripheral isolation and low diversity in marginal populations of the Acropora hyacinthus complex

    Science.gov (United States)

    Suzuki, Go; Keshavmurthy, Shashank; Hayashibara, Takeshi; Wallace, Carden C.; Shirayama, Yoshihisa; Chen, Chaolun Allen; Fukami, Hironobu

    2016-12-01

    Zooxanthellate corals are found throughout the tropics, but also extend into subtropical and marginal locations due to the presence of warm ocean currents. The population history of corals in marginal locations is of great interest in relation to changing global climatic conditions, as species edge zones might play an important role in evolutionary innovation. Here, we examine the genetic structure of a widely distributed coral species complex, Acropora hyacinthus, from tropical to high subtropical regions along the Kuroshio Current in Taiwan and Japan. Population genetic analysis of 307 specimens from 18 locations (7 reefal and 11 marginal) identified at least four genetic lineages within the A. hyacinthus complex: HyaA, HyaB, HyaC (dominating reefal locations) and HyaD dominating marginal locations in mainland Japan and Taiwan, except the upper Penghu Islands, which were dominated by HyaC. Crossing experiments suggested semi-incompatibility and hybridization between HyaC and D from reefal locations, implying that the existence of hybridization partners enhances diversification and genetic diversity. An incomplete barrier between the HyaC and HyaD dominations was found along the two straits in the Ryukyu Islands, where Kuroshio Current flows constantly. Despite geographical distance, the genetic composition of populations in mainland Japan was comparable to that in mainland Taiwan, which may reflect a region-specific connectivity around the northern limit of A. hyacinthus in the Pacific. In contrast, populations in the Ryukyu Islands were not significantly different from those of Palau and the Great Barrier Reef. While the precise taxonomic nature of the lineages found around the Kuroshio Current remains to be elucidated, these results indicate that, despite the presence of four lineages in the Kuroshio triangle, low genetic diversity populations of the two main lines might be isolating and differentiating in the marginal region.

  20. Metabolite Profiling of Red Sea Corals

    KAUST Repository

    Ortega, Jovhana Alejandra

    2016-12-01

    Looking at the metabolite profile of an organism provides insights into the metabolomic state of a cell and hence also into pathways employed. Little is known about the metabolites produced by corals and their algal symbionts. In particular, corals from the central Red Sea are understudied, but interesting study objects, as they live in one of the warmest and most saline environments and can provide clues as to the adjustment of corals to environmental change. In this study, we applied gas chromatography – mass spectrometry (GC–MS) metabolite profiling to analyze the metabolic profile of four coral species and their associated symbionts: Fungia granulosa, Acropora hemprichii, Porites lutea, and Pocillopora verrucosa. We identified and quantified 102 compounds among primary and secondary metabolites across all samples. F. granulosa and its symbiont showed a total of 59 metabolites which were similar to the 51 displayed by P. verrucosa. P. lutea and A. hemprichii both harbored 40 compounds in conjunction with their respective isolated algae. Comparing across species, 28 metabolites were exclusively present in algae, while 38 were exclusive to corals. A principal component and cluster analyses revealed that metabolite profiles clustered between corals and algae, but each species harbored a distinct catalog of metabolites. The major classes of compounds were carbohydrates and amino acids. Taken together, this study provides a first description of metabolites of Red Sea corals and their associated symbionts. As expected, the metabolites of coral hosts differ from their algal symbionts, but each host and algal species harbor a unique set of metabolites. This corroborates that host-symbiont species pairs display a fine-tuned complementary metabolism that provide insights into the specific nature of the symbiosis. Our analysis also revealed aquatic pollutants, which suggests that metabolite profiling might be used for monitoring pollution levels and assessing

  1. Endosymbiotic flexibility associates with environmental sensitivity in scleractinian corals.

    Science.gov (United States)

    Putnam, Hollie M; Stat, Michael; Pochon, Xavier; Gates, Ruth D

    2012-11-07

    Flexibility in biological systems is seen as an important driver of macro-ecosystem function and stability. Spatially constrained endosymbiotic settings, however, are less studied, although environmental thresholds of symbiotic corals are linked to the function of their endosymbiotic dinoflagellate communities. Symbiotic flexibility is a hypothesized mechanism that corals may exploit to adapt to climate change. This study explores the flexibility of the coral-Symbiodinium symbiosis through quantification of Symbiodinium ITS2 sequence assemblages in a range of coral species and genera. Sequence assemblages are expressed as an index of flexibility incorporating phylogenetic divergence and relative abundance of Symbiodinium sequences recovered from the host. This comparative analysis reveals profound differences in the flexibility of corals for Symbiodinium, thereby classifying corals as generalists or specifists. Generalists such as Acropora and Pocillopora exhibit high intra- and inter-species flexibility in their Symbiodinium assemblages and are some of the most environmentally sensitive corals. Conversely, specifists such as massive Porites colonies exhibit low flexibility, harbour taxonomically narrow Symbiodinium assemblages, and are environmentally resistant corals. Collectively, these findings challenge the paradigm that symbiotic flexibility enhances holobiont resilience. This underscores the need for a deeper examination of the extent and duration of the functional benefits associated with endosymbiotic diversity and flexibility under environmental stress.

  2. Distinct Bacterial Communities Associated with Massive and Branching Scleractinian Corals and Potential Linkages to Coral Susceptibility to Thermal or Cold Stress

    Directory of Open Access Journals (Sweden)

    Jiayuan Liang

    2017-06-01

    Full Text Available It is well known that different coral species have different tolerances to thermal or cold stress, which is presumed to be related to the density of Symbiodinium. However, the intrinsic factors between stress-tolerant characteristics and coral-associated bacteria are rarely studied. In this study, 16 massive coral and 9 branching coral colonies from 6 families, 10 genera, and 18 species were collected at the same time and location (Xinyi Reef in the South China Sea to investigate the bacterial communities. The results of an alpha diversity analysis showed that bacterial diversities associated with massive corals were generally higher than those with branching corals at different taxonomic levels (phylum, class, order, and so on. In addition, hierarchical clustering tree and PCoA analyses showed that coral species were clustered into two large groups according to the similarity of bacterial communities. Group I consisted of massive Goniastrea, Plesiastrea, Leptastrea, Platygyra, Echinopora, Porites, and Leptoria, and group II consisted of branching Acropora and Pocillopora. These findings suggested that both massive corals and branching corals have their own preference for the choice of associated bacteria, which may be involved in observed differences in thermal/cold tolerances. Further analysis found that 55 bacterial phyla, including 43 formally described phyla and 12 candidate phyla, were detected in these coral species. Among them, 52 phyla were recovered from the massive coral group, and 46 phyla were recovered from the branching coral group. Formally described coral pathogens have not been detected in these coral species, suggesting that they are less likely to be threatened by disease in this geographic area. This study highlights a clear relationship between the high complexity of bacterial community associated with coral, skeletal morphology of coral and potentially tolerances to thermal or cold stress.

  3. Immunity through early development of coral larvae.

    Science.gov (United States)

    Palmer, C V; Graham, E; Baird, A H

    2012-10-01

    As a determinant of survival, immunity is likely to be significant in enabling coral larvae to disperse and successfully recruit, however, whether reef-building coral larvae have immune defenses is unknown. We investigated the potential presence and variation in immunity in the lecithotrophic larvae of Acropora tenuis through larval development. Enzymes indicative of tyrosinase and laccase-type melanin-synthesis were quantified, and the concentration of three coral fluorescent proteins was measured over six developmental stages; egg, embryo, motile planula, planula post-exposure to crustose coralline algae (CCA; settlement cue), settled, settled post-exposure to Symbiodinium (endosymbiont). Both types of melanin-synthesis pathways and the three fluorescent proteins were present in A. tenuis throughout development. Laccase-type activity and red fluorescence increased following exposure of planula to CCA, whereas tyrosinase-type activity and cyan fluorescence increased following settlement. No change was detected in the measured parameters following exposure to Symbiodinium. This study is the first to document coral larval immune responses and suggests the melanin-synthesis pathways have disparate roles-the laccase-type potentially non-immunological and the tyrosinase-type in cytotoxic defense. Our results indicate that corals have the potential to resist infection from the earliest life history phase. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. DMSP in Corals and Benthic Algae from the Great Barrier Reef

    Science.gov (United States)

    Broadbent, A. D.; Jones, G. B.; Jones, R. J.

    2002-10-01

    In this study the first measurements of DMSP in six species of corals and ten species of benthic algae collected from four coral reefs in the Great Barrier Reef are reported, together with DMSP measurements made on cultured zooxanthellae. Concentrations ranged from 21 to 3831 (mean=743) fmol DMSP zooxanthellae -1 in corals, 0·16 to 2·96 nmol DMSP cm -2 (mean=90) for benthic macroalgae, and 48-285 fmol DMSP zooxanthellae -1 (mean=153) for cultured zooxanthellae. The highest concentrations of DMSP in corals occurred in Acropora formosa (mean=371 fmol DMSP zooxanthellae -1) and Acropora palifera (mean=3341 fmol DMSP zooxanthellae -1) with concentrations in A. palifera the highest DMSP concentrations reported in corals examined to date. As well as inter-specific differences in DMSP, intra-specific variation was also observed. Adjacent colonies of A. formosa that are known to have different thermal bleaching thresholds and morphologically distinct zooxanthellae, were also observed to have different DMSP concentrations, with the zooxanthellae in the colony that bleached containing DMSP at an average concentration of 436 fmol zooxanthellae -1, whilst the non-bleaching colony contained DMSP at an average concentration of 171 fmol zooxanthellae -1. The results of the present study have been used to calculate the area normalized DMSP concentrations in benthic algae (mean=0·015 mmol m -2) and corals (mean=2·22 mmol m -2) from the GBR. This data indicates that benthic algae and corals are a significant reservoir of DMSP in GBR waters.

  5. Spatial and temporal variations in coral growth on an inshore turbid reef subjected to multiple disturbances.

    Science.gov (United States)

    Browne, N K

    2012-06-01

    Coral growth rates (linear extension, density, calcification rates) of three fast-growing corals (Acropora, Montipora, Turbinaria) were studied in situ on Middle Reef, an inshore reef located on the central Great Barrier Reef (GBR), to assess the influence of changing environmental conditions on coral condition and reef growth. Middle Reef is subjected to both local (e.g. high sediment loads) and global (e.g. coral bleaching) disturbance events, usually associated with reduced coral growth. Results indicated, however, that Acropora growth rates (mean linear extension = 6.3 cm/year) were comparable to those measured at similar depths on offshore reefs on the GBR. Montipora linear extension (2.9 cm/year) was greater than estimates available from both clear-water and turbid reefs, and Turbinaria's dense skeleton (1.3 g/cm(3)) may be more resilient to physical damage as ocean pH falls. Coral growth was found to vary between reef habitats due to spatial differences in water motion and sediment dynamics, and temporally with lower calcification rates during the summer months when SSTs (monthly average 29 °C) and rainfall (monthly total >500 mm) were high. In summary, corals on Middle Reef are robust and resilient to their marginal environmental conditions, but are susceptible to anthropogenic disturbances during the summer months.

  6. Stable and sporadic symbiotic communities of coral and algal holobionts.

    Science.gov (United States)

    Hester, Eric R; Barott, Katie L; Nulton, Jim; Vermeij, Mark Ja; Rohwer, Forest L

    2016-05-01

    Coral and algal holobionts are assemblages of macroorganisms and microorganisms, including viruses, Bacteria, Archaea, protists and fungi. Despite a decade of research, it remains unclear whether these associations are spatial-temporally stable or species-specific. We hypothesized that conflicting interpretations of the data arise from high noise associated with sporadic microbial symbionts overwhelming signatures of stable holobiont members. To test this hypothesis, the bacterial communities associated with three coral species (Acropora rosaria, Acropora hyacinthus and Porites lutea) and two algal guilds (crustose coralline algae and turf algae) from 131 samples were analyzed using a novel statistical approach termed the Abundance-Ubiquity (AU) test. The AU test determines whether a given bacterial species would be present given additional sampling effort (that is, stable) versus those species that are sporadically associated with a sample. Using the AU test, we show that coral and algal holobionts have a high-diversity group of stable symbionts. Stable symbionts are not exclusive to one species of coral or algae. No single bacterial species was ubiquitously associated with one host, showing that there is not strict heredity of the microbiome. In addition to the stable symbionts, there was a low-diversity community of sporadic symbionts whose abundance varied widely across individual holobionts of the same species. Identification of these two symbiont communities supports the holobiont model and calls into question the hologenome theory of evolution.

  7. Long-wavelength photosensitivity in coral planula larvae.

    Science.gov (United States)

    Mason, Benjamin M; Cohen, Jonathan H

    2012-04-01

    Light influences the swimming behavior and settlement of the planktonic planula larvae of coral, but little is known regarding the photosensory biology of coral at this or any life-history stage. Here we used changes in the electrical activity of coral planula tissue upon light flashes to investigate the photosensitivity of the larvae. Recordings were made from five species: two whose larvae are brooded and contain algal symbionts (Porites astreoides and Agaricia agaricites), and three whose larvae are spawned and lack algal symbionts (Acropora cervicornis, Acropora palmata,and Montastrea faveolata). Photosensitivity originated from the coral larva rather than from, or in addition to, its algal symbionts as species with and without symbionts displayed similar tissue-level electrical responses to light. All species exhibited as much (or more) sensitivity to red stimuli as to blue/green stimuli, which is consistent with a role for long-wavelength visible light in the preference for substrata observed during settlement and in facilitating vertical positioning of larvae in the water column.

  8. Coral diseases and bleaching on Colombian Caribbean coral reefs

    Directory of Open Access Journals (Sweden)

    Raúl Navas-Camacho

    2010-05-01

    Full Text Available Since 1998 the National Monitoring System for the Coral Reefs of Colombia (SIMAC has monitored the occurrence of coral bleaching and diseases in some Colombian coral reefs (permanent stations at San Andres Island, Rosario Islands, Tayrona, San Bernardo Islands and Urabá. The main purpose is to evaluate their health status and to understand the factors that have been contributing to their decline. To estimate these occurrences, annual surveys in 126 permanent belt transects (10x2m with different depth intervals (3-6 meters, 9-12 meters and 15-18 meters are performed at all reef sites. Data from the 1998-2004 period, revealed that San Andrés Island had many colonies with diseases (38.9 colonies/m2, and Urabá had high numbers with bleaching (54.4 colonies/m2. Of the seven reported coral diseases studied, Dark Spots Disease (DSD, and White Plague Disease (WPD were noteworthy because they occurred in all Caribbean monitored sites, and because of their high interannual infection incidence. Thirty five species of scleractinian corals were affected by at least one disease and a high incidence of coral diseases on the main reef builders is documented. Bleaching was present in 34 species. During the whole monitoring period, Agaricia agaricites and Siderastrea siderea were the species most severely affected by DSD and bleaching, respectively. Diseases on species such as Agaricia fragilis, A.grahamae, A. humilis, Diploria clivosa, Eusmilia fastigiata, Millepora complanata, and Mycetophyllia aliciae are recorded for first time in Colombia. We present bleaching and disease incidences, kinds of diseases, coral species affected, reef localities studied, depth intervals of surveys, and temporal (years variation for each geographic area. This variation makes difficult to clearly determine defined patterns or general trends for monitored reefs. This is the first long-term study of coral diseases and bleaching in the Southwestern Caribbean, and one of the few

  9. Effects of ocean acidification on the potency of macroalgal allelopathy to a common coral

    Science.gov (United States)

    Del Monaco, Carlos; Hay, Mark E.; Gartrell, Patrick; Mumby, Peter J.; Diaz-Pulido, Guillermo

    2017-02-01

    Many coral reefs have phase shifted from coral to macroalgal dominance. Ocean acidification (OA) due to elevated CO2 is hypothesised to advantage macroalgae over corals, contributing to these shifts, but the mechanisms affecting coral-macroalgal interactions under OA are unknown. Here, we show that (i) three common macroalgae are more damaging to a common coral when they compete under CO2 concentrations predicted to occur in 2050 and 2100 than under present-day conditions, (ii) that two macroalgae damage corals via allelopathy, and (iii) that one macroalga is allelopathic under conditions of elevated CO2, but not at ambient levels. Lipid-soluble, surface extracts from the macroalga Canistrocarpus (=Dictyota) cervicornis were significantly more damaging to the coral Acropora intermedia growing in the field if these extracts were from thalli grown under elevated vs ambient concentrations of CO2. Extracts from the macroalgae Chlorodesmis fastigiata and Amansia glomerata were not more potent when grown under elevated CO2. Our results demonstrate increasing OA advantages seaweeds over corals, that algal allelopathy can mediate coral-algal interactions, and that OA may enhance the allelopathy of some macroalgae. Other mechanisms also affect coral-macroalgal interactions under OA, and OA further suppresses the resilience of coral reefs suffering blooms of macroalgae.

  10. Effects of ocean acidification on the potency of macroalgal allelopathy to a common coral

    Science.gov (United States)

    Del Monaco, Carlos; Hay, Mark E.; Gartrell, Patrick; Mumby, Peter J.; Diaz-Pulido, Guillermo

    2017-01-01

    Many coral reefs have phase shifted from coral to macroalgal dominance. Ocean acidification (OA) due to elevated CO2 is hypothesised to advantage macroalgae over corals, contributing to these shifts, but the mechanisms affecting coral-macroalgal interactions under OA are unknown. Here, we show that (i) three common macroalgae are more damaging to a common coral when they compete under CO2 concentrations predicted to occur in 2050 and 2100 than under present-day conditions, (ii) that two macroalgae damage corals via allelopathy, and (iii) that one macroalga is allelopathic under conditions of elevated CO2, but not at ambient levels. Lipid-soluble, surface extracts from the macroalga Canistrocarpus (=Dictyota) cervicornis were significantly more damaging to the coral Acropora intermedia growing in the field if these extracts were from thalli grown under elevated vs ambient concentrations of CO2. Extracts from the macroalgae Chlorodesmis fastigiata and Amansia glomerata were not more potent when grown under elevated CO2. Our results demonstrate increasing OA advantages seaweeds over corals, that algal allelopathy can mediate coral-algal interactions, and that OA may enhance the allelopathy of some macroalgae. Other mechanisms also affect coral-macroalgal interactions under OA, and OA further suppresses the resilience of coral reefs suffering blooms of macroalgae. PMID:28145458

  11. Dicty_cDB: Contig-U04090-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 585572 ) C009-G5 Acropora millepora presettlement library ... 54 8e-06 2 ( AY0964...(XYZ) Jerusalem artichoke H... 42 0.002 2 ( DY585594 ) C010-A3 Acropora millepora presettlement library ...

  12. Biology of corals and coral reefs

    Digital Repository Service at National Institute of Oceanography (India)

    Rajkumar, R.; Parulekar, A.H.

    This chapter deals with biology of corals, coral reefs (in general) and coral reefs of the Indian Ocean. Biology of corals is lucidly dealt with, beginning from the clarification on hermatypic and ahermatypic forms. A complete account...

  13. 南海三亚湾鹿回头海域风信子鹿角珊瑚反射率分析%Analysis of reflectance by Acropora hyacinthus in Luhuitou, Sanya of the South China Sea

    Institute of Scientific and Technical Information of China (English)

    陈标; 陈永强; 黄晖; 谢强; 江玉凤; 雷新明; 江雷; 张诗泽; 周国伟

    2015-01-01

    An application of remote sensing in monitoring and management of coral was developed with reflectance identification of coral substrate. Some foreign scholars have discriminated reflectance of coral substrate, while the reflectance of different coral substrate discrimination in the South China Sea did not exist. This study explored reflectance of Acropora hyacinthus at Luhuitou Sanya using spectrum instrument. Healthy Acropora hyacinthus exhibited positive reflectance features at 570, 600 and 650 nm. Reflectance by dead Acropora hyacinthus was obviously higher than that by healthy Acropora hyacinthus, and did not jave positive reflectance features. The differential analysis of coral substrate reflectance use PRIMER6 software packages Clustering. Healthy Acropora hyacinthus reflectance, dead Acropora hyacinthus reflectance and sand reflectance can be distinguished at the level of 80% Bray-Curits similarity. Based on reflectance derivative analysis, the first derivative of reflectance between 490 and 560 nm provided good identification of healthy and dead Acropora hyacinthus.%珊瑚礁反射率特征识别工作的开展,将促进遥感技术在珊瑚礁监测与管理中的应用。国外已有学者对特定区域不同珊瑚礁底质反射率进行识别分类,而我国珊瑚礁反射率特征研究尚未见诸报道,亟须相关研究来弥补这一空白。文章以南海三亚湾鹿回头海域常见风信子鹿角珊瑚Acropora hyacinthus为主要研究对象,利用光谱仪测量其反射率。分析发现健康风信子鹿角珊瑚反射率在575、605、650nm 处出现特征波峰;死亡风信子鹿角珊瑚反射率明显高于健康风信子鹿角珊瑚反射率。利用大型多元统计软件PRIMER 6对健康风信子鹿角珊瑚、死亡风信子鹿角珊瑚、珊瑚礁底砂进行 Bray-Curtis 相似聚类(CLUSTER)分析,结果显示,在80%相似水平上可以对其进行区分。一阶导数分析表明健康与死亡风信子

  14. Coral mass spawning predicted by rapid seasonal rise in ocean temperature.

    Science.gov (United States)

    Keith, Sally A; Maynard, Jeffrey A; Edwards, Alasdair J; Guest, James R; Bauman, Andrew G; van Hooidonk, Ruben; Heron, Scott F; Berumen, Michael L; Bouwmeester, Jessica; Piromvaragorn, Srisakul; Rahbek, Carsten; Baird, Andrew H

    2016-05-11

    Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R(2) = 0.73, peak: R(2) = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success.

  15. Coral mass spawning predicted by rapid seasonal rise in ocean temperature

    KAUST Repository

    Keith, Sally A.

    2016-05-11

    Coral spawning times have been linked to multiple environmental factors; however, to what extent these factors act as generalized cues across multiple species and large spatial scales is unknown. We used a unique dataset of coral spawning from 34 reefs in the Indian and Pacific Oceans to test if month of spawning and peak spawning month in assemblages of Acropora spp. can be predicted by sea surface temperature (SST), photosynthetically available radiation, wind speed, current speed, rainfall or sunset time. Contrary to the classic view that high mean SST initiates coral spawning, we found rapid increases in SST to be the best predictor in both cases (month of spawning: R2 = 0.73, peak: R2 = 0.62). Our findings suggest that a rapid increase in SST provides the dominant proximate cue for coral mass spawning over large geographical scales. We hypothesize that coral spawning is ultimately timed to ensure optimal fertilization success.

  16. Microenvironment and Photosynthesis of Zooxanthellae in Scleractinian Corals Studied with Microsensors for O-2, Ph and Light Rid A-1977-2009 Rid B-5428-2008

    DEFF Research Database (Denmark)

    KUHL, M.; COHEN, Y.; DALSGAARD, T.

    1995-01-01

    During experimental Light-dark cycles, O-2 in the tissue of the colonial scleractinian corals Favia sp. and Acropora sp. reached >250% of air saturation after a few minutes in Light. Immediately after darkening, O-2 was depleted rapidly, and within 5 min the O-2 concentration at the tissue surfac...

  17. Monitored and modeled coral population dynamics and the refuge concept.

    Science.gov (United States)

    Riegl, B; Purkis, S J; Keck, J; Rowlands, G P

    2009-01-01

    With large-scale impacts on coral reefs due to global climatic change projected to increase dramatically, and suitability of many areas for reef growth projected to decrease, the question arises whether particular settings might serve as refugia that can maintain higher coral populations than surrounding areas. We examine this hypothesis on a small, local scale in Honduras, western Caribbean. Dense coral thickets containing high numbers of the endangered coral Acropora cervicornis occur on offshore banks while being rare on the fringing reef on nearby Roatán. Geomorphological setting and community dynamics were evaluated and monitored from 1996 to 2005. A model of population dynamics was developed to test assumptions derived from monitoring. Coral cover on the fringing reef declined in 1998 from >30% to causes good flushing. Only four A. cervicornis recruits were recorded on the fringing reef over 6 years. Runoff associated with hurricanes caused greater mortality than did bleaching in 1998 and 2005 on the fringing reef, but not on the banks. Since 1870, our analysis suggests that corals on the banks may have been favored during 17 runoff events associated with tropical depressions and storms and potentially also during five bleaching events, but this is more uncertain. Our model suggests that under this disturbance regime, the banks will indeed maintain higher coral populations than the fringing reef and supports the assumption that offshore banks could serve as refugia with the capacity to subsidize depleted mainland populations.

  18. Selective feeding by coral reef fishes on coral lesions associated with brown band and black band disease

    Science.gov (United States)

    Chong-Seng, K. M.; Cole, A. J.; Pratchett, M. S.; Willis, B. L.

    2011-06-01

    Recent studies have suggested that corallivorous fishes may be vectors for coral disease, but the extent to which fishes actually feed on and thereby potentially transmit coral pathogens is largely unknown. For this study, in situ video observations were used to assess the level to which fishes fed on diseased coral tissues at Lizard Island, northern Great Barrier Reef. Surveys conducted at multiple locations around Lizard Island revealed that coral disease prevalence, especially of brown band disease (BrB), was higher in lagoon and backreef locations than in exposed reef crests. Accordingly, video cameras were deployed in lagoon and backreef habitats to record feeding by fishes during 1-h periods on diseased sections of each of 44 different coral colonies. Twenty-five species from five fish families (Blennidae, Chaetodontidae, Gobiidae, Labridae and Pomacentridae) were observed to feed on infected coral tissues of staghorn species of Acropora that were naturally infected with black band disease (BBD) or brown band disease (BrB). Collectively, these fishes took an average of 18.6 (±5.6 SE) and 14.3 (±6.1 SE) bites per hour from BBD and BrB lesions, respectively. More than 40% (408/948 bites) and nearly 25% (314/1319 bites) of bites were observed on lesions associated with BBD and BrB, respectively, despite these bands each representing only about 1% of the substratum available. Moreover, many corallivorous fishes ( Labrichthys unilineatus, Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. trifascialis, Cheiloprion labiatus) selectively targeted disease lesions over adjacent healthy coral tissues. These findings highlight the important role that reef fishes may play in the dynamics of coral diseases, either as vectors for the spread of coral disease or in reducing coral disease progression through intensive and selective consumption of diseased coral tissues.

  19. Dicty_cDB: SHJ393 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 1554 |AR551554.1 Sequence 6685 from patent US 6747137. 58 3e-04 1 DY586119 |DY586119.1 GS01JG03 Acropora millepora presettlement... |DY586847.1 GS01OG04 Acropora millepora presettlement library GS01 Acropora mill...epora cDNA clone GS01OG04, mRNA sequence. 38 0.029 2 DY587622 |DY587622.1 GS01YD02 Acropora millepora presettlement

  20. Bacteria associated with an encrusting sponge (Terpios hoshinota) and the corals partially covered by the sponge.

    Science.gov (United States)

    Tang, Sen-Lin; Hong, Mei-Jhu; Liao, Ming-Hui; Jane, Wann-Neng; Chiang, Pei-Wen; Chen, Chung-Bin; Chen, Chaolun A

    2011-05-01

    Terpios hoshinota, a dark encrusting sponge, is known to be a competitor for space in coral reef environments, and facilitates the death of corals. Although numerous cyanobacteria have been detected in the sponge, little is known of the sponge-associated bacterial community. This study examined the sponge-associated bacterial community and the difference between the bacterial communities in the sponge and the coral partially covered by the sponge by analysis of 16S rRNA gene sequences of samples isolated from the sponge covering the corals Favia complanata, Isopora palifera, Millepora sp., Montipora efflorescens and Porites lutea. The sponge-associated bacterial community was mainly (61-98%) composed of cyanobacteria, with approximately 15% of these alphaproteobacteria and gammaproteobacteria, although the proportions varied in different sponge samples. The dominant cyanobacteria group was an isolated group closely related to Prochloron sp. The comparison of the bacterial communities isolated from sponge-free and the sponge-covered P. lutea showed that covering by the sponge caused changes in the coral-associated bacterial communities, with the presence of bacteria similar to those detected in black-band disease, suggesting the sponge might benefit from the presence of bacteria associated with unhealthy coral, particularly in the parts of the coral closest to the margin of the sponge.

  1. Rapid phase-shift reversal on a Jamaican coral reef

    Science.gov (United States)

    Idjadi, Joshua A.; Lee, Sarah C.; Bruno, John F.; Precht, William F.; Allen-Requa, Laurie; Edmunds, Peter J.

    2006-05-01

    Many Caribbean reefs have experienced a phase-shift in community structure, the principle features being a decline in coral cover and an increase in macroalgal biomass. However, one Jamaican reef—Dairy Bull on the north shore near Discovery Bay—is once again dominated by scleractinian corals and several key species have returned. Living coral cover at 6 8 m depth at Dairy Bull has doubled over the past 9 years and is now ~54%. The absolute cover of Acropora cervicornis was <1% in 1995, but increased to ~11% by January 2004. During this time the cover of macroalgae decreased by 90%, from 45 to 6%. We speculate that long-lived colonies of Montastraea annularis may have facilitated the recovery of this reef by providing structural refugia.

  2. The role of skeletal micro-architecture in diagenesis and dating of Acropora palmata

    Science.gov (United States)

    Tomiak, P. J.; Andersen, M. B.; Hendy, E. J.; Potter, E. K.; Johnson, K. G.; Penkman, K. E. H.

    2016-06-01

    Past variations in global sea-level reflect continental ice volume, a crucial factor for understanding the Earth's climate system. The Caribbean coral Acropora palmata typically forms dense stands in very shallow water and therefore fossil samples mark past sea-level. Uranium-series methods are commonly used to establish a chronology for fossil coral reefs, but are compromised by post mortem diagenetic changes to coral skeleton. Current screening approaches are unable to identify all altered samples, whilst models that attempt to correct for 'open-system' behaviour are not applicable across all diagenetic scenarios. In order to better understand how U-series geochemistry varies spatially with respect to diagenetic textures, we examine these aspects in relation to skeletal micro-structure and intra-crystalline amino acids, comparing an unaltered modern coral with a fossil A. palmata colony containing zones of diagenetic alteration (secondary overgrowth of aragonite, calcite cement and dissolution features). We demonstrate that the process of skeletogenesis in A. palmata causes heterogeneity in porosity, which can account for the observed spatial distribution of diagenetic features; this in turn explains the spatially-systematic trends in U-series geochemistry and consequently, U-series age. We propose a scenario that emphasises the importance of through-flow of meteoric waters, invoking both U-loss and absorption of mobilised U and Th daughter isotopes. We recommend selective sampling of low porosity A. palmata skeleton to obtain the most reliable U-series ages. We demonstrate that intra-crystalline amino acid racemisation (AAR) can be applied as a relative dating tool in Pleistocene A. palmata samples that have suffered heavy dissolution and are therefore unsuitable for U-series analyses. Based on relatively high intra-crystalline concentrations and appropriate racemisation rates, glutamic acid and valine are most suited to dating mid-late Pleistocene A. palmata

  3. Symbiosis increases coral tolerance to ocean acidification

    Directory of Open Access Journals (Sweden)

    S. Ohki

    2013-04-01

    Full Text Available Increasing the acidity of ocean waters will directly threaten calcifying marine organisms such as reef-building scleractinian corals, and the myriad of species that rely on corals for protection and sustenance. Ocean pH has already decreased by around 0.1 pH units since the beginning of the industrial revolution, and is expected to decrease by another 0.2–0.4 pH units by 2100. This study mimicked the pre-industrial, present, and near-future levels of pCO2 using a precise control system (±5% pCO2, to assess the impact of ocean acidification on the calcification of recently-settled primary polyps of Acropora digitifera, both with and without symbionts, and adult fragments with symbionts. The increase in pCO2 of 100 μatm between the pre-industrial period and the present had more effect on the calcification rate of adult A. digitifera than the anticipated future increases of several hundreds of micro-atmospheres of pCO2. The primary polyps with symbionts showed higher calcification rates than primary polyps without symbionts, suggesting that (i primary polyps housing symbionts are more tolerant to near-future ocean acidification than organisms without symbionts, and (ii corals acquiring symbionts from the environment (i.e. broadcasting species will be more vulnerable to ocean acidification than corals that maternally acquire symbionts.

  4. Examination of species boundaries in the Acropora cervicornis group (Scleractinia, cnidaria) using nuclear DNA sequence analyses.

    Science.gov (United States)

    Oppen, M J; Willis, B L; Vugt, H W; Miller, D J

    2000-09-01

    Although Acropora is the most species-rich genus of the scleractinian (stony) corals, only three species occur in the Caribbean: A. cervicornis, A. palmata and A. prolifera. Based on overall coral morphology, abundance and distribution patterns, it has been suggested that A. prolifera may be a hybrid between A. cervicornis and A. palmata. The species boundaries among these three morphospecies were examined using DNA sequence analyses of the nuclear Pax-C 46/47 intron and the ribosomal DNA Internal Transcribed Spacer (ITS1 and ITS2) and 5.8S regions. Moderate levels of sequence variability were observed in the ITS and 5.8S sequences (up to 5.2% overall sequence difference), but variability within species was as large as between species and all three species carried similar sequences. Since this is unlikely to represent a shared ancestral polymorphism, the data suggest that introgressive hybridization occurs among the three species. For the Pax-C intron, A. cervicornis and A. palmata had very distinct allele frequencies and A. cervicornis carried a unique allele at a frequency of 0.769 (although sequence differences between alleles were small). All A. prolifera colonies examined were heterozygous for the Pax-C intron, whereas heterozygosity was only 0.286 and 0.333 for A. cervicornis and A. palmata, respectively. These data support the hypothesis that A. prolifera is the product of hybridization between two species that have a different allelic composition for the Pax-C intron, i.e. A. cervicornis and A. palmata. We therefore suggest that A. prolifera is a hybrid between A. cervicornis and A. palmata, which backcrosses with the parental species at low frequency.

  5. Reef-coral refugia in a rapidly changing ocean.

    Science.gov (United States)

    Cacciapaglia, Chris; van Woesik, Robert

    2015-06-01

    This study sought to identify climate-change thermal-stress refugia for reef corals in the Indian and Pacific Oceans. A species distribution modeling approach was used to identify refugia for 12 coral species that differed considerably in their local response to thermal stress. We hypothesized that the local response of coral species to thermal stress might be similarly reflected as a regional response to climate change. We assessed the contemporary geographic range of each species and determined their temperature and irradiance preferences using a k-fold algorithm to randomly select training and evaluation sites. That information was applied to downscaled outputs of global climate models to predict where each species is likely to exist by the year 2100. Our model was run with and without a 1°C capacity to adapt to the rising ocean temperature. The results show a positive exponential relationship between the current area of habitat that coral species occupy and the predicted area of habitat that they will occupy by 2100. There was considerable decoupling between scales of response, however, and with further ocean warming some 'winners' at local scales will likely become 'losers' at regional scales. We predicted that nine of the 12 species examined will lose 24-50% of their current habitat. Most reductions are predicted to occur between the latitudes 5-15°, in both hemispheres. Yet when we modeled a 1°C capacity to adapt, two ubiquitous species, Acropora hyacinthus and Acropora digitifera, were predicted to retain much of their current habitat. By contrast, the thermally tolerant Porites lobata is expected to increase its current distribution by 14%, particularly southward along the east and west coasts of Australia. Five areas were identified as Indian Ocean refugia, and seven areas were identified as Pacific Ocean refugia for reef corals under climate change. All 12 of these reef-coral refugia deserve high-conservation status. © 2015 John Wiley & Sons Ltd.

  6. Reproduction Patterns of Scleractinian Corals in the Central Red Sea

    KAUST Repository

    Bouwmeester, Jessica

    2013-12-01

    Early work on the reproductive seasonality of corals in the Red Sea suggested that corals exhibit temporal reproductive isolation, unlike on the Great Barrier Reef where many species spawn in synchrony. More recent work has however shown high synchrony in the maturity of gametes in Acropora species, suggesting multi-specific spawning is likely to occur in the Red Sea. In this thesis I investigate the patterns of coral reproduction in the central Red Sea. The spawning season in the central Red Sea lasts four months, from April to July and spawning occurs on nights around the full moon. During this period Acropora species show a peak of spawning in April, with some species spawning again in May. The level of synchrony, quantified with a spawning synchrony index, is comparable to other locations where multi-specific spawning has been reported. Observations over two consecutive years show that the synchrony of spawning was lower in spring 2012 than in spring 2011, and thus that spawning patterns are variable from one year to the other. Coral settlement patterns on artificial substrata confirmed a main spawning season in the spring but also supported reproductive data suggesting that some Porites spawn in October-November. Settlement was studied over 2.5 years on a reef, which had suffered recently from high mortality after a local bleaching event. Settlement appeared low but post-bleaching studies from other locations indicated similar abundances and showed that recruits generally did not increase until 5 years after the bleaching event. Abundance of juvenile corals however started to increase significantly three years after the bleaching. Successful recruitment, although low suggests that the coral assemblage on the affected reef will most likely recover as long as it is not affected by another disturbance.

  7. Skeletal development in Acropora cervicornis: I. Patterns of calcium carbonate accretion in the axial corallite

    Science.gov (United States)

    Gladfeiter, E. H.

    1982-06-01

    Scanning electron microscopy and serial petrographic thin sections were used to investigate skeletal elongation and mineralization in the perforate coral, Acropora cervicornis. The axial corallite extends by the formation of randomly oriented fusiform crystals which are deposited on its distal edge. Aragonitic needle-like crystals grow in random directions from the surface of these fusiform crystals. Only those needle-like crystals growing toward the calicoblastic epithelium (i.e. crystals whose growth axis is perpendicular to the plane of the calicoblastic cell membrane) continue to elongate. Groups of these growing crystals join to form well-defined fasciculi which make up the primary skeletal elements comprising the septotheca. The resulting skeleton is highly porous with all surfaces covered by the continuous calicoblastic epithelium. This cell layer is separated by thin mesoglea from the flagellated gastrodermis which lines the highly ramified coelenteron. Porosity and permeability of the skeleton decrease with distance from the tip. Density correspondingly increases due to the addition of aragonite to the fasciculi whose boundaries become less distinct as channels fill with calcium carbonate.

  8. Allelopathic interactions between the brown algal genus Lobophora (Dictyotales, Phaeophyceae) and scleractinian corals

    Science.gov (United States)

    Vieira, Christophe; Thomas, Olivier P.; Culioli, Gérald; Genta-Jouve, Grégory; Houlbreque, Fanny; Gaubert, Julie; de Clerck, Olivier; Payri, Claude E.

    2016-01-01

    Allelopathy has been recently suggested as a mechanism by which macroalgae may outcompete corals in damaged reefs. Members of the brown algal genus Lobophora are commonly observed in close contact with scleractinian corals and have been considered responsible for negative effects of macroalgae to scleractinian corals. Recent field assays have suggested the potential role of chemical mediators in this interaction. We performed in situ bioassays testing the allelopathy of crude extracts and isolated compounds of several Lobophora species, naturally associated or not with corals, against four corals in New Caledonia. Our results showed that, regardless of their natural association with corals, organic extracts from species of the genus Lobophora are intrinsically capable of bleaching some coral species upon direct contact. Additionally, three new C21 polyunsaturated alcohols named lobophorenols A–C (1–3) were isolated and identified. Significant allelopathic effects against Acropora muricata were identified for these compounds. In situ observations in New Caledonia, however, indicated that while allelopathic interactions are likely to occur at the macroalgal-coral interface, Lobophora spp. rarely bleached their coral hosts. These findings are important toward our understanding of the importance of allelopathy versus other processes such as herbivory in the interaction between macroalgae and corals in reef ecosystems.

  9. Predicting coral species richness: the effect of input variables, diversity and scale.

    Science.gov (United States)

    Richards, Zoe T; Hobbs, Jean-Paul A

    2014-01-01

    Coral reefs are facing a biodiversity crisis due to increasing human impacts, consequently, one third of reef-building corals have an elevated risk of extinction. Logistic challenges prevent broad-scale species-level monitoring of hard corals; hence it has become critical that effective proxy indicators of species richness are established. This study tests how accurately three potential proxy indicators (generic richness on belt transects, generic richness on point-intercept transects and percent live hard coral cover on point-intercept transects) predict coral species richness at three different locations and two analytical scales. Generic richness (measured on a belt transect) was found to be the most effective predictor variable, with significant positive linear relationships across locations and scales. Percent live hard coral cover consistently performed poorly as an indicator of coral species richness. This study advances the practical framework for optimizing coral reef monitoring programs and empirically demonstrates that generic richness offers an effective way to predict coral species richness with a moderate level of precision. While the accuracy of species richness estimates will decrease in communities dominated by species-rich genera (e.g. Acropora), generic richness provides a useful measure of phylogenetic diversity and incorporating this metric into monitoring programs will increase the likelihood that changes in coral species diversity can be detected.

  10. Predicting coral species richness: the effect of input variables, diversity and scale.

    Directory of Open Access Journals (Sweden)

    Zoe T Richards

    Full Text Available Coral reefs are facing a biodiversity crisis due to increasing human impacts, consequently, one third of reef-building corals have an elevated risk of extinction. Logistic challenges prevent broad-scale species-level monitoring of hard corals; hence it has become critical that effective proxy indicators of species richness are established. This study tests how accurately three potential proxy indicators (generic richness on belt transects, generic richness on point-intercept transects and percent live hard coral cover on point-intercept transects predict coral species richness at three different locations and two analytical scales. Generic richness (measured on a belt transect was found to be the most effective predictor variable, with significant positive linear relationships across locations and scales. Percent live hard coral cover consistently performed poorly as an indicator of coral species richness. This study advances the practical framework for optimizing coral reef monitoring programs and empirically demonstrates that generic richness offers an effective way to predict coral species richness with a moderate level of precision. While the accuracy of species richness estimates will decrease in communities dominated by species-rich genera (e.g. Acropora, generic richness provides a useful measure of phylogenetic diversity and incorporating this metric into monitoring programs will increase the likelihood that changes in coral species diversity can be detected.

  11. The coral immune response facilitates protection against microbes during tissue regeneration.

    Science.gov (United States)

    van de Water, Jeroen A J M; Ainsworth, Tracy D; Leggat, William; Bourne, David G; Willis, Bette L; van Oppen, Madeleine J H

    2015-07-01

    Increasing physical damage on coral reefs from predation, storms and anthropogenic disturbances highlights the need to understand the impact of injury on the coral immune system. In this study, we examined the regulation of the coral immune response over 10 days following physical trauma artificially inflicted on in situ colonies of the coral Acropora aspera, simultaneously with bacterial colonization of the lesions. Corals responded to injury by increasing the expression of immune system-related genes involved in the Toll-like and NOD-like receptor signalling pathways and the lectin-complement system in three phases (coral-associated bacterial communities were evident following injury based on 16S rRNA gene amplicon pyrosequencing. Bacteria-specific fluorescence in situ hybridization also showed no evidence of bacterial colonization of the wound or regenerating tissues. Coral tissues showed near-complete regeneration of lesions within 10 days. This study demonstrates that corals exhibit immune responses that support rapid recovery following physical injury, maintain coral microbial homeostasis and prevent bacterial infestation that may compromise coral fitness. © 2015 John Wiley & Sons Ltd.

  12. Assessment of survival, mortality and recovery of coral reefs of East Kish Island, Persian Gulf.

    Science.gov (United States)

    Jami, M J; Salehduost, A; Negarestan, H

    2010-10-15

    Coral reefs are specialized communities that develop clear, well-lit tropical and subtropical water; they provide shelter and canopy for great variety of organisms, living in mean temperature of 20 degrees C. Coral Bleaching and mortality have been associated with elevated seawater temperature. The aim of the study was to investigate coral bleaching and evaluate health condition of the corals. Distribution of coral reefs around Kish Island was determined by the Timed Swim (TS) technique. This survey carried out in 2 times (May and October, 2009) in 2 depths of 3-5 m and 6-10 m. Two Divers swam in constant speed for a set amount of time in three dive sites. The timed swim survey around the Kish Island showed that the most healthy live hard coral assemblages were found in the site called Persian Gulf seaport, whereas the greatest percentage of bleached corals were located in Jurassic Park station, located at the southeast of the Island. Branching corals (Acropora sp.) were bleached among all 3 stations and no sign of recovery could be detected. In Big coral site suitable substrate for accumulation of living organisms including Echinometra mathaie (sea urchin) existed due to presence of great amount of algae on dead corals and rocks. Based on the observation, it seems that the cause of reef destruction in Kish Island fall in to two categories, natural and human impacts.

  13. The effects of four transplantation methods on five coral species at the Sanya Bay

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuyang; HUANG Hui; HUANG Jieying; YOU Feng; LIAN Jiansheng; YANG Jianhui; WEN Colin K C

    2016-01-01

    Coral transplantation is considered as one of the major tools to increase coral abundance for degraded coral reefs. To investigate the effects of various methods and coral species in transplantation, coral fragments (n=902) of five coral species were transplanted by four methods at Luhuitou, the Sanya Bay, Hainan Province, China, where the reef has been over-exploited and is still threatened by human activities and natural disasters. Ten months after the transplant, the average survivorship of the transplanted corals was 45.5%. Methodologies had different effects on the transplanted corals, but none of them was efficacious for all coral species. Methodology could not change the decreasing trend for Montipora foliosa and Acropora hyacinthus, although it did slow down their decline. All transplants of A. hyacinthus and M. foliosa had high mortalities and significant decrease on survival area, while Porites andrewsi and Galaxea fascicularis had lower mortalities and partial mortalities. Only one method had significant effect on increasing survival area of G. fascicularis, same as P. andrewsi. Out of the five transplanted coral species, Pocillopora damicornis was the only species that had living tissue area increase in all applied methods, while the others had decreased live tissue area in one or more methods. The results of this study suggested that performing coral transplantation in a highly threatened area was not efficient unless the threats were diminished or erased. Moreover, proper species selection for coral transplantation is crucial, especially in a disturbed environment. Methodology, although having limited effects on improving results of coral transplantation, cannot compensate the maladjustment of vulnerable species to the stresses on the Luhuitou Reef. Coral transplantation on Luhuitou Reef should not be performed unless the stresses are under controlled, and corals with good tolerance to the environment should be considered first.

  14. Dicty_cDB: Contig-U11401-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available 16032 ) Dictyostelium discoideum chromosome 2 map 4158743... 40 0.041 5 ( DY578663 ) A037-F7 Acropora millepora postsettlement...( DY578192 ) A021-G3 Acropora millepora postsettlement library... 32 0.14 5 ( DY5...79382 ) A042-B12 Acropora millepora postsettlement librar... 32 0.15 5 ( BX537270 ) Zebrafish DNA sequence f

  15. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury.

    Science.gov (United States)

    Bonesso, Joshua Louis; Leggat, William; Ainsworth, Tracy Danielle

    2017-01-01

    Elevated sea surface temperatures (SSTs) are linked to an increase in the frequency and severity of bleaching events due to temperatures exceeding corals' upper thermal limits. The temperatures at which a breakdown of the coral-Symbiodinium endosymbiosis (coral bleaching) occurs are referred to as the upper thermal limits for the coral species. This breakdown of the endosymbiosis results in a reduction of corals' nutritional uptake, growth, and tissue integrity. Periods of elevated sea surface temperature, thermal stress and coral bleaching are also linked to increased disease susceptibility and an increased frequency of storms which cause injury and physical damage to corals. Herein we aimed to determine the capacity of corals to regenerate and recover from injuries (removal of apical tips) sustained during periods of elevated sea surface temperatures which result in coral stress responses, but which do not result in coral bleaching (i.e., sub-bleaching thermal stress events). In this study, exposure of the species Acropora aspera to an elevated SST of 32 °C (2 °C below the bleaching threshold, 34 °C) was found to result in reduced fluorescence of green fluorescent protein (GFP), reduced skeletal calcification and a lack of branch regrowth at the site of injury, compared to corals maintained under ambient SST conditions (26 °C). Corals maintained under normal, ambient, sea surface temperatures expressed high GFP fluorescence at the injury site, underwent a rapid regeneration of the coral branch apical tip within 12 days of sustaining injury, and showed extensive regrowth of the coral skeleton. Taken together, our results have demonstrated that periods of sustained increased sea surface temperatures, below the corals' bleaching threshold but above long-term summertime averages, impair coral recovery from damage, regardless of the onset or occurrence of coral bleaching.

  16. Modern coral reefs of western Atlantic: new geological perspective

    Energy Technology Data Exchange (ETDEWEB)

    MacIntyre, I.G.

    1988-11-01

    Contrary to popular belief of the late 1960s, western Atlantic Holocene reefs have a long history and are not feeble novice nearshore veneers that barely survived postglacial temperatures. Rather, the growth of these reefs kept pace with the rising seas of the Holocene transgression and their development was, for the most part, controlled by offshore wave-energy conditions and the relationship between changing sea levels and local shelf topography. Thus, the outer shelves of the eastern Caribbean in areas of high energy have relict reefs consisting predominantly of Acropora palmata, a robust shallow-water coral. The flooding of adjacent shelves during the postglacial transgression introduced stress conditions that terminated the growth of these reefs. When, about 7000 yr ago, shelf-water conditions improved, scattered deeper water coral communities reestablished themselves on these stranded shelf-edge reefs, and fringing and bank-barrier reefs began to flourish in shallow coastal areas. At the same time, the fragile and rapidly growing Acropora cervicornis and other corals flourished at greater depths on the more protected shelves of the western Caribbean and the Gulf of Mexico. As a result, late Holocene buildups more than 30 m thick developed in those areas. 7 figures.

  17. Satellite SST-Based Coral Disease Outbreak Predictions for the Hawaiian Archipelago

    Directory of Open Access Journals (Sweden)

    Jamie M. Caldwell

    2016-01-01

    Full Text Available Predicting wildlife disease risk is essential for effective monitoring and management, especially for geographically expansive ecosystems such as coral reefs in the Hawaiian archipelago. Warming ocean temperature has increased coral disease outbreaks contributing to declines in coral cover worldwide. In this study we investigated seasonal effects of thermal stress on the prevalence of the three most widespread coral diseases in Hawai’i: Montipora white syndrome, Porites growth anomalies and Porites tissue loss syndrome. To predict outbreak likelihood we compared disease prevalence from surveys conducted between 2004 and 2015 from 18 Hawaiian Islands and atolls with biotic (e.g., coral density and abiotic (satellite-derived sea surface temperature metrics variables using boosted regression trees. To date, the only coral disease forecast models available were developed for Acropora white syndrome on the Great Barrier Reef (GBR. Given the complexities of disease etiology, differences in host demography and environmental conditions across reef regions, it is important to refine and adapt such models for different diseases and geographic regions of interest. Similar to the Acropora white syndrome models, anomalously warm conditions were important for predicting Montipora white syndrome, possibly due to a relationship between thermal stress and a compromised host immune system. However, coral density and winter conditions were the most important predictors of all three coral diseases in this study, enabling development of a forecasting system that can predict regions of elevated disease risk up to six months before an expected outbreak. Our research indicates satellite-derived systems for forecasting disease outbreaks can be appropriately adapted from the GBR tools and applied for a variety of diseases in a new region. These models can be used to enhance management capacity to prepare for and respond to emerging coral diseases throughout Hawai

  18. Habitat Selectivity and Reliance on Live Corals for Indo-Pacific Hawkfishes (Family: Cirrhitidae)

    KAUST Repository

    Coker, Darren James

    2015-11-03

    Hawkfishes (family: Cirrhitidae) are small conspicuous reef predators that commonly perch on, or shelter within, the branches of coral colonies. This study examined habitat associations of hawkfishes, and explicitly tested whether hawkfishes associate with specific types of live coral. Live coral use and habitat selectivity of hawkfishes was explored at six locations from Chagos in the central Indian Ocean extending east to Fiji in the Pacific Ocean. A total of 529 hawkfishes from seven species were recorded across all locations with 63% of individuals observed perching on, or sheltering within, live coral colonies. Five species (all except Cirrhitus pinnulatus and Cirrhitichthys oxycephalus) associated with live coral habitats. Cirrhitichthys falco selected for species of Pocillopora while Paracirrhites arcatus and P. forsteri selected for both Pocillopora and Acropora, revealing that these habitats are used disproportionately more than expected based on the local cover of these coral genera. Habitat selection was consistent across geographic locations, and species of Pocillopora were the most frequently used and most consistently selected even though this coral genus never comprised more than 6% of the total coral cover at any of the locations. Across locations, Paracirrhites arcatus and P. forsteri were the most abundant species and variation in their abundance corresponded with local patterns of live coral cover and abundance of Pocilloporid corals, respectively. These findings demonstrate the link between small predatory fishes and live coral habitats adding to the growing body of literature highlighting that live corals (especially erect branching corals) are critically important for sustaining high abundance and diversity of fishes on coral reefs.

  19. Coral reproduction on the world’s southernmost reef at Lord Howe Island, Australia

    DEFF Research Database (Denmark)

    Baird, Andrew H.; Cumbo, Vivian R.; Gudge, Sallyann

    2015-01-01

    Despite a recent expansion in the geographic extent of coral reproductive research, there remain many regions in the Indo-Pacific where knowledge is limited. For example, Lord Howe Island is the southernmost reef system in the world (31° S); however, very little is known of the reproductive biology...... of the coral fauna. Here, aspects of the reproductive biology and the timing of reproduction for 40 of the approximately 65 species that occur on Lord Howe Island are documented. In December 2010, field assessments of the stage of gamete maturity in Acropora spp. colonies suggested that 5 species spawned...

  20. An assessment of Qatar's coral communities in a regional context.

    Science.gov (United States)

    Burt, John A; Smith, Edward G; Warren, Christopher; Dupont, Jennifer

    2016-04-30

    Qatar's once extensive coral communities have undergone considerable change in recent decades. We quantitatively surveyed three coral assemblages in Qatar to assess current status, and compared these against 14 sites in Bahrain and the United Arab Emirates to evaluate Qatar in a larger biogeographic context. Umm Al-Arshan had the highest species richness of 17 sites examined in the southern Arabian Gulf, as well as the highest coral cover and the only Acropora observed on sites in Qatar. Coral cover and richness were more modest at Fuwayrit and Al-Ashat, reflecting greater impacts from earlier stress events. Two distinct communities were identified across the southern Gulf, with Umm Al-Arshan clustering with high-cover, mixed merulinid/poritid assemblages that were less impacted by earlier bleaching and long-term stress, while Fuwayrit and Al-Ashat grouped with a lower-cover, stress-tolerant community characteristic of more extreme environments in the southern Gulf. We recommend implementation of a nation-wide baseline assessment of coral communities to guide development of an MPA network and long-term coral monitoring program for Qatar.

  1. Assessing coral stress responses using molecular biomarkers of gene transcription.

    Science.gov (United States)

    Morgan, M B; Vogelien, D L; Snell, T W

    2001-03-01

    We present a method for detecting rapid changes in coral gene expression at the messenger ribonucleic acid (mRNA) level. The staghorn coral Acropora cervicornis was exposed to 1 and 10 microg/L permethrin and 25 and 50 microg/L copper for 4 h. Using differential display polymerase chain reaction (PCR), mRNA associated with each toxicant exposure were reverse transcribed into complementary DNA (cDNA) fragments that were subsequently amplified and isolated. Six differentially expressed cDNA fragments were further developed into molecular probes that were used in Northern dot blots to determine the change in transcription levels of target transcripts. Changes in mRNA abundance were quantified by densitometry of chemiluminescence of digoxigenin-labeled probes hybridizing to target mRNA transcripts. The six gene probes showed varying degrees of sensitivity to the toxicants as well as specificity between toxicants. These probes were hybridized in Southern blots to genomic DNA from A. formosa sperm, which lacks zooxanthellae, to demonstrate that the genes coding for the mRNA transcripts produced are found within the coral genome. The gene probes developed in this study provide coral biologists with a new tool for coral assessment. Gene probes are sensitive, toxicant-specific biomarkers of coral stress responses with which gene sequence information can be obtained, providing a mechanism for identifying the stressor altering the gene expression.

  2. Culture-dependent and culture-independent analyses reveal no prokaryotic community shifts or recovery of Serratia marcescens in Acropora palmata with white pox disease.

    Science.gov (United States)

    Lesser, Michael P; Jarett, Jessica K

    2014-06-01

    Recently, the etiological agent of white pox (WP) disease, also known as acroporid serratiosis, in the endangered coral Acropora palmata is the enteric bacterium Serratia marcescens with the source being localized sewage release onto coastal coral reef communities. Here, we show that both culture-dependent and culture-independent approaches could not recover this bacterium from samples of tissue and mucus from A. palmata colonies affected by WP disease in the Bahamas, or seawater collected adjacent to A. palmata colonies. Additionally, a metagenetic 16S rRNA pyrosequencing study shows no significant difference in the bacterial communities of coral tissues with and without WP lesions. As recent studies have shown for other coral diseases, S. marcescens cannot be identified in all cases of WP disease in several geographically separated populations of A. palmata with the same set of signs. As a result, its identification as the etiological agent of WP disease, and cause of a reverse zoonosis, cannot be broadly supported. However, the prevalence of WP disease associated with S. marcescens does appear to be associated with proximity to population centers, and research efforts should be broadened to examine this association, and to identify other causes of this syndrome.

  3. Is Acropora palmata recovering? A case study in Los Roques National Park, Venezuela

    Directory of Open Access Journals (Sweden)

    Aldo Croquer

    2016-01-01

    Full Text Available Eight years ago (2007, the distribution and status of Acropora palmata was quantified throughout Los Roques archipelago in Venezuela. The aim was to produce a baseline study for this species which combined population genetics with demographic data. The results highlighted that A. palmata had the potential to recover in at least 6 out of 10 sites surveyed. Recovery potential was assumed to be high at sites with a relatively high abundance of the coral, low disease prevalence, high genetic diversity, and high rates of sexual reproduction. However, as noted, Zubillaga et al. (2008 realized recovery was still strongly dependent on local and regional stressors. In 2014 (this study, the status of A. palmata was re-evaluated at Los Roques. We increased the number of sites from 10 in the original baseline study to 106. This allowed us to assess the population status throughout the entirety of the MPA. Furthermore, we also identified local threats that may have hindered population recovery. Here, we show that A. palmata now has a relatively restricted distribution throughout the park, only occurring in 15% of the sites surveyed. Large stands of old dead colonies were common throughout the archipelago; a result which demonstrates that this species has lost almost 50% of its original distribution over the past decades. The majority of corals recorded were large adults (∼2 m height, suggesting that these older colonies might be less susceptible or more resilient to local and global threats. However, 45% of these surviving colonies showed evidence of partial mortality and degradation of living tissues. Interestingly, the greatest increase in partial mortality occurred at sites with the lowest levels of protection ( ${X}_{o}^{2}=5.4> {X}_{c}^{2}=4.5$ X o 2 = 5.4 > X c 2 = 4.5 ; df = 4, p {X}_{\\mathrm{cri}}^{2}=15.5$ X exp 2 = 126.8 > X cri 2 = 15.5 ; df = 8; p < 0.05 in the density of A. palmata in sites that had previously been categorized as having a

  4. Is Acropora palmata recovering? A case study in Los Roques National Park, Venezuela.

    Science.gov (United States)

    Croquer, Aldo; Cavada-Blanco, Francoise; Zubillaga, Ainhoa L; Agudo-Adriani, Esteban A; Sweet, Michael

    2016-01-01

    Eight years ago (2007), the distribution and status of Acropora palmata was quantified throughout Los Roques archipelago in Venezuela. The aim was to produce a baseline study for this species which combined population genetics with demographic data. The results highlighted that A. palmata had the potential to recover in at least 6 out of 10 sites surveyed. Recovery potential was assumed to be high at sites with a relatively high abundance of the coral, low disease prevalence, high genetic diversity, and high rates of sexual reproduction. However, as noted, Zubillaga et al. (2008) realized recovery was still strongly dependent on local and regional stressors. In 2014 (this study), the status of A. palmata was re-evaluated at Los Roques. We increased the number of sites from 10 in the original baseline study to 106. This allowed us to assess the population status throughout the entirety of the MPA. Furthermore, we also identified local threats that may have hindered population recovery. Here, we show that A. palmata now has a relatively restricted distribution throughout the park, only occurring in 15% of the sites surveyed. Large stands of old dead colonies were common throughout the archipelago; a result which demonstrates that this species has lost almost 50% of its original distribution over the past decades. The majority of corals recorded were large adults (∼2 m height), suggesting that these older colonies might be less susceptible or more resilient to local and global threats. However, 45% of these surviving colonies showed evidence of partial mortality and degradation of living tissues. Interestingly, the greatest increase in partial mortality occurred at sites with the lowest levels of protection ([Formula: see text]; df = 4, p < 0.05). This may suggest there is a positive role of small scale marine management in assisting reef recovery. We also recorded a significant reduction ([Formula: see text]; df = 8; p < 0.05) in the density of A. palmata in sites

  5. The presence of biomarker enzymes of selected Scleractinian corals of Palk Bay, southeast coast of India.

    Science.gov (United States)

    Anithajothi, R; Duraikannu, K; Umagowsalya, G; Ramakritinan, C M

    2014-01-01

    The health and existence of coral reefs are in danger by an increasing range of environmental and anthropogenic impacts. The causes of coral reef decline include worldwide climate change, shoreline development, habitat destruction, pollution, sedimentation and overexploitation. These disasters have contributed to an estimated loss of 27% of the reefs. If the current pressure continues unabated, the estimated loss of coral reef will be about 60% by the year 2030. Therefore, the present study was aimed to analyze the enzymes involved in stress induced by coral pathogen and its resistance. We focused on the enzymes involved in melanin synthesis pathway (phenoloxidase (PO) and peroxidases (POD)) and free radical scavenging enzymes (super oxide dismutase (SOD), catalase (CAT)) and glutathione peroxidase (Gpx) in selected scleractinian corals such as Acropora formosa, Echinopora lamellosa, Favia favus, Favites halicora, Porites sp., and Anacropora forbesi. Overall, PO activity of coral was significantly lower than that of zooxanthellae except for Favia favus. Coral colonies with lower PO and POD activities are prone to disease. Maximum antioxidant defensive enzymes were observed in Favia favus followed by Echinopora lamellose. It is concluded that assay of these enzymes can be used as biomarkers for identifying the susceptibility of corals towards coral bleaching induced by pathogen.

  6. The Presence of Biomarker Enzymes of Selected Scleractinian Corals of Palk Bay, Southeast Coast of India

    Directory of Open Access Journals (Sweden)

    R. Anithajothi

    2014-01-01

    Full Text Available The health and existence of coral reefs are in danger by an increasing range of environmental and anthropogenic impacts. The causes of coral reef decline include worldwide climate change, shoreline development, habitat destruction, pollution, sedimentation and overexploitation. These disasters have contributed to an estimated loss of 27% of the reefs. If the current pressure continues unabated, the estimated loss of coral reef will be about 60% by the year 2030. Therefore, the present study was aimed to analyze the enzymes involved in stress induced by coral pathogen and its resistance. We focused on the enzymes involved in melanin synthesis pathway (phenoloxidase (PO and peroxidases (POD and free radical scavenging enzymes (super oxide dismutase (SOD, catalase (CAT and glutathione peroxidase (Gpx in selected scleractinian corals such as Acropora formosa, Echinopora lamellosa, Favia favus, Favites halicora, Porites sp., and Anacropora forbesi. Overall, PO activity of coral was significantly lower than that of zooxanthellae except for Favia favus. Coral colonies with lower PO and POD activities are prone to disease. Maximum antioxidant defensive enzymes were observed in Favia favus followed by Echinopora lamellose. It is concluded that assay of these enzymes can be used as biomarkers for identifying the susceptibility of corals towards coral bleaching induced by pathogen.

  7. Coral Reef Recovery Status in South Andaman Islands after the Bleaching Event 2010

    Institute of Scientific and Technical Information of China (English)

    N. Marimuthu; J. Jerald Wilson; N.V. Vinithkumar; R. Kirubagaran

    2013-01-01

    The Andaman and Nicobar Islands are one of the Union Territories of India,located in the eastern part of the Bay of Bengal.In 2010 summer,the increment in sea surface water temperature (up to 34℃) resulted in the bleaching of about 74% to 77% of corals in the South Andaman.During this event,coral species such as Acropora cerealis,A.humilis,Montipora sp.,Favia pallida,Diploastrea sp.,Goniopora sp.Fungia concinna,Gardineroseries sp.,Porites sp.,Favites abdita and Lobophyllia robusta were severely affected.This study is to assess the recovery status of the reef ecosystem by estimating the percentage of Live Coral cover,Bleached coral cover,Dead coral with algae,Rubble,Sandy fiat,Algal assemblage and other associated organisms.The sedimentation rate (mg cm-2 d-1) and coral coverage (%) were assessed during this study period.The average sedimentation rate was ranged between 0.27 and 0.89mg cm-2 d-1.The observed post bleaching recovery of coral cover was 21.1% at Port Blair Bay and 13.29% at Havelock Island.The mortality rate of coral cover due to this bleaching was estimated as 2.05% at Port Blair Bay and 9.82% at Havelock Island.Once the sea water temperature resumed back to the normal condition,most of the corals were found recovered.

  8. Ecological variables, including physiognomic-structural attributes, and classification of Indonesian coral reefs

    Science.gov (United States)

    Bak, R. P. M.; Povel, G. D. E.

    Communities are distinguished by biological and physical features, such as size and shape of organisms and dead substrata, which are characteristic expressions of the organizing forces in the community. We measured 87 of such features in 39 transects on seaward-facing reef slopes in the eastern Indonesian archipelago, but did not identify coral species. We aimed to identify the basic variables that are indispensable to classify coral reef communities. This would give ecological information on variation in reef communities and show exactly which data must be recorded in the field. Principal Component Analysis (PCA) of the data matrix showed the following variables to be important in the ordination of transects along the axes: coral colony shape, loose fragments, bare bottom, coral tissue wounds, rubble, sediment/rubble, crustose coralline algae, excavating sponge, miscellaneous organisms, coral overgrowth, interaction coral/non-coral, Acanthaster, maximum size coral colonies, tabular Acropora, massive Porites, fungiids, angle slope, and crevices. We used the transect data to define four groups of environmental conditions: 'sheltered', 'exposed' (to water movement), 'biologically disturbed' and 'physically disturbed'. Discriminant Analysis was employed to classify additional transects. It appeared that a minimum of 9 variables has to be measured in the field (rubble, thick branching corals, fungiids, sediment/rubble, two largest-colonies diameters, massive Porites, angle slope, Acanthaster) to assign transects to one of those groups (P Discriminant Analysis.

  9. Low sediment loads affect survival of coral recruits: the first weeks are crucial

    Science.gov (United States)

    Moeller, Mareen; Nietzer, Samuel; Schils, Tom; Schupp, Peter J.

    2017-03-01

    Increased sedimentation due to anthropogenic activities is a threat to many nearshore coral reefs. The effects on adult corals have been studied extensively and are well known. Studies about the impact of sedimentation on the early life stages of scleractinian corals, however, are rare although recruitment is essential for conserving and restoring coral reefs. Laboratory and in situ experiments with recruits of different age classes focused on the broadcast-spawning species Acropora hyacinthus and the brooding coral Leptastrea purpurea. Recruits were exposed to different sediment loads over three to five weeks. Applied sediment loads were more than one order of magnitude lower than those known to affect survival of adult coral colonies. Growth and survival of newly settled recruits were negatively affected by sediment loads that had no effect on the growth and survival of one-month-old recruits. All experiments indicated that newly settled coral recruits are most sensitive to sedimentation within the first two to four weeks post settlement. The co-occurrence of moderate sedimentation events during and immediately after periods of coral spawning can therefore reduce recruitment success substantially. These findings provide new information to develop comprehensive sediment management plans for the conservation and recovery of coral reefs affected by chronic or acute sedimentation events.

  10. Comparative Effects of Different Disturbances in Coral Reef Habitats in Moorea, French Polynesia

    Directory of Open Access Journals (Sweden)

    Mélanie L. Trapon

    2011-01-01

    Full Text Available Degradation and loss of critical coastal habitats has significant ramifications for marine fisheries, such that knowledge of changes in habitat quality and quantity are fundamental to effective ecosystem management. This study explores changes in the structure of coral reef habitats, specifically changes in coral cover and composition, in Moorea, French Polynesia, to assess the independent and combined effects of different disturbances since 1979. During this period, reefs on the north coast have been subject to coral bleaching, severe tropical storms, as well as outbreaks of Acanthaster. Coral cover varied significantly among years, showing marked declines during some, but not all, disturbances. The greatest rates of coral loss coincided with outbreaks of A. planci. Moreover, successive disturbances have had differential effects among coral genera, leading to strong directional shifts in coral composition. Acropora is declining in abundance and coral assemblages are becoming increasingly dominated by Pocillopora and Porites. Observed changes in the cover and composition of corals are likely to have further significant impacts on the reef fish assemblages. Given that significant disturbances have been mostly associated with outbreaks of A. planci, rather than climate change, effective ecosystem management may reduce and/or delay impending effects of climate change.

  11. The effects of coral bleaching on settlement preferences and growth of juvenile butterflyfishes.

    Science.gov (United States)

    Cole, A J; Lawton, R J; Pisapia, C; Pratchett, M S

    2014-07-01

    Coral bleaching and associated mortality is an increasingly prominent threat to coral reef ecosystems. Although the effects of bleaching-induced coral mortality on reef fishes have been well demonstrated, corals can remain bleached for several weeks prior to recovery or death and little is known about how bleaching affects resident fishes during this time period. This study compared growth rates of two species of juvenile butterflyfishes (Chaetodon aureofasciatus and Chaetodon lunulatus) that were restricted to feeding upon either bleached or healthy coral tissue of Acropora spathulata or Pocillopora damicornis. Coral condition (bleached vs. unbleached) had no significant effects on changes in total length or weight over a 23-day period. Likewise, in a habitat choice experiment, juvenile butterflyfishes did not discriminate between healthy and bleached corals, but actively avoided using recently dead colonies. These results indicate that juvenile coral-feeding fishes are relatively robust to short term effects of bleaching events, provided that the corals do recover. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  12. Variation in oxygen isotope ratio of dissolved orthophosphate induced by uptake process in natural coral holobionts

    Science.gov (United States)

    Ferrera, Charissa M.; Miyajima, Toshihiro; Watanabe, Atsushi; Umezawa, Yu; Morimoto, Naoko; San Diego-McGlone, Maria Lourdes; Nadaoka, Kazuo

    2016-06-01

    A model incubation experiment using natural zooxanthellate corals was conducted to evaluate the influence of phosphate uptake by coral holobionts on oxygen isotope ratio of dissolved PO4 3- (δ18Op). Live coral samples of Acropora digitifera, Porites cylindrica, and Heliopora coerulea were collected from coral reefs around Ishigaki Island (Okinawa, Japan) and Bolinao (northern Luzon, Philippines) and incubated for 3-5 d after acclimatization under natural light conditions with elevated concentrations of PO4 3-. Phosphate uptake by corals behaved linearly with incubation time, with uptake rate depending on temperature. δ18Op usually increased with time toward the equilibrium value with respect to oxygen isotope exchange with ambient seawater, but sometimes became higher than equilibrium value at the end of incubation. The magnitude of the isotope effect associated with uptake depended on coral species; the greatest effect was in A. digitifera and the smallest in H. coerulea. However, it varied even within samples of a single coral species, which suggests multiple uptake processes with different isotope effects operating simultaneously with varying relative contributions in the coral holobionts used. In natural environments where concentrations of PO4 3- are much lower than those used during incubation, PO4 3- is presumably turned over much faster and the δ18Op easily altered by corals and other major primary producers. This should be taken into consideration when using δ18Op as an indicator of external PO4 3- sources in coastal ecosystems.

  13. Coral reef recovery status in south Andaman Islands after the bleaching event 2010

    Science.gov (United States)

    Marimuthu, N.; Jerald Wilson, J.; Vinithkumar, N. V.; Kirubagaran, R.

    2013-03-01

    The Andaman and Nicobar Islands are one of the Union Territories of India, located in the eastern part of the Bay of Bengal. In 2010 summer, the increment in sea surface water temperature (up to 34°C) resulted in the bleaching of about 74% to 77% of corals in the South Andaman. During this event, coral species such as Acropora cerealis, A. humilis, Montipora sp., Favia pallida, Diploastrea sp., Goniopora sp. Fungia concinna, Gardineroseries sp., Porites sp., Favites abdita and Lobophyllia robusta were severely affected. This study is to assess the recovery status of the reef ecosystem by estimating the percentage of Live Coral cover, Bleached coral cover, Dead coral with algae, Rubble, Sandy flat, Algal assemblage and other associated organisms. The sedimentation rate (mg cm-2 d-1) and coral coverage (%) were assessed during this study period. The average sedimentation rate was ranged between 0.27 and 0.89 mg cm-2 d-1. The observed post bleaching recovery of coral cover was 21.1% at Port Blair Bay and 13.29% at Havelock Island. The mortality rate of coral cover due to this bleaching was estimated as 2.05% at Port Blair Bay and 9.82% at Havelock Island. Once the sea water temperature resumed back to the normal condition, most of the corals were found recovered.

  14. Biotic control of skeletal growth by scleractinian corals in aragonite-calcite seas.

    Directory of Open Access Journals (Sweden)

    Tomihiko Higuchi

    Full Text Available Modern scleractinian coral skeletons are commonly composed of aragonite, the orthorhombic form of CaCO3. Under certain conditions, modern corals produce calcite as a secondary precipitate to fill pore space. However, coral construction of primary skeletons from calcite has yet to be demonstrated. We report a calcitic primary skeleton produced by the modern scleractinian coral Acropora tenuis. When uncalcified juveniles were incubated from the larval stage in seawater with low mMg/Ca levels, the juveniles constructed calcitic crystals in parts of the primary skeleton such as the septa; the deposits were observable under Raman microscopy. Using scanning electron microscopy, we observed different crystal morphologies of aragonite and calcite in a single juvenile skeleton. Quantitative analysis using X-ray diffraction showed that the majority of the skeleton was composed of aragonite even though we had exposed the juveniles to manipulated seawater before their initial crystal nucleation and growth processes. Our results indicate that the modern scleractinian coral Acropora mainly produces aragonite skeletons in both aragonite and calcite seas, but also has the ability to use calcite for part of its skeletal growth when incubated in calcite seas.

  15. Patterns in the distribution of coral communities across the central Great Barrier Reef

    Science.gov (United States)

    Done, T. J.

    1982-10-01

    Despite the pre-eminence of the Great Barrier Reef, there has been little systematic description of its biotic communities, and in particular, of the corals themselves. Only recently have the problems of coral taxonomy been sufficiently resolved to allow a beginning to be made in rectifying this deficiency. The present study describes seventeen assemblages of corals which occupy the major habitat types found in and near the central Great Barrier Reef. The habitats studied range from the wave swept reef flats of Coral Sea atolls to the slopes of small reefs occupying sheltered, muddy conditions near the coast. These, and the array of reefs between, have characteristic suites of coral communities which provide the basis for a classification of reefs into non- Acropora reefs and various Acropora reefs. It is speculated that the faunistic differences are maintained because reefs are primarily self-seeded and because the majority of larvae from external sources are of species which are already present. The greatest diversity of both species and community types was found on reefs near the middle of the continental shelf, while the oceanic atolls and nearshore silt-affected reefs are almost equally depauperate.

  16. The promiscuous larvae: flexibility in the establishment of symbiosis in corals

    Science.gov (United States)

    Cumbo, V. R.; Baird, A. H.; van Oppen, M. J. H.

    2013-03-01

    Coral reefs thrive in part because of the symbiotic partnership between corals and Symbiodinium. While this partnership is one of the keys to the success of coral reef ecosystems, surprisingly little is known about many aspects of coral symbiosis, in particular the establishment and development of symbiosis in host species that acquire symbionts anew in each generation. More specifically, the point at which symbiosis is established (i.e., larva vs. juvenile) remains uncertain, as does the source of free-living Symbiodinium in the environment. In addition, the capacity of host and symbiont to form novel combinations is unknown. To explore patterns of initial association between host and symbiont, larvae of two species of Acropora were exposed to sediment collected from three locations on the Great Barrier Reef. A high proportion of larvae established symbiosis shortly after contact with sediments, and Acropora larvae were promiscuous, taking up multiple types of Symbiodinium. The Symbiodinium types acquired from the sediments reflected the symbiont assemblage within a wide range of cnidarian hosts at each of the three sites, suggesting potential regional differences in the free-living Symbiodinium assemblage. Coral larvae clearly have the capacity to take up Symbiodinium prior to settlement, and sediment is a likely source. Promiscuous larvae allow species to associate with Symbiodinium appropriate for potentially novel environments that may be experienced following dispersal.

  17. Widespread association of a Rickettsiales-like bacterium with reef-building corals.

    Science.gov (United States)

    Casas, Veronica; Kline, David I; Wegley, Linda; Yu, Yanan; Breitbart, Mya; Rohwer, Forest

    2004-11-01

    White band disease type I (WBD I) has been a major cause of the dramatic decline of Acroporid coral populations throughout the Caribbean during the last two decades, yet the aetiological agent of this disease is unknown. In this study, the bacterial communities associated with both healthy and diseased Acropora species were compared by 16S rDNA analyses. The bacterial communities of both healthy and diseased Acropora spp. were dominated by a single ribotype with 90% identity to a bacterium in the order Rickettsiales. Screening by nested PCR specific to the coral-associated Rickettsiales 1 (CAR1) bacterium showed that this microbe was widespread in both healthy and diseased A. cervicornis and A. palmata corals from 'healthy' (i.e. low WBD I incidence) and 'stressed' reefs (i.e. high WBD I incidence). These results indicate that there were no dramatic changes in the composition of the microbial community associated with WBD I. CAR1 was also associated with non-Acroporid corals of the Caribbean, as well as with two Acroporid corals native to the Pacific. CAR1 was not present in the water column. This bacterium was also absent from preserved Caribbean Acroporid samples collected between 1937 and 1980 before the outbreak of WBD I. These results suggest CAR1 is a relatively new bacterial associate of Acroporids and that a non-bacterial pathogen might be the cause of WBD I.

  18. Comparative embryology of eleven species of stony corals (Scleractinia.

    Directory of Open Access Journals (Sweden)

    Nami Okubo

    Full Text Available A comprehensive understanding of coral reproduction and development is needed because corals are threatened in many ways by human activity. Major threats include the loss of their photosynthetic symbionts (Symbiodinium caused by rising temperatures (bleaching, reduced ability to calcify caused by ocean acidification, increased storm severity associated with global climate change and an increase in predators caused by runoff from human agricultural activity. In spite of these threats, detailed descriptions of embryonic development are not available for many coral species. The current consensus is that there are two major groups of stony corals, the "complex" and the "robust". In this paper we describe the embryonic development of four "complex" species, Pseudosiderastrea tayamai, Galaxea fascicularis, Montipora hispida, and Pavona Decussata, and seven "robust" species, Oulastrea crispata, Platygyra contorta, Favites abdita, Echinophyllia aspera, Goniastrea favulus, Dipsastraea speciosa (previously Favia speciosa, and Phymastrea valenciennesi (previously Montastrea valenciennesi. Data from both histologically sectioned embryos and whole mounts are presented. One apparent difference between these two major groups is that before gastrulation the cells of the complex corals thus far described (mainly Acropora species spread and flatten to produce the so-called prawn chip, which lacks a blastocoel. Our present broad survey of robust and complex corals reveals that prawn chip formation is not a synapomorphy of complex corals, as Pavona Decussata does not form a prawn chip and has a well-developed blastocoel. Although prawn chip formation cannot be used to separate the two clades, none of the robust corals which we surveyed has such a stage. Many robust coral embryos pass through two periods of invagination, separated by a return to a spherical shape. However, only the second of these periods is associated with endoderm formation. We have therefore

  19. Evolutionary insights into scleractinian corals using comparative genomic hybridizations

    Directory of Open Access Journals (Sweden)

    Aranda Manuel

    2012-09-01

    Full Text Available Abstract Background Coral reefs belong to the most ecologically and economically important ecosystems on our planet. Yet, they are under steady decline worldwide due to rising sea surface temperatures, disease, and pollution. Understanding the molecular impact of these stressors on different coral species is imperative in order to predict how coral populations will respond to this continued disturbance. The use of molecular tools such as microarrays has provided deep insight into the molecular stress response of corals. Here, we have performed comparative genomic hybridizations (CGH with different coral species to an Acropora palmata microarray platform containing 13,546 cDNA clones in order to identify potentially rapidly evolving genes and to determine the suitability of existing microarray platforms for use in gene expression studies (via heterologous hybridization. Results Our results showed that the current microarray platform for A. palmata is able to provide biological relevant information for a wide variety of coral species covering both the complex clade as well the robust clade. Analysis of the fraction of highly diverged genes showed a significantly higher amount of genes without annotation corroborating previous findings that point towards a higher rate of divergence for taxonomically restricted genes. Among the genes with annotation, we found many mitochondrial genes to be highly diverged in M. faveolata when compared to A. palmata, while the majority of nuclear encoded genes maintained an average divergence rate. Conclusions The use of present microarray platforms for transcriptional analyses in different coral species will greatly enhance the understanding of the molecular basis of stress and health and highlight evolutionary differences between scleractinian coral species. On a genomic basis, we show that cDNA arrays can be used to identify patterns of divergence. Mitochondrion-encoded genes seem to have diverged faster than

  20. Tracking transmission of apicomplexan symbionts in diverse Caribbean corals.

    Directory of Open Access Journals (Sweden)

    Nathan L Kirk

    Full Text Available Symbionts in each generation are transmitted to new host individuals either vertically (parent to offspring, horizontally (from exogenous sources, or a combination of both. Scleractinian corals make an excellent study system for understanding patterns of symbiont transmission since they harbor diverse symbionts and possess distinct reproductive modes of either internal brooding or external broadcast spawning that generally correlate with vertical or horizontal transmission, respectively. Here, we focused on the under-recognized, but apparently widespread, coral-associated apicomplexans (Protista: Alveolata to determine if symbiont transmission depends on host reproductive mode. Specifically, a PCR-based assay was utilized towards identifying whether planula larvae and reproductive adults from brooding and broadcast spawning scleractinian coral species in Florida and Belize harbored apicomplexan DNA. Nearly all (85.5%; n = 85/89 examined planulae of five brooding species (Porites astreoides, Agaricia tenuifolia, Agaricia agaricites, Favia fragum, Mycetophyllia ferox and adults of P. astreoides were positive for apicomplexan DNA. In contrast, no (n = 0/10 apicomplexan DNA was detected from planulae of four broadcast spawning species (Acropora cervicornis, Acropora palmata, Pseudodiploria strigosa, and Orbicella faveolata and rarely in gametes (8.9%; n = 5/56 of these species sampled from the same geographical range as the brooding species. In contrast, tissue samples from nearly all (92.0%; n = 81/88 adults of the broadcast spawning species A. cervicornis, A. palmata and O. faveolata harbored apicomplexan DNA, including colonies whose gametes and planulae tested negative for these symbionts. Taken together, these data suggest apicomplexans are transmitted vertically in these brooding scleractinian coral species while the broadcast spawning scleractinian species examined here acquire these symbionts horizontally. Notably, these transmission

  1. Tracking Transmission of Apicomplexan Symbionts in Diverse Caribbean Corals

    Science.gov (United States)

    Kirk, Nathan L.; Ritson-Williams, Raphael; Coffroth, Mary Alice; Miller, Margaret W.; Fogarty, Nicole D.; Santos, Scott R.

    2013-01-01

    Symbionts in each generation are transmitted to new host individuals either vertically (parent to offspring), horizontally (from exogenous sources), or a combination of both. Scleractinian corals make an excellent study system for understanding patterns of symbiont transmission since they harbor diverse symbionts and possess distinct reproductive modes of either internal brooding or external broadcast spawning that generally correlate with vertical or horizontal transmission, respectively. Here, we focused on the under-recognized, but apparently widespread, coral-associated apicomplexans (Protista: Alveolata) to determine if symbiont transmission depends on host reproductive mode. Specifically, a PCR-based assay was utilized towards identifying whether planula larvae and reproductive adults from brooding and broadcast spawning scleractinian coral species in Florida and Belize harbored apicomplexan DNA. Nearly all (85.5%; n = 85/89) examined planulae of five brooding species (Porites astreoides, Agaricia tenuifolia, Agaricia agaricites, Favia fragum, Mycetophyllia ferox) and adults of P. astreoides were positive for apicomplexan DNA. In contrast, no (n = 0/10) apicomplexan DNA was detected from planulae of four broadcast spawning species (Acropora cervicornis, Acropora palmata, Pseudodiploria strigosa, and Orbicella faveolata) and rarely in gametes (8.9%; n = 5/56) of these species sampled from the same geographical range as the brooding species. In contrast, tissue samples from nearly all (92.0%; n = 81/88) adults of the broadcast spawning species A. cervicornis, A. palmata and O. faveolata harbored apicomplexan DNA, including colonies whose gametes and planulae tested negative for these symbionts. Taken together, these data suggest apicomplexans are transmitted vertically in these brooding scleractinian coral species while the broadcast spawning scleractinian species examined here acquire these symbionts horizontally. Notably, these transmission patterns are

  2. Tracking transmission of apicomplexan symbionts in diverse Caribbean corals.

    Science.gov (United States)

    Kirk, Nathan L; Ritson-Williams, Raphael; Coffroth, Mary Alice; Miller, Margaret W; Fogarty, Nicole D; Santos, Scott R

    2013-01-01

    Symbionts in each generation are transmitted to new host individuals either vertically (parent to offspring), horizontally (from exogenous sources), or a combination of both. Scleractinian corals make an excellent study system for understanding patterns of symbiont transmission since they harbor diverse symbionts and possess distinct reproductive modes of either internal brooding or external broadcast spawning that generally correlate with vertical or horizontal transmission, respectively. Here, we focused on the under-recognized, but apparently widespread, coral-associated apicomplexans (Protista: Alveolata) to determine if symbiont transmission depends on host reproductive mode. Specifically, a PCR-based assay was utilized towards identifying whether planula larvae and reproductive adults from brooding and broadcast spawning scleractinian coral species in Florida and Belize harbored apicomplexan DNA. Nearly all (85.5%; n = 85/89) examined planulae of five brooding species (Porites astreoides, Agaricia tenuifolia, Agaricia agaricites, Favia fragum, Mycetophyllia ferox) and adults of P. astreoides were positive for apicomplexan DNA. In contrast, no (n = 0/10) apicomplexan DNA was detected from planulae of four broadcast spawning species (Acropora cervicornis, Acropora palmata, Pseudodiploria strigosa, and Orbicella faveolata) and rarely in gametes (8.9%; n = 5/56) of these species sampled from the same geographical range as the brooding species. In contrast, tissue samples from nearly all (92.0%; n = 81/88) adults of the broadcast spawning species A. cervicornis, A. palmata and O. faveolata harbored apicomplexan DNA, including colonies whose gametes and planulae tested negative for these symbionts. Taken together, these data suggest apicomplexans are transmitted vertically in these brooding scleractinian coral species while the broadcast spawning scleractinian species examined here acquire these symbionts horizontally. Notably, these transmission patterns are

  3. Evidence for Rhythmicity Pacemaker in the Calcification Process of Scleractinian Coral

    Science.gov (United States)

    Gutner-Hoch, Eldad; Schneider, Kenneth; Stolarski, Jaroslaw; Domart-Coulon, Isabelle; Yam, Ruth; Meibom, Anders; Shemesh, Aldo; Levy, Oren

    2016-02-01

    Reef-building scleractinian (stony) corals are among the most efficient bio-mineralizing organisms in nature. The calcification rate of scleractinian corals oscillates under ambient light conditions, with a cyclic, diurnal pattern. A fundamental question is whether this cyclic pattern is controlled by exogenous signals or by an endogenous ‘biological-clock’ mechanism, or both. To address this problem, we have studied calcification patterns of the Red Sea scleractinian coral Acropora eurystoma with frequent measurements of total alkalinity (AT) under different light conditions. Additionally, skeletal extension and ultra-structure of newly deposited calcium carbonate were elucidated with 86Sr isotope labeling analysis, combined with NanoSIMS ion microprobe and scanning electron microscope imaging. Our results show that the calcification process persists with its cyclic pattern under constant light conditions while dissolution takes place within one day of constant dark conditions, indicating that an intrinsic, light-entrained mechanism may be involved in controlling the calcification process in photosymbiotic corals.

  4. Evidence of initial coral community recovery at Discovery Bay on Jamaica’s North Coast

    Directory of Open Access Journals (Sweden)

    M. James C. Crabbe

    2014-09-01

    Full Text Available Current challenges to coral reef sustainability include overfishing, destructive fishing practices, bleaching, acidification, sea-level rise, starfish, algae, agricultural run-off, coastal and resort development, pollution, diseases, invasive species and hurricanes. We used SCUBA belt transects to record coral cover and digital image analysis in the Dairy Bull Reef off the north coast of Jamaica and found that it is a positive example of how reefs can recover after major environmental disturbance. Live coral cover increased from 13±5% in 2006 to 31±7% in 2008, while live Acropora cervicornis increased from 2±2% in 2006 to 22±7% in 2008. Coral cover levels were maintained until 2012.

  5. Patterns of sexual recruitment of acroporid coral populations on the west fore reef at Discovery Bay, Jamaica.

    Science.gov (United States)

    Quinn, Norman J; Kojis, Barbara L

    2005-05-01

    Coral recruitment was examined on terracotta tiles deployed for four six-month periods between March 2001 and April 2003 on the West Fore Reef at Discovery Bay, Jamaica. During each sampling period, four tiles were deployed on each of two arrays at six depths ranging from 3 m to 33 m. Only three Acropora spat recruited to the tiles over the sampling period. The Acropora spat recruited during only one of the four six-month sampling periods and at only one depth, 3m. That represents a density of 8 spat m(-2) at 3 m depth for one six-month sampling period. Acropora recruitment represented <1 % of the total spat recruiting to the tiles deployed at 3 m during the four sampling periods. Density of acroporids on the West Fore Reef is low. Only one Acropora colony (an A. palmata) was recorded during Point-Quarter surveys of coral cover and density at depths of 3 m, 9 m, 14 m and 19 m. Considering the paucity of acroporid colonies and the infrequent settlement of acroporid spat on the West Fore Reef, it is unlikely that the historic abundance of A. palmata and A. cervicornis will return soon.

  6. Transplantation of storm-generated coral fragments to enhance Caribbean coral reefs: A successful method but not a solution

    Science.gov (United States)

    Garrison, V.H.; Ward, G.

    2012-01-01

    In response to dramatic losses of reef-building corals and ongoing lack of recovery, a small-scale coral transplant project was initiated in the Caribbean (U.S. Virgin Islands) in 1999 and was followed for 12 years. The primary objectives were to (1) identify a source of coral colonies for transplantation that would not result in damage to reefs, (2) test the feasibility of transplanting storm-generated coral fragments, and (3) develop a simple, inexpensive method for transplanting fragments that could be conducted by the local community. The ultimate goal was to enhance abundance of threatened reef-building species on local reefs. Storm-produced coral fragments of two threatened reef-building species [Acropora palmata and A. cervicornis (Acroporidae)] and another fast-growing species [Porites porites (Poritidae)] were collected from environments hostile to coral fragment survival and transplanted to degraded reefs. Inert nylon cable ties were used to attach transplanted coral fragments to dead coral substrate. Survival of 75 reference colonies and 60 transplants was assessed over 12 years. Only 9% of colonies were alive after 12 years: no A. cervicornis; 3% of A. palmata transplants and 18% of reference colonies; and 13% of P. porites transplants and 7% of reference colonies. Mortality rates for all species were high and were similar for transplant and reference colonies. Physical dislodgement resulted in the loss of 56% of colonies, whereas 35% died in place. Only A. palmata showed a difference between transplant and reference colony survival and that was in the first year only. Location was a factor in survival only for A. palmata reference colonies and after year 10. Even though the tested methods and concepts were proven effective in the field over the 12-year study, they do not present a solution. No coral conservation strategy will be effective until underlying intrinsic and/or extrinsic factors driving high mortality rates are understood and mitigated or

  7. Crowning corals

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    and oil transport, thermal pollution and freshwater inflow are the major threats to corals growing along the urban and industrialised centres. Therefore, a concerted effort from academicians, governmental and non-governmental bodies to educate the public...

  8. Interspecies and spatial diversity in the symbiotic zooxanthellae density in corals from northern South China Sea and its relationship to coral reef bleaching

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Coral reef bleaching is usually characterized by expulsion of symbiotic zooxanthellae, loss of zooxanthellae pigmentation, or both. We collected 128 samples comprising 39 species of 21 genera of reef-building corals from Luhuitou and Xiaodonghai in Sanya of Hainan Island and Daya Bay of Guangdong Province, respectively, and analyzed the symbiotic zooxanthellae population density. The results show that: (1) the symbiotic zooxanthella density varies from 0.67×106 to 8.48×106 cell/cr2, displaying significant interspecies variability, with branch corals usually having relatively less zooxanthellae (ranging from 0.67×106 to 2.47×106 cell/cm2) than massive species (from 1.0×106 to 8.48×106 cell/cm2); (2) corals inhabiting within 4 m water depth have higher levels of symbiotic zooxanthellae than those living at the bottom (~7 m depth) of the reef area; (3) there is no discernable difference in the zooxanthellae density between corals from relatively high latitude Daya Bay (~22°N)and those from relatively Iow latitude Sanya (~18°N) at comparable sea surface temperatures (SST); (4)in partially-bleached corals, the density of zooxanthellae shows the following order: healthy-looking part> semi-bleached part > bleached part. Based on the above results, we suggest that (1) the zooxanthellae density difference between branching and massive coral species is the main cause that branching corals are more vulnerable to bleaching than massive corals. For example, symbiotic zooxanthellae levels are low in branching Acropora and Pocillopora corals and thus these corals are more susceptible to bleaching and mortality; (2) symbiotic zooxanthellae density can also be affected by environmental conditions, such as sediment loads, diving-related turbidity, and aquaculture-related nitrate and phosphate input, and their increase may reduce symbiotic zooxanthellae density in corals.

  9. A Snapshot of a Coral “Holobiont”: A Transcriptome Assembly of the Scleractinian Coral, Porites, Captures a Wide Variety of Genes from Both the Host and Symbiotic Zooxanthellae

    Science.gov (United States)

    Shinzato, Chuya; Inoue, Mayuri; Kusakabe, Makoto

    2014-01-01

    Massive scleractinian corals of the genus Porites are important reef builders in the Indo-Pacific, and they are more resistant to thermal stress than other stony corals, such as the genus Acropora. Because coral health and survival largely depend on the interaction between a coral host and its symbionts, it is important to understand the molecular interactions of an entire “coral holobiont”. We simultaneously sequenced transcriptomes of Porites australiensis and its symbionts using the Illumina Hiseq2000 platform. We obtained 14.3 Gbp of sequencing data and assembled it into 74,997 contigs (average: 1,263 bp, N50 size: 2,037 bp). We successfully distinguished contigs originating from the host (Porites) and the symbiont (Symbiodinium) by aligning nucleotide sequences with the decoded Acropora digitifera and Symbiodinium minutum genomes. In contrast to previous coral transcriptome studies, at least 35% of the sequences were found to have originated from the symbionts, indicating that it is possible to analyze both host and symbiont transcriptomes simultaneously. Conserved protein domain and KEGG analyses showed that the dataset contains broad gene repertoires of both Porites and Symbiodinium. Effective utilization of sequence reads revealed that the polymorphism rate in P. australiensis is 1.0% and identified the major symbiotic Symbiodinium as Type C15. Analyses of amino acid biosynthetic pathways suggested that this Porites holobiont is probably able to synthesize most of the common amino acids and that Symbiodinium is potentially able to provide essential amino acids to its host. We believe this to be the first molecular evidence of complementarity in amino acid metabolism between coral hosts and their symbionts. We successfully assembled genes originating from both the host coral and the symbiotic Symbiodinium to create a snapshot of the coral holobiont transcriptome. This dataset will facilitate a deeper understanding of molecular mechanisms of coral

  10. Effects of predation and nutrient enrichment on the success and microbiome of a foundational coral.

    Science.gov (United States)

    Shaver, Elizabeth C; Shantz, Andrew A; McMinds, Ryan; Burkepile, Deron E; Vega Thurber, Rebecca L; Silliman, Brian R

    2017-03-01

    By inflicting damage to prey tissues, consumer species may increase stress in prey hosts and reduce overall fitness (i.e., primary effects, such as growth or reproduction) or cause secondary effects by affecting prey interactions with other species such as microbes. However, little is known about how abiotic conditions affect the outcomes of these biotic interactions. In coral reef communities, both nutrient enrichment and predation have been linked to reduced fitness and disease facilitation in corals, yet no study to date has tested their combined effects on corals or their associated microbial communities (i.e., microbiomes). Here, we assess the effects of grazing by a prevalent coral predator (the short coral snail, Coralliophila abbreviata) and nutrient enrichment on staghorn coral, Acropora cervicornis, and its microbiomes using a factorial experiment and high-throughput DNA sequencing. We found that predation, but not nutrients, significantly reduced coral growth and increased mortality, tissue loss, and turf algae colonization. Partial predation and nutrient enrichment both independently altered coral microbiomes such that one bacterial genus came to dominate the microbial community. Nutrient-enriched corals were associated with significant increases in Rickettsia-like organisms, which are currently one of several microbial groups being investigated as a disease agent in this coral species. However, we found no effects of nutrient enrichment on coral health, disease, or their predators. This research suggests that in the several months following coral transplantation (i.e., restoration) or disturbance (i.e., recovery), Caribbean acroporid corals appear to be highly susceptible to negative effects caused by predators, but not or not yet susceptible to nutrient enrichment despite changes to their microbial communities.

  11. Systematic Analysis of White Pox Disease in Acropora palmata of the Florida Keys and Role of Serratia marcescens.

    Science.gov (United States)

    Joyner, Jessica L; Sutherland, Kathryn P; Kemp, Dustin W; Berry, Brett; Griffin, Ashton; Porter, James W; Amador, Molly H B; Noren, Hunter K G; Lipp, Erin K

    2015-07-01

    White pox disease (WPD) affects the threatened elkhorn coral, Acropora palmata. Owing in part to the lack of a rapid and simple diagnostic test, there have been few systematic assessments of the prevalence of acroporid serratiosis (caused specifically by Serratia marcescens) versus general WPD signs. Six reefs in the Florida Keys were surveyed between 2011 and 2013 to determine the disease status of A. palmata and the prevalence of S. marcescens. WPD was noted at four of the six reefs, with WPD lesions found on 8 to 40% of the colonies surveyed. S. marcescens was detected in 26.9% (7/26) of the WPD lesions and in mucus from apparently healthy colonies both during and outside of disease events (9%; 18/201). S. marcescens was detected with greater frequency in A. palmata than in the overlying water column, regardless of disease status (P = 0.0177). S. marcescens could not be cultured from A. palmata but was isolated from healthy colonies of other coral species and was identifie