WorldWideScience

Sample records for copy number variable

  1. Inference of haplotypic phase and missing genotypes in polyploid organisms and variable copy number genomic regions

    Directory of Open Access Journals (Sweden)

    Balding David J

    2008-12-01

    Full Text Available Abstract Background The power of haplotype-based methods for association studies, identification of regions under selection, and ancestral inference, is well-established for diploid organisms. For polyploids, however, the difficulty of determining phase has limited such approaches. Polyploidy is common in plants and is also observed in animals. Partial polyploidy is sometimes observed in humans (e.g. trisomy 21; Down's syndrome, and it arises more frequently in some human tissues. Local changes in ploidy, known as copy number variations (CNV, arise throughout the genome. Here we present a method, implemented in the software polyHap, for the inference of haplotype phase and missing observations from polyploid genotypes. PolyHap allows each individual to have a different ploidy, but ploidy cannot vary over the genomic region analysed. It employs a hidden Markov model (HMM and a sampling algorithm to infer haplotypes jointly in multiple individuals and to obtain a measure of uncertainty in its inferences. Results In the simulation study, we combine real haplotype data to create artificial diploid, triploid, and tetraploid genotypes, and use these to demonstrate that polyHap performs well, in terms of both switch error rate in recovering phase and imputation error rate for missing genotypes. To our knowledge, there is no comparable software for phasing a large, densely genotyped region of chromosome from triploids and tetraploids, while for diploids we found polyHap to be more accurate than fastPhase. We also compare the results of polyHap to SATlotyper on an experimentally haplotyped tetraploid dataset of 12 SNPs, and show that polyHap is more accurate. Conclusion With the availability of large SNP data in polyploids and CNV regions, we believe that polyHap, our proposed method for inferring haplotypic phase from genotype data, will be useful in enabling researchers analysing such data to exploit the power of haplotype-based analyses.

  2. Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    Science.gov (United States)

    Bodilis, Josselin; Nsigue-Meilo, Sandrine; Besaury, Ludovic; Quillet, Laurent

    2012-01-01

    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies. PMID:22545126

  3. High mutation rates explain low population genetic divergence at copy-number-variable loci in Homo sapiens.

    Science.gov (United States)

    Hu, Xin-Sheng; Yeh, Francis C; Hu, Yang; Deng, Li-Ting; Ennos, Richard A; Chen, Xiaoyang

    2017-02-22

    Copy-number-variable (CNV) loci differ from single nucleotide polymorphic (SNP) sites in size, mutation rate, and mechanisms of maintenance in natural populations. It is therefore hypothesized that population genetic divergence at CNV loci will differ from that found at SNP sites. Here, we test this hypothesis by analysing 856 CNV loci from the genomes of 1184 healthy individuals from 11 HapMap populations with a wide range of ancestry. The results show that population genetic divergence at the CNV loci is generally more than three times lower than at genome-wide SNP sites. Populations generally exhibit very small genetic divergence (G st  = 0.05 ± 0.049). The smallest divergence is among African populations (G st  = 0.0081 ± 0.0025), with increased divergence among non-African populations (G st  = 0.0217 ± 0.0109) and then among African and non-African populations (G st  = 0.0324 ± 0.0064). Genetic diversity is high in African populations (~0.13), low in Asian populations (~0.11), and intermediate in the remaining 11 populations. Few significant linkage disequilibria (LDs) occur between the genome-wide CNV loci. Patterns of gametic and zygotic LDs indicate the absence of epistasis among CNV loci. Mutation rate is about twice as large as the migration rate in the non-African populations, suggesting that the high mutation rates play dominant roles in producing the low population genetic divergence at CNV loci.

  4. Variability of rRNA Operon Copy Number and Growth Rate Dynamics of Bacillus Isolated from an Extremely Oligotrophic Aquatic Ecosystem

    Science.gov (United States)

    Valdivia-Anistro, Jorge A.; Eguiarte-Fruns, Luis E.; Delgado-Sapién, Gabriela; Márquez-Zacarías, Pedro; Gasca-Pineda, Jaime; Learned, Jennifer; Elser, James J.; Olmedo-Alvarez, Gabriela; Souza, Valeria

    2016-01-01

    The ribosomal RNA (rrn) operon is a key suite of genes related to the production of protein synthesis machinery and thus to bacterial growth physiology. Experimental evidence has suggested an intrinsic relationship between the number of copies of this operon and environmental resource availability, especially the availability of phosphorus (P), because bacteria that live in oligotrophic ecosystems usually have few rrn operons and a slow growth rate. The Cuatro Ciénegas Basin (CCB) is a complex aquatic ecosystem that contains an unusually high microbial diversity that is able to persist under highly oligotrophic conditions. These environmental conditions impose a variety of strong selective pressures that shape the genome dynamics of their inhabitants. The genus Bacillus is one of the most abundant cultivable bacterial groups in the CCB and usually possesses a relatively large number of rrn operon copies (6–15 copies). The main goal of this study was to analyze the variation in the number of rrn operon copies of Bacillus in the CCB and to assess their growth-related properties as well as their stoichiometric balance (N and P content). We defined 18 phylogenetic groups within the Bacilli clade and documented a range of from six to 14 copies of the rrn operon. The growth dynamic of these Bacilli was heterogeneous and did not show a direct relation to the number of operon copies. Physiologically, our results were not consistent with the Growth Rate Hypothesis, since the copies of the rrn operon were decoupled from growth rate. However, we speculate that the diversity of the growth properties of these Bacilli as well as the low P content of their cells in an ample range of rrn copy number is an adaptive response to oligotrophy of the CCB and could represent an ecological mechanism that allows these taxa to coexist. These findings increase the knowledge of the variability in the number of copies of the rrn operon in the genus Bacillus and give insights about the

  5. Hacking DNA copy number for circuit engineering.

    Science.gov (United States)

    Wu, Feilun; You, Lingchong

    2017-07-27

    DNA copy number represents an essential parameter in the dynamics of synthetic gene circuits but typically is not explicitly considered. A new study demonstrates how dynamic control of DNA copy number can serve as an effective strategy to program robust oscillations in gene expression circuits.

  6. cn.FARMS: a latent variable model to detect copy number variations in microarray data with a low false discovery rate.

    Science.gov (United States)

    Clevert, Djork-Arné; Mitterecker, Andreas; Mayr, Andreas; Klambauer, Günter; Tuefferd, Marianne; De Bondt, An; Talloen, Willem; Göhlmann, Hinrich; Hochreiter, Sepp

    2011-07-01

    Cost-effective oligonucleotide genotyping arrays like the Affymetrix SNP 6.0 are still the predominant technique to measure DNA copy number variations (CNVs). However, CNV detection methods for microarrays overestimate both the number and the size of CNV regions and, consequently, suffer from a high false discovery rate (FDR). A high FDR means that many CNVs are wrongly detected and therefore not associated with a disease in a clinical study, though correction for multiple testing takes them into account and thereby decreases the study's discovery power. For controlling the FDR, we propose a probabilistic latent variable model, 'cn.FARMS', which is optimized by a Bayesian maximum a posteriori approach. cn.FARMS controls the FDR through the information gain of the posterior over the prior. The prior represents the null hypothesis of copy number 2 for all samples from which the posterior can only deviate by strong and consistent signals in the data. On HapMap data, cn.FARMS clearly outperformed the two most prevalent methods with respect to sensitivity and FDR. The software cn.FARMS is publicly available as a R package at http://www.bioinf.jku.at/software/cnfarms/cnfarms.html.

  7. SRBreak: A read-depth and split-read framework to identify breakpoints of different events inside simple copy-number variable regions

    Directory of Open Access Journals (Sweden)

    HOANG T NGUYEN

    2016-09-01

    Full Text Available Copy-number variation (CNV has been associated with increased risk of complex diseases. High throughput sequencing (HTS technologies facilitate the detection of copy-number variable regions (CNVRs and their breakpoints. This helps in understanding genome structures of genomes as well as their evolution process. Various approaches have been proposed for detecting CNV breakpoints, but currently it is still challenging for tools based on a single analysis method to identify breakpoints of CNVs. It has been shown, however, that pipelines which integrate multiple approaches are able to report more reliable breakpoints. Here, based on HTS data, we have developed a pipeline to identify approximate breakpoints (±10 bp relating to different ancestral events within a specific CNVR. The pipeline combines read-depth and split-read information to infer breakpoints, using information from multiple samples to allow an imputation approach to be taken. The main steps involve using a normal mixture model to cluster samples into different groups, followed by simple kernel-based approaches to maximise information obtained from read-depth and split-read approaches, after which common breakpoints of groups are inferred. The pipeline uses split-read information directly from CIGAR strings of BAM files, without using a re-alignment step. On simulated data sets, it was able to report breakpoints for very low-coverage samples including those for which only single-end reads were available. When applied to three loci from existing human resequencing data sets (NEGR1, LCE3, IRGM the pipeline obtained good concordance with results from the 1000 Genomes Project (92%, 100% and 82%, respectively.The package is available at https://github.com/hoangtn/SRBreak, and also as a docker-based application at https://registry.hub.docker.com/u/hoangtn/srbreak/.

  8. Comprehensive assessment of sequence variation within the copy number variable defensin cluster on 8p23 by target enriched in-depth 454 sequencing

    Directory of Open Access Journals (Sweden)

    Zhang Xinmin

    2011-05-01

    Full Text Available Abstract Background In highly copy number variable (CNV regions such as the human defensin gene locus, comprehensive assessment of sequence variations is challenging. PCR approaches are practically restricted to tiny fractions, and next-generation sequencing (NGS approaches of whole individual genomes e.g. by the 1000 Genomes Project is confined by an affordable sequence depth. Combining target enrichment with NGS may represent a feasible approach. Results As a proof of principle, we enriched a ~850 kb section comprising the CNV defensin gene cluster DEFB, the invariable DEFA part and 11 control regions from two genomes by sequence capture and sequenced it by 454 technology. 6,651 differences to the human reference genome were found. Comparison to HapMap genotypes revealed sensitivities and specificities in the range of 94% to 99% for the identification of variations. Using error probabilities for rigorous filtering revealed 2,886 unique single nucleotide variations (SNVs including 358 putative novel ones. DEFB CN determinations by haplotype ratios were in agreement with alternative methods. Conclusion Although currently labor extensive and having high costs, target enriched NGS provides a powerful tool for the comprehensive assessment of SNVs in highly polymorphic CNV regions of individual genomes. Furthermore, it reveals considerable amounts of putative novel variations and simultaneously allows CN estimation.

  9. Partitioning of copy-number genotypes in pedigrees

    Directory of Open Access Journals (Sweden)

    Andelfinger Gregor U

    2010-05-01

    Full Text Available Abstract Background Copy number variations (CNVs and polymorphisms (CNPs have only recently gained the genetic community's attention. Conservative estimates have shown that CNVs and CNPs might affect more than 10% of the genome and that they may be at least as important as single nucleotide polymorphisms in assessing human variability. Widely used tools for CNP analysis have been implemented in Birdsuite and PLINK for the purpose of conducting genetic association studies based on the unpartitioned total number of CNP copies provided by the intensities from Affymetrix's Genome-Wide Human SNP Array. Here, we are interested in partitioning copy number variations and polymorphisms in extended pedigrees for the purpose of linkage analysis on familial data. Results We have developed CNGen, a new software for the partitioning of copy number polymorphism using the integrated genotypes from Birdsuite with the Affymetrix platform. The algorithm applied to familial trios or extended pedigrees can produce partitioned copy number genotypes with distinct parental alleles. We have validated the algorithm using simulations on a complex pedigree structure using frequencies calculated from a real dataset of 300 genotyped samples from 42 pedigrees segregating a congenital heart defect phenotype. Conclusions CNGen is the first published software for the partitioning of copy number genotypes in pedigrees, making possible the use CNPs and CNVs for linkage analysis. It was implemented with the Python interpreter version 2.5.2. It was successfully tested on current Linux, Windows and Mac OS workstations.

  10. The DUB/USP17 deubiquitinating enzymes: A gene family within a tandemly repeated sequence, is also embedded within the copy number variable Beta-defensin cluster

    Directory of Open Access Journals (Sweden)

    Scott Christopher J

    2010-04-01

    Full Text Available Abstract Background The DUB/USP17 subfamily of deubiquitinating enzymes were originally identified as immediate early genes induced in response to cytokine stimulation in mice (DUB-1, DUB-1A, DUB-2, DUB-2A. Subsequently we have identified a number of human family members and shown that one of these (DUB-3 is also cytokine inducible. We originally showed that constitutive expression of DUB-3 can block cell proliferation and more recently we have demonstrated that this is due to its regulation of the ubiquitination and activity of the 'CAAX' box protease RCE1. Results Here we demonstrate that the human DUB/USP17 family members are found on both chromosome 4p16.1, within a block of tandem repeats, and on chromosome 8p23.1, embedded within the copy number variable beta-defensin cluster. In addition, we show that the multiple genes observed in humans and other distantly related mammals have arisen due to the independent expansion of an ancestral sequence within each species. However, it is also apparent when sequences from humans and the more closely related chimpanzee are compared, that duplication events have taken place prior to these species separating. Conclusions The observation that the DUB/USP17 genes, which can influence cell growth and survival, have evolved from an unstable ancestral sequence which has undergone multiple and varied duplications in the species examined marks this as a unique family. In addition, their presence within the beta-defensin repeat raises the question whether they may contribute to the influence of this repeat on immune related conditions.

  11. Getting DNA copy numbers without control samples

    Directory of Open Access Journals (Sweden)

    Ortiz-Estevez Maria

    2012-08-01

    Full Text Available Abstract Background The selection of the reference to scale the data in a copy number analysis has paramount importance to achieve accurate estimates. Usually this reference is generated using control samples included in the study. However, these control samples are not always available and in these cases, an artificial reference must be created. A proper generation of this signal is crucial in terms of both noise and bias. We propose NSA (Normality Search Algorithm, a scaling method that works with and without control samples. It is based on the assumption that genomic regions enriched in SNPs with identical copy numbers in both alleles are likely to be normal. These normal regions are predicted for each sample individually and used to calculate the final reference signal. NSA can be applied to any CN data regardless the microarray technology and preprocessing method. It also finds an optimal weighting of the samples minimizing possible batch effects. Results Five human datasets (a subset of HapMap samples, Glioblastoma Multiforme (GBM, Ovarian, Prostate and Lung Cancer experiments have been analyzed. It is shown that using only tumoral samples, NSA is able to remove the bias in the copy number estimation, to reduce the noise and therefore, to increase the ability to detect copy number aberrations (CNAs. These improvements allow NSA to also detect recurrent aberrations more accurately than other state of the art methods. Conclusions NSA provides a robust and accurate reference for scaling probe signals data to CN values without the need of control samples. It minimizes the problems of bias, noise and batch effects in the estimation of CNs. Therefore, NSA scaling approach helps to better detect recurrent CNAs than current methods. The automatic selection of references makes it useful to perform bulk analysis of many GEO or ArrayExpress experiments without the need of developing a parser to find the normal samples or possible batches within the

  12. Getting DNA copy numbers without control samples.

    Science.gov (United States)

    Ortiz-Estevez, Maria; Aramburu, Ander; Rubio, Angel

    2012-08-16

    The selection of the reference to scale the data in a copy number analysis has paramount importance to achieve accurate estimates. Usually this reference is generated using control samples included in the study. However, these control samples are not always available and in these cases, an artificial reference must be created. A proper generation of this signal is crucial in terms of both noise and bias.We propose NSA (Normality Search Algorithm), a scaling method that works with and without control samples. It is based on the assumption that genomic regions enriched in SNPs with identical copy numbers in both alleles are likely to be normal. These normal regions are predicted for each sample individually and used to calculate the final reference signal. NSA can be applied to any CN data regardless the microarray technology and preprocessing method. It also finds an optimal weighting of the samples minimizing possible batch effects. Five human datasets (a subset of HapMap samples, Glioblastoma Multiforme (GBM), Ovarian, Prostate and Lung Cancer experiments) have been analyzed. It is shown that using only tumoral samples, NSA is able to remove the bias in the copy number estimation, to reduce the noise and therefore, to increase the ability to detect copy number aberrations (CNAs). These improvements allow NSA to also detect recurrent aberrations more accurately than other state of the art methods. NSA provides a robust and accurate reference for scaling probe signals data to CN values without the need of control samples. It minimizes the problems of bias, noise and batch effects in the estimation of CNs. Therefore, NSA scaling approach helps to better detect recurrent CNAs than current methods. The automatic selection of references makes it useful to perform bulk analysis of many GEO or ArrayExpress experiments without the need of developing a parser to find the normal samples or possible batches within the data. The method is available in the open-source R package

  13. Identification of copy number variants in horses

    KAUST Repository

    Doan, R.

    2012-03-01

    Copy number variants (CNVs) represent a substantial source of genetic variation in mammals. However, the occurrence of CNVs in horses and their subsequent impact on phenotypic variation is unknown. We performed a study to identify CNVs in 16 horses representing 15 distinct breeds (Equus caballus) and an individual gray donkey (Equus asinus) using a whole-exome tiling array and the array comparative genomic hybridization methodology. We identified 2368 CNVs ranging in size from 197 bp to 3.5 Mb. Merging identical CNVs from each animal yielded 775 CNV regions (CNVRs), involving 1707 protein- and RNA-coding genes. The number of CNVs per animal ranged from 55 to 347, with median and mean sizes of CNVs of 5.3 kb and 99.4 kb, respectively. Approximately 6% of the genes investigated were affected by a CNV. Biological process enrichment analysis indicated CNVs primarily affected genes involved in sensory perception, signal transduction, and metabolism. CNVs also were identified in genes regulating blood group antigens, coat color, fecundity, lactation, keratin formation, neuronal homeostasis, and height in other species. Collectively, these data are the first report of copy number variation in horses and suggest that CNVs are common in the horse genome and may modulate biological processes underlying different traits observed among horses and horse breeds.

  14. Association studies of the copy-number variable ß-defensin cluster on 8p23.1 in adenocarcinoma and chronic pancreatitis

    Directory of Open Access Journals (Sweden)

    Taudien Stefan

    2012-11-01

    Full Text Available Abstract Background Human ß-defensins are a family of antimicrobial peptides located at the mucosal surface. Both sequence multi-site variations (MSV and copy-number variants (CNV of the defensin-encoding genes are associated with increased risk for various diseases, including cancer and inflammatory conditions such as psoriasis and acute pancreatitis. In a case–control study, we investigated the association between MSV in DEFB104 as well as defensin gene (DEF cluster copy number (CN, and pancreatic ductal adenocarcinoma (PDAC and chronic pancreatitis (CP. Results Two groups of PDAC (N=70 and CP (N=60 patients were compared to matched healthy control groups CARLA1 (N=232 and CARLA2 (N=160, respectively. Four DEFB104 MSV were haplotyped by PCR, cloning and sequencing. DEF cluster CN was determined by multiplex ligation-dependent probe amplification. Neither the PDAC nor the CP cohorts show significant differences in the DEFB104 haplotype distribution compared to the respective control groups CARLA1 and CARLA2, respectively. The diploid DEF cluster CN exhibit a significantly different distribution between PDAC and CARLA1 (Fisher’s exact test P=0.027, but not between CP and CARLA2 (P=0.867. Conclusion Different DEF cluster b CN distribution between PDAC patients and healthy controls indicate a potential protective effect of higher CNs against the disease.

  15. Copy number variation in the bovine genome

    DEFF Research Database (Denmark)

    Fadista, João; Thomsen, Bo; Holm, Lars-Erik

    2010-01-01

    to genetic variation in cattle. Results We designed and used a set of NimbleGen CGH arrays that tile across the assayable portion of the cattle genome with approximately 6.3 million probes, at a median probe spacing of 301 bp. This study reports the highest resolution map of copy number variation...... in the cattle genome, with 304 CNV regions (CNVRs) being identified among the genomes of 20 bovine samples from 4 dairy and beef breeds. The CNVRs identified covered 0.68% (22 Mb) of the genome, and ranged in size from 1.7 to 2,031 kb (median size 16.7 kb). About 20% of the CNVs co-localized with segmental...... duplications, while 30% encompass genes, of which the majority is involved in environmental response. About 10% of the human orthologous of these genes are associated with human disease susceptibility and, hence, may have important phenotypic consequences. Conclusions Together, this analysis provides a useful...

  16. Copy Number Variations in Tilapia Genomes.

    Science.gov (United States)

    Li, Bi Jun; Li, Hong Lian; Meng, Zining; Zhang, Yong; Lin, Haoran; Yue, Gen Hua; Xia, Jun Hong

    2017-02-01

    Discovering the nature and pattern of genome variation is fundamental in understanding phenotypic diversity among populations. Although several millions of single nucleotide polymorphisms (SNPs) have been discovered in tilapia, the genome-wide characterization of larger structural variants, such as copy number variation (CNV) regions has not been carried out yet. We conducted a genome-wide scan for CNVs in 47 individuals from three tilapia populations. Based on 254 Gb of high-quality paired-end sequencing reads, we identified 4642 distinct high-confidence CNVs. These CNVs account for 1.9% (12.411 Mb) of the used Nile tilapia reference genome. A total of 1100 predicted CNVs were found overlapping with exon regions of protein genes. Further association analysis based on linear model regression found 85 CNVs ranging between 300 and 27,000 base pairs significantly associated to population types (R 2  > 0.9 and P > 0.001). Our study sheds first insights on genome-wide CNVs in tilapia. These CNVs among and within tilapia populations may have functional effects on phenotypes and specific adaptation to particular environments.

  17. Copy Number Variation in the Horse Genome

    Science.gov (United States)

    Ghosh, Sharmila; Qu, Zhipeng; Das, Pranab J.; Fang, Erica; Juras, Rytis; Cothran, E. Gus; McDonell, Sue; Kenney, Daniel G.; Lear, Teri L.; Adelson, David L.; Chowdhary, Bhanu P.; Raudsepp, Terje

    2014-01-01

    We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs) in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs) across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches. PMID:25340504

  18. Copy number variation in the horse genome.

    Directory of Open Access Journals (Sweden)

    Sharmila Ghosh

    2014-10-01

    Full Text Available We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches.

  19. Systematic biases in DNA copy number originate from isolation procedures

    NARCIS (Netherlands)

    van Heesch, S.; Mokry, M.; Boskova, V.; Junker, W.; Mehon, R.; Toonen, P.; de Bruijn, E.; Shull, J.D.; Aitman, T.J.; Cuppen, E.; Guryev, V.

    2013-01-01

    BACKGROUND: The ability to accurately detect DNA copy number variation in both a sensitive and quantitative manner is important in many research areas. However, genome-wide DNA copy number analyses are complicated by variations in detection signal. RESULTS: While GC content has been used to correct

  20. Mitochondrial DNA Copy Number in Sleep Duration Discordant Monozygotic Twins

    DEFF Research Database (Denmark)

    Wrede, Joanna E; Mengel-From, Jonas; Buchwald, Dedra

    2015-01-01

    STUDY OBJECTIVES: Mitochondrial DNA (mtDNA) copy number is an important component of mitochondrial function and varies with age, disease, and environmental factors. We aimed to determine whether mtDNA copy number varies with habitual differences in sleep duration within pairs of monozygotic twins...... structure to assess within-pair effects of sleep duration on mtDNA copy number. MEASUREMENTS AND RESULTS: Mean within-pair sleep duration difference per 24 hours was 94.3 minutes (SD 62.6 min). We found reduced sleep duration (β = 0.06; 95% CI 0.004, 0.12; P sleep efficiency (β = 0.51; 95% CI 0.......06, 0.95; P DNA copy number within twin pairs. Thus every 1-minute decrease in actigraphy-defined sleep duration was associated with a decrease in mtDNA copy number of 0.06. Likewise, a 1% decrease in actigraphy-defined sleep efficiency was associated...

  1. Inferring mechanisms of copy number change from haplotype structures at the human DEFA1A3 locus

    OpenAIRE

    Black, Holly A; Khan, Fayeza F; Tyson, Jess; Armour, John AL

    2014-01-01

    Background The determination of structural haplotypes at copy number variable regions can indicate the mechanisms responsible for changes in copy number, as well as explain the relationship between gene copy number and expression. However, obtaining spatial information at regions displaying extensive copy number variation, such as the DEFA1A3 locus, is complex, because of the difficulty in the phasing and assembly of these regions. The DEFA1A3 locus is intriguing in that it falls within a reg...

  2. Copy Number Alterations and Methylation in Ewing's Sarcoma

    Science.gov (United States)

    Jahromi, Mona S.; Jones, Kevin B.; Schiffman, Joshua D.

    2011-01-01

    Ewing's sarcoma is the second most common bone malignancy affecting children and young adults. The prognosis is especially poor in metastatic or relapsed disease. The cell of origin remains elusive, but the EWS-FLI1 fusion oncoprotein is present in the majority of cases. The understanding of the molecular basis of Ewing's sarcoma continues to progress slowly. EWS-FLI1 affects gene expression, but other factors must also be at work such as mutations, gene copy number alterations, and promoter methylation. This paper explores in depth two molecular aspects of Ewing's sarcoma: copy number alterations (CNAs) and methylation. While CNAs consistently have been reported in Ewing's sarcoma, their clinical significance has been variable, most likely due to small sample size and tumor heterogeneity. Methylation is thought to be important in oncogenesis and balanced karyotype cancers such as Ewing's, yet it has received only minimal attention in prior studies. Future CNA and methylation studies will help to understand the molecular basis of this disease. PMID:21437220

  3. Copy Number Alterations and Methylation in Ewing's Sarcoma

    Directory of Open Access Journals (Sweden)

    Mona S. Jahromi

    2011-01-01

    Full Text Available Ewing's sarcoma is the second most common bone malignancy affecting children and young adults. The prognosis is especially poor in metastatic or relapsed disease. The cell of origin remains elusive, but the EWS-FLI1 fusion oncoprotein is present in the majority of cases. The understanding of the molecular basis of Ewing's sarcoma continues to progress slowly. EWS-FLI1 affects gene expression, but other factors must also be at work such as mutations, gene copy number alterations, and promoter methylation. This paper explores in depth two molecular aspects of Ewing's sarcoma: copy number alterations (CNAs and methylation. While CNAs consistently have been reported in Ewing's sarcoma, their clinical significance has been variable, most likely due to small sample size and tumor heterogeneity. Methylation is thought to be important in oncogenesis and balanced karyotype cancers such as Ewing's, yet it has received only minimal attention in prior studies. Future CNA and methylation studies will help to understand the molecular basis of this disease.

  4. Identification of copy number variants in horses

    KAUST Repository

    Doan, R.; Cohen, N.; Harrington, J.; Veazy, K.; Juras, R.; Cothran, G.; McCue, M. E.; Skow, L.; Dindot, S. V.

    2012-01-01

    identical CNVs from each animal yielded 775 CNV regions (CNVRs), involving 1707 protein- and RNA-coding genes. The number of CNVs per animal ranged from 55 to 347, with median and mean sizes of CNVs of 5.3 kb and 99.4 kb, respectively. Approximately 6

  5. DNA replication stress restricts ribosomal DNA copy number

    Science.gov (United States)

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  6. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  7. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  8. Mitochondrial DNA Copy Number in Sleep Duration Discordant Monozygotic Twins.

    Science.gov (United States)

    Wrede, Joanna E; Mengel-From, Jonas; Buchwald, Dedra; Vitiello, Michael V; Bamshad, Michael; Noonan, Carolyn; Christiansen, Lene; Christensen, Kaare; Watson, Nathaniel F

    2015-10-01

    Mitochondrial DNA (mtDNA) copy number is an important component of mitochondrial function and varies with age, disease, and environmental factors. We aimed to determine whether mtDNA copy number varies with habitual differences in sleep duration within pairs of monozygotic twins. Academic clinical research center. 15 sleep duration discordant monozygotic twin pairs (30 twins, 80% female; mean age 42.1 years [SD 15.0]). Sleep duration was phenotyped with wrist actigraphy. Each twin pair included a "normal" (7-9 h/24) and "short" (sleeping twin. Fasting peripheral blood leukocyte DNA was assessed for mtDNA copy number via the n-fold difference between qPCR measured mtDNA and nuclear DNA creating an mtDNA measure without absolute units. We used generalized estimating equation linear regression models accounting for the correlated data structure to assess within-pair effects of sleep duration on mtDNA copy number. Mean within-pair sleep duration difference per 24 hours was 94.3 minutes (SD 62.6 min). We found reduced sleep duration (β = 0.06; 95% CI 0.004, 0.12; P sleep efficiency (β = 0.51; 95% CI 0.06, 0.95; P sleep duration was associated with a decrease in mtDNA copy number of 0.06. Likewise, a 1% decrease in actigraphy-defined sleep efficiency was associated with a decrease in mtDNA copy number of 0.51. Reduced sleep duration and sleep efficiency were associated with reduced mitochondrial DNA copy number in sleep duration discordant monozygotic twins offering a potential mechanism whereby short sleep impairs health and longevity through mitochondrial stress. © 2015 Associated Professional Sleep Societies, LLC.

  9. Screening for common copy-number variants in cancer genes.

    Science.gov (United States)

    Tyson, Jess; Majerus, Tamsin M O; Walker, Susan; Armour, John A L

    2010-12-01

    For most cases of colorectal cancer that arise without a family history of the disease, it is proposed that an appreciable heritable component of predisposition is the result of contributions from many loci. Although progress has been made in identifying single nucleotide variants associated with colorectal cancer risk, the involvement of low-penetrance copy number variants is relatively unexplored. We have used multiplex amplifiable probe hybridization (MAPH) in a fourfold multiplex (QuadMAPH), positioned at an average resolution of one probe per 2 kb, to screen a total of 1.56 Mb of genomic DNA for copy number variants around the genes APC, AXIN1, BRCA1, BRCA2, CTNNB1, HRAS, MLH1, MSH2, and TP53. Two deletion events were detected, one upstream of MLH1 in a control individual and the other in APC in a colorectal cancer patient, but these do not seem to correspond to copy number polymorphisms with measurably high population frequencies. In summary, by means of our QuadMAPH assay, copy number measurement data were of sufficient resolution and accuracy to detect any copy number variants with high probability. However, this study has demonstrated a very low incidence of deletion and duplication variants within intronic and flanking regions of these nine genes, in both control individuals and colorectal cancer patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Accurate measurement of gene copy number for human alpha-defensin DEFA1A3.

    Science.gov (United States)

    Khan, Fayeza F; Carpenter, Danielle; Mitchell, Laura; Mansouri, Omniah; Black, Holly A; Tyson, Jess; Armour, John A L

    2013-10-20

    Multi-allelic copy number variants include examples of extensive variation between individuals in the copy number of important genes, most notably genes involved in immune function. The definition of this variation, and analysis of its impact on function, has been hampered by the technical difficulty of large-scale but accurate typing of genomic copy number. The copy-variable alpha-defensin locus DEFA1A3 on human chromosome 8 commonly varies between 4 and 10 copies per diploid genome, and presents considerable challenges for accurate high-throughput typing. In this study, we developed two paralogue ratio tests and three allelic ratio measurements that, in combination, provide an accurate and scalable method for measurement of DEFA1A3 gene number. We combined information from different measurements in a maximum-likelihood framework which suggests that most samples can be assigned to an integer copy number with high confidence, and applied it to typing 589 unrelated European DNA samples. Typing the members of three-generation pedigrees provided further reassurance that correct integer copy numbers had been assigned. Our results have allowed us to discover that the SNP rs4300027 is strongly associated with DEFA1A3 gene copy number in European samples. We have developed an accurate and robust method for measurement of DEFA1A3 copy number. Interrogation of rs4300027 and associated SNPs in Genome-Wide Association Study SNP data provides no evidence that alpha-defensin copy number is a strong risk factor for phenotypes such as Crohn's disease, type I diabetes, HIV progression and multiple sclerosis.

  11. Measurement of locus copy number by hybridisation with amplifiable probes

    Science.gov (United States)

    Armour, John A. L.; Sismani, Carolina; Patsalis, Philippos C.; Cross, Gareth

    2000-01-01

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicroscopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader–Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications. PMID:10606661

  12. Measurement of locus copy number by hybridisation with amplifiable probes.

    Science.gov (United States)

    Armour, J A; Sismani, C; Patsalis, P C; Cross, G

    2000-01-15

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicro-scopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader-Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications.

  13. Copy-number variants in neurodevelopmental disorders: promises and challenges.

    LENUS (Irish Health Repository)

    Merikangas, Alison K

    2012-02-01

    Copy-number variation (CNV) is the most prevalent type of structural variation in the human genome. There is emerging evidence that copy-number variants (CNVs) provide a new vista on understanding susceptibility to neuropsychiatric disorders. Some challenges in the interpretation of current CNV studies include the use of overlapping samples, differing phenotypic definitions, an absence of population norms for CNVs and a lack of consensus in methods for CNV detection and analysis. Here, we review current CNV association study methods and results in autism spectrum disorders (ASD) and schizophrenia, and provide suggestions for design approaches to future studies that might maximize the translation of this work to etiological understanding.

  14. A comprehensive profile of DNA copy number variations in a Korean population: identification of copy number invariant regions among Koreans.

    Science.gov (United States)

    Jeon, Jae Pil; Shim, Sung Mi; Jung, Jong Sun; Nam, Hye Young; Lee, Hye Jin; Oh, Berm Seok; Kim, Kuchan; Kim, Hyung Lae; Han, Bok Ghee

    2009-09-30

    To examine copy number variations among the Korean population, we compared individual genomes with the Korean reference genome assembly using the publicly available Korean HapMap SNP 50 k chip data from 90 individuals. Korean individuals exhibited 123 copy number variation regions (CNVRs) covering 27.2 mb, equivalent to 1.0% of the genome in the copy number variation (CNV) analysis using the combined criteria of P value (Por= 0.25) among study subjects. In contrast, when compared to the Affymetrix reference genome assembly from multiple ethnic groups, considerably more CNVRs (n=643) were detected in larger proportions (5.0%) of the genome covering 135.1 mb even by more stringent criteria (Por=0.25), reflecting ethnic diversity of structural variations between Korean and other populations. Some CNVRs were validated by the quantitative multiplex PCR of short fluorescent fragment (QMPSF) method, and then copy number invariant regions were detected among the study subjects. These copy number invariant regions would be used as good internal controls for further CNV studies. Lastly, we demonstrated that the CNV information could stratify even a single ethnic population with a proper reference genome assembly from multiple heterogeneous populations.

  15. Rare copy number deletions predict individual variation in intelligence.

    Directory of Open Access Journals (Sweden)

    Ronald A Yeo

    2011-01-01

    Full Text Available Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in "mutation load" emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent copy number variations (CNVs, and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77 had been administered the Wechsler Abbreviated Scale of Intelligence (WASI. After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = -.30, p = .01. As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES, we also examined the impact of ethnicity (Anglo/White vs. Other, as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed.

  16. Rare Copy Number Deletions Predict Individual Variation in Intelligence

    Science.gov (United States)

    Yeo, Ronald A.; Gangestad, Steven W.; Liu, Jingyu; Calhoun, Vince D.; Hutchison, Kent E.

    2011-01-01

    Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in “mutation load” emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent) copy number variations (CNVs), and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77) had been administered the Wechsler Abbreviated Scale of Intelligence (WASI). After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = −.30, p = .01). As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES), we also examined the impact of ethnicity (Anglo/White vs. Other), as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less) adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed. PMID:21298096

  17. Copy number variation of KIR genes influences HIV-1 control

    DEFF Research Database (Denmark)

    Pelak, Kimberly; Need, Anna C; Fellay, Jacques

    2011-01-01

    A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses t...

  18. Clinical findings and genetic screening for copy number variation ...

    African Journals Online (AJOL)

    to the Unified Parkinson's Disease Rating Scale (UPDRS), and patients were classified according to motor features. Genomic DNA was extracted and multiplex ligation-dependent probe amplification was used for detection of copy number variation (CNV) mutations in the known PD-causing genes. Results. Sixteen patients ...

  19. Industrial relevance of chromosomal copy number variation in Saccharomyces yeasts

    NARCIS (Netherlands)

    Gorter de Vries, A.R.; Pronk, J.T.; Daran, J.G.

    2017-01-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have

  20. Supervised classification of combined copy number and gene expression data

    Directory of Open Access Journals (Sweden)

    Riccadonna S.

    2007-12-01

    Full Text Available In this paper we apply a predictive profiling method to genome copy number aberrations (CNA in combination with gene expression and clinical data to identify molecular patterns of cancer pathophysiology. Predictive models and optimal feature lists for the platforms are developed by a complete validation SVM-based machine learning system. Ranked list of genome CNA sites (assessed by comparative genomic hybridization arrays – aCGH and of differentially expressed genes (assessed by microarray profiling with Affy HG-U133A chips are computed and combined on a breast cancer dataset for the discrimination of Luminal/ ER+ (Lum/ER+ and Basal-like/ER- classes. Different encodings are developed and applied to the CNA data, and predictive variable selection is discussed. We analyze the combination of profiling information between the platforms, also considering the pathophysiological data. A specific subset of patients is identified that has a different response to classification by chromosomal gains and losses and by differentially expressed genes, corroborating the idea that genomic CNA can represent an independent source for tumor classification.

  1. The importance of copy number variation in congenital heart disease

    Science.gov (United States)

    Costain, Gregory; Silversides, Candice K; Bassett, Anne S

    2016-01-01

    Congenital heart disease (CHD) is the most common class of major malformations in humans. The historical association with large chromosomal abnormalities foreshadowed the role of submicroscopic rare copy number variations (CNVs) as important genetic causes of CHD. Recent studies have provided robust evidence for these structural variants as genome-wide contributors to all forms of CHD, including CHD that appears isolated without extra-cardiac features. Overall, a CNV-related molecular diagnosis can be made in up to one in eight patients with CHD. These include de novo and inherited variants at established (chromosome 22q11.2), emerging (chromosome 1q21.1), and novel loci across the genome. Variable expression of rare CNVs provides support for the notion of a genetic spectrum of CHD that crosses traditional anatomic classification boundaries. Clinical genetic testing using genome-wide technologies (e.g., chromosomal microarray analysis) is increasingly employed in prenatal, paediatric and adult settings. CNV discoveries in CHD have translated to changes to clinical management, prognostication and genetic counselling. The convergence of findings at individual gene and at pathway levels is shedding light on the mechanisms that govern human cardiac morphogenesis. These clinical and research advances are helping to inform whole-genome sequencing, the next logical step in delineating the genetic architecture of CHD. PMID:28706735

  2. Advantage of using allele-specific copy numbers when testing for association in regions with common copy number variants.

    Directory of Open Access Journals (Sweden)

    Gaëlle Marenne

    Full Text Available Copy number variants (CNV can be called from SNP-arrays; however, few studies have attempted to combine both CNV and SNP calls to test for association with complex diseases. Even when SNPs are located within CNVs, two separate association analyses are necessary, to compare the distribution of bi-allelic genotypes in cases and controls (referred to as SNP-only strategy and the number of copies of a region (referred to as CNV-only strategy. However, when disease susceptibility is actually associated with allele specific copy-number states, the two strategies may not yield comparable results, raising a series of questions about the optimal analytical approach. We performed simulations of the performance of association testing under different scenarios that varied genotype frequencies and inheritance models. We show that the SNP-only strategy lacks power under most scenarios when the SNP is located within a CNV; frequently it is excluded from analysis as it does not pass quality control metrics either because of an increased rate of missing calls or a departure from fitness for Hardy-Weinberg proportion. The CNV-only strategy also lacks power because the association testing depends on the allele which copy number varies. The combined strategy performs well in most of the scenarios. Hence, we advocate the use of this combined strategy when testing for association with SNPs located within CNVs.

  3. Copy number variation of KIR genes influences HIV-1 control

    DEFF Research Database (Denmark)

    Pelak, Kimberly; Need, Anna C; Fellay, Jacques

    2011-01-01

    A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses...... the KIR3DL1-KIR3DS1 locus, encoding receptors that interact with specific HLA-Bw4 molecules to regulate the activation of lymphocyte subsets including natural killer (NK) cells. We quantified the number of copies of KIR3DS1 and KIR3DL1 in a large HIV-1 positive cohort, and showed that an increase in KIR3...... amounts of these activating and inhibitory KIR play a role in regulating the peripheral expansion of highly antiviral KIR3DS1+ NK cells, which may determine differences in HIV-1 control following infection....

  4. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts

    Science.gov (United States)

    Gorter de Vries, Arthur R.; Pronk, Jack T.

    2017-01-01

    ABSTRACT Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. PMID:28341679

  5. Familial cases of Norrie disease detected by copy number analysis.

    Science.gov (United States)

    Arai, Eisuke; Fujimaki, Takuro; Yanagawa, Ai; Fujiki, Keiko; Yokoyama, Toshiyuki; Okumura, Akihisa; Shimizu, Toshiaki; Murakami, Akira

    2014-09-01

    Norrie disease (ND, MIM#310600) is an X-linked disorder characterized by severe vitreoretinal dysplasia at birth. We report the results of causative NDP gene analysis in three male siblings with Norrie disease and describe the associated phenotypes. Three brothers with suspected Norrie disease and their mother presented for clinical examination. After obtaining informed consent, DNA was extracted from the peripheral blood of the proband, one of his brothers and his unaffected mother. Exons 1-3 of the NDP gene were amplified by polymerase chain reaction (PCR), and direct sequencing was performed. Multiplex ligation-dependent probe amplification (MLPA) was also performed to search for copy number variants in the NDP gene. The clinical findings of the three brothers included no light perception, corneal opacity, shallow anterior chamber, leukocoria, total retinal detachment and mental retardation. Exon 2 of the NDP gene was not amplified in the proband and one brother, even when the PCR primers for exon 2 were changed, whereas the other two exons showed no mutations by direct sequencing. MLPA analysis showed deletion of exon 2 of the NDP gene in the proband and one brother, while there was only one copy of exon 2 in the mother. Norrie disease was diagnosed in three patients from a Japanese family by clinical examination and was confirmed by genetic analysis. To localize the defect, confirmation of copy number variation by the MLPA method was useful in the present study.

  6. CopyNumber450kCancer: baseline correction for accurate copy number calling from the 450k methylation array.

    Science.gov (United States)

    Marzouka, Nour-Al-Dain; Nordlund, Jessica; Bäcklin, Christofer L; Lönnerholm, Gudmar; Syvänen, Ann-Christine; Carlsson Almlöf, Jonas

    2016-04-01

    The Illumina Infinium HumanMethylation450 BeadChip (450k) is widely used for the evaluation of DNA methylation levels in large-scale datasets, particularly in cancer. The 450k design allows copy number variant (CNV) calling using existing bioinformatics tools. However, in cancer samples, numerous large-scale aberrations cause shifting in the probe intensities and thereby may result in erroneous CNV calling. Therefore, a baseline correction process is needed. We suggest the maximum peak of probe segment density to correct the shift in the intensities in cancer samples. CopyNumber450kCancer is implemented as an R package. The package with examples can be downloaded at http://cran.r-project.org nour.marzouka@medsci.uu.se Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  7. Breast tumor copy number aberration phenotypes and genomic instability

    International Nuclear Information System (INIS)

    Fridlyand, Jane; Jain, Ajay N; McLennan, Jane; Ziegler, John; Chin, Koei; Devries, Sandy; Feiler, Heidi; Gray, Joe W; Waldman, Frederic; Pinkel, Daniel; Albertson, Donna G; Snijders, Antoine M; Ylstra, Bauke; Li, Hua; Olshen, Adam; Segraves, Richard; Dairkee, Shanaz; Tokuyasu, Taku; Ljung, Britt Marie

    2006-01-01

    Genomic DNA copy number aberrations are frequent in solid tumors, although the underlying causes of chromosomal instability in tumors remain obscure. Genes likely to have genomic instability phenotypes when mutated (e.g. those involved in mitosis, replication, repair, and telomeres) are rarely mutated in chromosomally unstable sporadic tumors, even though such mutations are associated with some heritable cancer prone syndromes. We applied array comparative genomic hybridization (CGH) to the analysis of breast tumors. The variation in the levels of genomic instability amongst tumors prompted us to investigate whether alterations in processes/genes involved in maintenance and/or manipulation of the genome were associated with particular types of genomic instability. We discriminated three breast tumor subtypes based on genomic DNA copy number alterations. The subtypes varied with respect to level of genomic instability. We find that shorter telomeres and altered telomere related gene expression are associated with amplification, implicating telomere attrition as a promoter of this type of aberration in breast cancer. On the other hand, the numbers of chromosomal alterations, particularly low level changes, are associated with altered expression of genes in other functional classes (mitosis, cell cycle, DNA replication and repair). Further, although loss of function instability phenotypes have been demonstrated for many of the genes in model systems, we observed enhanced expression of most genes in tumors, indicating that over expression, rather than deficiency underlies instability. Many of the genes associated with higher frequency of copy number aberrations are direct targets of E2F, supporting the hypothesis that deregulation of the Rb pathway is a major contributor to chromosomal instability in breast tumors. These observations are consistent with failure to find mutations in sporadic tumors in genes that have roles in maintenance or manipulation of the genome

  8. Genome Architecture and Its Roles in Human Copy Number Variation

    Directory of Open Access Journals (Sweden)

    Lu Chen

    2014-12-01

    Full Text Available Besides single-nucleotide variants in the human genome, large-scale genomic variants, such as copy number variations (CNVs, are being increasingly discovered as a genetic source of human diversity and the pathogenic factors of diseases. Recent experimental findings have shed light on the links between different genome architectures and CNV mutagenesis. In this review, we summarize various genomic features and discuss their contributions to CNV formation. Genomic repeats, including both low-copy and high-copy repeats, play important roles in CNV instability, which was initially known as DNA recombination events. Furthermore, it has been found that human genomic repeats can also induce DNA replication errors and consequently result in CNV mutations. Some recent studies showed that DNA replication timing, which reflects the high-order information of genomic organization, is involved in human CNV mutations. Our review highlights that genome architecture, from DNA sequence to high-order genomic organization, is an important molecular factor in CNV mutagenesis and human genomic instability.

  9. Haplotype phasing and inheritance of copy number variants in nuclear families.

    Science.gov (United States)

    Palta, Priit; Kaplinski, Lauris; Nagirnaja, Liina; Veidenberg, Andres; Möls, Märt; Nelis, Mari; Esko, Tõnu; Metspalu, Andres; Laan, Maris; Remm, Maido

    2015-01-01

    DNA copy number variants (CNVs) that alter the copy number of a particular DNA segment in the genome play an important role in human phenotypic variability and disease susceptibility. A number of CNVs overlapping with genes have been shown to confer risk to a variety of human diseases thus highlighting the relevance of addressing the variability of CNVs at a higher resolution. So far, it has not been possible to deterministically infer the allelic composition of different haplotypes present within the CNV regions. We have developed a novel computational method, called PiCNV, which enables to resolve the haplotype sequence composition within CNV regions in nuclear families based on SNP genotyping microarray data. The algorithm allows to i) phase normal and CNV-carrying haplotypes in the copy number variable regions, ii) resolve the allelic copies of rearranged DNA sequence within the haplotypes and iii) infer the heritability of identified haplotypes in trios or larger nuclear families. To our knowledge this is the first program available that can deterministically phase null, mono-, di-, tri- and tetraploid genotypes in CNV loci. We applied our method to study the composition and inheritance of haplotypes in CNV regions of 30 HapMap Yoruban trios and 34 Estonian families. For 93.6% of the CNV loci, PiCNV enabled to unambiguously phase normal and CNV-carrying haplotypes and follow their transmission in the corresponding families. Furthermore, allelic composition analysis identified the co-occurrence of alternative allelic copies within 66.7% of haplotypes carrying copy number gains. We also observed less frequent transmission of CNV-carrying haplotypes from parents to children compared to normal haplotypes and identified an emergence of several de novo deletions and duplications in the offspring.

  10. Haplotype phasing and inheritance of copy number variants in nuclear families.

    Directory of Open Access Journals (Sweden)

    Priit Palta

    Full Text Available DNA copy number variants (CNVs that alter the copy number of a particular DNA segment in the genome play an important role in human phenotypic variability and disease susceptibility. A number of CNVs overlapping with genes have been shown to confer risk to a variety of human diseases thus highlighting the relevance of addressing the variability of CNVs at a higher resolution. So far, it has not been possible to deterministically infer the allelic composition of different haplotypes present within the CNV regions. We have developed a novel computational method, called PiCNV, which enables to resolve the haplotype sequence composition within CNV regions in nuclear families based on SNP genotyping microarray data. The algorithm allows to i phase normal and CNV-carrying haplotypes in the copy number variable regions, ii resolve the allelic copies of rearranged DNA sequence within the haplotypes and iii infer the heritability of identified haplotypes in trios or larger nuclear families. To our knowledge this is the first program available that can deterministically phase null, mono-, di-, tri- and tetraploid genotypes in CNV loci. We applied our method to study the composition and inheritance of haplotypes in CNV regions of 30 HapMap Yoruban trios and 34 Estonian families. For 93.6% of the CNV loci, PiCNV enabled to unambiguously phase normal and CNV-carrying haplotypes and follow their transmission in the corresponding families. Furthermore, allelic composition analysis identified the co-occurrence of alternative allelic copies within 66.7% of haplotypes carrying copy number gains. We also observed less frequent transmission of CNV-carrying haplotypes from parents to children compared to normal haplotypes and identified an emergence of several de novo deletions and duplications in the offspring.

  11. aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations.

    Directory of Open Access Journals (Sweden)

    Victor Renault

    Full Text Available Copy number variations (CNV include net gains or losses of part or whole chromosomal regions. They differ from copy neutral loss of heterozygosity (cn-LOH events which do not induce any net change in the copy number and are often associated with uniparental disomy. These phenomena have long been reported to be associated with diseases and particularly in cancer. Losses/gains of genomic regions are often correlated with lower/higher gene expression. On the other hand, loss of heterozygosity (LOH and cn-LOH are common events in cancer and may be associated with the loss of a functional tumor suppressor gene. Therefore, identifying recurrent CNV and cn-LOH events can be important as they may highlight common biological components and give insights into the development or mechanisms of a disease. However, no currently available tools allow a comprehensive whole-genome visualization of recurrent CNVs and cn-LOH in groups of samples providing absolute quantification of the aberrations leading to the loss of potentially important information.To overcome these limitations, we developed aCNViewer (Absolute CNV Viewer, a visualization tool for absolute CNVs and cn-LOH across a group of samples. aCNViewer proposes three graphical representations: dendrograms, bi-dimensional heatmaps showing chromosomal regions sharing similar abnormality patterns, and quantitative stacked histograms facilitating the identification of recurrent absolute CNVs and cn-LOH. We illustrated aCNViewer using publically available hepatocellular carcinomas (HCCs Affymetrix SNP Array data (Fig 1A. Regions 1q and 8q present a similar percentage of total gains but significantly different copy number gain categories (p-value of 0.0103 with a Fisher exact test, validated by another cohort of HCCs (p-value of 5.6e-7 (Fig 2B.aCNViewer is implemented in python and R and is available with a GNU GPLv3 license on GitHub https://github.com/FJD-CEPH/aCNViewer and Docker https://hub.docker.com/r/fjdceph/acnviewer/.aCNViewer@cephb.fr.

  12. aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations.

    Science.gov (United States)

    Renault, Victor; Tost, Jörg; Pichon, Fabien; Wang-Renault, Shu-Fang; Letouzé, Eric; Imbeaud, Sandrine; Zucman-Rossi, Jessica; Deleuze, Jean-François; How-Kit, Alexandre

    2017-01-01

    Copy number variations (CNV) include net gains or losses of part or whole chromosomal regions. They differ from copy neutral loss of heterozygosity (cn-LOH) events which do not induce any net change in the copy number and are often associated with uniparental disomy. These phenomena have long been reported to be associated with diseases and particularly in cancer. Losses/gains of genomic regions are often correlated with lower/higher gene expression. On the other hand, loss of heterozygosity (LOH) and cn-LOH are common events in cancer and may be associated with the loss of a functional tumor suppressor gene. Therefore, identifying recurrent CNV and cn-LOH events can be important as they may highlight common biological components and give insights into the development or mechanisms of a disease. However, no currently available tools allow a comprehensive whole-genome visualization of recurrent CNVs and cn-LOH in groups of samples providing absolute quantification of the aberrations leading to the loss of potentially important information. To overcome these limitations, we developed aCNViewer (Absolute CNV Viewer), a visualization tool for absolute CNVs and cn-LOH across a group of samples. aCNViewer proposes three graphical representations: dendrograms, bi-dimensional heatmaps showing chromosomal regions sharing similar abnormality patterns, and quantitative stacked histograms facilitating the identification of recurrent absolute CNVs and cn-LOH. We illustrated aCNViewer using publically available hepatocellular carcinomas (HCCs) Affymetrix SNP Array data (Fig 1A). Regions 1q and 8q present a similar percentage of total gains but significantly different copy number gain categories (p-value of 0.0103 with a Fisher exact test), validated by another cohort of HCCs (p-value of 5.6e-7) (Fig 2B). aCNViewer is implemented in python and R and is available with a GNU GPLv3 license on GitHub https://github.com/FJD-CEPH/aCNViewer and Docker https

  13. Engineered promoters enable constant gene expression at any copy number in bacteria.

    Science.gov (United States)

    Segall-Shapiro, Thomas H; Sontag, Eduardo D; Voigt, Christopher A

    2018-04-01

    The internal environment of growing cells is variable and dynamic, making it difficult to introduce reliable parts, such as promoters, for genetic engineering. Here, we applied control-theoretic ideas to design promoters that maintained constant levels of expression at any copy number. Theory predicts that independence to copy number can be achieved by using an incoherent feedforward loop (iFFL) if the negative regulation is perfectly non-cooperative. We engineered iFFLs into Escherichia coli promoters using transcription-activator-like effectors (TALEs). These promoters had near-identical expression in different genome locations and plasmids, even when their copy number was perturbed by genomic mutations or changes in growth medium composition. We applied the stabilized promoters to show that a three-gene metabolic pathway to produce deoxychromoviridans could retain function without re-tuning when the stabilized-promoter-driven genes were moved from a plasmid into the genome.

  14. Copy number variation plays an important role in clinical epilepsy

    Science.gov (United States)

    Olson, Heather; Shen, Yiping; Avallone, Jennifer; Sheidley, Beth R.; Pinsky, Rebecca; Bergin, Ann M.; Berry, Gerard T.; Duffy, Frank H.; Eksioglu, Yaman; Harris, David J.; Hisama, Fuki M.; Ho, Eugenia; Irons, Mira; Jacobsen, Christina M.; James, Philip; Kothare, Sanjeev; Khwaja, Omar; Lipton, Jonathan; Loddenkemper, Tobias; Markowitz, Jennifer; Maski, Kiran; Megerian, J. Thomas; Neilan, Edward; Raffalli, Peter C.; Robbins, Michael; Roberts, Amy; Roe, Eugene; Rollins, Caitlin; Sahin, Mustafa; Sarco, Dean; Schonwald, Alison; Smith, Sharon E.; Soul, Janet; Stoler, Joan M.; Takeoka, Masanori; Tan, Wen-Han; Torres, Alcy R.; Tsai, Peter; Urion, David K.; Weissman, Laura; Wolff, Robert; Wu, Bai-Lin; Miller, David T.; Poduri, Annapurna

    2015-01-01

    Objective To evaluate the role of copy number abnormalities detectable by chromosomal microarray (CMA) testing in patients with epilepsy at a tertiary care center. Methods We identified patients with ICD-9 codes for epilepsy or seizures and clinical CMA testing performed between October 2006 and February 2011 at Boston Children’s Hospital. We reviewed medical records and included patients meeting criteria for epilepsy. We phenotypically characterized patients with epilepsy-associated abnormalities on CMA. Results Of 973 patients who had CMA and ICD-9 codes for epilepsy or seizures, 805 patients satisfied criteria for epilepsy. We observed 437 copy number variants (CNVs) in 323 patients (1–4 per patient), including 185 (42%) deletions and 252 (58%) duplications. Forty (9%) were confirmed de novo, 186 (43%) were inherited, and parental data were unavailable for 211 (48%). Excluding full chromosome trisomies, CNV size ranged from 18 kb to 142 Mb, and 34% were over 500 kb. In at least 40 cases (5%), the epilepsy phenotype was explained by a CNV, including 29 patients with epilepsy-associated syndromes and 11 with likely disease-associated CNVs involving epilepsy genes or “hotspots.” We observed numerous recurrent CNVs including 10 involving loss or gain of Xp22.31, a region described in patients with and without epilepsy. Interpretation Copy number abnormalities play an important role in patients with epilepsy. Given that the diagnostic yield of CMA for epilepsy patients is similar to the yield in autism spectrum disorders and in prenatal diagnosis, for which published guidelines recommend testing with CMA, we recommend the implementation of CMA in the evaluation of unexplained epilepsy. PMID:24811917

  15. Mapping copy number variation by population-scale genome sequencing

    DEFF Research Database (Denmark)

    Mills, Ryan E.; Walter, Klaudia; Stewart, Chip

    2011-01-01

    Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is......, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications...

  16. rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants

    Directory of Open Access Journals (Sweden)

    Elizabeth X. Kwan

    2016-09-01

    Full Text Available The Saccharomyces cerevisiae ribosomal DNA (rDNA locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae.

  17. rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants.

    Science.gov (United States)

    Kwan, Elizabeth X; Wang, Xiaobin S; Amemiya, Haley M; Brewer, Bonita J; Raghuraman, M K

    2016-09-08

    The Saccharomyces cerevisiae ribosomal DNA (rDNA) locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO) single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae. Copyright © 2016 Kwan et al.

  18. Impact of constitutional copy number variants on biological pathway evolution.

    Science.gov (United States)

    Poptsova, Maria; Banerjee, Samprit; Gokcumen, Omer; Rubin, Mark A; Demichelis, Francesca

    2013-01-23

    Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations.

  19. Exploratory analysis of the copy number alterations in glioblastoma multiforme.

    Science.gov (United States)

    Freire, Pablo; Vilela, Marco; Deus, Helena; Kim, Yong-Wan; Koul, Dimpy; Colman, Howard; Aldape, Kenneth D; Bogler, Oliver; Yung, W K Alfred; Coombes, Kevin; Mills, Gordon B; Vasconcelos, Ana T; Almeida, Jonas S

    2008-01-01

    The Cancer Genome Atlas project (TCGA) has initiated the analysis of multiple samples of a variety of tumor types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise. Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions. Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser software application was developed and is made public to provide a user-friendly graphical interface in which the reported results can be reproduced. The application source code and stand alone executable are available at (http://code.google.com/p/cancergenome) and (http://bioinformaticstation.org), respectively. The most important known copy number alterations for glioblastoma were correctly recovered using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors were also detected. A detailed map of aberrant regions is provided.

  20. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts.

    Science.gov (United States)

    Gorter de Vries, Arthur R; Pronk, Jack T; Daran, Jean-Marc G

    2017-06-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyce s strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. Copyright © 2017 Gorter de Vries et al.

  1. Copy number variation of human AMY1 is a minor contributor to variation in salivary amylase expression and activity.

    Science.gov (United States)

    Carpenter, Danielle; Mitchell, Laura M; Armour, John A L

    2017-02-20

    Salivary amylase in humans is encoded by the copy variable gene AMY1 in the amylase gene cluster on chromosome 1. Although the role of salivary amylase is well established, the consequences of the copy number variation (CNV) at AMY1 on salivary amylase protein production are less well understood. The amylase gene cluster is highly structured with a fundamental difference between odd and even AMY1 copy number haplotypes. In this study, we aimed to explore, in samples from 119 unrelated individuals, not only the effects of AMY1 CNV on salivary amylase protein expression and amylase enzyme activity but also whether there is any evidence for underlying difference between the common haplotypes containing odd numbers of AMY1 and even copy number haplotypes. AMY1 copy number was significantly correlated with the variation observed in salivary amylase production (11.7% of variance, P structure may affect expression, but this was not significant in our data.

  2. Copy number variation and autism: New insights and clinical implications

    Directory of Open Access Journals (Sweden)

    Brian Hon-Yin Chung

    2014-07-01

    Full Text Available Genomic research can lead to discoveries of copy number variations (CNVs which can be a susceptibility factor for autism spectrum disorder (ASD. The clinical translation is that this can improve the care of children with ASD. Chromosome microarray is now the first-tiered genetic investigation for ASD, with a detection rate exceeding conventional cytogenetics and any single gene testing. However, interpretation of the results is challenging and there is no consensus on “what” and “how much” to disclose. In this article, we will review how CNV studies have improved our understanding of ASD, the clinical applications, and related counseling issues. Future direction of autism genetic research is also discussed.

  3. Exploratory analysis of the copy number alterations in glioblastoma multiforme.

    Directory of Open Access Journals (Sweden)

    Pablo Freire

    Full Text Available The Cancer Genome Atlas project (TCGA has initiated the analysis of multiple samples of a variety of tumor types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise.Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions. Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser software application was developed and is made public to provide a user-friendly graphical interface in which the reported results can be reproduced. The application source code and stand alone executable are available at (http://code.google.com/p/cancergenome and (http://bioinformaticstation.org, respectively.The most important known copy number alterations for glioblastoma were correctly recovered using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors were also detected. A detailed map of aberrant regions is provided.

  4. Copy number determination of genetically-modified hematopoietic stem cells.

    Science.gov (United States)

    Schuesler, Todd; Reeves, Lilith; Kalle, Christof von; Grassman, Elke

    2009-01-01

    Human gene transfer with gammaretroviral, murine leukemia virus (MLV) based vectors has been shown to effectively insert and express transgene sequences at a level of therapeutic benefit. However, there are numerous reports of disruption of the normal cellular processes caused by the viral insertion, even of replication deficient gammaretroviral vectors. Current gammaretroviral and lentiviral vectors do not control the site of insertion into the genome, hence, the possibility of disruption of the target cell genome. Risk related to viral insertions is linked to the number of insertions of the transgene into the cellular DNA, as has been demonstrated for replication competent and replication deficient retroviruses in experiments. At high number of insertions per cell, cell transformation due to vector induced activation of proto-oncogenes is more likely to occur, in particular since more than one transforming event is needed for oncogenesis. Thus, determination of the vector copy number in bulk transduced populations, individual colony forming units, and tissue from the recipient of the transduced cells is an increasingly important safety assay and has become a standard, though not straightforward assay, since the inception of quantitative PCR.

  5. A large-scale survey of genetic copy number variations among Han Chinese residing in Taiwan

    Directory of Open Access Journals (Sweden)

    Wu Jer-Yuarn

    2008-12-01

    Full Text Available Abstract Background Copy number variations (CNVs have recently been recognized as important structural variations in the human genome. CNVs can affect gene expression and thus may contribute to phenotypic differences. The copy number inferring tool (CNIT is an effective hidden Markov model-based algorithm for estimating allele-specific copy number and predicting chromosomal alterations from single nucleotide polymorphism microarrays. The CNIT algorithm, which was constructed using data from 270 HapMap multi-ethnic individuals, was applied to identify CNVs from 300 unrelated Han Chinese individuals in Taiwan. Results Using stringent selection criteria, 230 regions with variable copy numbers were identified in the Han Chinese population; 133 (57.83% had been reported previously, 64 displayed greater than 1% CNV allele frequency. The average size of the CNV regions was 322 kb (ranging from 1.48 kb to 5.68 Mb and covered a total of 2.47% of the human genome. A total of 196 of the CNV regions were simple deletions and 27 were simple amplifications. There were 449 genes and 5 microRNAs within these CNV regions; some of these genes are known to be associated with diseases. Conclusion The identified CNVs are characteristic of the Han Chinese population and should be considered when genetic studies are conducted. The CNV distribution in the human genome is still poorly characterized, and there is much diversity among different ethnic populations.

  6. Determination of beta-defensin genomic copy number in different populations

    DEFF Research Database (Denmark)

    Fode, Peder; Jespersgaard, Cathrine; Hardwick, Robert J

    2011-01-01

    There have been conflicting reports in the literature on association of gene copy number with disease, including CCL3L1 and HIV susceptibility, and ß-defensins and Crohn's disease. Quantification of precise gene copy numbers is important in order to define any association of gene copy number with...

  7. Genomic copy number variations in three Southeast Asian populations.

    Science.gov (United States)

    Ku, Chee-Seng; Pawitan, Yudi; Sim, Xueling; Ong, Rick T H; Seielstad, Mark; Lee, Edmund J D; Teo, Yik-Ying; Chia, Kee-Seng; Salim, Agus

    2010-07-01

    Research on the role of copy number variations (CNVs) in the genetic risk of diseases in Asian populations has been hampered by a relative lack of reference CNV maps for Asian populations outside the East Asians. In this article, we report the population characteristics of CNVs in Chinese, Malay, and Asian Indian populations in Singapore. Using the Illumina Human 1M Beadchip array, we identify 1,174 CNV loci in these populations that corroborated with findings when the same samples were typed on the Affymetrix 6.0 platform. We identify 441 novel loci not previously reported in the Database of Genomic Variations (DGV). We observe a considerable number of loci that span all three populations and were previously unreported, as well as population-specific loci that are quite common in the respective populations. From this we observe the distribution of CNVs in the Asian Indian population to be considerably different from the Chinese and Malay populations. About half of the deletion loci and three-quarters of duplication loci overlap UCSC genes. Tens of loci show population differentiation and overlap with genes previously known to be associated with genetic risk of diseases. One of these loci is the CYP2A6 deletion, previously linked to reduced susceptibility to lung cancer. (c) 2010 Wiley-Liss, Inc.

  8. Family-Based Benchmarking of Copy Number Variation Detection Software.

    Science.gov (United States)

    Nutsua, Marcel Elie; Fischer, Annegret; Nebel, Almut; Hofmann, Sylvia; Schreiber, Stefan; Krawczak, Michael; Nothnagel, Michael

    2015-01-01

    The analysis of structural variants, in particular of copy-number variations (CNVs), has proven valuable in unraveling the genetic basis of human diseases. Hence, a large number of algorithms have been developed for the detection of CNVs in SNP array signal intensity data. Using the European and African HapMap trio data, we undertook a comparative evaluation of six commonly used CNV detection software tools, namely Affymetrix Power Tools (APT), QuantiSNP, PennCNV, GLAD, R-gada and VEGA, and assessed their level of pair-wise prediction concordance. The tool-specific CNV prediction accuracy was assessed in silico by way of intra-familial validation. Software tools differed greatly in terms of the number and length of the CNVs predicted as well as the number of markers included in a CNV. All software tools predicted substantially more deletions than duplications. Intra-familial validation revealed consistently low levels of prediction accuracy as measured by the proportion of validated CNVs (34-60%). Moreover, up to 20% of apparent family-based validations were found to be due to chance alone. Software using Hidden Markov models (HMM) showed a trend to predict fewer CNVs than segmentation-based algorithms albeit with greater validity. PennCNV yielded the highest prediction accuracy (60.9%). Finally, the pairwise concordance of CNV prediction was found to vary widely with the software tools involved. We recommend HMM-based software, in particular PennCNV, rather than segmentation-based algorithms when validity is the primary concern of CNV detection. QuantiSNP may be used as an additional tool to detect sets of CNVs not detectable by the other tools. Our study also reemphasizes the need for laboratory-based validation, such as qPCR, of CNVs predicted in silico.

  9. Genomic Diversity Using Copy Number Variations in Worldwide Chicken Populations

    Directory of Open Access Journals (Sweden)

    Erica Gorla

    2018-06-01

    Full Text Available Recently, many studies in livestock have focused on the identification of Copy Number Variants (CNVs using high-density Single Nucleotide Polymorphism (SNP arrays, but few have focused on studying chicken ecotypes coming from many locations. CNVs are polymorphisms, which may influence phenotype and are an important source of genetic variation in populations. The aim of this study was to explore the genetic difference and structure, using a high density SNP chip in 936 individuals from seven different countries (Brazil, Italy, Egypt, Mexico, Rwanda, Sri Lanka and Uganda. The DNA was genotyped with the Affymetrix Axiom®600k Chicken Genotyping Array and processed with stringent quality controls to obtain 559,201 SNPs in 915 individuals. The Log R Ratio (LRR and the B Allele Frequency of SNPs were used to perform the CNV calling with PennCNV software based on a Hidden Markov Model analysis and the LRR was used to perform CNV detection with SVS Golden Helix software.After filtering, a total of 19,027 CNVs were detected with the SVS software, while 9,065 CNVs were identified with the Penn CNV software. The CNVs were summarized in 7,001 Copy Number Variant Regions (CNVRs and 4,414 CNVRs, using the software BedTool.The consensus analysis across the CNVRs allowed the identification of 2,820 consensus CNVR, of which 1,721 were gain, 637 loss and 462 complex, for a total length of 53 Mb corresponding to the 5 % of the GalGal5 chicken autosomes. Only the consensus CNV regions obtained from both detections were considered for further analysis.The intersection analysis performed between the chicken gene database (Gallus_gallus-5.0 and the 1,927 consensus CNVRs allowed the identification (within or partial overlap of a total of 2,354 unique genes with an official gene ID.  The CNVRs identified here represent the first comprehensive mapping in several worldwide populations, using a high-density SNP chip.

  10. Inferring mechanisms of copy number change from haplotype structures at the human DEFA1A3 locus.

    Science.gov (United States)

    Black, Holly A; Khan, Fayeza F; Tyson, Jess; Al Armour, John

    2014-07-21

    The determination of structural haplotypes at copy number variable regions can indicate the mechanisms responsible for changes in copy number, as well as explain the relationship between gene copy number and expression. However, obtaining spatial information at regions displaying extensive copy number variation, such as the DEFA1A3 locus, is complex, because of the difficulty in the phasing and assembly of these regions. The DEFA1A3 locus is intriguing in that it falls within a region of high linkage disequilibrium, despite its high variability in copy number (n = 3-16); hence, the mechanisms responsible for changes in copy number at this locus are unclear. In this study, a region flanking the DEFA1A3 locus was sequenced across 120 independent haplotypes with European ancestry, identifying five common classes of DEFA1A3 haplotype. Assigning DEFA1A3 class to haplotypes within the 1000 Genomes project highlights a significant difference in DEFA1A3 class frequencies between populations with different ancestry. The features of each DEFA1A3 class, for example, the associated DEFA1A3 copy numbers, were initially assessed in a European cohort (n = 599) and replicated in the 1000 Genomes samples, showing within-class similarity, but between-class and between-population differences in the features of the DEFA1A3 locus. Emulsion haplotype fusion-PCR was used to generate 61 structural haplotypes at the DEFA1A3 locus, showing a high within-class similarity in structure. Structural haplotypes across the DEFA1A3 locus indicate that intra-allelic rearrangement is the predominant mechanism responsible for changes in DEFA1A3 copy number, explaining the conservation of linkage disequilibrium across the locus. The identification of common structural haplotypes at the DEFA1A3 locus could aid studies into how DEFA1A3 copy number influences expression, which is currently unclear.

  11. Copy Number Variation in Hereditary Non-Polyposis Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Garry N. Hannan

    2013-09-01

    Full Text Available Hereditary non-polyposis colorectal cancer (HNPCC is the commonest form of inherited colorectal cancer (CRC predisposition and by definition describes families which conform to the Amsterdam Criteria or reiterations thereof. In ~50% of patients adhering to the Amsterdam criteria germline variants are identified in one of four DNA Mismatch repair (MMR genes MLH1, MSH2, MSH6 and PMS2. Loss of function of any one of these genes results in a failure to repair DNA errors occurring during replication which can be most easily observed as DNA microsatellite instability (MSI—a hallmark feature of this disease. The remaining 50% of patients without a genetic diagnosis of disease may harbour more cryptic changes within or adjacent to MLH1, MSH2, MSH6 or PMS2 or elsewhere in the genome. We used a high density cytogenetic array to screen for deletions or duplications in a series of patients, all of whom adhered to the Amsterdam/Bethesda criteria, to determine if genomic re-arrangements could account for a proportion of patients that had been shown not to harbour causative mutations as assessed by standard diagnostic techniques. The study has revealed some associations between copy number variants (CNVs and HNPCC mutation negative cases and further highlights difficulties associated with CNV analysis.

  12. The Role of Constitutional Copy Number Variants in Breast Cancer

    Science.gov (United States)

    Walker, Logan C.; Wiggins, George A.R.; Pearson, John F.

    2015-01-01

    Constitutional copy number variants (CNVs) include inherited and de novo deviations from a diploid state at a defined genomic region. These variants contribute significantly to genetic variation and disease in humans, including breast cancer susceptibility. Identification of genetic risk factors for breast cancer in recent years has been dominated by the use of genome-wide technologies, such as single nucleotide polymorphism (SNP)-arrays, with a significant focus on single nucleotide variants. To date, these large datasets have been underutilised for generating genome-wide CNV profiles despite offering a massive resource for assessing the contribution of these structural variants to breast cancer risk. Technical challenges remain in determining the location and distribution of CNVs across the human genome due to the accuracy of computational prediction algorithms and resolution of the array data. Moreover, better methods are required for interpreting the functional effect of newly discovered CNVs. In this review, we explore current and future application of SNP array technology to assess rare and common CNVs in association with breast cancer risk in humans. PMID:27600231

  13. Association tests and software for copy number variant data

    Directory of Open Access Journals (Sweden)

    Plagnol Vincent

    2009-01-01

    Full Text Available Abstract Recent studies have suggested that copy number variation (CNV significantly contributes to genetic predisposition to several common disorders. These findings, combined with the imperfect tagging of CNVs by single nucleotide polymorphisms (SNPs, have motivated the development of association studies directly targeting CNVs. Several assays, including comparative genomic hybridisation arrays, SNP genotyping arrays, or DNA quantification through real-time polymerase chain reaction analysis, allow direct assessment of CNV status in cohorts sufficiently large to provide adequate statistical power for association studies. When analysing data provided by these assays, association tests for CNV data are not fundamentally different from SNP-based association tests. The main difference arises when the quality of the CNV assay is not sufficient to convert unequivocally the raw measurement into discrete calls -- a common issue, given the technological limitations of current CNV assays. When this is the case, association tests are more appropriately based on the raw continuous measurement provided by the CNV assay, instead of potentially inaccurate discrete calls, thus motivating the development of new statistical methods. Here, the programs available for CNV association testing for case control or family data are reviewed, using either discrete calls or raw continuous data.

  14. Gene copy number variation throughout the Plasmodium falciparum genome

    Directory of Open Access Journals (Sweden)

    Stewart Lindsay B

    2009-08-01

    Full Text Available Abstract Background Gene copy number variation (CNV is responsible for several important phenotypes of the malaria parasite Plasmodium falciparum, including drug resistance, loss of infected erythrocyte cytoadherence and alteration of receptor usage for erythrocyte invasion. Despite the known effects of CNV, little is known about its extent throughout the genome. Results We performed a whole-genome survey of CNV genes in P. falciparum using comparative genome hybridisation of a diverse set of 16 laboratory culture-adapted isolates to a custom designed high density Affymetrix GeneChip array. Overall, 186 genes showed hybridisation signals consistent with deletion or amplification in one or more isolate. There is a strong association of CNV with gene length, genomic location, and low orthology to genes in other Plasmodium species. Sub-telomeric regions of all chromosomes are strongly associated with CNV genes independent from members of previously described multigene families. However, ~40% of CNV genes were located in more central regions of the chromosomes. Among the previously undescribed CNV genes, several that are of potential phenotypic relevance are identified. Conclusion CNV represents a major form of genetic variation within the P. falciparum genome; the distribution of gene features indicates the involvement of highly non-random mutational and selective processes. Additional studies should be directed at examining CNV in natural parasite populations to extend conclusions to clinical settings.

  15. Lepton number violation in theories with a large number of standard model copies

    International Nuclear Information System (INIS)

    Kovalenko, Sergey; Schmidt, Ivan; Paes, Heinrich

    2011-01-01

    We examine lepton number violation (LNV) in theories with a saturated black hole bound on a large number of species. Such theories have been advocated recently as a possible solution to the hierarchy problem and an explanation of the smallness of neutrino masses. On the other hand, the violation of the lepton number can be a potential phenomenological problem of this N-copy extension of the standard model as due to the low quantum gravity scale black holes may induce TeV scale LNV operators generating unacceptably large rates of LNV processes. We show, however, that this issue can be avoided by introducing a spontaneously broken U 1(B-L) . Then, due to the existence of a specific compensation mechanism between contributions of different Majorana neutrino states, LNV processes in the standard model copy become extremely suppressed with rates far beyond experimental reach.

  16. Potential Value of Genomic Copy Number Variations in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Chuanjun Zhuo

    2017-06-01

    Full Text Available Schizophrenia is a devastating neuropsychiatric disorder affecting approximately 1% of the global population, and the disease has imposed a considerable burden on families and society. Although, the exact cause of schizophrenia remains unknown, several lines of scientific evidence have revealed that genetic variants are strongly correlated with the development and early onset of the disease. In fact, the heritability among patients suffering from schizophrenia is as high as 80%. Genomic copy number variations (CNVs are one of the main forms of genomic variations, ubiquitously occurring in the human genome. An increasing number of studies have shown that CNVs account for population diversity and genetically related diseases, including schizophrenia. The last decade has witnessed rapid advances in the development of novel genomic technologies, which have led to the identification of schizophrenia-associated CNVs, insight into the roles of the affected genes in their intervals in schizophrenia, and successful manipulation of the target CNVs. In this review, we focus on the recent discoveries of important CNVs that are associated with schizophrenia and outline the potential values that the study of CNVs will bring to the areas of schizophrenia research, diagnosis, and therapy. Furthermore, with the help of the novel genetic tool known as the Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease 9 (CRISPR/Cas9 system, the pathogenic CNVs as genomic defects could be corrected. In conclusion, the recent novel findings of schizophrenia-associated CNVs offer an exciting opportunity for schizophrenia research to decipher the pathological mechanisms underlying the onset and development of schizophrenia as well as to provide potential clinical applications in genetic counseling, diagnosis, and therapy for this complex mental disease.

  17. Genome-Wide Association of Copy Number Polymorphisms and Kidney Function.

    Directory of Open Access Journals (Sweden)

    Man Li

    Full Text Available Genome-wide association studies (GWAS using single nucleotide polymorphisms (SNPs have identified more than 50 loci associated with estimated glomerular filtration rate (eGFR, a measure of kidney function. However, significant SNPs account for a small proportion of eGFR variability. Other forms of genetic variation have not been comprehensively evaluated for association with eGFR. In this study, we assess whether changes in germline DNA copy number are associated with GFR estimated from serum creatinine, eGFRcrea. We used hidden Markov models (HMMs to identify copy number polymorphic regions (CNPs from high-throughput SNP arrays for 2,514 African (AA and 8,645 European ancestry (EA participants in the Atherosclerosis Risk in Communities (ARIC study. Separately for the EA and AA cohorts, we used Bayesian Gaussian mixture models to estimate copy number at regions identified by the HMM or previously reported in the HapMap Project. We identified 312 and 464 autosomal CNPs among individuals of EA and AA, respectively. Multivariate models adjusted for SNP-derived covariates of population structure identified one CNP in the EA cohort near genome-wide statistical significance (Bonferroni-adjusted p = 0.067 located on chromosome 5 (876-880kb. Overall, our findings suggest a limited role of CNPs in explaining eGFR variability.

  18. A map of copy number variations in Chinese populations.

    Directory of Open Access Journals (Sweden)

    Haiyi Lou

    Full Text Available It has been shown that the human genome contains extensive copy number variations (CNVs. Investigating the medical and evolutionary impacts of CNVs requires the knowledge of locations, sizes and frequency distribution of them within and between populations. However, CNV study of Chinese minorities, which harbor the majority of genetic diversity of Chinese populations, has been underrepresented considering the same efforts in other populations. Here we constructed, to our knowledge, a first CNV map in seven Chinese populations representing the major linguistic groups in China with 1,440 CNV regions identified using Affymetrix SNP 6.0 Array. Considerable differences in distributions of CNV regions between populations and substantial population structures were observed. We showed that ∼35% of CNV regions identified in minority ethnic groups are not shared by Han Chinese population, indicating that the contribution of the minorities to genetic architecture of Chinese population could not be ignored. We further identified highly differentiated CNV regions between populations. For example, a common deletion in Dong and Zhuang (44.4% and 50%, which overlaps two keratin-associated protein genes contributing to the structure of hair fibers, was not observed in Han Chinese. Interestingly, the most differentiated CNV deletion between HapMap CEU and YRI containing CCL3L1 gene reported in previous studies was also the highest differentiated regions between Tibetan and other populations. Besides, by jointly analyzing CNVs and SNPs, we found a CNV region containing gene CTDSPL were in almost perfect linkage disequilibrium between flanking SNPs in Tibetan while not in other populations except HapMap CHD. Furthermore, we found the SNP taggability of CNVs in Chinese populations was much lower than that in European populations. Our results suggest the necessity of a full characterization of CNVs in Chinese populations, and the CNV map we constructed serves as a

  19. A Map of Copy Number Variations in Chinese Populations

    Science.gov (United States)

    Yang, Yajun; Kang, Longli; Zhang, Xin; Jin, Wenfei; Wu, Bailin; Jin, Li; Xu, Shuhua

    2011-01-01

    It has been shown that the human genome contains extensive copy number variations (CNVs). Investigating the medical and evolutionary impacts of CNVs requires the knowledge of locations, sizes and frequency distribution of them within and between populations. However, CNV study of Chinese minorities, which harbor the majority of genetic diversity of Chinese populations, has been underrepresented considering the same efforts in other populations. Here we constructed, to our knowledge, a first CNV map in seven Chinese populations representing the major linguistic groups in China with 1,440 CNV regions identified using Affymetrix SNP 6.0 Array. Considerable differences in distributions of CNV regions between populations and substantial population structures were observed. We showed that ∼35% of CNV regions identified in minority ethnic groups are not shared by Han Chinese population, indicating that the contribution of the minorities to genetic architecture of Chinese population could not be ignored. We further identified highly differentiated CNV regions between populations. For example, a common deletion in Dong and Zhuang (44.4% and 50%), which overlaps two keratin-associated protein genes contributing to the structure of hair fibers, was not observed in Han Chinese. Interestingly, the most differentiated CNV deletion between HapMap CEU and YRI containing CCL3L1 gene reported in previous studies was also the highest differentiated regions between Tibetan and other populations. Besides, by jointly analyzing CNVs and SNPs, we found a CNV region containing gene CTDSPL were in almost perfect linkage disequilibrium between flanking SNPs in Tibetan while not in other populations except HapMap CHD. Furthermore, we found the SNP taggability of CNVs in Chinese populations was much lower than that in European populations. Our results suggest the necessity of a full characterization of CNVs in Chinese populations, and the CNV map we constructed serves as a useful resource in

  20. Contribution of Rare Copy Number Variants to Isolated Human Malformations

    Science.gov (United States)

    Serra-Juhé, Clara; Rodríguez-Santiago, Benjamín; Cuscó, Ivon; Vendrell, Teresa; Camats, Núria; Torán, Núria; Pérez-Jurado, Luis A.

    2012-01-01

    Background Congenital malformations are present in approximately 2–3% of liveborn babies and 20% of stillborn fetuses. The mechanisms underlying the majority of sporadic and isolated congenital malformations are poorly understood, although it is hypothesized that the accumulation of rare genetic, genomic and epigenetic variants converge to deregulate developmental networks. Methodology/Principal Findings We selected samples from 95 fetuses with congenital malformations not ascribed to a specific syndrome (68 with isolated malformations, 27 with multiple malformations). Karyotyping and Multiplex Ligation-dependent Probe Amplification (MLPA) discarded recurrent genomic and cytogenetic rearrangements. DNA extracted from the affected tissue (46%) or from lung or liver (54%) was analyzed by molecular karyotyping. Validations and inheritance were obtained by MLPA. We identified 22 rare copy number variants (CNV) [>100 kb, either absent (n = 7) or very uncommon (n = 15, malformations (21%), including 11 deletions and 11 duplications. One of the 9 tested rearrangements was de novo while the remaining were inherited from a healthy parent. The highest frequency was observed in fetuses with heart hypoplasia (8/17, 62.5%), with two events previously related with the phenotype. Double events hitting candidate genes were detected in two samples with brain malformations. Globally, the burden of deletions was significantly higher in fetuses with malformations compared to controls. Conclusions/Significance Our data reveal a significant contribution of rare deletion-type CNV, mostly inherited but also de novo, to human congenital malformations, especially heart hypoplasia, and reinforce the hypothesis of a multifactorial etiology in most cases. PMID:23056206

  1. Rare copy number variants identified in prune belly syndrome.

    Science.gov (United States)

    Boghossian, Nansi S; Sicko, Robert J; Giannakou, Andreas; Dimopoulos, Aggeliki; Caggana, Michele; Tsai, Michael Y; Yeung, Edwina H; Pankratz, Nathan; Cole, Benjamin R; Romitti, Paul A; Browne, Marilyn L; Fan, Ruzong; Liu, Aiyi; Kay, Denise M; Mills, James L

    2018-03-01

    Prune belly syndrome (PBS), also known as Eagle-Barrett syndrome, is a rare congenital disorder characterized by absence or hypoplasia of the abdominal wall musculature, urinary tract anomalies, and cryptorchidism in males. The etiology of PBS is largely unresolved, but genetic factors are implicated given its recurrence in families. We examined cases of PBS to identify novel pathogenic copy number variants (CNVs). A total of 34 cases (30 males and 4 females) with PBS identified from all live births in New York State (1998-2005) were genotyped using Illumina HumanOmni2.5 microarrays. CNVs were prioritized if they were absent from in-house controls, encompassed ≥10 consecutive probes, were ≥20 Kb in size, had ≤20% overlap with common variants in population reference controls, and had ≤20% overlap with any variant previously detected in other birth defect phenotypes screened in our laboratory. We identified 17 candidate autosomal CNVs; 10 cases each had one CNV and four cases each had two CNVs. The CNVs included a 158 Kb duplication at 4q22 that overlaps the BMPR1B gene; duplications of different sizes carried by two cases in the intron of STIM1 gene; a 67 Kb duplication 202 Kb downstream of the NOG gene, and a 1.34 Mb deletion including the MYOCD gene. The identified rare CNVs spanned genes involved in mesodermal, muscle, and urinary tract development and differentiation, which might help in elucidating the genetic contribution to PBS. We did not have parental DNA and cannot identify whether these CNVs were de novo or inherited. Further research on these CNVs, particularly BMP signaling is warranted to elucidate the pathogenesis of PBS. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Rare copy number variants implicated in posterior urethral valves.

    Science.gov (United States)

    Boghossian, Nansi S; Sicko, Robert J; Kay, Denise M; Rigler, Shannon L; Caggana, Michele; Tsai, Michael Y; Yeung, Edwina H; Pankratz, Nathan; Cole, Benjamin R; Druschel, Charlotte M; Romitti, Paul A; Browne, Marilyn L; Fan, Ruzong; Liu, Aiyi; Brody, Lawrence C; Mills, James L

    2016-03-01

    The cause of posterior urethral valves (PUV) is unknown, but genetic factors are suspected given their familial occurrence. We examined cases of isolated PUV to identify novel copy number variants (CNVs). We identified 56 cases of isolated PUV from all live-births in New York State (1998-2005). Samples were genotyped using Illumina HumanOmni2.5 microarrays. Autosomal and sex-linked CNVs were identified using PennCNV and cnvPartition software. CNVs were prioritized for follow-up if they were absent from in-house controls, contained ≥ 10 consecutive probes, were ≥ 20 Kb in size, had ≤ 20% overlap with variants detected in other birth defect phenotypes screened in our lab, and were rare in population reference controls. We identified 47 rare candidate PUV-associated CNVs in 32 cases; one case had a 3.9 Mb deletion encompassing BMP7. Mutations in BMP7 have been associated with severe anomalies in the mouse urethra. Other interesting CNVs, each detected in a single PUV case included: a deletion of PIK3R3 and TSPAN1, duplication/triplication in FGF12, duplication of FAT1--a gene essential for normal growth and development, a large deletion (>2 Mb) on chromosome 17q that involves TBX2 and TBX4, and large duplications (>1 Mb) on chromosomes 3q and 6q. Our finding of previously unreported novel CNVs in PUV suggests that genetic factors may play a larger role than previously understood. Our data show a potential role of CNVs in up to 57% of cases examined. Investigation of genes in these CNVs may provide further insights into genetic variants that contribute to PUV. © 2015 Wiley Periodicals, Inc.

  3. Accurate measurement of mitochondrial DNA deletion level and copy number differences in human skeletal muscle.

    Directory of Open Access Journals (Sweden)

    John P Grady

    Full Text Available Accurate and reliable quantification of the abundance of mitochondrial DNA (mtDNA molecules, both wild-type and those harbouring pathogenic mutations, is important not only for understanding the progression of mtDNA disease but also for evaluating novel therapeutic approaches. A clear understanding of the sensitivity of mtDNA measurement assays under different experimental conditions is therefore critical, however it is routinely lacking for most published mtDNA quantification assays. Here, we comprehensively assess the variability of two quantitative Taqman real-time PCR assays, a widely-applied MT-ND1/MT-ND4 multiplex mtDNA deletion assay and a recently developed MT-ND1/B2M singleplex mtDNA copy number assay, across a range of DNA concentrations and mtDNA deletion/copy number levels. Uniquely, we provide a specific guide detailing necessary numbers of sample and real-time PCR plate replicates for accurately and consistently determining a given difference in mtDNA deletion levels and copy number in homogenate skeletal muscle DNA.

  4. Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn's disease

    Science.gov (United States)

    Aldhous, Marian C.; Abu Bakar, Suhaili; Prescott, Natalie J.; Palla, Raquel; Soo, Kimberley; Mansfield, John C.; Mathew, Christopher G.; Satsangi, Jack; Armour, John A.L.

    2010-01-01

    The copy number variation in beta-defensin genes on human chromosome 8 has been proposed to underlie susceptibility to inflammatory disorders, but presents considerable challenges for accurate typing on the scale required for adequately powered case–control studies. In this work, we have used accurate methods of copy number typing based on the paralogue ratio test (PRT) to assess beta-defensin copy number in more than 1500 UK DNA samples including more than 1000 cases of Crohn's disease. A subset of 625 samples was typed using both PRT-based methods and standard real-time PCR methods, from which direct comparisons highlight potentially serious shortcomings of a real-time PCR assay for typing this variant. Comparing our PRT-based results with two previous studies based only on real-time PCR, we find no evidence to support the reported association of Crohn's disease with either low or high beta-defensin copy number; furthermore, it is noteworthy that there are disagreements between different studies on the observed frequency distribution of copy number states among European controls. We suggest safeguards to be adopted in assessing and reporting the accuracy of copy number measurement, with particular emphasis on integer clustering of results, to avoid reporting of spurious associations in future case–control studies. PMID:20858604

  5. Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn's disease.

    Science.gov (United States)

    Aldhous, Marian C; Abu Bakar, Suhaili; Prescott, Natalie J; Palla, Raquel; Soo, Kimberley; Mansfield, John C; Mathew, Christopher G; Satsangi, Jack; Armour, John A L

    2010-12-15

    The copy number variation in beta-defensin genes on human chromosome 8 has been proposed to underlie susceptibility to inflammatory disorders, but presents considerable challenges for accurate typing on the scale required for adequately powered case-control studies. In this work, we have used accurate methods of copy number typing based on the paralogue ratio test (PRT) to assess beta-defensin copy number in more than 1500 UK DNA samples including more than 1000 cases of Crohn's disease. A subset of 625 samples was typed using both PRT-based methods and standard real-time PCR methods, from which direct comparisons highlight potentially serious shortcomings of a real-time PCR assay for typing this variant. Comparing our PRT-based results with two previous studies based only on real-time PCR, we find no evidence to support the reported association of Crohn's disease with either low or high beta-defensin copy number; furthermore, it is noteworthy that there are disagreements between different studies on the observed frequency distribution of copy number states among European controls. We suggest safeguards to be adopted in assessing and reporting the accuracy of copy number measurement, with particular emphasis on integer clustering of results, to avoid reporting of spurious associations in future case-control studies.

  6. Incidental copy-number variants identified by routine genome testing in a clinical population

    Science.gov (United States)

    Boone, Philip M.; Soens, Zachry T.; Campbell, Ian M.; Stankiewicz, Pawel; Cheung, Sau Wai; Patel, Ankita; Beaudet, Arthur L.; Plon, Sharon E.; Shaw, Chad A.; McGuire, Amy L.; Lupski, James R.

    2013-01-01

    Purpose Mutational load of susceptibility variants has not been studied on a genomic scale in a clinical population, nor has the potential to identify these mutations as incidental findings during clinical testing been systematically ascertained. Methods Array comparative genomic hybridization, a method for genome-wide detection of DNA copy-number variants, was performed clinically on DNA from 9,005 individuals. Copy-number variants encompassing or disrupting single genes were identified and analyzed for their potential to confer predisposition to dominant, adult-onset disease. Multigene copy-number variants affecting dominant, adult-onset cancer syndrome genes were also assessed. Results In our cohort, 83 single-gene copy-number variants affected 40 unique genes associated with dominant, adult-onset disorders and unrelated to the patients’ referring diagnoses (i.e., incidental) were found. Fourteen of these copy-number variants are likely disease-predisposing, 25 are likely benign, and 44 are of unknown clinical consequence. When incidental copy-number variants spanning up to 20 genes were considered, 27 copy-number variants affected 17 unique genes associated with dominant, adult-onset cancer predisposition. Conclusion Copy-number variants potentially conferring susceptibility to adult-onset disease can be identified as incidental findings during routine genome-wide testing. Some of these mutations may be medically actionable, enabling disease surveillance or prevention; however, most incidentally observed single-gene copy-number variants are currently of unclear significance to the patient. PMID:22878507

  7. TEGS-CN: A Statistical Method for Pathway Analysis of Genome-wide Copy Number Profile.

    Science.gov (United States)

    Huang, Yen-Tsung; Hsu, Thomas; Christiani, David C

    2014-01-01

    The effects of copy number alterations make up a significant part of the tumor genome profile, but pathway analyses of these alterations are still not well established. We proposed a novel method to analyze multiple copy numbers of genes within a pathway, termed Test for the Effect of a Gene Set with Copy Number data (TEGS-CN). TEGS-CN was adapted from TEGS, a method that we previously developed for gene expression data using a variance component score test. With additional development, we extend the method to analyze DNA copy number data, accounting for different sizes and thus various numbers of copy number probes in genes. The test statistic follows a mixture of X (2) distributions that can be obtained using permutation with scaled X (2) approximation. We conducted simulation studies to evaluate the size and the power of TEGS-CN and to compare its performance with TEGS. We analyzed a genome-wide copy number data from 264 patients of non-small-cell lung cancer. With the Molecular Signatures Database (MSigDB) pathway database, the genome-wide copy number data can be classified into 1814 biological pathways or gene sets. We investigated associations of the copy number profile of the 1814 gene sets with pack-years of cigarette smoking. Our analysis revealed five pathways with significant P values after Bonferroni adjustment (number data, and causal mechanisms of the five pathways require further study.

  8. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. | Office of Cancer Genomics

    Science.gov (United States)

    Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent.

  9. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    Science.gov (United States)

    Bickhart, Derek M.; Xu, Lingyang; Hutchison, Jana L.; Cole, John B.; Null, Daniel J.; Schroeder, Steven G.; Song, Jiuzhou; Garcia, Jose Fernando; Sonstegard, Tad S.; Van Tassell, Curtis P.; Schnabel, Robert D.; Taylor, Jeremy F.; Lewin, Harris A.; Liu, George E.

    2016-01-01

    The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1. Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future. PMID:27085184

  10. Characterization of α-isopropylmalate synthases containing different copy numbers of tandem repeats in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Palittapongarnpim Prasit

    2009-06-01

    Full Text Available Abstract Background Alpha-isopropylmalate synthase (α-IPMS is the key enzyme that catalyzes the first committed step in the leucine biosynthetic pathway. The gene encoding α-IPMS in Mycobacterium tuberculosis, leuA, is polymorphic due to the insertion of 57-bp repeat units referred to as Variable Number of Tandem Repeats (VNTR. The role of the VNTR found within the M. tuberculosis genome is unclear. To investigate the role of the VNTR in leuA, we compared two α-IPMS proteins with different numbers of amino acid repeats, one with two copies and the other with 14 copies. We have cloned leuA with 14 copies of the repeat units into the pET15b expression vector with a His6-tag at the N-terminus, as was previously done for the leuA gene with two copies of the repeat units. Results The recombinant His6-α-IPMS proteins with two and 14 copies (α-IPMS-2CR and α-IPMS-14CR, respectively of the repeat units were purified by immobilized metal ion affinity chromatography and gel filtration. Both enzymes were found to be dimers by gel filtration. Both enzymes work well at pH values of 7–8.5 and temperatures of 37–42°C. However, α-IPMS-14CR tolerates pH values and temperatures outside of this range better than α-IPMS-2CR does. α-IPMS-14CR has higher affinity than α-IPMS-2CR for the two substrates, α-ketoisovalerate and acetyl CoA. Furthermore, α-IPMS-2CR was feedback inhibited by the end product l-leucine, whereas α-IPMS-14CR was not. Conclusion The differences in the kinetic properties and the l-leucine feedback inhibition between the two M. tuberculosis α-IPMS proteins containing low and high numbers of VNTR indicate that a large VNTR insertion affects protein structure and function. Demonstration of l-leucine binding to α-IPMS-14CR would confirm whether or not α-IPMS-14CR responds to end-product feedback inhibition.

  11. Detection of copy number variations and their effects in Chinese bulls

    KAUST Repository

    Zhang, Liangzhi

    2014-06-17

    Background: Copy number variations (CNVs) are a main source of genomic structural variations underlying animal evolution and production traits. Here, with one pure-blooded Angus bull as reference, we describe a genome-wide analysis of CNVs based on comparative genomic hybridization arrays in 29 Chinese domesticated bulls and examined their effects on gene expression and cattle growth traits.Results: We identified 486 copy number variable regions (CNVRs), covering 2.45% of the bovine genome, in 24 taurine (Bos taurus), together with 161 ones in 2 yaks (Bos grunniens) and 163 ones in 3 buffaloes (Bubalus bubalis). Totally, we discovered 605 integrated CNVRs, with more " loss" events than both " gain" and " both" ones, and clearly clustered them into three cattle groups. Interestingly, we confirmed their uneven distributions across chromosomes, and the differences of mitochondrion DNA copy number (gain: taurine, loss: yak & buffalo). Furthermore, we confirmed approximately 41.8% (253/605) and 70.6% (427/605) CNVRs span cattle genes and quantitative trait loci (QTLs), respectively. Finally, we confirmed 6 CNVRs in 9 chosen ones by using quantitative PCR, and further demonstrated that CNVR22 had significantly negative effects on expression of PLA2G2D gene, and both CNVR22 and CNVR310 were associated with body measurements in Chinese cattle, suggesting their key effects on gene expression and cattle traits.Conclusions: The results advanced our understanding of CNV as an important genomic structural variation in taurine, yak and buffalo. This study provides a highly valuable resource for Chinese cattle\\'s evolution and breeding researches. 2014 Zhang et al.; licensee BioMed Central Ltd.

  12. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Jackson Stuart

    2010-04-01

    Full Text Available Abstract Background DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. Results We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. Conclusion The described assay outputs absolute copy number, outputs an error estimate (p-value, and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.

  13. Decreases in average bacterial community rRNA operon copy number during succession.

    Science.gov (United States)

    Nemergut, Diana R; Knelman, Joseph E; Ferrenberg, Scott; Bilinski, Teresa; Melbourne, Brett; Jiang, Lin; Violle, Cyrille; Darcy, John L; Prest, Tiffany; Schmidt, Steven K; Townsend, Alan R

    2016-05-01

    Trait-based studies can help clarify the mechanisms driving patterns of microbial community assembly and coexistence. Here, we use a trait-based approach to explore the importance of rRNA operon copy number in microbial succession, building on prior evidence that organisms with higher copy numbers respond more rapidly to nutrient inputs. We set flasks of heterotrophic media into the environment and examined bacterial community assembly at seven time points. Communities were arrayed along a geographic gradient to introduce stochasticity via dispersal processes and were analyzed using 16 S rRNA gene pyrosequencing, and rRNA operon copy number was modeled using ancestral trait reconstruction. We found that taxonomic composition was similar between communities at the beginning of the experiment and then diverged through time; as well, phylogenetic clustering within communities decreased over time. The average rRNA operon copy number decreased over the experiment, and variance in rRNA operon copy number was lowest both early and late in succession. We then analyzed bacterial community data from other soil and sediment primary and secondary successional sequences from three markedly different ecosystem types. Our results demonstrate that decreases in average copy number are a consistent feature of communities across various drivers of ecological succession. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, ranging from cells to populations and communities, with implications for both microbial ecology and evolution.

  14. 18 CFR 45.7 - Form of application; number of copies.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Form of application; number of copies. 45.7 Section 45.7 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... in accordance with § 131.60 of this chapter. Each copy shall bear the date and signature that appear...

  15. Assessment of copy number variations in 120 patients with Poland syndrome.

    Science.gov (United States)

    Vaccari, Carlotta Maria; Tassano, Elisa; Torre, Michele; Gimelli, Stefania; Divizia, Maria Teresa; Romanini, Maria Victoria; Bossi, Simone; Musante, Ilaria; Valle, Maura; Senes, Filippo; Catena, Nunzio; Bedeschi, Maria Francesca; Baban, Anwar; Calevo, Maria Grazia; Acquaviva, Massimo; Lerone, Margherita; Ravazzolo, Roberto; Puliti, Aldamaria

    2016-11-25

    Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown. To investigate the prevalence of chromosomal imbalances in PS, standard cytogenetic and array-CGH analyses were performed in 120 PS patients. Following the application of stringent filter criteria, 14 rare copy number variations (CNVs) were identified in 14 PS patients in different regions outside known common copy number variations: seven genomic duplications and seven genomic deletions, enclosing the two previously reported PS associated chromosomal deletions. These CNVs ranged from 0.04 to 4.71 Mb in size. Bioinformatic analysis of array-CGH data indicated gene enrichment in pathways involved in cell-cell adhesion, DNA binding and apoptosis processes. The analysis also provided a number of candidate genes possibly causing the developmental defects observed in PS patients, among others REV3L, a gene coding for an error-prone DNA polymerase previously associated with Möbius Syndrome with variable phenotypes including pectoralis muscle agenesis. A number of rare CNVs were identified in PS patients, and these involve genes that represent candidates for further evaluation. Rare inherited CNVs may contribute to, or represent risk factors of PS

  16. Beta-defensin genomic copy number is not a modifier locus for cystic fibrosis

    Directory of Open Access Journals (Sweden)

    Burgess Juliana

    2005-12-01

    Full Text Available Abstract Human beta-defensin 2 (DEFB4, also known as DEFB2 or hBD-2 is a salt-sensitive antimicrobial protein that is expressed in lung epithelia. Previous work has shown that it is encoded in a cluster of beta-defensin genes at 8p23.1, which varies in copy number between 2 and 12 in different individuals. We determined the copy number of this locus in 355 patients with cystic fibrosis (CF, and tested for correlation between beta-defensin cluster genomic copy number and lung disease associated with CF. No significant association was found.

  17. Low AMY1 Gene Copy Number Is Associated with Increased Body Mass Index in Prepubertal Boys.

    Directory of Open Access Journals (Sweden)

    M Loredana Marcovecchio

    Full Text Available Genome-wide association studies have identified more than 60 single nucleotide polymorphisms associated with Body Mass Index (BMI. Additional genetic variants, such as copy number variations (CNV, have also been investigated in relation to BMI. Recently, the highly polymorphic CNV in the salivary amylase (AMY1 gene, encoding an enzyme implicated in the first step of starch digestion, has been associated with obesity in adults and children. We assessed the potential association between AMY1 copy number and a wide range of BMI in a population of Italian school-children.744 children (354 boys, 390 girls, mean age (±SD: 8.4±1.4years underwent anthropometric assessments (height, weight and collection of saliva samples for DNA extraction. AMY1 copies were evaluated by quantitative PCR.A significant increase of BMI z-score by decreasing AMY1 copy number was observed in boys (β: -0.117, p = 0.033, but not in girls. Similarly, waist circumference (β: -0.155, p = 0.003, adjusted for age was negatively influenced by AMY1 copy number in boys. Boys with 8 or more AMY1 copy numbers presented a significant lower BMI z-score (p = 0.04 and waist circumference (p = 0.01 when compared to boys with less than 8 copy numbers.In this pediatric-only, population-based study, a lower AMY1 copy number emerged to be associated with increased BMI in boys. These data confirm previous findings from adult studies and support a potential role of a higher copy number of the salivary AMY1 gene in protecting from excess weight gain.

  18. A network of epigenetic modifiers and DNA repair genes controls tissue-specific copy number alteration preference.

    Science.gov (United States)

    Cramer, Dina; Serrano, Luis; Schaefer, Martin H

    2016-11-10

    Copy number alterations (CNAs) in cancer patients show a large variability in their number, length and position, but the sources of this variability are not known. CNA number and length are linked to patient survival, suggesting clinical relevance. We have identified genes that tend to be mutated in samples that have few or many CNAs, which we term CONIM genes (COpy Number Instability Modulators). CONIM proteins cluster into a densely connected subnetwork of physical interactions and many of them are epigenetic modifiers. Therefore, we investigated how the epigenome of the tissue-of-origin influences the position of CNA breakpoints and the properties of the resulting CNAs. We found that the presence of heterochromatin in the tissue-of-origin contributes to the recurrence and length of CNAs in the respective cancer type.

  19. Alteration of rRNA gene copy number and expression in patients ...

    African Journals Online (AJOL)

    Irina S. Kolesnikova

    2017-09-01

    Sep 1, 2017 ... Asia R. Shorina d, Alexander S. Graphodatsky a, Ekaterina M. Galanina b, Dmitry V. Yudkin a,b,* ... rRNA gene copy numbers on affected acrocentric chromosomes in .... estimated using MS Excel software (Microsoft, USA).

  20. Copy-number analysis and inference of subclonal populations in cancer genomes using Sclust.

    Science.gov (United States)

    Cun, Yupeng; Yang, Tsun-Po; Achter, Viktor; Lang, Ulrich; Peifer, Martin

    2018-06-01

    The genomes of cancer cells constantly change during pathogenesis. This evolutionary process can lead to the emergence of drug-resistant mutations in subclonal populations, which can hinder therapeutic intervention in patients. Data derived from massively parallel sequencing can be used to infer these subclonal populations using tumor-specific point mutations. The accurate determination of copy-number changes and tumor impurity is necessary to reliably infer subclonal populations by mutational clustering. This protocol describes how to use Sclust, a copy-number analysis method with a recently developed mutational clustering approach. In a series of simulations and comparisons with alternative methods, we have previously shown that Sclust accurately determines copy-number states and subclonal populations. Performance tests show that the method is computationally efficient, with copy-number analysis and mutational clustering taking Linux/Unix command-line syntax should be able to carry out analyses of subclonal populations.

  1. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats.

    Science.gov (United States)

    Armour, John A L; Palla, Raquel; Zeeuwen, Patrick L J M; den Heijer, Martin; Schalkwijk, Joost; Hollox, Edward J

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies.

  2. Inferring Variation in Copy Number Using High Throughput Sequencing Data in R.

    Science.gov (United States)

    Knaus, Brian J; Grünwald, Niklaus J

    2018-01-01

    Inference of copy number variation presents a technical challenge because variant callers typically require the copy number of a genome or genomic region to be known a priori . Here we present a method to infer copy number that uses variant call format (VCF) data as input and is implemented in the R package vcfR . This method is based on the relative frequency of each allele (in both genic and non-genic regions) sequenced at heterozygous positions throughout a genome. These heterozygous positions are summarized by using arbitrarily sized windows of heterozygous positions, binning the allele frequencies, and selecting the bin with the greatest abundance of positions. This provides a non-parametric summary of the frequency that alleles were sequenced at. The method is applicable to organisms that have reference genomes that consist of full chromosomes or sub-chromosomal contigs. In contrast to other software designed to detect copy number variation, our method does not rely on an assumption of base ploidy, but instead infers it. We validated these approaches with the model system of Saccharomyces cerevisiae and applied it to the oomycete Phytophthora infestans , both known to vary in copy number. This functionality has been incorporated into the current release of the R package vcfR to provide modular and flexible methods to investigate copy number variation in genomic projects.

  3. Allelic recombination between distinct genomic locations generates copy number diversity in human β-defensins

    Science.gov (United States)

    Bakar, Suhaili Abu; Hollox, Edward J.; Armour, John A. L.

    2009-01-01

    β-Defensins are small secreted antimicrobial and signaling peptides involved in the innate immune response of vertebrates. In humans, a cluster of at least 7 of these genes shows extensive copy number variation, with a diploid copy number commonly ranging between 2 and 7. Using a genetic mapping approach, we show that this cluster is at not 1 but 2 distinct genomic loci ≈5 Mb apart on chromosome band 8p23.1, contradicting the most recent genome assembly. We also demonstrate that the predominant mechanism of change in β-defensin copy number is simple allelic recombination occurring in the interval between the 2 distinct genomic loci for these genes. In 416 meiotic transmissions, we observe 3 events creating a haplotype copy number not found in the parent, equivalent to a germ-line rate of copy number change of ≈0.7% per gamete. This places it among the fastest-changing copy number variants currently known. PMID:19131514

  4. Accuracy and differential bias in copy number measurement of CCL3L1 in association studies with three auto-immune disorders.

    Science.gov (United States)

    Carpenter, Danielle; Walker, Susan; Prescott, Natalie; Schalkwijk, Joost; Armour, John Al

    2011-08-18

    Copy number variation (CNV) contributes to the variation observed between individuals and can influence human disease progression, but the accurate measurement of individual copy numbers is technically challenging. In the work presented here we describe a modification to a previously described paralogue ratio test (PRT) method for genotyping the CCL3L1/CCL4L1 copy variable region, which we use to ascertain CCL3L1/CCL4L1 copy number in 1581 European samples. As the products of CCL3L1 and CCL4L1 potentially play a role in autoimmunity we performed case control association studies with Crohn's disease, rheumatoid arthritis and psoriasis clinical cohorts. We evaluate the PRT methodology used, paying particular attention to accuracy and precision, and highlight the problems of differential bias in copy number measurements. Our PRT methods for measuring copy number were of sufficient precision to detect very slight but systematic differential bias between results from case and control DNA samples in one study. We find no evidence for an association between CCL3L1 copy number and Crohn's disease, rheumatoid arthritis or psoriasis. Differential bias of this small magnitude, but applied systematically across large numbers of samples, would create a serious risk of false positive associations in copy number, if measured using methods of lower precision, or methods relying on single uncorroborated measurements. In this study the small differential bias detected by PRT in one sample set was resolved by a simple pre-treatment by restriction enzyme digestion.

  5. Effective Normalization for Copy Number Variation Detection from Whole Genome Sequencing

    NARCIS (Netherlands)

    Janevski, A.; Varadan, V.; Kamalakaran, S.; Banerjee, N.; Dimitrova, D.

    2012-01-01

    Background Whole genome sequencing enables a high resolution view ofthe human genome and provides unique insights into genome structureat an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools while validatedalso include a number of

  6. Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human Amniotic Epithelial Cells.

    Science.gov (United States)

    Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C

    2017-10-15

    Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.

  7. Performance of Molecular Inversion Probes (MIP) in Allele CopyNumber Determination

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuker; Moorhead, Martin; Karlin-Neumann, George; Wang,Nicolas J.; Ireland, James; Lin, Steven; Chen, Chunnuan; Heiser, LauraM.; Chin, Koei; Esserman, Laura; Gray, Joe W.; Spellman, Paul T.; Faham,Malek

    2007-05-14

    We have developed a new protocol for using MolecularInversion Probes (MIP) to accurately and specifically measure allele copynumber (ACN). The new protocol provides for significant improvementsincluding the reduction of input DNA (from 2?g) by more than 25 fold (to75ng total genomic DNA), higher overall precision resulting in one orderof magnitude lower false positive rate, and greater dynamic range withaccurate absolute copy number up to 60 copies.

  8. Sparse representation and Bayesian detection of genome copy number alterations from microarray data.

    Science.gov (United States)

    Pique-Regi, Roger; Monso-Varona, Jordi; Ortega, Antonio; Seeger, Robert C; Triche, Timothy J; Asgharzadeh, Shahab

    2008-02-01

    Genomic instability in cancer leads to abnormal genome copy number alterations (CNA) that are associated with the development and behavior of tumors. Advances in microarray technology have allowed for greater resolution in detection of DNA copy number changes (amplifications or deletions) across the genome. However, the increase in number of measured signals and accompanying noise from the array probes present a challenge in accurate and fast identification of breakpoints that define CNA. This article proposes a novel detection technique that exploits the use of piece wise constant (PWC) vectors to represent genome copy number and sparse Bayesian learning (SBL) to detect CNA breakpoints. First, a compact linear algebra representation for the genome copy number is developed from normalized probe intensities. Second, SBL is applied and optimized to infer locations where copy number changes occur. Third, a backward elimination (BE) procedure is used to rank the inferred breakpoints; and a cut-off point can be efficiently adjusted in this procedure to control for the false discovery rate (FDR). The performance of our algorithm is evaluated using simulated and real genome datasets and compared to other existing techniques. Our approach achieves the highest accuracy and lowest FDR while improving computational speed by several orders of magnitude. The proposed algorithm has been developed into a free standing software application (GADA, Genome Alteration Detection Algorithm). http://biron.usc.edu/~piquereg/GADA

  9. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies.

    Science.gov (United States)

    Roller, Benjamin R K; Stoddard, Steven F; Schmidt, Thomas M

    2016-09-12

    The potential for rapid reproduction is a hallmark of microbial life, but microbes in nature must also survive and compete when growth is constrained by resource availability. Successful reproduction requires different strategies when resources are scarce and when they are abundant 1,2 , but a systematic framework for predicting these reproductive strategies in bacteria has not been available. Here, we show that the number of ribosomal RNA operons (rrn) in bacterial genomes predicts two important components of reproduction-growth rate and growth efficiency-which are favoured under contrasting regimes of resource availability 3,4 . We find that the maximum reproductive rate of bacteria doubles with a doubling of rrn copy number, and the efficiency of carbon use is inversely related to maximal growth rate and rrn copy number. We also identify a feasible explanation for these patterns: the rate and yield of protein synthesis mirror the overall pattern in maximum growth rate and growth efficiency. Furthermore, comparative analysis of genomes from 1,167 bacterial species reveals that rrn copy number predicts traits associated with resource availability, including chemotaxis and genome streamlining. Genome-wide patterns of orthologous gene content covary with rrn copy number, suggesting convergent evolution in response to resource availability. Our findings imply that basic cellular processes adapt in contrasting ways to long-term differences in resource availability. They also establish a basis for predicting changes in bacterial community composition in response to resource perturbations using rrn copy number measurements 5 or inferences 6,7 .

  10. Extensive copy number variations in admixed Indian population of African ancestry: potential involvement in adaptation.

    Science.gov (United States)

    Narang, Ankita; Jha, Pankaj; Kumar, Dhirendra; Kutum, Rintu; Mondal, Anupam Kumar; Dash, Debasis; Mukerji, Mitali

    2014-11-13

    Admixture mapping has been enormously resourceful in identifying genetic variations linked to phenotypes, adaptation, and diseases. In this study through analysis of copy number variable regions (CNVRs), we report extensive restructuring in the genomes of the recently admixed African-Indian population (OG-W-IP) that inhabits a highly saline environment in Western India. The study included subjects from OG-W-IP (OG), five different Indian and three HapMap populations that were genotyped using Affymetrix version 6.0 arrays. Copy number variations (CNVs) detected using Birdsuite were used to define CNVRs. Population structure with respect to CNVRs was delineated using random forest approach. OG genomes have a surprising excess of CNVs in comparison to other studied populations. Individual ancestry proportions computed using STRUCTURE also reveals a unique genetic component in OGs. Population structure analysis with CNV genotypes indicates OG to be distant from both the African and Indian ancestral populations. Interestingly, it shows genetic proximity with respect to CNVs to only one Indian population IE-W-LP4, which also happens to reside in the same geographical region. We also observe a significant enrichment of molecular processes related to ion binding and receptor activity in genes encompassing OG-specific CNVRs. Our results suggest that retention of CNVRs from ancestral natives and de novo acquisition of CNVRs could accelerate the process of adaptation especially in an extreme environment. Additionally, this population would be enormously useful for dissecting genes and delineating the involvement of CNVs in salt adaptation. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  11. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds.

    Directory of Open Access Journals (Sweden)

    Taylor Reiter

    Full Text Available Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR, phytanol-CoA 2-hydroxylase (PHYH, and pancreatic α-amylase 2B (AMY2B. These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs.

  12. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats.

    NARCIS (Netherlands)

    Armour, J.A.; Palla, R.; Zeeuwen, P.L.J.M.; Heijer, M. den; Schalkwijk, J.; Hollox, E.J.

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and

  13. [Relationship between mitochondrial DNA copy number, membrane potential of human embryo and embryo morphology].

    Science.gov (United States)

    Zhao, H; Teng, X M; Li, Y F

    2017-11-25

    Objective: To explore the relationship between the embryo with the different morphological types in the third day and its mitochondrial copy number, the membrane potential. Methods: Totally 117 embryos with poor development after normal fertilization and were not suitable transferred in the fresh cycle and 106 frozen embryos that were discarded voluntarily by infertility patients with in vitro fertilization-embryo transfer after successful pregnancy were selected. According to evaluation of international standard in embryos, all cleavage stage embryos were divided into class Ⅰ frozen embryo group ( n= 64), class Ⅱ frozen embryo group ( n= 42) and class Ⅲ fresh embryonic group (not transplanted embryos; n= 117). Real-time PCR and confocal microscopy methods were used to detect mitochondrial DNA (mtDNA) copy number and the mitochondrial membrane potential of a single embryo. The differences between embryo quality and mtDNA copy number and membrane potential of each group were compared. Results: The copy number of mtDNA and the mitochondrial membrane potential in class Ⅲ fresh embryonic group [(1.7±1.0)×10(5) copy/μl, 1.56±0.32] were significantly lower than those in class Ⅰ frozen embryo group [(3.4±1.7)×10(5) copy/μl, 2.66±0.21] and class Ⅱ frozen embryo group [(2.6±1.2)×10(5) copy/μl, 1.80±0.32; all Pembryo group were significantly higher than those in classⅡ frozen embryo group (both Pembryos of the better quality embryo are higher.

  14. Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains.

    Science.gov (United States)

    van den Broek, M; Bolat, I; Nijkamp, J F; Ramos, E; Luttik, M A H; Koopman, F; Geertman, J M; de Ridder, D; Pronk, J T; Daran, J-M

    2015-09-01

    Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes. Copyright © 2015, van den Broek et al.

  15. Dynamic changes in functional gene copy numbers and microbial communities during degradation of pyrene in soils

    International Nuclear Information System (INIS)

    Peng Jingjing; Cai Chao; Qiao Min; Li Hong; Zhu Yongguan

    2010-01-01

    This study investigates the dynamics of pyrene degradation rates, microbial communities, and functional gene copy numbers during the incubation of pyrene-spiked soils. Spiking pyrene to the soil was found to have negligible effects on the bacterial community present. Our results demonstrated that there was a significant difference in nidA gene copy numbers between sampling dates in QZ soil. Mycobacterium 16S rDNA clone libraries showed that more than 90% mycobacteria detected were closely related to fast-growing PAH-degrading Mycobacterium in pyrene-spiked soil, while other sequences related to slow-growing Mycobacterium were only detected in the control soil. It is suggested that nidA gene copy number and fast-growing PAH-degrading Mycobacterium could be used as indicators to predict pyrene contamination and its degradation activity in soils. - nidA gene and fast-growing PAH-degrading Mycobacterium can serve as indicators for pyrene contamination.

  16. High-resolution copy number variation analysis of schizophrenia in Japan.

    Science.gov (United States)

    Kushima, I; Aleksic, B; Nakatochi, M; Shimamura, T; Shiino, T; Yoshimi, A; Kimura, H; Takasaki, Y; Wang, C; Xing, J; Ishizuka, K; Oya-Ito, T; Nakamura, Y; Arioka, Y; Maeda, T; Yamamoto, M; Yoshida, M; Noma, H; Hamada, S; Morikawa, M; Uno, Y; Okada, T; Iidaka, T; Iritani, S; Yamamoto, T; Miyashita, M; Kobori, A; Arai, M; Itokawa, M; Cheng, M-C; Chuang, Y-A; Chen, C-H; Suzuki, M; Takahashi, T; Hashimoto, R; Yamamori, H; Yasuda, Y; Watanabe, Y; Nunokawa, A; Someya, T; Ikeda, M; Toyota, T; Yoshikawa, T; Numata, S; Ohmori, T; Kunimoto, S; Mori, D; Iwata, N; Ozaki, N

    2017-03-01

    Recent schizophrenia (SCZ) studies have reported an increased burden of de novo copy number variants (CNVs) and identified specific high-risk CNVs, although with variable phenotype expressivity. However, the pathogenesis of SCZ has not been fully elucidated. Using array comparative genomic hybridization, we performed a high-resolution genome-wide CNV analysis on a mainly (92%) Japanese population (1699 SCZ cases and 824 controls) and identified 7066 rare CNVs, 70.0% of which were small (history of congenital/developmental phenotypes, and the rate of treatment resistance was significantly higher (odds ratio=2.79, P=0.0036). We found more severe clinical manifestations in patients with two clinically significant CNVs. Gene set analysis replicated previous findings (e.g., synapse, calcium signaling) and identified novel biological pathways including oxidative stress response, genomic integrity, kinase and small GTPase signaling. Furthermore, involvement of multiple SCZ candidate genes and biological pathways in the pathogenesis of SCZ was suggested in established SCZ-associated CNV loci. Our study shows the high genetic heterogeneity of SCZ and its clinical features and raises the possibility that genomic instability is involved in its pathogenesis, which may be related to the increased burden of de novo CNVs and variable expressivity of CNVs.

  17. Selection of Suitable Endogenous Reference Genes for Relative Copy Number Detection in Sugarcane

    Directory of Open Access Journals (Sweden)

    Bantong Xue

    2014-05-01

    Full Text Available Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants. Proper selection of endogenous reference genes is necessary for detection of genetic components in genetically modification (GM crops by quantitative real-time PCR (qPCR or by qualitative PCR approach, especially in sugarcane with polyploid and aneuploid genomic structure. qPCR technique has been widely accepted as an accurate, time-saving method on determination of copy numbers in transgenic plants and on detection of genetically modified plants to meet the regulatory and legislative requirement. In this study, to find a suitable endogenous reference gene and its real-time PCR assay for sugarcane (Saccharum spp. hybrids DNA content quantification, we evaluated a set of potential “single copy” genes including P4H, APRT, ENOL, CYC, TST and PRR, through qualitative PCR and absolute quantitative PCR. Based on copy number comparisons among different sugarcane genotypes, including five S. officinarum, one S. spontaneum and two S. spp. hybrids, these endogenous genes fell into three groups: ENOL-3—high copy number group, TST-1 and PRR-1—medium copy number group, P4H-1, APRT-2 and CYC-2—low copy number group. Among these tested genes, P4H, APRT and CYC were the most stable, while ENOL and TST were the least stable across different sugarcane genotypes. Therefore, three primer pairs of P4H-3, APRT-2 and CYC-2 were then selected as the suitable reference gene primer pairs for sugarcane. The test of multi-target reference genes revealed that the APRT gene was a specific amplicon, suggesting this gene is the most suitable to be used as an endogenous reference target for sugarcane DNA content quantification. These results should be helpful for establishing accurate and reliable qualitative and quantitative PCR analysis of GM sugarcane.

  18. A sparse regulatory network of copy-number driven gene expression reveals putative breast cancer oncogenes.

    Science.gov (United States)

    Yuan, Yinyin; Curtis, Christina; Caldas, Carlos; Markowetz, Florian

    2012-01-01

    Copy number aberrations are recognized to be important in cancer as they may localize to regions harboring oncogenes or tumor suppressors. Such genomic alterations mediate phenotypic changes through their impact on expression. Both cis- and transacting alterations are important since they may help to elucidate putative cancer genes. However, amidst numerous passenger genes, trans-effects are less well studied due to the computational difficulty in detecting weak and sparse signals in the data, and yet may influence multiple genes on a global scale. We propose an integrative approach to learn a sparse interaction network of DNA copy-number regions with their downstream transcriptional targets in breast cancer. With respect to goodness of fit on both simulated and real data, the performance of sparse network inference is no worse than other state-of-the-art models but with the advantage of simultaneous feature selection and efficiency. The DNA-RNA interaction network helps to distinguish copy-number driven expression alterations from those that are copy-number independent. Further, our approach yields a quantitative copy-number dependency score, which distinguishes cis- versus trans-effects. When applied to a breast cancer data set, numerous expression profiles were impacted by cis-acting copy-number alterations, including several known oncogenes such as GRB7, ERBB2, and LSM1. Several trans-acting alterations were also identified, impacting genes such as ADAM2 and BAGE, which warrant further investigation. An R package named lol is available from www.markowetzlab.org/software/lol.html.

  19. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis.

    Science.gov (United States)

    Falah, Masoumeh; Houshmand, Massoud; Najafi, Mohammad; Balali, Maryam; Mahmoudian, Saeid; Asghari, Alimohamad; Emamdjomeh, Hessamaldin; Farhadi, Mohammad

    2016-01-01

    Age-related hearing impairment, or presbycusis, is the most common communication disorder and neurodegenerative disease in the elderly. Its prevalence is expected to increase, due to the trend of growth of the elderly population. The current diagnostic test for detection of presbycusis is implemented after there has been a change in hearing sensitivity. Identification of a pre-diagnostic biomarker would raise the possibility of preserving hearing sensitivity before damage occurs. Mitochondrial dysfunction, including the production of reactive oxygen species and induction of expression of apoptotic genes, participates in the progression of presbycusis. Mitochondrial DNA sequence variation has a critical role in presbycusis. However, the nature of the relationship between mitochondrial DNA copy number, an important biomarker in many other diseases, and presbycusis is undetermined. Fifty-four subjects with presbycusis and 29 healthy controls were selected after ear, nose, throat examination and pure-tone audiometry. DNA was extracted from peripheral blood samples. The copy number of mitochondrial DNA relative to the nuclear genome was measured by quantitative real-time polymerase chain reaction. Subjects with presbycusis had a lower median mitochondrial DNA copy number than healthy subjects and the difference was statistically significant ( P =0.007). Mitochondrial DNA copy number was also significantly associated with degree of hearing impairment ( P =0.025) and audiogram configuration ( P =0.022). The findings of this study suggest that lower mitochondrial DNA copy number is responsible for presbycusis through alteration of mitochondrial function. Moreover, the significant association of mitochondrial DNA copy number in peripheral blood samples with the degree of hearing impairment and audiogram configuration has potential for use as a standard test for presbycusis, providing the possibility of the development of an easy-to-use biomarker for the early detection of

  20. Dynamic Copy Number Evolution of X- and Y-Linked Ampliconic Genes in Human Populations

    DEFF Research Database (Denmark)

    Lucotte, Elise A; Skov, Laurits; Jensen, Jacob Malte

    2018-01-01

    we explore the evolution of human X- and Y-linked ampliconic genes by investigating copy number variation (CNV) and coding variation between populations using the Simons Genome Diversity Project. We develop a method to assess CNVs using the read-depth on modified X and Y chromosome targets containing...... related Y haplogroups, that diversified less than 50,000 years ago. Moreover, X and Y-linked ampliconic genes seem to have a faster amplification dynamic than autosomal multicopy genes. Looking at expression data from another study, we also find that XY-linked ampliconic genes with extensive copy number...

  1. Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia

    Directory of Open Access Journals (Sweden)

    Wongsrichanalai Chansuda

    2009-01-01

    Full Text Available Abstract Background The combination of artesunate and mefloquine was introduced as the national first-line treatment for Plasmodium falciparum malaria in Cambodia in 2000. However, recent clinical trials performed at the Thai-Cambodian border have pointed to the declining efficacy of both artesunate-mefloquine and artemether-lumefantrine. Since pfmdr1 modulates susceptibility to mefloquine and artemisinin derivatives, the aim of this study was to assess the link between pfmdr1 copy number, in vitro susceptibility to individual drugs and treatment failure to combination therapy. Methods Blood samples were collected from P. falciparum-infected patients enrolled in two in vivo efficacy studies in north-western Cambodia: 135 patients were treated with artemether-lumefantrine (AL group in Sampovloun in 2002 and 2003, and 140 patients with artesunate-mefloquine (AM group in Sampovloun and Veal Veng in 2003 and 2004. At enrollment, the in vitro IC50 was tested and the strains were genotyped for pfmdr1 copy number by real-time PCR. Results The pfmdr1 copy number was analysed for 115 isolates in the AM group, and for 109 isolates in the AL group. Parasites with increased pfmdr1 copy number had significantly reduced in vitro susceptibility to mefloquine, lumefantrine and artesunate. There was no association between pfmdr1 polymorphisms and in vitro susceptibilities. In the patients treated with AM, the mean pfmdr1copy number was lower in subjects with adequate clinical and parasitological response compared to those who experienced late treatment failure (n = 112, p p = 0.364. The presence of three or more copies of pfmdr1 were associated with recrudescence in artesunate-mefloquine treated patients (hazard ratio (HR = 7.80 [95%CI: 2.09–29.10], N = 115, p = 0.002 but not with recrudescence in artemether-lumefantrine treated patients (HR = 1.03 [95%CI: 0.24–4.44], N = 109, p = 0.969. Conclusion This study shows that pfmdr1 copy number is a molecular

  2. Human PTCHD3 nulls: rare copy number and sequence variants suggest a non-essential gene

    Directory of Open Access Journals (Sweden)

    Lionel Anath C

    2011-03-01

    Full Text Available Abstract Background Copy number variations (CNVs can contribute to variable degrees of fitness and/or disease predisposition. Recent studies show that at least 1% of any given genome is copy number variable when compared to the human reference sequence assembly. Homozygous deletions (or CNV nulls that are found in the normal population are of particular interest because they may serve to define non-essential genes in human biology. Results In a genomic screen investigating CNV in Autism Spectrum Disorders (ASDs we detected a heterozygous deletion on chromosome 10p12.1, spanning the Patched-domain containing 3 (PTCHD3 gene, at a frequency of ~1.4% (6/427. This finding seemed interesting, given recent discoveries on the role of another Patched-domain containing gene (PTCHD1 in ASD. Screening of another 177 ASD probands yielded two additional heterozygous deletions bringing the frequency to 1.3% (8/604. The deletion was found at a frequency of ~0.73% (27/3,695 in combined control population from North America and Northern Europe predominately of European ancestry. Screening of the human genome diversity panel (HGDP-CEPH covering worldwide populations yielded deletions in 7/1,043 unrelated individuals and those detected were confined to individuals of European/Mediterranean/Middle Eastern ancestry. Breakpoint mapping yielded an identical 102,624 bp deletion in all cases and controls tested, suggesting a common ancestral event. Interestingly, this CNV occurs at a break of synteny between humans and mouse. Considering all data, however, no significant association of these rare PTCHD3 deletions with ASD was observed. Notwithstanding, our RNA expression studies detected PTCHD3 in several tissues, and a novel shorter isoform for PTCHD3 was characterized. Expression in transfected COS-7 cells showed PTCHD3 isoforms colocalize with calnexin in the endoplasmic reticulum. The presence of a patched (Ptc domain suggested a role for PTCHD3 in various biological

  3. Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA.

    Science.gov (United States)

    Gibbons, Brian; Datta, Parikkhit; Wu, Ying; Chan, Alan; Al Armour, John

    2006-06-30

    Current methods for measurement of copy number do not combine all the desirable qualities of convenience, throughput, economy, accuracy and resolution. In this study, to improve the throughput associated with Multiplex Amplifiable Probe Hybridisation (MAPH) we aimed to develop a modification based on the 3-Dimensional, Flow-Through Microarray Platform from PamGene International. In this new method, electrophoretic analysis of amplified products is replaced with photometric analysis of a probed oligonucleotide array. Copy number analysis of hybridised probes is based on a dual-label approach by comparing the intensity of Cy3-labelled MAPH probes amplified from test samples co-hybridised with similarly amplified Cy5-labelled reference MAPH probes. The key feature of using a hybridisation-based end point with MAPH is that discrimination of amplified probes is based on sequence and not fragment length. In this study we showed that microarray MAPH measurement of PMP22 gene dosage correlates well with PMP22 gene dosage determined by capillary MAPH and that copy number was accurately reported in analyses of DNA from 38 individuals, 12 of which were known to have Charcot-Marie-Tooth disease type 1A (CMT1A). Measurement of microarray-based endpoints for MAPH appears to be of comparable accuracy to electrophoretic methods, and holds the prospect of fully exploiting the potential multiplicity of MAPH. The technology has the potential to simplify copy number assays for genes with a large number of exons, or of expanded sets of probes from dispersed genomic locations.

  4. Accurate measurement of transgene copy number in crop plants using droplet digital PCR.

    Science.gov (United States)

    Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger

    2017-06-01

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. Selective genomic copy number imbalances and probability of recurrence in early-stage breast cancer.

    Directory of Open Access Journals (Sweden)

    Patricia A Thompson

    Full Text Available A number of studies of copy number imbalances (CNIs in breast tumors support associations between individual CNIs and patient outcomes. However, no pattern or signature of CNIs has emerged for clinical use. We determined copy number (CN gains and losses using high-density molecular inversion probe (MIP arrays for 971 stage I/II breast tumors and applied a boosting strategy to fit hazards models for CN and recurrence, treating chromosomal segments in a dose-specific fashion (-1 [loss], 0 [no change] and +1 [gain]. The concordance index (C-Index was used to compare prognostic accuracy between a training (n = 728 and test (n = 243 set and across models. Twelve novel prognostic CNIs were identified: losses at 1p12, 12q13.13, 13q12.3, 22q11, and Xp21, and gains at 2p11.1, 3q13.12, 10p11.21, 10q23.1, 11p15, 14q13.2-q13.3, and 17q21.33. In addition, seven CNIs previously implicated as prognostic markers were selected: losses at 8p22 and 16p11.2 and gains at 10p13, 11q13.5, 12p13, 20q13, and Xq28. For all breast cancers combined, the final full model including 19 CNIs, clinical covariates, and tumor marker-approximated subtypes (estrogen receptor [ER], progesterone receptor, ERBB2 amplification, and Ki67 significantly outperformed a model containing only clinical covariates and tumor subtypes (C-Index(full model, train[test]  =  0.72[0.71] ± 0.02 vs. C-Index(clinical + subtype model, train[test]  =  0.62[0.62] ± 0.02; p<10(-6. In addition, the full model containing 19 CNIs significantly improved prognostication separately for ER-, HER2+, luminal B, and triple negative tumors over clinical variables alone. In summary, we show that a set of 19 CNIs discriminates risk of recurrence among early-stage breast tumors, independent of ER status. Further, our data suggest the presence of specific CNIs that promote and, in some cases, limit tumor spread.

  6. Association of beta-Defensin Copy Number and Psoriasis in Three Cohorts of European Origin

    NARCIS (Netherlands)

    Stuart, P.E.; Huffmeier, U.; Nair, R.P.; Palla, R.; Tejasvi, T.; Schalkwijk, J.; Elder, J.T.; Reis, A.; Armour, J.A.

    2012-01-01

    A single previous study has demonstrated significant association of psoriasis with copy number of beta-defensin genes, using DNA from psoriasis cases and controls from Nijmegen and Erlangen. In this study, we attempted to replicate that finding in larger new cohorts from Erlangen (N=2,017) and

  7. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    Science.gov (United States)

    The diversity and population-genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analyzed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, Romagnola), sequenced to 11-fold...

  8. Detection of erbB2 copy number variations in plasma of patients with esophageal carcinoma

    International Nuclear Information System (INIS)

    Andolfo, Immacolata; Orditura, Michele; Ciardiello, Fortunato; De Vita, Fernando; Zollo, Massimo; Petrosino, Giuseppe; Vecchione, Loredana; De Antonellis, Pasqualino; Capasso, Mario; Montanaro, Donatella; Gemei, Marica; Troncone, Giancarlo; Iolascon, Achille

    2011-01-01

    Mortality is high in patients with esophageal carcinoma as tumors are rarely detected before the disease has progressed to an advanced stage. Here, we sought to isolate cell-free DNA released into the plasma of patients with esophageal carcinoma, to analyze copy number variations of marker genes in the search for early detection of tumor progression. Plasma of 41 patients with esophageal carcinoma was prospectively collected before tumor resection and chemotherapy. Our dataset resulted heterogeneous for clinical data, resembling the characteristics of the tumor. DNA from the plasma was extracted to analyze copy number variations of the erbB2 gene using real-time PCR assays. The real-time PCR assays for erbB2 gene showed significant (P = 0.001) copy number variations in the plasma of patients with esophageal carcinoma, as compared to healthy controls with high sensitivity (80%) and specificity (95%). These variations in erbB2 were negatively correlated to the progression free survival of these patients (P = 0.03), and revealed a further risk category stratification of patients with low VEGF expression levels. The copy number variation of erbB2 gene from plasma can be used as prognostic marker for early detection of patients at risk of worse clinical outcome in esophageal cancer

  9. Identification of a low copy number plasmid in Xylella fastidiosa Strain Stag’s Leap

    Science.gov (United States)

    Xylella fastidiosa (Xf) causes Pierce’s Disease (PD) in grapevine. The Stag’s Leap strain is known for its high virulence level and is a model for PD research. Research on Xf has been difficult due to its nutritional fastidiousness. One difficult research issue is the low copy number plasmid. Plasmi...

  10. Identification of copy number variants defining genomic differences among major human groups.

    Directory of Open Access Journals (Sweden)

    Lluís Armengol

    Full Text Available BACKGROUND: Understanding the genetic contribution to phenotype variation of human groups is necessary to elucidate differences in disease predisposition and response to pharmaceutical treatments in different human populations. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the genome-wide profile of structural variation on pooled samples from the three populations studied in the HapMap project by comparative genome hybridization (CGH in different array platforms. We have identified and experimentally validated 33 genomic loci that show significant copy number differences from one population to the other. Interestingly, we found an enrichment of genes related to environment adaptation (immune response, lipid metabolism and extracellular space within these regions and the study of expression data revealed that more than half of the copy number variants (CNVs translate into gene-expression differences among populations, suggesting that they could have functional consequences. In addition, the identification of single nucleotide polymorphisms (SNPs that are in linkage disequilibrium with the copy number alleles allowed us to detect evidences of population differentiation and recent selection at the nucleotide variation level. CONCLUSIONS: Overall, our results provide a comprehensive view of relevant copy number changes that might play a role in phenotypic differences among major human populations, and generate a list of interesting candidates for future studies.

  11. Investigation of Copy Number Variation in Children with Conotruncal Heart Defects

    International Nuclear Information System (INIS)

    Campos, Carla Marques Rondon; Zanardo, Evelin Aline; Dutra, Roberta Lelis; Kulikowski, Leslie Domenici; Kim, Chong Ae

    2015-01-01

    Congenital heart defects (CHD) are the most prevalent group of structural abnormalities at birth and one of the main causes of infant morbidity and mortality. Studies have shown a contribution of the copy number variation in the genesis of cardiac malformations. Investigate gene copy number variation (CNV) in children with conotruncal heart defect. Multiplex ligation-dependent probe amplification (MLPA) was performed in 39 patients with conotruncal heart defect. Clinical and laboratory assessments were conducted in all patients. The parents of the probands who presented abnormal findings were also investigated. Gene copy number variation was detected in 7/39 patients: 22q11.2 deletion, 22q11.2 duplication, 15q11.2 duplication, 20p12.2 duplication, 19p deletion, 15q and 8p23.2 duplication with 10p12.31 duplication. The clinical characteristics were consistent with those reported in the literature associated with the encountered microdeletion/microduplication. None of these changes was inherited from the parents. Our results demonstrate that the technique of MLPA is useful in the investigation of microdeletions and microduplications in conotruncal congenital heart defects. Early diagnosis of the copy number variation in patients with congenital heart defect assists in the prevention of morbidity and decreased mortality in these patients

  12. Investigation of Copy Number Variation in Children with Conotruncal Heart Defects

    Directory of Open Access Journals (Sweden)

    Carla Marques Rondon Campos

    2015-01-01

    Full Text Available Background: Congenital heart defects (CHD are the most prevalent group of structural abnormalities at birth and one of the main causes of infant morbidity and mortality. Studies have shown a contribution of the copy number variation in the genesis of cardiac malformations. Objectives: Investigate gene copy number variation (CNV in children with conotruncal heart defect. Methods: Multiplex ligation-dependent probe amplification (MLPA was performed in 39 patients with conotruncal heart defect. Clinical and laboratory assessments were conducted in all patients. The parents of the probands who presented abnormal findings were also investigated. Results: Gene copy number variation was detected in 7/39 patients: 22q11.2 deletion, 22q11.2 duplication, 15q11.2 duplication, 20p12.2 duplication, 19p deletion, 15q and 8p23.2 duplication with 10p12.31 duplication. The clinical characteristics were consistent with those reported in the literature associated with the encountered microdeletion/microduplication. None of these changes was inherited from the parents. Conclusions: Our results demonstrate that the technique of MLPA is useful in the investigation of microdeletions and microduplications in conotruncal congenital heart defects. Early diagnosis of the copy number variation in patients with congenital heart defect assists in the prevention of morbidity and decreased mortality in these patients.

  13. Copy number variation in obsessive-compulsive disorder and tourette syndrome : a cross-disorder study

    NARCIS (Netherlands)

    McGrath, Lauren M; Yu, Dongmei; Marshall, Christian; Davis, Lea K; Thiruvahindrapuram, Bhooma; Li, Bingbin; Cappi, Carolina; Gerber, Gloria; Wolf, Aaron; Schroeder, Frederick A; Osiecki, Lisa; O'Dushlaine, Colm; Kirby, Andrew; Illmann, Cornelia; Haddad, Stephen; Gallagher, Patience; Fagerness, Jesen A; Barr, Cathy L; Bellodi, Laura; Benarroch, Fortu; Bienvenu, O Joseph; Black, Donald W; Bloch, Michael H; Bruun, Ruth D; Budman, Cathy L; Camarena, Beatriz; Cath, Danielle C; Cavallini, Maria C; Chouinard, Sylvain; Coric, Vladimir; Cullen, Bernadette; Delorme, Richard; Denys, D.; Derks, Eske M; Dion, Yves; Rosário, Maria C; Eapen, Valsama; Evans, Patrick; Falkai, Peter; Fernandez, Thomas V; Garrido, Helena; Geller, Daniel; Grabe, Hans J; Grados, Marco A; Greenberg, Benjamin D; Gross-Tsur, Varda; Grünblatt, Edna; Heiman, Gary A; Hemmings, Sian M J; Herrera, Luis D; Hounie, Ana G; Jankovic, Joseph; Kennedy, James L; King, Robert A; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F; Lennertz, Leonhard; Lochner, Christine; Lowe, Thomas L; Lyon, Gholson J; Macciardi, Fabio; Maier, Wolfgang; McCracken, James T; McMahon, William; Murphy, Dennis L; Naarden, Allan L; Neale, Benjamin M; Nurmi, Erika; Pakstis, Andrew J; Pato, Michele T; Pato, Carlos N; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Reus, Victor I; Richter, Margaret A; Riddle, Mark; Robertson, Mary M; Rosenberg, David; Rouleau, Guy A; Ruhrmann, Stephan; Sampaio, Aline S; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S; Smit, Jan H; Stein, Dan J; Tischfield, Jay A; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R; Shugart, Yin Yao; Miguel, Euripedes C; Nicolini, Humberto; Oostra, Ben A; Moessner, Rainald; Wagner, Michael; Ruiz-Linares, Andres; Heutink, Peter; Nestadt, Gerald; Freimer, Nelson; Petryshen, Tracey; Posthuma, Danielle; Jenike, Michael A; Cox, Nancy J; Hanna, Gregory L; Brentani, Helena; Scherer, Stephen W; Arnold, Paul D; Stewart, S Evelyn; Mathews, Carol A; Knowles, James A; Cook, Edwin H; Pauls, David L; Wang, Kai; Scharf, Jeremiah M

    OBJECTIVE: Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest

  14. Copy number variation in obsessive-compulsive disorder and tourette syndrome: a cross-disorder study

    NARCIS (Netherlands)

    McGrath, Lauren M.; Yu, Dongmei; Marshall, Christian; Davis, Lea K.; Thiruvahindrapuram, Bhooma; Li, Bingbin; Cappi, Carolina; Gerber, Gloria; Wolf, Aaron; Schroeder, Frederick A.; Osiecki, Lisa; O'Dushlaine, Colm; Kirby, Andrew; Illmann, Cornelia; Haddad, Stephen; Gallagher, Patience; Fagerness, Jesen A.; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Bienvenu, O. Joseph; Black, Donald W.; Bloch, Michael H.; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Cath, Danielle C.; Cavallini, Maria C.; Chouinard, Sylvain; Coric, Vladimir; Cullen, Bernadette; Delorme, Richard; Denys, Damiaan; Derks, Eske M.; Dion, Yves; Rosário, Maria C.; Eapen, Valsama; Evans, Patrick; Falkai, Peter; Fernandez, Thomas V.; Garrido, Helena; Geller, Daniel; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Grünblatt, Edna; Heiman, Gary A.; Hemmings, Sian M. J.; Herrera, Luis D.; Hounie, Ana G.; Jankovic, Joseph; Kennedy, James L.; King, Robert A.; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Lochner, Christine; Lowe, Thomas L.; Lyon, Gholson J.; Macciardi, Fabio; Maier, Wolfgang; McCracken, James T.; McMahon, William; Murphy, Dennis L.; Naarden, Allan L.; Neale, Benjamin M.; Nurmi, Erika; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark; Robertson, Mary M.; Rosenberg, David; Rouleau, Guy A.; Ruhrmann, Stephan; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Tischfield, Jay A.; Vallada, Homero; Veenstra-Vanderweele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R.; Shugart, Yin Yao; Miguel, Euripedes C.; Nicolini, Humberto; Oostra, Ben A.; Moessner, Rainald; Wagner, Michael; Ruiz-Linares, Andres; Heutink, Peter; Nestadt, Gerald; Freimer, Nelson; Petryshen, Tracey; Posthuma, Danielle; Jenike, Michael A.; Cox, Nancy J.; Hanna, Gregory L.; Brentani, Helena; Scherer, Stephen W.; Arnold, Paul D.; Stewart, S. Evelyn; Mathews, Carol A.; Knowles, James A.; Cook, Edwin H.; Pauls, David L.; Wang, Kai; Scharf, Jeremiah M.

    2014-01-01

    Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare ( <1%) copy number variants (CNVs) in OCD and the largest genome-wide

  15. Copy number variation in obsessive-compulsive disorder and tourette syndrome: A cross-disorder study

    NARCIS (Netherlands)

    L.M. McGrath; D. Yu (D.); C.R. Marshall (Christian); L.K. Davis (Lea); B. Thiruvahindrapuram (Bhooma); B. Li (Bingbin); C. Cappi (Carolina); G. Gerber (Gloria); A. de Wolf (Anneke); F.A. Schroeder (Frederick); L. Osiecki (Lisa); C. O'Dushlaine (Colm); A. Kirby (Andrew); C. Illmann (Cornelia); S. Haddad (Stephen); P. Gallagher (Patience); J. Fagerness (Jesen); C.L. Barr (Cathy); L. Bellodi (Laura); F. Benarroch (Fortu); O.J. Bienvenu (Oscar); D.W. Black (Donald); J. Bloch (Jocelyne); R.D. Bruun (Ruth); C.L. Budman (Cathy); B. Camarena (Beatriz); D. Cath (Daniëlle); M.C. Cavallini (Maria); S. Chouinard; V. Coric (Vladimir); C. Cullen; R. Delorme (Richard); D.A.J.P. Denys (Damiaan); E.M. Derks (Eske); Y. Dion (Yves); M.C. Rosário (Maria); C.E. Eapen (Chundamannil Eapen); P. Evans; P. Falkai (Peter); T.V. Fernandez (Thomas); H. Garrido (Helena); D. Geller (Daniel); H.J. Grabe (Hans Jörgen); M. Grados (Marco); B.D. Greenberg (Benjamin); V. Gross-Tsur (Varda); E. Grünblatt (Edna); M.L. Heiman (Mark); S.M.J. Hemmings (Sian); L.D. Herrera (Luis); A.G. Hounie (Ana); J. Jankovic (Joseph); J.L. Kennedy; R.A. King; R. Kurlan; N. Lanzagorta (Nuria); M. Leboyer (Marion); J.F. Leckman; L. Lennertz (Leonhard); C. Lochner (Christine); T.L. Lowe (Thomas); H.N. Lyon (Helen); F. MacCiardi (Fabio); W. Maier (Wolfgang); J.T. McCracken (James); W.M. McMahon (William); D.L. Murphy (Dennis); A.L. Naarden (Allan); E. Nurmi (Erika); A.J. Pakstis; C. Pato (Carlos); C. Pato (Carlos); J. Piacentini (John); C. Pittenger (Christopher); M.N. Pollak (Michael); V.I. Reus (Victor); M.A. Richter (Margaret); M. Riddle (Mark); M.M. Robertson; D. Rosenberg (David); G.A. Rouleau; S. Ruhrmann (Stephan); A.S. Sampaio (Aline); J. Samuels (Jonathan); P. Sandor (Paul); B. Sheppard (Brooke); H.S. Singer (Harvey); J.H. Smit (Jan); D.J. Stein (Dan); J.A. Tischfield (Jay); H. Vallada (Homero); J. Veenstra-Vanderweele (Jeremy); S. Walitza (Susanne); Y. Wang (Ying); A. Wendland (Annika); Y.Y. Shugart; E.C. Miguel (Euripedes); H. Nicolini (Humberto); B.A. Oostra (Ben); R. Moessner (Rainald); M. Wagner (Michael); A. Ruiz-Linares (Andres); P. Heutink (Peter); G. Nestadt (Gerald); N.B. Freimer (Nelson); T.L. Petryshen (Tracey); D. Posthuma (Danielle); M.A. Jenike (Michael); N.J. Cox (Nancy); G.L. Hanna (Gregory); H. Brentani (Helena); S.W. Scherer (Stephen); P.D. Arnold (Paul); S.E. Stewart; C. Mathews; J.A. Knowles (James A); E.H. Cook (Edwin); D.L. Pauls (David); K. Wang (Kai); J.M. Scharf; B.M. Neale (Benjamin)

    2014-01-01

    textabstractObjective Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and

  16. Copy number variation in obsessive-compulsive disorder and tourette syndrome: a cross-disorder study.

    NARCIS (Netherlands)

    McGrath, L.M.; Yu, D.; Marshall, C.; Davis, L.K.; Thiruvahindrapuram, B.; Li, B.; Cappi, C.; Gerber, G.; Wolf, A.; Schroeder, F.A.; Osiecki, L.; O'Dushlaine, C.; Kirby, A.; Illmann, C.; Haddad, S.; Gallagher, P.; Fagerness, J.A.; Barr, C.L.; Bellodi, L.; Benarroch, F.; Bienvenu, O.J.; Black, D. W.; Bloch, M.H.; Bruun, R.D.; Budman, C.L.; Camarena, B.; Cath, D.C.; Cavallini, M.C.; Chouinard, S.; Coric, V.; Cullen, B.; Delorme, R.; Denys, D.; Derks, E.M.; Dion, Y.; Rosário, M.C.; Eapen, V.; Evans, P.; Falkai, P.; Fernandez, T.V.; Garrido, H.; Geller, D.; Grabe, H.J.; Grados, M.A.; Greenberg, B.D.; Gross-Tsur, V.; Grünblatt, E.; Heiman, G.A.; Hemmings, S.M.; Herrera, L.D.; Hounie, A.G.; Jankovic, J.; Kennedy, J.L.; King, R.A.; Kurlan, R.; Lanzagorta, N.; Leboyer, M.; Leckman, J.F.; Lennertz, L.; Lochner, C.; Lowe, T.L.; Lyon, G.J.; Macciardi, F.; Maier, W.; McCracken, J.T.; McMahon, W.; Murphy, D.L.; Naarden, A.L.; Neale, B. M.; Nurmi, E.; Pakstis, A.J.; Pato, M. T.; Piacentini, J.; Pittenger, C.; Pollak, Y.; Reus, V.I.; Richter, M.A.; Riddle, M.; Robertson, M.M.; Rosenberg, D.; Rouleau, G.A.; Ruhrmann, S.; Sampaio, A.S.; Samuels, J.; Sandor, P.; Sheppard, B.; Singer, H.S.; Smit, J.H.; Stein, D.J.; Tischfield, J.A.; Vallada, H.; Veenstra-Vanderweele, J.; Walitza, S.; Wang, Y.; Wendland, J.R.; Shugart, Y.Y.; Miguel, E.C.; Nicolini, H.; Oostra, B.A.; Moessner, R.; Wagner, M.; Ruiz-Linares, A.; Heutink, P.; Nestadt, G.; Freimer, N.; Petryshen, T.; Posthuma, D.; Jenike, M.A.; Cox, N.J.; Hanna, G.L.; Brentani, H.; Scherer, S.W.; Arnold, P.D.; Stewart, S.E.; Mathews, C.A.; Knowles, J.A.; Cook, E.H.; Pauls, D.L.; Wang, K.; Scharf, J.M.

    2014-01-01

    Objective Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest

  17. Phenotypic manifestations of copy number variation in chromosome 16p13.11

    NARCIS (Netherlands)

    Nagamani, Sandesh C. Sreenath; Erez, Ayelet; Bader, Patricia; Lalani, Seema R.; Scott, Daryl A.; Scaglia, Fernando; Plon, Sharon E.; Tsai, Chun-Hui; Reimschisel, Tyler; Roeder, Elizabeth; Malphrus, Amy D.; Eng, Patricia A.; Hixson, Patricia M.; Kang, Sung-Hae L.; Stankiewicz, Pawel; Patel, Ankita; Cheung, Sau Wai

    The widespread clinical utilization of array comparative genome hybridization, has led to the unraveling of many new copy number variations (CNVs). Although some of these CNVs are clearly pathogenic, the phenotypic consequences of others, such as those in 16p13.11 remain unclear. Whereas deletions

  18. Nonparametric testing for DNA copy number induced differential mRNA gene expression

    NARCIS (Netherlands)

    van Wieringen, W.N.; van de Wiel, M.A.

    2009-01-01

    The central dogma of molecular biology relates DNA with mRNA. Array CGH measures DNA copy number and gene expression microarrays measure the amount of mRNA. Methods that integrate data from these two platforms may uncover meaningful biological relationships that further our understanding of cancer.

  19. Distribution and functional impact of DNA copy number variation in the rat.

    NARCIS (Netherlands)

    Guryev, V.; Saar, K.; Adamovic, T.; Verheul, M.; van Heesch, S.; Cook, S.; Pravenec, M.; Aitman, T.; Jacob, H.; Shull, J.D.; Hubner, N.; Cuppen, E.

    2008-01-01

    The abundance and dynamics of copy number variants (CNVs) in mammalian genomes poses new challenges in the identification of their impact on natural and disease phenotypes. We used computational and experimental methods to catalog CNVs in rat and found that they share important functional

  20. DR-Integrator: a new analytic tool for integrating DNA copy number and gene expression data.

    Science.gov (United States)

    Salari, Keyan; Tibshirani, Robert; Pollack, Jonathan R

    2010-02-01

    DNA copy number alterations (CNA) frequently underlie gene expression changes by increasing or decreasing gene dosage. However, only a subset of genes with altered dosage exhibit concordant changes in gene expression. This subset is likely to be enriched for oncogenes and tumor suppressor genes, and can be identified by integrating these two layers of genome-scale data. We introduce DNA/RNA-Integrator (DR-Integrator), a statistical software tool to perform integrative analyses on paired DNA copy number and gene expression data. DR-Integrator identifies genes with significant correlations between DNA copy number and gene expression, and implements a supervised analysis that captures genes with significant alterations in both DNA copy number and gene expression between two sample classes. DR-Integrator is freely available for non-commercial use from the Pollack Lab at http://pollacklab.stanford.edu/ and can be downloaded as a plug-in application to Microsoft Excel and as a package for the R statistical computing environment. The R package is available under the name 'DRI' at http://cran.r-project.org/. An example analysis using DR-Integrator is included as supplemental material. Supplementary data are available at Bioinformatics online.

  1. CoNVaQ: a web tool for copy number variation-based association studies

    DEFF Research Database (Denmark)

    Larsen, Simon Jonas; do Canto, Luisa Matos; Rogatto, Silvia Regina

    2018-01-01

    Copy number variations (CNVs) are large segments of the genome that are duplicated or deleted. Structural variations in the genome have been linked to many complex diseases. Similar to how genome-wide association studies (GWAS) have helped discover single-nucleotide polymorphisms linked to diseas...

  2. Distribution of Disease-Associated Copy Number Variants across Distinct Disorders of Cognitive Development

    Science.gov (United States)

    Pescosolido, Matthew F.; Gamsiz, Ece D.; Nagpal, Shailender; Morrow, Eric M.

    2013-01-01

    Objective: The purpose of the present study was to discover the extent to which distinct "DSM" disorders share large, highly recurrent copy number variants (CNVs) as susceptibility factors. We also sought to identify gene mechanisms common to groups of diagnoses and/or specific to a given diagnosis based on associations with CNVs. Method:…

  3. 47 CFR 25.110 - Filing of applications, fees, and number of copies.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Filing of applications, fees, and number of copies. 25.110 Section 25.110 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Applications and Licenses General Application Filing...

  4. RUBIC identifies driver genes by detecting recurrent DNA copy number breaks

    NARCIS (Netherlands)

    van Dyk, H.O.; Hoogstraat, M; ten Hoeve, J; Reinders, M.J.T.; Wessels, L.F.A.

    2016-01-01

    The frequent recurrence of copy number aberrations across tumour samples is a reliable hallmark of certain cancer driver genes. However, state-of-the-art algorithms for detecting recurrent aberrations fail to detect several known drivers. In this study, we propose RUBIC, an approach that detects

  5. Copy number increase of ACTN4 is a prognostic indicator in salivary gland carcinoma

    International Nuclear Information System (INIS)

    Watabe, Yukio; Mori, Taisuke; Yoshimoto, Seiichi; Nomura, Takeshi; Shibahara, Takahiko; Yamada, Tesshi; Honda, Kazufumi

    2014-01-01

    Copy number increase (CNI) of ACTN4 has been associated with poor prognosis and metastatic phenotypes in various human carcinomas. To identify a novel prognostic factor for salivary gland carcinoma, we investigated the copy number of ACTN4. We evaluated DNA copy number of ACTN4 in 58 patients with salivary gland carcinoma by using fluorescent in situ hybridization (FISH). CNI of ACTN4 was recognized in 14 of 58 patients (24.1%) with salivary gland carcinoma. The cases with CNI of ACTN4 were closely associated with histological grade (P = 0.047) and vascular invasion (P = 0.033). The patients with CNI of ACTN4 had a significantly worse prognosis than the patients with normal copy number of ACTN4 (P = 0.0005 log-rank test). Univariate analysis by the Cox proportional hazards model showed that histological grade, vascular invasion, and CNI of ACTN4 were independent risk factors for cancer death. Vascular invasion (hazard ratio [HR]: 7.46; 95% confidence interval [CI]: 1.98–28.06) and CNI of ACTN4 (HR: 3.23; 95% CI: 1.08–9.68) remained as risk factors for cancer death in multivariate analysis. Thus, CNI of ACTN4 is a novel indicator for an unfavorable outcome in patients with salivary gland carcinoma

  6. Integrative analysis of copy number alteration and gene expression profiling in ovarian clear cell adenocarcinoma.

    Science.gov (United States)

    Sung, Chang Ohk; Choi, Chel Hun; Ko, Young-Hyeh; Ju, Hyunjeong; Choi, Yoon-La; Kim, Nyunsu; Kang, So Young; Ha, Sang Yun; Choi, Kyusam; Bae, Duk-Soo; Lee, Jeong-Won; Kim, Tae-Joong; Song, Sang Yong; Kim, Byoung-Gie

    2013-05-01

    Ovarian clear cell adenocarcinoma (Ov-CCA) is a distinctive subtype of ovarian epithelial carcinoma. In this study, we performed array comparative genomic hybridization (aCGH) and paired gene expression microarray of 19 fresh-frozen samples and conducted integrative analysis. For the copy number alterations, significantly amplified regions (false discovery rate [FDR] q genes demonstrating frequent copy number alterations (>25% of samples) that correlated with gene expression (FDR genes were mainly located on 8p11.21, 8p21.2-p21.3, 8q22.1, 8q24.3, 17q23.2-q23.3, 19p13.3, and 19p13.11. Among the regions, 8q24.3 was found to contain the most genes (30 of 94 genes) including PTK2. The 8q24.3 region was indicated as the most significant region, as supported by copy number, GISTIC, and integrative analysis. Pathway analysis using differentially expressed genes on 8q24.3 revealed several major nodes, including PTK2. In conclusion, we identified a set of 94 candidate genes with frequent copy number alterations that correlated with gene expression. Specific chromosomal alterations, such as the 8q24.3 gain containing PTK2, could be a therapeutic target in a subset of Ov-CCAs. Copyright © 2013. Published by Elsevier Inc.

  7. Integrative Genomics Reveals Mechanisms of Copy Number Alterations Responsible for Transcriptional Deregulation in Colorectal Cancer

    Science.gov (United States)

    Camps, Jordi; Nguyen, Quang Tri; Padilla-Nash, Hesed M.; Knutsen, Turid; McNeil, Nicole E.; Wangsa, Danny; Hummon, Amanda B.; Grade, Marian; Ried, Thomas; Difilippantonio, Michael J.

    2016-01-01

    To evaluate the mechanisms and consequences of chromosomal aberrations in colorectal cancer (CRC), we used a combination of spectral karyotyping, array comparative genomic hybridization (aCGH), and array-based global gene expression profiling on 31 primary carcinomas and 15 established cell lines. Importantly, aCGH showed that the genomic profiles of primary tumors are recapitulated in the cell lines. We revealed a preponderance of chromosome breakpoints at sites of copy number variants (CNVs) in the CRC cell lines, a novel mechanism of DNA breakage in cancer. The integration of gene expression and aCGH led to the identification of 157 genes localized within high-level copy number changes whose transcriptional deregulation was significantly affected across all of the samples, thereby suggesting that these genes play a functional role in CRC. Genomic amplification at 8q24 was the most recurrent event and led to the overexpression of MYC and FAM84B. Copy number dependent gene expression resulted in deregulation of known cancer genes such as APC, FGFR2, and ERBB2. The identification of only 36 genes whose localization near a breakpoint could account for their observed deregulated expression demonstrates that the major mechanism for transcriptional deregulation in CRC is genomic copy number changes resulting from chromosomal aberrations. PMID:19691111

  8. Copy number variation analysis of matched ovarian primary tumors and peritoneal metastasis.

    Directory of Open Access Journals (Sweden)

    Joel A Malek

    Full Text Available Ovarian cancer is the most deadly gynecological cancer. The high rate of mortality is due to the large tumor burden with extensive metastatic lesion of the abdominal cavity. Despite initial chemosensitivity and improved surgical procedures, abdominal recurrence remains an issue and results in patients' poor prognosis. Transcriptomic and genetic studies have revealed significant genome pathologies in the primary tumors and yielded important information regarding carcinogenesis. There are, however, few studies on genetic alterations and their consequences in peritoneal metastatic tumors when compared to their matched ovarian primary tumors. We used high-density SNP arrays to investigate copy number variations in matched primary and metastatic ovarian cancer from 9 patients. Here we show that copy number variations acquired by ovarian tumors are significantly different between matched primary and metastatic tumors and these are likely due to different functional requirements. We show that these copy number variations clearly differentially affect specific pathways including the JAK/STAT and cytokine signaling pathways. While many have shown complex involvement of cytokines in the ovarian cancer environment we provide evidence that ovarian tumors have specific copy number variation differences in many of these genes.

  9. Prediction of a deletion copy number variant by a dense SNP panel

    NARCIS (Netherlands)

    Kadri, N.K.; Koks, P.D.; Meuwissen, T.H.E.

    2012-01-01

    Background: A newly recognized type of genetic variation, Copy Number Variation (CNV), is detected in mammalian genomes, e.g. the cattle genome. This form of variation can potentially cause phenotypic variation. Our objective was to determine whether dense SNP (single nucleotide polymorphisms)

  10. Investigation of Copy Number Variation in Children with Conotruncal Heart Defects

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Carla Marques Rondon, E-mail: carlamcampos@uol.com.br [Universidade Federal de Mato Grosso, Cuiabá, MT (Brazil); Zanardo, Evelin Aline; Dutra, Roberta Lelis [Departamento de Patologia - Laboratório de Citogenômica - LIM 03 - Universidade de São Paulo, São Paulo, SP (Brazil); Kulikowski, Leslie Domenici [Universidade de São Paulo, São Paulo, SP (Brazil); Departamento de Patologia - Laboratório de Citogenômica - LIM 03 - Universidade de São Paulo, São Paulo, SP (Brazil); Kim, Chong Ae [Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-01-15

    Congenital heart defects (CHD) are the most prevalent group of structural abnormalities at birth and one of the main causes of infant morbidity and mortality. Studies have shown a contribution of the copy number variation in the genesis of cardiac malformations. Investigate gene copy number variation (CNV) in children with conotruncal heart defect. Multiplex ligation-dependent probe amplification (MLPA) was performed in 39 patients with conotruncal heart defect. Clinical and laboratory assessments were conducted in all patients. The parents of the probands who presented abnormal findings were also investigated. Gene copy number variation was detected in 7/39 patients: 22q11.2 deletion, 22q11.2 duplication, 15q11.2 duplication, 20p12.2 duplication, 19p deletion, 15q and 8p23.2 duplication with 10p12.31 duplication. The clinical characteristics were consistent with those reported in the literature associated with the encountered microdeletion/microduplication. None of these changes was inherited from the parents. Our results demonstrate that the technique of MLPA is useful in the investigation of microdeletions and microduplications in conotruncal congenital heart defects. Early diagnosis of the copy number variation in patients with congenital heart defect assists in the prevention of morbidity and decreased mortality in these patients.

  11. TOP1 gene copy numbers are increased in cancers of the bile duct and pancreas

    DEFF Research Database (Denmark)

    Grunnet, Mie; Calatayud, Dan; Schultz, Nicolai Aa.

    2015-01-01

    ) poison. Top1 protein, TOP1 gene copy number and mRNA expression, respectively, have been proposed as predictive biomarkers of response to irinotecan in other cancers. Here we investigate the occurrence of TOP1 gene aberrations in cancers of the bile ducts and pancreas. Material and methods. TOP1...

  12. Alpha-defensin DEFA1A3 gene copy number elevation in Danish Crohn's disease patients

    DEFF Research Database (Denmark)

    Jespersgaard, Cathrine; Fode, Peder; Dybdahl, Marianne

    2011-01-01

    BACKGROUND AND PURPOSE OF STUDY: Extensive copy number variation is observed for the DEFA1A3 gene encoding alpha-defensins 1-3. The objective of this study was to determine the involvement of alpha-defensins in colonic tissue from Crohn's disease (CD) patients and the possible genetic association...... of DEFA1A3 with CD. METHODS: Two-hundred and forty ethnic Danish CD patients were included in the study. Reverse transcriptase PCR assays determined DEFA1A3 expression in colonic tissue from a subset of patients. Immunohistochemical analysis identified alpha-defensin peptides in colonic tissue. Copy...

  13. Mitochondrial DNA copy number in peripheral blood cells declines with age and is associated with general health among elderly

    DEFF Research Database (Denmark)

    Mengel-From, Jonas; Thinggaard, Mikael; Dalgård, Christine

    2014-01-01

    compared to nuclear DNA, i.e. the mitochondrial DNA copy number, was measured by PCR technology and used as a proxy for the content of mitochondria copies. In 1,067 Danish twins and singletons (18-93 years of age), with the majority being elderly individuals, the estimated mean mitochondrial DNA copy...

  14. A genome-wide copy number variant study of suicidal behavior.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Gross

    Full Text Available Suicide and suicide attempts are complex behaviors that result from the interaction of different factors, including genetic variants that increase the predisposition to suicidal behaviors. Copy number variations (CNVs are deletions or duplications of a segment of DNA usually larger than one kilobase. These structural genetic changes, although quite rare, have been associated with genetic liability to mental disorders, such as autism, schizophrenia, and bipolar disorder. No genome-wide level studies have been published investigating the potential role of CNVs in suicidal behaviors. Based on single-nucleotide polymorphism array data, we followed the Penn-CNV standards to detect CNVs in 1,608 subjects, comprising 475 suicide and suicide attempt cases and 1,133 controls. Although the initial algorithms determined the presence of CNVs on chromosomes 6 and 12 in seven and eight cases, respectively, compared with none of the controls, visual inspection of the raw data did not support this finding. Furthermore we were unable to validate these findings by CNV-specific real-time polymerase chain reaction. Additionally, rare CNV burden analysis did not find an association between the frequency or length of rare CNVs and suicidal behavior in our sample population. Although our findings suggest CNVs do not play an important role in the etiology of suicidal behaviors, they are not inconsistent with the strong evidence from the literature suggesting that other genetic variants account for a portion of the total phenotypic variability in suicidal behavior.

  15. AR copy number and AR signaling-directed therapies in castration-resistant prostate cancer.

    Science.gov (United States)

    Salvi, Samanta; Conteduca, Vincenza; Lolli, Cristian; Testoni, Sara; Casadio, Valentina; Zaccheroni, Andrea; Rossi, Lorena; Burgio, Salvatore Luca; Menna, Cecilia; Schepisi, Giuseppe; De Giorgi, Ugo

    2017-11-22

    Adaptive upregulation of androgen receptor (AR) is the most common event involved in the progression from hormone sensitive to castration-resistant prostate cancer (CRPC). AR signaling remains the main target of new AR signalling-directed therapies such as abiraterone and enzalutamide in CRPC patients. In this review, we discuss general mechanisms of resistance to AR-targeted therapies, with a focus on the role of AR copy number (CN). We reported methods and clinical applications of AR CN evaluation in tissue and liquid biopsy, thus to have a complete information regarding its role as predictive and prognostic biomarker. Outcomes of CRPC patients are reported to be highly variable as consequence of tumor heterogeneity. AR CN could contribute to patient selection and tumor monitoring in CRPC treated with new anti-cancer treatment as abiraterone and enzalutamide. Further studies to investigate AR CN effect to these agents and its potential combination with other prognostic or predictive clinical factors are necessary in the context of harmonized clinical trial design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Copy number variation in salivary amylase: A participant-based study on genetic variation.

    Directory of Open Access Journals (Sweden)

    Phillips, E.

    2017-07-01

    Full Text Available Amylase (AMY1 is an enzyme found in the mouth that is used to help digest carbohydrates. It has been found that the copy number of AMY1 has been positively associated with protein levels within an individual and also that individual’s population. This information can correspond to the positive ancestral linkage of high starch consumption within agricultural and hunter-gatherer societies. A high starch consumption means that the AMY1 enzyme will be more prevalent within their bodies, and the presence of AMY1 could both help bodies process starches better and prevent future conditions or intestinal diseases. The amylase gene is conclusively connected to the AMY1 copy number production. I hypothesized that individuals within a population will have a similar copy number of the AMY1 gene to each other. Twenty-five high school students located in Norman, Oklahoma were asked to retrieve buccal swabs from the inside of their cheek. DNA then was abstracted from these samples, and a quantitative polymerase chain reaction (qPCR, a machine used to detect the amount of genetic material found in the DNA, was completed in order to determine the copy number within each salivary sample. The qPCR was completed two different times in order to ensure correct results when the data was presented. Results indicated that the copy number within the population were similar to each other, and ranged from 1-12. This means that individuals located in this population have a lower production of amylase, and this provides indication that they are more likely to become obese than in previous research papers located in Arizona. Research shows that a smaller production of AMY1 may contribute to the chances of obesity in the future.

  17. Diversity in copy number and structure of a silkworm morphogenetic gene as a result of domestication.

    Science.gov (United States)

    Sakudoh, Takashi; Nakashima, Takeharu; Kuroki, Yoko; Fujiyama, Asao; Kohara, Yuji; Honda, Naoko; Fujimoto, Hirofumi; Shimada, Toru; Nakagaki, Masao; Banno, Yutaka; Tsuchida, Kozo

    2011-03-01

    The carotenoid-binding protein (CBP) of the domesticated silkworm, Bombyx mori, a major determinant of cocoon color, is likely to have been substantially influenced by domestication of this species. We analyzed the structure of the CBP gene in multiple strains of B. mori, in multiple individuals of the wild silkworm, B. mandarina (the putative wild ancestor of B. mori), and in a number of other lepidopterans. We found the CBP gene copy number in genomic DNA to vary widely among B. mori strains, ranging from 1 to 20. The copies of CBP are of several types, based on the presence of a retrotransposon or partial deletion of the coding sequence. In contrast to B. mori, B. mandarina was found to possess a single copy of CBP without the retrotransposon insertion, regardless of habitat. Several other lepidopterans were found to contain sequences homologous to CBP, revealing that this gene is evolutionarily conserved in the lepidopteran lineage. Thus, domestication can generate significant diversity of gene copy number and structure over a relatively short evolutionary time. © 2011 by the Genetics Society of America

  18. The cost of copy number in a selfish genetic element: the 2-μm plasmid of Saccharomyces cerevisiae.

    Science.gov (United States)

    Harrison, Ellie; Koufopanou, V; Burt, A; MacLean, R C

    2012-11-01

    Many autonomously replicating genetic elements exist as multiple copies within the cell. The copy number of these elements is often assumed to have important fitness consequences for both element and host, yet the forces shaping its evolution are not well understood. The 2 μm is a multicopy plasmid of Saccharomyces yeasts, encoding just four genes that are solely involved in plasmid replication. One simple model for the fitness relationship between yeasts and 2 μm is that plasmid copy number evolves as a trade-off between selection for increased vertical transmission, favouring high copy number, and selection for decreased virulence, favouring low copy number. To test this model, we experimentally manipulated the copy number of the plasmid and directly measured the fitness cost, in terms of growth rate reduction, associated with high plasmid copy number. We find that the fitness burden imposed by the 2 μm increases with plasmid copy number, such that each copy imposes a fitness burden of 0.17% (± 0.008%), greatly exceeding the cost expected for it to be stably maintained in yeast populations. Our results demonstrate the crucial importance of copy number in the evolution of yeast per 2 μm associations and pave the way for future studies examining how selection can shape the cost of multicopy elements. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  19. Understanding the impact of 1q21.1 copy number variant

    Directory of Open Access Journals (Sweden)

    Harvard Chansonette

    2011-08-01

    Full Text Available Abstract Background 1q21.1 Copy Number Variant (CNV is associated with a highly variable phenotype ranging from congenital anomalies, learning deficits/intellectual disability (ID, to a normal phenotype. Hence, the clinical significance of this CNV can be difficult to evaluate. Here we described the consequences of the 1q21.1 CNV on genome-wide gene expression and function of selected candidate genes within 1q21.1 using cell lines from clinically well described subjects. Methods and Results Eight subjects from 3 families were included in the study: six with a 1q21.1 deletion and two with a 1q21.1 duplication. High resolution Affymetrix 2.7M array was used to refine the 1q21.1 CNV breakpoints and exclude the presence of secondary CNVs of pathogenic relevance. Whole genome expression profiling, studied in lymphoblast cell lines (LBCs from 5 subjects, showed enrichment of genes from 1q21.1 in the top 100 genes ranked based on correlation of expression with 1q21.1 copy number. The function of two top genes from 1q21.1, CHD1L/ALC1 and PRKAB2, was studied in detail in LBCs from a deletion and a duplication carrier. CHD1L/ALC1 is an enzyme with a role in chromatin modification and DNA damage response while PRKAB2 is a member of the AMP kinase complex, which senses and maintains systemic and cellular energy balance. The protein levels for CHD1L/ALC1 and PRKAB2 were changed in concordance with their copy number in both LBCs. A defect in chromatin remodeling was documented based on impaired decatenation (chromatid untangling checkpoint (DCC in both LBCs. This defect, reproduced by CHD1L/ALC1 siRNA, identifies a new role of CHD1L/ALC1 in DCC. Both LBCs also showed elevated levels of micronuclei following treatment with a Topoisomerase II inhibitor suggesting increased DNA breaks. AMP kinase function, specifically in the deletion containing LBCs, was attenuated. Conclusion Our studies are unique as they show for the first time that the 1q21.1 CNV not only

  20. Associations of GBP2 gene copy number variations with growth traits and transcriptional expression in Chinese cattle.

    Science.gov (United States)

    Zhang, Gui-Min; Zheng, Li; He, Hua; Song, Cheng-Chuang; Zhang, Zi-Jing; Cao, Xiu-Kai; Lei, Chu-Zhao; Lan, Xian-Yong; Qi, Xing-Lei; Chen, Hong; Huang, Yong-Zhen

    2018-03-20

    Copy number variations (CNVs) recently have been recognized as another important genetic variability followed single nucleotide polymorphisms (SNPs). The guanylate binding protein 2 (GBP2) gene plays an important role in cell proliferation. This study was performed to determine the presence of GBP2 CNV (relative to Angus cattle) in 466 individuals representing six main cattle breeds from China, identify its relationship with growth, and explore the biological effects of gene expression. There were two CNV regions in the GBP2 gene, for three types, CNV1 loss type (relative to Angus cattle) was more frequent in XN than other breeds, and CNV2 loss type (relative to Angus cattle) was more frequent in XN and CDM than other breeds. Though the GBP2 gene copy number presented no correlation with the transcriptional expression of JX (P > .05), but the transcriptional expression in heart is higher than other tissues, and the copy number in muscles and fat of JX is higher than others breeds. Statistical analysis revealed that the GBP2 gene CNV1 and CNV2 were significantly associated with growth traits (P cattle breeds, and our results suggested that the CNVs in GBP2 gene may be considered markers for the molecular breeding of Chinese beef cattle. Copyright © 2018. Published by Elsevier B.V.

  1. CNV-RF Is a Random Forest-Based Copy Number Variation Detection Method Using Next-Generation Sequencing.

    Science.gov (United States)

    Onsongo, Getiria; Baughn, Linda B; Bower, Matthew; Henzler, Christine; Schomaker, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat

    2016-11-01

    Simultaneous detection of small copy number variations (CNVs) (<0.5 kb) and single-nucleotide variants in clinically significant genes is of great interest for clinical laboratories. The analytical variability in next-generation sequencing (NGS) and artifacts in coverage data because of issues with mappability along with lack of robust bioinformatics tools for CNV detection have limited the utility of targeted NGS data to identify CNVs. We describe the development and implementation of a bioinformatics algorithm, copy number variation-random forest (CNV-RF), that incorporates a machine learning component to identify CNVs from targeted NGS data. Using CNV-RF, we identified 12 of 13 deletions in samples with known CNVs, two cases with duplications, and identified novel deletions in 22 additional cases. Furthermore, no CNVs were identified among 60 genes in 14 cases with normal copy number and no CNVs were identified in another 104 patients with clinical suspicion of CNVs. All positive deletions and duplications were confirmed using a quantitative PCR method. CNV-RF also detected heterozygous deletions and duplications with a specificity of 50% across 4813 genes. The ability of CNV-RF to detect clinically relevant CNVs with a high degree of sensitivity along with confirmation using a low-cost quantitative PCR method provides a framework for providing comprehensive NGS-based CNV/single-nucleotide variant detection in a clinical molecular diagnostics laboratory. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  2. Subtelomeric Copy Number Variations: The Importance of 4p/4q Deletions in Patients with Congenital Anomalies and Developmental Disability.

    Science.gov (United States)

    Novo-Filho, Gil M; Montenegro, Marília M; Zanardo, Évelin A; Dutra, Roberta L; Dias, Alexandre T; Piazzon, Flavia B; Costa, Taís V M M; Nascimento, Amom M; Honjo, Rachel S; Kim, Chong A; Kulikowski, Leslie D

    2016-01-01

    The most prevalent structural variations in the human genome are copy number variations (CNVs), which appear predominantly in the subtelomeric regions. Variable sizes of 4p/4q CNVs have been associated with several different psychiatric findings and developmental disability (DD). We analyzed 105 patients with congenital anomalies (CA) and developmental and/or intellectual disabilities (DD/ID) using MLPA subtelomeric specific kits (P036 /P070) and 4 of them using microarrays. We found abnormal subtelomeric CNVs in 15 patients (14.3%), including 8 patients with subtelomeric deletions at 4p/4q (53.3%). Additional genomic changes were observed at 1p36, 2q37.3, 5p15.3, 5q35.3, 8p23.3, 13q11, 14q32.3, 15q11.2, and Xq28/Yq12. This indicates the prevalence of independent deletions at 4p/4q, involving PIGG, TRIML2, and FRG1. Furthermore, we identified 15 genes with changes in copy number that contribute to neurological development and/or function, among them CRMP1, SORCS2, SLC25A4, and HELT. Our results highlight the association of genes with changes in copy number at 4p and 4q subtelomeric regions and the DD phenotype. Cytogenomic characterization of additional cases with distal deletions should help clarifying the role of subtelomeric CNVs in neurological diseases. © 2016 S. Karger AG, Basel.

  3. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening.

    Science.gov (United States)

    Tyson, Jess; Majerus, Tamsin Mo; Walker, Susan; Armour, John Al

    2009-09-28

    Copy number variation (CNV) in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Multiplex Amplifiable Probe Hybridisation (MAPH) is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH") that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC) samples. QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  4. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening

    Directory of Open Access Journals (Sweden)

    Walker Susan

    2009-09-01

    Full Text Available Abstract Background Copy number variation (CNV in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Results Multiplex Amplifiable Probe Hybridisation (MAPH is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH" that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC samples. Conclusion QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  5. The potential role for use of mitochondrial DNA copy number as predictive biomarker in presbycusis

    Directory of Open Access Journals (Sweden)

    Falah M

    2016-10-01

    Full Text Available Masoumeh Falah,1,2 Massoud Houshmand,3 Mohammad Najafi,2 Maryam Balali,1 Saeid Mahmoudian,1 Alimohamad Asghari,4 Hessamaldin Emamdjomeh,1 Mohammad Farhadi1 1ENT and Head & Neck Research Center and Department, Iran University of Medical Sciences, Tehran, Iran; 2Cellular and Molecular Research Center, Biochemistry Department, Iran University of Medical Sciences, Tehran, Iran; 3Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran; 4Skull base research center, Iran University of Medical Sciences, Tehran, Iran Objectives: Age-related hearing impairment, or presbycusis, is the most common communication disorder and neurodegenerative disease in the elderly. Its prevalence is expected to increase, due to the trend of growth of the elderly population. The current diagnostic test for detection of presbycusis is implemented after there has been a change in hearing sensitivity. Identification of a pre-diagnostic biomarker would raise the possibility of preserving hearing sensitivity before damage occurs. Mitochondrial dysfunction, including the production of reactive oxygen species and induction of expression of apoptotic genes, participates in the progression of presbycusis. Mitochondrial DNA sequence variation has a critical role in presbycusis. However, the nature of the relationship between mitochondrial DNA copy number, an important biomarker in many other diseases, and presbycusis is undetermined.Methods: Fifty-four subjects with presbycusis and 29 healthy controls were selected after ear, nose, throat examination and pure-tone audiometry. DNA was extracted from peripheral blood samples. The copy number of mitochondrial DNA relative to the nuclear genome was measured by quantitative real-time polymerase chain reaction.Results: Subjects with presbycusis had a lower median mitochondrial DNA copy number than healthy subjects and the difference was statistically significant (P=0.007. Mitochondrial DNA

  6. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number.

    Science.gov (United States)

    Price, Ric N; Uhlemann, Anne-Catrin; Brockman, Alan; McGready, Rose; Ashley, Elizabeth; Phaipun, Lucy; Patel, Rina; Laing, Kenneth; Looareesuwan, Sornchai; White, Nicholas J; Nosten, François; Krishna, Sanjeev

    The borders of Thailand harbour the world's most multidrug resistant Plasmodium falciparum parasites. In 1984 mefloquine was introduced as treatment for uncomplicated falciparum malaria, but substantial resistance developed within 6 years. A combination of artesunate with mefloquine now cures more than 95% of acute infections. For both treatment regimens, the underlying mechanisms of resistance are not known. The relation between polymorphisms in the P falciparum multidrug resistant gene 1 (pfmdr1) and the in-vitro and in-vivo responses to mefloquine were assessed in 618 samples from patients with falciparum malaria studied prospectively over 12 years. pfmdr1 copy number was assessed by a robust real-time PCR assay. Single nucleotide polymorphisms of pfmdr1, P falciparum chloroquine resistance transporter gene (pfcrt) and P falciparum Ca2+ ATPase gene (pfATP6) were assessed by PCR-restriction fragment length polymorphism. Increased copy number of pfmdr1 was the most important determinant of in-vitro and in-vivo resistance to mefloquine, and also to reduced artesunate sensitivity in vitro. In a Cox regression model with control for known confounders, increased pfmdr1 copy number was associated with an attributable hazard ratio (AHR) for treatment failure of 6.3 (95% CI 2.9-13.8, p<0.001) after mefloquine monotherapy and 5.4 (2.0-14.6, p=0.001) after artesunate-mefloquine therapy. Single nucleotide polymorphisms in pfmdr1 were associated with increased mefloquine susceptibility in vitro, but not in vivo. Amplification in pfmdr1 is the main cause of resistance to mefloquine in falciparum malaria. Multidrug resistant P falciparum malaria is common in southeast Asia, but difficult to identify and treat. Genes that encode parasite transport proteins maybe involved in export of drugs and so cause resistance. In this study we show that increase in copy number of pfmdr1, a gene encoding a parasite transport protein, is the best overall predictor of treatment failure with

  7. Copy number of the transposon, Pokey, in rDNA is positively correlated with rDNA copy number in Daphnia obtuse [corrected].

    Directory of Open Access Journals (Sweden)

    Kaitlynn LeRiche

    Full Text Available Pokey is a class II DNA transposon that inserts into 28S ribosomal RNA (rRNA genes and other genomic regions of species in the subgenus, Daphnia. Two divergent lineages, PokeyA and PokeyB have been identified. Recombination between misaligned rRNA genes changes their number and the number of Pokey elements. We used quantitative PCR (qPCR to estimate rRNA gene and Pokey number in isolates from natural populations of Daphnia obtusa, and in clonally-propagated mutation accumulation lines (MAL initiated from a single D. obtusa female. The change in direction and magnitude of Pokey and rRNA gene number did not show a consistent pattern across ∼ 87 generations in the MAL; however, Pokey and rRNA gene number changed in concert. PokeyA and 28S gene number were positively correlated in the isolates from both natural populations and the MAL. PokeyB number was much lower than PokeyA in both MAL and natural population isolates, and showed no correlation with 28S gene number. Preliminary analysis did not detect PokeyB outside rDNA in any isolates and detected only 0 to 4 copies of PokeyA outside rDNA indicating that Pokey may be primarily an rDNA element in D. obtusa. The recombination rate in this species is high and the average size of the rDNA locus is about twice as large as that in other Daphnia species such as D. pulicaria and D. pulex, which may have facilitated expansion of PokeyA to much higher numbers in D. obtusa rDNA than these other species.

  8. Accuracy and differential bias in copy number measurement of CCL3L1 in association studies with three auto-immune disorders

    Directory of Open Access Journals (Sweden)

    Carpenter Danielle

    2011-08-01

    Full Text Available Abstract Background Copy number variation (CNV contributes to the variation observed between individuals and can influence human disease progression, but the accurate measurement of individual copy numbers is technically challenging. In the work presented here we describe a modification to a previously described paralogue ratio test (PRT method for genotyping the CCL3L1/CCL4L1 copy variable region, which we use to ascertain CCL3L1/CCL4L1 copy number in 1581 European samples. As the products of CCL3L1 and CCL4L1 potentially play a role in autoimmunity we performed case control association studies with Crohn's disease, rheumatoid arthritis and psoriasis clinical cohorts. Results We evaluate the PRT methodology used, paying particular attention to accuracy and precision, and highlight the problems of differential bias in copy number measurements. Our PRT methods for measuring copy number were of sufficient precision to detect very slight but systematic differential bias between results from case and control DNA samples in one study. We find no evidence for an association between CCL3L1 copy number and Crohn's disease, rheumatoid arthritis or psoriasis. Conclusions Differential bias of this small magnitude, but applied systematically across large numbers of samples, would create a serious risk of false positive associations in copy number, if measured using methods of lower precision, or methods relying on single uncorroborated measurements. In this study the small differential bias detected by PRT in one sample set was resolved by a simple pre-treatment by restriction enzyme digestion.

  9. Microarray MAPH: accurate array-based detection of relative copy number in genomic DNA

    Directory of Open Access Journals (Sweden)

    Chan Alan

    2006-06-01

    Full Text Available Abstract Background Current methods for measurement of copy number do not combine all the desirable qualities of convenience, throughput, economy, accuracy and resolution. In this study, to improve the throughput associated with Multiplex Amplifiable Probe Hybridisation (MAPH we aimed to develop a modification based on the 3-Dimensional, Flow-Through Microarray Platform from PamGene International. In this new method, electrophoretic analysis of amplified products is replaced with photometric analysis of a probed oligonucleotide array. Copy number analysis of hybridised probes is based on a dual-label approach by comparing the intensity of Cy3-labelled MAPH probes amplified from test samples co-hybridised with similarly amplified Cy5-labelled reference MAPH probes. The key feature of using a hybridisation-based end point with MAPH is that discrimination of amplified probes is based on sequence and not fragment length. Results In this study we showed that microarray MAPH measurement of PMP22 gene dosage correlates well with PMP22 gene dosage determined by capillary MAPH and that copy number was accurately reported in analyses of DNA from 38 individuals, 12 of which were known to have Charcot-Marie-Tooth disease type 1A (CMT1A. Conclusion Measurement of microarray-based endpoints for MAPH appears to be of comparable accuracy to electrophoretic methods, and holds the prospect of fully exploiting the potential multiplicity of MAPH. The technology has the potential to simplify copy number assays for genes with a large number of exons, or of expanded sets of probes from dispersed genomic locations.

  10. Integrative analysis of copy number and gene expression data suggests novel pathogenetic mechanisms in primary myelofibrosis.

    Science.gov (United States)

    Salati, Simona; Zini, Roberta; Nuzzo, Simona; Guglielmelli, Paola; Pennucci, Valentina; Prudente, Zelia; Ruberti, Samantha; Rontauroli, Sebastiano; Norfo, Ruggiero; Bianchi, Elisa; Bogani, Costanza; Rotunno, Giada; Fanelli, Tiziana; Mannarelli, Carmela; Rosti, Vittorio; Salmoiraghi, Silvia; Pietra, Daniela; Ferrari, Sergio; Barosi, Giovanni; Rambaldi, Alessandro; Cazzola, Mario; Bicciato, Silvio; Tagliafico, Enrico; Vannucchi, Alessandro M; Manfredini, Rossella

    2016-04-01

    Primary myelofibrosis (PMF) is a Myeloproliferative Neoplasm (MPN) characterized by megakaryocyte hyperplasia, progressive bone marrow fibrosis, extramedullary hematopoiesis and transformation to Acute Myeloid Leukemia (AML). A number of phenotypic driver (JAK2, CALR, MPL) and additional subclonal mutations have been described in PMF, pointing to a complex genomic landscape. To discover novel genomic lesions that can contribute to disease phenotype and/or development, gene expression and copy number signals were integrated and several genomic abnormalities leading to a concordant alteration in gene expression levels were identified. In particular, copy number gain in the polyamine oxidase (PAOX) gene locus was accompanied by a coordinated transcriptional up-regulation in PMF patients. PAOX inhibition resulted in rapid cell death of PMF progenitor cells, while sparing normal cells, suggesting that PAOX inhibition could represent a therapeutic strategy to selectively target PMF cells without affecting normal hematopoietic cells' survival. Moreover, copy number loss in the chromatin modifier HMGXB4 gene correlates with a concomitant transcriptional down-regulation in PMF patients. Interestingly, silencing of HMGXB4 induces megakaryocyte differentiation, while inhibiting erythroid development, in human hematopoietic stem/progenitor cells. These results highlight a previously un-reported, yet potentially interesting role of HMGXB4 in the hematopoietic system and suggest that genomic and transcriptional imbalances of HMGXB4 could contribute to the aberrant expansion of the megakaryocytic lineage that characterizes PMF patients. © 2015 UICC.

  11. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation.

    Directory of Open Access Journals (Sweden)

    Melanie G Mayer

    2015-06-01

    Full Text Available Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains' pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as

  12. New cytogenetically visible copy number variant in region 8q21.2

    Directory of Open Access Journals (Sweden)

    Ewers Elisabeth

    2011-01-01

    Full Text Available Abstract Background Cytogenetically visible unbalanced chromosomal abnormalities (UBCA, reported for >50 euchromatic regions of almost all human autosomes, are comprised of a few megabases of DNA, and carriers are in many cases clinically healthy. It may be speculated, that some of the UBCA may be similar or identical to copy number variants (CNV of the human genome. Results Here we report on a yet unreported cytogenetically visible copy number variant (CNV in the long arm of chromosome 8, region 8q21.2, detected in three unrelated clinically healthy carriers. Conclusion The first description of a cytogenetically visible CNV/UBCA in 8q21.2 shows that banding cytogenetics is far from being outdated. It is a cost efficient, up-to-date method for a single cell specific overview on the whole genome, still prepared to deliver unexpected findings.

  13. Genome Wide Distributions and Functional Characterization of Copy Number Variations between Chinese and Western Pigs.

    Directory of Open Access Journals (Sweden)

    Hongyang Wang

    Full Text Available Copy number variations (CNVs refer to large insertions, deletions and duplications in the genomic structure ranging from one thousand to several million bases in size. Since the development of next generation sequencing technology, several methods have been well built for detection of copy number variations with high credibility and accuracy. Evidence has shown that CNV occurring in gene region could lead to phenotypic changes due to the alteration in gene structure and dosage. However, it still remains unexplored whether CNVs underlie the phenotypic differences between Chinese and Western domestic pigs. Based on the read-depth methods, we investigated copy number variations using 49 individuals derived from both Chinese and Western pig breeds. A total of 3,131 copy number variation regions (CNVRs were identified with an average size of 13.4 Kb in all individuals during domestication, harboring 1,363 genes. Among them, 129 and 147 CNVRs were Chinese and Western pig specific, respectively. Gene functional enrichments revealed that these CNVRs contribute to strong disease resistance and high prolificacy in Chinese domestic pigs, but strong muscle tissue development in Western domestic pigs. This finding is strongly consistent with the morphologic characteristics of Chinese and Western pigs, indicating that these group-specific CNVRs might have been preserved by artificial selection for the favored phenotypes during independent domestication of Chinese and Western pigs. In this study, we built high-resolution CNV maps in several domestic pig breeds and discovered the group specific CNVs by comparing Chinese and Western pigs, which could provide new insight into genomic variations during pigs' independent domestication, and facilitate further functional studies of CNV-associated genes.

  14. Transcriptional analysis of bla NDM-1 and copy number alteration under carbapenem stress

    Directory of Open Access Journals (Sweden)

    Deepjyoti Paul

    2017-02-01

    Full Text Available Abstract Background New Delhi metallo beta-lactamase is known to compromise carbapenem therapy and leading to treatment failure. However, their response to carbapenem stress is not clearly known. Here, we have investigated the transcriptional response of bla NDM-1 and plasmid copy number alteration under carbapenem exposure. Methods Three bla NDM-1 harboring plasmids representing three incompatibility types (IncFIC, IncA/C and IncK were inoculated in LB broth with and without imipenem, meropenem and ertapenem. After each 1 h total RNA was isolated, immediately reverse transcribed into cDNA and quantitative real time PCR was used for transcriptional expression of bla NDM-1. Horizontal transferability and stability of the plasmids encoding bla NDM-1 were also determined. Changes in copy number of bla NDM-1 harboring plasmids under the exposure of different carbapenems were determined by real time PCR. Clonal relatedness among the isolates was determined by pulsed field gel electrophoresis. Results Under carbapenem stress over an interval of time there was a sharp variation in the transcriptional expression of bla NDM-1 although it did not follow a specific pattern. All bla NDM-1 carrying plasmids were transferable by conjugation. These plasmids were highly stable and complete loss was observed between 92nd to 96th serial passages when antibiotic pressure was withdrawn. High copy number of bla NDM-1 was found for IncF type plasmids compared to the other replicon types. Conclusion This study suggests that the single dose of carbapenem pressure does not significantly influence the expression of bla NDM-1 and also focus on the stability of this gene as well as the change in copy number with respect to the incompatible type of plasmid harboring resistance determinant.

  15. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data

    OpenAIRE

    Sep?lveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain5, Arnab; Clark, Taane G

    2013-01-01

    BACKGROUND: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poi...

  16. Genome-wide copy number variation (CNV in patients with autoimmune Addison's disease

    Directory of Open Access Journals (Sweden)

    Brønstad Ingeborg

    2011-08-01

    Full Text Available Abstract Background Addison's disease (AD is caused by an autoimmune destruction of the adrenal cortex. The pathogenesis is multi-factorial, involving genetic components and hitherto unknown environmental factors. The aim of the present study was to investigate if gene dosage in the form of copy number variation (CNV could add to the repertoire of genetic susceptibility to autoimmune AD. Methods A genome-wide study using the Affymetrix GeneChip® Genome-Wide Human SNP Array 6.0 was conducted in 26 patients with AD. CNVs in selected genes were further investigated in a larger material of patients with autoimmune AD (n = 352 and healthy controls (n = 353 by duplex Taqman real-time polymerase chain reaction assays. Results We found that low copy number of UGT2B28 was significantly more frequent in AD patients compared to controls; conversely high copy number of ADAM3A was associated with AD. Conclusions We have identified two novel CNV associations to ADAM3A and UGT2B28 in AD. The mechanism by which this susceptibility is conferred is at present unclear, but may involve steroid inactivation (UGT2B28 and T cell maturation (ADAM3A. Characterization of these proteins may unravel novel information on the pathogenesis of autoimmunity.

  17. Genome-wide copy number variation (CNV) in patients with autoimmune Addison's disease

    Science.gov (United States)

    2011-01-01

    Background Addison's disease (AD) is caused by an autoimmune destruction of the adrenal cortex. The pathogenesis is multi-factorial, involving genetic components and hitherto unknown environmental factors. The aim of the present study was to investigate if gene dosage in the form of copy number variation (CNV) could add to the repertoire of genetic susceptibility to autoimmune AD. Methods A genome-wide study using the Affymetrix GeneChip® Genome-Wide Human SNP Array 6.0 was conducted in 26 patients with AD. CNVs in selected genes were further investigated in a larger material of patients with autoimmune AD (n = 352) and healthy controls (n = 353) by duplex Taqman real-time polymerase chain reaction assays. Results We found that low copy number of UGT2B28 was significantly more frequent in AD patients compared to controls; conversely high copy number of ADAM3A was associated with AD. Conclusions We have identified two novel CNV associations to ADAM3A and UGT2B28 in AD. The mechanism by which this susceptibility is conferred is at present unclear, but may involve steroid inactivation (UGT2B28) and T cell maturation (ADAM3A). Characterization of these proteins may unravel novel information on the pathogenesis of autoimmunity. PMID:21851588

  18. Sequence diversity and copy number variation of Mutator-like transposases in wheat

    Directory of Open Access Journals (Sweden)

    Nobuaki Asakura

    2008-01-01

    Full Text Available Partial transposase-coding sequences of Mutator-like elements (MULEs were isolated from a wild einkorn wheat, Triticum urartu, by degenerate PCR. The isolated sequences were classified into a MuDR or Class I clade and divided into two distinct subclasses (subclass I and subclass II. The average pair-wise identity between members of both subclasses was 58.8% at the nucleotide sequence level. Sequence diversity of subclass I was larger than that of subclass II. DNA gel blot analysis showed that subclass I was present as low copy number elements in the genomes of all Triticum and Aegilops accessions surveyed, while subclass II was present as high copy number elements. These two subclasses seemed uncapable of recognizing each other for transposition. The number of copies of subclass II elements was much higher in Aegilops with the S, Sl and D genomes and polyploid Triticum species than in diploid Triticum with the A genome, indicating that active transposition occurred in S, Sl and D genomes before polyploidization. DNA gel blot analysis of six species selected from three subfamilies of Poaceae demonstrated that only the tribe Triticeae possessed both subclasses. These results suggest that the differentiation of these two subclasses occurred before or immediately after the establishment of the tribe Triticeae.

  19. Simple and versatile molecular method of copy-number measurement using cloned competitors.

    Directory of Open Access Journals (Sweden)

    Hyun-Kyoung Kim

    Full Text Available Variations and alterations of copy numbers (CNVs and CNAs carry disease susceptibility and drug responsiveness implications. Although there are many molecular methods to measure copy numbers, sensitivity, reproducibility, cost, and time issues remain. In the present study, we were able to solve those problems utilizing our modified real competitive PCR method with cloned competitors (mrcPCR. First, the mrcPCR for ERBB2 copy number was established, and the results were comparable to current standard methods but with a shorter assay time and a lower cost. Second, the mrcPCR assays for 24 drug-target genes were established, and the results in a panel of NCI-60 cells were comparable to those from real-time PCR and microarray. Third, the mrcPCR results for FCGR3A and the FCGR3B CNVs were comparable to those by the paralog ratio test (PRT, but without PRT's limitations. These results suggest that mrcPCR is comparable to the currently available standard or the most sensitive methods. In addition, mrcPCR would be invaluable for measurement of CNVs in genes with variants of similar structures, because combination of the other methods is not necessary, along with its other advantages such as short assay time, small sample amount requirement, and applicability to all sequences and genes.

  20. Clinical relevance of copy number profiling in oral and oropharyngeal squamous cell carcinoma

    Science.gov (United States)

    van Kempen, Pauline M W; Noorlag, Rob; Braunius, Weibel W; Moelans, Cathy B; Rifi, Widad; Savola, Suvi; Koole, Ronald; Grolman, Wilko; van Es, Robert J J; Willems, Stefan M

    2015-01-01

    Current conventional treatment modalities in head and neck squamous cell carcinoma (HNSCC) are nonselective and have shown to cause serious side effects. Unraveling the molecular profiles of head and neck cancer may enable promising clinical applications that pave the road for personalized cancer treatment. We examined copy number status in 36 common oncogenes and tumor suppressor genes in a cohort of 191 oropharyngeal squamous cell carcinomas (OPSCC) and 164 oral cavity squamous cell carcinomas (OSCC) using multiplex ligation probe amplification. Copy number status was correlated with human papillomavirus (HPV) status in OPSCC, with occult lymph node status in OSCC and with patient survival. The 11q13 region showed gain or amplifications in 59% of HPV-negative OPSCC, whereas this amplification was almost absent in HPV-positive OPSCC. Additionally, in clinically lymph node-negative OSCC (Stage I–II), gain of the 11q13 region was significantly correlated with occult lymph node metastases with a negative predictive value of 81%. Multivariate survival analysis revealed a significantly decreased disease-free survival in both HPV-negative and HPV-positive OPSCC with a gain of Wnt-induced secreted protein-1. Gain of CCND1 showed to be an independent predictor for worse survival in OSCC. These results show that copy number aberrations, mainly of the 11q13 region, may be important predictors and prognosticators which allow for stratifying patients for personalized treatment of HNSCC. PMID:26194878

  1. Clinical relevance of copy number profiling in oral and oropharyngeal squamous cell carcinoma

    International Nuclear Information System (INIS)

    Kempen, Pauline M W van; Noorlag, Rob; Braunius, Weibel W; Moelans, Cathy B; Rifi, Widad; Savola, Suvi; Koole, Ronald; Grolman, Wilko; Es, Robert J J van; Willems, Stefan M

    2015-01-01

    Current conventional treatment modalities in head and neck squamous cell carcinoma (HNSCC) are nonselective and have shown to cause serious side effects. Unraveling the molecular profiles of head and neck cancer may enable promising clinical applications that pave the road for personalized cancer treatment. We examined copy number status in 36 common oncogenes and tumor suppressor genes in a cohort of 191 oropharyngeal squamous cell carcinomas (OPSCC) and 164 oral cavity squamous cell carcinomas (OSCC) using multiplex ligation probe amplification. Copy number status was correlated with human papillomavirus (HPV) status in OPSCC, with occult lymph node status in OSCC and with patient survival. The 11q13 region showed gain or amplifications in 59% of HPV-negative OPSCC, whereas this amplification was almost absent in HPV-positive OPSCC. Additionally, in clinically lymph node-negative OSCC (Stage I–II), gain of the 11q13 region was significantly correlated with occult lymph node metastases with a negative predictive value of 81%. Multivariate survival analysis revealed a significantly decreased disease-free survival in both HPV-negative and HPV-positive OPSCC with a gain of Wnt-induced secreted protein-1. Gain of CCND1 showed to be an independent predictor for worse survival in OSCC. These results show that copy number aberrations, mainly of the 11q13 region, may be important predictors and prognosticators which allow for stratifying patients for personalized treatment of HNSCC

  2. ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads.

    Directory of Open Access Journals (Sweden)

    Christopher A Miller

    2011-01-01

    Full Text Available Copy number alterations are important contributors to many genetic diseases, including cancer. We present the readDepth package for R, which can detect these aberrations by measuring the depth of coverage obtained by massively parallel sequencing of the genome. In addition to achieving higher accuracy than existing packages, our tool runs much faster by utilizing multi-core architectures to parallelize the processing of these large data sets. In contrast to other published methods, readDepth does not require the sequencing of a reference sample, and uses a robust statistical model that accounts for overdispersed data. It includes a method for effectively increasing the resolution obtained from low-coverage experiments by utilizing breakpoint information from paired end sequencing to do positional refinement. We also demonstrate a method for inferring copy number using reads generated by whole-genome bisulfite sequencing, thus enabling integrative study of epigenomic and copy number alterations. Finally, we apply this tool to two genomes, showing that it performs well on genomes sequenced to both low and high coverage. The readDepth package runs on Linux and MacOSX, is released under the Apache 2.0 license, and is available at http://code.google.com/p/readdepth/.

  3. Comprehensive analysis of copy number aberrations in microsatellite stable colon cancer in view of stromal component.

    Science.gov (United States)

    Alonso, M Henar; Aussó, Susanna; Lopez-Doriga, Adriana; Cordero, David; Guinó, Elisabet; Solé, Xavier; Barenys, Mercè; de Oca, Javier; Capella, Gabriel; Salazar, Ramón; Sanz-Pamplona, Rebeca; Moreno, Victor

    2017-07-25

    Somatic copy number aberrations (CNAs) are common acquired changes in cancer cells having an important role in the progression of colon cancer (colorectal cancer, CRC). This study aimed to perform a characterisation of CNA and their impact in gene expression. Copy number aberrations were inferred from SNP array data in a series of 99 CRC. Copy number aberration events were calculated and used to assess the association between copy number dosage, clinical and molecular characteristics of the tumours, and gene expression changes. All analyses were adjusted for the quantity of stroma in each sample, which was inferred from gene expression data. High heterogeneity among samples was observed; the proportion of altered genome ranged between 0.04 and 26.6%. Recurrent CNA regions with gains were frequent in chromosomes 7p, 8q, 13q, and 20, whereas 8p, 17p, and 18 cumulated losses. A significant positive correlation was observed between the number of somatic mutations and total CNA (Spearman's r=0.42, P=0.006). Approximately 37% of genes located in CNA regions changed their level of expression and the average partial correlation (adjusted for stromal content) with copy number was 0.54 (interquartile range 0.20 to 0.81). Altered genes showed enrichment in pathways relevant for CRC. Tumours classified as CMS2 and CMS4 by the consensus molecular subtyping showed higher frequency of CNA. Losses of one small region in 1p36.33, with gene CDK11B, were associated with poor prognosis. More than 66% of the recurrent CNA were validated in the The Cancer Genome Atlas (TCGA) data when analysed with the same procedure. Furthermore, 79% of the genes with altered expression in our data were validated in the TCGA. Although CNA are frequent events in microsatellite stable CRC, few focal recurrent regions were found. These aberrations have strong effects on gene expression and contribute to deregulate relevant cancer pathways. Owing to the diploid nature of stromal cells, it is important to

  4. Population-genetic nature of copy number variations in the human genome.

    Science.gov (United States)

    Kato, Mamoru; Kawaguchi, Takahisa; Ishikawa, Shumpei; Umeda, Takayoshi; Nakamichi, Reiichiro; Shapero, Michael H; Jones, Keith W; Nakamura, Yusuke; Aburatani, Hiroyuki; Tsunoda, Tatsuhiko

    2010-03-01

    Copy number variations (CNVs) are universal genetic variations, and their association with disease has been increasingly recognized. We designed high-density microarrays for CNVs, and detected 3000-4000 CNVs (4-6% of the genomic sequence) per population that included CNVs previously missed because of smaller sizes and residing in segmental duplications. The patterns of CNVs across individuals were surprisingly simple at the kilo-base scale, suggesting the applicability of a simple genetic analysis for these genetic loci. We utilized the probabilistic theory to determine integer copy numbers of CNVs and employed a recently developed phasing tool to estimate the population frequencies of integer copy number alleles and CNV-SNP haplotypes. The results showed a tendency toward a lower frequency of CNV alleles and that most of our CNVs were explained only by zero-, one- and two-copy alleles. Using the estimated population frequencies, we found several CNV regions with exceptionally high population differentiation. Investigation of CNV-SNP linkage disequilibrium (LD) for 500-900 bi- and multi-allelic CNVs per population revealed that previous conflicting reports on bi-allelic LD were unexpectedly consistent and explained by an LD increase correlated with deletion-allele frequencies. Typically, the bi-allelic LD was lower than SNP-SNP LD, whereas the multi-allelic LD was somewhat stronger than the bi-allelic LD. After further investigation of tag SNPs for CNVs, we conclude that the customary tagging strategy for disease association studies can be applicable for common deletion CNVs, but direct interrogation is needed for other types of CNVs.

  5. Beneficial effect of a high number of copies of salivary amylase AMY1 gene on obesity risk in Mexican children.

    Science.gov (United States)

    Mejía-Benítez, María A; Bonnefond, Amélie; Yengo, Loïc; Huyvaert, Marlène; Dechaume, Aurélie; Peralta-Romero, Jesús; Klünder-Klünder, Miguel; García Mena, Jaime; El-Sayed Moustafa, Julia S; Falchi, Mario; Cruz, Miguel; Froguel, Philippe

    2015-02-01

    Childhood obesity is a major public health problem in Mexico, affecting one in every three children. Genome-wide association studies identified genetic variants associated with childhood obesity, but a large missing heritability remains to be elucidated. We have recently shown a strong association between a highly polymorphic copy number variant encompassing the salivary amylase gene (AMY1 also known as AMY1A) and obesity in European and Asian adults. In the present study, we aimed to evaluate the association between AMY1 copy number and obesity in Mexican children. We evaluated the number of AMY1 copies in 597 Mexican children (293 obese children and 304 normal weight controls) through highly sensitive digital PCR. The effect of AMY1 copy number on obesity status was assessed using a logistic regression model adjusted for age and sex. We identified a marked effect of AMY1 copy number on reduced risk of obesity (OR per estimated copy 0.84, with the number of copies ranging from one to 16 in this population; p = 4.25 × 10(-6)). The global association between AMY1 copy number and reduced risk of obesity seemed to be mostly driven by the contribution of the highest AMY1 copy number. Strikingly, all children with >10 AMY1 copies were normal weight controls. Salivary amylase initiates the digestion of dietary starch, which is highly consumed in Mexico. Our current study suggests putative benefits of high number of AMY1 copies (and related production of salivary amylase) on energy metabolism in Mexican children.

  6. Analysis of copy number loss of the ErbB4 receptor tyrosine kinase in glioblastoma.

    Directory of Open Access Journals (Sweden)

    DeAnalisa C Jones

    Full Text Available Current treatments for glioblastoma multiforme (GBM-an aggressive form of brain cancer-are minimally effective and yield a median survival of 14.6 months and a two-year survival rate of 30%. Given the severity of GBM and the limitations of its treatment, there is a need for the discovery of novel drug targets for GBM and more personalized treatment approaches based on the characteristics of an individual's tumor. Most receptor tyrosine kinases-such as EGFR-act as oncogenes, but publicly available data from the Cancer Cell Line Encyclopedia (CCLE indicates copy number loss in the ERBB4 RTK gene across dozens of GBM cell lines, suggesting a potential tumor suppressor role. This loss is mutually exclusive with loss of its cognate ligand NRG1 in CCLE as well, more strongly suggesting a functional role. The availability of higher resolution copy number data from clinical GBM patients in The Cancer Genome Atlas (TCGA revealed that a region in Intron 1 of the ERBB4 gene was deleted in 69.1% of tumor samples harboring ERBB4 copy number loss; however, it was also found to be deleted in the matched normal tissue samples from these GBM patients (n = 81. Using the DECIPHER Genome Browser, we also discovered that this mutation occurs at approximately the same frequency in the general population as it does in the disease population. We conclude from these results that this loss in Intron 1 of the ERBB4 gene is neither a de novo driver mutation nor a predisposing factor to GBM, despite the indications from CCLE. A biological role of this significantly occurring genetic alteration is still unknown. While this is a negative result, the broader conclusion is that while copy number data from large cell line-based data repositories may yield compelling hypotheses, careful follow up with higher resolution copy number assays, patient data, and general population analyses are essential to codify initial hypotheses prior to investing experimental resources.

  7. Whole genome DNA copy number changes identified by high density oligonucleotide arrays

    Directory of Open Access Journals (Sweden)

    Huang Jing

    2004-05-01

    Full Text Available Abstract Changes in DNA copy number are one of the hallmarks of the genetic instability common to most human cancers. Previous micro-array-based methods have been used to identify chromosomal gains and losses; however, they are unable to genotype alleles at the level of single nucleotide polymorphisms (SNPs. Here we describe a novel algorithm that uses a recently developed high-density oligonucleotide array-based SNP genotyping method, whole genome sampling analysis (WGSA, to identify genome-wide chromosomal gains and losses at high resolution. WGSA simultaneously genotypes over 10,000 SNPs by allele-specific hybridisation to perfect match (PM and mismatch (MM probes synthesised on a single array. The copy number algorithm jointly uses PM intensity and discrimination ratios between paired PM and MM intensity values to identify and estimate genetic copy number changes. Values from an experimental sample are compared with SNP-specific distributions derived from a reference set containing over 100 normal individuals to gain statistical power. Genomic regions with statistically significant copy number changes can be identified using both single point analysis and contiguous point analysis of SNP intensities. We identified multiple regions of amplification and deletion using a panel of human breast cancer cell lines. We verified these results using an independent method based on quantitative polymerase chain reaction and found that our approach is both sensitive and specific and can tolerate samples which contain a mixture of both tumour and normal DNA. In addition, by using known allele frequencies from the reference set, statistically significant genomic intervals can be identified containing contiguous stretches of homozygous markers, potentially allowing the detection of regions undergoing loss of heterozygosity (LOH without the need for a matched normal control sample. The coupling of LOH analysis, via SNP genotyping, with copy number

  8. CCL3L1 copy number, CCR5 genotype and susceptibility to tuberculosis.

    Science.gov (United States)

    Carpenter, Danielle; Taype, Carmen; Goulding, Jon; Levin, Mike; Eley, Brian; Anderson, Suzanne; Shaw, Marie-Anne; Armour, John A L

    2014-01-09

    Tuberculosis is a major infectious disease and functional studies have provided evidence that both the chemokine MIP-1α and its receptor CCR5 play a role in susceptibility to TB. Thus by measuring copy number variation of CCL3L1, one of the genes that encode MIP-1α, and genotyping a functional promoter polymorphism -2459A > G in CCR5 (rs1799987) we investigate the influence of MIP-1α and CCR5, independently and combined, in susceptibility to clinically active TB in three populations, a Peruvian population (n = 1132), a !Xhosa population (n = 605) and a South African Coloured population (n = 221). The three populations include patients with clinically diagnosed pulmonary TB, as well as other, less prevalent forms of extrapulmonary TB. Copy number of CCL3L1 was measured using the paralogue ratio test and exhibited ranges between 0-6 copies per diploid genome (pdg) in Peru, between 0-12 pdg in !Xhosa samples and between 0-10 pdg in South African Coloured samples. The CCR5 promoter polymorphism was observed to differ significantly in allele frequency between populations (*A; Peru f = 0.67, !Xhosa f = 0.38, Coloured f = 0.48). The case-control association studies performed however find, surprisingly, no evidence for an influence of variation in genes coding for MIP-1α or CCR5 individually or together in susceptibility to clinically active TB in these populations.

  9. SULT1A1 copy number variation: ethnic distribution analysis in an Indian population.

    Science.gov (United States)

    Almal, Suhani; Padh, Harish

    2017-11-01

    Cytosolic sulfotransferases (SULTs) are phase II detoxification enzymes involved in metabolism of numerous xenobiotics, drugs and endogenous compounds. Interindividual variation in sulfonation capacity is important for determining an individual's response to xenobiotics. SNPs in SULTs, mainly SULT1A1 have been associated with cancer risk and also with response to therapeutic agents. Copy number variation (CNVs) in SULT1A1 is found to be correlated with altered enzyme activity. This short report primarily focuses on CNV in SULT1A1 and its distribution among different ethnic populations around the globe. Frequency distribution of SULT1A1 copy number (CN) in 157 healthy Indian individuals was assessed using florescent-based quantitative PCR assay. A range of 1 to >4 copies, with a frequency of SULT1A1 CN =2 (64.9%) the highest, was observed in our (Indian) population. Upon comparative analysis of frequency distribution of SULT1A1 CN among diverse population groups, a statistically significant difference was observed between Indians (our data) and African-American (AA) (p = 0.0001) and South African (Tswana) (p populations. Distribution of CNV in the Indian population was found to be similar to that in European-derived populations of American and Japanese. CNV of SULT1A1 varies significantly among world populations and may be one of the determinants of health and diseases.

  10. Copy number variation is a fundamental aspect of the placental genome.

    Directory of Open Access Journals (Sweden)

    Roberta L Hannibal

    2014-05-01

    Full Text Available Discovery of lineage-specific somatic copy number variation (CNV in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000 N polyploid trophoblast giant cells (TGCs of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR. UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(DJ recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication.

  11. Diversity in Copy Number and Structure of a Silkworm Morphogenetic Gene as a Result of Domestication

    OpenAIRE

    Sakudoh, Takashi; Nakashima, Takeharu; Kuroki, Yoko; Fujiyama, Asao; Kohara, Yuji; Honda, Naoko; Fujimoto, Hirofumi; Shimada, Toru; Nakagaki, Masao; Banno, Yutaka; Tsuchida, Kozo

    2011-01-01

    The carotenoid-binding protein (CBP) of the domesticated silkworm, Bombyx mori, a major determinant of cocoon color, is likely to have been substantially influenced by domestication of this species. We analyzed the structure of the CBP gene in multiple strains of B. mori, in multiple individuals of the wild silkworm, B. mandarina (the putative wild ancestor of B. mori), and in a number of other lepidopterans. We found the CBP gene copy number in genomic DNA to vary widely among B. mori strain...

  12. A novel SNP analysis method to detect copy number alterations with an unbiased reference signal directly from tumor samples

    Directory of Open Access Journals (Sweden)

    LaFramboise William A

    2011-01-01

    Full Text Available Abstract Background Genomic instability in cancer leads to abnormal genome copy number alterations (CNA as a mechanism underlying tumorigenesis. Using microarrays and other technologies, tumor CNA are detected by comparing tumor sample CN to normal reference sample CN. While advances in microarray technology have improved detection of copy number alterations, the increase in the number of measured signals, noise from array probes, variations in signal-to-noise ratio across batches and disparity across laboratories leads to significant limitations for the accurate identification of CNA regions when comparing tumor and normal samples. Methods To address these limitations, we designed a novel "Virtual Normal" algorithm (VN, which allowed for construction of an unbiased reference signal directly from test samples within an experiment using any publicly available normal reference set as a baseline thus eliminating the need for an in-lab normal reference set. Results The algorithm was tested using an optimal, paired tumor/normal data set as well as previously uncharacterized pediatric malignant gliomas for which a normal reference set was not available. Using Affymetrix 250K Sty microarrays, we demonstrated improved signal-to-noise ratio and detected significant copy number alterations using the VN algorithm that were validated by independent PCR analysis of the target CNA regions. Conclusions We developed and validated an algorithm to provide a virtual normal reference signal directly from tumor samples and minimize noise in the derivation of the raw CN signal. The algorithm reduces the variability of assays performed across different reagent and array batches, methods of sample preservation, multiple personnel, and among different laboratories. This approach may be valuable when matched normal samples are unavailable or the paired normal specimens have been subjected to variations in methods of preservation.

  13. Integration of transcript expression, copy number and LOH analysis of infiltrating ductal carcinoma of the breast

    Directory of Open Access Journals (Sweden)

    Hawthorn Lesleyann

    2010-08-01

    Full Text Available Abstract Background A major challenge in the interpretation of genomic profiling data generated from breast cancer samples is the identification of driver genes as distinct from bystander genes which do not impact tumorigenesis. One way to assess the relative importance of alterations in the transcriptome profile is to combine parallel analyses that assess changes in the copy number alterations (CNAs. This integrated analysis permits the identification of genes with altered expression that map within specific chromosomal regions which demonstrate copy number alterations, providing a mechanistic approach to identify the 'driver genes'. Methods We have performed whole genome analysis of CNAs using the Affymetrix 250K Mapping array on 22 infiltrating ductal carcinoma samples (IDCs. Analysis of transcript expression alterations was performed using the Affymetrix U133 Plus2.0 array on 16 IDC samples. Fourteen IDC samples were analyzed using both platforms and the data integrated. We also incorporated data from loss of heterozygosity (LOH analysis to identify genes showing altered expression in LOH regions. Results Common chromosome gains and amplifications were identified at 1q21.3, 6p21.3, 7p11.2-p12.1, 8q21.11 and 8q24.3. A novel amplicon was identified at 5p15.33. Frequent losses were found at 1p36.22, 8q23.3, 11p13, 11q23, and 22q13. Over 130 genes were identified with concurrent increases or decreases in expression that mapped to these regions of copy number alterations. LOH analysis revealed three tumors with whole chromosome or p arm allelic loss of chromosome 17. Genes were identified that mapped to copy neutral LOH regions. LOH with accompanying copy loss was detected on Xp24 and Xp25 and genes mapping to these regions with decreased expression were identified. Gene expression data highlighted the PPARα/RXRα Activation Pathway as down-regulated in the tumor samples. Conclusion We have demonstrated the utility of the application of

  14. Efficient Detection of Copy Number Mutations in PMS2 Exons with a Close Homolog.

    Science.gov (United States)

    Herman, Daniel S; Smith, Christina; Liu, Chang; Vaughn, Cecily P; Palaniappan, Selvi; Pritchard, Colin C; Shirts, Brian H

    2018-07-01

    Detection of 3' PMS2 copy-number mutations that cause Lynch syndrome is difficult because of highly homologous pseudogenes. To improve the accuracy and efficiency of clinical screening for these mutations, we developed a new method to analyze standard capture-based, next-generation sequencing data to identify deletions and duplications in PMS2 exons 9 to 15. The approach captures sequences using PMS2 targets, maps sequences randomly among regions with equal mapping quality, counts reads aligned to homologous exons and introns, and flags read count ratios outside of empirically derived reference ranges. The method was trained on 1352 samples, including 8 known positives, and tested on 719 samples, including 17 known positives. Clinical implementation of the first version of this method detected new mutations in the training (N = 7) and test (N = 2) sets that had not been identified by our initial clinical testing pipeline. The described final method showed complete sensitivity in both sample sets and false-positive rates of 5% (training) and 7% (test), dramatically decreasing the number of cases needing additional mutation evaluation. This approach leveraged the differences between gene and pseudogene to distinguish between PMS2 and PMS2CL copy-number mutations. These methods enable efficient and sensitive Lynch syndrome screening for 3' PMS2 copy-number mutations and may be applied similarly to other genomic regions with highly homologous pseudogenes. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  15. Classification of human cancers based on DNA copy number amplification modeling

    Directory of Open Access Journals (Sweden)

    Knuutila Sakari

    2008-05-01

    Full Text Available Abstract Background DNA amplifications alter gene dosage in cancer genomes by multiplying the gene copy number. Amplifications are quintessential in a considerable number of advanced cancers of various anatomical locations. The aims of this study were to classify human cancers based on their amplification patterns, explore the biological and clinical fundamentals behind their amplification-pattern based classification, and understand the characteristics in human genomic architecture that associate with amplification mechanisms. Methods We applied a machine learning approach to model DNA copy number amplifications using a data set of binary amplification records at chromosome sub-band resolution from 4400 cases that represent 82 cancer types. Amplification data was fused with background data: clinical, histological and biological classifications, and cytogenetic annotations. Statistical hypothesis testing was used to mine associations between the data sets. Results Probabilistic clustering of each chromosome identified 111 amplification models and divided the cancer cases into clusters. The distribution of classification terms in the amplification-model based clustering of cancer cases revealed cancer classes that were associated with specific DNA copy number amplification models. Amplification patterns – finite or bounded descriptions of the ranges of the amplifications in the chromosome – were extracted from the clustered data and expressed according to the original cytogenetic nomenclature. This was achieved by maximal frequent itemset mining using the cluster-specific data sets. The boundaries of amplification patterns were shown to be enriched with fragile sites, telomeres, centromeres, and light chromosome bands. Conclusions Our results demonstrate that amplifications are non-random chromosomal changes and specifically selected in tumor tissue microenvironment. Furthermore, statistical evidence showed that specific chromosomal features

  16. The positioning logic and copy number control of genes in bacteria under stress

    Science.gov (United States)

    Zhang, Qiucen; Austin, Robert; Vyawahare, Saurabh; Lau, Alexandra

    2013-03-01

    Escherichia coli (E. coli) cells when challenged with sublethal concentrations of the genotoxic antibiotic ciprofloxacin cease to divide and form long filaments which contain multiple bacterial chromosomes. These filaments are individual mesoscopic environmental niches which provide protection for a community of chromosomes (as opposed to cells) under mutagenic stress and can provide an evolutionary fitness advantage within the niche. We use comparative genomic hybridization to show that the mesoscopic niche evolves within 20 minutes of ciprofloxacin exposure via replication of multiple copies of genes expressing ATP dependent transporters. We show that this rapid genomic amplification is done in a time efficient manner via placement of the genes encoding the pumps near the origin of replication on the bacterial chromosome. The de-amplification of multiple copies back to the wild type number is a function of the duration is a function of the ciprofloxacin exposure duration: the longer the exposure, the slower the removal of the multiple copies. The project described was supported by the National Science Foundation and the National Cancer Institute

  17. Clinical Omics Analysis of Colorectal Cancer Incorporating Copy Number Aberrations and Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Yoshida

    2010-07-01

    Full Text Available Background: Colorectal cancer (CRC is one of the most frequently occurring cancers in Japan, and thus a wide range of methods have been deployed to study the molecular mechanisms of CRC. In this study, we performed a comprehensive analysis of CRC, incorporating copy number aberration (CRC and gene expression data. For the last four years, we have been collecting data from CRC cases and organizing the information as an “omics” study by integrating many kinds of analysis into a single comprehensive investigation. In our previous studies, we had experienced difficulty in finding genes related to CRC, as we observed higher noise levels in the expression data than in the data for other cancers. Because chromosomal aberrations are often observed in CRC, here, we have performed a combination of CNA analysis and expression analysis in order to identify some new genes responsible for CRC. This study was performed as part of the Clinical Omics Database Project at Tokyo Medical and Dental University. The purpose of this study was to investigate the mechanism of genetic instability in CRC by this combination of expression analysis and CNA, and to establish a new method for the diagnosis and treatment of CRC. Materials and methods: Comprehensive gene expression analysis was performed on 79 CRC cases using an Affymetrix Gene Chip, and comprehensive CNA analysis was performed using an Affymetrix DNA Sty array. To avoid the contamination of cancer tissue with normal cells, laser micro-dissection was performed before DNA/RNA extraction. Data analysis was performed using original software written in the R language. Result: We observed a high percentage of CNA in colorectal cancer, including copy number gains at 7, 8q, 13 and 20q, and copy number losses at 8p, 17p and 18. Gene expression analysis provided many candidates for CRC-related genes, but their association with CRC did not reach the level of statistical significance. The combination of CNA and gene

  18. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing.

    Science.gov (United States)

    Yi, Guoqiang; Qu, Lujiang; Liu, Jianfeng; Yan, Yiyuan; Xu, Guiyun; Yang, Ning

    2014-11-07

    Copy number variation (CNV) is important and widespread in the genome, and is a major cause of disease and phenotypic diversity. Herein, we performed a genome-wide CNV analysis in 12 diversified chicken genomes based on whole genome sequencing. A total of 8,840 CNV regions (CNVRs) covering 98.2 Mb and representing 9.4% of the chicken genome were identified, ranging in size from 1.1 to 268.8 kb with an average of 11.1 kb. Sequencing-based predictions were confirmed at a high validation rate by two independent approaches, including array comparative genomic hybridization (aCGH) and quantitative PCR (qPCR). The Pearson's correlation coefficients between sequencing and aCGH results ranged from 0.435 to 0.755, and qPCR experiments revealed a positive validation rate of 91.71% and a false negative rate of 22.43%. In total, 2,214 (25.0%) predicted CNVRs span 2,216 (36.4%) RefSeq genes associated with specific biological functions. Besides two previously reported copy number variable genes EDN3 and PRLR, we also found some promising genes with potential in phenotypic variation. Two genes, FZD6 and LIMS1, related to disease susceptibility/resistance are covered by CNVRs. The highly duplicated SOCS2 may lead to higher bone mineral density. Entire or partial duplication of some genes like POPDC3 may have great economic importance in poultry breeding. Our results based on extensive genetic diversity provide a more refined chicken CNV map and genome-wide gene copy number estimates, and warrant future CNV association studies for important traits in chickens.

  19. Apparent polyploidization after gamma irradiation: pitfalls in the use of quantitative polymerase chain reaction (qPCR) for the estimation of mitochondrial and nuclear DNA gene copy numbers.

    Science.gov (United States)

    Kam, Winnie W Y; Lake, Vanessa; Banos, Connie; Davies, Justin; Banati, Richard

    2013-05-30

    Quantitative polymerase chain reaction (qPCR) has been widely used to quantify changes in gene copy numbers after radiation exposure. Here, we show that gamma irradiation ranging from 10 to 100 Gy of cells and cell-free DNA samples significantly affects the measured qPCR yield, due to radiation-induced fragmentation of the DNA template and, therefore, introduces errors into the estimation of gene copy numbers. The radiation-induced DNA fragmentation and, thus, measured qPCR yield varies with temperature not only in living cells, but also in isolated DNA irradiated under cell-free conditions. In summary, the variability in measured qPCR yield from irradiated samples introduces a significant error into the estimation of both mitochondrial and nuclear gene copy numbers and may give spurious evidence for polyploidization.

  20. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations.

    Directory of Open Access Journals (Sweden)

    Brian B Tuch

    Full Text Available Due to growing throughput and shrinking cost, massively parallel sequencing is rapidly becoming an attractive alternative to microarrays for the genome-wide study of gene expression and copy number alterations in primary tumors. The sequencing of transcripts (RNA-Seq should offer several advantages over microarray-based methods, including the ability to detect somatic mutations and accurately measure allele-specific expression. To investigate these advantages we have applied a novel, strand-specific RNA-Seq method to tumors and matched normal tissue from three patients with oral squamous cell carcinomas. Additionally, to better understand the genomic determinants of the gene expression changes observed, we have sequenced the tumor and normal genomes of one of these patients. We demonstrate here that our RNA-Seq method accurately measures allelic imbalance and that measurement on the genome-wide scale yields novel insights into cancer etiology. As expected, the set of genes differentially expressed in the tumors is enriched for cell adhesion and differentiation functions, but, unexpectedly, the set of allelically imbalanced genes is also enriched for these same cancer-related functions. By comparing the transcriptomic perturbations observed in one patient to his underlying normal and tumor genomes, we find that allelic imbalance in the tumor is associated with copy number mutations and that copy number mutations are, in turn, strongly associated with changes in transcript abundance. These results support a model in which allele-specific deletions and duplications drive allele-specific changes in gene expression in the developing tumor.

  1. Sex bias in copy number variation of olfactory receptor gene family depends on ethnicity

    Directory of Open Access Journals (Sweden)

    Farideh eShadravan

    2013-03-01

    Full Text Available Gender plays a pivotal role in the human genetic identity and is also manifested in many genetic disorders particularly mental retardation. In this study its effect on copy number variation (CNV, known to cause genetic disorders was explored. As the olfactory receptor (OR repertoire comprises the largest human gene family, it was selected for this study, which was carried out within and between three populations, derived from 150 individuals from the 1000 Genome Project. Analysis of 3872 CNVs detected among 791 OR loci, in which 307 loci showed CNV, revealed the following novel findings: Sex bias in CNV was significantly more prevalent in uncommon than common CNV variants of OR pseudogenes, in which the male genome showed more CNVs; and in one-copy number loss compared to complete deletion of OR pseudogenes; both findings implying a more recent evolutionary role for gender. Sex bias in copy number gain was also detected. Another novel finding was that the observed six bias was largely dependent on ethnicity and was in general absent in East Asians. Using a CNV public database for sick children (ISCA the application of these findings for improving clinical molecular diagnostics is discussed by showing an example of sex bias in CNV among kids with autism. Additional clinical relevance is discussed, as the most polymorphic CNV-enriched OR cluster in the human genome, located on chr 15q11.2, is found near the PWS/AS bi-directionally imprinted region associated with two well-known mental retardation syndromes. As olfaction represents the primitive cognition in most mammals, arguably in competition with the development of a larger brain, the extensive retention of OR pseudogenes in females of this study, might point to a parent-of-origin indirect regulatory role for OR pseudogenes in the embryonic development of human brain. Thus any perturbation in the temporal regulation of olfactory system could lead to developmental delay disorders including

  2. Genome-wide detection of copy number variations among diverse horse breeds by array CGH.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available Recent studies have found that copy number variations (CNVs are widespread in human and animal genomes. CNVs are a significant source of genetic variation, and have been shown to be associated with phenotypic diversity. However, the effect of CNVs on genetic variation in horses is not well understood. In the present study, CNVs in 6 different breeds of mare horses, Mongolia horse, Abaga horse, Hequ horse and Kazakh horse (all plateau breeds and Debao pony and Thoroughbred, were determined using aCGH. In total, seven hundred CNVs were identified ranging in size from 6.1 Kb to 0.57 Mb across all autosomes, with an average size of 43.08 Kb and a median size of 15.11 Kb. By merging overlapping CNVs, we found a total of three hundred and fifty-three CNV regions (CNVRs. The length of the CNVRs ranged from 6.1 Kb to 1.45 Mb with average and median sizes of 38.49 Kb and 13.1 Kb. Collectively, 13.59 Mb of copy number variation was identified among the horses investigated and accounted for approximately 0.61% of the horse genome sequence. Five hundred and eighteen annotated genes were affected by CNVs, which corresponded to about 2.26% of all horse genes. Through the gene ontology (GO, genetic pathway analysis and comparison of CNV genes among different breeds, we found evidence that CNVs involving 7 genes may be related to the adaptation to severe environment of these plateau horses. This study is the first report of copy number variations in Chinese horses, which indicates that CNVs are ubiquitous in the horse genome and influence many biological processes of the horse. These results will be helpful not only in mapping the horse whole-genome CNVs, but also to further research for the adaption to the high altitude severe environment for plateau horses.

  3. Copy-number variations involving the IHH locus are associated with syndactyly and craniosynostosis.

    Science.gov (United States)

    Klopocki, Eva; Lohan, Silke; Brancati, Francesco; Koll, Randi; Brehm, Anja; Seemann, Petra; Dathe, Katarina; Stricker, Sigmar; Hecht, Jochen; Bosse, Kristin; Betz, Regina C; Garaci, Francesco Giuseppe; Dallapiccola, Bruno; Jain, Mahim; Muenke, Maximilian; Ng, Vivian C W; Chan, Wilson; Chan, Danny; Mundlos, Stefan

    2011-01-07

    Indian hedgehog (IHH) is a secreted signaling molecule of the hedgehog family known to play important roles in the regulation of chondrocyte differentiation, cortical bone formation, and the development of joints. Here, we describe that copy-number variations of the IHH locus involving conserved noncoding elements (CNEs) are associated with syndactyly and craniosynostosis. These CNEs are able to drive reporter gene expression in a pattern highly similar to wild-type Ihh expression. We postulate that the observed duplications lead to a misexpression and/or overexpression of IHH and by this affect the complex regulatory signaling network during digit and skull development.

  4. Insights into the genome structure and copy-number variation of Eimeria tenella

    Directory of Open Access Journals (Sweden)

    Lim Lik-Sin

    2012-08-01

    Full Text Available Abstract Background Eimeria is a genus of parasites in the same phylum (Apicomplexa as human parasites such as Toxoplasma, Cryptosporidium and the malaria parasite Plasmodium. As an apicomplexan whose life-cycle involves a single host, Eimeria is a convenient model for understanding this group of organisms. Although the genomes of the Apicomplexa are diverse, that of Eimeria is unique in being composed of large alternating blocks of sequence with very different characteristics - an arrangement seen in no other organism. This arrangement has impeded efforts to fully sequence the genome of Eimeria, which remains the last of the major apicomplexans to be fully analyzed. In order to increase the value of the genome sequence data and aid in the effort to gain a better understanding of the Eimeria tenella genome, we constructed a whole genome map for the parasite. Results A total of 1245 contigs representing 70.0% of the whole genome assembly sequences (Wellcome Trust Sanger Institute were selected and subjected to marker selection. Subsequently, 2482 HAPPY markers were developed and typed. Of these, 795 were considered as usable markers, and utilized in the construction of a HAPPY map. Markers developed from chromosomally-assigned genes were then integrated into the HAPPY map and this aided the assignment of a number of linkage groups to their respective chromosomes. BAC-end sequences and contigs from whole genome sequencing were also integrated to improve and validate the HAPPY map. This resulted in an integrated HAPPY map consisting of 60 linkage groups that covers approximately half of the estimated 60 Mb genome. Further analysis suggests that the segmental organization first seen in Chromosome 1 is present throughout the genome, with repeat-poor (P regions alternating with repeat-rich (R regions. Evidence of copy-number variation between strains was also uncovered. Conclusions This paper describes the application of a whole genome mapping

  5. CCL3L1 copy number, CCR5 genotype and susceptibility to tuberculosis

    OpenAIRE

    Carpenter, Danielle; Taype, Carmen; Goulding, Jon; Levin, Mike; Eley, Brian; Anderson, Suzanne; Shaw, Marie-Anne; Armour, John AL

    2014-01-01

    Background: Tuberculosis is a major infectious disease and functional studies have provided evidence that both the chemokine MIP-1α and its receptor CCR5 play a role in susceptibility to TB. Thus by measuring copy number variation of CCL3L1, one of the genes that encode MIP-1α, and genotyping a functional promoter polymorphism -2459A > G in CCR5 (rs1799987) we investigate the influence of MIP-1α and CCR5, independently and combined, in susceptibility to clinically active TB in three populatio...

  6. Copy-Number Disorders Are a Common Cause of Congenital Kidney Malformations

    OpenAIRE

    Sanna-Cherchi, Simone; Kiryluk, Krzysztof; Burgess, Katelyn E.; Bodria, Monica; Sampson, Matthew G.; Hadley, Dexter; Nees, Shannon N.; Verbitsky, Miguel; Perry, Brittany J.; Sterken, Roel; Lozanovski, Vladimir J.; Materna-Kiryluk, Anna; Barlassina, Cristina; Kini, Akshata; Corbani, Valentina

    2012-01-01

    We examined the burden of large, rare, copy-number variants (CNVs) in 192 individuals with renal hypodysplasia (RHD) and replicated findings in 330 RHD cases from two independent cohorts. CNV distribution was significantly skewed toward larger gene-disrupting events in RHD cases compared to 4,733 ethnicity-matched controls (p = 4.8 × 10−11). This excess was attributable to known and novel (i.e., not present in any database or in the literature) genomic disorders. All together, 55/522 (10.5%) ...

  7. Global copy number profiling of cancer genomes | Office of Cancer Genomics

    Science.gov (United States)

    In this article, we introduce a robust and efficient strategy for deriving global and allele-specific copy number alternations (CNA) from cancer whole exome sequencing data based on Log R ratios and B-allele frequencies. Applying the approach to the analysis of over 200 skin cancer samples, we demonstrate its utility for discovering distinct CNA events and for deriving ancillary information such as tumor purity. Availability and implementation: https://github.com/xfwang/CLOSE CONTACT: xuefeng.wang@stonybrook.edu or michael.krauthammer@yale.edu. (Publication Abstract)

  8. [Abnormality of TOP2A expression and its gene copy number variations in neuroblastic tumors].

    Science.gov (United States)

    Chen, J M; Zhou, C J; Ma, X L; Guan, D D; Yang, L Y; Yue, P; Gong, L P

    2016-11-08

    Objective: To detect TOP2A protein expression and gene copy number alterations, and to analyze related clinical and pathological implications in pediatric neuroblastic tumors (NT). Methods: Immunohistochemistry was used to detect TOP2A protein expression. Fluorescence in situ hybridization (FISH) was used to detect numerical aberrations of TOP2A. Results: TOP2A protein was expressed in 59.1%(52/88) of cases, which was associated with differentiation ( P =0.006), Ki-67 index ( P INSS stages (Ⅲ and Ⅳ). As a target of the anthracycline-based adjuvant drugs, TOP2A test can be used to select patient with NT for the therapy.

  9. Gene copy number reduction in the azoospermia factor c (AZFc) region and its effect on total motile sperm count

    NARCIS (Netherlands)

    Noordam, Michiel J.; Westerveld, G. Henrike; Hovingh, Suzanne E.; van Daalen, Saskia K. M.; Korver, Cindy M.; van der Veen, Fulco; van Pelt, Ans M. M.; Repping, Sjoerd

    2011-01-01

    The azoospermia factor c (AZFc) region harbors multi-copy genes that are expressed in the testis. Deletions of the AZFc region lead to reduced copy numbers of these genes. Four (partial) AZFc deletions have been described of which the b2/b4 and gr/gr deletions affect semen quality. In most studies,

  10. Isolation and characterization of novel mutations in the pSC101 origin that increase copy number

    DEFF Research Database (Denmark)

    Thompson, Mitchell G.; Sedaghatian, Nima; Barajas, Jesus F.

    2018-01-01

    /cell) based plasmids, respectively. The mutant copy number variants retained compatibility with p15a, pBBR, and ColE1 origins of replication. These pSC101 variants may be useful in future metabolic engineering efforts that require medium or high-copy vectors compatible with p15a- and ColE1-based plasmids....

  11. K13 mutations and pfmdr1 copy number variation in Plasmodium falciparum malaria in Myanmar.

    Science.gov (United States)

    Win, Aye A; Imwong, Mallika; Kyaw, Myat P; Woodrow, Charles J; Chotivanich, Kesinee; Hanboonkunupakarn, Borimas; Pukrittayakamee, Sasithon

    2016-02-24

    Artemisinin-based combination therapy has been first-line treatment for falciparum malaria in Myanmar since 2005. The wide extent of artemisinin resistance in the Greater Mekong sub-region and the presence of mefloquine resistance at the Myanmar-Thailand border raise concerns over resistance patterns in Myanmar. The availability of molecular markers for resistance to both drugs enables assessment even in remote malaria-endemic areas. A total of 250 dried blood spot samples collected from patients with Plasmodium falciparum malarial infection in five malaria-endemic areas across Myanmar were analysed for kelch 13 sequence (k13) and pfmdr1 copy number variation. K13 mutations in the region corresponding to amino acids 210-726 (including the propeller region of the protein) were detected by nested PCR amplification and sequencing, and pfmdr1 copy number variation by real-time PCR. In two sites, a sub-set of patients were prospectively followed up for assessment of day-3 parasite clearance rates after a standard course of artemether-lumefantrine. K13 mutations and pfmdr1 amplification were successfully analysed in 206 and 218 samples, respectively. Sixty-nine isolates (33.5 %) had mutations within the k13 propeller region with 53 of these (76.8 %) having mutations already known to be associated with artemisinin resistance. F446I (32 isolates) and P574L (15 isolates) were the most common examples. K13 mutation was less common in sites in western border regions (29 of 155 isolates) compared to samples from the east and north (40 of 51 isolates; p Myanmar. There is a low prevalence of parasites with multiple pfmdr1 copies across the country. The efficacy of artemisinin-based combination therapy containing mefloquine and lumefantrine is, therefore, expected to be high, although regular monitoring of efficacy will be important.

  12. mtDNA copy number in oocytes of different sizes from individual pre- and post-pubertal pigs

    DEFF Research Database (Denmark)

    Pedersen, Hanne Skovsgaard; Løvendahl, Peter; Larsen, Knud Erik

    2014-01-01

    from ovaries of 10 pre- and 10 post-pubertal pigs. Cumulus cells were removed and the oocytes were measured (inside-ZP-diameter). Oocytes were transferred to DNAase-free tubes, snap-frozen, and stored at –80°C. The genes ND1 and COX1 were used to determine the mtDNA copy number. Plasmid preparations...... Reproduction 131, 233–245). However, the correlation between size and mtDNA copy number in single oocytes has not been determined. This study describes the relation between oocytes of defined diameters from individual pre- and postpubertal pigs and mtDNA copy number. Cumulus-oocyte complexes were aspirated...

  13. Association of β-defensin copy number and psoriasis in three cohorts of European origin.

    Science.gov (United States)

    Stuart, Philip E; Hüffmeier, Ulrike; Nair, Rajan P; Palla, Raquel; Tejasvi, Trilokraj; Schalkwijk, Joost; Elder, James T; Reis, Andre; Armour, John A L

    2012-10-01

    A single previous study has demonstrated significant association of psoriasis with copy number of β-defensin genes, using DNA from psoriasis cases and controls from Nijmegen and Erlangen. In this study, we attempted to replicate that finding in larger new cohorts from Erlangen (N=2,017) and Michigan (N=5,412), using improved methods for β-defensin copy number determination based on the paralog ratio test, and enhanced methods of analysis and association testing implemented in the CNVtools resource. We demonstrate that the association with psoriasis found in the discovery sample is maintained after applying improved typing and analysis methods (P=5.5 × 10(-4), odds ratio (OR)=1.25). We also find that the association is replicated in 2,616 cases and 2,526 controls from Michigan, although at reduced significance (P=0.014), but not in new samples from Erlangen (1,396 cases and 621 controls, P=0.38). Meta-analysis across all cohorts suggests a nominally significant association (P=6.6 × 10(-3)/2 × 10(-4)) with an effect size (OR=1.081) much lower than found in the discovery study (OR=1.32). This reduced effect size and significance on replication is consistent with a genuine but weak association.

  14. Copy Number Deletion Has Little Impact on Gene Expression Levels in Racehorses

    Directory of Open Access Journals (Sweden)

    Kyung-Do Park

    2014-09-01

    Full Text Available Copy number variations (CNVs, important genetic factors for study of human diseases, may have as large of an effect on phenotype as do single nucleotide polymorphisms. Indeed, it is widely accepted that CNVs are associated with differential disease susceptibility. However, the relationships between CNVs and gene expression have not been characterized in the horse. In this study, we investigated the effects of copy number deletion in the blood and muscle transcriptomes of Thoroughbred racing horses. We identified a total of 1,246 CNVs of deletion polymorphisms using DNA re-sequencing data from 18 Thoroughbred racing horses. To discover the tendencies between CNV status and gene expression levels, we extracted CNVs of four Thoroughbred racing horses of which RNA sequencing was available. We found that 252 pairs of CNVs and genes were associated in the four horse samples. We did not observe a clear and consistent relationship between the deletion status of CNVs and gene expression levels before and after exercise in blood and muscle. However, we found some pairs of CNVs and associated genes that indicated relationships with gene expression levels: a positive relationship with genes responsible for membrane structure or cytoskeleton and a negative relationship with genes involved in disease. This study will lead to conceptual advances in understanding the relationship between CNVs and global gene expression in the horse.

  15. Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian–American Cohort

    Science.gov (United States)

    Selmansberger, Martin; Braselmann, Herbert; Hess, Julia; Bogdanova, Tetiana; Abend, Michael; Tronko, Mykola; Brenner, Alina; Zitzelsberger, Horst; Unger, Kristian

    2015-01-01

    One of the major consequences of the 1986 Chernobyl reactor accident was a dramatic increase in papillary thyroid carcinoma (PTC) incidence, predominantly in patients exposed to the radioiodine fallout at young age. The present study is the first on genomic copy number alterations (CNAs) of PTCs of the Ukrainian–American cohort (UkrAm) generated by array comparative genomic hybridization (aCGH). Unsupervised hierarchical clustering of CNA profiles revealed a significant enrichment of a subgroup of patients with female gender, long latency (>17 years) and negative lymph node status. Further, we identified single CNAs that were significantly associated with latency, gender, radiation dose and BRAF V600E mutation status. Multivariate analysis revealed no interactions but additive effects of parameters gender, latency and dose on CNAs. The previously identified radiation-associated gain of the chromosomal bands 7q11.22-11.23 was present in 29% of cases. Moreover, comparison of our radiation-associated PTC data set with the TCGA data set on sporadic PTCs revealed altered copy numbers of the tumor driver genes NF2 and CHEK2. Further, we integrated the CNA data with transcriptomic data that were available on a subset of the herein analyzed cohort and did not find statistically significant associations between the two molecular layers. However, applying hierarchical clustering on a ‘BRAF-like/RAS-like’ transcriptome signature split the cases into four groups, one of which containing all BRAF-positive cases validating the signature in an independent data set. PMID:26320103

  16. A genomic copy number signature predicts radiation exposure in post-Chernobyl breast cancer.

    Science.gov (United States)

    Wilke, Christina M; Braselmann, Herbert; Hess, Julia; Klymenko, Sergiy V; Chumak, Vadim V; Zakhartseva, Liubov M; Bakhanova, Elena V; Walch, Axel K; Selmansberger, Martin; Samaga, Daniel; Weber, Peter; Schneider, Ludmila; Fend, Falko; Bösmüller, Hans C; Zitzelsberger, Horst; Unger, Kristian

    2018-04-16

    Breast cancer is the second leading cause of cancer death among women worldwide and besides life style, age and genetic risk factors, exposure to ionizing radiation is known to increase the risk for breast cancer. Further, DNA copy number alterations (CNAs), which can result from radiation-induced double-strand breaks, are frequently occurring in breast cancer cells. We set out to identify a signature of CNAs discriminating breast cancers from radiation-exposed and non-exposed female patients. We analyzed resected breast cancer tissues from 68 exposed female Chernobyl clean-up workers and evacuees and 68 matched non-exposed control patients for CNAs by array comparative genomic hybridization analysis (aCGH). Using a stepwise forward-backward selection approach a non-complex CNA signature, that is, less than ten features, was identified in the training data set, which could be subsequently validated in the validation data set (p value < 0.05). The signature consisted of nine copy number regions located on chromosomal bands 7q11.22-11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23-11.21, 1p21.1, 2q35, 2q35, 6p22.2. The signature was independent of any clinical characteristics of the patients. In all, we identified a CNA signature that has the potential to allow identification of radiation-associated breast cancer at the individual level. © 2018 UICC.

  17. Using Copy Number Alterations to Identify New Therapeutic Targets for Bladder Carcinoma

    Directory of Open Access Journals (Sweden)

    Donatella Conconi

    2016-02-01

    Full Text Available Bladder cancer represents the ninth most widespread malignancy throughout the world. It is characterized by the presence of two different clinical and prognostic subtypes: non-muscle-invasive bladder cancers (NMIBCs and muscle-invasive bladder cancers (MIBCs. MIBCs have a poor outcome with a common progression to metastasis. Despite improvements in knowledge, treatment has not advanced significantly in recent years, with the absence of new therapeutic targets. Because of the limitations of current therapeutic options, the greater challenge will be to identify biomarkers for clinical application. For this reason, we compared our array comparative genomic hybridization (array-CGH results with those reported in literature for invasive bladder tumors and, in particular, we focused on the evaluation of copy number alterations (CNAs present in biopsies and retained in the corresponding cancer stem cell (CSC subpopulations that should be the main target of therapy. According to our data, CCNE1, MYC, MDM2 and PPARG genes could be interesting therapeutic targets for bladder CSC subpopulations. Surprisingly, HER2 copy number gains are not retained in bladder CSCs, making the gene-targeted therapy less interesting than the others. These results provide precious advice for further study on bladder therapy; however, the clinical importance of these results should be explored.

  18. Bayesian model to detect phenotype-specific genes for copy number data

    Directory of Open Access Journals (Sweden)

    González Juan R

    2012-06-01

    Full Text Available Abstract Background An important question in genetic studies is to determine those genetic variants, in particular CNVs, that are specific to different groups of individuals. This could help in elucidating differences in disease predisposition and response to pharmaceutical treatments. We propose a Bayesian model designed to analyze thousands of copy number variants (CNVs where only few of them are expected to be associated with a specific phenotype. Results The model is illustrated by analyzing three major human groups belonging to HapMap data. We also show how the model can be used to determine specific CNVs related to response to treatment in patients diagnosed with ovarian cancer. The model is also extended to address the problem of how to adjust for confounding covariates (e.g., population stratification. Through a simulation study, we show that the proposed model outperforms other approaches that are typically used to analyze this data when analyzing common copy-number polymorphisms (CNPs or complex CNVs. We have developed an R package, called bayesGen, that implements the model and estimating algorithms. Conclusions Our proposed model is useful to discover specific genetic variants when different subgroups of individuals are analyzed. The model can address studies with or without control group. By integrating all data in a unique model we can obtain a list of genes that are associated with a given phenotype as well as a different list of genes that are shared among the different subtypes of cases.

  19. iGC-an integrated analysis package of gene expression and copy number alteration.

    Science.gov (United States)

    Lai, Yi-Pin; Wang, Liang-Bo; Wang, Wei-An; Lai, Liang-Chuan; Tsai, Mong-Hsun; Lu, Tzu-Pin; Chuang, Eric Y

    2017-01-14

    With the advancement in high-throughput technologies, researchers can simultaneously investigate gene expression and copy number alteration (CNA) data from individual patients at a lower cost. Traditional analysis methods analyze each type of data individually and integrate their results using Venn diagrams. Challenges arise, however, when the results are irreproducible and inconsistent across multiple platforms. To address these issues, one possible approach is to concurrently analyze both gene expression profiling and CNAs in the same individual. We have developed an open-source R/Bioconductor package (iGC). Multiple input formats are supported and users can define their own criteria for identifying differentially expressed genes driven by CNAs. The analysis of two real microarray datasets demonstrated that the CNA-driven genes identified by the iGC package showed significantly higher Pearson correlation coefficients with their gene expression levels and copy numbers than those genes located in a genomic region with CNA. Compared with the Venn diagram approach, the iGC package showed better performance. The iGC package is effective and useful for identifying CNA-driven genes. By simultaneously considering both comparative genomic and transcriptomic data, it can provide better understanding of biological and medical questions. The iGC package's source code and manual are freely available at https://www.bioconductor.org/packages/release/bioc/html/iGC.html .

  20. Association of β-defensin copy number and psoriasis in three cohorts of European origin

    Science.gov (United States)

    Stuart, Philip E; Hüffmeier, Ulrike; Nair, Rajan P; Palla, Raquel; Tejasvi, Trilokraj; Schalkwijk, Joost; Elder, James T; Reis, Andre; Armour, John AL

    2012-01-01

    A single previous study has demonstrated significant association of psoriasis with copy number of beta-defensin genes, using DNA from psoriasis cases and controls from Nijmegen and Erlangen. In this study we attempted to replicate that finding in larger new cohorts from Erlangen (N = 2017) and Michigan (N = 5412), using improved methods for beta-defensin copy number determination based on the paralog ratio test (PRT), and enhanced methods of analysis and association testing implemented in the CNVtools resource. We demonstrate that the association with psoriasis found in the discovery sample is maintained after applying improved typing and analysis methods (p = 5.5 × 10−4, OR = 1.25). We also find that the association is replicated in 2616 cases and 2526 controls from Michigan, although at reduced significance (p = 0.014), but not in new samples from Erlangen (1396 cases and 621 controls, p = 0.38). Meta-analysis across all cohorts suggests a nominally significant association (p = 6.6 × 10−3/2 × 10−4) with an effect size (OR = 1.081) much lower than found in the discovery study (OR = 1.32). This reduced effect size and significance on replication is consistent with a genuine but weak association. PMID:22739795

  1. Dosage sensitivity shapes the evolution of copy-number varied regions.

    Directory of Open Access Journals (Sweden)

    Benjamin Schuster-Böckler

    2010-03-01

    Full Text Available Dosage sensitivity is an important evolutionary force which impacts on gene dispensability and duplicability. The newly available data on human copy-number variation (CNV allow an analysis of the most recent and ongoing evolution. Provided that heterozygous gene deletions and duplications actually change gene dosage, we expect to observe negative selection against CNVs encompassing dosage sensitive genes. In this study, we make use of several sources of population genetic data to identify selection on structural variations of dosage sensitive genes. We show that CNVs can directly affect expression levels of contained genes. We find that genes encoding members of protein complexes exhibit limited expression variation and overlap significantly with a manually derived set of dosage sensitive genes. We show that complexes and other dosage sensitive genes are underrepresented in CNV regions, with a particular bias against frequent variations and duplications. These results suggest that dosage sensitivity is a significant force of negative selection on regions of copy-number variation.

  2. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster

    Science.gov (United States)

    Schrider, Daniel R.; Hahn, Matthew W.; Begun, David J.

    2016-01-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster. In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. PMID:26809315

  3. Role of Mitochondrial DNA Copy Number Alteration in Human Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Chen-Sung Lin

    2016-05-01

    Full Text Available We investigated the role of mitochondrial DNA (mtDNA copy number alteration in human renal cell carcinoma (RCC. The mtDNA copy numbers of paired cancer and non-cancer parts from five resected RCC kidneys after radical nephrectomy were determined by quantitative polymerase chain reaction (Q-PCR. An RCC cell line, 786-O, was infected by lentiviral particles to knock down mitochondrial transcriptional factor A (TFAM. Null target (NT and TFAM-knockdown (TFAM-KD represented the control and knockdown 786-O clones, respectively. Protein or mRNA expression levels of TFAM; mtDNA-encoded NADH dehydrogenase subunit 1 (ND1, ND6 and cytochrome c oxidase subunit 2 (COX-2; nuclear DNA (nDNA-encoded succinate dehydrogenase subunit A (SDHA; v-akt murine thymoma viral oncogene homolog 1 gene (AKT-encoded AKT and v-myc myelocytomatosis viral oncogene homolog gene (c-MYC-encoded MYC; glycolytic enzymes including hexokinase II (HK-II, glucose 6-phosphate isomerase (GPI, phosphofructokinase (PFK, and lactate dehydrogenase subunit A (LDHA; and hypoxia-inducible factors the HIF-1α and HIF-2α, pyruvate dehydrogenase kinase 1 (PDK1, and pyruvate dehydrogenase E1 component α subunit (PDHA1 were analyzed by Western blot or Q-PCR. Bioenergetic parameters of cellular metabolism, basal mitochondrial oxygen consumption rate (mOCRB and basal extracellular acidification rate (ECARB, were measured by a Seahorse XFe-24 analyzer. Cell invasiveness was evaluated by a trans-well migration assay and vimentin expression. Doxorubicin was used as a chemotherapeutic agent. The results showed a decrease of mtDNA copy numbers in resected RCC tissues (p = 0.043. The TFAM-KD clone expressed lower mtDNA copy number (p = 0.034, lower mRNA levels of TFAM (p = 0.008, ND1 (p = 0.007, and ND6 (p = 0.017, and lower protein levels of TFAM and COX-2 than did the NT clone. By contrast, the protein levels of HIF-2α, HK-II, PFK, LDHA, AKT, MYC and vimentin; trans-well migration activity (p = 0

  4. VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism

    Directory of Open Access Journals (Sweden)

    HyoYoung Kim

    2014-12-01

    Full Text Available Copy number variation (CNV or single nucleotide phlyorphism (SNP is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i the enrichment of genome contents in CNV; ii the physical distribution of CNV or SNP on chromosomes; iii the distribution of log2 ratio of CNVs with criteria of interested; iv the number of CNV or SNP per binning unit; v the distribution of homozygosity of SNP genotype; and vi cytomap of genes within CNV or SNP region.

  5. Bayesian Nonparametric Hidden Markov Models with application to the analysis of copy-number-variation in mammalian genomes.

    Science.gov (United States)

    Yau, C; Papaspiliopoulos, O; Roberts, G O; Holmes, C

    2011-01-01

    We consider the development of Bayesian Nonparametric methods for product partition models such as Hidden Markov Models and change point models. Our approach uses a Mixture of Dirichlet Process (MDP) model for the unknown sampling distribution (likelihood) for the observations arising in each state and a computationally efficient data augmentation scheme to aid inference. The method uses novel MCMC methodology which combines recent retrospective sampling methods with the use of slice sampler variables. The methodology is computationally efficient, both in terms of MCMC mixing properties, and robustness to the length of the time series being investigated. Moreover, the method is easy to implement requiring little or no user-interaction. We apply our methodology to the analysis of genomic copy number variation.

  6. Copy number ratios determined by two digital polymerase chain reaction systems in genetically modified grains

    Science.gov (United States)

    Pérez Urquiza, M.; Acatzi Silva, A. I.

    2014-02-01

    Three certified reference materials produced from powdered seeds to measure the copy number ratio sequences of p35S/hmgA in maize containing MON 810 event, p35S/Le1 in soybeans containing GTS 40-3-2 event and DREB1A/acc1 in wheat were produced according to the ISO Guides 34 and 35. In this paper, we report digital polymerase chain reaction (dPCR) protocols, performance parameters and results of copy number ratio content of genetically modified organisms (GMOs) in these materials using two new dPCR systems to detect and quantify molecular deoxyribonucleic acid: the BioMark® (Fluidigm) and the OpenArray® (Life Technologies) systems. These technologies were implemented at the National Institute of Metrology in Mexico (CENAM) and in the Reference Center for GMO Detection from the Ministry of Agriculture (CNRDOGM), respectively. The main advantage of this technique against the more-used quantitative polymerase chain reaction (qPCR) is that it generates an absolute number of target molecules in the sample, without reference to standards or an endogenous control, which is very useful when not much information is available for new developments or there are no standard reference materials in the market as in the wheat case presented, or when it was not possible to test the purity of seeds as in the maize case presented here. Both systems reported enhanced productivity, increased reliability and reduced instrument footprint. In this paper, the performance parameters and uncertainty of measurement obtained with both systems are presented and compared.

  7. An integrated analysis of miRNA and gene copy numbers in xenografts of Ewing's sarcoma

    Directory of Open Access Journals (Sweden)

    Mosakhani Neda

    2012-03-01

    Full Text Available Abstract Background Xenografts have been shown to provide a suitable source of tumor tissue for molecular analysis in the absence of primary tumor material. We utilized ES xenograft series for integrated microarray analyses to identify novel biomarkers. Method Microarray technology (array comparative genomic hybridization (aCGH and micro RNA arrays was used to screen and identify copy number changes and differentially expressed miRNAs of 34 and 14 passages, respectively. Incubated cells used for xenografting (Passage 0 were considered to represent the primary tumor. Four important differentially expressed miRNAs (miR-31, miR-31*, miR-145, miR-106 were selected for further validation by real time polymerase chain reaction (RT-PCR. Integrated analysis of aCGH and miRNA data was performed on 14 xenograft passages by bioinformatic methods. Results The most frequent losses and gains of DNA copy number were detected at 9p21.3, 16q and at 8, 15, 17q21.32-qter, 1q21.1-qter, respectively. The presence of these alterations was consistent in all tumor passages. aCGH profiles of xenograft passages of each series resembled their corresponding primary tumors (passage 0. MiR-21, miR-31, miR-31*, miR-106b, miR-145, miR-150*, miR-371-5p, miR-557 and miR-598 showed recurrently altered expression. These miRNAS were predicted to regulate many ES-associated genes, such as genes of the IGF1 pathway, EWSR1, FLI1 and their fusion gene (EWS-FLI1. Twenty differentially expressed miRNAs were pinpointed in regions carrying altered copy numbers. Conclusion In the present study, ES xenografts were successfully applied for integrated microarray analyses. Our findings showed expression changes of miRNAs that were predicted to regulate many ES associated genes, such as IGF1 pathway genes, FLI1, EWSR1, and the EWS-FLI1 fusion genes.

  8. Dynamic Expansion and Contraction of cagA Copy Number in Helicobacter pylori Impact Development of Gastric Disease

    Directory of Open Access Journals (Sweden)

    Sungil Jang

    2017-02-01

    Full Text Available Infection with Helicobacter pylori is a major risk factor for development of gastric disease, including gastric cancer. Patients infected with H. pylori strains that express CagA are at even greater risk of gastric carcinoma. Given the importance of CagA, this report describes a new molecular mechanism by which the cagA copy number dynamically expands and contracts in H. pylori. Analysis of strain PMSS1 revealed a heterogeneous population in terms of numbers of cagA copies; strains carried from zero to four copies of cagA that were arranged as direct repeats within the chromosome. Each of the multiple copies of cagA was expressed and encoded functional CagA; strains with more cagA repeats exhibited higher levels of CagA expression and increased levels of delivery and phosphorylation of CagA within host cells. This concomitantly resulted in more virulent phenotypes as measured by cell elongation and interleukin-8 (IL-8 induction. Sequence analysis of the repeat region revealed three cagA homologous areas (CHAs within the cagA repeats. Of these, CHA-ud flanked each of the cagA copies and is likely important for the dynamic variation of cagA copy numbers. Analysis of a large panel of clinical isolates showed that 7.5% of H. pylori strains isolated in the United States harbored multiple cagA repeats, while none of the tested Korean isolates carried more than one copy of cagA. Finally, H. pylori strains carrying multiple cagA copies were differentially associated with gastric disease. Thus, the dynamic expansion and contraction of cagA copy numbers may serve as a novel mechanism by which H. pylori modulates gastric disease development.

  9. Patterns of genic intolerance of rare copy number variation in 59,898 human exomes

    Science.gov (United States)

    Ruderfer, Douglas M.; Hamamsy, Tymor; Lek, Monkol; Karczewski, Konrad J.; Kavanagh, David; Samocha, Kaitlin E.; Daly, Mark J.; MacArthur, Daniel G.; Fromer, Menachem; Purcell, Shaun M.

    2016-01-01

    Copy number variation (CNV) impacting protein-coding genes contributes significantly to human diversity and disease. Here we characterized the rates and properties of rare genic CNV (intolerance to CNVs that demonstrated moderate correlation with measures of genic constraint based on single-nucleotide variation (SNV) and was independently correlated with measures of evolutionary conservation. For individuals with schizophrenia, genes impacted by CNVs were more intolerant than in controls. ExAC CNV data constitutes a critical component of an integrated database spanning the spectrum of human genetic variation, aiding the interpretation of personal genomes as well as population-based disease studies. These data are freely available for download and visualization online. PMID:27533299

  10. Characterization of Copy Number Variation’s Potential Role in Marek’s Disease

    Directory of Open Access Journals (Sweden)

    Lingyang Xu

    2017-05-01

    Full Text Available Marek’s Disease (MD is a highly contagious pathogenic and oncogenic disease primarily affecting chickens. Chicken Lines 63 and 72, as well as their recombinant congenic strains (RCS with varied susceptibility to MD, are ideal models to study the complex mechanisms of genetic resistance to MD. In this study, we investigated copy number variation (CNV in these inbred chicken lines using the Affymetrix Axiom HD 600 K SNP genotyping array. We detected 393 CNV segments across all ten chicken lines, of which 12 CNVs were specifically identified in Line 72. We then assessed genetic structure based on CNV and observed markedly different patterns. Finally, we validated two deletion events in Line 72 and correlated them with genes expression using qPCR and RNA-seq, respectively. Our combined results indicated that these two CNV deletions were likely to contribute to MD susceptibility.

  11. NDRG2 gene copy number is not altered in colorectal carcinoma

    DEFF Research Database (Denmark)

    Lorentzen, Anders Blomkild; Mitchelmore, Cathy

    2017-01-01

    AIM To investigate if the down-regulation of N-myc Downstream Regulated Gene 2 (NDRG2) expression in colorectal carcinoma (CRC) is due to loss of the NDRG2 allele(s). METHODS The following were investigated in the human colorectal cancer cell lines DLD-1, LoVo and SW-480: NDRG2 mRNA expression...... levels using quantitative reverse transcription-polymerase chain reaction (qRT-PCR); interaction of the MYC gene-regulatory protein with the NDRG2 promoter using chromatin immunoprecipitation; and NDRG2 promoter methylation using bisulfite sequencing. Furthermore, we performed qPCR to analyse the copy...... numbers of NDRG2 and MYC genes in the above three cell lines, 8 normal colorectal tissue samples and 40 CRC tissue samples. RESULTS As expected, NDRG2 mRNA levels were low in the three colorectal cancer cell lines, compared to normal colon. Endogenous MYC protein interacted with the NDRG2 core promoter...

  12. Increased levels of mitochondrial DNA copy number in patients with vitiligo.

    Science.gov (United States)

    Vaseghi, H; Houshmand, M; Jadali, Z

    2017-10-01

    Oxidative stress is known to be involved in the pathogenesis of autoimmune diseases such as vitiligo. Evidence suggests that the human mitochondrial DNA copy number (mtDNAcn) is vulnerable to damage mediated by oxidative stress. The purpose of this study was to examine and compare peripheral blood mtDNAcn and oxidative DNA damage byproducts (8-hydroxy-2-deoxyguanosine; 8-OHdG) in patients with vitiligo and healthy controls (HCs). The relative mtDNAcn and the oxidative damage (formation of 8-OHdG in mtDNA) of each sample were determined by real-time quantitative PCR. Blood samples were obtained from 56 patients with vitiligo and 46 HCs. The mean mtDNAcn and the degree of mtDNA damage were higher in patients with vitiligo than in HCs. These data suggest that increase in mtDNAcn and oxidative DNA damage may be involved in the pathogenesis of vitiligo. © 2017 British Association of Dermatologists.

  13. Assessing Mitochondrial DNA Variation and Copy Number in Lymphocytes of ~2,000 Sardinians Using Tailored Sequencing Analysis Tools.

    Directory of Open Access Journals (Sweden)

    Jun Ding

    2015-07-01

    Full Text Available DNA sequencing identifies common and rare genetic variants for association studies, but studies typically focus on variants in nuclear DNA and ignore the mitochondrial genome. In fact, analyzing variants in mitochondrial DNA (mtDNA sequences presents special problems, which we resolve here with a general solution for the analysis of mtDNA in next-generation sequencing studies. The new program package comprises 1 an algorithm designed to identify mtDNA variants (i.e., homoplasmies and heteroplasmies, incorporating sequencing error rates at each base in a likelihood calculation and allowing allele fractions at a variant site to differ across individuals; and 2 an estimation of mtDNA copy number in a cell directly from whole-genome sequencing data. We also apply the methods to DNA sequence from lymphocytes of ~2,000 SardiNIA Project participants. As expected, mothers and offspring share all homoplasmies but a lesser proportion of heteroplasmies. Both homoplasmies and heteroplasmies show 5-fold higher transition/transversion ratios than variants in nuclear DNA. Also, heteroplasmy increases with age, though on average only ~1 heteroplasmy reaches the 4% level between ages 20 and 90. In addition, we find that mtDNA copy number averages ~110 copies/lymphocyte and is ~54% heritable, implying substantial genetic regulation of the level of mtDNA. Copy numbers also decrease modestly but significantly with age, and females on average have significantly more copies than males. The mtDNA copy numbers are significantly associated with waist circumference (p-value = 0.0031 and waist-hip ratio (p-value = 2.4×10-5, but not with body mass index, indicating an association with central fat distribution. To our knowledge, this is the largest population analysis to date of mtDNA dynamics, revealing the age-imposed increase in heteroplasmy, the relatively high heritability of copy number, and the association of copy number with metabolic traits.

  14. DUF1220 copy number is linearly associated with increased cognitive function as measured by total IQ and mathematical aptitude scores

    Science.gov (United States)

    Davis, Jonathon M.; Searles, Veronica B.; Anderson, Nathan; Keeney, Jonathon; Raznahan, Armin; Horwood, L. John; Fergusson, David M.; Kennedy, Martin A.; Giedd, Jay

    2014-01-01

    DUF1220 protein domains exhibit the greatest human lineage-specific copy number expansion of any protein-coding sequence in the genome, and variation in DUF1220 copy number has been linked to both brain size in humans and brain evolution among primates. Given these findings, we examined associations between DUF1220 subtypes CON1 and CON2 and cognitive aptitude. We identified a linear association between CON2 copy number and cognitive function in two independent populations of European descent. In North American males, an increase in CON2 copy number corresponded with an increase in WISC IQ (R2 = 0.13, p = 0.02), which may be driven by males aged 6–11 (R2 = 0.42, p = 0.003). We utilized ddPCR in a subset as a confirmatory measurement. This group had 26–33 copies of CON2 with a mean of 29, and each copy increase of CON2 was associated with a 3.3-point increase in WISC IQ (R2 = 0.22, p = 0.045). In individuals from New Zealand, an increase in CON2 copy number was associated with an increase in math aptitude ability (R2 = 0.10 p = 0.018). These were not confounded by brain size. To our knowledge, this is the first study to report a replicated association between copy number of a gene coding sequence and cognitive aptitude. Remarkably, dosage variations involving DUF1220 sequences have now been linked to human brain expansion, autism severity and cognitive aptitude, suggesting that such processes may be genetically and mechanistically inter-related. The findings presented here warrant expanded investigations in larger, well-characterized cohorts. PMID:25287832

  15. Whole-genome copy number variation analysis in anophthalmia and microphthalmia.

    Science.gov (United States)

    Schilter, K F; Reis, L M; Schneider, A; Bardakjian, T M; Abdul-Rahman, O; Kozel, B A; Zimmerman, H H; Broeckel, U; Semina, E V

    2013-11-01

    Anophthalmia/microphthalmia (A/M) represent severe developmental ocular malformations. Currently, mutations in known genes explain less than 40% of A/M cases. We performed whole-genome copy number variation analysis in 60 patients affected with isolated or syndromic A/M. Pathogenic deletions of 3q26 (SOX2) were identified in four independent patients with syndromic microphthalmia. Other variants of interest included regions with a known role in human disease (likely pathogenic) as well as novel rearrangements (uncertain significance). A 2.2-Mb duplication of 3q29 in a patient with non-syndromic anophthalmia and an 877-kb duplication of 11p13 (PAX6) and a 1.4-Mb deletion of 17q11.2 (NF1) in two independent probands with syndromic microphthalmia and other ocular defects were identified; while ocular anomalies have been previously associated with 3q29 duplications, PAX6 duplications, and NF1 mutations in some cases, the ocular phenotypes observed here are more severe than previously reported. Three novel regions of possible interest included a 2q14.2 duplication which cosegregated with microphthalmia/microcornea and congenital cataracts in one family, and 2q21 and 15q26 duplications in two additional cases; each of these regions contains genes that are active during vertebrate ocular development. Overall, this study identified causative copy number mutations and regions with a possible role in ocular disease in 17% of A/M cases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster.

    Science.gov (United States)

    Schrider, Daniel R; Hahn, Matthew W; Begun, David J

    2016-05-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Copy-Number Disorders Are a Common Cause of Congenital Kidney Malformations

    Science.gov (United States)

    Sanna-Cherchi, Simone; Kiryluk, Krzysztof; Burgess, Katelyn E.; Bodria, Monica; Sampson, Matthew G.; Hadley, Dexter; Nees, Shannon N.; Verbitsky, Miguel; Perry, Brittany J.; Sterken, Roel; Lozanovski, Vladimir J.; Materna-Kiryluk, Anna; Barlassina, Cristina; Kini, Akshata; Corbani, Valentina; Carrea, Alba; Somenzi, Danio; Murtas, Corrado; Ristoska-Bojkovska, Nadica; Izzi, Claudia; Bianco, Beatrice; Zaniew, Marcin; Flogelova, Hana; Weng, Patricia L.; Kacak, Nilgun; Giberti, Stefania; Gigante, Maddalena; Arapovic, Adela; Drnasin, Kristina; Caridi, Gianluca; Curioni, Simona; Allegri, Franca; Ammenti, Anita; Ferretti, Stefania; Goj, Vinicio; Bernardo, Luca; Jobanputra, Vaidehi; Chung, Wendy K.; Lifton, Richard P.; Sanders, Stephan; State, Matthew; Clark, Lorraine N.; Saraga, Marijan; Padmanabhan, Sandosh; Dominiczak, Anna F.; Foroud, Tatiana; Gesualdo, Loreto; Gucev, Zoran; Allegri, Landino; Latos-Bielenska, Anna; Cusi, Daniele; Scolari, Francesco; Tasic, Velibor; Hakonarson, Hakon; Ghiggeri, Gian Marco; Gharavi, Ali G.

    2012-01-01

    We examined the burden of large, rare, copy-number variants (CNVs) in 192 individuals with renal hypodysplasia (RHD) and replicated findings in 330 RHD cases from two independent cohorts. CNV distribution was significantly skewed toward larger gene-disrupting events in RHD cases compared to 4,733 ethnicity-matched controls (p = 4.8 × 10−11). This excess was attributable to known and novel (i.e., not present in any database or in the literature) genomic disorders. All together, 55/522 (10.5%) RHD cases harbored 34 distinct known genomic disorders, which were detected in only 0.2% of 13,839 population controls (p = 1.2 × 10−58). Another 32 (6.1%) RHD cases harbored large gene-disrupting CNVs that were absent from or extremely rare in the 13,839 population controls, identifying 38 potential novel or rare genomic disorders for this trait. Deletions at the HNF1B locus and the DiGeorge/velocardiofacial locus were most frequent. However, the majority of disorders were detected in a single individual. Genomic disorders were detected in 22.5% of individuals with multiple malformations and 14.5% of individuals with isolated urinary-tract defects; 14 individuals harbored two or more diagnostic or rare CNVs. Strikingly, the majority of the known CNV disorders detected in the RHD cohort have previous associations with developmental delay or neuropsychiatric diseases. Up to 16.6% of individuals with kidney malformations had a molecular diagnosis attributable to a copy-number disorder, suggesting kidney malformations as a sentinel manifestation of pathogenic genomic imbalances. A search for pathogenic CNVs should be considered in this population for the diagnosis of their specific genomic disorders and for the evaluation of the potential for developmental delay. PMID:23159250

  18. Novel association strategy with copy number variation for identifying new risk Loci of human diseases.

    Directory of Open Access Journals (Sweden)

    Xianfeng Chen

    2010-08-01

    Full Text Available Copy number variations (CNV are important causal genetic variations for human disease; however, the lack of a statistical model has impeded the systematic testing of CNVs associated with disease in large-scale cohort.Here, we developed a novel integrated strategy to test CNV-association in genome-wide case-control studies. We converted the single-nucleotide polymorphism (SNP signal to copy number states using a well-trained hidden Markov model. We mapped the susceptible CNV-loci through SNP site-specific testing to cope with the physiological complexity of CNVs. We also ensured the credibility of the associated CNVs through further window-based CNV-pattern clustering. Genome-wide data with seven diseases were used to test our strategy and, in total, we identified 36 new susceptible loci that are associated with CNVs for the seven diseases: 5 with bipolar disorder, 4 with coronary artery disease, 1 with Crohn's disease, 7 with hypertension, 9 with rheumatoid arthritis, 7 with type 1 diabetes and 3 with type 2 diabetes. Fifteen of these identified loci were validated through genotype-association and physiological function from previous studies, which provide further confidence for our results. Notably, the genes associated with bipolar disorder converged in the phosphoinositide/calcium signaling, a well-known affected pathway in bipolar disorder, which further supports that CNVs have impact on bipolar disorder.Our results demonstrated the effectiveness and robustness of our CNV-association analysis and provided an alternative avenue for discovering new associated loci of human diseases.

  19. Copy number variations of E2F1: a new genetic risk factor for testicular cancer.

    Science.gov (United States)

    Rocca, Maria Santa; Di Nisio, Andrea; Marchiori, Arianna; Ghezzi, Marco; Opocher, Giuseppe; Foresta, Carlo; Ferlin, Alberto

    2017-03-01

    Testicular germ cell tumor (TGCT) is one of the most heritable forms of cancer. In last years, many evidence suggested that constitutional genetic factors, mainly single nucleotide polymorphisms, can increase its risk. However, the possible contribution of copy number variations (CNVs) in TGCT susceptibility has not been substantially addressed. Indeed, an increasing number of studies have focused on the effect of CNVs on gene expression and on the role of these structural genetic variations as risk factors for different forms of cancer. E2F1 is a transcription factor that plays an important role in regulating cell growth, differentiation, apoptosis and response to DNA damage. Therefore, deficiency or overexpression of this protein might significantly influence fundamental biological processes involved in cancer development and progression, including TGCT. We analyzed E2F1 CNVs in 261 cases with TGCT and 165 controls. We found no CNVs in controls, but 17/261 (6.5%) cases showed duplications in E2F1 Blot analysis demonstrated higher E2F1 expression in testicular samples of TGCT cases with three copies of the gene. Furthermore, we observed higher phosphorylation of Akt and mTOR in samples with E2F1 duplication. Interestingly, normal, non-tumoral testicular tissue in patient with E2F1 duplication showed lower expression of E2F1 and lower AKT/mTOR phosphorylation with respect to adjacent tumor tissue. Furthermore, increased expression of E2F1 obtained in vitro in NTERA-2 testicular cell line induced increased AKT/mTOR phosphorylation. This study suggests for the first time an involvement of E2F1 CNVs in TGCT susceptibility and supports previous preliminary data on the importance of AKT/mTOR signaling pathway in this cancer. © 2017 Society for Endocrinology.

  20. Observer variability in estimating numbers: An experiment

    Science.gov (United States)

    Erwin, R.M.

    1982-01-01

    Census estimates of bird populations provide an essential framework for a host of research and management questions. However, with some exceptions, the reliability of numerical estimates and the factors influencing them have received insufficient attention. Independent of the problems associated with habitat type, weather conditions, cryptic coloration, ete., estimates may vary widely due only to intrinsic differences in observers? abilities to estimate numbers. Lessons learned in the field of perceptual psychology may be usefully applied to 'real world' problems in field ornithology. Based largely on dot discrimination tests in the laboratory, it was found that numerical abundance, density of objects, spatial configuration, color, background, and other variables influence individual accuracy in estimating numbers. The primary purpose of the present experiment was to assess the effects of observer, prior experience, and numerical range on accuracy in estimating numbers of waterfowl from black-and-white photographs. By using photographs of animals rather than black dots, I felt the results could be applied more meaningfully to field situations. Further, reinforcement was provided throughout some experiments to examine the influence of training on accuracy.

  1. rRNA Operon Copy Number Can Explain the Distinct Epidemiology of Hospital-Associated Methicillin-Resistant Staphylococcus aureus

    Science.gov (United States)

    Jansen, M. D.; Bosch, T.; Jansen, W. T. M.; Schouls, L.; Jonker, M. J.; Boel, C. H. E.

    2016-01-01

    The distinct epidemiology of original hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) and early community-associated MRSA (CA-MRSA) is largely unexplained. S. aureus carries either five or six rRNA operon copies. Evidence is provided for a scenario in which MRSA has adapted to the hospital environment by rRNA operon loss (six to five copies) due to antibiotic pressure. Early CA-MRSA, in contrast, results from wild-type methicillin-susceptible S. aureus (MSSA) that acquired mecA without loss of an rRNA operon. Of the HA-MRSA isolates (n = 77), 67.5% had five rRNA operon copies, compared to 23.2% of the CA-MRSA isolates (n = 69) and 7.7% of MSSA isolates (n = 195) (P operon copies. For all subsets, a correlation between resistance profile and rRNA copy number was found. Furthermore, we showed that in vitro antibiotic pressure may result in rRNA operon copy loss. We also showed that without antibiotic pressure, S. aureus isolates containing six rRNA copies are more fit than isolates with five copies. We conclude that HA-MRSA and cystic fibrosis isolates most likely have adapted to an environment with high antibiotic pressure by the loss of an rRNA operon copy. This loss has facilitated resistance development, which promoted survival in these niches. However, strain fitness decreased, which explains their lack of success in the community. In contrast, CA-MRSA isolates retained six rRNA operon copies, rendering them fitter and thereby able to survive and spread in the community. PMID:27671073

  2. ParseCNV integrative copy number variation association software with quality tracking.

    Science.gov (United States)

    Glessner, Joseph T; Li, Jin; Hakonarson, Hakon

    2013-03-01

    A number of copy number variation (CNV) calling algorithms exist; however, comprehensive software tools for CNV association studies are lacking. We describe ParseCNV, unique software that takes CNV calls and creates probe-based statistics for CNV occurrence in both case-control design and in family based studies addressing both de novo and inheritance events, which are then summarized based on CNV regions (CNVRs). CNVRs are defined in a dynamic manner to allow for a complex CNV overlap while maintaining precise association region. Using this approach, we avoid failure to converge and non-monotonic curve fitting weaknesses of programs, such as CNVtools and CNVassoc, and although Plink is easy to use, it only provides combined CNV state probe-based statistics, not state-specific CNVRs. Existing CNV association methods do not provide any quality tracking information to filter confident associations, a key issue which is fully addressed by ParseCNV. In addition, uncertainty in CNV calls underlying CNV associations is evaluated to verify significant results, including CNV overlap profiles, genomic context, number of probes supporting the CNV and single-probe intensities. When optimal quality control parameters are followed using ParseCNV, 90% of CNVs validate by polymerase chain reaction, an often problematic stage because of inadequate significant association review. ParseCNV is freely available at http://parsecnv.sourceforge.net.

  3. High Glucose-Induced Oxidative Stress Increases the Copy Number of Mitochondrial DNA in Human Mesangial Cells

    Directory of Open Access Journals (Sweden)

    Ghada Al-Kafaji

    2013-01-01

    Full Text Available Oxidative damage to mitochondrial DNA (mtDNA has been linked to the pathogenicity of diabetic nephropathy. We tested the hypothesis that mtDNA copy number may be increased in human mesangial cells in response to high glucose-induced reactive oxygen species (ROS to compensate for damaged mtDNA. The effect of manganese superoxide dismutase mimetic (MnTBAP on glucose-induced mtDNA copy number was also examined. The copy number of mtDNA was determined by real-time PCR in human mesangial cells cultured in 5 mM glucose, 25 mM glucose, and mannitol (osmotic control, as well as in cells cultured in 25 mM glucose in the presence and absence of 200 μM MnTBAP. Intracellular ROS was assessed by confocal microscopy and flow cytometry in human mesangial cells. The copy number of mtDNA was significantly increased when human mesangial cells were incubated with 25 mM glucose compared to 5 mM glucose and mannitol. In addition, 25 mM glucose rapidly generated ROS in the cells, which was not detected in 5 mM glucose. Furthermore, mtDNA copy number was significantly decreased and maintained to normal following treatment of cells with 25 mM glucose and MnTBAP compared to 25 mM glucose alone. Inclusion of MnTBAP during 25 mM glucose incubation inhibited mitochondrial superoxide in human mesangial cells. Increased mtDNA copy number in human mesangial cells by high glucose could contribute to increased mitochondrial superoxide, and prevention of mtDNA copy number could have potential in retarding the development of diabetic nephropathy.

  4. Variations in CCL3L gene cluster sequence and non-specific gene copy numbers

    Directory of Open Access Journals (Sweden)

    Edberg Jeffrey C

    2010-03-01

    Full Text Available Abstract Background Copy number variations (CNVs of the gene CC chemokine ligand 3-like1 (CCL3L1 have been implicated in HIV-1 susceptibility, but the association has been inconsistent. CCL3L1 shares homology with a cluster of genes localized to chromosome 17q12, namely CCL3, CCL3L2, and, CCL3L3. These genes are involved in host defense and inflammatory processes. Several CNV assays have been developed for the CCL3L1 gene. Findings Through pairwise and multiple alignments of these genes, we have shown that the homology between these genes ranges from 50% to 99% in complete gene sequences and from 70-100% in the exonic regions, with CCL3L1 and CCL3L3 being identical. By use of MEGA 4 and BioEdit, we aligned sense primers, anti-sense primers, and probes used in several previously described assays against pre-multiple alignments of all four chemokine genes. Each set of probes and primers aligned and matched with overlapping sequences in at least two of the four genes, indicating that previously utilized RT-PCR based CNV assays are not specific for only CCL3L1. The four available assays measured median copies of 2 and 3-4 in European and African American, respectively. The concordance between the assays ranged from 0.44-0.83 suggesting individual discordant calls and inconsistencies with the assays from the expected gene coverage from the known sequence. Conclusions This indicates that some of the inconsistencies in the association studies could be due to assays that provide heterogenous results. Sequence information to determine CNV of the three genes separately would allow to test whether their association with the pathogenesis of a human disease or phenotype is affected by an individual gene or by a combination of these genes.

  5. Genome-wide analysis of esophageal adenocarcinoma yields specific copy number aberrations that correlate with prognosis.

    Science.gov (United States)

    Frankel, Adam; Armour, Nicola; Nancarrow, Derek; Krause, Lutz; Hayward, Nicholas; Lampe, Guy; Smithers, B Mark; Barbour, Andrew

    2014-04-01

    The incidence of esophageal adenocarcinoma (EAC) has been increasing rapidly for the past 3 decades in Western (Caucasian) populations. Curative treatment is based around esophagectomy, which has a major impact on quality of life. For those suitable for treatment with curative intent, 5-year survival is ∼30%. More accurate prognostic tools are therefore needed, and copy number aberrations (CNAs) may offer the ability to act as prospective biomarkers in this regard. We performed a genome-wide examination of CNAs in 54 samples of EAC using single-nucleotide polymorphism (SNP) arrays. Our aims were to describe frequent regions of CNA, to define driver CNAs, and to identify CNAs that correlated with survival. Regions of frequent amplification included oncogenes such as EGFR, MYC, KLF12, and ERBB2, while frequently deleted regions included tumor suppressor genes such as CDKN2A/B, PTPRD, FHIT, and SMAD4. The genomic identification of significant targets in cancer (GISTIC) algorithm identified 24 regions of gain and 28 regions of loss that were likely to contain driver changes. We discovered 61 genes in five regions that, when stratified by CNA type (gain or loss), correlated with a statistically significant difference in survival. Pathway analysis of the genes residing in both the GISTIC and prognostic regions showed they were significantly enriched for cancer-related networks. Finally, we discovered that copy-neutral loss of heterozygosity is a frequent mechanism of CNA in genes currently targetable by chemotherapy, potentially leading to under-reporting of cases suitable for such treatment. Copyright © 2014 Wiley Periodicals, Inc.

  6. Rethinking the starch digestion hypothesis for AMY1 copy number variation in humans.

    Science.gov (United States)

    Fernández, Catalina I; Wiley, Andrea S

    2017-08-01

    Alpha-amylase exists across taxonomic kingdoms with a deep evolutionary history of gene duplications that resulted in several α-amylase paralogs. Copy number variation (CNV) in the salivary α-amylase gene (AMY1) exists in many taxa, but among primates, humans appear to have higher average AMY1 copies than nonhuman primates. Additionally, AMY1 CNV in humans has been associated with starch content of diets, and one known function of α-amylase is its involvement in starch digestion. Thus high AMY1 CNV is considered to result from selection favoring more efficient starch digestion in the Homo lineage. Here, we present several lines of evidence that challenge the hypothesis that increased AMY1 CNV is an adaptation to starch consumption. We observe that α- amylase plays a very limited role in starch digestion, with additional steps required for starch digestion and glucose metabolism. Specifically, we note that α-amylase hydrolysis only produces a minute amount of free glucose with further enzymatic digestion and glucose absorption being rate-limiting steps for glucose availability. Indeed α-amylase is nonessential for starch digestion since sucrase-isomaltase and maltase-glucoamylase can hydrolyze whole starch granules while releasing glucose. While higher AMY1 CN and CNV among human populations may result from natural selection, existing evidence does not support starch digestion as the major selective force. We report that in humans α-amylase is expressed in several other tissues where it may have potential roles of evolutionary significance. © 2017 Wiley Periodicals, Inc.

  7. CARAT: A novel method for allelic detection of DNA copy number changes using high density oligonucleotide arrays

    Directory of Open Access Journals (Sweden)

    Ishikawa Shumpei

    2006-02-01

    Full Text Available Abstract Background DNA copy number alterations are one of the main characteristics of the cancer cell karyotype and can contribute to the complex phenotype of these cells. These alterations can lead to gains in cellular oncogenes as well as losses in tumor suppressor genes and can span small intervals as well as involve entire chromosomes. The ability to accurately detect these changes is central to understanding how they impact the biology of the cell. Results We describe a novel algorithm called CARAT (Copy Number Analysis with Regression And Tree that uses probe intensity information to infer copy number in an allele-specific manner from high density DNA oligonuceotide arrays designed to genotype over 100, 000 SNPs. Total and allele-specific copy number estimations using CARAT are independently evaluated for a subset of SNPs using quantitative PCR and allelic TaqMan reactions with several human breast cancer cell lines. The sensitivity and specificity of the algorithm are characterized using DNA samples containing differing numbers of X chromosomes as well as a test set of normal individuals. Results from the algorithm show a high degree of agreement with results from independent verification methods. Conclusion Overall, CARAT automatically detects regions with copy number variations and assigns a significance score to each alteration as well as generating allele-specific output. When coupled with SNP genotype calls from the same array, CARAT provides additional detail into the structure of genome wide alterations that can contribute to allelic imbalance.

  8. Association testing of copy number variants in schizophrenia and autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Crespi Bernard J

    2012-05-01

    Full Text Available Abstract Background Autism spectrum disorders and schizophrenia have been associated with an overlapping set of copy number variant loci, but the nature and degree of overlap in copy number variants (deletions compared to duplications between these two disorders remains unclear. Methods We systematically evaluated three lines of evidence: (1 the statistical bases for associations of autism spectrum disorders and schizophrenia with a set of the primary CNVs thus far investigated, from previous studies; (2 data from case series studies on the occurrence of these CNVs in autism spectrum disorders, especially among children, and (3 data on the extent to which the CNVs were associated with intellectual disability and developmental, speech, or language delays. We also conducted new analyses of existing data on these CNVs in autism by pooling data from seven case control studies. Results Four of the CNVs considered, dup 1q21.1, dup 15q11-q13, del 16p11.2, and dup 22q11.21, showed clear statistical evidence as autism risk factors, whereas eight CNVs, del 1q21.1, del 3q29, del 15q11.2, del 15q13.3, dup 16p11.2, dup 16p13.1, del 17p12, and del 22q11.21, were strongly statistically supported as risk factors for schizophrenia. Three of the CNVs, dup 1q21.1, dup 16p11.2, and dup 16p13.1, exhibited statistical support as risk factors for both autism and schizophrenia, although for each of these CNVs statistical significance was nominal for tests involving one of the two disorders. For the CNVs that were statistically associated with schizophrenia but were not statistically associated with autism, a notable number of children with the CNVs have been diagnosed with autism or ASD; children with these CNVs also demonstrate a high incidence of intellectual disability and developmental, speech, or language delays. Conclusions These findings suggest that although CNV loci notably overlap between autism and schizophrenia, the degree of strongly statistically

  9. Genome-Wide DNA Copy Number Analysis of Acute Lymphoblastic Leukemia Identifies New Genetic Markers Associated with Clinical Outcome.

    Directory of Open Access Journals (Sweden)

    Maribel Forero-Castro

    Full Text Available Identifying additional genetic alterations associated with poor prognosis in acute lymphoblastic leukemia (ALL is still a challenge.To characterize the presence of additional DNA copy number alterations (CNAs in children and adults with ALL by whole-genome oligonucleotide array (aCGH analysis, and to identify their associations with clinical features and outcome. Array-CGH was carried out in 265 newly diagnosed ALLs (142 children and 123 adults. The NimbleGen CGH 12x135K array (Roche was used to analyze genetic gains and losses. CNAs were analyzed with GISTIC and aCGHweb software. Clinical and biological variables were analyzed. Three of the patients showed chromothripsis (cth6, cth14q and cth15q. CNAs were associated with age, phenotype, genetic subtype and overall survival (OS. In the whole cohort of children, the losses on 14q32.33 (p = 0.019 and 15q13.2 (p = 0.04 were related to shorter OS. In the group of children without good- or poor-risk cytogenetics, the gain on 1p36.11 was a prognostic marker independently associated with shorter OS. In adults, the gains on 19q13.2 (p = 0.001 and Xp21.1 (p = 0.029, and the loss of 17p (p = 0.014 were independent markers of poor prognosis with respect to OS. In summary, CNAs are frequent in ALL and are associated with clinical parameters and survival. Genome-wide DNA copy number analysis allows the identification of genetic markers that predict clinical outcome, suggesting that detection of these genetic lesions will be useful in the management of patients newly diagnosed with ALL.

  10. Identifying Copy Number Variants under Selection in Geographically Structured Populations Based on -statistics

    Directory of Open Access Journals (Sweden)

    Hae-Hiang Song

    2012-06-01

    Full Text Available Large-scale copy number variants (CNVs in the human provide the raw material for delineating population differences, as natural selection may have affected at least some of the CNVs thus far discovered. Although the examination of relatively large numbers of specific ethnic groups has recently started in regard to inter-ethnic group differences in CNVs, identifying and understanding particular instances of natural selection have not been performed. The traditional FST measure, obtained from differences in allele frequencies between populations, has been used to identify CNVs loci subject to geographically varying selection. Here, we review advances and the application of multinomial-Dirichlet likelihood methods of inference for identifying genome regions that have been subject to natural selection with the FST estimates. The contents of presentation are not new; however, this review clarifies how the application of the methods to CNV data, which remains largely unexplored, is possible. A hierarchical Bayesian method, which is implemented via Markov Chain Monte Carlo, estimates locus-specific FST and can identify outlying CNVs loci with large values of FST. By applying this Bayesian method to the publicly available CNV data, we identified the CNV loci that show signals of natural selection, which may elucidate the genetic basis of human disease and diversity.

  11. Accurate measure of transgene copy number in crop plants using droplet digital PCR

    Science.gov (United States)

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy numb...

  12. Copy number variation in the region harboring SOX9 gene in dogs with testicular/ovotesticular disorder of sex development (78,XX; SRY-negative).

    Science.gov (United States)

    Marcinkowska-Swojak, Malgorzata; Szczerbal, Izabela; Pausch, Hubert; Nowacka-Woszuk, Joanna; Flisikowski, Krzysztof; Dzimira, Stanislaw; Nizanski, Wojciech; Payan-Carreira, Rita; Fries, Ruedi; Kozlowski, Piotr; Switonski, Marek

    2015-10-01

    Although the disorder of sex development in dogs with female karyotype (XX DSD) is quite common, its molecular basis is still unclear. Among mutations underlying XX DSD in mammals are duplication of a long sequence upstream of the SOX9 gene (RevSex) and duplication of the SOX9 gene (also observed in dogs). We performed a comparative analysis of 16 XX DSD and 30 control female dogs, using FISH and MLPA approaches. Our study was focused on a region harboring SOX9 and a region orthologous to the human RevSex (CanRevSex), which was located by in silico analysis downstream of SOX9. Two highly polymorphic copy number variable regions (CNVRs): CNVR1 upstream of SOX9 and CNVR2 encompassing CanRevSex were identified. Although none of the detected copy number variants were specific to either affected or control animals, we observed that the average number of copies in CNVR1 was higher in XX DSD. No copy variation of SOX9 was observed. Our extensive studies have excluded duplication of SOX9 as the common cause of XX DSD in analyzed samples. However, it remains possible that the causative mutation is hidden in highly polymorphic CNVR1.

  13. Copy number variations in Saudi family with intellectual disability and epilepsy

    Directory of Open Access Journals (Sweden)

    Muhammad I. Naseer

    2016-10-01

    Full Text Available Abstract Background Epilepsy is genetically complex but common brain disorder of the world affecting millions of people with almost of all age groups. Novel Copy number variations (CNVs are considered as important reason for the numerous neurodevelopmental disorders along with intellectual disability and epilepsy. DNA array based studies contribute to explain a more severe clinical presentation of the disease but interoperation of many detected CNVs are still challenging. Results In order to study novel CNVs with epilepsy related genes in Saudi family with six affected and two normal individuals with several forms of epileptic seizures, intellectual disability (ID, and minor dysmorphism, we performed the high density whole genome Agilent sure print G3 Hmn CGH 2x 400 K array-CGH chips analysis. Our results showed de novo deletions, duplications and deletion plus duplication on differential chromosomal regions in the affected individuals that were not shown in the normal fathe and normal kids by using Agilent CytoGenomics 3.0.6.6 softwear. Copy number gain were observed in the chromosome 1, 16 and 22 with LCE3C, HPR, GSTT2, GSTTP2, DDT and DDTL genes respectively whereas the deletions observed in the chromosomal regions 8p23-p21 (4303127–4337759 and the potential gene in this region is CSMD1 (OMIM: 612279. Moreover, the array CGH results deletions and duplication were also validated by using primer design of deleted regions utilizing the flanked SNPs using simple PCR and also by using quantitative real time PCR. Conclusions We found some of the de novo deletions and duplication in our study in Saudi family with intellectual disability and epilepsy. Our results suggest that array-CGH should be used as a first line of genetic test for epilepsy except there is a strong indication for a monogenic syndrome. The advanced high through put array-CGH technique used in this study aim to collect the data base and to identify new mechanisms describing

  14. Copy number variations in Saudi family with intellectual disability and epilepsy.

    Science.gov (United States)

    Naseer, Muhammad I; Chaudhary, Adeel G; Rasool, Mahmood; Kalamegam, Gauthaman; Ashgan, Fai T; Assidi, Mourad; Ahmed, Farid; Ansari, Shakeel A; Zaidi, Syed Kashif; Jan, Mohammed M; Al-Qahtani, Mohammad H

    2016-10-17

    Epilepsy is genetically complex but common brain disorder of the world affecting millions of people with almost of all age groups. Novel Copy number variations (CNVs) are considered as important reason for the numerous neurodevelopmental disorders along with intellectual disability and epilepsy. DNA array based studies contribute to explain a more severe clinical presentation of the disease but interoperation of many detected CNVs are still challenging. In order to study novel CNVs with epilepsy related genes in Saudi family with six affected and two normal individuals with several forms of epileptic seizures, intellectual disability (ID), and minor dysmorphism, we performed the high density whole genome Agilent sure print G3 Hmn CGH 2x 400 K array-CGH chips analysis. Our results showed de novo deletions, duplications and deletion plus duplication on differential chromosomal regions in the affected individuals that were not shown in the normal fathe and normal kids by using Agilent CytoGenomics 3.0.6.6 softwear. Copy number gain were observed in the chromosome 1, 16 and 22 with LCE3C, HPR, GSTT2, GSTTP2, DDT and DDTL genes respectively whereas the deletions observed in the chromosomal regions 8p23-p21 (4303127-4337759) and the potential gene in this region is CSMD1 (OMIM: 612279). Moreover, the array CGH results deletions and duplication were also validated by using primer design of deleted regions utilizing the flanked SNPs using simple PCR and also by using quantitative real time PCR. We found some of the de novo deletions and duplication in our study in Saudi family with intellectual disability and epilepsy. Our results suggest that array-CGH should be used as a first line of genetic test for epilepsy except there is a strong indication for a monogenic syndrome. The advanced high through put array-CGH technique used in this study aim to collect the data base and to identify new mechanisms describing epileptic disorder, may help to improve the clinical

  15. Gene expression patterns of chicken neuregulin 3 in association with copy number variation and frameshift deletion.

    Science.gov (United States)

    Abe, Hideaki; Aoya, Daiki; Takeuchi, Hiro-Aki; Inoue-Murayama, Miho

    2017-07-21

    Neuregulin 3 (NRG3) plays a key role in central nervous system development and is a strong candidate for human mental disorders. Thus, genetic variation in NRG3 may have some impact on a variety of phenotypes in non-mammalian vertebrates. Recently, genome-wide screening for short insertions and deletions in chicken (Gallus gallus) genomes has provided useful information about structural variation in functionally important genes. NRG3 is one such gene that has a putative frameshift deletion in exon 2, resulting in premature termination of translation. Our aims were to characterize the structure of chicken NRG3 and to compare expression patterns between NRG3 isoforms. Depending on the presence or absence of the 2-bp deletion in chicken NRG3, 3 breeds (red junglefowl [RJF], Boris Brown [BB], and Hinai-jidori [HJ]) were genotyped using flanking primers. In the commercial breeds (BB and HJ), approximately 45% of individuals had at least one exon 2 allele with the 2-bp deletion, whereas there was no deletion allele in RJF. The lack of a homozygous mutant indicated the existence of duplicated NRG3 segments in the chicken genome. Indeed, highly conserved elements consisting of exon 1, intron 1, exon 2, and part of intron 2 were found in the reference RJF genome, and quantitative PCR detected copy number variation (CNV) between breeds as well as between individuals. The copy number of conserved elements was significantly higher in chicks harboring the 2-bp deletion in exon 2. We identified 7 novel transcript variants using total mRNA isolated from the amygdala. Novel isoforms were found to lack the exon 2 cassette, which probably harbored the premature termination codon. The relative transcription levels of the newly identified isoforms were almost the same between chick groups with and without the 2-bp deletion, while chicks with the deletion showed significant suppression of the expression of previously reported isoforms. A putative frameshift deletion and CNV in chicken

  16. Brownian Ratchet Mechanism for Faithful Segregation of Low-Copy-Number Plasmids.

    Science.gov (United States)

    Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian

    2017-04-11

    Bacterial plasmids are extrachromosomal DNA that provides selective advantages for bacterial survival. Plasmid partitioning can be remarkably robust. For high-copy-number plasmids, diffusion ensures that both daughter cells inherit plasmids after cell division. In contrast, most low-copy-number plasmids need to be actively partitioned by a conserved tripartite ParA-type system. ParA is an ATPase that binds to chromosomal DNA; ParB is the stimulator of the ParA ATPase and specifically binds to the plasmid at a centromere-like site, parS. ParB stimulation of the ParA ATPase releases ParA from the bacterial chromosome, after which it takes a long time to reset its DNA-binding affinity. We previously demonstrated in vitro that the ParA system can exploit this biochemical asymmetry for directed cargo transport. Multiple ParA-ParB bonds can bridge a parS-coated cargo to a DNA carpet, and they can work collectively as a Brownian ratchet that directs persistent cargo movement with a ParA-depletion zone trailing behind. By extending this model, we suggest that a similar Brownian ratchet mechanism recapitulates the full range of actively segregated plasmid motilities observed in vivo. We demonstrate that plasmid motility is tuned as the replenishment rate of the ParA-depletion zone progressively increases relative to the cargo speed, evolving from diffusion to pole-to-pole oscillation, local excursions, and, finally, immobility. When the plasmid replicates, the daughters largely display motilities similar to that of their mother, except that when the single-focus progenitor is locally excursive, the daughter foci undergo directed segregation. We show that directed segregation maximizes the fidelity of plasmid partition. Given that local excursion and directed segregation are the most commonly observed modes of plasmid motility in vivo, we suggest that the operation of the ParA-type partition system has been shaped by evolution for high fidelity of plasmid segregation

  17. [High-level expression of heterologous protein based on increased copy number in Saccharomyces cerevisiae].

    Science.gov (United States)

    Zhang, Xinjie; He, Peng; Tao, Yong; Yang, Yi

    2013-11-04

    High-level expression system of heterologous protein mediated by internal ribosome entry site (IRES) in Saccharomyces cerevisiae was constructed, which could be used for other applications of S. cerevisiae in metabolic engineering. We constructed co-expression cassette (promoter-mCherry-TIF4631 IRES-URA3) containing promoters Pilv5, Padh2 and Ptdh3 and recombined the co-expression cassette into the genome of W303-1B-A. The URA3+ transformants were selected. By comparing the difference in the mean florescence value of mCherry in transformants, the effect of three promoters was detected in the co-expression cassette. The copy numbers of the interested genes in the genome were determined by Real-Time PCR. We analyzed genetic stability by continuous subculturing transformants in the absence of selection pressure. To verify the application of co-expression cassette, the ORF of mCherry was replaced by beta-galactosidase (LACZ) and xylose reductase (XYL1). The enzyme activities and production of beta-galactosidase and xylose reductase were detected. mCherry has been expressed in the highest-level in transformants with co-expression cassette containing Pilv5 promoter. The highest copy number of DNA fragment integrating in the genome was 47 in transformants containing Pilv5. The engineering strains showed good genetic stability. Xylose reductase was successfully expressed in the co-expression cassette containing Pilv5 promoter and TIF4631 IRES. The highest enzyme activity was 0. 209 U/mg crude protein in the transformants WIX-10. Beta-galactosidase was also expressed successfully. The transformants that had the highest enzyme activity was WIL-1 and the enzyme activity was 12.58 U/mg crude protein. The system mediated by Pilv5 promoter and TIF4631 IRES could express heterologous protein efficiently in S. cerevisiae. This study offered a new strategy for expression of heterologous protein in S. cerevisiae and provided sufficient experimental evidence for metabolic engineering

  18. [Analysis of genomic copy number variations in two sisters with primary amenorrhea and hyperandrogenism].

    Science.gov (United States)

    Zhang, Yanliang; Xu, Qiuyue; Cai, Xuemei; Li, Yixun; Song, Guibo; Wang, Juan; Zhang, Rongchen; Dai, Yong; Duan, Yong

    2015-12-01

    To analyze genomic copy number variations (CNVs) in two sisters with primary amenorrhea and hyperandrogenism. G-banding was performed for karyotype analysis. The whole genome of the two sisters were scanned and analyzed by array-based comparative genomic hybridization (array-CGH). The results were confirmed with real-time quantitative PCR (RT-qPCR). No abnormality was found by conventional G-banded chromosome analysis. Array-CGH has identified 11 identical CNVs from the sisters which, however, overlapped with CNVs reported by the Database of Genomic Variants (http://projects.tcag.ca/variation/). Therefore, they are likely to be benign. In addition, a -8.44 Mb 9p11.1-p13.1 duplication (38,561,587-47,002,387 bp, hg18) and a -80.9 kb 4q13.2 deletion (70,183,990-70,264,889 bp, hg18) were also detected in the elder and younger sister, respectively. The relationship between such CNVs and primary amenorrhea and hyperandrogenism was however uncertain. RT-qPCR results were in accordance with array-CGH. Two CNVs were detected in two sisters by array-CGH, for which further studies are needed to clarify their correlation with primary amenorrhea and hyperandrogenism.

  19. Clinical Relevance of Gene Copy Number Variation in Metastatic Clear Cell Renal Cell Carcinoma.

    Science.gov (United States)

    Nouhaud, François-Xavier; Blanchard, France; Sesboue, Richard; Flaman, Jean-Michel; Sabourin, Jean-Christophe; Pfister, Christian; Di Fiore, Frédéric

    2018-02-23

    Gene copy number variations (CNVs) have been reported to be frequent in renal cell carcinoma (RCC), with potential prognostic value for some. However, their clinical utility, especially to guide treatment of metastatic disease remains to be established. Our objectives were to assess CNVs on a panel of selected genes and determine their clinical relevance in patients who underwent treatment of metastatic RCC. The genetic assessment was performed on frozen tissue samples of clear cell metastatic RCC using quantitative multiplex polymerase chain reaction of short fluorescent fragment method to detect CNVs on a panel of 14 genes of interest. The comparison of the electropherogram obtained from both tumor and normal renal adjacent tissue allowed for CNV identification. The clinical, biologic, and survival characteristics were assessed for their associations with the most frequent CNVs. Fifty patients with clear cell metastatic RCC were included. The CNV rate was 21.4%. The loss of CDKN2A and PLG was associated with a higher tumor stage (P relevance, especially those located on CDKN2A, PLG, and ALDOB, in a homogeneous cohort of patients with clear cell metastatic RCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Copy number variations and genetic admixtures in three Xinjiang ethnic minority groups.

    Science.gov (United States)

    Lou, Haiyi; Li, Shilin; Jin, Wenfei; Fu, Ruiqing; Lu, Dongsheng; Pan, Xinwei; Zhou, Huaigu; Ping, Yuan; Jin, Li; Xu, Shuhua

    2015-04-01

    Xinjiang is geographically located in central Asia, and it has played an important historical role in connecting eastern Eurasian (EEA) and western Eurasian (WEA) people. However, human population genomic studies in this region have been largely underrepresented, especially with respect to studies of copy number variations (CNVs). Here we constructed the first CNV map of the three major ethnic minority groups, the Uyghur, Kazakh and Kirgiz, using Affymetrix Genome-Wide Human SNP Array 6.0. We systematically compared the properties of CNVs we identified in the three groups with the data from representatives of EEA and WEA. The analyses indicated a typical genetic admixture pattern in all three groups with ancestries from both EEA and WEA. We also identified several CNV regions showing significant deviation of allele frequency from the expected genome-wide distribution, which might be associated with population-specific phenotypes. Our study provides the first genome-wide perspective on the CNVs of three major Xinjiang ethnic minority groups and has implications for both evolutionary and medical studies.

  1. Population clustering based on copy number variations detected from next generation sequencing data.

    Science.gov (United States)

    Duan, Junbo; Zhang, Ji-Gang; Wan, Mingxi; Deng, Hong-Wen; Wang, Yu-Ping

    2014-08-01

    Copy number variations (CNVs) can be used as significant bio-markers and next generation sequencing (NGS) provides a high resolution detection of these CNVs. But how to extract features from CNVs and further apply them to genomic studies such as population clustering have become a big challenge. In this paper, we propose a novel method for population clustering based on CNVs from NGS. First, CNVs are extracted from each sample to form a feature matrix. Then, this feature matrix is decomposed into the source matrix and weight matrix with non-negative matrix factorization (NMF). The source matrix consists of common CNVs that are shared by all the samples from the same group, and the weight matrix indicates the corresponding level of CNVs from each sample. Therefore, using NMF of CNVs one can differentiate samples from different ethnic groups, i.e. population clustering. To validate the approach, we applied it to the analysis of both simulation data and two real data set from the 1000 Genomes Project. The results on simulation data demonstrate that the proposed method can recover the true common CNVs with high quality. The results on the first real data analysis show that the proposed method can cluster two family trio with different ancestries into two ethnic groups and the results on the second real data analysis show that the proposed method can be applied to the whole-genome with large sample size consisting of multiple groups. Both results demonstrate the potential of the proposed method for population clustering.

  2. Population-genetic properties of differentiated copy number variations in cattle.

    Science.gov (United States)

    Xu, Lingyang; Hou, Yali; Bickhart, Derek M; Zhou, Yang; Hay, El Hamidi Abdel; Song, Jiuzhou; Sonstegard, Tad S; Van Tassell, Curtis P; Liu, George E

    2016-03-23

    While single nucleotide polymorphism (SNP) is typically the variant of choice for population genetics, copy number variation (CNV) which comprises insertion, deletion and duplication of genomic sequence, is an informative type of genetic variation. CNVs have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. However, CNV differentiation, selection and its population genetic properties are not well understood across diverse populations. We performed a population genetics survey based on CNVs derived from the BovineHD SNP array data of eight distinct cattle breeds. We generated high resolution results that show geographical patterns of variations and genome-wide admixture proportions within and among breeds. Similar to the previous SNP-based studies, our CNV-based results displayed a strong correlation of population structure and geographical location. By conducting three pairwise comparisons among European taurine, African taurine, and indicine groups, we further identified 78 unique CNV regions that were highly differentiated, some of which might be due to selection. These CNV regions overlapped with genes involved in traits related to parasite resistance, immunity response, body size, fertility, and milk production. Our results characterize CNV diversity among cattle populations and provide a list of lineage-differentiated CNVs.

  3. Copy number variants in extended autism spectrum disorder families reveal candidates potentially involved in autism risk.

    Directory of Open Access Journals (Sweden)

    Daria Salyakina

    Full Text Available Copy number variations (CNVs are a major cause of genetic disruption in the human genome with far more nucleotides being altered by duplications and deletions than by single nucleotide polymorphisms (SNPs. In the multifaceted etiology of autism spectrum disorders (ASDs, CNVs appear to contribute significantly to our understanding of the pathogenesis of this complex disease. A unique resource of 42 extended ASD families was genotyped for over 1 million SNPs to detect CNVs that may contribute to ASD susceptibility. Each family has at least one avuncular or cousin pair with ASD. Families were then evaluated for co-segregation of CNVs in ASD patients. We identified a total of five deletions and seven duplications in eleven families that co-segregated with ASD. Two of the CNVs overlap with regions on 7p21.3 and 15q24.1 that have been previously reported in ASD individuals and two additional CNVs on 3p26.3 and 12q24.32 occur near regions associated with schizophrenia. These findings provide further evidence for the involvement of ICA1 and NXPH1 on 7p21.3 in ASD susceptibility and highlight novel ASD candidates, including CHL1, FGFBP3 and POUF41. These studies highlight the power of using extended families for gene discovery in traits with a complex etiology.

  4. β-Defensin genomic copy number does not influence the age of onset in Huntington's Disease.

    Science.gov (United States)

    Vittori, Angelica; Orth, Michael; Roos, Raymund A C; Outeiro, Tiago F; Giorgini, Flaviano; Hollox, Edward J

    2013-01-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by the abnormal expansion of a CAG triplet repeat tract in the huntingtin gene. While the length of this CAG expansion is the major determinant of the age of onset (AO), other genetic factors have also been shown to play a modulatory role. Recent evidence suggests that neuroinflammations is a pivotal factor in the pathogenesis of HD, and that targeting this process may have important therapeutic ramifications. The human β-defensin 2 (hBD2)- encoded by DEFB4- is an antimicrobial peptide that exhibits inducible expression in astrocytes during inflammation and is an important regulator of innate and adaptive immune response. Therefore, DEFB4 may contribute to the neuroinflammatory processes observed in HD. In this study we tested the hypothesis that copy number variation (CNV) of the β-defensin region, including DEFB4, modifies the AO in HD. We genotyped β-defensin CNV in 490 HD individuals using the paralogue ratio test and found no association between β-defensin CNV and onset of HD. We conclude that it is unlikely that DEFB4 plays a role in HD pathogenesis.

  5. DNA Copy-Number Control through Inhibition of Replication Fork Progression

    Directory of Open Access Journals (Sweden)

    Jared T. Nordman

    2014-11-01

    Full Text Available Proper control of DNA replication is essential to ensure faithful transmission of genetic material and prevent chromosomal aberrations that can drive cancer progression and developmental disorders. DNA replication is regulated primarily at the level of initiation and is under strict cell-cycle regulation. Importantly, DNA replication is highly influenced by developmental cues. In Drosophila, specific regions of the genome are repressed for DNA replication during differentiation by the SNF2 domain-containing protein SUUR through an unknown mechanism. We demonstrate that SUUR is recruited to active replication forks and mediates the repression of DNA replication by directly inhibiting replication fork progression instead of functioning as a replication fork barrier. Mass spectrometry identification of SUUR-associated proteins identified the replicative helicase member CDC45 as a SUUR-associated protein, supporting a role for SUUR directly at replication forks. Our results reveal that control of eukaryotic DNA copy number can occur through the inhibition of replication fork progression.

  6. Chromosomal abnormalities and copy number variations in fetal left-sided congenital heart defects.

    Science.gov (United States)

    Jansen, Fenna A R; Hoffer, Mariette J V; van Velzen, Christine L; Plati, Stephani Klingeman; Rijlaarsdam, Marry E B; Clur, Sally-Ann B; Blom, Nico A; Pajkrt, Eva; Bhola, Shama L; Knegt, Alida C; de Boer, Marion A; Haak, Monique C

    2016-02-01

    To demonstrate the spectrum of copy number variants (CNVs) in fetuses with isolated left-sided congenital heart defects (CHDs), and analyse genetic content. Between 2003 and 2012, 200 fetuses were identified with left-sided CHD. Exclusion criteria were chromosomal rearrangements, 22q11.2 microdeletion and/or extra-cardiac malformations (n = 64). We included cases with additional minor anomalies (n = 39), such as single umbilical artery. In 54 of 136 eligible cases, stored material was available for array analysis. CNVs were categorized as either (likely) benign, (likely) pathogenic or of unknown significance. In 18 of the 54 isolated left-sided CHDs we found 28 rare CNVs (prevalence 33%, average 1.6 CNV per person, size 10.6 kb-2.2 Mb). Our interpretation yielded clinically significant CNVs in two of 54 cases (4%) and variants of unknown significance in three other cases (6%). In left-sided CHDs that appear isolated, with normal chromosome analysis and 22q11.2 FISH analysis, array analysis detects clinically significant CNVs. When counselling parents of a fetus with a left-sided CHD it must be taken into consideration that aside from the cardiac characteristics, the presence of extra-cardiac malformations and chromosomal abnormalities influence the treatment plan and prognosis. © 2015 John Wiley & Sons, Ltd.

  7. Copy Number Variations Found in Patients with a Corpus Callosum Abnormality and Intellectual Disability.

    Science.gov (United States)

    Heide, Solveig; Keren, Boris; Billette de Villemeur, Thierry; Chantot-Bastaraud, Sandra; Depienne, Christel; Nava, Caroline; Mignot, Cyril; Jacquette, Aurélia; Fonteneau, Eric; Lejeune, Elodie; Mach, Corinne; Marey, Isabelle; Whalen, Sandra; Lacombe, Didier; Naudion, Sophie; Rooryck, Caroline; Toutain, Annick; Caignec, Cédric Le; Haye, Damien; Olivier-Faivre, Laurence; Masurel-Paulet, Alice; Thauvin-Robinet, Christel; Lesne, Fabien; Faudet, Anne; Ville, Dorothée; des Portes, Vincent; Sanlaville, Damien; Siffroi, Jean-Pierre; Moutard, Marie-Laure; Héron, Delphine

    2017-06-01

    To evaluate the role that chromosomal micro-rearrangements play in patients with both corpus callosum abnormality and intellectual disability, we analyzed copy number variations (CNVs) in patients with corpus callosum abnormality/intellectual disability STUDY DESIGN: We screened 149 patients with corpus callosum abnormality/intellectual disability using Illumina SNP arrays. In 20 patients (13%), we have identified at least 1 CNV that likely contributes to corpus callosum abnormality/intellectual disability phenotype. We confirmed that the most common rearrangement in corpus callosum abnormality/intellectual disability is inverted duplication with terminal deletion of the 8p chromosome (3.2%). In addition to the identification of known recurrent CNVs, such as deletions 6qter, 18q21 (including TCF4), 1q43q44, 17p13.3, 14q12, 3q13, 3p26, and 3q26 (including SOX2), our analysis allowed us to refine the 2 known critical regions associated with 8q21.1 deletion and 19p13.1 duplication relevant for corpus callosum abnormality; report a novel 10p12 deletion including ZEB1 recently implicated in corpus callosum abnormality with corneal dystrophy; and) report a novel pathogenic 7q36 duplication encompassing SHH. In addition, 66 variants of unknown significance were identified in 57 patients encompassed candidate genes. Our results confirm the relevance of using microarray analysis as first line test in patients with corpus callosum abnormality/intellectual disability. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Topoisomerase I copy number alterations as biomarker for irinotecan efficacy in metastatic colorectal cancer

    DEFF Research Database (Denmark)

    Palshof, Jesper Andreas; Hogdall, Estrid Vilma Solyom; Poulsen, Tim Svenstrup

    2017-01-01

    Background No biomarker exists to guide the optimal choice of chemotherapy for patients with metastatic colorectal cancer. We examined the copy numbers (CN) of topoisomerase I (TOP1) as well as the ratios of TOP1/CEN-20 and TOP1/CEN-2 as biomarkers for irinotecan efficacy in patients...... were produced. FISH analysis was performed using two probe-mixes: TOP1/CEN-20 and TOP1/CEN-2. Only samples harboring all three signals (TOP1, CEN-20 and CEN-2) using FISH were included in the analyses. Results In the TOP1/CEN-20 probe-mix the median TOP1- and CEN-20 CN were 4.46 (range: 1.5–9.5) and 2.......00 (range: 0.55–4.55), respectively. The median TOP1- and CEN-2 CN in the TOP1/CEN-2 probe-mix, were 4.57 (range: 1.82–10.43) and 1.98 (range: 1.22–6.14), respectively. The median TOP1/CEN-20 ratio and TOP1/CEN-2 ratio were 1.25 (range: 0.92–2.90) and 2.05 (range: 1.00–6.00), respectively. None...

  9. [Copy number alterations in adult patients with mature B acute lymphoblastic leukemia treated with specific immunochemotherapy].

    Science.gov (United States)

    Ribera, Jordi; Zamora, Lurdes; García, Olga; Hernández-Rivas, Jesús-María; Genescà, Eulàlia; Ribera, Josep-Maria

    2016-12-02

    Unlike Burkitt lymphoma, molecular abnormalities other than C-MYC rearrangements have scarcely been studied in patients with mature B acute lymphoblastic leukemia (B-ALL). The aim of this study was to analyze the frequency and prognostic significance of copy number alterations (CNA) in genes involved in lymphoid differentiation, cell cycle and tumor suppression in adult patients with B-ALL. We have analyzed by multiplex ligation-dependent probe amplification the genetic material from bone marrow at diagnosis from 25 adult B-ALL patients treated with rituximab and specific chemotherapy. The most frequent CNA were alterations in the 14q32.33 region (11 cases, 44%) followed by alterations in the cell cycle regulator genes CDKN2A/B and RB1 (16%). No correlation between the presence of specific CNA and the clinical-biologic features or the response to therapy was found. The high frequency of CNA in the 14q32.33 region, CDKN2A/B and RB1 found in our study could contribute to the aggressiveness and invasiveness of mature B-ALL. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.

  10. Thin and thick primary cutaneous melanomas reveal distinct patterns of somatic copy number alterations.

    Science.gov (United States)

    Montagnani, Valentina; Benelli, Matteo; Apollo, Alessandro; Pescucci, Chiara; Licastro, Danilo; Urso, Carmelo; Gerlini, Gianni; Borgognoni, Lorenzo; Luzzatto, Lucio; Stecca, Barbara

    2016-05-24

    Cutaneous melanoma is one of the most aggressive type of skin tumor. Early stage melanoma can be often cured by surgery; therefore current management guidelines dictate a different approach for thin (thick (>4mm) melanomas. We have carried out whole-exome sequencing in 5 thin and 5 thick fresh-frozen primary cutaneous melanomas. Unsupervised hierarchical clustering analysis of somatic copy number alterations (SCNAs) identified two groups corresponding to thin and thick melanomas. The most striking difference between them was the much greater abundance of SCNAs in thick melanomas, whereas mutation frequency did not significantly change between the two groups. We found novel mutations and focal SCNAs in genes that are embryonic regulators of axon guidance, predominantly in thick melanomas. Analysis of publicly available microarray datasets provided further support for a potential role of Ephrin receptors in melanoma progression. In addition, we have identified a set of SCNAs, including amplification of BRAF and ofthe epigenetic modifier EZH2, that are specific for the group of thick melanomas that developed metastasis during the follow-up. Our data suggest that mutations occur early during melanoma development, whereas SCNAs might be involved in melanoma progression.

  11. Human Y chromosome copy number variation in the next generation sequencing era and beyond.

    Science.gov (United States)

    Massaia, Andrea; Xue, Yali

    2017-05-01

    The human Y chromosome provides a fertile ground for structural rearrangements owing to its haploidy and high content of repeated sequences. The methodologies used for copy number variation (CNV) studies have developed over the years. Low-throughput techniques based on direct observation of rearrangements were developed early on, and are still used, often to complement array-based or sequencing approaches which have limited power in regions with high repeat content and specifically in the presence of long, identical repeats, such as those found in human sex chromosomes. Some specific rearrangements have been investigated for decades; because of their effects on fertility, or their outstanding evolutionary features, the interest in these has not diminished. However, following the flourishing of large-scale genomics, several studies have investigated CNVs across the whole chromosome. These studies sometimes employ data generated within large genomic projects such as the DDD study or the 1000 Genomes Project, and often survey large samples of healthy individuals without any prior selection. Novel technologies based on sequencing long molecules and combinations of technologies, promise to stimulate the study of Y-CNVs in the immediate future.

  12. De novo and rare inherited copy-number variations in the hemiplegic form of cerebral palsy.

    Science.gov (United States)

    Zarrei, Mehdi; Fehlings, Darcy L; Mawjee, Karizma; Switzer, Lauren; Thiruvahindrapuram, Bhooma; Walker, Susan; Merico, Daniele; Casallo, Guillermo; Uddin, Mohammed; MacDonald, Jeffrey R; Gazzellone, Matthew J; Higginbotham, Edward J; Campbell, Craig; deVeber, Gabrielle; Frid, Pam; Gorter, Jan Willem; Hunt, Carolyn; Kawamura, Anne; Kim, Marie; McCormick, Anna; Mesterman, Ronit; Samdup, Dawa; Marshall, Christian R; Stavropoulos, Dimitri J; Wintle, Richard F; Scherer, Stephen W

    2018-02-01

    PurposeHemiplegia is a subtype of cerebral palsy (CP) in which one side of the body is affected. Our earlier study of unselected children with CP demonstrated de novo and clinically relevant rare inherited genomic copy-number variations (CNVs) in 9.6% of participants. Here, we examined the prevalence and types of CNVs specifically in hemiplegic CP.MethodsWe genotyped 97 unrelated probands with hemiplegic CP and their parents. We compared their CNVs to those of 10,851 population controls, in order to identify rare CNVs (<0.1% frequency) that might be relevant to CP. We also sequenced exomes of "CNV-positive" trios.ResultsWe detected de novo CNVs and/or sex chromosome abnormalities in 7/97 (7.2%) of probands, impacting important developmental genes such as GRIK2, LAMA1, DMD, PTPRM, and DIP2C. In 18/97 individuals (18.6%), rare inherited CNVs were found, affecting loci associated with known genomic disorders (17p12, 22q11.21) or involving genes linked to neurodevelopmental disorders.ConclusionWe found an increased rate of de novo CNVs in the hemiplegic CP subtype (7.2%) compared to controls (1%). This result is similar to that for an unselected CP group. Combined with rare inherited CNVs, the genomic data impacts the understanding of the potential etiology of hemiplegic CP in 23/97 (23.7%) of participants.

  13. Use of next-generation sequencing to detect LDLR gene copy number variation in familial hypercholesterolemia.

    Science.gov (United States)

    Iacocca, Michael A; Wang, Jian; Dron, Jacqueline S; Robinson, John F; McIntyre, Adam D; Cao, Henian; Hegele, Robert A

    2017-11-01

    Familial hypercholesterolemia (FH) is a heritable condition of severely elevated LDL cholesterol, caused predominantly by autosomal codominant mutations in the LDL receptor gene ( LDLR ). In providing a molecular diagnosis for FH, the current procedure often includes targeted next-generation sequencing (NGS) panels for the detection of small-scale DNA variants, followed by multiplex ligation-dependent probe amplification (MLPA) in LDLR for the detection of whole-exon copy number variants (CNVs). The latter is essential because ∼10% of FH cases are attributed to CNVs in LDLR ; accounting for them decreases false negative findings. Here, we determined the potential of replacing MLPA with bioinformatic analysis applied to NGS data, which uses depth-of-coverage analysis as its principal method to identify whole-exon CNV events. In analysis of 388 FH patient samples, there was 100% concordance in LDLR CNV detection between these two methods: 38 reported CNVs identified by MLPA were also successfully detected by our NGS method, while 350 samples negative for CNVs by MLPA were also negative by NGS. This result suggests that MLPA can be removed from the routine diagnostic screening for FH, significantly reducing associated costs, resources, and analysis time, while promoting more widespread assessment of this important class of mutations across diagnostic laboratories. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  14. A genome-wide association study of copy number variations with umbilical hernia in swine.

    Science.gov (United States)

    Long, Yi; Su, Ying; Ai, Huashui; Zhang, Zhiyan; Yang, Bin; Ruan, Guorong; Xiao, Shijun; Liao, Xinjun; Ren, Jun; Huang, Lusheng; Ding, Nengshui

    2016-06-01

    Umbilical hernia (UH) is one of the most common congenital defects in pigs, leading to considerable economic loss and serious animal welfare problems. To test whether copy number variations (CNVs) contribute to pig UH, we performed a case-control genome-wide CNV association study on 905 pigs from the Duroc, Landrace and Yorkshire breeds using the Porcine SNP60 BeadChip and penncnv algorithm. We first constructed a genomic map comprising 6193 CNVs that pertain to 737 CNV regions. Then, we identified eight CNVs significantly associated with the risk for UH in the three pig breeds. Six of seven significantly associated CNVs were validated using quantitative real-time PCR. Notably, a rare CNV (CNV14:13030843-13059455) encompassing the NUGGC gene was strongly associated with UH (permutation-corrected P = 0.0015) in Duroc pigs. This CNV occurred exclusively in seven Duroc UH-affected individuals. SNPs surrounding the CNV did not show association signals, indicating that rare CNVs may play an important role in complex pig diseases such as UH. The NUGGC gene has been implicated in human omphalocele and inguinal hernia. Our finding supports that CNVs, including the NUGGC CNV, contribute to the pathogenesis of pig UH. © 2016 Stichting International Foundation for Animal Genetics.

  15. Copy Number Variations in a Population-Based Study of Charcot-Marie-Tooth Disease

    Directory of Open Access Journals (Sweden)

    Helle Høyer

    2015-01-01

    Full Text Available Copy number variations (CNVs are important in relation to diversity and evolution but can sometimes cause disease. The most common genetic cause of the inherited peripheral neuropathy Charcot-Marie-Tooth disease is the PMP22 duplication; otherwise, CNVs have been considered rare. We investigated CNVs in a population-based sample of Charcot-Marie-Tooth (CMT families. The 81 CMT families had previously been screened for the PMP22 duplication and point mutations in 51 peripheral neuropathy genes, and a genetic cause was identified in 37 CMT families (46%. Index patients from the 44 CMT families with an unknown genetic diagnosis were analysed by whole-genome array comparative genomic hybridization to investigate the entire genome for larger CNVs and multiplex ligation-dependent probe amplification to detect smaller intragenomic CNVs in MFN2 and MPZ. One patient had the pathogenic PMP22 duplication not detected by previous methods. Three patients had potentially pathogenic CNVs in the CNTNAP2, LAMA2, or SEMA5A, that is, genes related to neuromuscular or neurodevelopmental disease. Genotype and phenotype correlation indicated likely pathogenicity for the LAMA2 CNV, whereas the CNTNAP2 and SEMA5A CNVs remained potentially pathogenic. Except the PMP22 duplication, disease causing CNVs are rare but may cause CMT in about 1% (95% CI 0–7% of the Norwegian CMT families.

  16. Chromosomal aneuploidies and copy number variations in posterior fossa abnormalities diagnosed by prenatal ultrasonography.

    Science.gov (United States)

    Lei, Ting; Feng, Jie-Ling; Xie, Ying-Jun; Xie, Hong-Ning; Zheng, Ju; Lin, Mei-Fang

    2017-11-01

    To explore the genetic aetiology of fetal posterior fossa abnormalities (PFAs). This study involved cases of PFAs that were identified by prenatal ultrasonographic screening and confirmed postnatally between January 2012 and January 2016. Conventional cytogenetic analyses and chromosomal microarray analysis were performed, and chromosomal aneuploidies and copy number variations (CNVs) were identified. Among 74 cases included in this study, 8 were of Blake's pouch cyst; 7, Dandy-Walker malformation; 11, vermian hypoplasia; 32, enlarged cisterna magna; and 16, cerebellar hypoplasia. The rates of nonbenign chromosomal aberrations (including chromosomal aneuploidies, pathogenic CNVs, and variants of unknown significance) were 2/8 (25.0%), 2/7 (28.5%), 8/11 (72.7%), 7/32 (21.9%), and 6/16 (37.5%), respectively. Cases were also classified as isolated PFAs (30/74), PFAs with other central nervous system (CNS) abnormalities (13/74), or PFAs with extra-CNS structural abnormalities (31/74). No fetuses with isolated PFAs or PFAs accompanied by other CNS abnormalities exhibited chromosomal aneuploidies or pathogenic CNVs. The rate of pathogenic chromosomal aberrations in the remaining fetuses was 17/31 (22.9%). The combined use of chromosomal microarray analysis and karyotype analysis might assist the prenatal diagnosis and management of PFAs, with extra-CNS structural abnormalities being detected by ultrasonography. © 2017 John Wiley & Sons, Ltd.

  17. 8q24 allelic imbalance and MYC gene copy number in primary prostate cancer.

    Science.gov (United States)

    Chen, H; Liu, W; Roberts, W; Hooker, S; Fedor, H; DeMarzo, A; Isaacs, W; Kittles, R A

    2010-09-01

    Four independent regions within 8q24 near the MYC gene are associated with risk for prostate cancer (Pca). Here, we investigated allelic imbalance (AI) at 8q24 risk variants and MYC gene DNA copy number (CN) in 27 primary Pcas. Heterozygotes were observed in 24 of 27 patients at one or more 8q24 markers and 27% of the loci exhibited AI in tumor DNA. The 8q24 risk alleles were preferentially favored in the tumors. Increased MYC gene CN was observed in 33% of tumors, and the co-existence of increased MYC gene CN with AI at risk loci was observed in 86% (P<0.004 exact binomial test) of the informative tumors. No AI was observed in tumors, which did not reveal increased MYC gene CN. Higher Gleason score was associated with tumors exhibiting AI (P=0.04) and also with increased MYC gene CN (P=0.02). Our results suggest that AI at 8q24 and increased MYC gene CN may both be related to high Gleason score in Pca. Our findings also suggest that these two somatic alterations may be due to the same preferential chromosomal duplication event during prostate tumorigenesis.

  18. Functional impact of global rare copy number variation in autism spectrum disorders.

    Science.gov (United States)

    Pinto, Dalila; Pagnamenta, Alistair T; Klei, Lambertus; Anney, Richard; Merico, Daniele; Regan, Regina; Conroy, Judith; Magalhaes, Tiago R; Correia, Catarina; Abrahams, Brett S; Almeida, Joana; Bacchelli, Elena; Bader, Gary D; Bailey, Anthony J; Baird, Gillian; Battaglia, Agatino; Berney, Tom; Bolshakova, Nadia; Bölte, Sven; Bolton, Patrick F; Bourgeron, Thomas; Brennan, Sean; Brian, Jessica; Bryson, Susan E; Carson, Andrew R; Casallo, Guillermo; Casey, Jillian; Chung, Brian H Y; Cochrane, Lynne; Corsello, Christina; Crawford, Emily L; Crossett, Andrew; Cytrynbaum, Cheryl; Dawson, Geraldine; de Jonge, Maretha; Delorme, Richard; Drmic, Irene; Duketis, Eftichia; Duque, Frederico; Estes, Annette; Farrar, Penny; Fernandez, Bridget A; Folstein, Susan E; Fombonne, Eric; Freitag, Christine M; Gilbert, John; Gillberg, Christopher; Glessner, Joseph T; Goldberg, Jeremy; Green, Andrew; Green, Jonathan; Guter, Stephen J; Hakonarson, Hakon; Heron, Elizabeth A; Hill, Matthew; Holt, Richard; Howe, Jennifer L; Hughes, Gillian; Hus, Vanessa; Igliozzi, Roberta; Kim, Cecilia; Klauck, Sabine M; Kolevzon, Alexander; Korvatska, Olena; Kustanovich, Vlad; Lajonchere, Clara M; Lamb, Janine A; Laskawiec, Magdalena; Leboyer, Marion; Le Couteur, Ann; Leventhal, Bennett L; Lionel, Anath C; Liu, Xiao-Qing; Lord, Catherine; Lotspeich, Linda; Lund, Sabata C; Maestrini, Elena; Mahoney, William; Mantoulan, Carine; Marshall, Christian R; McConachie, Helen; McDougle, Christopher J; McGrath, Jane; McMahon, William M; Merikangas, Alison; Migita, Ohsuke; Minshew, Nancy J; Mirza, Ghazala K; Munson, Jeff; Nelson, Stanley F; Noakes, Carolyn; Noor, Abdul; Nygren, Gudrun; Oliveira, Guiomar; Papanikolaou, Katerina; Parr, Jeremy R; Parrini, Barbara; Paton, Tara; Pickles, Andrew; Pilorge, Marion; Piven, Joseph; Ponting, Chris P; Posey, David J; Poustka, Annemarie; Poustka, Fritz; Prasad, Aparna; Ragoussis, Jiannis; Renshaw, Katy; Rickaby, Jessica; Roberts, Wendy; Roeder, Kathryn; Roge, Bernadette; Rutter, Michael L; Bierut, Laura J; Rice, John P; Salt, Jeff; Sansom, Katherine; Sato, Daisuke; Segurado, Ricardo; Sequeira, Ana F; Senman, Lili; Shah, Naisha; Sheffield, Val C; Soorya, Latha; Sousa, Inês; Stein, Olaf; Sykes, Nuala; Stoppioni, Vera; Strawbridge, Christina; Tancredi, Raffaella; Tansey, Katherine; Thiruvahindrapduram, Bhooma; Thompson, Ann P; Thomson, Susanne; Tryfon, Ana; Tsiantis, John; Van Engeland, Herman; Vincent, John B; Volkmar, Fred; Wallace, Simon; Wang, Kai; Wang, Zhouzhi; Wassink, Thomas H; Webber, Caleb; Weksberg, Rosanna; Wing, Kirsty; Wittemeyer, Kerstin; Wood, Shawn; Wu, Jing; Yaspan, Brian L; Zurawiecki, Danielle; Zwaigenbaum, Lonnie; Buxbaum, Joseph D; Cantor, Rita M; Cook, Edwin H; Coon, Hilary; Cuccaro, Michael L; Devlin, Bernie; Ennis, Sean; Gallagher, Louise; Geschwind, Daniel H; Gill, Michael; Haines, Jonathan L; Hallmayer, Joachim; Miller, Judith; Monaco, Anthony P; Nurnberger, John I; Paterson, Andrew D; Pericak-Vance, Margaret A; Schellenberg, Gerard D; Szatmari, Peter; Vicente, Astrid M; Vieland, Veronica J; Wijsman, Ellen M; Scherer, Stephen W; Sutcliffe, James S; Betancur, Catalina

    2010-07-15

    The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.

  19. Copy number variation in subjects with major depressive disorder who attempted suicide.

    Science.gov (United States)

    Perlis, Roy H; Ruderfer, Douglas; Hamilton, Steven P; Ernst, Carl

    2012-01-01

    Suicide is one of the top ten leading causes of death in North America and represents a major public health burden, particularly for people with Major Depressive disorder (MD). Many studies have suggested that suicidal behavior runs in families, however, identification of genomic loci that drive this efffect remain to be identified. Using subjects collected as part of STAR D, we genotyped 189 subjects with MD with history of a suicide attempt and 1073 subjects with Major Depressive disorder that had never attempted suicide. Copy Number Variants (CNVs) were called in Birdsuite and analyzed in PLINK. We found a set of CNVs present in the suicide attempter group that were not present in in the non-attempter group including in SNTG2 and MACROD2 - two brain expressed genes previously linked to psychopathology; however, these results failed to reach genome-wide signifigance. These data suggest potential CNVs to be investigated further in relation to suicide attempts in MD using large sample sizes.

  20. Genome-wide association study identified copy number variants important for appendicular lean mass.

    Science.gov (United States)

    Ran, Shu; Liu, Yong-Jun; Zhang, Lei; Pei, Yufang; Yang, Tie-Lin; Hai, Rong; Han, Ying-Ying; Lin, Yong; Tian, Qing; Deng, Hong-Wen

    2014-01-01

    Skeletal muscle is a major component of the human body. Age-related loss of muscle mass and function contributes to some public health problems such as sarcopenia and osteoporosis. Skeletal muscle, mainly composed of appendicular lean mass (ALM), is a heritable trait. Copy number variation (CNV) is a common type of human genome variant which may play an important role in the etiology of many human diseases. In this study, we performed genome-wide association analyses of CNV for ALM in 2,286 Caucasian subjects. We then replicated the major findings in 1,627 Chinese subjects. Two CNVs, CNV1191 and CNV2580, were detected to be associated with ALM (p = 2.26×10(-2) and 3.34×10(-3), respectively). In the Chinese replication sample, the two CNVs achieved p-values of 3.26×10(-2) and 0.107, respectively. CNV1191 covers a gene, GTPase of the immunity-associated protein family (GIMAP1), which is important for skeletal muscle cell survival/death in humans. CNV2580 is located in the Serine hydrolase-like protein (SERHL) gene, which plays an important role in normal peroxisome function and skeletal muscle growth in response to mechanical stimuli. In summary, our study suggested two novel CNVs and the related genes that may contribute to variation in ALM.

  1. Genome-wide association study identified copy number variants important for appendicular lean mass.

    Directory of Open Access Journals (Sweden)

    Shu Ran

    Full Text Available Skeletal muscle is a major component of the human body. Age-related loss of muscle mass and function contributes to some public health problems such as sarcopenia and osteoporosis. Skeletal muscle, mainly composed of appendicular lean mass (ALM, is a heritable trait. Copy number variation (CNV is a common type of human genome variant which may play an important role in the etiology of many human diseases. In this study, we performed genome-wide association analyses of CNV for ALM in 2,286 Caucasian subjects. We then replicated the major findings in 1,627 Chinese subjects. Two CNVs, CNV1191 and CNV2580, were detected to be associated with ALM (p = 2.26×10(-2 and 3.34×10(-3, respectively. In the Chinese replication sample, the two CNVs achieved p-values of 3.26×10(-2 and 0.107, respectively. CNV1191 covers a gene, GTPase of the immunity-associated protein family (GIMAP1, which is important for skeletal muscle cell survival/death in humans. CNV2580 is located in the Serine hydrolase-like protein (SERHL gene, which plays an important role in normal peroxisome function and skeletal muscle growth in response to mechanical stimuli. In summary, our study suggested two novel CNVs and the related genes that may contribute to variation in ALM.

  2. panelcn.MOPS: Copy-number detection in targeted NGS panel data for clinical diagnostics.

    Science.gov (United States)

    Povysil, Gundula; Tzika, Antigoni; Vogt, Julia; Haunschmid, Verena; Messiaen, Ludwine; Zschocke, Johannes; Klambauer, Günter; Hochreiter, Sepp; Wimmer, Katharina

    2017-07-01

    Targeted next-generation-sequencing (NGS) panels have largely replaced Sanger sequencing in clinical diagnostics. They allow for the detection of copy-number variations (CNVs) in addition to single-nucleotide variants and small insertions/deletions. However, existing computational CNV detection methods have shortcomings regarding accuracy, quality control (QC), incidental findings, and user-friendliness. We developed panelcn.MOPS, a novel pipeline for detecting CNVs in targeted NGS panel data. Using data from 180 samples, we compared panelcn.MOPS with five state-of-the-art methods. With panelcn.MOPS leading the field, most methods achieved comparably high accuracy. panelcn.MOPS reliably detected CNVs ranging in size from part of a region of interest (ROI), to whole genes, which may comprise all ROIs investigated in a given sample. The latter is enabled by analyzing reads from all ROIs of the panel, but presenting results exclusively for user-selected genes, thus avoiding incidental findings. Additionally, panelcn.MOPS offers QC criteria not only for samples, but also for individual ROIs within a sample, which increases the confidence in called CNVs. panelcn.MOPS is freely available both as R package and standalone software with graphical user interface that is easy to use for clinical geneticists without any programming experience. panelcn.MOPS combines high sensitivity and specificity with user-friendliness rendering it highly suitable for routine clinical diagnostics. © 2017 The Authors. Human Mutation published by Wiley Periodicals, Inc.

  3. Integrative analysis of genome-wide gene copy number changes and gene expression in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Verena Jabs

    Full Text Available Non-small cell lung cancer (NSCLC represents a genomically unstable cancer type with extensive copy number aberrations. The relationship of gene copy number alterations and subsequent mRNA levels has only fragmentarily been described. The aim of this study was to conduct a genome-wide analysis of gene copy number gains and corresponding gene expression levels in a clinically well annotated NSCLC patient cohort (n = 190 and their association with survival. While more than half of all analyzed gene copy number-gene expression pairs showed statistically significant correlations (10,296 of 18,756 genes, high correlations, with a correlation coefficient >0.7, were obtained only in a subset of 301 genes (1.6%, including KRAS, EGFR and MDM2. Higher correlation coefficients were associated with higher copy number and expression levels. Strong correlations were frequently based on few tumors with high copy number gains and correspondingly increased mRNA expression. Among the highly correlating genes, GO groups associated with posttranslational protein modifications were particularly frequent, including ubiquitination and neddylation. In a meta-analysis including 1,779 patients we found that survival associated genes were overrepresented among highly correlating genes (61 of the 301 highly correlating genes, FDR adjusted p<0.05. Among them are the chaperone CCT2, the core complex protein NUP107 and the ubiquitination and neddylation associated protein CAND1. In conclusion, in a comprehensive analysis we described a distinct set of highly correlating genes. These genes were found to be overrepresented among survival-associated genes based on gene expression in a large collection of publicly available datasets.

  4. Genome-wide gene copy number and expression analysis of primary gastric tumors and gastric cancer cell lines

    International Nuclear Information System (INIS)

    Junnila, Siina; Kokkola, Arto; Karjalainen-Lindsberg, Marja-Liisa; Puolakkainen, Pauli; Monni, Outi

    2010-01-01

    Gastric cancer is one of the most common malignancies worldwide and the second most common cause of cancer related death. Gene copy number alterations play an important role in the development of gastric cancer and a change in gene copy number is one of the main mechanisms for a cancer cell to control the expression of potential oncogenes and tumor suppressor genes. To highlight genes of potential biological and clinical relevance in gastric cancer, we carried out a systematic array-based survey of gene expression and copy number levels in primary gastric tumors and gastric cancer cell lines and validated the results using an affinity capture based transcript analysis (TRAC assay) and real-time qRT-PCR. Integrated microarray analysis revealed altogether 256 genes that were located in recurrent regions of gains or losses and had at least a 2-fold copy number- associated change in their gene expression. The expression levels of 13 of these genes, ALPK2, ASAP1, CEACAM5, CYP3A4, ENAH, ERBB2, HHIPL2, LTB4R, MMP9, PERLD1, PNMT, PTPRA, and OSMR, were validated in a total of 118 gastric samples using either the qRT-PCR or TRAC assay. All of these 13 genes were differentially expressed between cancerous samples and nonmalignant tissues (p < 0.05) and the association between copy number and gene expression changes was validated for nine (69.2%) of these genes (p < 0.05). In conclusion, integrated gene expression and copy number microarray analysis highlighted genes that may be critically important for gastric carcinogenesis. TRAC and qRT-PCR analyses validated the microarray results and therefore the role of these genes as potential biomarkers for gastric cancer

  5. Mitochondrial DNA Copy Number in Peripheral Blood Is Independently Associated with Visceral Fat Accumulation in Healthy Young Adults

    Directory of Open Access Journals (Sweden)

    Jee-Yon Lee

    2014-01-01

    Full Text Available Aims. Visceral obesity is associated with an increased risk of cardiometabolic diseases and it is important to identify the underlying mechanisms. There is growing evidence that mitochondrial dysfunction is associated with metabolic disturbances related to visceral obesity. In addition, maintaining mitochondrial DNA (mtDNA copy number is important for preserving mitochondrial function. Therefore, we investigated the relationship between mtDNA copy number and visceral fat in healthy young adults. Methods. A total of 94 healthy young subjects were studied. Biomarkers of metabolic risk factors were assessed along with body composition by computed tomography. mtDNA copy number was measured in peripheral leukocytes using real-time polymerase chain reaction (PCR methods. Results. The mtDNA copy number correlated with BMI (r=-0.22, P=0.04, waist circumference (r=-0.23, P=0.03, visceral fat area (r=-0.28, P=-0.01, HDL-cholesterol levels (r=0.25, P=0.02, and hs-CRP (r=0.32, P=0.02 after adjusting for age and sex. Both stepwise and nonstepwise multiple regression analyses confirmed that visceral fat area was independently associated with mtDNA copy number (β=-0.33, P<0.01, β=0.32, and P=0.03, resp.. Conclusions. An independent association between mtDNA content and visceral adiposity was identified. These data suggest that mtDNA copy number is a potential predictive marker for metabolic disturbances. Further studies are required to understand the causality and clinical significance of our findings.

  6. High incidence of recurrent copy number variants in patients with isolated and syndromic Müllerian aplasia.

    Science.gov (United States)

    Nik-Zainal, Serena; Strick, Reiner; Storer, Mekayla; Huang, Ni; Rad, Roland; Willatt, Lionel; Fitzgerald, Tomas; Martin, Vicki; Sandford, Richard; Carter, Nigel P; Janecke, Andreas R; Renner, Stefan P; Oppelt, Patricia G; Oppelt, Peter; Schulze, Christine; Brucker, Sara; Hurles, Matthew; Beckmann, Matthias W; Strissel, Pamela L; Shaw-Smith, Charles

    2011-03-01

    Congenital malformations involving the Müllerian ducts are observed in around 5% of infertile women. Complete aplasia of the uterus, cervix, and upper vagina, also termed Müllerian aplasia or Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome, occurs with an incidence of around 1 in 4500 female births, and occurs in both isolated and syndromic forms. Previous reports have suggested that a proportion of cases, especially syndromic cases, are caused by variation in copy number at different genomic loci. In order to obtain an overview of the contribution of copy number variation to both isolated and syndromic forms of Müllerian aplasia, copy number assays were performed in a series of 63 cases, of which 25 were syndromic and 38 isolated. A high incidence (9/63, 14%) of recurrent copy number variants in this cohort is reported here. These comprised four cases of microdeletion at 16p11.2, an autism susceptibility locus not previously associated with Müllerian aplasia, four cases of microdeletion at 17q12, and one case of a distal 22q11.2 microdeletion. Microdeletions at 16p11.2 and 17q12 were found in 4/38 (10.5%) cases with isolated Müllerian aplasia, and at 16p11.2, 17q12 and 22q11.2 (distal) in 5/25 cases (20%) with syndromic Müllerian aplasia. The finding of microdeletion at 16p11.2 in 2/38 (5%) of isolated and 2/25 (8%) of syndromic cases suggests a significant contribution of this copy number variant alone to the pathogenesis of Müllerian aplasia. Overall, the high incidence of recurrent copy number variants in all forms of Müllerian aplasia has implications for the understanding of the aetiopathogenesis of the condition, and for genetic counselling in families affected by it.

  7. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Science.gov (United States)

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  8. Engineered ribosomal RNA operon copy-number variants of E. coli reveal the evolutionary trade-offs shaping rRNA operon number

    Science.gov (United States)

    Gyorfy, Zsuzsanna; Draskovits, Gabor; Vernyik, Viktor; Blattner, Frederick F.; Gaal, Tamas; Posfai, Gyorgy

    2015-01-01

    Ribosomal RNA (rrn) operons, characteristically present in several copies in bacterial genomes (7 in E. coli), play a central role in cellular physiology. We investigated the factors determining the optimal number of rrn operons in E. coli by constructing isogenic variants with 5–10 operons. We found that the total RNA and protein content, as well as the size of the cells reflected the number of rrn operons. While growth parameters showed only minor differences, competition experiments revealed a clear pattern: 7–8 copies were optimal under conditions of fluctuating, occasionally rich nutrient influx and lower numbers were favored in stable, nutrient-limited environments. We found that the advantages of quick adjustment to nutrient availability, rapid growth and economic regulation of ribosome number all contribute to the selection of the optimal rrn operon number. Our results suggest that the wt rrn operon number of E. coli reflects the natural, ‘feast and famine’ life-style of the bacterium, however, different copy numbers might be beneficial under different environmental conditions. Understanding the impact of the copy number of rrn operons on the fitness of the cell is an important step towards the creation of functional and robust genomes, the ultimate goal of synthetic biology. PMID:25618851

  9. Tumor Cell-Free DNA Copy Number Instability Predicts Therapeutic Response to Immunotherapy.

    Science.gov (United States)

    Weiss, Glen J; Beck, Julia; Braun, Donald P; Bornemann-Kolatzki, Kristen; Barilla, Heather; Cubello, Rhiannon; Quan, Walter; Sangal, Ashish; Khemka, Vivek; Waypa, Jordan; Mitchell, William M; Urnovitz, Howard; Schütz, Ekkehard

    2017-09-01

    Purpose: Chromosomal instability is a fundamental property of cancer, which can be quantified by next-generation sequencing (NGS) from plasma/serum-derived cell-free DNA (cfDNA). We hypothesized that cfDNA could be used as a real-time surrogate for imaging analysis of disease status as a function of response to immunotherapy and as a more reliable tool than tumor biomarkers. Experimental Design: Plasma cfDNA sequences from 56 patients with diverse advanced cancers were prospectively collected and analyzed in a single-blind study for copy number variations, expressed as a quantitative chromosomal number instability (CNI) score versus 126 noncancer controls in a training set of 23 and a blinded validation set of 33. Tumor biomarker concentrations and a surrogate marker for T regulatory cells (Tregs) were comparatively analyzed. Results: Elevated CNI scores were observed in 51 of 56 patients prior to therapy. The blinded validation cohort provided an overall prediction accuracy of 83% (25/30) and a positive predictive value of CNI score for progression of 92% (11/12). The combination of CNI score before cycle (Cy) 2 and 3 yielded a correct prediction for progression in all 13 patients. The CNI score also correctly identified cases of pseudo-tumor progression from hyperprogression. Before Cy2 and Cy3, there was no significant correlation for protein tumor markers, total cfDNA, or surrogate Tregs. Conclusions: Chromosomal instability quantification in plasma cfDNA can serve as an early indicator of response to immunotherapy. The method has the potential to reduce health care costs and disease burden for cancer patients following further validation. Clin Cancer Res; 23(17); 5074-81. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Novel Somatic Copy Number Alteration Identified for Cervical Cancer in the Mexican American Population

    Directory of Open Access Journals (Sweden)

    Alireza Torabi

    2016-08-01

    Full Text Available Cervical cancer affects millions of Americans, but the rate for cervical cancer in the Mexican American is approximately twice that for non-Mexican Americans. The etiologies of cervical cancer are still not fully understood. A number of somatic mutations, including several copy number alterations (CNAs, have been identified in the pathogenesis of cervical carcinomas in non-Mexican Americans. Thus, the purpose of this study was to investigate CNAs in association with cervical cancer in the Mexican American population. We conducted a pilot study of genome-wide CNA analysis using 2.5 million markers in four diagnostic groups: reference (n = 125, low grade dysplasia (cervical intraepithelial neoplasia (CIN-I, n = 4, high grade dysplasia (CIN-II and -III, n = 5 and invasive carcinoma (squamous cell carcinoma (SCC, n = 5 followed by data analyses using Partek. We observed a statistically-significant difference of CNA burden between case and reference groups of different sizes (>100 kb, 10–100 kb and 1–10 kb of CNAs that included deletions and amplifications, e.g., a statistically-significant difference of >100 kb deletions was observed between the reference (6.6% and pre-cancer and cancer (91.3% groups. Recurrent aberrations of 98 CNA regions were also identified in cases only. However, none of the CNAs have an impact on cancer progression. A total of 32 CNA regions identified contained tumor suppressor genes and oncogenes. Moreover, the pathway analysis revealed endometrial cancer and estrogen signaling pathways associated with this cancer (p < 0.05 using Kyoto Encyclopedia of Genes and Genomes (KEGG. This is the first report of CNAs identified for cervical cancer in the U.S. Latino population using high density markers. We are aware of the small sample size in the study. Thus, additional studies with a larger sample are needed to confirm the current findings.

  11. High quality copy number and genotype data from FFPE samples using Molecular Inversion Probe (MIP) microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuker; Carlton, Victoria E.H.; Karlin-Neumann, George; Sapolsky, Ronald; Zhang, Li; Moorhead, Martin; Wang, Zhigang C.; Richardson, Andrea L.; Warren, Robert; Walther, Axel; Bondy, Melissa; Sahin, Aysegul; Krahe, Ralf; Tuna, Musaffe; Thompson, Patricia A.; Spellman, Paul T.; Gray, Joe W.; Mills, Gordon B.; Faham, Malek

    2009-02-24

    A major challenge facing DNA copy number (CN) studies of tumors is that most banked samples with extensive clinical follow-up information are Formalin-Fixed Paraffin Embedded (FFPE). DNA from FFPE samples generally underperforms or suffers high failure rates compared to fresh frozen samples because of DNA degradation and cross-linking during FFPE fixation and processing. As FFPE protocols may vary widely between labs and samples may be stored for decades at room temperature, an ideal FFPE CN technology should work on diverse sample sets. Molecular Inversion Probe (MIP) technology has been applied successfully to obtain high quality CN and genotype data from cell line and frozen tumor DNA. Since the MIP probes require only a small ({approx}40 bp) target binding site, we reasoned they may be well suited to assess degraded FFPE DNA. We assessed CN with a MIP panel of 50,000 markers in 93 FFPE tumor samples from 7 diverse collections. For 38 FFPE samples from three collections we were also able to asses CN in matched fresh frozen tumor tissue. Using an input of 37 ng genomic DNA, we generated high quality CN data with MIP technology in 88% of FFPE samples from seven diverse collections. When matched fresh frozen tissue was available, the performance of FFPE DNA was comparable to that of DNA obtained from matched frozen tumor (genotype concordance averaged 99.9%), with only a modest loss in performance in FFPE. MIP technology can be used to generate high quality CN and genotype data in FFPE as well as fresh frozen samples.

  12. Epigenetics of autism-related impairment: copy number variation and maternal infection.

    Science.gov (United States)

    Mazina, Varvara; Gerdts, Jennifer; Trinh, Sandy; Ankenman, Katy; Ward, Tracey; Dennis, Megan Y; Girirajan, Santhosh; Eichler, Evan E; Bernier, Raphael

    2015-01-01

    Epidemiological data have suggested maternal infection and fever to be associated with increased risk of autism spectrum disorder (ASD). Animal studies show that gestational infections perturb fetal brain development and result in offspring with the core features of autism and have demonstrated that behavioral effects of maternal immune activation are dependent on genetic susceptibility. The goal of this study was to explore the impact of ASD-associated copy number variants (CNVs) and prenatal maternal infection on clinical severity of ASD within a dataset of prenatal history and complete genetic and phenotypic findings. We analyzed data from the Simons Simplex Collection sample including 1971 children with a diagnosis of ASD aged 4 to 18 years who underwent array comparative genomic hybridization screening. Information on infection and febrile episodes during pregnancy was collected through parent interview. ASD severity was clinically measured through parent-reported interview and questionnaires. We found significant interactive effects between the presence of CNVs and maternal infection during pregnancy on autistic symptomatology, such that individuals with CNVs and history of maternal infection demonstrated increased rates of social communicative impairments and repetitive/restricted behaviors. In contrast, no significant interactions were found between presence of CNVs and prenatal infections on cognitive and adaptive functioning of individuals with ASD. Our findings support a gene-environment interaction model of autism impairment, in that individuals with ASD-associated CNVs are more susceptible to the effects of maternal infection and febrile episodes in pregnancy on behavioral outcomes and suggest that these effects are specific to ASD rather than to global neurodevelopment.

  13. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data

    KAUST Repository

    Sepú lveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G

    2013-01-01

    Background: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model.Results: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates.Conclusions: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. 2013 Seplveda et al.; licensee BioMed Central Ltd.

  14. High-resolution copy-number variation map reflects human olfactory receptor diversity and evolution.

    Directory of Open Access Journals (Sweden)

    Yehudit Hasin

    2008-11-01

    Full Text Available Olfactory receptors (ORs, which are involved in odorant recognition, form the largest mammalian protein superfamily. The genomic content of OR genes is considerably reduced in humans, as reflected by the relatively small repertoire size and the high fraction ( approximately 55% of human pseudogenes. Since several recent low-resolution surveys suggested that OR genomic loci are frequently affected by copy-number variants (CNVs, we hypothesized that CNVs may play an important role in the evolution of the human olfactory repertoire. We used high-resolution oligonucleotide tiling microarrays to detect CNVs across 851 OR gene and pseudogene loci. Examining genomic DNA from 25 individuals with ancestry from three populations, we identified 93 OR gene loci and 151 pseudogene loci affected by CNVs, generating a mosaic of OR dosages across persons. Our data suggest that approximately 50% of the CNVs involve more than one OR, with the largest CNV spanning 11 loci. In contrast to earlier reports, we observe that CNVs are more frequent among OR pseudogenes than among intact genes, presumably due to both selective constraints and CNV formation biases. Furthermore, our results show an enrichment of CNVs among ORs with a close human paralog or lacking a one-to-one ortholog in chimpanzee. Interestingly, among the latter we observed an enrichment in CNV losses over gains, a finding potentially related to the known diminution of the human OR repertoire. Quantitative PCR experiments performed for 122 sampled ORs agreed well with the microarray results and uncovered 23 additional CNVs. Importantly, these experiments allowed us to uncover nine common deletion alleles that affect 15 OR genes and five pseudogenes. Comparison to the chimpanzee reference genome revealed that all of the deletion alleles are human derived, therefore indicating a profound effect of human-specific deletions on the individual OR gene content. Furthermore, these deletion alleles may be used

  15. Rare Copy Number Variants in a Population Based Investigation of Hypoplastic Right Heart Syndrome

    Science.gov (United States)

    Dimopoulos, Aggeliki; Sicko, Robert J.; Kay, Denise M.; Rigler, Shannon L.; Druschel, Charlotte M.; Caggana, Michele; Browne, Marilyn L.; Fan, Ruzong; Romitti, Paul A.; Brody, Lawrence C.; Mills, James L.

    2016-01-01

    Background Hypoplastic right heart syndrome (HRHS) is a rare congenital defect characterized by underdevelopment of the right heart structures commonly accompanied by an atrial septal defect. Familial HRHS reports suggest genetic factor involvement. We examined the role of copy number variants (CNVs) in HRHS. Methods We genotyped 32 HRHS cases identified from all New York State live births (1998–2005) using Illumina HumanOmni2.5 microarrays. CNVs were called with PennCNV and prioritized if they were ≥20Kb, contained ≥10 SNPs and had minimal overlap with CNVs from in-house controls, the Database of Genomic Variants, HapMap3 and CHOP database. Results We identified 28 CNVs in 17 cases; several encompassed genes important for right heart development. One case had a 2p16–2p23 duplication spanning LBH, a limb and heart development transcription factor. Lbh mis-expression results in right ventricular hypoplasia and pulmonary valve defects. This duplication also encompassed SOS1, a factor associated with pulmonary valve stenosis in Noonan syndrome. Sos1−/− mice display thin and poorly trabeculated ventricles. In another case, we identified a 1.5Mb deletion associated with Williams Beuren syndrome, a disorder that includes valvular malformations. A third case had a 24Kb deletion upstream of the TGFβ ligand ITGB8. Embryos genetically null for Itgb8, and its intracellular interactant Band 4.1B, display lethal cardiac phenotypes. Conclusions To our knowledge, this is the first study of CNVs in HRHS. We identified several rare CNVs that overlap genes related to right ventricular wall and valve development, suggesting that genetics plays a role in HRHS and providing clues for further investigation. PMID:28009100

  16. Copy Number Variation in Obsessive-Compulsive Disorder and Tourette Syndrome: A Cross-Disorder Study

    Science.gov (United States)

    McGrath, Lauren M.; Yu, Dongmei; Marshall, Christian; Davis, Lea K.; Thiruvahindrapuram, Bhooma; Li, Bingbin; Cappi, Carolina; Gerber, Gloria; Wolf, Aaron; Schroeder, Frederick A.; Osiecki, Lisa; O’Dushlaine, Colm; Kirby, Andrew; Illmann, Cornelia; Haddad, Stephen; Gallagher, Patience; Fagerness, Jesen A.; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Bienvenu, O. Joseph; Black, Donald W.; Bloch, Michael H.; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Cath, Danielle C.; Cavallini, Maria C.; Chouinard, Sylvain; Coric, Vladimir; Cullen, Bernadette; Delorme, Richard; Denys, Damiaan; Derks, Eske M.; Dion, Yves; Rosário, Maria C.; Eapen, Valsama; Evans, Patrick; Falkai, Peter; Fernandez, Thomas; Garrido, Helena; Geller, Daniel; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Grünblatt, Edna; Heiman, Gary A.; Hemmings, Sian M.J.; Herrera, Luis D.; Hounie, Ana G.; Jankovic, Joseph; Kennedy, James L; King, Robert A.; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Lochner, Christine; Lowe, Thomas L.; Lyon, Gholson J.; Macciardi, Fabio; Maier, Wolfgang; McCracken, James T.; McMahon, William; Murphy, Dennis L.; Naarden, Allan L; Neale, Benjamin M; Nurmi, Erika; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark; Robertson, Mary M.; Rosenberg, David; Rouleau, Guy A.; Ruhrmann, Stephan; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Tischfield, Jay A.; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R.; Shugart, Yin Yao; Miguel, Euripedes C.; Nicolini, Humberto; Oostra, Ben A.; Moessner, Rainald; Wagner, Michael; Ruiz-Linares, Andres; Heutink, Peter; Nestadt, Gerald; Freimer, Nelson; Petryshen, Tracey; Posthuma, Danielle; Jenike, Michael A.; Cox, Nancy J.; Hanna, Gregory L.; Brentani, Helena; Scherer, Stephen W.; Arnold, Paul D.; Stewart, S. Evelyn; Mathews, Carol A.; Knowles, James A.; Cook, Edwin H.; Pauls, David L.; Wang, Kai; Scharf, Jeremiah M.

    2014-01-01

    Objective Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable, neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500kb), rare (<1%) copy number variants (CNVs) in OCD and the largest genome-wide CNV analysis in TS to date. Method The primary analyses utilized a cross-disorder design for 2,699 patients (1,613 ascertained for OCD, 1,086 ascertained for TS) and 1,789 controls. Parental data facilitated a de novo analysis in 348 OCD trios. Results Although no global CNV burden was detected in the cross-disorder analysis or in secondary, disease-specific analyses, there was a 3.3-fold increased burden of large deletions previously associated with other neurodevelopmental disorders (p=.09). Half of these neurodevelopmental deletions were located in a single locus, 16p13.11 (5 patient deletions: 0 control deletions, p=0.08 in current study, p=0.025 compared to published controls). Three 16p13.11 deletions were confirmed de novo, providing further support to the etiological significance of this region. The overall OCD de novo rate was 1.4%, which is intermediate between published rates in controls (0.7%) and in autism or schizophrenia (2–4%). Conclusion Several converging lines of evidence implicate 16p13.11 deletions in OCD, with weaker evidence for a role in TS. The trend toward increased overall neurodevelopmental CNV burden in TS and OCD suggests that deletions previously associated with other neurodevelopmental disorders may also contribute to these phenotypes. PMID:25062598

  17. Systematic Prioritization and Integrative Analysis of Copy Number Variations in Schizophrenia Reveal Key Schizophrenia Susceptibility Genes

    Science.gov (United States)

    Luo, Xiongjian; Huang, Liang; Han, Leng; Luo, Zhenwu; Hu, Fang; Tieu, Roger; Gan, Lin

    2014-01-01

    Schizophrenia is a common mental disorder with high heritability and strong genetic heterogeneity. Common disease-common variants hypothesis predicts that schizophrenia is attributable in part to common genetic variants. However, recent studies have clearly demonstrated that copy number variations (CNVs) also play pivotal roles in schizophrenia susceptibility and explain a proportion of missing heritability. Though numerous CNVs have been identified, many of the regions affected by CNVs show poor overlapping among different studies, and it is not known whether the genes disrupted by CNVs contribute to the risk of schizophrenia. By using cumulative scoring, we systematically prioritized the genes affected by CNVs in schizophrenia. We identified 8 top genes that are frequently disrupted by CNVs, including NRXN1, CHRNA7, BCL9, CYFIP1, GJA8, NDE1, SNAP29, and GJA5. Integration of genes affected by CNVs with known schizophrenia susceptibility genes (from previous genetic linkage and association studies) reveals that many genes disrupted by CNVs are also associated with schizophrenia. Further protein-protein interaction (PPI) analysis indicates that protein products of genes affected by CNVs frequently interact with known schizophrenia-associated proteins. Finally, systematic integration of CNVs prioritization data with genetic association and PPI data identifies key schizophrenia candidate genes. Our results provide a global overview of genes impacted by CNVs in schizophrenia and reveal a densely interconnected molecular network of de novo CNVs in schizophrenia. Though the prioritized top genes represent promising schizophrenia risk genes, further work with different prioritization methods and independent samples is needed to confirm these findings. Nevertheless, the identified key candidate genes may have important roles in the pathogenesis of schizophrenia, and further functional characterization of these genes may provide pivotal targets for future therapeutics and

  18. Rare Copy Number Variations in Adults with Tetralogy of Fallot Implicate Novel Risk Gene Pathways

    Science.gov (United States)

    Costain, Gregory; Merico, Daniele; Migita, Ohsuke; Liu, Ben; Yuen, Tracy; Rickaby, Jessica; Thiruvahindrapuram, Bhooma; Marshall, Christian R.; Scherer, Stephen W.; Bassett, Anne S.

    2012-01-01

    Structural genetic changes, especially copy number variants (CNVs), represent a major source of genetic variation contributing to human disease. Tetralogy of Fallot (TOF) is the most common form of cyanotic congenital heart disease, but to date little is known about the role of CNVs in the etiology of TOF. Using high-resolution genome-wide microarrays and stringent calling methods, we investigated rare CNVs in a prospectively recruited cohort of 433 unrelated adults with TOF and/or pulmonary atresia at a single centre. We excluded those with recognized syndromes, including 22q11.2 deletion syndrome. We identified candidate genes for TOF based on converging evidence between rare CNVs that overlapped the same gene in unrelated individuals and from pathway analyses comparing rare CNVs in TOF cases to those in epidemiologic controls. Even after excluding the 53 (10.7%) subjects with 22q11.2 deletions, we found that adults with TOF had a greater burden of large rare genic CNVs compared to controls (8.82% vs. 4.33%, p = 0.0117). Six loci showed evidence for recurrence in TOF or related congenital heart disease, including typical 1q21.1 duplications in four (1.18%) of 340 Caucasian probands. The rare CNVs implicated novel candidate genes of interest for TOF, including PLXNA2, a gene involved in semaphorin signaling. Independent pathway analyses highlighted developmental processes as potential contributors to the pathogenesis of TOF. These results indicate that individually rare CNVs are collectively significant contributors to the genetic burden of TOF. Further, the data provide new evidence for dosage sensitive genes in PLXNA2-semaphorin signaling and related developmental processes in human cardiovascular development, consistent with previous animal models. PMID:22912587

  19. Loss of heterozygosity and copy number alterations in flow-sorted bulky cervical cancer.

    Directory of Open Access Journals (Sweden)

    Sabrina A H M van den Tillaart

    Full Text Available Treatment choices for cervical cancer are primarily based on clinical FIGO stage and the post-operative evaluation of prognostic parameters including tumor diameter, parametrial and lymph node involvement, vaso-invasion, infiltration depth, and histological type. The aim of this study was to evaluate genomic changes in bulky cervical tumors and their relation to clinical parameters, using single nucleotide polymorphism (SNP-analysis. Flow-sorted tumor cells and patient-matched normal cells were extracted from 81 bulky cervical tumors. DNA-index (DI measurement and whole genome SNP-analysis were performed. Data were analyzed to detect copy number alterations (CNA and allelic balance state: balanced, imbalanced or pure LOH, and their relation to clinical parameters. The DI varied from 0.92-2.56. Pure LOH was found in ≥40% of samples on chromosome-arms 3p, 4p, 6p, 6q, and 11q, CN gains in >20% on 1q, 3q, 5p, 8q, and 20q, and losses on 2q, 3p, 4p, 11q, and 13q. Over 40% showed gain on 3q. The only significant differences were found between histological types (squamous, adeno and adenosquamous in the lesser allele intensity ratio (LAIR (p = 0.035 and in the CNA analysis (p = 0.011. More losses were found on chromosome-arm 2q (FDR = 0.004 in squamous tumors and more gains on 7p, 7q, and 9p in adenosquamous tumors (FDR = 0.006, FDR = 0.004, and FDR = 0.029. Whole genome analysis of bulky cervical cancer shows widespread changes in allelic balance and CN. The overall genetic changes and CNA on specific chromosome-arms differed between histological types. No relation was found with the clinical parameters that currently dictate treatment choice.

  20. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data.

    Science.gov (United States)

    Sepúlveda, Nuno; Campino, Susana G; Assefa, Samuel A; Sutherland, Colin J; Pain, Arnab; Clark, Taane G

    2013-02-26

    The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model. Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates. In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data.

  1. CNV Workshop: an integrated platform for high-throughput copy number variation discovery and clinical diagnostics.

    Science.gov (United States)

    Gai, Xiaowu; Perin, Juan C; Murphy, Kevin; O'Hara, Ryan; D'arcy, Monica; Wenocur, Adam; Xie, Hongbo M; Rappaport, Eric F; Shaikh, Tamim H; White, Peter S

    2010-02-04

    Recent studies have shown that copy number variations (CNVs) are frequent in higher eukaryotes and associated with a substantial portion of inherited and acquired risk for various human diseases. The increasing availability of high-resolution genome surveillance platforms provides opportunity for rapidly assessing research and clinical samples for CNV content, as well as for determining the potential pathogenicity of identified variants. However, few informatics tools for accurate and efficient CNV detection and assessment currently exist. We developed a suite of software tools and resources (CNV Workshop) for automated, genome-wide CNV detection from a variety of SNP array platforms. CNV Workshop includes three major components: detection, annotation, and presentation of structural variants from genome array data. CNV detection utilizes a robust and genotype-specific extension of the Circular Binary Segmentation algorithm, and the use of additional detection algorithms is supported. Predicted CNVs are captured in a MySQL database that supports cohort-based projects and incorporates a secure user authentication layer and user/admin roles. To assist with determination of pathogenicity, detected CNVs are also annotated automatically for gene content, known disease loci, and gene-based literature references. Results are easily queried, sorted, filtered, and visualized via a web-based presentation layer that includes a GBrowse-based graphical representation of CNV content and relevant public data, integration with the UCSC Genome Browser, and tabular displays of genomic attributes for each CNV. To our knowledge, CNV Workshop represents the first cohesive and convenient platform for detection, annotation, and assessment of the biological and clinical significance of structural variants. CNV Workshop has been successfully utilized for assessment of genomic variation in healthy individuals and disease cohorts and is an ideal platform for coordinating multiple associated

  2. CNV Workshop: an integrated platform for high-throughput copy number variation discovery and clinical diagnostics

    Directory of Open Access Journals (Sweden)

    Rappaport Eric F

    2010-02-01

    Full Text Available Abstract Background Recent studies have shown that copy number variations (CNVs are frequent in higher eukaryotes and associated with a substantial portion of inherited and acquired risk for various human diseases. The increasing availability of high-resolution genome surveillance platforms provides opportunity for rapidly assessing research and clinical samples for CNV content, as well as for determining the potential pathogenicity of identified variants. However, few informatics tools for accurate and efficient CNV detection and assessment currently exist. Results We developed a suite of software tools and resources (CNV Workshop for automated, genome-wide CNV detection from a variety of SNP array platforms. CNV Workshop includes three major components: detection, annotation, and presentation of structural variants from genome array data. CNV detection utilizes a robust and genotype-specific extension of the Circular Binary Segmentation algorithm, and the use of additional detection algorithms is supported. Predicted CNVs are captured in a MySQL database that supports cohort-based projects and incorporates a secure user authentication layer and user/admin roles. To assist with determination of pathogenicity, detected CNVs are also annotated automatically for gene content, known disease loci, and gene-based literature references. Results are easily queried, sorted, filtered, and visualized via a web-based presentation layer that includes a GBrowse-based graphical representation of CNV content and relevant public data, integration with the UCSC Genome Browser, and tabular displays of genomic attributes for each CNV. Conclusions To our knowledge, CNV Workshop represents the first cohesive and convenient platform for detection, annotation, and assessment of the biological and clinical significance of structural variants. CNV Workshop has been successfully utilized for assessment of genomic variation in healthy individuals and disease cohorts and

  3. A Poisson hierarchical modelling approach to detecting copy number variation in sequence coverage data

    KAUST Repository

    Sepúlveda, Nuno

    2013-02-26

    Background: The advent of next generation sequencing technology has accelerated efforts to map and catalogue copy number variation (CNV) in genomes of important micro-organisms for public health. A typical analysis of the sequence data involves mapping reads onto a reference genome, calculating the respective coverage, and detecting regions with too-low or too-high coverage (deletions and amplifications, respectively). Current CNV detection methods rely on statistical assumptions (e.g., a Poisson model) that may not hold in general, or require fine-tuning the underlying algorithms to detect known hits. We propose a new CNV detection methodology based on two Poisson hierarchical models, the Poisson-Gamma and Poisson-Lognormal, with the advantage of being sufficiently flexible to describe different data patterns, whilst robust against deviations from the often assumed Poisson model.Results: Using sequence coverage data of 7 Plasmodium falciparum malaria genomes (3D7 reference strain, HB3, DD2, 7G8, GB4, OX005, and OX006), we showed that empirical coverage distributions are intrinsically asymmetric and overdispersed in relation to the Poisson model. We also demonstrated a low baseline false positive rate for the proposed methodology using 3D7 resequencing data and simulation. When applied to the non-reference isolate data, our approach detected known CNV hits, including an amplification of the PfMDR1 locus in DD2 and a large deletion in the CLAG3.2 gene in GB4, and putative novel CNV regions. When compared to the recently available FREEC and cn.MOPS approaches, our findings were more concordant with putative hits from the highest quality array data for the 7G8 and GB4 isolates.Conclusions: In summary, the proposed methodology brings an increase in flexibility, robustness, accuracy and statistical rigour to CNV detection using sequence coverage data. 2013 Seplveda et al.; licensee BioMed Central Ltd.

  4. Autism genome-wide copy number variation reveals ubiquitin and neuronal genes.

    Science.gov (United States)

    Glessner, Joseph T; Wang, Kai; Cai, Guiqing; Korvatska, Olena; Kim, Cecilia E; Wood, Shawn; Zhang, Haitao; Estes, Annette; Brune, Camille W; Bradfield, Jonathan P; Imielinski, Marcin; Frackelton, Edward C; Reichert, Jennifer; Crawford, Emily L; Munson, Jeffrey; Sleiman, Patrick M A; Chiavacci, Rosetta; Annaiah, Kiran; Thomas, Kelly; Hou, Cuiping; Glaberson, Wendy; Flory, James; Otieno, Frederick; Garris, Maria; Soorya, Latha; Klei, Lambertus; Piven, Joseph; Meyer, Kacie J; Anagnostou, Evdokia; Sakurai, Takeshi; Game, Rachel M; Rudd, Danielle S; Zurawiecki, Danielle; McDougle, Christopher J; Davis, Lea K; Miller, Judith; Posey, David J; Michaels, Shana; Kolevzon, Alexander; Silverman, Jeremy M; Bernier, Raphael; Levy, Susan E; Schultz, Robert T; Dawson, Geraldine; Owley, Thomas; McMahon, William M; Wassink, Thomas H; Sweeney, John A; Nurnberger, John I; Coon, Hilary; Sutcliffe, James S; Minshew, Nancy J; Grant, Struan F A; Bucan, Maja; Cook, Edwin H; Buxbaum, Joseph D; Devlin, Bernie; Schellenberg, Gerard D; Hakonarson, Hakon

    2009-05-28

    Autism spectrum disorders (ASDs) are childhood neurodevelopmental disorders with complex genetic origins. Previous studies focusing on candidate genes or genomic regions have identified several copy number variations (CNVs) that are associated with an increased risk of ASDs. Here we present the results from a whole-genome CNV study on a cohort of 859 ASD cases and 1,409 healthy children of European ancestry who were genotyped with approximately 550,000 single nucleotide polymorphism markers, in an attempt to comprehensively identify CNVs conferring susceptibility to ASDs. Positive findings were evaluated in an independent cohort of 1,336 ASD cases and 1,110 controls of European ancestry. Besides previously reported ASD candidate genes, such as NRXN1 (ref. 10) and CNTN4 (refs 11, 12), several new susceptibility genes encoding neuronal cell-adhesion molecules, including NLGN1 and ASTN2, were enriched with CNVs in ASD cases compared to controls (P = 9.5 x 10(-3)). Furthermore, CNVs within or surrounding genes involved in the ubiquitin pathways, including UBE3A, PARK2, RFWD2 and FBXO40, were affected by CNVs not observed in controls (P = 3.3 x 10(-3)). We also identified duplications 55 kilobases upstream of complementary DNA AK123120 (P = 3.6 x 10(-6)). Although these variants may be individually rare, they target genes involved in neuronal cell-adhesion or ubiquitin degradation, indicating that these two important gene networks expressed within the central nervous system may contribute to the genetic susceptibility of ASD.

  5. Increased mitochondrial DNA deletions and copy number in transfusion-dependent thalassemia

    Science.gov (United States)

    Calloway, Cassandra

    2016-01-01

    BACKGROUND. Iron overload is the primary cause of morbidity in transfusion-dependent thalassemia. Increase in iron causes mitochondrial dysfunction under experimental conditions, but the occurrence and significance of mitochondrial damage is not understood in patients with thalassemia. METHODS. Mitochondrial DNA (mtDNA) to nuclear DNA copy number (Mt/N) and frequency of the common 4977-bp mitochondrial deletion (ΔmtDNA4977) were quantified using a quantitative PCR assay on whole blood samples from 38 subjects with thalassemia who were receiving regular transfusions. RESULTS. Compared with healthy controls, Mt/N and ΔmtDNA4977 frequency were elevated in thalassemia (P = 0.038 and P 15 mg/g dry-weight or splenectomy, with the highest levels observed in subjects who had both risk factors (P = 0.003). Myocardial iron (MRI T2* 40/1 × 107 mtDNA, respectively (P = 0.025). Subjects with Mt/N values below the group median had significantly lower Matsuda insulin sensitivity index (5.76 ± 0.53) compared with the high Mt/N group (9.11 ± 0.95, P = 0.008). CONCLUSION. Individuals with transfusion-dependent thalassemia demonstrate age-related increase in mtDNA damage in leukocytes. These changes are markedly amplified by splenectomy and are associated with extrahepatic iron deposition. Elevated mtDNA damage in blood cells may predict the risk of iron-associated organ damage in thalassemia. FUNDING. This project was supported by Children’s Hospital & Research Center Oakland Institutional Research Award and by the National Center for Advancing Translational Sciences, NIH, through UCSF-CTSI grant UL1 TR000004. PMID:27583305

  6. Target genes discovery through copy number alteration analysis in human hepatocellular carcinoma.

    Science.gov (United States)

    Gu, De-Leung; Chen, Yen-Hsieh; Shih, Jou-Ho; Lin, Chi-Hung; Jou, Yuh-Shan; Chen, Chian-Feng

    2013-12-21

    High-throughput short-read sequencing of exomes and whole cancer genomes in multiple human hepatocellular carcinoma (HCC) cohorts confirmed previously identified frequently mutated somatic genes, such as TP53, CTNNB1 and AXIN1, and identified several novel genes with moderate mutation frequencies, including ARID1A, ARID2, MLL, MLL2, MLL3, MLL4, IRF2, ATM, CDKN2A, FGF19, PIK3CA, RPS6KA3, JAK1, KEAP1, NFE2L2, C16orf62, LEPR, RAC2, and IL6ST. Functional classification of these mutated genes suggested that alterations in pathways participating in chromatin remodeling, Wnt/β-catenin signaling, JAK/STAT signaling, and oxidative stress play critical roles in HCC tumorigenesis. Nevertheless, because there are few druggable genes used in HCC therapy, the identification of new therapeutic targets through integrated genomic approaches remains an important task. Because a large amount of HCC genomic data genotyped by high density single nucleotide polymorphism arrays is deposited in the public domain, copy number alteration (CNA) analyses of these arrays is a cost-effective way to reveal target genes through profiling of recurrent and overlapping amplicons, homozygous deletions and potentially unbalanced chromosomal translocations accumulated during HCC progression. Moreover, integration of CNAs with other high-throughput genomic data, such as aberrantly coding transcriptomes and non-coding gene expression in human HCC tissues and rodent HCC models, provides lines of evidence that can be used to facilitate the identification of novel HCC target genes with the potential of improving the survival of HCC patients.

  7. A genome-wide investigation of copy number variation in patients with sporadic brain arteriovenous malformation.

    Directory of Open Access Journals (Sweden)

    Nasrine Bendjilali

    Full Text Available Brain arteriovenous malformations (BAVM are clusters of abnormal blood vessels, with shunting of blood from the arterial to venous circulation and a high risk of rupture and intracranial hemorrhage. Most BAVMs are sporadic, but also occur in patients with Hereditary Hemorrhagic Telangiectasia, a Mendelian disorder caused by mutations in genes in the transforming growth factor beta (TGFβ signaling pathway.To investigate whether copy number variations (CNVs contribute to risk of sporadic BAVM, we performed a genome-wide association study in 371 sporadic BAVM cases and 563 healthy controls, all Caucasian. Cases and controls were genotyped using the Affymetrix 6.0 array. CNVs were called using the PennCNV and Birdsuite algorithms and analyzed via segment-based and gene-based approaches. Common and rare CNVs were evaluated for association with BAVM.A CNV region on 1p36.13, containing the neuroblastoma breakpoint family, member 1 gene (NBPF1, was significantly enriched with duplications in BAVM cases compared to controls (P = 2.2×10(-9; NBPF1 was also significantly associated with BAVM in gene-based analysis using both PennCNV and Birdsuite. We experimentally validated the 1p36.13 duplication; however, the association did not replicate in an independent cohort of 184 sporadic BAVM cases and 182 controls (OR = 0.81, P = 0.8. Rare CNV analysis did not identify genes significantly associated with BAVM.We did not identify common CNVs associated with sporadic BAVM that replicated in an independent cohort. Replication in larger cohorts is required to elucidate the possible role of common or rare CNVs in BAVM pathogenesis.

  8. The genetic effect of copy number variations on the risk of alcoholism in a Korean population.

    Science.gov (United States)

    Bae, Joon Seol; Jung, Myung Hun; Lee, Boung Chul; Cheong, Hyun Sub; Park, Byung Lae; Kim, Lyoung Hyo; Kim, Jeong-Hyun; Pasaje, Charisse Flerida A; Lee, Jin Sol; Jung, Kyoung Hwa; Chai, Young Gyu; Shin, Hyoung Doo; Choi, Ihn-Geun

    2012-01-01

    Alcoholism, a chronic behavioral disorder characterized by excessive alcohol consumption, has been a leading cause of morbidity and premature death. This condition is believed to be influenced by genetic factors. As copy number variation (CNV) has been recently discovered in human genome, genomic diversity of human genome is more frequent than previously thought. Many studies have reported evidences that CNV is associated with the development of complex diseases. In this study, we hypothesized that CNV can predict the risk of alcoholism. Using the Illumina HumanHap660W-Quad BeadChip (∼660 k markers), genome-wide genotyping was performed to obtain signal and allelic intensities from 116 alcoholic cases and 1,022 healthy controls (total n = 1,138) in a Korean population. To identify alcoholism-associated CNV regions, we performed a genome-wide association analysis, using multivariate logistic regression model controlling for age and gender. We identified a total of 255,732 individual CNVs and 3,261 CNV regions (1,067 common CNV regions, frequency > 1%) in this study. Results from multivariate logistic regression showed that the chr20:61195302-61195978 regions were significantly associated with the risk of alcoholism after multiple corrections (p = 5.02E-05, p(corr) = 0.04). Most of the identified variations in this study overlapped with the previously reported CNVs in the Database of Genomic Variants (95.3%). The identified CNVs, which encompassed 3,226 functional genes, were significantly enriched in the cellular part, in the membrane-bound organelle, in the cell part, in developmental processes, in cell communication, in neurological system process, in sensory perception of smell and chemical stimulus, and in olfactory receptor activity. This is the first genome-wide association study to investigate the relationship between common CNV and alcoholism. Our results suggest that the newly identified CNV regions may contribute to the development of alcoholism

  9. Assessing genome-wide copy number variation in the Han Chinese population.

    Science.gov (United States)

    Lu, Jianqi; Lou, Haiyi; Fu, Ruiqing; Lu, Dongsheng; Zhang, Feng; Wu, Zhendong; Zhang, Xi; Li, Changhua; Fang, Baijun; Pu, Fangfang; Wei, Jingning; Wei, Qian; Zhang, Chao; Wang, Xiaoji; Lu, Yan; Yan, Shi; Yang, Yajun; Jin, Li; Xu, Shuhua

    2017-10-01

    Copy number variation (CNV) is a valuable source of genetic diversity in the human genome and a well-recognised cause of various genetic diseases. However, CNVs have been considerably under-represented in population-based studies, particularly the Han Chinese which is the largest ethnic group in the world. To build a representative CNV map for the Han Chinese population. We conducted a genome-wide CNV study involving 451 male Han Chinese samples from 11 geographical regions encompassing 28 dialect groups, representing a less-biased panel compared with the currently available data. We detected CNVs by using 4.2M NimbleGen comparative genomic hybridisation array and whole-genome deep sequencing of 51 samples to optimise the filtering conditions in CNV discovery. A comprehensive Han Chinese CNV map was built based on a set of high-quality variants (positive predictive value >0.8, with sizes ranging from 369 bp to 4.16 Mb and a median of 5907 bp). The map consists of 4012 CNV regions (CNVRs), and more than half are novel to the 30 East Asian CNV Project and the 1000 Genomes Project Phase 3. We further identified 81 CNVRs specific to regional groups, which was indicative of the subpopulation structure within the Han Chinese population. Our data are complementary to public data sources, and the CNV map may facilitate in the identification of pathogenic CNVs and further biomedical research studies involving the Han Chinese population. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Male-biased autosomal effect of 16p13.11 copy number variation in neurodevelopmental disorders.

    Directory of Open Access Journals (Sweden)

    Maria Tropeano

    Full Text Available Copy number variants (CNVs at chromosome 16p13.11 have been associated with a range of neurodevelopmental disorders including autism, ADHD, intellectual disability and schizophrenia. Significant sex differences in prevalence, course and severity have been described for a number of these conditions but the biological and environmental factors underlying such sex-specific features remain unclear. We tested the burden and the possible sex-biased effect of CNVs at 16p13.11 in a sample of 10,397 individuals with a range of neurodevelopmental conditions, clinically referred for array comparative genomic hybridisation (aCGH; cases were compared with 11,277 controls. In order to identify candidate phenotype-associated genes, we performed an interval-based analysis and investigated the presence of ohnologs at 16p13.11; finally, we searched the DECIPHER database for previously identified 16p13.11 copy number variants. In the clinical referral series, we identified 46 cases with CNVs of variable size at 16p13.11, including 28 duplications and 18 deletions. Patients were referred for various phenotypes, including developmental delay, autism, speech delay, learning difficulties, behavioural problems, epilepsy, microcephaly and physical dysmorphisms. CNVs at 16p13.11 were also present in 17 controls. Association analysis revealed an excess of CNVs in cases compared with controls (OR = 2.59; p = 0.0005, and a sex-biased effect, with a significant enrichment of CNVs only in the male subgroup of cases (OR = 5.62; p = 0.0002, but not in females (OR = 1.19, p = 0.673. The same pattern of results was also observed in the DECIPHER sample. Interval-based analysis showed a significant enrichment of case CNVs containing interval II (OR = 2.59; p = 0.0005, located in the 0.83 Mb genomic region between 15.49-16.32 Mb, and encompassing the four ohnologs NDE1, MYH11, ABCC1 and ABCC6. Our data confirm that duplications and deletions at 16p13

  11. A quantitative PCR approach for determining the ribosomal DNA copy number in the genome of Agave tequila Weber

    Directory of Open Access Journals (Sweden)

    Jorge Rubio-Piña

    2016-07-01

    Conclusions: Results show that the proposed method a can correctly detect the rDNA copy number, b could be used as species-specific markers and c might help in understanding the genetic diversity, genome organization and evolution of this species.

  12. Spo0A regulates chromosome copy number during sporulation by directly binding to the origin of replication in Bacillus subtilis

    NARCIS (Netherlands)

    Boonstra, Mirjam; de Jong, Imke G.; Scholefield, Graham; Murray, Heath; Kuipers, Oscar P.; Veening, Jan-Willem

    When starved, Bacillus subtilis cells can enter the developmental programme of endospore formation by activation of the master transcriptional regulator Spo0A. Correct chromosome copy number is crucial for the production of mature and fully resistant spores. The production and maintenance of one

  13. Topoisomerase-1 and -2A gene copy numbers are elevated in mismatch repair-proficient colorectal cancers

    DEFF Research Database (Denmark)

    Sønderstrup, Ida Marie Heeholm; Nygård, Sune Boris; Poulsen, Tim Svenstrup

    2015-01-01

    to MMR status by immunohistochemical analysis using validated antibodies for MLH1, MLH2, MSH6 and PMS2, and information on TOP1, CEN20, TOP2A and CEN17 status was previously published for this cohort. RESULTS: The observed TOP1 gene copy numbers in the 36 CRC test cohort were significantly greater (p

  14. Robust BRCA1-like classification of copy number profiles of samples repeated across different datasets and platforms

    NARCIS (Netherlands)

    Schouten, P.C.; Grigoriadis, A.; Kuilman, T.; Mirza, H.; Watkins, J.A.; Cooke, S.A.; Dyk, E. van; Severson, T.M.; Rueda, O.M.; Hoogstraat, M.; Verhagen, C.V.M.; Natrajan, R.; Chin, S.F.; Lips, E.H.; Kruizinga, J.; Velds, A.; Nieuwland, M.; Kerkhoven, R.M.; Krijgsman, O.; Vens, C.; Peeper, D.; Nederlof, P.M.; Caldas, C.; Tutt, A.N.; Wessels, L.F.; Linn, S.C.

    2015-01-01

    Breast cancers with BRCA1 germline mutation have a characteristic DNA copy number (CN) pattern. We developed a test that assigns CN profiles to be 'BRCA1-like' or 'non-BRCA1-like', which refers to resembling a BRCA1-mutated tumor or resembling a tumor without a BRCA1 mutation, respectively.

  15. Robust BRCA1-like classification of copy number profiles of samples repeated across different datasets and platforms

    NARCIS (Netherlands)

    Schouten, P.C.; Grigoriadis, A.; Kuilman, T.; Mirza, H.; Watkins, J.A.; Cooke, S.A.; Van Dyk, E.; Severson, T.M.; Rueda, O.M.; Hoogstraat, M.; Verhagen, C.; Natrajan, R.; Chin, S.F.; Lips, E.H.; Kruizinga, J.; Velds, A.; Nieuwland, M.; Kerkhoven, R.M.; Krijgsman, O.; Vens, C.; Peeper, D.; Nederlof, P.M.; Caldas, C.; Tutt, A.N.; Wessels, L.F.A.; Linn, S.C.

    2015-01-01

    Breast cancers with BRCA1 germline mutation have a characteristic DNA copy number (CN) pattern. We developed a test that assigns CN profiles to be ‘BRCA1-like’ or ‘non-BRCA1-like’, which refers to resembling a BRCA1-mutated tumor or resembling a tumor without a BRCA1 mutation, respectively.

  16. Robust BRCA1-like classification of copy number profiles of samples repeated across different datasets and platforms

    NARCIS (Netherlands)

    Schouten, Philip C.; Grigoriadis, Anita; Kuilman, Thomas; Mirza, Hasan; Watkins, Johnathan A.; Cooke, Saskia A.; van Dyk, Ewald; Severson, Tesa M.; Rueda, Oscar M.; Hoogstraat, Marlous; Verhagen, Caroline V. M.; Natrajan, Rachael; Chin, Suet-Feung; Lips, Esther H.; Kruizinga, Janneke; Velds, Arno; Nieuwland, Marja; Kerkhoven, Ron M.; Krijgsman, Oscar; Vens, Conchita; Peeper, Daniel; Nederlof, Petra M.; Caldas, Carlos; Tutt, Andrew N.; Wessels, Lodewyk F.; Linn, Sabine C.

    Breast cancers with BRCA1 germline mutation have a characteristic DNA copy number (CN) pattern. We developed a test that assigns CN profiles to be 'BRCA1-like' or 'non-BRCA1-like', which refers to resembling a BRCA1-mutated tumor or resembling a tumor without a BRCA1 mutation, respectively.

  17. Mitochondrial DNA copy number and chronic lymphocytic leukemia/small lymphocytic lymphoma risk in two prospective studies

    NARCIS (Netherlands)

    Kim, Christopher; Bassig, Bryan A; Seow, Wei Jie; Hu, Wei; Purdue, Mark P; Huang, Wen-Yi; Liu, Chin-San; Cheng, Wen-Ling; Männistö, Satu; Vermeulen, Roel; Weinstein, Stephanie J; Lim, Unhee; Hosgood, H Dean; Bonner, Matthew R; Caporaso, Neil E; Albanes, Demetrius; Lan, Qing; Rothman, Nathaniel

    BACKGROUND: Mitochondrial DNA copy number (mtDNA CN) may be modified by mitochondria in response to oxidative stress. Previously, mtDNA CN was associated with non-Hodgkin lymphoma (NHL) risk, particularly chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). We conducted a replication

  18. Association of variation in Fc gamma receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples

    NARCIS (Netherlands)

    McKinney, Cushla; Fanciulli, Manuela; Merriman, Marilyn E.; Phipps-Green, Amanda; Alizadeh, Behrooz Z.; Koeleman, Bobby P. C.; Dalbeth, Nicola; Gow, Peter J.; Harrison, Andrew A.; Highton, John; Jones, Peter B.; Stamp, Lisa K.; Steer, Sophia; Barrera, Pilar; Coenen, Marieke J. H.; Franke, Barbara; van Riel, Piet L. C. M.; Vyse, Tim J.; Aitman, Tim J.; Radstake, Timothy R. D. J.; Merriman, Tony R.

    2010-01-01

    Objective There is increasing evidence that variation in gene copy number (CN) influences clinical phenotype. The low-affinity Fc gamma receptor 3B (FCGR3B) located in the FCGR gene cluster is a CN polymorphic gene involved in the recruitment to sites of inflammation and activation of

  19. Association of variation in Fcgamma receptor 3B gene copy number with rheumatoid arthritis in Caucasian samples.

    NARCIS (Netherlands)

    McKinney, C.; Fanciulli, M.; Merriman, M.E.; Phipps-Green, A.; Alizadeh, B.Z.; Koeleman, B.P.; Dalbeth, N.; Gow, P.J.; Harrison, A.A.; Highton, J.; Jones, P.B.; Stamp, L.K.; Steer, S.; Barrera, P.; Coenen, M.J.H.; Franke, B.; Riel, P.L.C.M. van; Vyse, T.J.; Aitman, T.J.; Radstake, T.R.D.J.; Merriman, T.R.

    2010-01-01

    OBJECTIVE: There is increasing evidence that variation in gene copy number (CN) influences clinical phenotype. The low-affinity Fcgamma receptor 3B (FCGR3B) located in the FCGR gene cluster is a CN polymorphic gene involved in the recruitment to sites of inflammation and activation of

  20. Exploration of large, rare copy number variants associated with psychiatric and neurodevelopmental disorders in individuals with anorexia nervosa

    NARCIS (Netherlands)

    Yilmaz, Zeynep; Szatkiewicz, Jin P; Crowley, James J; Ancalade, NaEshia; Brandys, Marek K; van Elburg, Annemarie; de Kovel, Carolien G F; Adan, Roger A H; Hinney, Anke; Hebebrand, Johannes; Gratacos, Monica; Fernandez-Aranda, Fernando; Escaramis, Georgia; Gonzalez, Juan R; Estivill, Xavier; Zeggini, Eleftheria; Sullivan, Patrick F; Bulik, Cynthia M; Genetic Consortium for Anorexia Nervosa, Wellcome Trust Case Control Consortium 3

    Anorexia nervosa (AN) is a serious and heritable psychiatric disorder. To date, studies of copy number variants (CNVs) have been limited and inconclusive because of small sample sizes. We conducted a case-only genome-wide CNV survey in 1983 female AN cases included in the Genetic Consortium for

  1. Mitochondrial DNA copy number, but not haplogroup, confers a genetic susceptibility to leprosy in Han Chinese from Southwest China.

    Directory of Open Access Journals (Sweden)

    Dong Wang

    Full Text Available BACKGROUND: Leprosy is a chronic infectious disease caused by Mycobacterium leprae, an unculturable pathogen with an exceptionally eroded genome. The high level of inactivation of gene function in M. leprae, including many genes in its metabolic pathways, has led to a dependence on host energy production and nutritional products. We hypothesized that host cellular powerhouse--the mitochondria--may affect host susceptibility to M. leprae and the onset of clinical leprosy, and this may be reflected by mitochondrial DNA (mtDNA background and mtDNA copy number. METHODS: We analyzed the mtDNA sequence variation of 534 leprosy patients and 850 matched controls from Yunnan Province and classified each subject by haplogroup. mtDNA copy number, taken to be proportional to mtDNA content, was measured in a subset of these subjects (296 patients and 231 controls and 12 leprosy patients upon diagnosis. RESULTS: Comparison of matrilineal components of the case and control populations revealed no significant difference. However, measurement of mtDNA copy number showed that lepromatous leprosy patients had a significantly higher mtDNA content than controls (P = 0.008. Past medical treatments had no effect on the alteration of mtDNA copy number. CONCLUSIONS: Our results suggested that mtDNA content, but not haplogroup, affects leprosy and this influence is limited to the clinical subtype of lepromatous leprosy.

  2. Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

    DEFF Research Database (Denmark)

    Marshall, Christian R.; Howrigan, Daniel P.; Merico, Daniele

    2017-01-01

    Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline...

  3. Copy-number variation of housekeeping gene rpl13a in rat strains selected for nervous system excitability

    Czech Academy of Sciences Publication Activity Database

    Kalendar, R.; Belyayev, Alexander; Zachepilo, T.; Vaido, A.; Maidanyuk, D.; Schulman, A. H.; Dyuzhikova, N.

    2017-01-01

    Roč. 33, JUN 2017 (2017), s. 11-15 ISSN 0890-8508 Institutional support: RVO:67985939 Keywords : copy number variation (CNV) * quantitative real-time multicolor multiplex * PCR (qmPCR) Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 1.403, year: 2016

  4. An initial comparative map of copy number variations in the goat (Capra hircus genome

    Directory of Open Access Journals (Sweden)

    Casadio Rita

    2010-11-01

    Full Text Available Abstract Background The goat (Capra hircus represents one of the most important farm animal species. It is reared in all continents with an estimated world population of about 800 million of animals. Despite its importance, studies on the goat genome are still in their infancy compared to those in other farm animal species. Comparative mapping between cattle and goat showed only a few rearrangements in agreement with the similarity of chromosome banding. We carried out a cross species cattle-goat array comparative genome hybridization (aCGH experiment in order to identify copy number variations (CNVs in the goat genome analysing animals of different breeds (Saanen, Camosciata delle Alpi, Girgentana, and Murciano-Granadina using a tiling oligonucleotide array with ~385,000 probes designed on the bovine genome. Results We identified a total of 161 CNVs (an average of 17.9 CNVs per goat, with the largest number in the Saanen breed and the lowest in the Camosciata delle Alpi goat. By aggregating overlapping CNVs identified in different animals we determined CNV regions (CNVRs: on the whole, we identified 127 CNVRs covering about 11.47 Mb of the virtual goat genome referred to the bovine genome (0.435% of the latter genome. These 127 CNVRs included 86 loss and 41 gain and ranged from about 24 kb to about 1.07 Mb with a mean and median equal to 90,292 bp and 49,530 bp, respectively. To evaluate whether the identified goat CNVRs overlap with those reported in the cattle genome, we compared our results with those obtained in four independent cattle experiments. Overlapping between goat and cattle CNVRs was highly significant (P Conclusions We describe a first map of goat CNVRs. This provides information on a comparative basis with the cattle genome by identifying putative recurrent interspecies CNVs between these two ruminant species. Several goat CNVs affect genes with important biological functions. Further studies are needed to evaluate the

  5. Genetic Diversity of Seven Cattle Breeds Inferred Using Copy Number Variations

    Directory of Open Access Journals (Sweden)

    Magretha D. Pierce

    2018-05-01

    Full Text Available Copy number variations (CNVs comprise deletions, duplications, and insertions found within the genome larger than 50 bp in size. CNVs are thought to be primary role-players in breed formation and adaptation. South Africa boasts a diverse ecology with harsh environmental conditions and a broad spectrum of parasites and diseases that pose challenges to livestock production. This has led to the development of composite cattle breeds which combine the hardiness of Sanga breeds and the production potential of the Taurine breeds. The prevalence of CNVs within these respective breeds of cattle and the prevalence of CNV regions (CNVRs in their diversity, adaptation and production is however not understood. This study therefore aimed to ascertain the prevalence, diversity, and correlations of CNVRs within cattle breeds used in South Africa. Illumina Bovine SNP50 data and PennCNV were utilized to identify CNVRs within the genome of 287 animals from seven cattle breeds representing Sanga, Taurine, Composite, and cross breeds. Three hundred and fifty six CNVRs of between 36 kb to 4.1 Mb in size were identified. The null hypothesis that one CNVR loci is independent of another was tested using the GENEPOP software. One hunded and two and seven of the CNVRs in the Taurine and Sanga/Composite cattle breeds demonstrated a significant (p ≤ 0.05 association. PANTHER overrepresentation analyses of correlated CNVRs demonstrated significant enrichment of a number of biological processes, molecular functions, cellular components, and protein classes. CNVR genetic variation between and within breed group was measured using phiPT which allows intra-individual variation to be suppressed and hence proved suitable for measuring binary CNVR presence/absence data. Estimate PhiPT within and between breed variance was 2.722 and 0.518 respectively. Pairwise population PhiPT values corresponded with breed type, with Taurine Holstein and Angus breeds demonstrating no between

  6. Copy number variations of genes involved in stress responses reflect the redox state and DNA damage in brewing yeasts.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Natkanska, Urszula; Kwiatkowska, Aleksandra; Rawska, Ewa; Potocki, Leszek; Kuna, Ewelina; Panek, Anita; Lewinska, Anna; Wnuk, Maciej

    2016-09-01

    The yeast strains of the Saccharomyces sensu stricto complex involved in beer production are a heterogeneous group whose genetic and genomic features are not adequately determined. Thus, the aim of the present study was to provide a genetic characterization of selected group of commercially available brewing yeasts both ale top-fermenting and lager bottom-fermenting strains. Molecular karyotyping revealed that the diversity of chromosome patterns and four strains with the most accented genetic variabilities were selected and subjected to genome-wide array-based comparative genomic hybridization (array-CGH) analysis. The differences in the gene copy number were found in five functional gene categories: (1) maltose metabolism and transport, (2) response to toxin, (3) siderophore transport, (4) cellular aldehyde metabolic process, and (5) L-iditol 2-dehydrogenase activity (p < 0.05). In the Saflager W-34/70 strain (Fermentis) with the most affected array-CGH profile, loss of aryl-alcohol dehydrogenase (AAD) gene dosage correlated with an imbalanced redox state, oxidative DNA damage and breaks, lower levels of nucleolar proteins Nop1 and Fob1, and diminished tolerance to fermentation-associated stress stimuli compared to other strains. We suggest that compromised stress response may not only promote oxidant-based changes in the nucleolus state that may affect fermentation performance but also provide novel directions for future strain improvement.

  7. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints

    Science.gov (United States)

    2014-01-01

    Background Genomic disorders are caused by copy number changes that may exhibit recurrent breakpoints processed by nonallelic homologous recombination. However, region-specific disease-associated copy number changes have also been observed which exhibit non-recurrent breakpoints. The mechanisms underlying these non-recurrent copy number changes have not yet been fully elucidated. Results We analyze large NF1 deletions with non-recurrent breakpoints as a model to investigate the full spectrum of causative mechanisms, and observe that they are mediated by various DNA double strand break repair mechanisms, as well as aberrant replication. Further, two of the 17 NF1 deletions with non-recurrent breakpoints, identified in unrelated patients, occur in association with the concomitant insertion of SINE/variable number of tandem repeats/Alu (SVA) retrotransposons at the deletion breakpoints. The respective breakpoints are refractory to analysis by standard breakpoint-spanning PCRs and are only identified by means of optimized PCR protocols designed to amplify across GC-rich sequences. The SVA elements are integrated within SUZ12P intron 8 in both patients, and were mediated by target-primed reverse transcription of SVA mRNA intermediates derived from retrotranspositionally active source elements. Both SVA insertions occurred during early postzygotic development and are uniquely associated with large deletions of 1 Mb and 867 kb, respectively, at the insertion sites. Conclusions Since active SVA elements are abundant in the human genome and the retrotranspositional activity of many SVA source elements is high, SVA insertion-associated large genomic deletions encompassing many hundreds of kilobases could constitute a novel and as yet under-appreciated mechanism underlying large-scale copy number changes in the human genome. PMID:24958239

  8. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.

    Science.gov (United States)

    Ivaničová, Zuzana; Valárik, Miroslav; Pánková, Kateřina; Trávníčková, Martina; Doležel, Jaroslav; Šafář, Jan; Milec, Zbyněk

    2017-01-01

    The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.

  9. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.

    Directory of Open Access Journals (Sweden)

    Zuzana Ivaničová

    Full Text Available The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (insensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.

  10. Effect of copy number and spacing of the ACGT and GT cis elements ...

    Indian Academy of Sciences (India)

    Unknown

    cognized by transcription factors of the bZIP family. The core ACGT element occurs at different relative positions in one or more copies upstream of the minimal promoter region. Protein-DNA interaction studies have shown that sequences flanking the ACGT core affect bZIP protein binding specificity. The bZIP transcription ...

  11. 17 CFR 230.497 - Filing of investment company prospectuses-number of copies.

    Science.gov (United States)

    2010-04-01

    ... of a radio or television broadcast shall be reduced in writing. Five copies of every such prospectus... 1934 (15 U.S.C. 78o) that has adopted rules providing standards for the investment company advertising practices of its members and has established and implemented procedures to review that advertising. (j) In...

  12. 18 CFR 34.7 - Number of copies to be filed.

    Science.gov (United States)

    2010-04-01

    ..., § 34.7 was revised, effective at the time of the next e-filing release during the Commission's next fiscal year. For the convenience of the user, the revised text follows: § 34.7 Filing requirements. Each...) and (2) of this chapter. As a qualified document, no paper copy version of the filing is required...

  13. Copy number alterations in small intestinal neuroendocrine tumors determined by array comparative genomic hybridization

    International Nuclear Information System (INIS)

    Hashemi, Jamileh; Fotouhi, Omid; Sulaiman, Luqman; Kjellman, Magnus; Höög, Anders; Zedenius, Jan; Larsson, Catharina

    2013-01-01

    Small intestinal neuroendocrine tumors (SI-NETs) are typically slow-growing tumors that have metastasized already at the time of diagnosis. The purpose of the present study was to further refine and define regions of recurrent copy number (CN) alterations (CNA) in SI-NETs. Genome-wide CNAs was determined by applying array CGH (a-CGH) on SI-NETs including 18 primary tumors and 12 metastases. Quantitative PCR analysis (qPCR) was used to confirm CNAs detected by a-CGH as well as to detect CNAs in an extended panel of SI-NETs. Unsupervised hierarchical clustering was used to detect tumor groups with similar patterns of chromosomal alterations based on recurrent regions of CN loss or gain. The log rank test was used to calculate overall survival. Mann–Whitney U test or Fisher’s exact test were used to evaluate associations between tumor groups and recurrent CNAs or clinical parameters. The most frequent abnormality was loss of chromosome 18 observed in 70% of the cases. CN losses were also frequently found of chromosomes 11 (23%), 16 (20%), and 9 (20%), with regions of recurrent CN loss identified in 11q23.1-qter, 16q12.2-qter, 9pter-p13.2 and 9p13.1-11.2. Gains were most frequently detected in chromosomes 14 (43%), 20 (37%), 4 (27%), and 5 (23%) with recurrent regions of CN gain located to 14q11.2, 14q32.2-32.31, 20pter-p11.21, 20q11.1-11.21, 20q12-qter, 4 and 5. qPCR analysis confirmed most CNAs detected by a-CGH as well as revealed CNAs in an extended panel of SI-NETs. Unsupervised hierarchical clustering of recurrent regions of CNAs revealed two separate tumor groups and 5 chromosomal clusters. Loss of chromosomes 18, 16 and 11 and again of chromosome 20 were found in both tumor groups. Tumor group II was enriched for alterations in chromosome cluster-d, including gain of chromosomes 4, 5, 7, 14 and gain of 20 in chromosome cluster-b. Gain in 20pter-p11.21 was associated with short survival. Statistically significant differences were observed between primary

  14. Detection of copy number variants reveals association of cilia genes with neural tube defects.

    Directory of Open Access Journals (Sweden)

    Xiaoli Chen

    Full Text Available BACKGROUND: Neural tube defects (NTDs are one of the most common birth defects caused by a combination of genetic and environmental factors. Currently, little is known about the genetic basis of NTDs although up to 70% of human NTDs were reported to be attributed to genetic factors. Here we performed genome-wide copy number variants (CNVs detection in a cohort of Chinese NTD patients in order to exam the potential role of CNVs in the pathogenesis of NTDs. METHODS: The genomic DNA from eighty-five NTD cases and seventy-five matched normal controls were subjected for whole genome CNVs analysis. Non-DGV (the Database of Genomic Variants CNVs from each group were further analyzed for their associations with NTDs. Gene content in non-DGV CNVs as well as participating pathways were examined. RESULTS: Fifty-five and twenty-six non-DGV CNVs were detected in cases and controls respectively. Among them, forty and nineteen CNVs involve genes (genic CNV. Significantly more non-DGV CNVs and non-DGV genic CNVs were detected in NTD patients than in control (41.2% vs. 25.3%, p<0.05 and 37.6% vs. 20%, p<0.05. Non-DGV genic CNVs are associated with a 2.65-fold increased risk for NTDs (95% CI: 1.24-5.87. Interestingly, there are 41 cilia genes involved in non-DGV CNVs from NTD patients which is significantly enriched in cases compared with that in controls (24.7% vs. 9.3%, p<0.05, corresponding with a 3.19-fold increased risk for NTDs (95% CI: 1.27-8.01. Pathway analyses further suggested that two ciliogenesis pathways, tight junction and protein kinase A signaling, are top canonical pathways implicated in NTD-specific CNVs, and these two novel pathways interact with known NTD pathways. CONCLUSIONS: Evidence from the genome-wide CNV study suggests that genic CNVs, particularly ciliogenic CNVs are associated with NTDs and two ciliogenesis pathways, tight junction and protein kinase A signaling, are potential pathways involved in NTD pathogenesis.

  15. Identification of genomic copy number variations associated with specific clinical features of head and neck cancer.

    Science.gov (United States)

    Zagradišnik, Boris; Krgović, Danijela; Herodež, Špela Stangler; Zagorac, Andreja; Ćižmarević, Bogdan; Vokač, Nadja Kokalj

    2018-01-01

    Copy number variations (CNSs) of large genomic regions are an important mechanism implicated in the development of head and neck cancer, however, for most changes their exact role is not well understood. The aim of this study was to find possible associations between gains/losses of genomic regions and clinically distinct subgroups of head and neck cancer patients. Array comparative genomic hybridization (aCGH) analysis was performed on DNA samples in 64 patients with cancer in oral cavity, oropharynx or hypopharynx. Overlapping genomic regions created from gains and losses were used for statistical analysis. Following regions were overrepresented: in tumors with stage I or II a gain of 2.98 Mb on 6p21.2-p11 and a gain of 7.4 Mb on 8q11.1-q11.23; in tumors with grade I histology a gain of 1.1 Mb on 8q24.13, a loss of a large part of p arm of chromosome 3, a loss of a 1.24 Mb on 6q14.3, and a loss of terminal 32 Mb region of 8p23.3; in cases with affected lymph nodes a gain of 0.75 Mb on 3q24, and a gain of 0.9 Mb on 3q26.32-q26.33; in cases with unaffected lymph nodes a gain of 1.1 Mb on 8q23.3, in patients not treated with surgery a gain of 12.2 Mb on 7q21.3-q22.3 and a gain of 0.33 Mb on 20q11.22. Our study identified several genomic regions of interest which appear to be associated with various clinically distinct subgroups of head and neck cancer. They represent a potentially important source of biomarkers useful for the clinical management of head and neck cancer. In particular, the PIK3CA and AGTR1 genes could be singled out to predict the lymph node involvement.

  16. Identification of copy number variations and translocations in cancer cells from Hi-C data.

    Science.gov (United States)

    Chakraborty, Abhijit; Ay, Ferhat

    2017-10-18

    Eukaryotic chromosomes adapt a complex and highly dynamic three-dimensional (3D) structure, which profoundly affects different cellular functions and outcomes including changes in epigenetic landscape and in gene expression. Making the scenario even more complex, cancer cells harbor chromosomal abnormalities (e.g., copy number variations (CNVs) and translocations) altering their genomes both at the sequence level and at the level of 3D organization. High-throughput chromosome conformation capture techniques (e.g., Hi-C), which are originally developed for decoding the 3D structure of the chromatin, provide a great opportunity to simultaneously identify the locations of genomic rearrangements and to investigate the 3D genome organization in cancer cells. Even though Hi-C data has been used for validating known rearrangements, computational methods that can distinguish rearrangement signals from the inherent biases of Hi-C data and from the actual 3D conformation of chromatin, and can precisely detect rearrangement locations de novo have been missing. In this work, we characterize how intra and inter-chromosomal Hi-C contacts are distributed for normal and rearranged chromosomes to devise a new set of algorithms (i) to identify genomic segments that correspond to CNV regions such as amplifications and deletions (HiCnv), (Nurtdinov et al.) to call inter-chromosomal translocations and their boundaries (HiCtrans) from Hi-C experiments, and (iii) to simulate Hi-C data from genomes with desired rearrangements and abnormalities (AveSim) in order to select optimal parameters for and to benchmark the accuracy of our methods. Our results on 10 different cancer cell lines with Hi-C data show that we identify a total number of 105 amplifications and 45 deletions together with 90 translocations, whereas we identify virtually no such events for two karyotypically normal cell lines. Our CNV predictions correlate very well with whole genome sequencing (WGS) data among chromosomes

  17. Copy Counts

    Science.gov (United States)

    Beaumont, Lee R.

    1970-01-01

    The level of difficulty of straight copy, which is used to measure typewriting speed, is influenced by syllable intensity (the average number of syllables per word), stroke intensity (average number of strokes per word), and high-frequency words. (CH)

  18. High throughput screening of human subtelomeric DNA for copy number changes using multiplex amplifiable probe hybridisation (MAPH).

    Science.gov (United States)

    Hollox, E J; Atia, T; Cross, G; Parkin, T; Armour, J A L

    2002-11-01

    Subtelomeric regions of the human genome are gene rich, with a high level of sequence polymorphism. A number of clinical conditions, including learning disability, have been attributed to subtelomeric deletions or duplications, but screening for deletion in these regions using conventional cytogenetic methods and fluorescence in situ hybridisation (FISH) is laborious. Here we report that a new method, multiplex amplifiable probe hybridisation (MAPH), can be used to screen for copy number at subtelomeric regions. We have constructed a set of MAPH probes with each subtelomeric region represented at least once, so that one gel lane can assay copy number at all chromosome ends in one person. Each probe has been sequenced and, where possible, its position relative to the telomere determined by comparison with mapped clones. The sensitivity of the probes has been characterised on a series of cytogenetically verified positive controls and 83 normal controls were used to assess the frequency of polymorphic copy number with no apparent phenotypic effect. We have also used MAPH to test a cohort of 37 people selected from males referred for fragile X syndrome testing and found six changes that were confirmed by dosage PCR. MAPH can be used to screen subtelomeric regions of chromosomes for deletions and duplications before confirmation by FISH or dosage PCR. The high throughput nature of this technique allows it to be used for large scale screening of subtelomeric copy number, before confirmation by FISH. In practice, the availability of a rapid and efficient screen may allow subtelomeric analysis to be applied to a wider selection of patients than is currently possible using FISH alone.

  19. Rare copy number alterations and copy-neutral loss of heterozygosity revealed in ameloblastomas by high-density whole-genome microarray analysis.

    Science.gov (United States)

    Diniz, Marina Gonçalves; Duarte, Alessandra Pires; Villacis, Rolando A; Guimarães, Bruna V A; Duarte, Luiz Cláudio Pires; Rogatto, Sílvia R; Gomez, Ricardo Santiago; Gomes, Carolina Cavaliéri

    2017-05-01

    Ameloblastoma (unicystic, UA, or multicystic, MA) is a rare tumor associated with bone destruction and facial deformity. Its malignant counterpart is the ameloblastic carcinoma (AC). The BRAFV600E mutation is highly prevalent in all these tumors subtypes and cannot account for their different clinical behaviors. We assessed copy number alterations (CNAs) and copy-neutral loss of heterozygosity (cnLOH) in UA (n = 2), MA (n = 3), and AC (n = 1) using the CytoScan HD Array (Affymetrix) and the BRAFV600E status. RT-qPCR was applied in four selected genes (B4GALT1, BAG1, PKD1L2, and PPP2R5A) covered by rare alterations, also including three MA and four normal oral tissues. Fifty-seven CNAs and cnLOH were observed in the ameloblastomas and six CNAs in the AC. Seven of the CNAs were rare (six in UA and one in MA), four of them encompassing genes (gains of 7q11.21, 1q32.3, and 9p21.1 and loss of 16q23.2). We found positive correlation between rare CNA gene dosage and the expression of B4GALT1, BAG1, PKD1L2, and PPP2R5A. The AC and 1 UA were BRAF wild-type; however, this UA showed rare genomic alterations encompassing genes associated with RAF/MAPK activation. Ameloblastomas show rare CNAs and cnLOH, presenting a specific genomic profile with no overlapping of the rare alterations among UA, MA, and AC. These genomic changes might play a role in tumor evolution and in BRAFV600E-negative tumors. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Analysis of Intellectual Disability Copy Number Variants for Association With Schizophrenia.

    Science.gov (United States)

    Rees, Elliott; Kendall, Kimberley; Pardiñas, Antonio F; Legge, Sophie E; Pocklington, Andrew; Escott-Price, Valentina; MacCabe, James H; Collier, David A; Holmans, Peter; O'Donovan, Michael C; Owen, Michael J; Walters, James T R; Kirov, George

    2016-09-01

    At least 11 rare copy number variants (CNVs) have been shown to be major risk factors for schizophrenia (SZ). These CNVs also increase the risk for other neurodevelopmental disorders, such as intellectual disability. It is possible that additional intellectual disability-associated CNVs increase the risk for SZ but have not yet been implicated in SZ because of previous studies being underpowered. To examine whether additional CNVs implicated in intellectual disability represent novel SZ risk loci. We used single-nucleotide polymorphism (SNP) array data to evaluate a set of 51 CNVs implicated in intellectual disability (excluding the known SZ loci) in a large data set of patients with SZ and healthy persons serving as controls recruited in a variety of settings. We analyzed a new sample of 6934 individuals with SZ and 8751 controls and combined those data with previously published large data sets for a total of 20 403 cases of SZ and 26 628 controls. Burden analysis of CNVs implicated in intellectual disability (excluding known SZ CNVs) for association with SZ. Association of individual intellectual disability CNV loci with SZ. Of data on the 20 403 cases (6151 [30.15%] female) and 26 628 controls (14 252 [53.52%] female), 51 intellectual disability CNVs were analyzed. Collectively, intellectual disability CNVs were significantly enriched for SZ (P = 1.0 × 10-6; odds ratio [OR], 1.9 [95% CI, 1.46-2.49]). Of the 51 CNVs tested, 19 (37%) were more common in SZ cases; only 4 (8%) were more common in controls (no observations were made for the remaining 28 [55%] loci). One novel locus, deletion at 16p12.1, was significantly associated with SZ after correction for multiple testing (rate in SZ, 33 [0.16%]; rate in controls, 12 [0.05%]; corrected P = .017; OR, 3.3; 95% CI, 1.61-7.05), and 2 loci reached nominal levels of significance (deletions at 2q11.2: 6 [0.03%] vs 1 [0.004%]; OR, 9.3; 95% CI, 1.03-447.76; corrected P > .99; and duplications

  1. Prevalence of Pathogenic Copy Number Variation in Adults With Pediatric-Onset Epilepsy and Intellectual Disability.

    Science.gov (United States)

    Borlot, Felippe; Regan, Brigid M; Bassett, Anne S; Stavropoulos, D James; Andrade, Danielle M

    2017-11-01

    Copy number variation (CNV) is an important cause of neuropsychiatric disorders. Little is known about the role of CNV in adults with epilepsy and intellectual disability. To evaluate the prevalence of pathogenic CNVs and identify possible candidate CNVs and genes in patients with epilepsy and intellectual disability. In this cross-sectional study, genome-wide microarray was used to evaluate a cohort of 143 adults with unexplained childhood-onset epilepsy and intellectual disability who were recruited from the Toronto Western Hospital epilepsy outpatient clinic from January 1, 2012, through December 31, 2014. The inclusion criteria were (1) pediatric seizure onset with ongoing seizure activity in adulthood, (2) intellectual disability of any degree, and (3) no structural brain abnormalities or metabolic conditions that could explain the seizures. DNA screening was performed using genome-wide microarray platforms. Pathogenicity of CNVs was assessed based on the American College of Medical Genetics guidelines. The Residual Variation Intolerance Score was used to evaluate genes within the identified CNVs that could play a role in each patient's phenotype. Of the 2335 patients, 143 probands were investigated (mean [SD] age, 24.6 [10.8] years; 69 male and 74 female). Twenty-three probands (16.1%) and 4 affected relatives (2.8%) (mean [SD] age, 24.1 [6.1] years; 11 male and 16 female) presented with pathogenic or likely pathogenic CNVs (0.08-18.9 Mb). Five of the 23 probands with positive results (21.7%) had more than 1 CNV reported. Parental testing revealed de novo CNVs in 11 (47.8%), with CNVs inherited from a parent in 4 probands (17.4%). Sixteen of 23 probands (69.6%) presented with previously cataloged human genetic disorders and/or defined CNV hot spots in epilepsy. Eight nonrecurrent rare CNVs that overlapped 1 or more genes associated with intellectual disability, autism, and/or epilepsy were identified: 2p16.1-p15 duplication, 6p25.3-p25.1 duplication, 8p23.3p

  2. Detecting single DNA copy number variations in complex genomes using one nanogram of starting DNA and BAC-array CGH.

    Science.gov (United States)

    Guillaud-Bataille, Marine; Valent, Alexander; Soularue, Pascal; Perot, Christine; Inda, Maria Mar; Receveur, Aline; Smaïli, Sadek; Roest Crollius, Hugues; Bénard, Jean; Bernheim, Alain; Gidrol, Xavier; Danglot, Gisèle

    2004-07-29

    Comparative genomic hybridization to bacterial artificial chromosome (BAC)-arrays (array-CGH) is a highly efficient technique, allowing the simultaneous measurement of genomic DNA copy number at hundreds or thousands of loci, and the reliable detection of local one-copy-level variations. We report a genome-wide amplification method allowing the same measurement sensitivity, using 1 ng of starting genomic DNA, instead of the classical 1 microg usually necessary. Using a discrete series of DNA fragments, we defined the parameters adapted to the most faithful ligation-mediated PCR amplification and the limits of the technique. The optimized protocol allows a 3000-fold DNA amplification, retaining the quantitative characteristics of the initial genome. Validation of the amplification procedure, using DNA from 10 tumour cell lines hybridized to BAC-arrays of 1500 spots, showed almost perfectly superimposed ratios for the non-amplified and amplified DNAs. Correlation coefficients of 0.96 and 0.99 were observed for regions of low-copy-level variations and all regions, respectively (including in vivo amplified oncogenes). Finally, labelling DNA using two nucleotides bearing the same fluorophore led to a significant increase in reproducibility and to the correct detection of one-copy gain or loss in >90% of the analysed data, even for pseudotriploid tumour genomes.

  3. Apolipoprotein(a Kringle-IV Type 2 Copy Number Variation Is Associated with Venous Thromboembolism.

    Directory of Open Access Journals (Sweden)

    Elena Sticchi

    Full Text Available In addition to the established association between high lipoprotein(a [Lp(a] concentrations and coronary artery disease, an association between Lp(a and venous thromboembolism (VTE has also been described. Lp(a is controlled by genetic variants in LPA gene, coding for apolipoprotein(a, including the kringle-IV type 2 (KIV-2 size polymorphism. Aim of the study was to investigate the role of LPA gene KIV-2 size polymorphism and single nucleotide polymorphisms (SNPs (rs1853021, rs1800769, rs3798220, rs10455872 in modulating VTE susceptibility. Five hundred and sixteen patients with VTE without hereditary and acquired thrombophilia and 1117 healthy control subjects, comparable for age and sex, were investigated. LPA KIV-2 polymorphism, rs3798220 and rs10455872 SNPs were genotyped by TaqMan technology. Concerning rs1853021 and rs1800769 SNPs, PCR-RFLP assay was used. LPA KIV-2 repeat number was significantly lower in patients than in controls [median (interquartile range 11(6-17 vs 15(9-25, p<0.0001]. A significantly higher prevalence of KIV-2 repeat number ≤7 was observed in patients than in controls (33.5% vs 15.5%, p<0.0001. KIV-2 repeat number was independently associated with VTE (p = 4.36 x10-9, as evidenced by the general linear model analysis adjusted for transient risk factors. No significant difference in allele frequency for all SNPs investigated was observed. Haplotype analysis showed that LPA haplotypes rather than individual SNPs influenced disease susceptibility. Receiver operating characteristic curves analysis showed that a combined risk prediction model, including KIV-2 size polymorphism and clinical variables, had a higher performance in identifying subjects at VTE risk than a clinical-only model, also separately in men and women.

  4. Prognostic and predictive values of EGFR overexpression and EGFR copy number alteration in HER2-positive breast cancer.

    Science.gov (United States)

    Lee, H J; Seo, A N; Kim, E J; Jang, M H; Kim, Y J; Kim, J H; Kim, S-W; Ryu, H S; Park, I A; Im, S-A; Gong, G; Jung, K H; Kim, H J; Park, S Y

    2015-01-06

    Epidermal growth factor receptor (EGFR) is overexpressed in a subset of human epidermal growth factor receptor 2 (HER2)-positive breast cancers, and coexpression of HER2 and EGFR has been reported to be associated with poor clinical outcome. Moreover, interaction between HER2 and EGFR has been suggested to be a possible basis for trastuzumab resistance. We analysed the clinical significance of EGFR overexpression and EGFR gene copy number alterations in 242 HER2-positive primary breast cancers. In addition, we examined the correlations between EGFR overexpression, trastuzumab response and clinical outcome in 447 primary, and 112 metastatic HER2-positive breast cancer patients treated by trastuzumab. Of the 242 primary cases, the level of EGFR overexpression was 2+ in 12.7% and 3+ in 11.8%. High EGFR gene copy number was detected in 10.3%. Epidermal growth factor receptor overexpression was associated with hormone receptor negativity and high Ki-67 proliferation index. In survival analyses, EGFR overexpression, but not high EGFR copy number, was associated with poor disease-free survival in all patients, and in the subgroup not receiving adjuvant trastuzumab. In 447 HER2-positive primary breast cancer patients treated with adjuvant trastuzumab, EGFR overexpression was also an independent poor prognostic factor. However, EGFR overexpression was not associated with trastuzumab response, progression-free survival or overall survival in the metastatic setting. Epidermal growth factor receptor overexpression, but not high EGFR copy number, is a poor prognostic factor in HER2-positive primary breast cancer. Epidermal growth factor receptor overexpression is a predictive factor for trastuzumab response in HER2-positive primary breast cancer, but not in metastatic breast cancer.

  5. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies

    Czech Academy of Sciences Publication Activity Database

    Ivaničová, Zuzana; Valárik, Miroslav; Pánková, K.; Trávníčková, M.; Doležel, Jaroslav; Šafář, Jan; Milec, Zbyněk

    2017-01-01

    Roč. 12, č. 8 (2017), č. článku e0183745. E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * dna methylation * copy number * flowering time * human genome * se gene * vernalization * earliness * barley * region Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 2.806, year: 2016

  6. Bamgineer: Introduction of simulated allele-specific copy number variants into exome and targeted sequence data sets

    OpenAIRE

    Bruce, Jeff; Pugh, Trevor; Samadian, Soroush

    2017-01-01

    Somatic copy number variations (CNVs) play a crucial role in development of many human cancers. The broad availability of next-generation sequencing data has enabled the development of algorithms to computationally infer CNV profiles from a variety of data types including exome and targeted sequence data; currently the most prevalent types of cancer genomics data. However, systemic evaluation and comparison of these tools remains challenging due to a lack of ground truth reference sets. To ad...

  7. Evaluation of SMN protein, transcript, and copy number in the biomarkers for spinal muscular atrophy (BforSMA clinical study.

    Directory of Open Access Journals (Sweden)

    Thomas O Crawford

    Full Text Available The universal presence of a gene (SMN2 nearly identical to the mutated SMN1 gene responsible for Spinal Muscular Atrophy (SMA has proved an enticing incentive to therapeutics development. Early disappointments from putative SMN-enhancing agent clinical trials have increased interest in improving the assessment of SMN expression in blood as an early "biomarker" of treatment effect.A cross-sectional, single visit, multi-center design assessed SMN transcript and protein in 108 SMA and 22 age and gender-matched healthy control subjects, while motor function was assessed by the Modified Hammersmith Functional Motor Scale (MHFMS. Enrollment selectively targeted a broad range of SMA subjects that would permit maximum power to distinguish the relative influence of SMN2 copy number, SMA type, present motor function, and age.SMN2 copy number and levels of full-length SMN2 transcripts correlated with SMA type, and like SMN protein levels, were lower in SMA subjects compared to controls. No measure of SMN expression correlated strongly with MHFMS. A key finding is that SMN2 copy number, levels of transcript and protein showed no correlation with each other.This is a prospective study that uses the most advanced techniques of SMN transcript and protein measurement in a large selectively-recruited cohort of individuals with SMA. There is a relationship between measures of SMN expression in blood and SMA type, but not a strong correlation to motor function as measured by the MHFMS. Low SMN transcript and protein levels in the SMA subjects relative to controls suggest that these measures of SMN in accessible tissues may be amenable to an "early look" for target engagement in clinical trials of putative SMN-enhancing agents. Full length SMN transcript abundance may provide insight into the molecular mechanism of phenotypic variation as a function of SMN2 copy number.Clinicaltrials.gov NCT00756821.

  8. Copy number variations of chromosome 16p13.1 region associated with schizophrenia

    DEFF Research Database (Denmark)

    Ingason, A; Rujescu, D; Cichon, S

    2011-01-01

    .007) and deletions in 0.12 % of cases and 0.04% of controls (P>0.05). The region can be divided into three intervals defined by flanking low copy repeats. Duplications spanning intervals I and II showed the most significant (P = 0.00010) association with schizophrenia. The age of onset in duplication and deletion...... carriers among cases ranged from 12 to 35 years, and the majority were males with a family history of psychiatric disorders. In a single Icelandic family, a duplication spanning intervals I and II was present in two cases of schizophrenia, and individual cases of alcoholism, attention deficit hyperactivity...

  9. Comparative analyses of microbial structures and gene copy numbers in the anaerobic digestion of various types of sewage sludge.

    Science.gov (United States)

    Hidaka, Taira; Tsushima, Ikuo; Tsumori, Jun

    2018-04-01

    Anaerobic co-digestion of various sewage sludges is a promising approach for greater recovery of energy, but the process is more complicated than mono-digestion of sewage sludge. The applicability of microbial structure analyses and gene quantification to understand microbial conditions was evaluated. The results show that information from gene analyses is useful in managing anaerobic co-digestion and damaged microbes in addition to conventional parameters like total solids, pH and biogas production. Total bacterial 16S rRNA gene copy numbers are the most useful tools for evaluating unstable anaerobic digestion of sewage sludge, rather than mcrA and total archaeal 16S rRNA gene copy numbers, and high-throughput sequencing. First order decay rates of gene copy numbers during pH failure were higher than typical decay rates of microbes in stable operation. The sequencing analyses, including multidimensional scaling, showed very different microbial structure shifts, but the results were not consistent. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. GenomeCAT: a versatile tool for the analysis and integrative visualization of DNA copy number variants.

    Science.gov (United States)

    Tebel, Katrin; Boldt, Vivien; Steininger, Anne; Port, Matthias; Ebert, Grit; Ullmann, Reinhard

    2017-01-06

    The analysis of DNA copy number variants (CNV) has increasing impact in the field of genetic diagnostics and research. However, the interpretation of CNV data derived from high resolution array CGH or NGS platforms is complicated by the considerable variability of the human genome. Therefore, tools for multidimensional data analysis and comparison of patient cohorts are needed to assist in the discrimination of clinically relevant CNVs from others. We developed GenomeCAT, a standalone Java application for the analysis and integrative visualization of CNVs. GenomeCAT is composed of three modules dedicated to the inspection of single cases, comparative analysis of multidimensional data and group comparisons aiming at the identification of recurrent aberrations in patients sharing the same phenotype, respectively. Its flexible import options ease the comparative analysis of own results derived from microarray or NGS platforms with data from literature or public depositories. Multidimensional data obtained from different experiment types can be merged into a common data matrix to enable common visualization and analysis. All results are stored in the integrated MySQL database, but can also be exported as tab delimited files for further statistical calculations in external programs. GenomeCAT offers a broad spectrum of visualization and analysis tools that assist in the evaluation of CNVs in the context of other experiment data and annotations. The use of GenomeCAT does not require any specialized computer skills. The various R packages implemented for data analysis are fully integrated into GenomeCATs graphical user interface and the installation process is supported by a wizard. The flexibility in terms of data import and export in combination with the ability to create a common data matrix makes the program also well suited as an interface between genomic data from heterogeneous sources and external software tools. Due to the modular architecture the functionality of

  11. Analysis of copy number variations in Holstein cows identify potential mechanisms contributing to differences in residual feed intake.

    Science.gov (United States)

    Hou, Yali; Bickhart, Derek M; Chung, Hoyoung; Hutchison, Jana L; Norman, H Duane; Connor, Erin E; Liu, George E

    2012-11-01

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. In this study, we performed an initial analysis of copy number variations (CNVs) using BovineHD SNP genotyping data from 147 Holstein cows identified as having high or low feed efficiency as estimated by residual feed intake (RFI). We detected 443 candidate CNV regions (CNVRs) that represent 18.4 Mb (0.6 %) of the genome. To investigate the functional impacts of CNVs, we created two groups of 30 individual animals with extremely low or high estimated breeding values (EBVs) for RFI, and referred to these groups as low intake (LI; more efficient) or high intake (HI; less efficient), respectively. We identified 240 (~9.0 Mb) and 274 (~10.2 Mb) CNVRs from LI and HI groups, respectively. Approximately 30-40 % of the CNVRs were specific to the LI group or HI group of animals. The 240 LI CNVRs overlapped with 137 Ensembl genes. Network analyses indicated that the LI-specific genes were predominantly enriched for those functioning in the inflammatory response and immunity. By contrast, the 274 HI CNVRs contained 177 Ensembl genes. Network analyses indicated that the HI-specific genes were particularly involved in the cell cycle, and organ and bone development. These results relate CNVs to two key variables, namely immune response and organ and bone development. The data indicate that greater feed efficiency relates more closely to immune response, whereas cattle with reduced feed efficiency may have a greater capacity for organ and bone development.

  12. Two-color fluorescence analysis of individual virions determines the distribution of the copy number of proteins in herpes simplex virus particles.

    Science.gov (United States)

    Clarke, Richard W; Monnier, Nilah; Li, Haitao; Zhou, Dejian; Browne, Helena; Klenerman, David

    2007-08-15

    We present a single virion method to determine absolute distributions of copy number in the protein composition of viruses and apply it to herpes simplex virus type 1. Using two-color coincidence fluorescence spectroscopy, we determine the virion-to-virion variability in copy numbers of fluorescently labeled tegument and envelope proteins relative to a capsid protein by analyzing fluorescence intensity ratios for ensembles of individual dual-labeled virions and fitting the resulting histogram of ratios. Using EYFP-tagged capsid protein VP26 as a reference for fluorescence intensity, we are able to calculate the mean and also, for the first time to our knowledge, the variation in numbers of gD, VP16, and VP22 tegument. The measurement of the number of glycoprotein D molecules was in good agreement with independent measurements of average numbers of these glycoproteins in bulk virus preparations, validating the method. The accuracy, straightforward data processing, and high throughput of this technique make it widely applicable to the analysis of the molecular composition of large complexes in general, and it is particularly suited to providing insights into virus structure, assembly, and infectivity.

  13. Assessment of Tumor Heterogeneity, as Evidenced by Gene Expression Profiles, Pathway Activation, and Gene Copy Number, in Patients with Multifocal Invasive Lobular Breast Tumors

    Science.gov (United States)

    Norton, Nadine; Advani, Pooja P.; Serie, Daniel J.; Geiger, Xochiquetzal J.; Necela, Brian M.; Axenfeld, Bianca C.; Kachergus, Jennifer M.; Feathers, Ryan W.; Carr, Jennifer M.; Crook, Julia E.; Moreno-Aspitia, Alvaro; Anastasiadis, Panos Z.; Perez, Edith A.; Thompson, E. Aubrey

    2016-01-01

    Background Invasive lobular carcinoma (ILC) comprises approximately ~10–20% of breast cancers. In general, multifocal/multicentric (MF/MC) breast cancer has been associated with an increased rate of regional lymph node metastases. Tumor heterogeneity between foci represents a largely unstudied source of genomic variation in those rare patients with MF/MC ILC. Methods We characterized gene expression and copy number in 2 or more foci from 11 patients with MF/MC ILC (all ER+, HER2-) and adjacent normal tissue. RNA and DNA were extracted from 3x1.5mm cores from all foci. Gene expression (730 genes) and copy number (80 genes) were measured using Nanostring PanCancer and Cancer CNV panels. Linear mixed models were employed to compare expression in tumor versus normal samples from the same patient, and to assess heterogeneity (variability) in expression among multiple ILC within an individual. Results 35 and 34 genes were upregulated (FC>2) and down-regulated (FC<0.5) respectively in ILC tumor relative to adjacent normal tissue, q<0.05. 9/34 down-regulated genes (FIGF, RELN, PROM1, SFRP1, MMP7, NTRK2, LAMB3, SPRY2, KIT) had changes larger than CDH1, a hallmark of ILC. Copy number changes in these patients were relatively few but consistent across foci within each patient. Amplification of three genes (CCND1, FADD, ORAOV1) at 11q13.3 was present in 2/11 patients in both foci. We observed significant evidence of within-patient between-foci variability (heterogeneity) in gene expression for 466 genes (p<0.05 with FDR 8%), including CDH1, FIGF, RELN, SFRP1, MMP7, NTRK2, LAMB3, SPRY2 and KIT. Conclusions There was substantial variation in gene expression between ILC foci within patients, including known markers of ILC, suggesting an additional level of complexity that should be addressed. PMID:27078887

  14. Copy number and loss of heterozygosity detected by SNP array of formalin-fixed tissues using whole-genome amplification.

    Directory of Open Access Journals (Sweden)

    Angela Stokes

    Full Text Available The requirement for large amounts of good quality DNA for whole-genome applications prohibits their use for small, laser capture micro-dissected (LCM, and/or rare clinical samples, which are also often formalin-fixed and paraffin-embedded (FFPE. Whole-genome amplification of DNA from these samples could, potentially, overcome these limitations. However, little is known about the artefacts introduced by amplification of FFPE-derived DNA with regard to genotyping, and subsequent copy number and loss of heterozygosity (LOH analyses. Using a ligation adaptor amplification method, we present data from a total of 22 Affymetrix SNP 6.0 experiments, using matched paired amplified and non-amplified DNA from 10 LCM FFPE normal and dysplastic oral epithelial tissues, and an internal method control. An average of 76.5% of SNPs were called in both matched amplified and non-amplified DNA samples, and concordance was a promising 82.4%. Paired analysis for copy number, LOH, and both combined, showed that copy number changes were reduced in amplified DNA, but were 99.5% concordant when detected, amplifications were the changes most likely to be 'missed', only 30% of non-amplified LOH changes were identified in amplified pairs, and when copy number and LOH are combined ∼50% of gene changes detected in the unamplified DNA were also detected in the amplified DNA and within these changes, 86.5% were concordant for both copy number and LOH status. However, there are also changes introduced as ∼20% of changes in the amplified DNA are not detected in the non-amplified DNA. An integrative network biology approach revealed that changes in amplified DNA of dysplastic oral epithelium localize to topologically critical regions of the human protein-protein interaction network, suggesting their functional implication in the pathobiology of this disease. Taken together, our results support the use of amplification of FFPE-derived DNA, provided sufficient samples are used

  15. Identification of chloroquine resistance Pfcrt-K76T and determination of Pfmdr1-N86Y copy number by SYBR Green I qPCR

    Directory of Open Access Journals (Sweden)

    Addimas Tajebe

    2015-03-01

    Conclusions: The study showed high prevalence level and fixation of Pfcrt, 76T mutation after chloroquine withdrawal. The prevalence of Pfmdr1 copy number variant suggested that the presence of modulating factor for emergence of Plasmodium falciparum strains with higher copy numbers. However, the prevalence level was not statistically significant.

  16. Association of low-affinity FC gamma receptor 3B (FCGR3B) copy number variation with rheumatoid arthritis in Caucasian subjects

    NARCIS (Netherlands)

    Merriman, T.R.; Fanciulli, M.; Merriman, M.E.; Alizadeh, B.Z.; Koeleman, B.P.C.; Dalbeth, N.; Gow, P.; Harrison, A.A.; Highton, J.; Jones, P.B.; Stamp, L.K.; Steer, S.; Barrera, P.; Coenen, M.J.H.; Franke, B.; Vyse, T.; Aitman, T.; Radstake, T.; McKinney, C.

    2009-01-01

    Aim: There is increasing evidence that gene copy-number variation influences phenotypic variation. The low-affinity Fc receptor 3B (FCGR3B) is a copy-number polymorphic gene involved in the recruitment to sites of inflammation and activation of polymorphonuclear neutrophils (PMN). Given the

  17. SVA retrotransposon insertion-associated deletion represents a novel mutational mechanism underlying large genomic copy number changes with non-recurrent breakpoints

    NARCIS (Netherlands)

    J. Vogt (Julia); K. Bengesser (Kathrin); K.B.M. Claes (Kathleen B.M.); K. Wimmer (Katharina); V.-F. Mautner (Victor-Felix); R. van Minkelen (Rick); E. Legius (Eric); H. Brems (Hilde); M. Upadhyaya (Meena); J. Högel (Josef); C. Lazaro (Conxi); T. Rosenbaum (Thorsten); S. Bammert (Simone); L. Messiaen (Ludwine); D.N. Cooper (David); H. Kehrer-Sawatzki (Hildegard)

    2014-01-01

    textabstractBackground: Genomic disorders are caused by copy number changes that may exhibit recurrent breakpoints processed by nonallelic homologous recombination. However, region-specific disease-associated copy number changes have also been observed which exhibit non-recurrent breakpoints. The

  18. Accuracy and differential bias in copy number measurement of CCL3L1 in association studies with three auto-immune disorders

    NARCIS (Netherlands)

    Carpenter, D.; Walker, S.; Prescott, N.; Schalkwijk, J.; Armour, J.A.

    2011-01-01

    BACKGROUND: Copy number variation (CNV) contributes to the variation observed between individuals and can influence human disease progression, but the accurate measurement of individual copy numbers is technically challenging. In the work presented here we describe a modification to a previously

  19. Low C4 gene copy numbers are associated with superior graft survival in patients transplanted with a deceased donor kidney

    DEFF Research Database (Denmark)

    Bay, Jakob T; Schejbel, Lone; Madsen, Hans O

    2013-01-01

    rejection, but a relationship between graft survival and serum C4 concentration as well as C4 genetic variation has not been established. We evaluated this using a prospective study design of 676 kidney transplant patients and 211 healthy individuals as controls. Increasing C4 gene copy numbers......Complement C4 is a central component of the classical and the lectin pathways of the complement system. The C4 protein exists as two isotypes C4A and C4B encoded by the C4A and C4B genes, both of which are found with varying copy numbers. Deposition of C4 has been implicated in kidney graft...... significantly correlated with the C4 serum concentration in both patients and controls. Patients with less than four total copies of C4 genes transplanted with a deceased donor kidney experienced a superior 5-year graft survival (hazard ratio 0.46, 95% confidence interval: 0.25-0.84). No significant association...

  20. Analysis of Copy Number Variation in the Abp Gene Regions of Two House Mouse Subspecies Suggests Divergence during the Gene Family Expansions.

    Science.gov (United States)

    Pezer, Željka; Chung, Amanda G; Karn, Robert C; Laukaitis, Christina M

    2017-06-01

    The Androgen-binding protein ( Abp ) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus ( Mmd ) and Mus musculus musculus ( Mmm ), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd , primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm , Mus musculus castaneus and an outgroup, Mus spretus , although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. A Meta-Analysis of Multiple Matched Copy Number and Transcriptomics Data Sets for Inferring Gene Regulatory Relationships

    Science.gov (United States)

    Newton, Richard; Wernisch, Lorenz

    2014-01-01

    Inferring gene regulatory relationships from observational data is challenging. Manipulation and intervention is often required to unravel causal relationships unambiguously. However, gene copy number changes, as they frequently occur in cancer cells, might be considered natural manipulation experiments on gene expression. An increasing number of data sets on matched array comparative genomic hybridisation and transcriptomics experiments from a variety of cancer pathologies are becoming publicly available. Here we explore the potential of a meta-analysis of thirty such data sets. The aim of our analysis was to assess the potential of in silico inference of trans-acting gene regulatory relationships from this type of data. We found sufficient correlation signal in the data to infer gene regulatory relationships, with interesting similarities between data sets. A number of genes had highly correlated copy number and expression changes in many of the data sets and we present predicted potential trans-acted regulatory relationships for each of these genes. The study also investigates to what extent heterogeneity between cell types and between pathologies determines the number of statistically significant predictions available from a meta-analysis of experiments. PMID:25148247

  2. An accurate method for quantifying and analyzing copy number variation in porcine KIT by an oligonucleotide ligation assay

    Directory of Open Access Journals (Sweden)

    Cho In-Cheol

    2007-11-01

    Full Text Available Abstract Background Aside from single nucleotide polymorphisms, copy number variations (CNVs are the most important factors in susceptibility to genetic disorders because they affect expression levels of genes. In previous studies, pyrosequencing, mini-sequencing, real-time PCR, invader assays and other techniques have been used to detect CNVs. However, the higher the copy number in a genome, the more difficult it is to resolve the copies, so a more accurate method for measuring CNVs and assigning genotype is needed. Results PCR followed by a quantitative oligonucleotide ligation assay (qOLA was developed for quantifying CNVs. The accuracy and precision of the assay were evaluated for porcine KIT, which was selected as a model locus. Overall, the root mean squares of bias and standard deviation of qOLA were 2.09 and 0.45, respectively. These values are less than half of those in the published pyrosequencing assay for analyzing CNV in porcine KIT. Using a combined method of qOLA and another pyrosequencing for quantitative analysis of KIT copies with spliced forms, we confirmed the segregation of KIT alleles in 145 F1 animals with pedigree information and verified the correct assignment of genotypes. In a diagnostic test on 100 randomly sampled commercial pigs, there was perfect agreement between the genotypes obtained by grouping observations on a scatter plot and by clustering using the nearest centroid sorting method implemented in PROC FASTCLUS of the SAS package. In a test on 159 Large White pigs, there were only two discrepancies between genotypes assigned by the two clustering methods (98.7% agreement, confirming that the quantitative ligation assay established here makes genotyping possible through the accurate measurement of high KIT copy numbers (>4 per diploid genome. Moreover, the assay is sensitive enough for use on DNA from hair follicles, indicating that DNA from various sources could be used. Conclusion We have established a high

  3. Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat.

    Science.gov (United States)

    Würschum, Tobias; Boeven, Philipp H G; Langer, Simon M; Longin, C Friedrich H; Leiser, Willmar L

    2015-07-29

    Copy number variation was found to be a frequent type of DNA polymorphism in the human genome often associated with diseases but its importance in crops and the effects on agronomic traits are still largely unknown. Here, we employed a large worldwide panel of 1110 winter wheat varieties to assess the frequency and the geographic distribution of copy number variants at the Photoperiod-B1 (Ppd-B1) and the Vernalization-A1 (Vrn-A1) loci as well as their effects on flowering time under field conditions. We identified a novel four copy variant of Vrn-A1 and based on the phylogenetic relationships among the lines show that the higher copy variants at both loci are likely to have arisen independently multiple times. In addition, we found that the frequency of the different copy number variants at both loci reflects the environmental conditions in the varieties' region of origin and based on multi-location field trials show that Ppd-B1 copy number has a substantial effect on the fine-tuning of flowering time. In conclusion, our results show the importance of copy number variation at Ppd-B1 and Vrn-A1 for the global adaptation of wheat making it a key factor for wheat success in a broad range of environments and in a wider context substantiate the significant role of copy number variation in crops.

  4. Dynamics in copy numbers of five plasmids of a dairy Lactococcus lactis in dairy-related conditions including near-zero growth rates.

    Science.gov (United States)

    van Mastrigt, Oscar; Lommers, Marcel M A N; de Vries, Yorick C; Abee, Tjakko; Smid, Eddy J

    2018-03-23

    Lactic acid bacteria can carry multiple plasmids affecting their performance in dairy fermentations. The expression of plasmid-encoded genes and the activity of the corresponding proteins is severely affected by changes in the number of plasmid copies. We studied the impact of growth rate on dynamics of plasmid copy numbers at high growth rates in chemostat cultures and down to near-zero growth rates in retentostat cultures. Five plasmids of the dairy strain Lactococcus lactis FM03-V1 were selected which varied in size (3 to 39 kb), in replication mechanism (theta or rolling-circle) and in putative (dairy-associated) functions. Copy numbers ranged from 1.5 to 40.5 and the copy number of theta-type replicating plasmids were negatively correlated to the plasmid size. Despite the extremely wide range of growth rates (0.0003 h -1 to 0.6 h -1 ), copy numbers of the five plasmids were stable and only slightly increased at near-zero growth rates showing that the plasmid replication rate was strictly controlled. One low-copy number plasmid, carrying a large exopolysaccharide gene cluster, was segregationally unstable during retentostat cultivations reflected in complete loss of the plasmid in one of the retentostat cultures. The copy number of the five plasmids was also hardly affected by varying the pH value, nutrient limitation or presence of citrate (maximum 2.2-fold) signifying the stability in copy number of the plasmids. Importance Lactococcus lactis is extensively used in starter cultures for dairy fermentations. Important traits for growth and survival of L. lactis in dairy fermentations are encoded by genes located on plasmids, such as genes involved in lactose and citrate metabolism, protein degradation and oligopeptide uptake and bacteriophage resistance. Because the number of plasmid copies could affect the expression of plasmid-encoded genes, it is important to know the factors that influence the plasmid copy numbers. We monitored plasmid copy numbers of L

  5. Dual gain of HER2 and EGFR gene copy numbers impacts the prognosis of carcinoma ex pleomorphic adenoma.

    Science.gov (United States)

    Nishijima, Toshimitsu; Yamamoto, Hidetaka; Nakano, Takafumi; Nakashima, Torahiko; Taguchi, Ken-ichi; Masuda, Muneyuki; Motoshita, Jun-ichi; Komune, Shizuo; Oda, Yoshinao

    2015-11-01

    We investigated the potential roles of HER2 and EGFR and evaluated their prognostic significance in carcinoma ex pleomorphic adenoma (CXPA). We analyzed HER2 and EGFR overexpression status using immunohistochemistry (IHC) and gene copy number gain by chromogenic in situ hybridization (CISH) in 50 cases of CXPA (40 ductal-type and 10 myoepithelial-type CXPAs). Salivary duct carcinoma was the most common histologic subtype of malignant component (n = 21). Immunohistochemistry positivity and chromogenic in situ hybridization positivity were closely correlated in both HER2 and EGFR. HER2 CISH positivity (mostly gene amplification) and EGFR CISH positivity (mostly gene high polysomy) were present in 19 (40%) and 21 (44%) cases, respectively, and were each significantly correlated with poor outcome (P = .0009 and P = .0032, respectively). Dual gain of HER2 and EGFR gene copy numbers was present in 11 cases (23%) and was the most aggressive genotype. HER2 CISH positivity was more frequently present in ductal-type CXPAs (47%) than in myoepithelial-type CXPAs (10%), whereas the prevalence of EGFR CISH positivity was similar in both histologic subtypes (42% and 50%, respectively). Our results suggest that HER2 and EGFR gene copy number gains may play an important role in the progression of CXPA, in particular ductal-type CXPAs. HER2 CISH-positive/EGFR CISH-positive tumors may be the most aggressive subgroup in CXPA. The molecular subclassification of CXPA based on the HER2 and EGFR status may be helpful for prognostic prediction and decisions regarding the choice of therapeutic strategy. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Bamgineer: Introduction of simulated allele-specific copy number variants into exome and targeted sequence data sets.

    Science.gov (United States)

    Samadian, Soroush; Bruce, Jeff P; Pugh, Trevor J

    2018-03-01

    Somatic copy number variations (CNVs) play a crucial role in development of many human cancers. The broad availability of next-generation sequencing data has enabled the development of algorithms to computationally infer CNV profiles from a variety of data types including exome and targeted sequence data; currently the most prevalent types of cancer genomics data. However, systemic evaluation and comparison of these tools remains challenging due to a lack of ground truth reference sets. To address this need, we have developed Bamgineer, a tool written in Python to introduce user-defined haplotype-phased allele-specific copy number events into an existing Binary Alignment Mapping (BAM) file, with a focus on targeted and exome sequencing experiments. As input, this tool requires a read alignment file (BAM format), lists of non-overlapping genome coordinates for introduction of gains and losses (bed file), and an optional file defining known haplotypes (vcf format). To improve runtime performance, Bamgineer introduces the desired CNVs in parallel using queuing and parallel processing on a local machine or on a high-performance computing cluster. As proof-of-principle, we applied Bamgineer to a single high-coverage (mean: 220X) exome sequence file from a blood sample to simulate copy number profiles of 3 exemplar tumors from each of 10 tumor types at 5 tumor cellularity levels (20-100%, 150 BAM files in total). To demonstrate feasibility beyond exome data, we introduced read alignments to a targeted 5-gene cell-free DNA sequencing library to simulate EGFR amplifications at frequencies consistent with circulating tumor DNA (10, 1, 0.1 and 0.01%) while retaining the multimodal insert size distribution of the original data. We expect Bamgineer to be of use for development and systematic benchmarking of CNV calling algorithms by users using locally-generated data for a variety of applications. The source code is freely available at http://github.com/pughlab/bamgineer.

  7. The Number of Genomic Copies at the 16p11.2 Locus Modulates Language, Verbal Memory, and Inhibition.

    Science.gov (United States)

    Hippolyte, Loyse; Maillard, Anne M; Rodriguez-Herreros, Borja; Pain, Aurélie; Martin-Brevet, Sandra; Ferrari, Carina; Conus, Philippe; Macé, Aurélien; Hadjikhani, Nouchine; Metspalu, Andres; Reigo, Anu; Kolk, Anneli; Männik, Katrin; Barker, Mandy; Isidor, Bertrand; Le Caignec, Cédric; Mignot, Cyril; Schneider, Laurence; Mottron, Laurent; Keren, Boris; David, Albert; Doco-Fenzy, Martine; Gérard, Marion; Bernier, Raphael; Goin-Kochel, Robin P; Hanson, Ellen; Green Snyder, LeeAnne; Ramus, Franck; Beckmann, Jacques S; Draganski, Bogdan; Reymond, Alexandre; Jacquemont, Sébastien

    2016-07-15

    Deletions and duplications of the 16p11.2 BP4-BP5 locus are prevalent copy number variations (CNVs), highly associated with autism spectrum disorder and schizophrenia. Beyond language and global cognition, neuropsychological assessments of these two CNVs have not yet been reported. This study investigates the relationship between the number of genomic copies at the 16p11.2 locus and cognitive domains assessed in 62 deletion carriers, 44 duplication carriers, and 71 intrafamilial control subjects. IQ is decreased in deletion and duplication carriers, but we demonstrate contrasting cognitive profiles in these reciprocal CNVs. Deletion carriers present with severe impairments of phonology and of inhibition skills beyond what is expected for their IQ level. In contrast, for verbal memory and phonology, the data may suggest that duplication carriers outperform intrafamilial control subjects with the same IQ level. This finding is reminiscent of special isolated skills as well as contrasting language performance observed in autism spectrum disorder. Some domains, such as visuospatial and working memory, are unaffected by the 16p11.2 locus beyond the effect of decreased IQ. Neuroimaging analyses reveal that measures of inhibition covary with neuroanatomic structures previously identified as sensitive to 16p11.2 CNVs. The simultaneous study of reciprocal CNVs suggests that the 16p11.2 genomic locus modulates specific cognitive skills according to the number of genomic copies. Further research is warranted to replicate these findings and elucidate the molecular mechanisms modulating these cognitive performances. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Bamgineer: Introduction of simulated allele-specific copy number variants into exome and targeted sequence data sets.

    Directory of Open Access Journals (Sweden)

    Soroush Samadian

    2018-03-01

    Full Text Available Somatic copy number variations (CNVs play a crucial role in development of many human cancers. The broad availability of next-generation sequencing data has enabled the development of algorithms to computationally infer CNV profiles from a variety of data types including exome and targeted sequence data; currently the most prevalent types of cancer genomics data. However, systemic evaluation and comparison of these tools remains challenging due to a lack of ground truth reference sets. To address this need, we have developed Bamgineer, a tool written in Python to introduce user-defined haplotype-phased allele-specific copy number events into an existing Binary Alignment Mapping (BAM file, with a focus on targeted and exome sequencing experiments. As input, this tool requires a read alignment file (BAM format, lists of non-overlapping genome coordinates for introduction of gains and losses (bed file, and an optional file defining known haplotypes (vcf format. To improve runtime performance, Bamgineer introduces the desired CNVs in parallel using queuing and parallel processing on a local machine or on a high-performance computing cluster. As proof-of-principle, we applied Bamgineer to a single high-coverage (mean: 220X exome sequence file from a blood sample to simulate copy number profiles of 3 exemplar tumors from each of 10 tumor types at 5 tumor cellularity levels (20-100%, 150 BAM files in total. To demonstrate feasibility beyond exome data, we introduced read alignments to a targeted 5-gene cell-free DNA sequencing library to simulate EGFR amplifications at frequencies consistent with circulating tumor DNA (10, 1, 0.1 and 0.01% while retaining the multimodal insert size distribution of the original data. We expect Bamgineer to be of use for development and systematic benchmarking of CNV calling algorithms by users using locally-generated data for a variety of applications. The source code is freely available at http://github.com/pughlab/bamgineer.

  9. Specific genomic regions are differentially affected by copy number alterations across distinct cancer types, in aggregated cytogenetic data.

    Science.gov (United States)

    Kumar, Nitin; Cai, Haoyang; von Mering, Christian; Baudis, Michael

    2012-01-01

    Regional genomic copy number alterations (CNA) are observed in the vast majority of cancers. Besides specifically targeting well-known, canonical oncogenes, CNAs may also play more subtle roles in terms of modulating genetic potential and broad gene expression patterns of developing tumors. Any significant differences in the overall CNA patterns between different cancer types may thus point towards specific biological mechanisms acting in those cancers. In addition, differences among CNA profiles may prove valuable for cancer classifications beyond existing annotation systems. We have analyzed molecular-cytogenetic data from 25579 tumors samples, which were classified into 160 cancer types according to the International Classification of Disease (ICD) coding system. When correcting for differences in the overall CNA frequencies between cancer types, related cancers were often found to cluster together according to similarities in their CNA profiles. Based on a randomization approach, distance measures from the cluster dendrograms were used to identify those specific genomic regions that contributed significantly to this signal. This approach identified 43 non-neutral genomic regions whose propensity for the occurrence of copy number alterations varied with the type of cancer at hand. Only a subset of these identified loci overlapped with previously implied, highly recurrent (hot-spot) cytogenetic imbalance regions. Thus, for many genomic regions, a simple null-hypothesis of independence between cancer type and relative copy number alteration frequency can be rejected. Since a subset of these regions display relatively low overall CNA frequencies, they may point towards second-tier genomic targets that are adaptively relevant but not necessarily essential for cancer development.

  10. Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma.

    Science.gov (United States)

    Wiestler, Benedikt; Capper, David; Sill, Martin; Jones, David T W; Hovestadt, Volker; Sturm, Dominik; Koelsche, Christian; Bertoni, Anna; Schweizer, Leonille; Korshunov, Andrey; Weiß, Elisa K; Schliesser, Maximilian G; Radbruch, Alexander; Herold-Mende, Christel; Roth, Patrick; Unterberg, Andreas; Hartmann, Christian; Pietsch, Torsten; Reifenberger, Guido; Lichter, Peter; Radlwimmer, Bernhard; Platten, Michael; Pfister, Stefan M; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang

    2014-10-01

    The outcome of patients with anaplastic gliomas varies considerably. Whether a molecular classification of anaplastic gliomas based on large-scale genomic or epigenomic analyses is superior to histopathology for reflecting distinct biological groups, predicting outcomes and guiding therapy decisions has yet to be determined. Epigenome-wide DNA methylation analysis, using a platform which also allows the detection of copy-number aberrations, was performed in a cohort of 228 patients with anaplastic gliomas (astrocytomas, oligoastrocytomas, and oligodendrogliomas), including 115 patients of the NOA-04 trial. We further compared these tumors with a group of 55 glioblastomas. Unsupervised clustering of DNA methylation patterns revealed two main groups correlated with IDH status: CpG island methylator phenotype (CIMP) positive (77.5 %) or negative (22.5 %). CIMP(pos) (IDH mutant) tumors showed a further separation based on copy-number status of chromosome arms 1p and 19q. CIMP(neg) (IDH wild type) tumors showed hallmark copy-number alterations of glioblastomas, and clustered together with CIMP(neg) glioblastomas without forming separate groups based on WHO grade. Notably, there was no molecular evidence for a distinct biological entity representing anaplastic oligoastrocytoma. Tumor classification based on CIMP and 1p/19q status was significantly associated with survival, allowing a better prediction of outcome than the current histopathological classification: patients with CIMP(pos) tumors with 1p/19q codeletion (CIMP-codel) had the best prognosis, followed by patients with CIMP(pos) tumors but intact 1p/19q status (CIMP-non-codel). Patients with CIMP(neg) anaplastic gliomas (GBM-like) had the worst prognosis. Collectively, our data suggest that anaplastic gliomas can be grouped by IDH and 1p/19q status into three molecular groups that show clear links to underlying biology and a significant association with clinical outcome in a prospective trial cohort.

  11. High frequency of rare copy number variants affecting functionally related genes in patients with structural brain malformations

    DEFF Research Database (Denmark)

    Kariminejad, Roxana; Lind-Thomsen, Allan; Tümer, Zeynep

    2011-01-01

    ) to investigate copy number variants (CNVs) in a cohort of 169 patients with various structural brain malformations including lissencephaly, polymicrogyria, focal cortical dysplasia, and corpus callosum agenesis. The majority of the patients had intellectual disabilities (ID) and suffered from symptomatic...... that genes involved in "axonal transport," "cation transmembrane transporter activity," and the "c-Jun N-terminal kinase (JNK) cascade" play a significant role in the etiology of brain malformations. This is to the best of our knowledge the first systematic study of CNVs in patients with structural brain...

  12. Hungarian Marfan family with large FBN1 deletion calls attention to copy number variation detection in the current NGS era

    Science.gov (United States)

    Ágg, Bence; Meienberg, Janine; Kopps, Anna M.; Fattorini, Nathalie; Stengl, Roland; Daradics, Noémi; Pólos, Miklós; Bors, András; Radovits, Tamás; Merkely, Béla; De Backer, Julie; Szabolcs, Zoltán; Mátyás, Gábor

    2018-01-01

    Copy number variations (CNVs) comprise about 10% of reported disease-causing mutations in Mendelian disorders. Nevertheless, pathogenic CNVs may have been under-detected due to the lack or insufficient use of appropriate detection methods. In this report, on the example of the diagnostic odyssey of a patient with Marfan syndrome (MFS) harboring a hitherto unreported 32-kb FBN1 deletion, we highlight the need for and the feasibility of testing for CNVs (>1 kb) in Mendelian disorders in the current next-generation sequencing (NGS) era. PMID:29850152

  13. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance [version 1; referees: 5 approved

    Directory of Open Access Journals (Sweden)

    Marie-Claude N. Laffitte

    2016-09-01

    Full Text Available Leishmania has a plastic genome, and drug pressure can select for gene copy number variation (CNV. CNVs can apply either to whole chromosomes, leading to aneuploidy, or to specific genomic regions. For the latter, the amplification of chromosomal regions occurs at the level of homologous direct or inverted repeated sequences leading to extrachromosomal circular or linear amplified DNAs. This ability of Leishmania to respond to drug pressure by CNVs has led to the development of genomic screens such as Cos-Seq, which has the potential of expediting the discovery of drug targets for novel promising drug candidates.

  14. Genome-wide assessment of the association of rare and common copy number variations to testicular germ cell cancer

    DEFF Research Database (Denmark)

    Edsgard, Stefan Daniel; Dalgaard, Marlene Danner; Weinhold, Nils

    2013-01-01

    Testicular germ cell cancer (TGCC) is one of the most heritable forms of cancer. Previous genome-wide association studies have focused on single nucleotide polymorphisms, largely ignoring the influence of copy number variants (CNVs). Here we present a genome-wide study of CNV on a cohort of 212...... of rare CNVs related to cell migration (false-discovery rate = 0.021, 1.8% of cases and 1.1% of controls). Dysregulation during migration of primordial germ cells has previously been suspected to be a part of TGCC development and this set of multiple rare variants may thereby have a minor contribution...

  15. Associations of mitochondrial haplogroups and mitochondrial DNA copy numbers with end-stage renal disease in a Han population.

    Science.gov (United States)

    Zhang, Yuheng; Zhao, Ying; Wen, Shuzhen; Yan, Rengna; Yang, Qinglan; Chen, Huimei

    2017-09-01

    Mitochondrial DNA (mtDNA) is closely related to mitochondrion function, and variations have been suggested to be involved in pathogenesis of complex diseases. The present study sought to elucidate mitochondrial haplogroups and mtDNA copy number in end-stage renal disease (ESRD) in a Han population. First, the mitochondrial haplogroups of 37 ESRD patients were clustered into several haplogroups, and haplogroup A & D were taken as the candidate risk haplogroups for ESRD. Second, the frequencies of A and D were assessed in 344 ESRD patients and 438 healthy controls, respectively. Haplogroup D was found to be risk maker for ESRD in young subjects (numbers were evaluated with quantitative-PCR. The ESRD patients exhibited greater cell-free mtDNA contents than the healthy controls but less intracellular mtDNA. Haplogroup D exhibited a further increase in cell-free mtDNA content and a decrease in intracellular mtDNA content among the ESRDs patients. Our findings suggest that mtNDA haplogroup D may contributes to pathogenesis of early-onset ESRD through alterations of mtDNA copy numbers.

  16. Prevalence and pathogen load estimates for the fungus Batrachochytrium dendrobatidis are impacted by ITS DNA copy number variation

    DEFF Research Database (Denmark)

    Rebollar, Eria A.; Woodhams, Douglas C.; LaBumbard, Brandon

    2017-01-01

    The ribosomal gene complex is a multi-copy region that is widely used for phylogenetic analyses of organisms from all 3 domains of life. In fungi, the copy number of the internal transcribed spacer (ITS) is used to detect abundance of pathogens causing diseases such as chytridiomycosis in amphibi...

  17. A simple screening method for detection of Klinefelter syndrome and other X-chromosome aneuploidies based on copy number of the androgen receptor gene

    DEFF Research Database (Denmark)

    Ottesen, A M; Garn, I D; Aksglaede, L

    2007-01-01

    Due to the high prevalence and variable phenotype of patients with Klinefelter syndrome, there is a need for a robust and rapid screening method allowing early diagnosis. Here, we report on the development and detailed clinical validation of a quantitative real-time PCR (qPCR)-based method...... of the copy number assessment of the androgen receptor (AR) gene, located to Xq11.2-q12. We analysed samples from 50 individuals, including a healthy male and female controls and patients with Klinefelter syndrome (47,XXY; 48,XXXY) (n = 28), mosaicisms (46,XX/47,XXY/48XXYY; 45,X/46,XY) (n = 3), other sex......-gene expression. The XIST-expression based assay was correct in only 29/36 samples (81%). Our findings demonstrated that the AR-qPCR technique is a simple and reliable screening method for diagnosis of patients with Klinefelter syndrome or other chromosomal disorders involving an aberrant number of X-chromosomes....

  18. Phenotype of transgenic mice carrying a very low copy number of the mutant human G93A superoxide dismutase-1 gene associated with amyotrophic lateral sclerosis.

    Directory of Open Access Journals (Sweden)

    Jeffrey S Deitch

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive neurodegenerative disease of the motor neuron. While most cases of ALS are sporadic, 10% are familial (FALS with 20% of FALS caused by a mutation in the gene that codes for the enzyme Cu/Zn superoxide dismutase (SOD1. There is variability in sporadic ALS as well as FALS where even within the same family some siblings with the same mutation do not manifest disease. A transgenic (Tg mouse model of FALS containing 25 copies of the mutant human SOD1 gene demonstrates motor neuron pathology and progressive weakness similar to ALS patients, leading to death at approximately 130 days. The onset of symptoms and survival of these transgenic mice are directly related to the number of copies of the mutant gene. We report the phenotype of a very low expressing (VLE G93A SOD1 Tg carrying only 4 copies of the mutant G93ASOD1 gene. While weakness can start at 9 months, only 74% of mice 18 months or older demonstrate disease. The VLE mice show decreased motor neurons compared to wild-type mice as well as increased cytoplasmic translocation of TDP-43. In contrast to the standard G93A SOD1 Tg mouse which always develops motor weakness leading to death, not all VLE animals manifested clinical disease or shortened life span. In fact, approximately 20% of mice older than 24 months had no motor symptoms and only 18% of VLE mice older than 22 months reached end stage. Given the variable penetrance of clinical phenotype, prolonged survival, and protracted loss of motor neurons the VLE mouse provides a new tool that closely mimics human ALS. This tool will allow the study of pathologic events over time as well as the study of genetic and environmental modifiers that may not be causative, but can exacerbate or accelerate motor neuron disease.

  19. The distribution and impact of common copy-number variation in the genome of the domesticated apple, Malus x domestica Borkh.

    Science.gov (United States)

    Boocock, James; Chagné, David; Merriman, Tony R; Black, Michael A

    2015-10-23

    Copy number variation (CNV) is a common feature of eukaryotic genomes, and a growing body of evidence suggests that genes affected by CNV are enriched in processes that are associated with environmental responses. Here we use next generation sequence (NGS) data to detect copy-number variable regions (CNVRs) within the Malus x domestica genome, as well as to examine their distribution and impact. CNVRs were detected using NGS data derived from 30 accessions of M. x domestica analyzed using the read-depth method, as implemented in the CNVrd2 software. To improve the reliability of our results, we developed a quality control and analysis procedure that involved checking for organelle DNA, not repeat masking, and the determination of CNVR identity using a permutation testing procedure. Overall, we identified 876 CNVRs, which spanned 3.5 % of the apple genome. To verify that detected CNVRs were not artifacts, we analyzed the B- allele-frequencies (BAF) within a single nucleotide polymorphism (SNP) array dataset derived from a screening of 185 individual apple accessions and found the CNVRs were enriched for SNPs having aberrant BAFs (P apple scab. We present the first analysis and catalogue of CNVRs in the M. x domestica genome. The enrichment of the CNVRs with R gene models and their overlap with gene loci of agricultural significance draw attention to a form of unexplored genetic variation in apple. This research will underpin further investigation of the role that CNV plays within the apple genome.

  20. Massively parallel sequencing and genome-wide copy number analysis revealed a clonal relationship in benign metastasizing leiomyoma.

    Science.gov (United States)

    Wu, Ren-Chin; Chao, An-Shine; Lee, Li-Yu; Lin, Gigin; Chen, Shu-Jen; Lu, Yen-Jung; Huang, Huei-Jean; Yen, Chi-Feng; Han, Chien Min; Lee, Yun-Shien; Wang, Tzu-Hao; Chao, Angel

    2017-07-18

    Benign metastasizing leiomyoma (BML) is a rare disease entity typically presenting as multiple extrauterine leiomyomas associated with a uterine leiomyoma. It has been hypothesized that the extrauterine leiomyomata represent distant metastasis of the uterine leiomyoma. To date, the only molecular evidence supporting this hypothesis was derived from clonality analyses based on X-chromosome inactivation assays. Here, we sought to address this issue by examining paired specimens of synchronous pulmonary and uterine leiomyomata from three patients using targeted massively parallel sequencing and molecular inversion probe array analysis for detecting somatic mutations and copy number aberrations. We detected identical non-hot-spot somatic mutations and similar patterns of copy number aberrations (CNAs) in paired pulmonary and uterine leiomyomata from two patients, indicating the clonal relationship between pulmonary and uterine leiomyomata. In addition to loss of chromosome 22q found in the literature, we identified additional recurrent CNAs including losses of chromosome 3q and 11q. In conclusion, our findings of the clonal relationship between synchronous pulmonary and uterine leiomyomas support the hypothesis that BML represents a condition wherein a uterine leiomyoma disseminates to distant extrauterine locations.

  1. Targeted next-generation sequencing at copy-number breakpoints for personalized analysis of rearranged ends in solid tumors.

    Directory of Open Access Journals (Sweden)

    Hyun-Kyoung Kim

    Full Text Available BACKGROUND: The concept of the utilization of rearranged ends for development of personalized biomarkers has attracted much attention owing to its clinical applicability. Although targeted next-generation sequencing (NGS for recurrent rearrangements has been successful in hematologic malignancies, its application to solid tumors is problematic due to the paucity of recurrent translocations. However, copy-number breakpoints (CNBs, which are abundant in solid tumors, can be utilized for identification of rearranged ends. METHOD: As a proof of concept, we performed targeted next-generation sequencing at copy-number breakpoints (TNGS-CNB in nine colon cancer cases including seven primary cancers and two cell lines, COLO205 and SW620. For deduction of CNBs, we developed a novel competitive single-nucleotide polymorphism (cSNP microarray method entailing CNB-region refinement by competitor DNA. RESULT: Using TNGS-CNB, 19 specific rearrangements out of 91 CNBs (20.9% were identified, and two polymerase chain reaction (PCR-amplifiable rearrangements were obtained in six cases (66.7%. And significantly, TNGS-CNB, with its high positive identification rate (82.6% of PCR-amplifiable rearrangements at candidate sites (19/23, just from filtering of aligned sequences, requires little effort for validation. CONCLUSION: Our results indicate that TNGS-CNB, with its utility for identification of rearrangements in solid tumors, can be successfully applied in the clinical laboratory for cancer-relapse and therapy-response monitoring.

  2. Targeted next-generation sequencing at copy-number breakpoints for personalized analysis of rearranged ends in solid tumors.

    Science.gov (United States)

    Kim, Hyun-Kyoung; Park, Won Cheol; Lee, Kwang Man; Hwang, Hai-Li; Park, Seong-Yeol; Sorn, Sungbin; Chandra, Vishal; Kim, Kwang Gi; Yoon, Woong-Bae; Bae, Joon Seol; Shin, Hyoung Doo; Shin, Jong-Yeon; Seoh, Ju-Young; Kim, Jong-Il; Hong, Kyeong-Man

    2014-01-01

    The concept of the utilization of rearranged ends for development of personalized biomarkers has attracted much attention owing to its clinical applicability. Although targeted next-generation sequencing (NGS) for recurrent rearrangements has been successful in hematologic malignancies, its application to solid tumors is problematic due to the paucity of recurrent translocations. However, copy-number breakpoints (CNBs), which are abundant in solid tumors, can be utilized for identification of rearranged ends. As a proof of concept, we performed targeted next-generation sequencing at copy-number breakpoints (TNGS-CNB) in nine colon cancer cases including seven primary cancers and two cell lines, COLO205 and SW620. For deduction of CNBs, we developed a novel competitive single-nucleotide polymorphism (cSNP) microarray method entailing CNB-region refinement by competitor DNA. Using TNGS-CNB, 19 specific rearrangements out of 91 CNBs (20.9%) were identified, and two polymerase chain reaction (PCR)-amplifiable rearrangements were obtained in six cases (66.7%). And significantly, TNGS-CNB, with its high positive identification rate (82.6%) of PCR-amplifiable rearrangements at candidate sites (19/23), just from filtering of aligned sequences, requires little effort for validation. Our results indicate that TNGS-CNB, with its utility for identification of rearrangements in solid tumors, can be successfully applied in the clinical laboratory for cancer-relapse and therapy-response monitoring.

  3. Dosage-dependent copy number gains in E2f1 and E2f3 drive hepatocellular carcinoma.

    Science.gov (United States)

    Kent, Lindsey N; Bae, Sooin; Tsai, Shih-Yin; Tang, Xing; Srivastava, Arunima; Koivisto, Christopher; Martin, Chelsea K; Ridolfi, Elisa; Miller, Grace C; Zorko, Sarah M; Plevris, Emilia; Hadjiyannis, Yannis; Perez, Miguel; Nolan, Eric; Kladney, Raleigh; Westendorp, Bart; de Bruin, Alain; Fernandez, Soledad; Rosol, Thomas J; Pohar, Kamal S; Pipas, James M; Leone, Gustavo

    2017-03-01

    Disruption of the retinoblastoma (RB) tumor suppressor pathway, either through genetic mutation of upstream regulatory components or mutation of RB1 itself, is believed to be a required event in cancer. However, genetic alterations in the RB-regulated E2F family of transcription factors are infrequent, casting doubt on a direct role for E2Fs in driving cancer. In this work, a mutation analysis of human cancer revealed subtle but impactful copy number gains in E2F1 and E2F3 in hepatocellular carcinoma (HCC). Using a series of loss- and gain-of-function alleles to dial E2F transcriptional output, we have shown that copy number gains in E2f1 or E2f3b resulted in dosage-dependent spontaneous HCC in mice without the involvement of additional organs. Conversely, germ-line loss of E2f1 or E2f3b, but not E2f3a, protected mice against HCC. Combinatorial mapping of chromatin occupancy and transcriptome profiling identified an E2F1- and E2F3B-driven transcriptional program that was associated with development and progression of HCC. These findings demonstrate a direct and cell-autonomous role for E2F activators in human cancer.

  4. A robust method to analyze copy number alterations of less than 100 kb in single cells using oligonucleotide array CGH.

    Directory of Open Access Journals (Sweden)

    Birte Möhlendick

    Full Text Available Comprehensive genome wide analyses of single cells became increasingly important in cancer research, but remain to be a technically challenging task. Here, we provide a protocol for array comparative genomic hybridization (aCGH of single cells. The protocol is based on an established adapter-linker PCR (WGAM and allowed us to detect copy number alterations as small as 56 kb in single cells. In addition we report on factors influencing the success of single cell aCGH downstream of the amplification method, including the characteristics of the reference DNA, the labeling technique, the amount of input DNA, reamplification, the aCGH resolution, and data analysis. In comparison with two other commercially available non-linear single cell amplification methods, WGAM showed a very good performance in aCGH experiments. Finally, we demonstrate that cancer cells that were processed and identified by the CellSearch® System and that were subsequently isolated from the CellSearch® cartridge as single cells by fluorescence activated cell sorting (FACS could be successfully analyzed using our WGAM-aCGH protocol. We believe that even in the era of next-generation sequencing, our single cell aCGH protocol will be a useful and (cost- effective approach to study copy number alterations in single cells at resolution comparable to those reported currently for single cell digital karyotyping based on next generation sequencing data.

  5. Massively parallel sequencing and genome-wide copy number analysis revealed a clonal relationship in benign metastasizing leiomyoma

    Science.gov (United States)

    Lee, Li-Yu; Lin, Gigin; Chen, Shu-Jen; Lu, Yen-Jung; Huang, Huei-Jean; Yen, Chi-Feng; Han, Chien Min; Lee, Yun-Shien; Wang, Tzu-Hao; Chao, Angel

    2017-01-01

    Benign metastasizing leiomyoma (BML) is a rare disease entity typically presenting as multiple extrauterine leiomyomas associated with a uterine leiomyoma. It has been hypothesized that the extrauterine leiomyomata represent distant metastasis of the uterine leiomyoma. To date, the only molecular evidence supporting this hypothesis was derived from clonality analyses based on X-chromosome inactivation assays. Here, we sought to address this issue by examining paired specimens of synchronous pulmonary and uterine leiomyomata from three patients using targeted massively parallel sequencing and molecular inversion probe array analysis for detecting somatic mutations and copy number aberrations. We detected identical non-hot-spot somatic mutations and similar patterns of copy number aberrations (CNAs) in paired pulmonary and uterine leiomyomata from two patients, indicating the clonal relationship between pulmonary and uterine leiomyomata. In addition to loss of chromosome 22q found in the literature, we identified additional recurrent CNAs including losses of chromosome 3q and 11q. In conclusion, our findings of the clonal relationship between synchronous pulmonary and uterine leiomyomas support the hypothesis that BML represents a condition wherein a uterine leiomyoma disseminates to distant extrauterine locations. PMID:28533481

  6. SLC26A4 gene copy number variations in Chinese patients with non-syndromic enlarged vestibular aqueduct

    Directory of Open Access Journals (Sweden)

    Zhao Jiandong

    2012-05-01

    Full Text Available Abstract Background Many patients with enlarged vestibular aqueduct (EVA have either only one allelic mutant of the SLC26A4 gene or lack any detectable mutation. In this study, multiplex ligation-dependent probe amplification (MLPA was used to screen for copy number variations (CNVs of SLC26A4 and to reveal the pathogenic mechanisms of non-syndromic EVA (NSEVA. Methods Between January 2003 and March 2010, 923 Chinese patients (481 males, 442 females with NSEVA were recruited. Among these, 68 patients (7.4% were found to carry only one mutant allele of SLC26A4 and 39 patients (4.2% lacked any detectable mutation in SLC26A4; these 107 patients without double mutant alleles were assigned to the patient group. Possible copy number variations in SLC26A4 were detected by SALSA MLPA. Results Using GeneMapper, no significant difference was observed between the groups, as compared with the standard probe provided in the assay. The results of the capillary electrophoresis showed no significant difference between the patients and controls. Conclusion Our results suggest that CNVs and the exon deletion in SLC26A4 are not important factors in NSEVA. However, it would be premature to conclude that CNVs have no role in EVA. Genome-wide studies to explore CNVs within non-coding regions of the SLC26A4 gene and neighboring regions are warranted, to elucidate their roles in NSEVA etiology.

  7. Copy Number Variations in Candidate Genes and Intergenic Regions Affect Body Mass Index and Abdominal Obesity in Mexican Children

    Science.gov (United States)

    Burguete-García, Ana Isabel; Bonnefond, Amélie; Peralta-Romero, Jesús; Froguel, Philippe

    2017-01-01

    Introduction. Increase in body weight is a gradual process that usually begins in childhood and in adolescence as a result of multiple interactions among environmental and genetic factors. This study aimed to analyze the relationship between copy number variants (CNVs) in five genes and four intergenic regions with obesity in Mexican children. Methods. We studied 1423 children aged 6–12 years. Anthropometric measurements and blood levels of biochemical parameters were obtained. Identification of CNVs was performed by real-time PCR. The effect of CNVs on obesity or body composition was assessed using regression models adjusted for age, gender, and family history of obesity. Results. Gains in copy numbers of LEPR and NEGR1 were associated with decreased body mass index (BMI), waist circumference (WC), and risk of abdominal obesity, whereas gain in ARHGEF4 and CPXCR1 and the intergenic regions 12q15c, 15q21.1a, and 22q11.21d and losses in INS were associated with increased BMI and WC. Conclusion. Our results indicate a possible contribution of CNVs in LEPR, NEGR1, ARHGEF4, and CPXCR1 and the intergenic regions 12q15c, 15q21.1a, and 22q11.21d to the development of obesity, particularly abdominal obesity in Mexican children. PMID:28428959

  8. Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments.

    Science.gov (United States)

    Li, Chunmei; Yu, Zhilong; Fu, Yusi; Pang, Yuhong; Huang, Yanyi

    2017-04-26

    We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.

  9. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome.

    Directory of Open Access Journals (Sweden)

    Kei-ichi Morita

    Full Text Available Gorlin syndrome (GS is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs. In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals, whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.

  10. Simultaneous Detection of Both Single Nucleotide Variations and Copy Number Alterations by Next-Generation Sequencing in Gorlin Syndrome.

    Science.gov (United States)

    Morita, Kei-ichi; Naruto, Takuya; Tanimoto, Kousuke; Yasukawa, Chisato; Oikawa, Yu; Masuda, Kiyoshi; Imoto, Issei; Inazawa, Johji; Omura, Ken; Harada, Hiroyuki

    2015-01-01

    Gorlin syndrome (GS) is an autosomal dominant disorder that predisposes affected individuals to developmental defects and tumorigenesis, and caused mainly by heterozygous germline PTCH1 mutations. Despite exhaustive analysis, PTCH1 mutations are often unidentifiable in some patients; the failure to detect mutations is presumably because of mutations occurred in other causative genes or outside of analyzed regions of PTCH1, or copy number alterations (CNAs). In this study, we subjected a cohort of GS-affected individuals from six unrelated families to next-generation sequencing (NGS) analysis for the combined screening of causative alterations in Hedgehog signaling pathway-related genes. Specific single nucleotide variations (SNVs) of PTCH1 causing inferred amino acid changes were identified in four families (seven affected individuals), whereas CNAs within or around PTCH1 were found in two families in whom possible causative SNVs were not detected. Through a targeted resequencing of all coding exons, as well as simultaneous evaluation of copy number status using the alignment map files obtained via NGS, we found that GS phenotypes could be explained by PTCH1 mutations or deletions in all affected patients. Because it is advisable to evaluate CNAs of candidate causative genes in point mutation-negative cases, NGS methodology appears to be useful for improving molecular diagnosis through the simultaneous detection of both SNVs and CNAs in the targeted genes/regions.

  11. Copy number variation in VEGF gene as a biomarker of susceptibility to age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Norshakimah Md Bakri

    2018-07-01

    Full Text Available Background: Several studies in various populations have been conducted to determine candidate genes that could contribute to age-related macular degeneration (AMD pathogenesis. Objective: The present study was undertaken to determine the association of high temperature requirement A-1 (HTRA1, vascular endothelial growth factor (VEGF and very-low-density receptor (VLDR genes with wet AMD subjects in Malaysia. Methods: A total of 125 subjects with wet AMD and 120 subjects without AMD from the Malaysian population were selected for this study. Genomic DNA was extracted and copy number variations (CNVs were determined using quantitative real-time Polymerase Chain Reaction (qPCR and comparison between the two groups was done. The demographic characteristics were also recorded. Statistical analysis was carried out using software where a level of P  0.05. Conclusion: Observations of an association between CNVs of VEGF gene and wet AMD have revealed that the CNVs of VEGF gene appears to be a possible contributor to wet AMD subjects in Malaysia. Keywords: Age-related macular degeneration, Copy number variations, VEGF, HTRA1, VLDR genes and Malaysia

  12. Complex Copy Number Variation of AMY1 does not Associate with Obesity in two East Asian Cohorts.

    Science.gov (United States)

    Yong, Rita Y Y; Mustaffa, Su'Aidah B; Wasan, Pavandip S; Sheng, Liang; Marshall, Christian R; Scherer, Stephen W; Teo, Yik-Ying; Yap, Eric P H

    2016-07-01

    The human amylase gene locus at chromosome 1p21.1 is structurally complex. This region contains two pancreatic amylase genes, AMY2B, AMY2A, and a salivary gene AMY1. The AMY1 gene harbors extensive copy number variation (CNV), and recent studies have implicated this variation in adaptation to starch-rich diets and in association to obesity for European and Asian populations. In this study, we showed that by combining quantitative PCR and digital PCR, coupled with careful experimental design and calibration, we can improve the resolution of genotyping CNV with high copy numbers (CNs). In two East Asian populations of Chinese and Malay ethnicity studied, we observed a unique non-normal distribution of AMY1 diploid CN genotypes with even:odd CNs ratio of 4.5 (3.3-4.7), and an association between the common AMY2A CN = 2 genotype and odd CNs of AMY1, that could be explained by the underlying haplotypic structure. In two further case-control cohorts (n = 932 and 145, for Chinese and Malays, respectively), we did not observe the previously reported association between AMY1 and obesity or body mass index. Improved methods for accurately genotyping multiallelic CNV loci and understanding the haplotype complexity at the AMY1 locus are necessary for population genetics and association studies. © 2016 WILEY PERIODICALS, INC.

  13. Genetic mechanisms and age-related macular degeneration: common variants, rare variants, copy number variations, epigenetics, and mitochondrial genetics

    Directory of Open Access Journals (Sweden)

    Liu Melissa M

    2012-08-01

    Full Text Available Abstract Age-related macular degeneration (AMD is a complex and multifaceted disease involving contributions from both genetic and environmental influences. Previous work exploring the genetic contributions of AMD has implicated numerous genomic regions and a variety of candidate genes as modulators of AMD susceptibility. Nevertheless, much of this work has revolved around single-nucleotide polymorphisms (SNPs, and it is apparent that a significant portion of the heritability of AMD cannot be explained through these mechanisms. In this review, we consider the role of common variants, rare variants, copy number variations, epigenetics, microRNAs, and mitochondrial genetics in AMD. Copy number variations in regulators of complement activation genes (CFHR1 and CFHR3 and glutathione S transferase genes (GSTM1 and GSTT1 have been associated with AMD, and several additional loci have been identified as regions of potential interest but require further evaluation. MicroRNA dysregulation has been linked to the retinal pigment epithelium degeneration in geographic atrophy, ocular neovascularization, and oxidative stress, all of which are hallmarks in the pathogenesis of AMD. Certain mitochondrial DNA haplogroups and SNPs in mitochondrially encoded NADH dehydrogenase genes have also been associated with AMD. The role of these additional mechanisms remains only partly understood, but the importance of their further investigation is clear to elucidate more completely the genetic basis of AMD.

  14. Dana-Farber Cancer Institute (DFCI): Computational Correction of Copy-number Effect in CRISPR-Cas9 Essentiality Screens of Cancer Cells | Office of Cancer Genomics

    Science.gov (United States)

    Genome-wide CRISPR-Cas9 screens were performed in 341 cell lines. The results were processed with the CERES algorithm to produce copy-number and guide-efficacy corrected gene knockout effect estimates.

  15. Integration of copy number and transcriptomics provides risk stratification in prostate cancer: A discovery and validation cohort study

    Science.gov (United States)

    Ross-Adams, H.; Lamb, A.D.; Dunning, M.J.; Halim, S.; Lindberg, J.; Massie, C.M.; Egevad, L.A.; Russell, R.; Ramos-Montoya, A.; Vowler, S.L.; Sharma, N.L.; Kay, J.; Whitaker, H.; Clark, J.; Hurst, R.; Gnanapragasam, V.J.; Shah, N.C.; Warren, A.Y.; Cooper, C.S.; Lynch, A.G.; Stark, R.; Mills, I.G.; Grönberg, H.; Neal, D.E.

    2015-01-01

    Background Understanding the heterogeneous genotypes and phenotypes of prostate cancer is fundamental to improving the way we treat this disease. As yet, there are no validated descriptions of prostate cancer subgroups derived from integrated genomics linked with clinical outcome. Methods In a study of 482 tumour, benign and germline samples from 259 men with primary prostate cancer, we used integrative analysis of copy number alterations (CNA) and array transcriptomics to identify genomic loci that affect expression levels of mRNA in an expression quantitative trait loci (eQTL) approach, to stratify patients into subgroups that we then associated with future clinical behaviour, and compared with either CNA or transcriptomics alone. Findings We identified five separate patient subgroups with distinct genomic alterations and expression profiles based on 100 discriminating genes in our separate discovery and validation sets of 125 and 103 men. These subgroups were able to consistently predict biochemical relapse (p = 0.0017 and p = 0.016 respectively) and were further validated in a third cohort with long-term follow-up (p = 0.027). We show the relative contributions of gene expression and copy number data on phenotype, and demonstrate the improved power gained from integrative analyses. We confirm alterations in six genes previously associated with prostate cancer (MAP3K7, MELK, RCBTB2, ELAC2, TPD52, ZBTB4), and also identify 94 genes not previously linked to prostate cancer progression that would not have been detected using either transcript or copy number data alone. We confirm a number of previously published molecular changes associated with high risk disease, including MYC amplification, and NKX3-1, RB1 and PTEN deletions, as well as over-expression of PCA3 and AMACR, and loss of MSMB in tumour tissue. A subset of the 100 genes outperforms established clinical predictors of poor prognosis (PSA, Gleason score), as well as previously published gene

  16. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis.

    Science.gov (United States)

    Holland, David O; Johnson, Margaret E

    2018-03-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that 'leftover' proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module

  17. A microhomology-mediated break-induced replication model for the origin of human copy number variation.

    Directory of Open Access Journals (Sweden)

    P J Hastings

    2009-01-01

    Full Text Available Chromosome structural changes with nonrecurrent endpoints associated with genomic disorders offer windows into the mechanism of origin of copy number variation (CNV. A recent report of nonrecurrent duplications associated with Pelizaeus-Merzbacher disease identified three distinctive characteristics. First, the majority of events can be seen to be complex, showing discontinuous duplications mixed with deletions, inverted duplications, and triplications. Second, junctions at endpoints show microhomology of 2-5 base pairs (bp. Third, endpoints occur near pre-existing low copy repeats (LCRs. Using these observations and evidence from DNA repair in other organisms, we derive a model of microhomology-mediated break-induced replication (MMBIR for the origin of CNV and, ultimately, of LCRs. We propose that breakage of replication forks in stressed cells that are deficient in homologous recombination induces an aberrant repair process with features of break-induced replication (BIR. Under these circumstances, single-strand 3' tails from broken replication forks will anneal with microhomology on any single-stranded DNA nearby, priming low-processivity polymerization with multiple template switches generating complex rearrangements, and eventual re-establishment of processive replication.

  18. Association between the SMN2 gene copy number and clinical characteristics of patients with spinal muscular atrophy with homozygous deletion of exon 7 of the SMN1 gene

    Directory of Open Access Journals (Sweden)

    Žarkov Marija

    2015-01-01

    Full Text Available Background/Aim. Spinal muscular atrophy (SMA is an autosomal recessive disease characterized by degeneration of alpha motor neurons in the spinal cord and the medulla oblongata, causing progressive muscle weakness and atrophy. The aim of this study was to determine association between the SMN2 gene copy number and disease phenotype in Serbian patients with SMA with homozygous deletion of exon 7 of the SMN1 gene. Methods. The patients were identified using regional Serbian hospital databases. Investigated clinical characteristics of the disease were: patients’ gender, age at disease onset, achieved and current developmental milestones, disease duration, current age, and the presence of the spinal deformities and joint contractures. The number of SMN1 and SMN2 gene copies was determined using real-time polymerase chain reaction (PCR. Results. Among 43 identified patients, 37 (86.0% showed homozygous deletion of SMN1 exon 7. One (2.7% of 37 patients had SMA type I with 3 SMN2 copies, 11 (29.7% patients had SMA type II with 3.1 ± 0.7 copies, 17 (45.9% patients had SMA type III with 3.7 ± 0.9 copies, while 8 (21.6% patients had SMA type IV with 4.2 ± 0.9 copies. There was a progressive increase in the SMN2 gene copy number from type II towards type IV (p < 0.05. A higher SMN2 gene copy number was associated with better current motor performance (p < 0.05. Conclusion. In the Serbian patients with SMA, a higher SMN2 gene copy number correlated with less severe disease phenotype. A possible effect of other phenotype modifiers should not be neglected.

  19. Characterization of the Copy Number and Variants of Deformed Wing Virus (DWV in the Pairs of Honey Bee Pupa and Infesting Varroa destructor or Tropilaelaps mercedesae

    Directory of Open Access Journals (Sweden)

    Yunfei Wu

    2017-08-01

    Full Text Available Recent honey bee colony losses, particularly during the winter, have been shown to be associated with the presence of both ectoparasitic mites and Deformed Wing Virus (DWV. Whilst the role of Varroa destructor mites as a viral vector is well established, the role of Tropilaelaps mercedesae mites in viral transmission has not been fully investigated. In this study, we tested the effects that V. destructor and T. mercedesae infestation have on fluctuation of the DWV copy number and alteration of the virus variants in honey bees by characterizing individual pupae and their infesting mites. We observed that both mite species were associated with increased viral copy number in honey bee pupae. We found a positive correlation between DWV copy number in pupae and copy number in infesting mites, and the same DWV type A variant was present in either low or high copy number in both honey bee pupae and infesting V. destructor. These data also suggest that variant diversity is similar between honey bee pupae and the mites that infest them. These results support a previously proposed hypothesis that DWV suppresses the honey bee immune system when virus copy number reaches a specific threshold, promoting greater replication.

  20. DNA copy-number alterations underlie gene expression differences between microsatellite stable and unstable colorectal cancers

    DEFF Research Database (Denmark)

    Jorissen, Robert N; Lipton, Lara; Gibbs, Peter

    2008-01-01

    Purpose: About 15% of colorectal cancers harbor microsatellite instability (MSI). MSI-associated gene expression changes have been identified in colorectal cancers, but little overlap exists between signatures hindering an assessment of overall consistency. Little is known about the causes...... and downstream effects of differential gene expression. Experimental Design: DNA microarray data on 89 MSI and 140 microsatellite-stable (MSS) colorectal cancers from this study and 58 MSI and 77 MSS cases from three published reports were randomly divided into test and training sets. MSI-associated gene......-number data. Results: MSI-associated gene expression changes in colorectal cancers were found to be highly consistent across multiple studies of primary tumors and cancer cell lines from patients of different ethnicities (P

  1. Measuring Absolute RNA Copy Numbers at High Temporal Resolution Reveals Transcriptome Kinetics in Development

    Directory of Open Access Journals (Sweden)

    Nick D.L. Owens

    2016-01-01

    Full Text Available Transcript regulation is essential for cell function, and misregulation can lead to disease. Despite technologies to survey the transcriptome, we lack a comprehensive understanding of transcript kinetics, which limits quantitative biology. This is an acute challenge in embryonic development, where rapid changes in gene expression dictate cell fate decisions. By ultra-high-frequency sampling of Xenopus embryos and absolute normalization of sequence reads, we present smooth gene expression trajectories in absolute transcript numbers. During a developmental period approximating the first 8 weeks of human gestation, transcript kinetics vary by eight orders of magnitude. Ordering genes by expression dynamics, we find that “temporal synexpression” predicts common gene function. Remarkably, a single parameter, the characteristic timescale, can classify transcript kinetics globally and distinguish genes regulating development from those involved in cellular metabolism. Overall, our analysis provides unprecedented insight into the reorganization of maternal and embryonic transcripts and redefines our ability to perform quantitative biology.

  2. submitter Metabolomic Profile of Low–Copy Number Carriers at the Salivary α-Amylase Gene Suggests a Metabolic Shift Toward Lipid-Based Energy Production

    CERN Document Server

    Arredouani, Abdelilah; Culeddu, Nicola; Moustafa, Julia El-Sayed; Tichet, Jean; Balkau, Beverley; Brousseau, Thierry; Manca, Marco; Falchi, Mario

    2016-01-01

    Low serum salivary amylase levels have been associated with a range of metabolic abnormalities, including obesity and insulin resistance. We recently suggested that a low copy number at the AMY1 gene, associated with lower enzyme levels, also increases susceptibility to obesity. To advance our understanding of the effect of AMY1 copy number variation on metabolism, we compared the metabolomic signatures of high– and low–copy number carriers. We analyzed, using mass spectrometry and nuclear magnetic resonance (NMR), the sera of healthy normal-weight women carrying either low–AMY1 copies (LAs: four or fewer copies; n = 50) or high–AMY1 copies (HAs: eight or more copies; n = 50). Best-fitting multivariate models (empirical P < 1 × $10^{−3})$ of mass spectrometry and NMR data were concordant in showing differences in lipid metabolism between the two groups. In particular, LA carriers showed lower levels of long- and medium-chain fatty acids, and higher levels of dicarboxylic fatty acids and 2-hydrox...

  3. Penicillin production in industrial strain Penicillium chrysogenum P2niaD18 is not dependent on the copy number of biosynthesis genes.

    Science.gov (United States)

    Ziemons, Sandra; Koutsantas, Katerina; Becker, Kordula; Dahlmann, Tim; Kück, Ulrich

    2017-02-16

    Multi-copy gene integration into microbial genomes is a conventional tool for obtaining improved gene expression. For Penicillium chrysogenum, the fungal producer of the beta-lactam antibiotic penicillin, many production strains carry multiple copies of the penicillin biosynthesis gene cluster. This discovery led to the generally accepted view that high penicillin titers are the result of multiple copies of penicillin genes. Here we investigated strain P2niaD18, a production line that carries only two copies of the penicillin gene cluster. We performed pulsed-field gel electrophoresis (PFGE), quantitative qRT-PCR, and penicillin bioassays to investigate production, deletion and overexpression strains generated in the P. chrysogenum P2niaD18 background, in order to determine the copy number of the penicillin biosynthesis gene cluster, and study the expression of one penicillin biosynthesis gene, and the penicillin titer. Analysis of production and recombinant strain showed that the enhanced penicillin titer did not depend on the copy number of the penicillin gene cluster. Our assumption was strengthened by results with a penicillin null strain lacking pcbC encoding isopenicillin N synthase. Reintroduction of one or two copies of the cluster into the pcbC deletion strain restored transcriptional high expression of the pcbC gene, but recombinant strains showed no significantly different penicillin titer compared to parental strains. Here we present a molecular genetic analysis of production and recombinant strains in the P2niaD18 background carrying different copy numbers of the penicillin biosynthesis gene cluster. Our analysis shows that the enhanced penicillin titer does not strictly depend on the copy number of the cluster. Based on these overall findings, we hypothesize that instead, complex regulatory mechanisms are prominently implicated in increased penicillin biosynthesis in production strains.

  4. Copy number aberrations landscape of a breast tumor, connection with the efficiency of neoadjuvant chemotherapy

    Science.gov (United States)

    Ibragimova, M. K.; Tsyganov, M. M.; Slonimskaya, E. M.; Litviakov, N. V.

    2017-09-01

    The research involved 80 patients diagnosed with breast cancer (BC). Each patient had their tumor biopsy material sampled before their treatment. We studied the tumor tissue using the CytoScan HD Array (Affymetrix, USA) microarray to evaluate the CNA landscape. We studied the frequency of segmental and numerical CNA occurrence, their association with the efficiency of neoadjuvant chemotherapy (NAC). We found that the biggest number of amplifications (with frequency over 60%) were found on in the following locuses; 1q32.1 1q32.3, 1q42.13, 1q42.2, 1q43. The biggest frequency of deletions (more than in 58% of the patients) was found in these locuses: 16q21, 16q23.2, 16q23.3, 17p12, 17p13.1. However, we found the locuses with full absence of segmental chromosome anomalies. We observed trisomy most frequently in the 7, 8, 12, and 17 chromosomes, and monosomy in the 3, 4, 9, 11, 18, and X-chromosomes. We demonstrated the connection between the high frequency of cytobands with CNA in the patients' tumors and the efficiency of NAC. We also identified the cytobands, whose CNA are linked to the response to NAC.

  5. Exploration of the gene fusion landscape of glioblastoma using transcriptome sequencing and copy number data.

    Science.gov (United States)

    Shah, Nameeta; Lankerovich, Michael; Lee, Hwahyung; Yoon, Jae-Geun; Schroeder, Brett; Foltz, Greg

    2013-11-22

    RNA-seq has spurred important gene fusion discoveries in a number of different cancers, including lung, prostate, breast, brain, thyroid and bladder carcinomas. Gene fusion discovery can potentially lead to the development of novel treatments that target the underlying genetic abnormalities. In this study, we provide comprehensive view of gene fusion landscape in 185 glioblastoma multiforme patients from two independent cohorts. Fusions occur in approximately 30-50% of GBM patient samples. In the Ivy Center cohort of 24 patients, 33% of samples harbored fusions that were validated by qPCR and Sanger sequencing. We were able to identify high-confidence gene fusions from RNA-seq data in 53% of the samples in a TCGA cohort of 161 patients. We identified 13 cases (8%) with fusions retaining a tyrosine kinase domain in the TCGA cohort and one case in the Ivy Center cohort. Ours is the first study to describe recurrent fusions involving non-coding genes. Genomic locations 7p11 and 12q14-15 harbor majority of the fusions. Fusions on 7p11 are formed in focally amplified EGFR locus whereas 12q14-15 fusions are formed by complex genomic rearrangements. All the fusions detected in this study can be further visualized and analyzed using our website: http://ivygap.swedish.org/fusions. Our study highlights the prevalence of gene fusions as one of the major genomic abnormalities in GBM. The majority of the fusions are private fusions, and a minority of these recur with low frequency. A small subset of patients with fusions of receptor tyrosine kinases can benefit from existing FDA approved drugs and drugs available in various clinical trials. Due to the low frequency and rarity of clinically relevant fusions, RNA-seq of GBM patient samples will be a vital tool for the identification of patient-specific fusions that can drive personalized therapy.

  6. Left ventricular hypertrabeculation/noncompaction with epilepsy, other heart defects, minor facial anomalies and new copy number variants

    Directory of Open Access Journals (Sweden)

    Nagel Bert

    2012-07-01

    Full Text Available Abstract Background Left ventricular hypertrabeculation/noncompaction (LVHT is a cardiac abnormality of unknown etiology which has been described in children as well as in adults with and without chromosomal aberrations. LVHT has been reported in association with various cardiac and extracardiac abnormalities like epilepsy and facial dysmorphism. Case presentation A unique combination of LVHT, atrial septal defect, pulmonary valve stenosis, aortic stenosis, epilepsy and minor facial anomalies is presented in a 5.5 years old girl. Microarray-based genomic hybridization (array-CGH detected six previously not described copy number variants (CNVs inherited from a clinically unaffected father and minimally affected mother, thus, most likely, not clinically significant but rare benign variants. Conclusions Despite this complex phenotype de novo microdeletions or microduplications were not detected by array CGH. Further investigations, such as whole exome sequencing, could reveal point mutations and small indels as the possible cause.

  7. A High-Throughput Computational Framework for Identifying Significant Copy Number Aberrations from Array Comparative Genomic Hybridisation Data

    Directory of Open Access Journals (Sweden)

    Ian Roberts

    2012-01-01

    Full Text Available Reliable identification of copy number aberrations (CNA from comparative genomic hybridization data would be improved by the availability of a generalised method for processing large datasets. To this end, we developed swatCGH, a data analysis framework and region detection heuristic for computational grids. swatCGH analyses sequentially displaced (sliding windows of neighbouring probes and applies adaptive thresholds of varying stringency to identify the 10% of each chromosome that contains the most frequently occurring CNAs. We used the method to analyse a published dataset, comparing data preprocessed using four different DNA segmentation algorithms, and two methods for prioritising the detected CNAs. The consolidated list of the most commonly detected aberrations confirmed the value of swatCGH as a simplified high-throughput method for identifying biologically significant CNA regions of interest.

  8. Multiplex Ligation-Dependent Probe Amplification Technique for Copy Number Analysis on Small Amounts of DNA Material

    DEFF Research Database (Denmark)

    Sørensen, Karina; Andersen, Paal; Larsen, Lars

    2008-01-01

    The multiplex ligation-dependent probe amplification (MLPA) technique is a sensitive technique for relative quantification of up to 50 different nucleic acid sequences in a single reaction, and the technique is routinely used for copy number analysis in various syndromes and diseases. The aim...... of the study was to exploit the potential of MLPA when the DNA material is limited. The DNA concentration required in standard MLPA analysis is not attainable from dried blood spot samples (DBSS) often used in neonatal screening programs. A novel design of MLPA probes has been developed to permit for MLPA...... analysis on small amounts of DNA. Six patients with congenital adrenal hyperplasia (CAH) were used in this study. DNA was extracted from both whole blood and DBSS and subjected to MLPA analysis using normal and modified probes. Results were analyzed using GeneMarker and manual Excel analysis. A total...

  9. Dietary fat-dependent transcriptional architecture and copy number alterations associated with modifiers of mammary cancer metastasis

    DEFF Research Database (Denmark)

    Gordon, Ryan A; Merrill, Michele La; Hunter, Kent W

    2010-01-01

    Breast cancer is a complex disease resulting from a combination of genetic and environmental factors. Among environmental factors, body composition and intake of specific dietary components like total fat are associated with increased incidence of breast cancer and metastasis. We previously showed...... fat. To elucidate diet-dependent genetic modifiers of mammary cancer and metastasis risk, global gene expression profiles and copy number alterations from mammary cancers were measured and expression quantitative trait loci (eQTL) identified. Functional candidate genes that colocalized with previously...... detected metastasis modifiers were identified. Additional analyses, such as eQTL by dietary fat interaction analysis, causality and database evaluations, helped to further refine the candidate loci to produce an enriched list of genes potentially involved in the pathogenesis of metastatic mammary cancer...

  10. Genome-wide association study identifies a maternal copy-number deletion in PSG11 enriched among preeclampsia patients

    Directory of Open Access Journals (Sweden)

    Zhao Linlu

    2012-06-01

    Full Text Available Abstract Background Specific genetic contributions for preeclampsia (PE are currently unknown. This genome-wide association study (GWAS aims to identify maternal single nucleotide polymorphisms (SNPs and copy-number variants (CNVs involved in the etiology of PE. Methods A genome-wide scan was performed on 177 PE cases (diagnosed according to National Heart, Lung and Blood Institute guidelines and 116 normotensive controls. White female study subjects from Iowa were genotyped on Affymetrix SNP 6.0 microarrays. CNV calls made using a combination of four detection algorithms (Birdseye, Canary, PennCNV, and QuantiSNP were merged using CNVision and screened with stringent prioritization criteria. Due to limited DNA quantities and the deleterious nature of copy-number deletions, it was decided a priori that only deletions would be selected for assay on the entire case-control dataset using quantitative real-time PCR. Results The top four SNP candidates had an allelic or genotypic p-value between 10-5 and 10-6, however, none surpassed the Bonferroni-corrected significance threshold. Three recurrent rare deletions meeting prioritization criteria detected in multiple cases were selected for targeted genotyping. A locus of particular interest was found showing an enrichment of case deletions in 19q13.31 (5/169 cases and 1/114 controls, which encompasses the PSG11 gene contiguous to a highly plastic genomic region. All algorithm calls for these regions were assay confirmed. Conclusions CNVs may confer risk for PE and represent interesting regions that warrant further investigation. Top SNP candidates identified from the GWAS, although not genome-wide significant, may be useful to inform future studies in PE genetics.

  11. SNPs and real-time quantitative PCR method for constitutional allelic copy number determination, the VPREB1 marker case

    Directory of Open Access Journals (Sweden)

    Costa Elena

    2011-05-01

    Full Text Available Abstract Background 22q11.2 microdeletion is responsible for the DiGeorge Syndrome, characterized by heart defects, psychiatric disorders, endocrine and immune alterations and a 1 in 4000 live birth prevalence. Real-time quantitative PCR (qPCR approaches for allelic copy number determination have recently been investigated in 22q11.2 microdeletions detection. The qPCR method was performed for 22q11.2 microdeletions detection as a first-level screening approach in a genetically unknown series of patients with congenital heart defects. A technical issue related to the VPREB1 qPCR marker was pointed out. Methods A set of 100 unrelated Italian patients with congenital heart defects were tested for 22q11.2 microdeletions by a qPCR method using six different markers. Fluorescence In Situ Hybridization technique (FISH was used for confirmation. Results qPCR identified six patients harbouring the 22q11.2 microdeletion, confirmed by FISH. The VPREB1 gene marker presented with a pattern consistent with hemideletion in one 3 Mb deleted patient, suggestive for a long distal deletion, and in additional five non-deleted patients. The long distal 22q11.2 deletion was not confirmed by Comparative Genomic Hybridization. Indeed, the VPREB1 gene marker generated false positive results in association with the rs1320 G/A SNP, a polymorphism localized within the VPREB1 marker reverse primer sequence. Patients heterozygous for rs1320 SNP, showed a qPCR profile consistent with the presence of a hemideletion. Conclusions Though the qPCR technique showed advantages as a screening approach in terms of cost and time, the VPREB1 marker case revealed that single nucleotide polymorphisms can interfere with qPCR data generating erroneous allelic copy number interpretations.

  12. Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis.

    Science.gov (United States)

    Suga, Koushirou; Mark Welch, David B; Tanaka, Yukari; Sakakura, Yoshitaka; Hagiwara, Atsushi

    2008-06-01

    The monogonont rotifer Brachionus plicatilis is an emerging model system for a diverse array of questions in limnological ecosystem dynamics, the evolution of sexual recombination, cryptic speciation, and the phylogeny of basal metazoans. We sequenced the complete mitochondrial genome of B. plicatilis sensu strictu NH1L and found that it is composed of 2 circular chromosomes, designated mtDNA-I (11,153 bp) and mtDNA-II (12,672 bp). Hybridization to DNA isolated from mitochondria demonstrated that mtDNA-I is present at 4 times the copy number of mtDNA-II. The only nucleotide similarity between the 2 chromosomes is a 4.9-kbp region of 99.5% identity including a transfer RNA (tRNA) gene and an extensive noncoding region that contains putative D-loop and control sequence. The mtDNA-I chromosome encodes 4 proteins (ATP6, COB, NAD1, and NAD2), 13 tRNAs, and the large and small subunit ribosomal RNAs; mtDNA-II encodes 8 proteins (COX1-3, NAD3-6, and NAD4L) and 9 tRNAs. Gene order is not conserved between B. plicatilis and its closest relative with a sequenced mitochondrial genome, the acanthocephalan Leptorhynchoides thecatus, or other sequenced mitochondrial genomes. Polymerase chain reaction assays and Southern hybridization to DNA from 18 strains of Brachionus suggest that the 2-chromosome structure has been stable for millions of years. The novel organization of the B. plicatilis mitochondrial genome into 2 nearly equal chromosomes of 4-fold different copy number may provide insight into the evolution of metazoan mitochondria and the phylogenetics of rotifers and other basal animal phyla.

  13. High-throughput sequencing and copy number variation detection using formalin fixed embedded tissue in metastatic gastric cancer.

    Directory of Open Access Journals (Sweden)

    Seokhwi Kim

    Full Text Available In the era of targeted therapy, mutation profiling of cancer is a crucial aspect of making therapeutic decisions. To characterize cancer at a molecular level, the use of formalin-fixed paraffin-embedded tissue is important. We tested the Ion AmpliSeq Cancer Hotspot Panel v2 and nCounter Copy Number Variation Assay in 89 formalin-fixed paraffin-embedded gastric cancer samples to determine whether they are applicable in archival clinical samples for personalized targeted therapies. We validated the results with Sanger sequencing, real-time quantitative PCR, fluorescence in situ hybridization and immunohistochemistry. Frequently detected somatic mutations included TP53 (28.17%, APC (10.1%, PIK3CA (5.6%, KRAS (4.5%, SMO (3.4%, STK11 (3.4%, CDKN2A (3.4% and SMAD4 (3.4%. Amplifications of HER2, CCNE1, MYC, KRAS and EGFR genes were observed in 8 (8.9%, 4 (4.5%, 2 (2.2%, 1 (1.1% and 1 (1.1% cases, respectively. In the cases with amplification, fluorescence in situ hybridization for HER2 verified gene amplification and immunohistochemistry for HER2, EGFR and CCNE1 verified the overexpression of proteins in tumor cells. In conclusion, we successfully performed semiconductor-based sequencing and nCounter copy number variation analyses in formalin-fixed paraffin-embedded gastric cancer samples. High-throughput screening in archival clinical samples enables faster, more accurate and cost-effective detection of hotspot mutations or amplification in genes.

  14. Comparative analyses of gene copy number and mRNA expression in GBM tumors and GBM xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, J. Graeme; Yeh, Ru-Fang; Ray, Amrita; Wang, Nicholas J.; Smirnov, Ivan; Yu, Mamie; Hariono, Sujatmi; Silber, Joachim; Feiler, Heidi S.; Gray, Joe W.; Spellman, Paul T.; Vandenberg, Scott R.; Berger, Mitchel S.; James, C. David

    2009-04-03

    Development of model systems that recapitulate the molecular heterogeneity observed among glioblastoma multiforme (GBM) tumors will expedite the testing of targeted molecular therapeutic strategies for GBM treatment. In this study, we profiled DNA copy number and mRNA expression in 21 independent GBM tumor lines maintained as subcutaneous xenografts (GBMX), and compared GBMX molecular signatures to those observed in GBM clinical specimens derived from the Cancer Genome Atlas (TCGA). The predominant copy number signature in both tumor groups was defined by chromosome-7 gain/chromosome-10 loss, a poor-prognosis genetic signature. We also observed, at frequencies similar to that detected in TCGA GBM tumors, genomic amplification and overexpression of known GBM oncogenes, such as EGFR, MDM2, CDK6, and MYCN, and novel genes, including NUP107, SLC35E3, MMP1, MMP13, and DDX1. The transcriptional signature of GBMX tumors, which was stable over multiple subcutaneous passages, was defined by overexpression of genes involved in M phase, DNA replication, and chromosome organization (MRC) and was highly similar to the poor-prognosis mitosis and cell-cycle module (MCM) in GBM. Assessment of gene expression in TCGA-derived GBMs revealed overexpression of MRC cancer genes AURKB, BIRC5, CCNB1, CCNB2, CDC2, CDK2, and FOXM1, which form a transcriptional network important for G2/M progression and/or checkpoint activation. Our study supports propagation of GBM tumors as subcutaneous xenografts as a useful approach for sustaining key molecular characteristics of patient tumors, and highlights therapeutic opportunities conferred by this GBMX tumor panel for testing targeted therapeutic strategies for GBM treatment.

  15. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes.

    Science.gov (United States)

    Carpenter, Danielle; Dhar, Sugandha; Mitchell, Laura M; Fu, Beiyuan; Tyson, Jess; Shwan, Nzar A A; Yang, Fengtang; Thomas, Mark G; Armour, John A L

    2015-06-15

    The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs of AMY2A/AMY2B. Read-depth and experimental data show that different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number. We show that the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations. © The Author 2015. Published by Oxford University Press.

  16. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes

    Science.gov (United States)

    Carpenter, Danielle; Dhar, Sugandha; Mitchell, Laura M.; Fu, Beiyuan; Tyson, Jess; Shwan, Nzar A.A.; Yang, Fengtang; Thomas, Mark G.; Armour, John A.L.

    2015-01-01

    The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs of AMY2A/AMY2B. Read-depth and experimental data show that different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number. We show that the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations. PMID:25788522

  17. Copy number of the Adenomatous Polyposis Coli gene is not always neutral in sporadic colorectal cancers with loss of heterozygosity for the gene

    International Nuclear Information System (INIS)

    Zauber, Peter; Marotta, Stephen; Sabbath-Solitare, Marlene

    2016-01-01

    Changes in the number of alleles of a chromosome may have an impact upon gene expression. Loss of heterozygosity (LOH) indicates that one allele of a gene has been lost, and knowing the exact copy number of the gene would indicate whether duplication of the remaining allele has occurred. We were interested to determine the copy number of the Adenomatous Polyposis Coli (APC) gene in sporadic colorectal cancers with LOH. We selected 38 carcinomas with LOH for the APC gene region of chromosome 5, as determined by amplification of the CA repeat region within the D5S346 loci. The copy number status of APC was ascertained using the SALSA® MLPA® P043-B1 APC Kit. LOH for the DCC gene, KRAS gene mutation, and microsatellite instability were also evaluated for each tumor, utilizing standard polymerase chain reaction methods. No tumor demonstrated microsatellite instability. LOH of the DCC gene was also present in 33 of 36 (91.7 %) informative tumors. A KRAS gene mutation was present in 16 of the 38 (42.1 %) tumors. Twenty-four (63.2 %) of the tumors were copy number neutral, 10 (26.3 %) tumors demonstrated major loss, while two (5.3 %) showed partial loss. Two tumors (5.3 %) had copy number gain. Results of APC and DCC LOH, KRAS and microsatellite instability indicate our colorectal cancer cases were typical of sporadic cancers following the ‘chromosomal instability’ pathway. The majority of our colorectal carcinomas with LOH for APC gene are copy number neutral. However, one-third of our cases showed copy number loss, suggesting that duplication of the remaining allele is not required for the development of a colorectal carcinoma

  18. Copy number of the Adenomatous Polyposis Coli gene is not always neutral in sporadic colorectal cancers with loss of heterozygosity for the gene.

    Science.gov (United States)

    Zauber, Peter; Marotta, Stephen; Sabbath-Solitare, Marlene

    2016-03-12

    Changes in the number of alleles of a chromosome may have an impact upon gene expression. Loss of heterozygosity (LOH) indicates that one allele of a gene has been lost, and knowing the exact copy number of the gene would indicate whether duplication of the remaining allele has occurred. We were interested to determine the copy number of the Adenomatous Polyposis Coli (APC) gene in sporadic colorectal cancers with LOH. We selected 38 carcinomas with LOH for the APC gene region of chromosome 5, as determined by amplification of the CA repeat region within the D5S346 loci. The copy number status of APC was ascertained using the SALSA® MLPA® P043-B1 APC Kit. LOH for the DCC gene, KRAS gene mutation, and microsatellite instability were also evaluated for each tumor, utilizing standard polymerase chain reaction methods. No tumor demonstrated microsatellite instability. LOH of the DCC gene was also present in 33 of 36 (91.7%) informative tumors. A KRAS gene mutation was present in 16 of the 38 (42.1%) tumors. Twenty-four (63.2%) of the tumors were copy number neutral, 10 (26.3%) tumors demonstrated major loss, while two (5.3%) showed partial loss. Two tumors (5.3%) had copy number gain. Results of APC and DCC LOH, KRAS and microsatellite instability indicate our colorectal cancer cases were typical of sporadic cancers following the 'chromosomal instability' pathway. The majority of our colorectal carcinomas with LOH for APC gene are copy number neutral. However, one-third of our cases showed copy number loss, suggesting that duplication of the remaining allele is not required for the development of a colorectal carcinoma.

  19. Modeling Turbulent Combustion for Variable Prandtl and Schmidt Number

    Science.gov (United States)

    Hassan, H. A.

    2004-01-01

    This report consists of two abstracts submitted for possible presentation at the AIAA Aerospace Science Meeting to be held in January 2005. Since the submittal of these abstracts we are continuing refinement of the model coefficients derived for the case of a variable Turbulent Prandtl number. The test cases being investigated are a Mach 9.2 flow over a degree ramp and a Mach 8.2 3-D calculation of crossing shocks. We have developed an axisymmetric code for treating axisymmetric flows. In addition the variable Schmidt number formulation was incorporated in the code and we are in the process of determining the model constants.

  20. A Coarse-Grained Biophysical Model of E. coli and Its Application to Perturbation of the rRNA Operon Copy Number

    Science.gov (United States)

    Tadmor, Arbel

    2009-03-01

    In this work a biophysical model of Escherichia coli is presented that predicts growth rate and an effective cellular composition from an effective, coarse-grained representation of its genome. We assume that E. coli is in a state of balanced exponential steady-state growth, growing in a temporally and spatially constant environment, rich in resources. We apply this model to a series of past measurements, where the growth rate and rRNA-to-protein ratio have been measured for seven E. coli strains with an rRNA operon copy number ranging from one to seven (the wild-type copy number). These experiments show that growth rate markedly decreases for strains with fewer than six copies. Using the model, we were able to reproduce these measurements. We show that the model that best fits these data suggests that the volume fraction of macromolecules inside E. coli is not fixed when the rRNA operon copy number is varied. Moreover, the model predicts that increasing the copy number beyond seven results in a cytoplasm densely packed with ribosomes and proteins. Assuming that under such overcrowded conditions prolonged diffusion times tend to weaken binding affinities, the model predicts that growth rate will not increase substantially beyond the wild-type growth rate, as indicated by other experiments. Our model therefore suggests that changing the rRNA operon copy number of wild-type E. coli cells growing in a constant rich environment does not substantially increase their growth rate. Other observations regarding strains with an altered rRNA operon copy number, such as nucleoid compaction and the rRNA operon feedback response, appear to be qualitatively consistent with this model. In addition, we discuss possible design principles suggested by the model and propose further experiments to test its validity.

  1. Stratification of clear cell renal cell carcinoma (ccRCC) genomes by gene-directed copy number alteration (CNA) analysis.

    Science.gov (United States)

    Thiesen, H-J; Steinbeck, F; Maruschke, M; Koczan, D; Ziems, B; Hakenberg, O W

    2017-01-01

    Tumorigenic processes are understood to be driven by epi-/genetic and genomic alterations from single point mutations to chromosomal alterations such as insertions and deletions of nucleotides up to gains and losses of large chromosomal fragments including products of chromosomal rearrangements e.g. fusion genes and proteins. Overall comparisons of copy number alterations (CNAs) presented in 48 clear cell renal cell carcinoma (ccRCC) genomes resulted in ratios of gene losses versus gene gains between 26 ccRCC Fuhrman malignancy grades G1 (ratio 1.25) and 20 G3 (ratio 0.58). Gene losses and gains of 15762 CNA genes were mapped to 795 chromosomal cytoband loci including 280 KEGG pathways. CNAs were classified according to their contribution to Fuhrman tumour gradings G1 and G3. Gene gains and losses turned out to be highly structured processes in ccRCC genomes enabling the subclassification and stratification of ccRCC tumours in a genome-wide manner. CNAs of ccRCC seem to start with common tumour related gene losses flanked by CNAs specifying Fuhrman grade G1 losses and CNA gains favouring grade G3 tumours. The appearance of recurrent CNA signatures implies the presence of causal mechanisms most likely implicated in the pathogenesis and disease-outcome of ccRCC tumours distinguishing lower from higher malignant tumours. The diagnostic quality of initial 201 genes (108 genes supporting G1 and 93 genes G3 phenotypes) has been successfully validated on published Swiss data (GSE19949) leading to a restricted CNA gene set of 171 CNA genes of which 85 genes favour Fuhrman grade G1 and 86 genes Fuhrman grade G3. Regarding these gene sets overall survival decreased with the number of G3 related gene losses plus G3 related gene gains. CNA gene sets presented define an entry to a gene-directed and pathway-related functional understanding of ongoing copy number alterations within and between individual ccRCC tumours leading to CNA genes of prognostic and predictive value.

  2. Scaling up Copy Detection

    OpenAIRE

    Li, Xian; Dong, Xin Luna; Lyons, Kenneth B.; Meng, Weiyi; Srivastava, Divesh

    2015-01-01

    Recent research shows that copying is prevalent for Deep-Web data and considering copying can significantly improve truth finding from conflicting values. However, existing copy detection techniques do not scale for large sizes and numbers of data sources, so truth finding can be slowed down by one to two orders of magnitude compared with the corresponding techniques that do not consider copying. In this paper, we study {\\em how to improve scalability of copy detection on structured data}. Ou...

  3. Signaling Network Assessment of Mutations and Copy Number Variations Predict Breast Cancer Subtype-Specific Drug Targets

    Directory of Open Access Journals (Sweden)

    Naif Zaman

    2013-10-01

    Full Text Available Individual cancer cells carry a bewildering number of distinct genomic alterations (e.g., copy number variations and mutations, making it a challenge to uncover genomic-driven mechanisms governing tumorigenesis. Here, we performed exome sequencing on several breast cancer cell lines that represent two subtypes, luminal and basal. We integrated these sequencing data and functional RNAi screening data (for the identification of genes that are essential for cell proliferation and survival onto a human signaling network. Two subtype-specific networks that potentially represent core-signaling mechanisms underlying tumorigenesis were identified. Within both networks, we found that genes were differentially affected in different cell lines; i.e., in some cell lines a gene was identified through RNAi screening, whereas in others it was genomically altered. Interestingly, we found that highly connected network genes could be used to correctly classify breast tumors into subtypes on the basis of genomic alterations. Further, the networks effectively predicted subtype-specific drug targets, which were experimentally validated.

  4. Ectopic KIT copy number variation underlies impaired migration of primordial germ cells associated with gonadal hypoplasia in cattle (Bos taurus.

    Directory of Open Access Journals (Sweden)

    Heli Venhoranta

    Full Text Available Impaired migration of primordial germ cells during embryonic development causes hereditary gonadal hypoplasia in both sexes of Northern Finncattle and Swedish Mountain cattle. The affected gonads exhibit a lack of or, in rare cases, a reduced number of germ cells. Most affected animals present left-sided gonadal hypoplasia. However, right-sided and bilateral cases are also found. This type of gonadal hypoplasia prevails in animals with white coat colour. Previous studies indicated that gonadal hypoplasia is inherited in an autosomal recessive fashion with incomplete penetrance. In order to identify genetic regions underlying gonadal hypoplasia, a genome-wide association study (GWAS and a copy number variation (CNV analysis were performed with 94 animals, including 21 affected animals, using bovine 777,962 SNP arrays. The GWAS and CNV results revealed two significantly associated regions on bovine chromosomes (BTA 29 and 6, respectively (P=2.19 x 10(-13 and P=5.65 x 10(-6. Subsequent cytogenetic and PCR analyses demonstrated that homozygosity of a ~500 kb chromosomal segment translocated from BTA6 to BTA29 (Cs29 allele is the underlying genetic mechanism responsible for gonadal hypoplasia. The duplicated segment includes the KIT gene that is known to regulate the migration of germ cells and precursors of melanocytes. This duplication is also one of the two translocations associated with colour sidedness in various cattle breeds.

  5. Epidermal growth factor receptor gene copy number in 101 advanced colorectal cancer patients treated with chemotherapy plus cetuximab

    Directory of Open Access Journals (Sweden)

    Zeuli Massimo

    2010-04-01

    Full Text Available Abstract Background Responsiveness to Cetuximab alone can be mediated by an increase of Epidermal Growth factor Receptor (EGFR Gene Copy Number (GCN. Aim of this study was to assess the role of EGFR-GCN in advanced colorectal cancer (CRC patients receiving chemotherapy plus Cetuximab. Methods One hundred and one advanced CRC patients (43 untreated- and 58 pre-treated were retrospectively studied by fluorescence in situ hybridization (FISH to assess EGFR-GCN and by immunohistochemistry (IHC to determine EGFR expression. Sixty-one out of 101 patients were evaluated also for k-ras status by direct sequencing. Clinical end-points were response rate (RR, progression-free survival (PFS and overall survival (OS. Results Increased EGFR-GCN was found in 60/101 (59% tumor samples. There was no correlation between intensity of EGFR-IHC and EGFR-GCN (p = 0.43. Patients receiving chemotherapy plus Cetuximab as first line treatment had a RR of 70% (30/43 while it was 18% (10/56 in the group with previous lines of therapy (p Conclusion In metastatic CRC patients treated with chemotherapy plus Cetuximab number of chemotherapy lines and increased EGFR-GCN were significantly associated with a better clinical outcome, independent of k-ras status.

  6. Mitochondrial DNA copy number in peripheral blood cell and hypertension risk among mining workers: a case-control study in Chinese coal miners.

    Science.gov (United States)

    Lei, L; Guo, J; Shi, X; Zhang, G; Kang, H; Sun, C; Huang, J; Wang, T

    2017-09-01

    Alteration of mitochondrial DNA (mtDNA) copy number, which reflects oxidant-induced cell damage, has been observed in a wide range of human diseases. However, whether it correlates with hypertension has not been elucidated. We aimed to explore the association between mtDNA copy number and the risk of hypertension in Chinese coal miners. A case-control study was performed with 378 hypertension patients and 325 healthy controls in a large coal mining group located in North China. Face-to-face interviews were conducted by trained staffs with necessary medical knowledge. The mtDNA copy number was measured by a quantitative real-time PCR assay using DNA extracted from peripheral blood. No significant differences in mtDNA copy number were observed between hypertension patients and healthy controls. However, in both case and control groups, the mtDNA copy number was statistically significantly lower in the elder population (≥45 years old) compared with the younger subjects (associated with hypertension in coal miners.

  7. Copy number variation in CEP57L1 predisposes to congenital absence of bilateral ACL and PCL ligaments.

    Science.gov (United States)

    Liu, Yichuan; Li, Yun; March, Michael E; Nguyen, Kenny; Kenny, Nguyen; Xu, Kexiang; Wang, Fengxiang; Guo, Yiran; Keating, Brendan; Glessner, Joseph; Li, Jiankang; Ganley, Theodore J; Zhang, Jianguo; Deardorff, Matthew A; Xu, Xun; Hakonarson, Hakon

    2015-11-11

    Absence of the anterior (ACL) or posterior cruciate ligament (PCL) are rare congenital malformations that result in knee joint instability, with a prevalence of 1.7 per 100,000 live births and can be associated with other lower-limb abnormalities such as ACL agnesia and absence of the menisci of the knee. While a few cases of absence of ACL/PCL are reported in the literature, a number of large familial case series of related conditions such as ACL agnesia suggest a potential underlying monogenic etiology. We performed whole exome sequencing of a family with two individuals affected by ACL/PCL. We identified copy number variation (CNV) deletion impacting the exon sequences of CEP57L1, present in the affected mother and her affected daughter based on the exome sequencing data. The deletion was validated using quantitative PCR (qPCR), and the gene was confirmed to be expressed in ACL ligament tissue. Interestingly, we detected reduced expression of CEP57L1 in Epstein-Barr virus (EBV) cells from the two patients in comparison with healthy controls. Evaluation of 3D protein structure showed that the helix-binding sites of the protein remain intact with the deletion, but other functional binding sites related to microtubule attachment are missing. The specificity of the CNV deletion was confirmed by showing that it was absent in ~700 exome sequencing samples as well as in the database of genomic variations (DGV), a database containing large numbers of annotated CNVs from previous scientific reports. We identified a novel CNV deletion that was inherited through an autosomal dominant transmission from an affected mother to her affected daughter, both of whom suffered from the absence of the anterior and posterior cruciate ligaments of the knees.

  8. Copy number variation and association analysis of SHANK3 as a candidate gene for autism in the IMGSAC collection.

    Science.gov (United States)

    Sykes, Nuala H; Toma, Claudio; Wilson, Natalie; Volpi, Emanuela V; Sousa, Inês; Pagnamenta, Alistair T; Tancredi, Raffaella; Battaglia, Agatino; Maestrini, Elena; Bailey, Anthony J; Monaco, Anthony P

    2009-10-01

    SHANK3 is located on chromosome 22q13.3 and encodes a scaffold protein that is found in excitatory synapses opposite the pre-synaptic active zone. SHANK3 is a binding partner of neuroligins, some of whose genes contain mutations in a small subset of individuals with autism. In individuals with autism spectrum disorders (ASDs), several studies have found SHANK3 to be disrupted by deletions ranging from hundreds of kilobases to megabases, suggesting that 1% of individuals with ASDs may have these chromosomal aberrations. To further analyse the involvement of SHANK3 in ASD, we screened the International Molecular Genetic Study of Autism Consortium (IMGSAC) multiplex family sample, 330 families, for SNP association and copy number variants (CNVs) in SHANK3. A collection of 76 IMGSAC Italian probands from singleton families was also examined by multiplex ligation-dependent probe amplification for CNVs. No CNVs or SNP associations were found within the sample set, although sequencing of the gene was not performed. Our data suggest that SHANK3 deletions may be limited to lower functioning individuals with autism.

  9. The mitochondrial DNA 4,977-bp deletion and its implication in copy number alteration in colorectal cancer

    Science.gov (United States)

    2011-01-01

    Background Qualitative and quantitative changes in human mitochondrial DNA (mtDNA) have been implicated in various cancer types. A 4,977 bp deletion in the major arch of the mitochondrial genome is one of the most common mutations associated with a variety of human diseases and aging. Methods We conducted a comprehensive study on clinical features and mtDNA of 104 colorectal cancer patients in the Wenzhou area of China. In particular, using a quantitative real time PCR method, we analyzed the 4,977 bp deletion and mtDNA content in tumor tissues and paired non-tumor areas from these patients. Results We found that the 4,977 bp deletion was more likely to be present in patients of younger age (≤65 years, p = 0.027). In patients with the 4,977 bp deletion, the deletion level decreased as the cancer stage advanced (p = 0.031). Moreover, mtDNA copy number in tumor tissues of patients with this deletion increased, both compared with that in adjacent non-tumor tissues and with in tumors of patients without the deletion. Such mtDNA content increase correlated with the levels of the 4,977 bp deletion and with cancer stage (p deletion may play a role in the early stage of colorectal cancer, and it is also implicated in alteration of mtDNA content in cancer cells. PMID:21232124

  10. Genome-wide copy number variation study associates metabotropic glutamate receptor gene networks with attention deficit hyperactivity disorder

    Science.gov (United States)

    Elia, Josephine; Glessner, Joseph T; Wang, Kai; Takahashi, Nagahide; Shtir, Corina J; Hadley, Dexter; Sleiman, Patrick M A; Zhang, Haitao; Kim, Cecilia E; Robison, Reid; Lyon, Gholson J; Flory, James H; Bradfield, Jonathan P; Imielinski, Marcin; Hou, Cuiping; Frackelton, Edward C; Chiavacci, Rosetta M; Sakurai, Takeshi; Rabin, Cara; Middleton, Frank A; Thomas, Kelly A; Garris, Maria; Mentch, Frank; Freitag, Christine M; Steinhausen, Hans-Christoph; Todorov, Alexandre A; Reif, Andreas; Rothenberger, Aribert; Franke, Barbara; Mick, Eric O; Roeyers, Herbert; Buitelaar, Jan; Lesch, Klaus-Peter; Banaschewski, Tobias; Ebstein, Richard P; Mulas, Fernando; Oades, Robert D; Sergeant, Joseph; Sonuga-Barke, Edmund; Renner, Tobias J; Romanos, Marcel; Romanos, Jasmin; Warnke, Andreas; Walitza, Susanne; Meyer, Jobst; Pálmason, Haukur; Seitz, Christiane; Loo, Sandra K; Smalley, Susan L; Biederman, Joseph; Kent, Lindsey; Asherson, Philip; Anney, Richard J L; Gaynor, J William; Shaw, Philip; Devoto, Marcella; White, Peter S; Grant, Struan F A; Buxbaum, Joseph D; Rapoport, Judith L; Williams, Nigel M; Nelson, Stanley F; Faraone, Stephen V; Hakonarson, Hakon

    2014-01-01

    Attention deficit hyperactivity disorder (ADHD) is a common, heritable neuropsychiatric disorder of unknown etiology. We performed a whole-genome copy number variation (CNV) study on 1,013 cases with ADHD and 4,105 healthy children of European ancestry using 550,000 SNPs. We evaluated statistically significant findings in multiple independent cohorts, with a total of 2,493 cases with ADHD and 9,222 controls of European ancestry, using matched platforms. CNVs affecting metabotropic glutamate receptor genes were enriched across all cohorts (P = 2.1 × 10−9). We saw GRM5 (encoding glutamate receptor, metabotropic 5) deletions in ten cases and one control (P = 1.36 × 10−6). We saw GRM7 deletions in six cases, and we saw GRM8 deletions in eight cases and no controls. GRM1 was duplicated in eight cases. We experimentally validated the observed variants using quantitative RT-PCR. A gene network analysis showed that genes interacting with the genes in the GRM family are enriched for CNVs in ~10% of the cases (P = 4.38 × 10−10) after correction for occurrence in the controls. We identified rare recurrent CNVs affecting glutamatergic neurotransmission genes that were overrepresented in multiple ADHD cohorts. PMID:22138692

  11. Deciphering the Correlation between Breast Tumor Samples and Cell Lines by Integrating Copy Number Changes and Gene Expression Profiles

    Directory of Open Access Journals (Sweden)

    Yi Sun

    2015-01-01

    Full Text Available Breast cancer is one of the most common cancers with high incident rate and high mortality rate worldwide. Although different breast cancer cell lines were widely used in laboratory investigations, accumulated evidences have indicated that genomic differences exist between cancer cell lines and tissue samples in the past decades. The abundant molecular profiles of cancer cell lines and tumor samples deposited in the Cancer Cell Line Encyclopedia and The Cancer Genome Atlas now allow a systematical comparison of the breast cancer cell lines with breast tumors. We depicted the genomic characteristics of breast primary tumors based on the copy number variation and gene expression profiles and the breast cancer cell lines were compared to different subgroups of breast tumors. We identified that some of the breast cancer cell lines show high correlation with the tumor group that agrees with previous knowledge, while a big part of them do not, including the most used MCF7, MDA-MB-231, and T-47D. We presented a computational framework to identify cell lines that mostly resemble a certain tumor group for the breast tumor study. Our investigation presents a useful guide to bridge the gap between cell lines and tumors and helps to select the most suitable cell line models for personalized cancer studies.

  12. Genome-wide screening identifies a KCNIP1 copy number variant as a genetic predictor for atrial fibrillation

    Science.gov (United States)

    Tsai, Chia-Ti; Hsieh, Chia-Shan; Chang, Sheng-Nan; Chuang, Eric Y.; Ueng, Kwo-Chang; Tsai, Chin-Feng; Lin, Tsung-Hsien; Wu, Cho-Kai; Lee, Jen-Kuang; Lin, Lian-Yu; Wang, Yi-Chih; Yu, Chih-Chieh; Lai, Ling-Ping; Tseng, Chuen-Den; Hwang, Juey-Jen; Chiang, Fu-Tien; Lin, Jiunn-Lee

    2016-01-01

    Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. Previous genome-wide association studies had identified single-nucleotide polymorphisms in several genomic regions to be associated with AF. In human genome, copy number variations (CNVs) are known to contribute to disease susceptibility. Using a genome-wide multistage approach to identify AF susceptibility CNVs, we here show a common 4,470-bp diallelic CNV in the first intron of potassium interacting channel 1 gene (KCNIP1) is strongly associated with AF in Taiwanese populations (odds ratio=2.27 for insertion allele; P=6.23 × 10−24). KCNIP1 insertion is associated with higher KCNIP1 mRNA expression. KCNIP1-encoded protein potassium interacting channel 1 (KCHIP1) is physically associated with potassium Kv channels and modulates atrial transient outward current in cardiac myocytes. Overexpression of KCNIP1 results in inducible AF in zebrafish. In conclusions, a common CNV in KCNIP1 gene is a genetic predictor of AF risk possibly pointing to a functional pathway. PMID:26831368

  13. Use of next-generation sequencing to detect LDLR gene copy number variation in familial hypercholesterolemia[S

    Science.gov (United States)

    Iacocca, Michael A.; Wang, Jian; Dron, Jacqueline S.; Robinson, John F.; McIntyre, Adam D.; Cao, Henian

    2017-01-01

    Familial hypercholesterolemia (FH) is a heritable condition of severely elevated LDL cholesterol, caused predominantly by autosomal codominant mutations in the LDL receptor gene (LDLR). In providing a molecular diagnosis for FH, the current procedure often includes targeted next-generation sequencing (NGS) panels for the detection of small-scale DNA variants, followed by multiplex ligation-dependent probe amplification (MLPA) in LDLR for the detection of whole-exon copy number variants (CNVs). The latter is essential because ∼10% of FH cases are attributed to CNVs in LDLR; accounting for them decreases false negative findings. Here, we determined the potential of replacing MLPA with bioinformatic analysis applied to NGS data, which uses depth-of-coverage analysis as its principal method to identify whole-exon CNV events. In analysis of 388 FH patient samples, there was 100% concordance in LDLR CNV detection between these two methods: 38 reported CNVs identified by MLPA were also successfully detected by our NGS method, while 350 samples negative for CNVs by MLPA were also negative by NGS. This result suggests that MLPA can be removed from the routine diagnostic screening for FH, significantly reducing associated costs, resources, and analysis time, while promoting more widespread assessment of this important class of mutations across diagnostic laboratories. PMID:28874442

  14. FISH Oracle: a web server for flexible visualization of DNA copy number data in a genomic context.

    Science.gov (United States)

    Mader, Malte; Simon, Ronald; Steinbiss, Sascha; Kurtz, Stefan

    2011-07-28

    The rapidly growing amount of array CGH data requires improved visualization software supporting the process of identifying candidate cancer genes. Optimally, such software should work across multiple microarray platforms, should be able to cope with data from different sources and should be easy to operate. We have developed a web-based software FISH Oracle to visualize data from multiple array CGH experiments in a genomic context. Its fast visualization engine and advanced web and database technology supports highly interactive use. FISH Oracle comes with a convenient data import mechanism, powerful search options for genomic elements (e.g. gene names or karyobands), quick navigation and zooming into interesting regions, and mechanisms to export the visualization into different high quality formats. These features make the software especially suitable for the needs of life scientists. FISH Oracle offers a fast and easy to use visualization tool for array CGH and SNP array data. It allows for the identification of genomic regions representing minimal common changes based on data from one or more experiments. FISH Oracle will be instrumental to identify candidate onco and tumor suppressor genes based on the frequency and genomic position of DNA copy number changes. The FISH Oracle application and an installed demo web server are available at http://www.zbh.uni-hamburg.de/fishoracle.

  15. Severity of ASD symptoms and their correlation with the presence of copy number variations and exposure to first trimester ultrasound.

    Science.gov (United States)

    Webb, Sara Jane; Garrison, Michelle M; Bernier, Raphael; McClintic, Abbi M; King, Bryan H; Mourad, Pierre D

    2017-03-01

    Current research suggests that incidence and heterogeneity of autism spectrum disorder (ASD) symptoms may arise through a variety of exogenous and/or endogenous factors. While subject to routine clinical practice and generally considered safe, there exists speculation, though no human data, that diagnostic ultrasound may also contribute to ASD severity, supported by experimental evidence that exposure to ultrasound early in gestation could perturb brain development and alter behavior. Here we explored a modified triple hit hypothesis [Williams & Casanova, ] to assay for a possible relationship between the severity of ASD symptoms and (1) ultrasound exposure (2) during the first trimester of pregnancy in fetuses with a (3) genetic predisposition to ASD. We did so using retrospective analysis of data from the SSC (Simon's Simplex Collection) autism genetic repository funded by the Simons Foundation Autism Research Initiative. We found that male children with ASD, copy number variations (CNVs), and exposure to first trimester ultrasound had significantly decreased non-verbal IQ and increased repetitive behaviors relative to male children with ASD, with CNVs, and no ultrasound. These data suggest that heterogeneity in ASD symptoms may result, at least in part, from exposure to diagnostic ultrasound during early prenatal development of children with specific genetic vulnerabilities. These results also add weight to on-going concerns expressed by the FDA about non-medical use of diagnostic ultrasound during pregnancy. Autism Res 2017, 10: 472-484. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  16. Absence of Substantial Copy Number Differences in a Pair of Monozygotic Twins Discordant for Features of Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Marina Laplana

    2014-01-01

    Full Text Available Autism spectrum disorder (ASD is a highly heritable disease (~0.9 with a complex genetic etiology. It is initially characterized by altered cognitive ability which commonly includes impaired language and communication skills as well as fundamental deficits in social interaction. Despite the large amount of studies described so far, the high clinical diversity affecting the autism phenotype remains poorly explained. Recent studies suggest that rare genomic variations, in particular copy number variation (CNV, may account for a significant proportion of the genetic basis of ASD. The use of disease-discordant monozygotic twins represents a powerful strategy to identify de novo and inherited CNV in the disorder. Here we present the results of a comparative genome hybridization (CGH analysis with a pair of monozygotic twins affected of ASD with significant differences in their clinical manifestations that specially affect speech language impairment and communication skills. Array CGH was performed in three different tissues: blood, saliva, and hair follicle, in an attempt to identify germinal and somatic CNV regions that may explain these differences. Our results argue against a role of large CNV rearrangements as a molecular etiology of the observed differences. This forwards future research to explore de novo point mutation and epigenomic alterations as potential explanations of the observed clinical differences.

  17. Exploration of large, rare copy number variants associated with psychiatric and neurodevelopmental disorders in individuals with anorexia nervosa.

    Science.gov (United States)

    Yilmaz, Zeynep; Szatkiewicz, Jin P; Crowley, James J; Ancalade, NaEshia; Brandys, Marek K; van Elburg, Annemarie; de Kovel, Carolien G F; Adan, Roger A H; Hinney, Anke; Hebebrand, Johannes; Gratacos, Monica; Fernandez-Aranda, Fernando; Escaramis, Georgia; Gonzalez, Juan R; Estivill, Xavier; Zeggini, Eleftheria; Sullivan, Patrick F; Bulik, Cynthia M

    2017-08-01

    Anorexia nervosa (AN) is a serious and heritable psychiatric disorder. To date, studies of copy number variants (CNVs) have been limited and inconclusive because of small sample sizes. We conducted a case-only genome-wide CNV survey in 1983 female AN cases included in the Genetic Consortium for Anorexia Nervosa. Following stringent quality control procedures, we investigated whether pathogenic CNVs in regions previously implicated in psychiatric and neurodevelopmental disorders were present in AN cases. We observed two instances of the well-established pathogenic CNVs in AN cases. In addition, one case had a deletion in the 13q12 region, overlapping with a deletion reported previously in two AN cases. As a secondary aim, we also examined our sample for CNVs over 1 Mbp in size. Out of the 40 instances of such large CNVs that were not implicated previously for AN or neuropsychiatric phenotypes, two of them contained genes with previous neuropsychiatric associations, and only five of them had no associated reports in public CNV databases. Although ours is the largest study of its kind in AN, larger datasets are needed to comprehensively assess the role of CNVs in the etiology of AN.

  18. Reduction in the copy number and expression level of the recurrent human papillomavirus integration gene fragile histidine triad (FHIT predicts the transition of cervical lesions.

    Directory of Open Access Journals (Sweden)

    Liming Wang

    Full Text Available Cervical cancer is the second most common cancer and the third leading cause of cancer death in females worldwide, especially in developing countries. High risk human papillomavirus (HR-HPV infection causes cervical cancer and precancerous cervical intraepithelial neoplasia (CIN. Integration of the HR-HPV genome into the host chromatin is an important step in cervical carcinogenesis. The detection of integrated papillomavirus sequences-PCR (DIPS-PCR allowed us to explore HPV integration in the human genome and to determine the pattern of this integration. We performed DIPS-PCR for 4 cell lines including 3 cervical cancer cell lines and 40 tissue samples. Overall, 32 HR-HPV integration loci were detected in the clinical samples and the HeLa and SiHa cell lines. Among all the integration loci, we identified three recurrent integration loci: 3p14.2 (3 samples, 13q22.1 (2 samples and a SiHa cell line and 8q24 (1 sample and a HeLa cell line. To further explore the effect of HR-HPV integration in the 3p14.2 locus, we used fluorescence in situ hybridization (FISH to determine the copy number of the 3p14.2 locus and immunohistochemistry (IHC to determine the protein expression levels of the related FHIT gene in the clinical samples. Both the 3p14.2 locus copy number and FHIT protein expression levels showed significant decreases when CIN transitioned to cervical cancer. HPV copy number was also evaluated in these clinical samples, and the copy number of HPV increased significantly between CIN and cervical cancer samples. Finally, we employed receiver operating characteristic curve (ROC curve analysis to evaluate the potential of all these indexes in distinguishing CIN and cervical cancer, and the HPV copy number, FHIT copy number and FHIT protein expression levels have good diagnostic efficiencies.

  19. Copy number variation identification and analysis of the chicken genome using a 60K SNP BeadChip.

    Science.gov (United States)

    Rao, Y S; Li, J; Zhang, R; Lin, X R; Xu, J G; Xie, L; Xu, Z Q; Wang, L; Gan, J K; Xie, X J; He, J; Zhang, X Q

    2016-08-01

    Copy number variation (CNV) is an important source of genetic variation in organisms and a main factor that affects phenotypic variation. A comprehensive study of chicken CNV can provide valuable information on genetic diversity and facilitate future analyses of associations between CNV and economically important traits in chickens. In the present study, an F2 full-sib chicken population (554 individuals), established from a cross between Xinghua and White Recessive Rock chickens, was used to explore CNV in the chicken genome. Genotyping was performed using a chicken 60K SNP BeadChip. A total of 1,875 CNV were detected with the PennCNV algorithm, and the average number of CNV was 3.42 per individual. The CNV were distributed across 383 independent CNV regions (CNVR) and covered 41 megabases (3.97%) of the chicken genome. Seven CNVR in 108 individuals were validated by quantitative real-time PCR, and 81 of these individuals (75%) also were detected with the PennCNV algorithm. In total, 274 CNVR (71.54%) identified in the current study were previously reported. Of these, 147 (38.38%) were reported in at least 2 studies. Additionally, 109 of the CNVR (28.46%) discovered here are novel. A total of 709 genes within or overlapping with the CNVR was retrieved. Out of the 2,742 quantitative trait loci (QTL) collected in the chicken QTL database, 43 QTL had confidence intervals overlapping with the CNVR, and 32 CNVR encompassed one or more functional genes. The functional genes located in the CNVR are likely to be the QTG that are associated with underlying economic traits. This study considerably expands our insight into the structural variation in the genome of chickens and provides an important resource for genomic variation, especially for genomic structural variation related to economic traits in chickens. © 2016 Poultry Science Association Inc.

  20. Detection and copy number estimation of the transgenic nucleotide sequences in an unknown GM event of Oryza sativa

    Directory of Open Access Journals (Sweden)

    Ali M. Sajjad

    2016-12-01

    Full Text Available The present study was designed to establish a qualitative detection method based on conventional and real time PCR assay to screen the commonly grown rice varieties for the presence of the cry1Ac gene. The detection of genetically modified rice in the screening process would necessitate accurate assay development and precise qualitative PCR tests complying with established procedures for the detection and characterization of transgenes in food grains. Such assay would not only enable the monitoring of transgene flow in local agricultural environment but also the characterization of different plant species produced with this transgene and its regulatory components. Thus, a reliable and quick screening assay was established for the qualitative detection of the transgene along with the promoter and selectable marker gene in genetically modified rice. By conventional PCR, a fragment of 215 bp was amplified with gene specific primers of cry1Ac. Primers for other transgenes such as gna and bar were also employed; however, no amplification was detected. The presence of the p35s, sps, and nptII genes was confirmed by qualitative real-time PCR. The specificity of the respective PCR products was checked through melt peak curve analysis. Sharp and precise melting temperatures indicated the presence of a single kind of PCR product in correspondence to each of the primers used. Moreover, the copy number of cry1Ac was estimated by ∆∆CT method. It is proposed that the primer sets and experimental conditions used in this study will be sufficient to meet the requirements for molecular detection and characterization of the cry1Ac transgene and affiliated sequences in sorting out conventional rice varieties from the ones which are genetically modified. It will also help to monitor the ecological flow of these transgenes and other biosafety factors.

  1. Copy number variations in "classical" obesity candidate genes are not frequently associated with severe early-onset obesity in children.

    Science.gov (United States)

    Windholz, Jan; Kovacs, Peter; Schlicke, Marina; Franke, Christin; Mahajan, Anubha; Morris, Andrew P; Lemke, Johannes R; Klammt, Jürgen; Kiess, Wieland; Schöneberg, Torsten; Pfäffle, Roland; Körner, Antje

    2017-05-01

    Obesity is genetically heterogeneous and highly heritable, although polymorphisms explain the phenotype in only a small proportion of obese children. We investigated the presence of copy number variations (CNVs) in "classical" genes known to be associated with (monogenic) early-onset obesity in children. In 194 obese Caucasian children selected for early-onset and severe obesity from our obesity cohort we screened for deletions and/or duplications by multiplex ligation-dependent probe amplification reaction (MLPA). As we found one MLPA probe to interfere with a polymorphism in SIM1 we investigated its association with obesity and other phenotypic traits in our extended cohort of 2305 children. In the selected subset of most severely obese children, we did not find CNV with MLPA in POMC, LEP, LEPR, MC4R, MC3R or MC2R genes. However, one SIM1 probe located at exon 9 gave signals suggestive for SIM1 insufficiency in 52 patients. Polymerase chain reaction (PCR) analysis identified this as a false positive result due to interference with single nucleotide polymorphism (SNP) rs3734354/rs3734355. We, therefore, investigated for associations of this polymorphism with obesity and metabolic traits in our extended cohort. We found rs3734354/rs3734355 to be associated with body mass index-standard deviation score (BMI-SDS) (p = 0.003), but not with parameters of insulin metabolism, blood pressure or food intake. In our modest sample of severely obese children, we were unable to find CNVs in well-established monogenic obesity genes. Nevertheless, we found an association of rs3734354 in SIM1 with obesity of early-onset type in children, although not with obesity-related traits.

  2. Rare Genome-Wide Copy Number Variation and Expression of Schizophrenia in 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Bassett, Anne S; Lowther, Chelsea; Merico, Daniele; Costain, Gregory; Chow, Eva W C; van Amelsvoort, Therese; McDonald-McGinn, Donna; Gur, Raquel E; Swillen, Ann; Van den Bree, Marianne; Murphy, Kieran; Gothelf, Doron; Bearden, Carrie E; Eliez, Stephan; Kates, Wendy; Philip, Nicole; Sashi, Vandana; Campbell, Linda; Vorstman, Jacob; Cubells, Joseph; Repetto, Gabriela M; Simon, Tony; Boot, Erik; Heung, Tracy; Evers, Rens; Vingerhoets, Claudia; van Duin, Esther; Zackai, Elaine; Vergaelen, Elfi; Devriendt, Koen; Vermeesch, Joris R; Owen, Michael; Murphy, Clodagh; Michaelovosky, Elena; Kushan, Leila; Schneider, Maude; Fremont, Wanda; Busa, Tiffany; Hooper, Stephen; McCabe, Kathryn; Duijff, Sasja; Isaev, Karin; Pellecchia, Giovanna; Wei, John; Gazzellone, Matthew J; Scherer, Stephen W; Emanuel, Beverly S; Guo, Tingwei; Morrow, Bernice E; Marshall, Christian R

    2017-11-01

    Chromosome 22q11.2 deletion syndrome (22q11.2DS) is associated with a more than 20-fold increased risk for developing schizophrenia. The aim of this study was to identify additional genetic factors (i.e., "second hits") that may contribute to schizophrenia expression. Through an international consortium, the authors obtained DNA samples from 329 psychiatrically phenotyped subjects with 22q11.2DS. Using a high-resolution microarray platform and established methods to assess copy number variation (CNV), the authors compared the genome-wide burden of rare autosomal CNV, outside of the 22q11.2 deletion region, between two groups: a schizophrenia group and those with no psychotic disorder at age ≥25 years. The authors assessed whether genes overlapped by rare CNVs were overrepresented in functional pathways relevant to schizophrenia. Rare CNVs overlapping one or more protein-coding genes revealed significant between-group differences. For rare exonic duplications, six of 19 gene sets tested were enriched in the schizophrenia group; genes associated with abnormal nervous system phenotypes remained significant in a stepwise logistic regression model and showed significant interactions with 22q11.2 deletion region genes in a connectivity analysis. For rare exonic deletions, the schizophrenia group had, on average, more genes overlapped. The additional rare CNVs implicated known (e.g., GRM7, 15q13.3, 16p12.2) and novel schizophrenia risk genes and loci. The results suggest that additional rare CNVs overlapping genes outside of the 22q11.2 deletion region contribute to schizophrenia risk in 22q11.2DS, supporting a multigenic hypothesis for schizophrenia. The findings have implications for understanding expression of psychotic illness and herald the importance of whole-genome sequencing to appreciate the overall genomic architecture of schizophrenia.

  3. GSTT1 copy number gain and ZNF overexpression are predictors of poor response to imatinib in gastrointestinal stromal tumors.

    Directory of Open Access Journals (Sweden)

    Eui Jin Lee

    Full Text Available Oncogenic mutations in gastrointestinal stromal tumors (GISTs predict prognosis and therapeutic responses to imatinib. In wild-type GISTs, the tumor-initiating events are still unknown, and wild-type GISTs are resistant to imatinib therapy. We performed an association study between copy number alterations (CNAs identified from array CGH and gene expression analyses results for four wild-type GISTs and an imatinib-resistant PDGFRA D842V mutant GIST, and compared the results to those obtained from 27 GISTs with KIT mutations. All wild-type GISTs had multiple CNAs, and CNAs in 1p and 22q that harbor the SDHB and GSTT1 genes, respectively, correlated well with expression levels of these genes. mRNA expression levels of all SDH gene subunits were significantly lower (P≤0.041, whereas mRNA expression levels of VEGF (P=0.025, IGF1R (P=0.026, and ZNFs (P<0.05 were significantly higher in GISTs with wild-type/PDGFRA D842V mutations than GISTs with KIT mutations. qRT-PCR validation of the GSTT1 results in this cohort and 11 additional malignant GISTs showed a significant increase in the frequency of GSTT1 CN gain and increased mRNA expression of GSTT1 in wild-type/PDGFRA D842V GISTs than KIT-mutant GISTs (P=0.033. Surprisingly, all four malignant GISTs with KIT exon 11 deletion mutations with primary resistance to imatinib had an increased GSTT1 CN and mRNA expression level of GSTT1. Increased mRNA expression of GSTT1 and ZNF could be predictors of a poor response to imatinib. Our integrative approach reveals that for patients with wild-type (or imatinib-resistant GISTs, attempts to target VEGFRs and IGF1R may be reasonable options.

  4. Polycyclic aromatic hydrocarbons exposure decreased sperm mitochondrial DNA copy number: A cross-sectional study (MARHCS) in Chongqing, China.

    Science.gov (United States)

    Ling, Xi; Zhang, Guowei; Sun, Lei; Wang, Zhi; Zou, Peng; Gao, Jianfang; Peng, Kaige; Chen, Qing; Yang, Huan; Zhou, Niya; Cui, Zhihong; Zhou, Ziyuan; Liu, Jinyi; Cao, Jia; Ao, Lin

    2017-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants that have adverse effects on the male reproductive function. Many studies have confirmed that PAHs preferentially accumulate in mitochondria DNA relative to nuclear DNA and disrupt mitochondrial functions. However, it is rare whether exposure to PAHs is associated with mitochondrial damage and dysfunction in sperm. To evaluate the effects of PAHs on sperm mitochondria, we measured mitochondrial membrane potential (MMP), mitochondrial DNA copy number (mtDNAcn) and mtDNA integrity in 666 individuals from the Male Reproductive Health in Chongqing College Students (MARHCS) study. PAHs exposure was estimated by measuring eight urinary PAH metabolites (1-OHNap, 2-OHNap, 1-OHPhe, 2-OHPhe, 3-OHPhe, 4-OHPhe, 2-OHFlu and 1-OHPyr). The subjects were divided into low, median and high exposure groups using the tertile levels of urinary PAH metabolites. In univariate analyses, the results showed that increased levels of 2-OHPhe, 3-OHPhe, ∑Phe metabolites and 2-OHFlu were found to be associated with decreased sperm mtDNAcn. After adjusting for potential confounders, significantly negative associations of these metabolites remained (p = 0.039, 0.012, 0.01, 0.035, respectively). Each 1 μg/g creatinine increase in 2-OHPhe, 3-OHPhe, ∑Phe metabolites and 2-OHFlu was associated with a decrease in sperm mtDNAcn of 9.427%, 11.488%, 9.635% and 11.692%, respectively. There were no significant associations between urinary PAH metabolites and sperm MMP or mtDNA integrity. The results indicated that the low exposure levels of PAHs can cause abnormities in sperm mitochondria. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Copy number variants in attention-deficit hyperactive disorder: identification of the 15q13 deletion and its functional role.

    Science.gov (United States)

    Valbonesi, Stefano; Magri, Chiara; Traversa, Michele; Faraone, Stephen V; Cattaneo, Annamaria; Milanesi, Elena; Valenti, Vera; Gennarelli, Massimo; Scassellati, Catia

    2015-04-01

    Evidence has supported a role for rare copy number variants in the etiology of attention-deficit hyperactivity disorder (ADHD), in particular, the region 15q13, which is also a hot spot for several neuropsychiatric disorders. This region spans several genes, but their role and the biological implications remain unclear. We carried out, for the first time, an analysis of the 15q13 region in an Italian cohort of 117 ADHD patients and 77 controls using the MLPA method, confirmed by a genome single-nucleotide polymorphism array. In addition, we probed for downstream effects of the 15q13 deletions on gene expression by carrying out a transcriptomic analysis in blood. We found 15q13 deletions in two ADHD patients and identified 129 genes as significantly dysregulated in the blood of the two ADHD patients carrying 15q13 deletions compared with ADHD patients without 15q13 deletions. As expected, genes in the deleted region (KLF13, MTMR10) were downregulated in the two patients with deletions. Moreover, a pathway analysis identified apoptosis, oxidation reduction, and immune response as the mechanisms that were altered most significantly in the ADHD patients with 15q13 deletions.