WorldWideScience

Sample records for copper-mediated radical polymerization

  1. Surface grafting via photo-induced copper-mediated radical polymerization at extremely low catalyst concentrations

    Czech Academy of Sciences Publication Activity Database

    Laun, J.; Vorobii, Mariia; de los Santos Pereira, Andres; Pop-Georgievski, Ognen; Trouillet, V.; Welle, A.; Barner-Kowollik, C.; Rodriguez-Emmenegger, Cesar; Junkers, T.

    2015-01-01

    Roč. 36, č. 18 (2015), s. 1681-1686 ISSN 1022-1336 R&D Projects: GA ČR(CZ) GJ15-09368Y; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : copper-mediated polymerization * photo-induced polymerization * polymer brushes Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.638, year: 2015

  2. Copper-mediated homogeneous living radical polymerization of acrylamide with waxy potato starch-based macroinitiator.

    Science.gov (United States)

    Fan, Yifei; Cao, Huatang; van Mastrigt, Frank; Pei, Yutao; Picchioni, Francesco

    2018-07-15

    Cu 0 -mediated living radical polymerization (Cu 0 -mediated LRP) was employed in this research for the synthesis of starch-g-polyacrylamide (St-g-PAM). The use of a controlled radical grafting technique is necessary, as compared to the traditional free-radical polymerization methods, in order to obtain a well-defined structure of the final product. This is in turn essential for studying the relationship between such structure and the end-properties. Waxy potato starch-based water-soluble macroinitiator was first synthesized by esterification with 2-bromopropionyl bromide in the mixture of dimethylacetamide and lithium chloride. With the obtained macroinitiator, St-g-PAM was homogeneously synthesized by aqueous Cu 0 -mediated LRP using CuBr/hexamethylated tris(2-aminoethyl)amine (Me 6 Tren) as catalyst. The successful synthesis of the macroinitiator and St-g-PAM was proved by NMR, FT-IR, SEM, XRD and TGA analysis. The molecular weight and polydispersity of PAM chains were analyzed by gel permeation chromatography (GPC) after hydrolyzing the starch backbone. Monomer conversion was monitored by gas chromatography (GC), on the basis of which the kinetics were determined. A preliminarily rheological study was performed on aqueous solutions of the prepared materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Synthesis, Characterization and Bulk Properties of Amphiphilic Copolymers Containing Fluorinated Methacrylates from Sequential Copper-Mediated Radical Polymerization

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Gerstenberg, Michael; Haddleton, David M.

    2008-01-01

    acrylate (MEA), and poly(ethylene glycol) methyl ether methacrylate (PEGMA) by Atom Transfer Radical Polymerization. A kinetic study of the 3FM homopolymerization initiated with ethyl bromoisobutyrate and Cu(I)Br/N-(n-propyl)-2-pyridylmethanimine reveals a living/ controlled polymerization in the range 80...

  4. ATOM TRANSFER RADICAL POLYMERIZATION OF N-BUTYL METHACRYLATE IN AQUEOUS DISPERSED SYSTEMS: A MINIEMULSION APPROACH. (R826735)

    Science.gov (United States)

    Ultrasonication was applied in combination with a hydrophobe for the copper-mediated atom transfer radical polymerization of n-butyl methacrylate in an aqueous dispersed system. A controlled polymerization was successfully achieved, as demonstrated by a linear correlation between...

  5. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  6. Allylthioketone Mediated Free Radical Polymerization of Methacrylates

    Directory of Open Access Journals (Sweden)

    Feng Zhong

    2017-11-01

    Full Text Available By combination of high trapping free radical efficiency of the thioketone and resonance of the allylic radical, a new type of mediating agent, 1,3,3-triphenylprop-2-ene-1-thione (TPPT has been successfully synthesized, and then is used to study controlled free radical polymerization of methacrylates. Very stable TPPT radicals at the end of poly(methyl methacrylate (PMMA are detected in the polymerization of MMA using TPPT and AIBN as the control agent and initiator. The MALDI-TOF MS spectra are used to identify terminal groups of the resultant poly(glycidyl methacrylate (PGMA, and major component of the obtained polymer has the structure, (CH32(CNC-PGMA-C7H9O3. Chain extension reaction tests ascertain formation of the dead polymers during the polymer storage and purification process of the polymers. Owing to very slow fragmentation reaction of the TPPT-terminated polymethacrylate radical and addition reaction of this radical with a primary radical, the growing chain radicals are difficult to be regenerated, leading to an unobvious change of the molecular weight with monomer conversion. The molecular weights of polymers can be controlled by the ratios of monomer/initiator and TPPT/initiator. However, the first order kinetics of the polymerization and the polymers with narrow polydispersity are obtained, and these phenomena are discussed. This study provides useful information on how to design a better controlling agent.

  7. Ultrasound-induced radical polymerization

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; Kemmere, M.F.; Keurentjes, J.T.F.

    2004-01-01

    Sonochemistry comprises all chemical effects that are induced by ultrasound. Most of these effects are caused by cavitations, ie, the collapse of microscopic bubbles in a liquid. The chemical effects of ultrasound include the formation of radicals and the enhancement of reaction rates at ambient

  8. TRANSITION METAL CATALYSIS IN CONTROLLED RADICAL POLYMERIZATION: ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    Science.gov (United States)

    Novel and diversified macromolecular structures, which include polymers with designed topologies (top), compostions (middle), and functionalities (bottom), can be prepared by atom transfer radical polymerization processes. These polymers can be synthesized from a large variety of...

  9. Metal-catalyzed living radical polymerization and radical polyaddition for precision polymer synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Mizutani, M; Satoh, K [Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Kamigaito, M, E-mail: kamigait@apchem.nagoya-u.ac.j

    2009-08-01

    The metal-catalyzed radical addition reaction can be evolved into two different polymerization mechanisms, i.e.; chain- and step-growth polymerizations, while both the polymerizations are based on the same metal-catalyzed radical formation reaction. The former is a widely employed metal-catalyzed living radical polymerization or atom transfer radical polymerization of common vinyl monomers, and the latter is a novel metal-catalyzed radical polyaddition of designed monomer with an unconjugated C=C double bond and a reactive C-Cl bond in one molecule. The simultaneous ruthenium-catalyzed living radical polymerization of methyl acrylate and radical polyaddition of 3-butenyl 2-chloropropionate was achieved with Ru(Cp*)Cl(PPh{sub 3}){sub 2} to afford the controlled polymers, in which the homopolymer segments with the controlled chain length were connected by the ester linkage.

  10. prepared via atom transfer radical polymerization, reverse atom

    Indian Academy of Sciences (India)

    Synthesis and characterization of poly(2-ethylhexyl acrylate) prepared via atom transfer radical polymerization, reverse atom transfer radical polymerization and ... Zydex Industries, 25-A Gandhi Oil Mill Compound, Gorwa, Vadodara 390 016, India; Rubber Technology Centre, Indian Institute of Technology Kharagpur, ...

  11. Fluoropolymer materials and architectures prepared by controlled radical polymerizations

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Jankova Atanasova, Katja; Hvilsted, Søren

    2007-01-01

    This review initially summarizes the mechanisms, merits and limitations of the three controlled radical polymerizations: nitroxide mediated polymerization (NMP), atom transfer radical polymerization (ATRP) or metal catalyzed living radical polymerization, and reversible addition–fragmentation chain...... transfer (RAFT) polymerization. This is followed by two parts, one dealing with homo- and copolymerizations of fluorinated methacrylates and acrylates, and a second where fluorinated styrenes, alone or in combination with other monomers, are the main issues. In these parts, initiators (including...... properties and functionalities that can be obtained from these novel fluorinated materials and architectures are especially emphasized. Thus, various amphiphilic, biocompatible or low energy materials, fluorinated nanoparticles and nanoporous films/membranes as well as materials for submicron and nanolevel...

  12. Macromolecular Architectures Designed by Living Radical Polymerization with Organic Catalysts

    Directory of Open Access Journals (Sweden)

    Miho Tanishima

    2014-01-01

    Full Text Available Well-defined diblock and triblock copolymers, star polymers, and concentrated polymer brushes on solid surfaces were prepared using living radical polymerization with organic catalysts. Polymerizations of methyl methacrylate, butyl acrylate, and selected functional methacrylates were performed with a monofunctional initiator, a difunctional initiator, a trifunctional initiator, and a surface-immobilized initiator.

  13. Atom transfer radical polymerization of styrene under pulsed microwave irradiation

    International Nuclear Information System (INIS)

    Cheng Zhenping; Zhu Xiulin; Zhou Nianchen; Zhu Jian; Zhang Zhengbiao

    2005-01-01

    A homogeneous solution atom transfer radical polymerization (ATRP) and reverse atom transfer radical polymerization (RATRP) of styrene (St) in N,N-dimethylformamide (DMF) were successfully carried out under pulsed microwave irradiation (PMI), using 1-bromo-1-phenylethane (1-PEBr)/CuCl/N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA) as an initiating system at 85 deg. C and 2,2'-azo-bis-isobutyrontrile (AIBN)/CuCl 2 /PMDETA as an initiating system at 95 deg. C, respectively. The polymerization rates under PMI were greatly increased in comparison with those under identical conventional heating (CH)

  14. INITIATION EFFICIENCY f OF METHYL METHACRYLATE BULK RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    沈家骢; 田元; 王国斌; 杨梅林

    1990-01-01

    The values of the initiation efficiency f at various conversions in the bulk polymerization of MMA initiated by AIBME have first been determined according to a strict unsteady-state formula and based on the data of radical concentration and the termination rate constant determined using ESR method. A model of diffusion control initiation is proposed. The theory is well in agreement with the experiments during the whole process of polymerization.

  15. Experimental study of living free radical polymerization using trifunctional initiator and polymerization mediated by nitroxide

    International Nuclear Information System (INIS)

    Galhardo, Eduardo; Lona, Liliane M.F.

    2009-01-01

    Controlled free radical polymerization or living free radical polymerization has received increasing attention as a technique for the production of polymers with microstructure highly controlled. In particular, narrow molecular weight distributions are obtained with polydispersity very close to one. In this research it was investigate the controlled polymerization mediated by nitroxide, using a cyclic trifunctional peroxide. As long as we know, there are only publications in literature dealing with NMRP using mono- and bi-functional initiators. It was believed that the trifunctional peroxide can increase the rate of polymerization, since more free radicals are generated, if compared with initiators with lower functionality. Furthermore, the fact of the initiator be cyclic means that branches are not generated in the chains, which theoretically prevents an increase in polydispersity of the polymer. The effect of the dissociation constant of the trifunctional initiator in the velocity of the reaction was analyzed. (author)

  16. Monomode microwave-assisted atom transfer radical polymerization

    NARCIS (Netherlands)

    Zhang, H.; Schubert, U.S.

    2004-01-01

    The first monomode microwave-assisted atom transfer radical polymerization (ATRP) is reported. The ATRP of methyl methacrylate was successfully performed with microwave heating, which was well controlled and provided almost the same results as experiments with conventional heating, demonstrating the

  17. Living atom transfer radical polymerization of 4-acetoxystyrene

    DEFF Research Database (Denmark)

    Gao, Bo; Chen, Xianyi; Ivan, Bela

    1997-01-01

    Living atom transfer radical polymerization (ATRP) of 4-acetoxystyrene (1), a protected 4-vinylphenol, leading to poly(4-acetoxystyrene) with well-defined molecular weight and narrow molecular weight distribution was carried out in bulk with a,a'-dibromoxylene(2)/CuBr/2,2-bipyridine(bpy) as initi......Living atom transfer radical polymerization (ATRP) of 4-acetoxystyrene (1), a protected 4-vinylphenol, leading to poly(4-acetoxystyrene) with well-defined molecular weight and narrow molecular weight distribution was carried out in bulk with a,a'-dibromoxylene(2)/CuBr/2,2-bipyridine......(bpy) as initiating system. A linear (M) over bar(n), versus monomer conversion plot was found in good accordance with the theoretical line, indicating 100% initiating efficiency. The polymerization is first order in respect to monomer up to about 70% monomer conversion. Deviations from linearity at higher conversion...

  18. Preparing polymer brushes on polytetrafluoroethylene films by free radical polymerization

    International Nuclear Information System (INIS)

    Sun Wei; Chen Yiwang; Deng Qilan; Chen Lie; Zhou Lang

    2006-01-01

    Films of polytetrafluoroethylene (PTFE) were exposed to sodium naphthalenide (Na/naphtha) etchant so as to defluorinate the surface for obtaining hydroxyl functionality. Surface-initiators were immobilized on the PTFE films by esterification of 4,4'-azobis(4-cyanopentanoic acid) (ACP) and the hydroxyl groups covalently linked to the surface. Grafting of polymer brushes on the PTFE films was carried out by the surface-initiated free radical polymerization. Homopolymers brushes of methyl methacrylate (MMA) were prepared by free radical polymerization from the azo-functionalized PTFE surface. The chemical composition and topography of the graft-functionalized PTFE surfaces were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance (ATR) FT-IR spectroscopy and atomic force microscopy (AFM). Water contact angles on PTFE films were reduced by surface grafting of MMA

  19. SYNTHESIS OF BLOCK COPOLYMER BY INTEGRATED LIVING ANIONIC POLYMERIZATION-ATOM TRANSFER RADICAL POLYMERIZATION (ATRP)

    Institute of Scientific and Technical Information of China (English)

    Bing Liu; Feng Liu; Ning Luo; Sheng-kang Ying; Qing Liu

    2000-01-01

    Alpha-trichloroacetoxy terminated polystyrene oligomer (PS-CH2CH2OCOCCl3) and poly-(styrene-b-butadiene)oligomer [P(S-b-B)-CH2CH2OCOCCl3)] were synthesized by living anionic polymeri-zation using n-butyllithium as initiator.Then the PS-CH2CH2OCOCCl3 (PS-Cl3) or P(S-b-B)-CH2CH2O-COCCl3 (PSB-Cl3) was used as the macroinitiator in the polymerization of (meth)acrylates in the presence of CuX/bpy. AB diblock and ABC triblock copolymers were prepared by the integrated living anionic polymerization (LAP)-atom transfer radical polymerization (ATRP). The structures of the PSB-Cl3 and the P(S-b-MMA) were identified by FTIR and 1H-NMR spectrum, respectively. A new way to design block copolymers (the combination of LAP and ATRP) was developed.

  20. A novel process for ultrasound-induced radical polymerization in CO2-expanded fluids

    NARCIS (Netherlands)

    Kemmere, M.F.; Kuijpers, M.W.A.; Prickaerts, R.M.H.; Keurentjes, J.T.F.

    2005-01-01

    A strong viscosity increase upon polymerization hinders cavitation and subsequent radical formation during an ultrasound-induced bulk polymerization. In this work, ultrasound-induced radical polymerizations of methyl methacrylate (MMA) have been performed in CO2-expanded MMA in order to reduce the

  1. Effect of Inhibitors on Atom Transfer Radical Polymerization of MMA

    Institute of Scientific and Technical Information of China (English)

    张鸿; 徐冬梅; 张可达

    2005-01-01

    Effect of a series of inhibitors as additives on atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with FeCl2/PPh3 as catalyst system was studied, including 2,4,6-trinitrophenol (TNP), 4-methoxyphenol (4-MP), hydroquinone (HQ) and nitrobenzene (NB). It was found that TNP was the only. efficient additive for ATRP among these inhibitors. In the presence of small amounts of TNP, the polymerization proceeded rapidly after induction period to yield the polymers with controlled molecular weights and narrow molecular weight distributions (MWD). The initiating efficiency of the modified catalyst system with TNP was increased. The mechanism was proposed and confirmed by the end group analysis of the polymer.

  2. Functionalization of lanthanum hydroxide nanowires by atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Zhou Mi; Yuan Jinying; Yuan Weizhong; Yin Yingwu; Hong Xiaoyin

    2007-01-01

    Atom transfer radical polymerization (ATRP) has been used to prepare a core-shell hybrid nanostructure successfully: a hard core of single-crystalline lanthanum hydroxide nanowires and a soft shell of polystyrene (PS) brushes. Transmission electron microscopy (TEM) images indicated that the resulting products presented special structures and different thicknesses of polymer layers. The chemical components and grafted PS quantities of the samples were measured by Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). The polymers showed narrow polydispersity, which proved that the lanthanum hydroxide nanowires initiated the 'living'/controlled polymerization of styrene. With the modifiability of lanthanum hydroxide nanowires, the solubility increased, which affords a new way to functionalize nanowires

  3. Studies on atom transfer radical polymerization of acrylates and styrenes with controlled polymeric block structures

    OpenAIRE

    Ibrahim, Khalid

    2006-01-01

    Atom transfer radical polymerization (ATRP) was applied to homo and block copolymerization of vinyl monomers methacrylates, acrylates, and styrene with iron (FeCl2.4H2O) as the transition metal in most cases. As complexing ligand either a commercially available ligand (triphenyl phosphine) (PPh3) or synthetic aliphatic amines were used. As initiators, methyl 2-bromopropionate, ethyl 2-bromoisobutyrate, α,α-dichloroacetophenone, and poly(ethylene oxide) macroinitiator were employed. Block ...

  4. Mechanistic investigations of novel photoinitiators for radical polymerization

    International Nuclear Information System (INIS)

    Griesser, M.

    2012-01-01

    Nowadays, there is a wide variety of photoinitiators (PIs) available for radical polymerizations. A common example are two-component (Type II) systems such as benzophenone and tertiary amines. However these systems also suffer from problems due to bimolecularity. These include the possible back electron transfer (BET) leading to deactivation, as well as the solvent cage effect, occurring in highly viscous media. The aim of this thesis was to investigate the reaction mechanism of several photoinitiating systems, which show superior performance. Moreover, they exhibit additional benefits such as circumvention of oxygen inhibition by decarboxylation. Thereby this work helps to understand the molecular basis of the performance of different PI systems. In vestigated PIs included benzaldoxime esters, covalently linked benzophenone and N-phenylglycine as well as derivatives of both systems. Furthermore a PI based on benzophenone extended by ethynyl moeities is discussed. The main tool in this investigation was photo-CIDNP (chemically induced dynamic nuclear polarization), an NMR based technique for studying radical reactions. A complementary view was obtained with TR-EPR (time-resolved electron paramagnetic resonance), which provides direct information about the active radical species. The results were further compared with quantum mechanical calculations (DFT) of the magnetic properties of the radicals. The theoretical approach was further applied to other paramagnetic species such as donor-acceptor systems. (author) [de

  5. Imidazoline and imidazolidine nitroxides as controlling agents in nitroxide-mediated pseudoliving radical polymerization

    Science.gov (United States)

    Edeleva, M. V.; Marque, S. R. A.; Bagryanskaya, E. G.

    2018-04-01

    Controlled, or pseudoliving, radical polymerization provides unique opportunities for the synthesis of structurally diverse polymers with a narrow molecular-weight distribution. These reactions occur under relatively mild conditions with broad tolerance to functional groups in the monomers. The nitroxide-mediated pseudoliving radical polymerization is of particular interest for the synthesis of polymers for biomedical applications. This review briefly describes one of the mechanisms of controlled radical polymerization. The studies dealing with the use of imidazoline and imidazolidine nitroxides as controlling agents for nitroxide-mediated pseudoliving radical polymerization of various monomers are summarized and analyzed. The publications addressing the key steps of the controlled radical polymerization in the presence of imidazoline and imidazolidine nitroxides and new approaches to nitroxide-mediated polymerization based on protonation of both nitroxides and monomers are considered. The bibliography includes 154 references.

  6. The pentafluorostyrene endeavours with atom transfer radical polymerization - quo vadis?

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2014-01-01

    The versatility of the atom transfer radical polymerization (ATRP) of pentafluorostyrene (FS) is comprehensively evaluated. The ATRP of a wide range of monomers derived from FS is likewise discussed with emphasis on the potential polymer applications. A large number of block and star copolymers...... centred around polypentafluorostyrene (PFS) and prepared primarily using the bromomacroinitiator concept is surveyed. Here the main emphasis is on the feasibility of the polymer design, but also the very many different applications are highlighted. The potential grafting onto PFS and PFS block copolymers...... by exploitation of the very labile para-fluorine demonstrates new material architecture possibilities through very mild reaction conditions. Finally the utility of PFS in various conducting materials is elaborated. The amphiphilic nature of PFS in triblock copolymers with polyethers has been exploited for Li+ ion...

  7. Controlled aqueous polymerization of acrylamides and acrylates and "in situ" depolymerization in the presence of dissolved CO2.

    Science.gov (United States)

    Lloyd, Danielle J; Nikolaou, Vasiliki; Collins, Jennifer; Waldron, Christopher; Anastasaki, Athina; Bassett, Simon P; Howdle, Steven M; Blanazs, Adam; Wilson, Paul; Kempe, Kristian; Haddleton, David M

    2016-05-05

    Aqueous copper-mediated radical polymerization of acrylamides and acrylates in carbonated water resulted in high monomer conversions (t t > 10 min). The regenerated monomer was characterized and repolymerized following deoxygenation of the resulting solutions to reyield polymers in high conversions that exhibit low dispersities.

  8. The Nanoconfined Free Radical Polymerization: Reaction Kinetics and Thermodynamics

    Science.gov (United States)

    Zhao, Haoyu; Simon, Sindee

    The reaction kinetics and thermodynamics of nanoconfined free radical polymerizations are investigated for methyl methacrylate (MMA) and ethyl methacrylate (EMA) monomers using differential scanning calorimetry. Controlled pore glass is used as the confinement medium with pore diameters as small as 7.5 nm; the influence of both hydrophobic (silanized such that trimethylsilyl groups cover the surface) and hydrophilic (native silanol) surfaces is investigated. Propagation rates increase when monomers are reacted in the hydrophilic pores presumably due to the specific interactions between the carbonyl and silanol groups; however, the more flexible EMA monomer shows weaker effects. On the other hand, initial rates of polymerization in hydrophobic pores are unchanged from the bulk. In both pores, the onset of autoacceleration occurs earlier due to the reduced diffusivity of confined chains, which may be compensated at high temperatures. In addition to changes in kinetics, the reaction thermodynamics can be affected under nanoconfinement. Specifically, the ceiling temperature (Tc) is shifted to lower temperatures in nanopores, with pore surface chemistry showing no significant effects; the equilibrium conversion is also reduced at high temperatures below Tc. These observations are attributed to a larger negative change in entropy on propagation for the confined system, with the MMA system again showing greater effects. Funding from ACS PRF is gratefully acknowledged.

  9. Effects of Molecular Iodine and 4-tert-Butylcatechol Radical Inhibitor on the Radical Polymerization of Styrene

    Directory of Open Access Journals (Sweden)

    Mojtaba Bozorg

    2017-05-01

    Full Text Available The presence of molecular iodine was studied in relation the molecular weight and molecular weight distribution of polystyrene, produced by radical poly merization. Radical polymerization of styrene initiated by 2,2׳-azobisisobutyronitrile (AIBN was performed at 70°C in the presence of molecular iodine. The synthesized polymers were characterized by gel permeation chromatography (GPC and proton- nuclear magnetic resonance (1H NMR techniques. The results of these reactions including conversion data, number-average molecular weight and molecular weight distribution were compared with those obtained for styrene radical polymerization initiated by AIBN at the same temperature in the absence of molecular iodine. It was found that the presence of iodine had a profound effect on the molecular weight and its distribution in the produced polystyrene. This was attributed to the ability of iodine to control the polymerization of styrene initiated by AIBN via reverse iodine transfer polymerization (RITP mechanism. The polymer produced by this method had a molecular weight of 10600 g/mol with a molecular weight polydispersity index of 1.3. Due to the importance of induction period in reverse iodine transfer radical polymerization, increasing the temperature to 120°C during the induction period resulted in shorter induction periods and the produced species led to better control of the molecular weight. Also, due to the role of iodine molecules as a radical inhibitor, the presence of a secondary radical inhibitor, i.e. 4-tert-butylcatechol, along with the iodine was investigated in radical polymerization of polystyrene initiated by AIBN. It was observed that the secondary radical inhibitor prevented the consumption of the iodine molecules by the radicals produced from decomposition of the AIBN initiator; therefore, alkyl halides were not produced during the induction period.

  10. Simulating Controlled Radical Polymerizations with mcPolymer—A Monte Carlo Approach

    Directory of Open Access Journals (Sweden)

    Georg Drache

    2012-07-01

    Full Text Available Utilizing model calculations may lead to a better understanding of the complex kinetics of the controlled radical polymerization. We developed a universal simulation tool (mcPolymer, which is based on the widely used Monte Carlo simulation technique. This article focuses on the software architecture of the program, including its data management and optimization approaches. We were able to simulate polymer chains as individual objects, allowing us to gain more detailed microstructural information of the polymeric products. For all given examples of controlled radical polymerization (nitroxide mediated radical polymerization (NMRP homo- and copolymerization, atom transfer radical polymerization (ATRP, reversible addition fragmentation chain transfer polymerization (RAFT, we present detailed performance analyses demonstrating the influence of the system size, concentrations of reactants, and the peculiarities of data. Different possibilities were exemplarily illustrated for finding an adequate balance between precision, memory consumption, and computation time of the simulation. Due to its flexible software architecture, the application of mcPolymer is not limited to the controlled radical polymerization, but can be adjusted in a straightforward manner to further polymerization models.

  11. Monte Carlo simulation of non-linear free radical polymerization using a percolation kinetic gelation model (I): free radical homo polymerization

    International Nuclear Information System (INIS)

    Ghiass, M.; Dabir, B.; Nikazar, M.; Rey, A.D.; Mirzadeh, H.

    2001-01-01

    A kinetic gelation model that incorporates the kinetics of free radical homo polymerization is implemented to determine the effects of kinetics on polymerization statistics and microstructures. The simulation is performed on a simple cubic lattice that has 100 sites in each direction. A new algorithm for random selecting of the next step in a self-avoiding random walk and very efficient mechanisms of mobility of components are introduced to improve the generality of the predictions by removing commonly accruing deficiencies due to early trapping of radicals. A first order kinetics is considered for decomposition of initiator that enables us to consider the effect of temperature on polymerization reaction. Better understanding of microstructural evolution during polymerization and providing a framework to produce a realistic system of highly packed random chains within polymer network are among the benefits of model

  12. Ring-Expansion/Contraction Radical Crossover Reactions of Cyclic Alkoxyamines: A Mechanism for Ring Expansion-Controlled Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Atsushi Narumi

    2018-06-01

    Full Text Available Macrocyclic polymers present an important class of macromolecules, displaying the reduced radius of gyration or impossibility to entangle. A rare approach for their synthesis is the ring expansion-controlled radical “vinyl” polymerization, starting from a cyclic alkoxyamine. We here describe ring-expansion radical crossover reactions of cyclic alkoxyamines which run in parallel to chain-propagation reactions in the polymerization system. The radical crossover reactions extensively occurred at 105–125 °C, eventually producing high molecular weight polymers with multiple inherent dynamic covalent bonds (NOC bonds. A subsequent ring-contraction radical crossover reaction and the second ring-expansion radical crossover reaction are also described. The major products for the respective three stages were shown to possess cyclic morphologies by the molecular weight profiles and the residual ratios for the NOC bonds (φ in %. In particular, the high φ values ranging from ca. 80% to 98% were achieved for this cyclic alkoxyamine system. This result verifies the high availability of this system as a tool demonstrating the ring-expansion “vinyl” polymerization that allows them to produce macrocyclic polymers via a one-step vinyl polymerization.

  13. Modeling of free radical polymerization up to high conversion. II. Development of a mathematical model.

    NARCIS (Netherlands)

    Tefera shibeshe, N.; Tefera, N.; Weickert, G.; Westerterp, K.R.

    1997-01-01

    In free radical polymerization diffusion-controlled processes take place simultaneously to the normal chemical reactions. Despite extensive efforts to model such processes a consistent model for the design of a polymerization reactor has not yet been established. In this article a semiempirical

  14. Atom-transfer radical polymerization of methyl methacrylate (MMA) using CuSCN as the catalyst

    NARCIS (Netherlands)

    Singha, N.K.; Klumperman, B.

    2000-01-01

    The effect of CuSCN as a catalyst in atom-transfer radical polymerization (ATRP) was investigated. CuSCN can successfully be used for the ATRP of MMA. Substituted bipyridines as well as imines can be used to stabilize the copper complex in solution. CuSCN induces faster polymerization compared to

  15. On Surface-Initiated Atom Transfer Radical Polymerization Using Diazonium Chemistry To Introduce the Initiator Layer

    DEFF Research Database (Denmark)

    Iruthayaraj, Joseph; Chernyy, Sergey; Lillethorup, Mie

    2011-01-01

    This work features the controllability of surface-initiated atom transfer radical polymerization (SI-ATRP) of methyl methacrylate, initiated by a multilayered 2-bromoisobutyryl moiety formed via diazonium chemistry. The thickness as a function of polymerization time has been studied by varying di...

  16. Critically evaluated rate coefficients for free-radical polymerization, 5. Propagation rate coefficient for butyl acrylate

    NARCIS (Netherlands)

    Asua, J.M.; Beuermann, S.; Buback, M.; Castignolles, P.; Charleux, B.; Gilbert, R.G.; Hutchinson, R.A.; Leiza, J.R.; Nikitin, A.N.; Vairon, J.P.; Herk, van A.M.

    2004-01-01

    Propagation rate coefficients, kp, for free-radical polymerization of butyl acrylate (BA) previously reported by several groups are critically evaluated. All data were determined by the combination of pulsed-laser polymerization (PLP) and subsequent polymer analysis by size exclusion (SEC)

  17. The effect of reducing monosaccharides on the atom transfer radical polymerization of butyl methacrylate

    NARCIS (Netherlands)

    Vries, de Andrew; Klumperman, B.; Wet-Roos, de D.; Sanderson, R.D.

    2001-01-01

    The effect of various reducing monosaccharides on the rate of atom transfer radical polymerization (ATRP) of butyl methacrylate is reported in this study. The addition of reducing sugars affects the rate of ATRP positively with a 100% increase in the rate of polymerization in some cases. In

  18. Copolymers containing phosphorescent iridium(III) complexes obtained by free and controlled radical polymerization techniques

    NARCIS (Netherlands)

    Ulbricht, C.; Becer, C.R.; Winter, A.; Veldman, D.; Schubert, U.S.

    2008-01-01

    A methacrylate-functionalized phosphorescent Ir(III)-complex has been synthesized, characterized, and applied as a monomer in radical copolymerizations. Together with methyl methacrylate, the complex has been copolymerized under free radical polymerization conditions. Aiming for host-guest-systems,

  19. TERMINATION PROCESS AND THE TERMINATION PARAMETER k_t OF METHYL METHACRYLATE BULK RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    沈家骢; 田元; 王国斌; 杨梅林

    1990-01-01

    In this work the exact k_t data during the whole process of MMA bulk radical polymerization have been determined under unsteady state by using the post effect technique and ESR method. The effect of the micro-environment of radicals on the termination is discussed.

  20. Atom transfer radical polymerization of n-butyl acrylate catalyzed by atom transfer radical polymerization of n-butyl acrylate catalyzed by

    NARCIS (Netherlands)

    Zhang, H.; Linde, van der R.

    2002-01-01

    The homogeneous atom transfer radical polymerization (ATRP) of n-butyl acrylate with CuBr/N-(n-hexyl)-2-pyridylmethanimine as a catalyst and ethyl 2-bromoisobutyrate as an initiator was investigated. The kinetic plots of ln([M]0/[M]) versus the reaction time for the ATRP systems in different

  1. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    International Nuclear Information System (INIS)

    Tang, Mingyi; Xu, Xiaoyang; Wu, Tao; Zhang, Sai; Li, Xianxian; Li, Yi

    2014-01-01

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide

  2. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com [School of Science, Tianjin University, Tianjin 30072 (China); Wu, Tao [School of Science, Tianjin University, Tianjin 30072 (China); Zhang, Sai; Li, Xianxian [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Li, Yi, E-mail: liyi@tju.edu.cn [School of Science, Tianjin University, Tianjin 30072 (China)

    2014-12-15

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.

  3. Synthesis of Amphiphilic Copolymwers by Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie

    2007-01-01

    Fluorerede polymerer besidder en række enestående egenskaber såsom god biokom-patibilitet og lav overfladeenergi såvel som god kemisk og termisk stabilitet. Målsæt-ningen for denne afhandling var at fremstille fluorerede polymerer og copolymerer, der potentielt kunne finde anvendelse som...... egenskaber der genfindes i homopolymerer af den dominerende monomer i copolymeren. Som indikation af de nye materialers mulige vekselvirkning med omgivelserne udførtes omfattende studier af kontaktvinkler. Film fremstillet af de fluorerede copolymerer og polymerer udviste øget hydrofobicitet (vandafvisning...

  4. Twin screw extruders as polymerization reactors for a free radical homo polymerization

    NARCIS (Netherlands)

    Ganzeveld, K.J.; Janssen, L.P.B.M.

    The bulk polymerization of n-butylmethacrylate was investigated in a counter-rotating twin screw extruder. It appeared that the gel effect, occurring with bulk polymerizations, affected the polymerization progress very strongly. Due to this effect the conversion of the reaction is independent of the

  5. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing

    2015-10-27

    Based on Monte Carlo simulation technology, we proposed a hybrid routine which combines reaction mechanism together with coarse-grained molecular simulation to study the kinetics of free radical polymerization. By comparing with previous experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight, and polydispersity etc. are readily calculated from Monte Carlo simulation. The kinetic constants such as polymerization rate k p is determined in the simulation without of “steady-state” hypothesis. We explored the mechanism for the variation of polymerization kinetics those observed in previous studies, as well as polymerization-induced phase separation. Our Monte Carlo simulation scheme is versatile on studying polymerization kinetics in batch and semi-batch processes.

  6. CONCERNING CHAIN GROWTH SPECIFIC REACTION RATE AS A PART OF THE PROCESS OF METHYL METHACRYLATE MASS RADICAL POLYMERIZATION

    Directory of Open Access Journals (Sweden)

    A. A. Sultanova

    2017-02-01

    Full Text Available It is the chain growth specific reaction rate that was determined for the process of methyl methacrylate mass radical polymerization within the temperature range of 40–900 С in quasi-steady approximation by means of Monte Carlo method. The theoretical model of radical polymerization was developed taking the gel effect into account. Computer software was developed that enables to imitate radical polymerization process taking gel effect into account within the minimum run time. The programme was tested on asymptotic examples as well as was applied for methyl methacrylate mass radical polymerization. The programme makes it possible to calculate monomer conversion, molecular mass variation, molecular-mass distribution, etc.

  7. Peptide block copolymers by N-carboxyanhydride ring-opening polymerization and atom transfer radical polymerization: The effect of amide macroinitiators

    NARCIS (Netherlands)

    Habraken, G.J.M.; Koning, C.E.; Heise, A.

    2009-01-01

    The synthesis of polypeptide-containing block copolymers combining N-carboxyanhydride (NCA) ring-opening polymerization and atom transfer radical polymerization (ATRP) was investigated. An amide initiator comprising an amine function for the NCA polymerization and an activated bromide for ATRP was

  8. N-Chlorosuccinimide (NCS): A Novel Initiator for Atom Transfer Radical Polymerization of Methyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    WANG,Xia-Yan; CHANG,Li-Qun; ZHOU,Hong; ZHANG,Ke-Da

    2006-01-01

    Atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) was achieved, using N-chlorosuccinimide (NCS) as an initiator together with catalytic system CuCl/PMDETA (N,N,N',N',N"-pentamethyldiethyl-enetriamine), CuCl/MA5-DETA (N,N,N',N',N"-penta(methylacrylate)diethylenetriamine), and CuCl/bipy (bipy=2,2'-bipyridyl) respectively. The results indicated that the polymerization possessed typical controlled/living radical polymerization characteristics. The analysis for terminal group of obtained polymer by 1H NMR proved that NCS is an initiator for ATRP. In comparison with NBS, the polymerization rate was slower and the resulted polymer had narrower molecular weight distribution (MWD) when NCS was employed as the initiator.

  9. Effect of organoelemental compounds of group 3 elements on radical polymerization of vinyl monomers

    International Nuclear Information System (INIS)

    Grishin, D.F.; Mojkin, A.A.

    1996-01-01

    When alkyl, alkyl alkoxy, and alkyl halide derivatives of boron and aluminium are introduced into the system in amounts that are comparable to the concentration of initiator, they coordinate to the growing macroradicals, thus changing their reactivity, and exert regulating effect on the rate of polymerization of vinyl monomers and the molecular mass of the resulting polymers. The said organoelemental compounds accelerate the polymerization of butyl acrylate, methyl methacrylate, acrylonitrile, vinyl acetate, and vinylidene chloride, reduce the molecular mass of acrylic polymers, and virtually do not affect the polymerization of styrene. The specific features of vinyl polymerization are associated with participation of organoelemental additives at the stages of chain growth and chain termination and can be explained within the framework of the mechanism of radical-coordination polymerization. 32 refs., 3 tabs

  10. A New Initiator Cholesteryl Chloroformate for Cupper-Based Atom Transfer Radical Polymerization of Methyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    曹健; 楚娟; 张可达

    2004-01-01

    The polymerization of metyl methacrylate (MMA) was studied in detail by use of CuCl/L as a catalyst and cholesteryl chloroformate (CC) as an initiator. It was found that the atom transfer radical polymerization of MMA could proceed when L equals to a multidentate aliphatic amine ligand, N,N,N',N",N"-penta(methyl acrylate)diethylenetriamine (MA5-DETA), and no polymerization was occurred while L=2,2'-bipyridine and 1,10-phenanthroline. The linear proportionality of the molecular weights to the conversions and straight lines observed in ln[M]0/[M] versus time plots indicated that the present polymerization system had the typical controlled polymerization characteristics.

  11. SIMULTANEOUS MEASUREMENT OF FREE RADICAL DECAY IN POLYMERIZATION OF MMA INITIATED BY AIBN USING ESR AND ITS KINETIC MODEL

    Institute of Scientific and Technical Information of China (English)

    Ping Xia; Qing-song Hu; Xiao-lan Qian; Xul-in Jiang; De-yue Yan

    2001-01-01

    The kinetics of free radical decay in the polymerization of MMA initiated by AIBN was studied by means of ESR spectroscopy. It was found that the curves of radical decay are strongly associated with the reaction temperature, the initiator concentration and the solvent. In the case of the radical polymerization carried out at high temperature or in solution, the radical concentration first reached a maximum, then declined monotonously with reaction time. It was also found that the greater the amount of initiator or the higher the temperature, the more rapidly the radicals decay. When the bulk polymerization was implemented at a relatively low temperature, the curves of radical decay became more complicated, i.e.,the radical concentration rapidly rose to a maximum, then dropped to a minimum, finally increased again with reaction time.Taking into account the diffusion effect, a semi-empirical equation is suggested to describe the kinetics of propagating radical decay.

  12. Novel fluorinated block copolymer architectures fuelled by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Jankova, Katja; Hvilsted, Søren

    2005-01-01

    Block copolymers based on poly(pentafluorostyrene), PFS, in various numbers and of different lengths, and polystyrene are prepared by atom transfer radical polymerization (ATRP). Di- and triblock copolymers with varying amounts of PFS were synthesized employing either I phenylethylbromide or 1,4-...

  13. Olefin copolymerization via controlled radical polymerization : copolymerization of methyl methacrylate and 1-octene

    NARCIS (Netherlands)

    Venkatesh, R.; Klumperman, B.

    2004-01-01

    The atom transfer radical (co)polymerization (ATRP) of methyl methacrylate (MMA) with 1-octene was investigated. Well controlled homopolymer of MMA was obtained with 2,2,2-trichoroethanol (TCE) and p-toluenesulfonyl chloride (pTsCl), although, uncontrolled copolymerization occurred when pTsCl was

  14. Polymer coating comprising 2-methoxyethyl acrylate units synthesized by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012184029A The present invention relates to preparation of a polymer coating comprising or consisting of polymer chains comprising or consisting of units of 2-methoxyethyl acrylate synthesized by Surface-Initiated Atom Transfer Radical Polymerization (SI ATRP) such as ARGET SI ATRP...

  15. Hydrolysis of 4-Acetoxystyrene Polymers Prepared by Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Chen, Xianyi; Jankova, Katja; Kops, Jørgen

    1999-01-01

    Hydrolysis of 4-acetoxystyrene polymers prepared by atom transfer radical polymerization was carried out under various reaction conditions. It was found that hydrazinolysis of 4-acetoxystyrene homopolymers, random and block copolymers with styrene in 1,4-dioxane, afforded the corresponding narrow...

  16. Surface-initiated Atom Transfer Radical Polymerization - a Technique to Develop Biofunctional Coatings

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Hvilsted, Søren

    2009-01-01

    The initial formation of initiating sites for atom transfer radical polymerization (ATRP) on various polymer surfaces and numerous inorganic and metallic surfaces is elaborated. The subsequent ATRP grafting of a multitude of monomers from such surfaces to generate thin covalently linked polymer...

  17. The LEGO toolbox: Supramolecular building blocks by nitroxide-mediated controlled radical polymerization

    NARCIS (Netherlands)

    Lohmeijer, B.G.G.; Schubert, U.S.

    2005-01-01

    A terpyridine-functionalized alkoxyamine unimolecular initiator was used for the nitroxide-mediated controlled living radical polymerization of n-butylacrylate, N,N-dimethylacrylamide, 4-vinylpyridine, 2-vinylpyridine, and isoprene. For the former three monomers, the kinetics were studied. All

  18. Organic thin film transistors with polymer brush gate dielectrics synthesized by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Pinto, J.C.; Whiting, G.L.; Khodabakhsh, S.

    2008-01-01

    , synthesized by atom transfer radical polymerization (ATRP), were used to fabricate low voltage OFETs with both evaporated pentacene and solution deposited poly(3-hexylthiophene). The semiconductor-dielectric interfaces in these systems were studied with a variety of methods including scanning force microscopy...

  19. Facile graft polystyrene onto multi-walled carbon nanotubes via in situ thermo-induced radical polymerization

    International Nuclear Information System (INIS)

    Liu Peng

    2009-01-01

    A facile procedure was developed for the grafting of polystyrene onto the surfaces of multi-walled carbon nanotubes (MWNTs) via the in situ thermo-induced bulk radical polymerization of styrene at the different polymerizing temperatures, in the presence of MWNTs without any initiator added. The grafting products were validated by the dispersibility, TEM, TGA, FT-IR, and Raman analysis. The TGA results also showed the lower polymerizing temperature was propitious to the free radical addition reactions.

  20. Magnetic Levitation To Characterize the Kinetics of Free-Radical Polymerization.

    Science.gov (United States)

    Ge, Shencheng; Semenov, Sergey N; Nagarkar, Amit A; Milette, Jonathan; Christodouleas, Dionysios C; Yuan, Li; Whitesides, George M

    2017-12-27

    This work describes the development of magnetic levitation (MagLev) to characterize the kinetics of free-radical polymerization of water-insoluble, low-molecular-weight monomers that show a large change in density upon polymerization. Maglev measures density, and certain classes of monomers show a large change in density when monomers covalently join in polymer chains. MagLev characterized both the thermal polymerization of methacrylate-based monomers and the photopolymerization of methyl methacrylate and made it possible to determine the orders of reaction and the Arrhenius activation energy of polymerization. MagLev also made it possible to monitor polymerization in the presence of solids (aramid fibers, and carbon fibers, and glass fibers). MagLev offers a new analytical technique to materials and polymer scientists that complements other methods (even those based on density, such as dilatometry), and will be useful in investigating polymerizations, evaluating inhibition of polymerizations, and studying polymerization in the presence of included solid materials (e.g., for composite materials).

  1. Neural Network Models for Free Radical Polymerization of Methyl Methacrylate

    International Nuclear Information System (INIS)

    Curteanu, S.; Leon, F.; Galea, D.

    2003-01-01

    In this paper, a neural network modeling of the batch bulk methyl methacrylate polymerization is performed. To obtain conversion, number and weight average molecular weights, three neural networks were built. Each was a multilayer perception with one or two hidden layers. The choice of network topology, i.e. the number of hidden layers and the number of neurons in these layers, was based on achieving a compromise between precision and complexity. Thus, it was intended to have an error as small as possible at the end of back-propagation training phases, while using a network with reduced complexity. The performances of the networks were evaluated by comparing network predictions with training data, validation data (which were not uses for training), and with the results of a mechanistic model. The accurate predictions of neural networks for monomer conversion, number average molecular weight and weight average molecular weight proves that this modeling methodology gives a good representation and generalization of the batch bulk methyl methacrylate polymerization. (author)

  2. STUDIES ON RADICAL POLYMERIZATION OF METHYL METHACRYLATE INITIATED WITH ORGANIC PEROXIDE-AMINE SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; SHUI Li; FENG Xinde

    1984-01-01

    Radical polymerization of methyl methacrylate (MMA) initiated with various diacyl peroxideamine systems was studied. Benzoyl peroxide (BPO) and lauroyl peroxide (LPO) were used as diacyl peroxide component, N,N-dimethyl aniline (DMA) and its para substituted derivatives, i.e., N,N-dimethyl-p-toluidine (DMT), p-hydroxymethyl-N,N-dimethyl aniline (HDMA), p-nitro-N,N-dimethyl aniline (NDMA) and p-dimethylamino benzaldehyde (DMAB) were used as amine components. It was found that the peroxide-DMT systems give higher rates of bulk polymerization Rp of MMA than the organic hydroperoxide-DMT systems with the following descending order BPO-DMT>LPO-DMT>CHP (cumene hydroperoxide)-DMT>TBH (tert-butyl hydroperoxide)-DMT.The aromatic tertiary amines possess obvious structural effect on the Rp values in the diacyl peroxideamine system. The overall activation energy of MMA polymerization was determined and the kinetics of polymerization of MMA initiated with BPO-DMT system was investigated.

  3. Advancing Polymer-Supported Ionogel Electrolytes Formed via Radical Polymerization

    Science.gov (United States)

    Visentin, Adam F.

    fabricated. In addition to developing an understanding of UV-polymerized systems, a rapid 10 to 20 second, microwave-assisted polymerization method was developed as a novel means to create ionogels. These ionogels exhibited comparable mechanical response and ionic conductivity levels to those gels fabricated by the UV method. Lastly, an EDLC prototype was fabricated using a UV-polymerized ionogel formed in situ between two high-surface area carbon electrodes. The device performance metrics were comparable to commercial EDLCs, and functioned for several thousand cycles with limited loss in capacitance.

  4. Synthesis of poly(2-ethyl-2-oxazoline)-b-poly(styrene) copolymers via a dual initiator route combining cationic ring-opening polymerization and atom transfer radical polymerization

    NARCIS (Netherlands)

    Becer, C.R.; Paulus, R.M.; ppener, S.; Hoogenboom, R.; Fustin, C.A.; Gohy, J.M.W.; Schubert, U.S.

    2008-01-01

    Block copolymers of 2-ethyl-2-oxazoline (EtOx) and styrene were synthesized by a combination of cationic ring-opening polymerization (CROP) and atom transfer radical polymerization (ATRP). Initially, a detailed kinetic investigation for the ?-bromoisobutyrylbromide (BrEBBr) initiated CROP of EtOx

  5. Proton-Conducting Sulfonated Ionomers by Chemical Modification and Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Nielsen, Mads Møller

    The cornerstone in this dissertation is made up by three individual assessments of the diversity in the macromolecular landscape that can be obtained by applying relatively few efficient chemical tools. The intention is to gain deeper knowledge on the chemical tuning of proton exchange membranes...... of hydrocarbon macromolecular architectures, PSU with postsulfonated polystyrene (PS) grafts are investigated. Here, IEC is controlled through the degree of substitution, the graft length and DS. The grafting is performed with atom transfer radical polymerization (ATRP). The third assessment is dedicated...... of control by ATRP and click chemistry enables a wide selection of polymer structures with the handles: degree of substitution (DS), polymerization and sulfonation, and blending....

  6. In situ AFM investigation of electrochemically induced surface-initiated atom-transfer radical polymerization.

    Science.gov (United States)

    Li, Bin; Yu, Bo; Zhou, Feng

    2013-02-12

    Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Fabrication of Robust and Antifouling Superhydrophobic Surfaces via Surface-Initiated Atom Transfer Radical Polymerization.

    Science.gov (United States)

    Xue, Chao-Hua; Guo, Xiao-Jing; Ma, Jian-Zhong; Jia, Shun-Tian

    2015-04-22

    Superhydrophobic surfaces were fabricated via surface-initiated atom transfer radical polymerization of fluorinated methacrylates on poly(ethylene terephthalate) (PET) fabrics. The hydrophobicity of the PET fabric was systematically tunable by controlling the polymerization time. The obtained superhydrophobic fabrics showed excellent chemical robustness even after exposure to different chemicals, such as acid, base, salt, acetone, and toluene. Importantly, the fabrics maintained superhydrophobicity after 2500 abrasion cycles, 100 laundering cycles, and long time exposure to UV irradiation. Also, the surface of the superhydrophobic fabrics showed excellent antifouling properties.

  8. Simplifying the free-radical polymerization of styrene : microwave-assisted high-temperature auto polymerizations

    NARCIS (Netherlands)

    Erdmenger, T.; Becer, C.R.; Hoogenboom, R.; Schubert, U.S.

    2009-01-01

    We have investigated the combination of the thermally auto-initiated free radical polymn. of styrene and pptn. polymn. in order to develop a fast and environmentally friendly approach to produce polystyrene. To achieve high reaction temps. in a short period of time, microwave irradn. was utilized as

  9. Nitroxide-Mediated Radical Polymerization of Styrene Initiated from the Surface of Titanium Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Abbasian

    2016-01-01

    Full Text Available Titanium dioxide (TiO2 nanoparticles, with an average size of about 45 nm, were encapsulated by polystyrene using in situ nitroxide mediated radical polymerization   in the presence of 3-aminopropyl triethoxy silane (APTES as a coupling agent and 2, 2, 6, 6-tetramethylpiperidinyl-1-oxy  as a initiator. First, the initiator for NMRP was covalently bonded onto the surface of Titanium dioxide nanoparticles through our novel method. For this purpose, the surface of TiO2 nanoparticle was treated with 3-aminopropyl triethoxy silane, a silane coupling agent, and then these functionalized nanoparticles was reacted with ±-chloro phenyl acetyl chloride. The chlorine groups were converted to nitroxide mediated groups by coupling with 1-hydroxy-2, 2, 6, 6-tetramethyl piperidine. These modified TiO2 nanoparticles were then dispersed in styrene (St monomers to carry out the in situ free radical polymerization.

  10. Encapsulation of Gibbsite platelets with free radical and controlled radical emulsion polymerization approaches, a small review

    NARCIS (Netherlands)

    Loiko, O.P.; Spoelstra, A.B.; van Herk, A.M.; Meuldijk, J.; Heuts, J.P.A.

    2016-01-01

    Water-borne anisotropic polymer-Gibbsite latex particles were prepared by a conventional and an atom transfer radical polymerisation (ATRP) based starved-feed emulsion polymerisation without any chemical modification of the platelet surface. Anionic co-oligomers, synthesised via ATRP, were used in

  11. Simultaneous FT-NIR and ESR analysis to study of the kinetics of photo induced polymerization of vinyl radical polymers

    International Nuclear Information System (INIS)

    Le, T.T.; Hill, D.J.T.; Pomery, P.J.

    2000-01-01

    Full text:The rate parameters for free vinyl radical polymerizations are difficult to determine accurately over the whole range of conversion. For systems which polymerize rapidly and for networks, this is a particular problem, because small differences in polymerization conditions, e.g., temperature, initiator concentration, photon flux, etc., can cause a large change in the time evolution of the concentration of carbon double bonds and radicals if these are monitored in separate experiments. The IUPAC Working Party on the Modeling of kinetics and processes of polymerization has the role of recommending the 'best' values for the kinetic parameters, using pulsed-laser polymerization (PLP) in conjunction with molar mass distribution (MMD) to determine k p as a function of temperature (T deg C) for bulk free-radical polymerization of methyl methacrylate at low conversions and ambient temperature. The vinyl radical polymers used in this study were methyl methacrylate and ethylene glycol dimethacrylate. In the past kinetic studies of vinyl photo-polymerization required the time dependence of the monomer and radical concentrations to be monitored separately by using FT-NIR spectroscopy and ESR spectroscopy, respectively. For the systems which polymerize rapidly, small differences in the conditions for two measurements, e.g. temperature and light intensity, can introduce significant errors. Hyphenated experiments involving in-situ ESR and FT-NIR spectroscopies using fibre optic, can overcome these problems. In this paper, the radical and monomer concentrations were measured under the same experimental conditions using the above techniques. The results obtained were used to evaluate the kinetic parameters for free radical vinyl polymerizations

  12. Synthesis of triblock and random copolymers of 4- acetoxystyrene and styrene by living atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Gao, Bo; Chen, Xianyi; Ivan, Bela

    1997-01-01

    Triblock copolymers containing polystyrene (PSt) and poly(4-acetoxystyrene) (PAcOSt) segments have been prepared by atom transfer radical polymerization (ATRP). In the first step one of the two monomers was polymerized in bulk using the initiating system alpha,alpha'-dibromo-p-xylene/CuBr/2,2'-bi...

  13. Controlled radical polymerization of acrylates by {gamma}-irradiation in the presence of 1,1-diphenylethene

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zongtao [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang Zhicheng [Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026 (China)]. E-mail: zczhang@ustc.edu.cn

    2005-12-15

    Poly (butyl acrylate) and poly (methyl acrylate) were successfully prepared in the presence of 1,1-diphenylethene (DPE) by {gamma}-irradiation-induced polymerization in both bulk and solution. The influences of polymerization time, amounts of DPE in system on conversion, molecular weight (MW) and its distribution (M{sub w}/M{sub n}) were studied. The results indicate that the polymerization initiated by {gamma}-irradiation in the presence of DPE shows the character of living radical reaction.

  14. Ability of nitrones of various structures to control the radical polymerization of styrene mediated by in situ formed nitroxides.

    NARCIS (Netherlands)

    Sciannamea, V.; Guerrero-Sanchez, C.A.; Schubert, U.S.; Catala, J.-M.; Jerome, R.; Detrembleur, C.

    2005-01-01

    The ability of several nitrones to control the radical polymerization of styrene at 110 °C has been investigated by high-throughput experimentation. The nitrone/free radical initiator pair dictates the structure of the nitroxide and the alkoxyamine formed in situ, which determines the position of

  15. Antifouling coatings via plasma polymerization and atom transfer radical polymerization on thin film composite membranes for reverse osmosis

    Science.gov (United States)

    Hirsch, Ulrike; Ruehl, Marco; Teuscher, Nico; Heilmann, Andreas

    2018-04-01

    A major drawback to otherwise highly efficient membrane-based desalination techniques like reverse osmosis (RO) is the susceptibility of the membranes to biofouling. In this work, a combination of plasma activation, plasma bromination and surface-initiated atom transfer radical polymerization (si-ATRP) of hydrophilic and zwitterionic monomers, namely hydroxyethyl methacrylate (HEMA), 2-methacryloyloxyethyl phosphorylcholine (MPC) and [2-(methacryloyloxy)ethyl]-dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), was applied to generate non-specific, anti-adhesive coatings on thin film composite (TFC) membranes. The antifouling effect of the coatings was shown by short-time batch as well as long-time steady state cultivation experiments with the microorganism Pseudomonas fluorescens. It could be shown that plasma functionalization and polymerization is possible on delicate thin film composite membranes without restricting their filtration performance. All modified membranes showed an increased resistance towards the adhesion of Pseudomonas fluorescens. On average, the biofilm coverage was reduced by 51.4-12.6% (for HEMA, SBMA, and MPC), the highest reduction was monitored for MPC with a biofilm reduction by 85.4%. The hydrophilic coatings applied did not only suppress the adhesion of Pseudomonas fluorescens, but also significantly increase the permeate flux of the membranes relative to uncoated membranes. The stability of the coatings was however not ideal and will have to be improved for future commercial use.

  16. Constructing Functional Ionic Membrane Surface by Electrochemically Mediated Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Fen Ran

    2016-01-01

    Full Text Available The sodium polyacrylate (PAANa contained polyethersulfone membrane that was fabricated by preparation of PES-NH2 via nonsolvent phase separation method, the introduction of bromine groups as active sites by grafting α-Bromoisobutyryl bromide, and surface-initiated electrochemically atom transfer radical polymerization (SI-eATRP of sodium acrylate (AANa on the surface of PES membrane. The polymerization could be controlled by reaction condition, such as monomer concentration, electric potential, polymerization time, and modifier concentration. The membrane surface was uniform when the monomer concentration was 0.9 mol/L, the electric potential was −0.12 V, the polymerization time was 8 h, and the modifier concentration was 2 wt.%. The membrane showed excellent hydrophilicity and blood compatibility. The water contact angle decreased from 84° to 68° and activated partial thromboplastin increased from 51 s to 84 s after modification of the membranes.

  17. Radical polymerization by a supramolecular catalyst: cyclodextrin with a RAFT reagent

    Directory of Open Access Journals (Sweden)

    Kohei Koyanagi

    2016-11-01

    Full Text Available Supramolecular catalysts have received a great deal of attention because they improve the selectivity and efficiency of reactions. Catalysts with host molecules exhibit specific reaction properties and recognize substrates via host–guest interactions. Here, we examined radical polymerization reactions with a chain transfer agent (CTA that has α-cyclodextrin (α-CD as a host molecule (α-CD-CTA. Prior to the polymerization of N,N-dimethylacrylamide (DMA, we investigated the complex formation of α-CD with DMA. Single X-ray analysis demonstrated that α-CD includes DMA inside its cavity. When DMA was polymerized in the presence of α-CD-CTA using 2,2'-azobis[2-(2-imidazolin-2-ylpropane dihydrochloride (VA-044 as an initiator in an aqueous solution, poly(DMA was obtained in good yield and with narrow molecular weight distribution. In contrast, the polymerization of DMA without α-CD-CTA produced more widely distributed polymers. In the presence of 1,6-hexanediol (C6 diol which works as a competitive molecule by being included in the α-CD cavity, the reaction yield was lower than that without C6 diol.

  18. Controlled radical polymerization of an acrylamide containing L-alanine moiety via ATRP.

    Science.gov (United States)

    Rafiee, Zahra

    2016-02-01

    Homopolymerization of an optically active acrylamide having an amino acid moiety in the side chain, N-acryloyl-L-alanine (AAla) was carried out via atom transfer radical polymerization (ATRP) at room temperature using 2-hydroxyethyl-2'-methyl-2'-bromopropionate (HMB) or sodium-4-(bromomethyl)benzoate (SBB) as initiator in pure water, methanol/water mixture and pure methanol solvents. The polymerization reaction resulted in the optically active biocompatible amino acid-based homopolymer in good yield with narrow molecular weight distribution. The number average molecular weight increased with conversion and polydispersity was low. The structure and molecular weight of synthesized polymer were characterized by (1)H NMR, FT-IR spectroscopic techniques and size-exclusion chromatography.

  19. Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization

    Science.gov (United States)

    Kermagoret, Anthony; Debuigne, Antoine; Jérôme, Christine; Detrembleur, Christophe

    2014-03-01

    The copolymerization of ethylene with polar monomers is a major challenge when it comes to the manufacture of materials with potential for a wide range of commercial applications. In the chemical industry, free-radical polymerization is used to make a large proportion of such copolymers, but the forcing conditions result in a lack of fine control over the architecture of the products. Herein we introduce a synthetic tool, effective under mild experimental conditions, for the precision design of unprecedented ethylene- and polar-monomer-based copolymers. We demonstrate how an organocobalt species can control the growth of the copolymer chains, their composition and the monomer distribution throughout the chain. By fine tuning the ethylene pressure during polymerization and by exploiting a unique reactive mode of the end of the organometallic chain, novel block-like copolymer structures can be prepared. This highly versatile synthetic platform provides access to a diverse range of polymer materials.

  20. Hydrophilization of poly(ether ether ketone) films by surface-initiated atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Hvilsted, Søren

    2010-01-01

    Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP) has been exploited to hydrophilize PEEK. The ketone groups on the PEEK surface were reduced to hydroxyl groups which were converted to bromoisobutyrate initiating sites for SI-ATRP. The modification steps were followed by contact...... angle measurements and XPS. Moreover, ATR FTIR has been used to confirm the formation of initiating groups. Grafting of PEGMA from PEEK was performed in aqueous solution. The presence of the PPEGMA grafts on PEEK was revealed by the thermograms from TGA whereas investigations with AFM rejected changes...

  1. Kinetics of Free Radical Polymerization of N-Substituted Amides and Their Structural Implications

    Directory of Open Access Journals (Sweden)

    Anca Aldea

    2016-01-01

    Full Text Available Two N-substituted amides (N-acryloyl morpholine and N-methyl-N-vinylacetamide were polymerized in different solvents using radical initiator. The tacticity of obtained polymers was determined by 400 MHz 1H-NMR and 13C-NMR. At a given temperature, the syndiotacticity increased with increasing the solvent polarity. This solvent effect may be related to the hydrogen bonding interaction among solvent, monomer, and/or growing species. A peculiar aspect regards the steric hindrance at the nitrogen atom.

  2. Modification of Jute Fibers with Polystyrene via Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Plackett, David; Jankova, Katja Atanassova; Egsgaard, Helge

    2005-01-01

    Atom transfer radical polymerization (ATRP) was investigated as a method of covalently bonding polystyrene to jute (Corchorus capsularis) and as a possible approach to fiber composites with enhanced properties. Jute fibers were modified with a brominated initiator and subsequently ATRP modified...... to attach polystyrene and then examined using SEM, DSC, TGA, FTIR, XPS, elemental analysis, and Py-GC-MS. These techniques confirmed that polystyrene had been covalently bound to the fibers and consequently ATRP-modified jute fiber mats were used to prepare hot-pressed polystyrene composites. Composite...

  3. Study on the role of active radicals on plasma sterilization inside small diameter flexible polymeric tubes

    Science.gov (United States)

    Mstsuura, Hiroto; Fujiyama, Takatomo; Okuno, Yasuki; Furuta, Masakazu; Okuda, Shuichi; Takemura, Yuichiro

    2015-09-01

    Recently, atmospheric pressure discharge plasma has gathered attention in various fields. Among them, plasma sterilization with many types of plasma source has studied for decades and its mechanism is still an open question. If active radicals produced in plasma has main contribution of killing bacterias, direct contact of the so-called plasma flame might not be necessary. To confirm this, sterilization inside small diameter flexible polymeric tubes is studied in present work. DBD type plasma jet is produce by flowing helium gas in a glass tube. A long polymeric tube is connected and plasma jet is introduced into it. Plasma flame length depends on helium gas flow rate, but limited to about 10 cm in our experimental condition. E.colis set at the exit plasma source is easily killed during 10 min irradiation. At the tube end (about 20 cm away from plasma source exit), sterilization is possible with 30 min operation. This result shows that active radical is produced with helium plasma and mist contained in sample, and it can be transferred more than 20 cm during it life time. More plasma diagnostic data will also be shown at the conference. This work was partially supported by the ''ZE Research Program, IAE(ZE27B-4).

  4. Functionalized polymer film surfaces via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Hu, Y.; Li, J.S.; Yang, W.T.; Xu, F.J.

    2013-01-01

    The ability to manipulate and control the surface properties of polymer films, without altering the substrate properties, is crucial to their wide-spread applications. In this work, a simple one-step method for the direct immobilization of benzyl chloride groups (as the effective atom transfer radical polymerization (ATRP) initiators) on the polymer films was developed via benzophenone-induced coupling of 4-vinylbenzyl chloride (VBC). Polyethylene (PE) and nylon films were selected as examples of polymer films to illustrate the functionalization of film surfaces via surface-initiated ATRP. Functional polymer brushes of (2-dimethylamino)ethyl methacrylate, sodium 4-styrenesulfonate, 2-hydroxyethyl methacrylate and glycidyl methacrylate, as well as their block copolymer brushes, have been prepared via surface-initiated ATRP from the VBC-coupled PE or nylon film surfaces. With the development of a simple approach to the covalent immobilization of ATRP initiators on polymer film surfaces and the inherent versatility of surface-initiated ATRP, the surface functionality of polymer films can be precisely tailored. - Highlights: ► Atom transfer radical polymerization initiators were simply immobilized. ► Different functional polymer brushes were readily prepared. ► Their block copolymer brushes were also readily prepared

  5. Synthesis of Well-defined Amphiphilic Block Copolymers by Organotellurium-Mediated Living Radical Polymerization (TERP).

    Science.gov (United States)

    Kumar, Santosh; Changez, Mohammad; Murthy, C N; Yamago, Shigeru; Lee, Jae-Suk

    2011-10-04

    Low-molecular weight amphiphilic diblock copolymers, polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP), and (P2VP-b-PS) with different block ratios were synthesized for the first time via organotellurium-mediated living radical polymerization (TERP). For both the homo- and block copolymerizations, good agreement between the theoretical, and experimental molecular weights was found with nearly 100% yield in every case. The molecular weight distribution for all the samples ranged between 1.10 and 1.24, which is well below the theoretical lower limit of 1.50 for a conventional free radical polymerization. Furthermore, a very simple approach to producing highly dense arrays of titania nanoparticles (TiO2 ) is presented using a site-selective reaction of titanium tetraisopropoxide within the P2VP domains of micellar film of P2VP-b-PS in toluene through the sol-gel method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Application of living radical polymerization to the synthesis of resist polymers for radiation lithography

    International Nuclear Information System (INIS)

    Shimizu, Takashi; Ichikawa, Tsuneki

    2005-01-01

    Poly(styrene) and poly(methyl acrylate) with benzyl ester of carboxylic acid at the center of the polymer skeletons were synthesized by living radical polymerization for developing a new type of radiation resist with high resistivity to plasma etching and high sensitivity and spatial resolution to ionizing radiations. The initiators were benzyl esters with two functional groups for living radical polymerization on the benzyl and the carboxylic sides. Introduction of benzyl ester to the polymer skeletons changed the polymers from cross-link type to scission type upon γ-irradiation. Irradiation of the polymers resulted in the binary change of the molecular weight, due to dissociative capture of secondary electrons by the benzyl ester, as M n R 1 COOCH(C 6 H 5 )R 2 M n +e - ->M n R 1 COO - + · CH(C 6 H 5 )R 2 M n . The generated polymer fragments were not decomposed by further irradiation, which suggests that the synthesized polymers have high resistivity to plasma etching

  7. Application of living radical polymerization to the synthesis of resist polymers for radiation lithography

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takashi [Nitto Denko Co. LTD., Shimohozumi 1-1-2, Ibaraki, Osaka 567-8680 (Japan); Ichikawa, Tsuneki [Division of Materials Chemistry, Graduate school of Engineering, Hokkaido University, Sapporo 060-8628 (Japan)]. E-mail: ichikawa@eng.hokudai.ac.jp

    2005-07-01

    Poly(styrene) and poly(methyl acrylate) with benzyl ester of carboxylic acid at the center of the polymer skeletons were synthesized by living radical polymerization for developing a new type of radiation resist with high resistivity to plasma etching and high sensitivity and spatial resolution to ionizing radiations. The initiators were benzyl esters with two functional groups for living radical polymerization on the benzyl and the carboxylic sides. Introduction of benzyl ester to the polymer skeletons changed the polymers from cross-link type to scission type upon {gamma}-irradiation. Irradiation of the polymers resulted in the binary change of the molecular weight, due to dissociative capture of secondary electrons by the benzyl ester, as M{sub n}R{sub 1}COOCH(C{sub 6}H{sub 5})R{sub 2}M{sub n}+e{sup -}->M{sub n}R{sub 1}COO{sup -}+{sup {center_dot}}CH(C{sub 6}H{sub 5})R{sub 2}M{sub n}. The generated polymer fragments were not decomposed by further irradiation, which suggests that the synthesized polymers have high resistivity to plasma etching.

  8. Poly(n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Frimpong, Reynolds A; Hilt, J Zach [Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506 (United States)], E-mail: hilt@engr.uky.edu

    2008-04-30

    Core magnetite (Fe{sub 3}O{sub 4}) nanoparticles have been functionalized with a model intelligent hydrogel system based on the temperature responsive polymer poly(n-isopropyl acrylamide) (PNIPAAm) to obtain magnetically responsive core-shell nanocomposites. Fe{sub 3}O{sub 4} nanoparticles were obtained from a one-pot co-precipitation method which provided either oleic acid (hydrophobic) or citric acid (hydrophilic) coated nanoparticles. Subsequent ligand exchange of these coatings with various bromine alkyl halides and a bromo silane provided initiating sites for functionalization with NIPAAm using atom transfer radical polymerization (ATRP). The bromine alkyl halides that were used were 2-bromo-2-methyl propionic acid (BMPA) and 2-bromopropionyl bromide (BPB). The bromo silane that was used was 3-bromopropyl trimethoxysilane (BPTS). The intelligent polymeric shell consists of NIPAAm crosslinked with poly(ethylene glycol) 400 dimethacrylate (PEG400DMA). Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used to confirm the presence of the polymeric shell. Dynamic light scattering (DLS) was used to characterize the nanocomposites for particle size changes with temperature. Their magnetic and temperature responsiveness show great promise for further biomedical applications. This platform for functionalizing magnetic nanoparticles with intelligent hydrogels promises to impact a wide range of medical and biological applications of magnetic nanoparticles.

  9. Poly(n-isopropylacrylamide)-based hydrogel coatings on magnetite nanoparticles via atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Frimpong, Reynolds A; Hilt, J Zach

    2008-01-01

    Core magnetite (Fe 3 O 4 ) nanoparticles have been functionalized with a model intelligent hydrogel system based on the temperature responsive polymer poly(n-isopropyl acrylamide) (PNIPAAm) to obtain magnetically responsive core-shell nanocomposites. Fe 3 O 4 nanoparticles were obtained from a one-pot co-precipitation method which provided either oleic acid (hydrophobic) or citric acid (hydrophilic) coated nanoparticles. Subsequent ligand exchange of these coatings with various bromine alkyl halides and a bromo silane provided initiating sites for functionalization with NIPAAm using atom transfer radical polymerization (ATRP). The bromine alkyl halides that were used were 2-bromo-2-methyl propionic acid (BMPA) and 2-bromopropionyl bromide (BPB). The bromo silane that was used was 3-bromopropyl trimethoxysilane (BPTS). The intelligent polymeric shell consists of NIPAAm crosslinked with poly(ethylene glycol) 400 dimethacrylate (PEG400DMA). Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) were used to confirm the presence of the polymeric shell. Dynamic light scattering (DLS) was used to characterize the nanocomposites for particle size changes with temperature. Their magnetic and temperature responsiveness show great promise for further biomedical applications. This platform for functionalizing magnetic nanoparticles with intelligent hydrogels promises to impact a wide range of medical and biological applications of magnetic nanoparticles

  10. THE EFFECTS OF N-2-HYDROXYETHYL-N-METHYL-P-TOLUIDINE ON METHYL METHACRYLATE RADICAL POLYMERIZATION AND ACRYLONITRILE PHOTOINDUCED POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Zhanghua; FENG Xinde

    1992-01-01

    The effects of N-2-hydroxyethyl-N-methyl-p-toluidine (HMT) on MMA polymerization using organic peroxide as an initiator and on AN photoinduced polymerization have been investigated respectively. The kinetics of polymerization and the overall activation energy of polymerization were determined. Based on kinetics study and the end group analysis of the polymer obtained by UV spectrum method, the initiation mechanism is proposed.

  11. Neutral hydrophilic coatings for capillary electrophoresis prepared by controlled radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Fabián H.; Gómez, Jorge E.; Espinal, José H.; Sandoval, Junior E., E-mail: junior.sandoval@correounivalle.edu.co

    2016-12-15

    In the present study, porous silica particles as well as impervious fused-silica wafers and capillary tubes were modified with hydrophilic polymers (hydroxylated polyacrylamides and polyacrylates), using a surface-confined grafting procedure based on atom transfer radical polymerization (ATRP) which was also surface-initiated from α-bromoisobutyryl groups. Initiator immobilization was achieved by hydrosilylation of allyl alcohol on hydride silica followed by esterification of the resulting propanol-bonded surface with α-bromoisobutyryl bromide. Elemental analysis, IR and NMR spectroscopies on silica micro-particles, atomic force microscopy, ellipsometry and profilometry on fused-silica wafers, as well as CE on fused-silica tubes were used to characterize the chemically modified silica substrate at different stages. We studied the effect of monomer concentration as well as cross-linker on the ability of the polymer film to reduce electroosmosis and to prevent protein adsorption (i. e., its non-fouling capabilities) and found that the former was rather insensitive to both parameters. Surface deactivation towards adsorption was somewhat more susceptible to monomer concentration and appeared also to be favored by a low concentration of the cross-linker. The results show that hydrophilic polyacrylamide and polyacrylate coatings of controlled thickness can be prepared by ATRP under very mild polymerization conditions (aqueous solvent, room temperature and short reaction times) and that the coated capillary tubes exhibit high efficiencies for protein separations (0.3–0.6 million theoretical plates per meter) as well as long-term hydrolytic stability under the inherently harsh conditions of capillary isoelectric focusing. Additionally, there was no adsorption of lysozyme on the coated surface as indicated by a complete recovery of the basic enzyme. Furthermore, since polymerization is confined to the inner capillary surface, simple precautions (e.g., solution

  12. Reversible-Deactivation Radical Polymerization of Methyl Methacrylate Induced by Photochemical Reduction of Various Copper Catalysts

    Directory of Open Access Journals (Sweden)

    Jaroslav Mosnáček

    2014-11-01

    Full Text Available Photochemically mediated reversible-deactivation radical polymerization of methyl methacrylate was successfully performed using 50–400 ppm of various copper compounds such as CuSO4·5H2O, copper acetate, copper triflate and copper acetylacetonate as catalysts. The copper catalysts were reduced in situ by irradiation at wavelengths of 366–546 nm, without using any additional reducing agent. Bromopropionitrile was used as an initiator. The effects of various solvents and the concentration and structure of ligands were investigated. Well-defined polymers were obtained when at least 100 or 200 ppm of any catalyst complexed with excess tris(2-pyridylmethylamine as a ligand was used in dimethyl sulfoxide as a solvent.

  13. Preparation of poly(methyl methacrylate) grafted titanate nanotubes by in situ atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Gao Yuan; Zhou Yongfeng; Yan Deyue; Gao Xueping

    2008-01-01

    This paper reports the successful preparation of core-shell hybrid nanocomposites by a 'grafting from' approach based on in situ atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) from titanate nanotubes (TNTs). Transmission electron microscope (TEM) images of the products provide direct evidence for the formation of a core-shell structure, possessing a hard core of TNTs and a soft shell of poly-MMA (PMMA). Fourier-transform infrared spectroscopy (FT-IR), hydrogen nuclear magnetic resonance ( 1 H NMR), scanning electron microscopy (SEM), and thermal gravimetric analysis (TGA) were used to determine the chemical structure, morphology, and the grafted PMMA quantities of the resulting products. The grafted PMMA content was well controlled and increased with increasing monomer/initiator ratio. Further copolymerization of hydroxyethyl methacrylate (HEMA) with PMMA-coated TNTs as initiators was realized, illustrating the 'living' characteristics of the ATRP method used in this paper.

  14. PREPARATION AND PROPERTIES OF MMA/1-PROPYLMETHACRYLATE-POSS COPOLYMER WITH ATOM TRANSFER RADICAL POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    He-xin Zhang; Ho-young Lee; Young-jun Shin; Dong-ho Lee; Seok Kyun Noh

    2008-01-01

    The methyl methacrylate(MMA)/1-propylmethacrylate-polyhedral oligomeric silsesquioxane(PM-POSS) copolymers were synthesized via atom transfer radical polymerization with CuBr as catalyst.The unreacted PM-POSS monomer could be removed completely by washing the copolymerization product with n-hexane.The copolymers were characterized with 1H-NMR,X-ray diffraction,difierential scanning calorimetry,thermogravimetric analysis and gel permeatlon chromatography.With increasing PM-POSS feed ratio.the total conversion increased while the glass transition temperatures of copolymer decreased.The thermogravimetric analysis demonstrated that the thermal stability of copolymer improved slightly with PM-POSS addition.The molecular weight of copolymers increased with incorporation of PM-POSS.

  15. Three Arm Star Homo- And Co-Polymers Via Atom Transfer Radical Polymerization

    International Nuclear Information System (INIS)

    Amin, A.; Sobh, R.A.; Ayoub, M.M.H.

    2005-01-01

    Star homo and co-polymers of some vinyl monomers such as methylmethacrylate, butylmethacrylate and styrene (MMA, BMA, St.) were prepared using N, N, N', N' tetramethylethylenediamine ligand/ CuBr catalytic system via atom transfer radical polymerization (ATRP). Three armed benzene based core was successfully used as initiator. Low polydispersities and regular molecular weight values were obtained in most cases especially at low conversions. MMA and BuMA showed comparable behavior where controlled and true ATRP was observed even at the high conversions. However, styrene monomer recorded irregular high polydispersities at high conversions in spite of the relatively low molecular weight values. 1HNMR confirmed the structures of the resulting polymers. Transmission Electron microscope (TEM) proved the nano-structure of the star polymers. The thermal behavior of the MMA star homo and copolymers was studied. The effect of the star shape on the thermal behavior was very clear with respect to the linear ones

  16. Preparation of polystyrene brush film by radical chain-transfer polymerization and micromechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Jing [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Chen Miao [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: miaochen99@yahoo.com; An Yanqing [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate School of Chinese Academy of Sciences, Beijing 100039 (China); Liu Jianxi [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Yan Fengyuan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)], E-mail: fyyan@lzb.ac.cn

    2008-12-30

    A radical chain-transfer polymerization technique has been applied to graft-polymerize brushes of polystyrene (PSt) on single-crystal silicon substrates. 3-Mercapto-propyltrimethoxysilane (MPTMS), as a chain-transfer agent for grafting, was immobilized on the silicon surface by a self-assembling process. The structure and morphology of the graft-functionalized silicon surfaces were characterized by the means of contact-angle measurement, ellipsometric thickness measurement, Fourier transformation infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The nanotribological and micromechanical properties of the as-prepared polymer brush films were investigated by frictional force microscopy (FFM), force-volume analysis and scratch test. The results indicate that the friction properties of the grafted polymer films can be improved significantly by the treatment of toluene, and the chemically bonded polystyrene film exhibits superior scratch resistance behavior compared with the spin-coated polystyrene film. The resultant polystyrene brush film is expected to develop as a potential lubrication coating for microelectromechanical systems (MEMS)

  17. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-12-30

    Highlights: • Surface modification of ND with water soluble and biocompatible polymers. • Functionalized ND through metal free surface initiated ATRP. • The metal free surface initiated ATRP is rather simple and effective. • The ND-poly(MPC) showed high dispersibility and desirable biocompatibility. - Abstract: Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by {sup 1}H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  18. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Highlights: • Surface modification of ND with water soluble and biocompatible polymers. • Functionalized ND through metal free surface initiated ATRP. • The metal free surface initiated ATRP is rather simple and effective. • The ND-poly(MPC) showed high dispersibility and desirable biocompatibility. - Abstract: Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by 1 H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  19. Acrylonitrile-Butadiene Rubber (NBR) Prepared via Living/Controlled Radical Polymerization (RAFT).

    Science.gov (United States)

    Kaiser, Andreas; Brandau, Sven; Klimpel, Michael; Barner-Kowollik, Christopher

    2010-09-15

    In the current work we present results on the controlled/living radical copolymerization of acrylonitrile (AN) and 1,3-butadiene (BD) via reversible addition fragmentation chain transfer (RAFT) polymerization techniques. For the first time, a solution polymerization process for the synthesis of nitrile butadiene rubber (NBR) via the use of dithioacetate and trithiocarbonate RAFT agents is described. It is demonstrated that the number average molar mass, $\\overline M _{\\rm n} $, of the NBR can be varied between a few thousand and 60 000 g · mol(-1) with polydispersities between 1.2 and 2.0 (depending on the monomer to polymer conversion). Excellent agreement between the experimentally observed and the theoretically expected molar masses is found. Detailed information on the structure of the synthesized polymers is obtained by variable analytical techniques such as infrared spectroscopy (IR), nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and electrospray ionization-mass spectrometry (ESI-MS). Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Efficient Functionalization of Polyethylene Fibers for the Uranium Extraction from Seawater through Atom Transfer Radical Polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Neti, Venkata S. [Chemical; Das, Sadananda [Chemical; Brown, Suree [Department; Janke, Christopher J. [Materials; Kuo, Li-Jung [Marine; Gill, Gary A. [Marine; Dai, Sheng [Chemical; Department; Mayes, Richard T. [Chemical

    2017-09-14

    Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g- U/kg of adsorbent) in laboratory screening tests using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. The modest capacity in 21- days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).

  1. Surface modification of nanodiamond through metal free atom transfer radical polymerization

    Science.gov (United States)

    Zeng, Guangjian; Liu, Meiying; Shi, Kexin; Heng, Chunning; Mao, Liucheng; Wan, Qing; Huang, Hongye; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2016-12-01

    Surface modification of nanodiamond (ND) with poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)] has been achieved by using metal free surface initiated atom transfer radical polymerization (SI-ATRP). The ATRP initiator was first immobilized on the surface of ND through direct esterification reaction between hydroxyl group of ND and 2-bromoisobutyryl bromide. The initiator could be employed to obtain ND-poly(MPC) nanocomposites through SI-ATRP using an organic catalyst. The final functional materials were characterized by 1H nuclear magnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and thermo gravimetric analysis in detailed. All of these characterization results demonstrated that ND-poly(MPC) have been successfully obtained via metal free photo-initiated SI-ATRP. The ND-poly(MPC) nanocomposites shown enhanced dispersibility in various solvents as well as excellent biocompatibility. As compared with traditional ATRP, the metal free ATRP is rather simple and effective. More importantly, this preparation method avoided the negative influence of metal catalysts. Therefore, the method described in this work should be a promising strategy for fabrication of polymeric nanocomposites with great potential for different applications especially in biomedical fields.

  2. Recyclable crosslinked polymer networks with full property recovery made via one-step controlled radical polymerization

    Science.gov (United States)

    Jin, Kailong; Li, Lingqiao; Torkelson, John

    Rubber tires illustrate well the issues ranging from economic loss to environmental problems and sustainability issues that arise with spent, covalently crosslinked polymers. A nitroxide-mediated polymerization (NMP) strategy has been developed that allows for one-step synthesis of recyclable crosslinked polymers from monomers or polymers that contain carbon-carbon double bonds amenable to radical polymerization. Resulting materials possess dynamic alkoxyamine crosslinks that undergo reversible decrosslinking as a function of temperature. Using polybutadiene as starting material, and styrene, an appropriate nitroxide molecule and bifunctional initiator for initial crosslinking, a model for tire rubber can be produced by reaction at temperatures comparable to those employed in tire molding. Upon cooling, the crosslinks are made permanent due to the extraordinarily strong temperature dependence of the reverisible nitroxide capping and uncapping reaction. Based on thermomechanical property characterization, when the original crosslinked model rubber is chopped into bits and remolded in the melt state, a well-consolidated material is obtained which exhibits full recovery of properties reflecting crosslink density after multiple recycling steps.

  3. Iron halide mediated atom transfer radical polymerization of methyl methacrylate with N-Alkyl-2-pyridylmethanimine as the ligand

    NARCIS (Netherlands)

    Zhang, H.; Schubert, U.S.

    2004-01-01

    The controlled atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) catalyzed by iron halide/N-(n-hexyl)-2-pyridylmethanimine (NHPMI) is described. The ethyl 2-bromoisobutyrate (EBIB)-initiated ATRP with [MMA]0/[EBIB]0/[iron halide]0/[NHPMI]0 = 150/1/1/2 was better controlled in

  4. Synthesis of defined polyhedral oligosilsesquioxane-containing diblock and triblock methacrylate copolymers by atom transfer radical polymerization

    Czech Academy of Sciences Publication Activity Database

    Janata, Miroslav; Sikora, Antonín; Látalová, Petra; Čadová, Eva; Raus, Vladimír; Matějka, Libor; Vlček, Petr

    2013-01-01

    Roč. 128, č. 6 (2013), s. 4294-4301 ISSN 0021-8995 R&D Projects: GA ČR GAP106/12/0844; GA ČR GAP108/12/1459 Institutional support: RVO:61389013 Keywords : copolymers * nanostructured polymers * radical polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.640, year: 2013

  5. Conditional Monte Carlo sampling to find branching architectures of polymers from radical polymerizations with transfer to polymer and recombination termination

    NARCIS (Netherlands)

    Iedema, P.D.; Wulkow, M.; Hoefsloot, H.C.J.

    2007-01-01

    A model is developed that predicts branching architectures of polymers from radical polymerization with transfer to polymer and termination by disproportionation and recombination, in a continuously stirred tank reactor (CSTR). It is a so-called conditional Monte Carlo (MC) method generating

  6. Ion conducting solid polymer electrolytes based on polypentafluorostyrene-b-polyether-b-polypentafluorostyrene prepared by atom transfer radical polymerization

    DEFF Research Database (Denmark)

    Jankova, Katja; Jannasch, P.; Hvilsted, Søren

    2004-01-01

    Novel triblock copolymers based on central poly( ethylene glycol) ( PEG) or poly( ethylene glycol-co-propylene glycol) (PEGPG) blocks with poly( pentafluorostyrene) (PFS) outer blocks were prepared by Atom Transfer Radical Polymerization (ATRP) with polydispersities on the order of 1.2 - 1...

  7. On the mechanism of activation of copper-catalyzed atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Isse, Abdirisak Ahmed; Bortolamei, Nicola; De Paoli, Patrizia; Gennaro, Armando

    2013-01-01

    The mechanism of activation of atom transfer radical polymerization (ATRP) has been analyzed by investigating the kinetics of dissociative electron transfer (ET) to alkyl halides (RX) in acetonitrile. Using a series of alkyl halides, including both bromides and chlorides, the rate constants of ET (k ET ) to RX by electrogenerated aromatic radical anions (A· − ) acting as outer-sphere donors have been measured and analyzed according to the current theories of dissociative ET. This has shown that the kinetic data fit very well the “sticky” dissociative ET model with the formation of a weak adduct held together by electrostatic interactions. The rate constants of activation, k act , of some alkyl halides, namely chloroacetonitrile, methyl 2-bromopropionate and ethyl chloroacetate, by [Cu I L] + (L = tris(2-dimethylaminoethyl)amine, tris(2-pyridylmethyl)amine, 1,1,4,7,7-pentamethyldiethylenetriamine) have also been measured in the same experimental conditions. Comparisons of the measured k act values with those predicted assuming an outer-sphere ET for the complexes have shown that activation by Cu(I) is 7–10 orders of magnitude faster than required by outer-sphere ET. Therefore, the mechanism of RX activation by Cu(I) complexes used as catalysts in ATRP occurs by an inner-sphere ET or more appropriately by a halogen atom abstraction

  8. Radical polymerization in holographic grating formation in PQ-PMMA photopolymer part II: Consecutive exposure and dark decay

    Science.gov (United States)

    Yu, Dan; Liu, Hongpeng; Geng, Yaohui; Wang, Weibo; Zhao, Yuanyuan

    2014-11-01

    Photochemical radical polymerization in phenathrenequinone doped poly(methyl methacrylate) photopolymer are investigated theoretically and experimentally under consecutive exposure. The detailed photochemical mechanisms are analyzed. Based on the rate equations of photochemical reactions, the diffusion models with nonlocal response are proposed to describe the kinetic process of radical polymerization and the significance of photochemical processes for the grating formation. In experiments, the temporal evolution of diffraction efficiency in grating formation is measured under consecutive exposure and after exposure. The percentages of these radical polymerizations, namely the polymerization of PQ with matrix, the bimolecular combination of MMA molecules, and the disproportionation of MMA molecules, are extracted quantitatively by comparing theory with experiments. It is indicated that the polymerization of PQ with matrix is primary photochemical process which dominated the grating formation under consecutive exposure. In this period, the contribution of chain polymerization of MMA radicals is weak for the grating formation. After reaching the peak values of grating strength, the influence of the free MMA molecules and photoproduct macromolecules on the grating decay is discussed in a long-term period. The diffusion coefficients of MMA and photoproduct are extracted by fitting the curves using double exponential function. MMA’s diffusion contributed to the fast decay process of grating after exposure and photoproduct’s diffusion contributed to the slow and long decay of grating. The results break previous understanding about the diffusion of single photoproduct macromolecules lead to the dark decay of grating. This investigation can provide a significant foundation for improving modulation depth and long-term stability by photochemical mechanism.

  9. Quantitative investigation of free radicals in bio-oil and their potential role in condensed-phase polymerization.

    Science.gov (United States)

    Kim, Kwang Ho; Bai, Xianglan; Cady, Sarah; Gable, Preston; Brown, Robert C

    2015-03-01

    We report on the quantitative analysis of free radicals in bio-oils produced from pyrolysis of cellulose, organosolv lignin, and corn stover by EPR spectroscopy. Also, we investigated their potential role in condensed-phase polymerization. Bio-oils produced from lignin and cellulose show clear evidence of homolytic cleavage reactions during pyrolysis that produce free radicals. The concentration of free radicals in lignin bio-oil was 7.5×10(20)  spin g(-1), which was 375 and 138 times higher than free-radical concentrations in bio-oil from cellulose and corn stover. Pyrolytic lignin had the highest concentration in free radicals, which could be a combination of carbon-centered (benzyl radicals) and oxygen-centered (phenoxy radicals) organic species because they are delocalized in a π system. Free-radical concentrations did not change during accelerated aging tests despite increases in molecular weight of bio-oils, suggesting that free radicals in condensed bio-oils are stable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Visible Light-Induced Metal Free Surface Initiated Atom Transfer Radical Polymerization of Methyl Methacrylate on SBA-15

    Directory of Open Access Journals (Sweden)

    Liang Ma

    2017-02-01

    Full Text Available Surface-initiated atom transfer radical polymerization (SI-ATRP is one of the most versatile techniques to modify the surface properties of materials. Recent developed metal-free SI-ATRP makes such techniques more widely applicable. Herein photo-induced metal-free SI-ATRP of methacrylates, such as methyl methacrylate, N-isopropanyl acrylamide, and N,N-dimethylaminoethyl methacrylate, on the surface of SBA-15 was reported to fabricate organic-inorganic hybrid materials. A SBA-15-based polymeric composite with an adjustable graft ratio was obtained. The structure evolution during the SI-ATRP modification of SBA-15 was monitored and verified by FT-IR, XPS, TGA, BET, and TEM. The obtained polymeric composite showed enhanced adsorption ability for the model compound toluene in aqueous conditions. This procedure provides a low-cost, readily available, and easy modification method to synthesize polymeric composites without the contamination of metal.

  11. Cascade synthesis of chiral block copolymers combining lipase catalyzed ring opening polymerization and atom transfer radical polymerization

    NARCIS (Netherlands)

    Peeters, J.W.; Palmans, A.R.A.; Veld, M.A.J.; Scheijen, F.J.E.; Heise, A.; Meijer, E.W.

    2004-01-01

    The enantioselective polymerization of methyl-substituted -caprolactones using Novozym 435 as the catalyst was investigated. All substituted monomers could be polymerized except 6-methyl--caprolactone (6-MeCL), which failed to propagate after ring opening. Interestingly, an odd-even effect in the

  12. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Qing; Tian, Jianwen; Liu, Meiying; Zeng, Guangjian; Huang, Qiang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wang, Ke; Zhang, Qingsong [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2015-08-15

    Graphical abstract: A novel strategy combination of mussel inspired chemistry and chain transfer free radical polymerization has been developed for surface modification of carbon nanotubes with polymers for the first time. - Highlights: • Surface modification of CNTs via mussel inspired chemistry. • Preparation of aminated polymers through free radical polymerization. • Functionalized CNTs with aminated polymers via Michael addition reaction. • Highly dispersed CNTs in organic and aqueous solution. - Abstract: In this work, a novel strategy for surface modification of carbon nanotubes (CNTs) was developed via combination of mussel inspired chemistry and chain transfer free radical polymerization. First, pristine CNTs were functionalized with polydopamine (PDA), which is formed via self-polymerization of dopamine in alkaline conditions. These PDA functionalized CNTs can be further reacted with amino-terminated polymers (named as PDMC), which was synthesized through chain transfer free radical polymerization using cysteamine hydrochloride as chain transfer agent and methacryloxyethyltrimethyl ammonium chloride as the monomer. PDMC perfectly conjugated with CNT-PDA was ascertained by a series of characterization techniques including transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The dispersibility of obtained CNT nanocomposites (named as CNT-PDA-PDMC) was further examined. Results showed that the dispersibility of CNT-PDA-PDMC in aqueous and organic solutions was obviously enhanced. Apart from PDMC, many other amino-terminated polymers can also be used to functionalization of CNTs via similar strategy. Therefore, the method described in this work should be a general strategy for fabrication various polymer nanocomposites.

  13. Kinetics of Waterborne Alkyd/Acrylic Hybrid Resin Free Radical Polymerization by Two Systems of Redox and Thermal Initiators

    OpenAIRE

    shirin Madadi; ali akbar Yousefi; elham Keshmirizadeh

    2012-01-01

    Kinetics of radical polymerizations of waterborne alkyd/acrylic hybrid resin via batch mini-emulsion technique was studied using redox initiators (TBHP/Fe2+/EDTA/AsAc  and  TBHP/Fe2+/EDTA/SFS) at relatively low temperatures and thermal initiators (BPO, KPS and AIBN) at higher temperatures to seek the most suitable initiator system. At the end of all reactions the unreacted monomer content was reduced using post-polymerization technique; consequently, leading to increased monomer conversion an...

  14. Characterization of silver/polystyrene nanocomposites prepared by in situ bulk radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Vodnik, Vesna V., E-mail: vodves@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Džunuzović, Jasna V., E-mail: jasnav2002@googlemail.com [Institute of Chemistry, Technology and Metallurgy (ICTM)-Center of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Džunuzović, Enis S., E-mail: edzunuzovic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Marinović-Cincović, Milena T., E-mail: milena@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Jeremić, Katarina, E-mail: kjeremic@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Nedeljković, Jovan M., E-mail: jovned@vinca.rs [Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2014-01-01

    Graphical abstract: - Highlights: • Synthesis and characterization of polystyrene nanocomposites based on Ag nanoparticles. • The glass transition temperature decreased in nanocomposites with respect to the pure polymer. • Resistance of the polymer to thermal degradation enhanced with Ag nanoparticles content. - Abstract: Nanocomposites (NCs) with different content of silver nanoparticles (Ag NPs) embeded in polystyrene (PS) matrix were prepared by in situ bulk radical polymerization. The nearly monodisperse Ag NPs protected with oleylamine were synthesized via organic solvo-thermal method and further used as a filler. The as-prepared spherical Ag NPs with diameter of 7.0 ± 1.5 nm were well dispersed in the PS matrix. The structural properties of the resulting Ag/PS NCs were characterized by transmission electron microscope (TEM) and Fourier transform infrared (FTIR) spectroscopy, while optical properties were characterized using optical absorption measurements. The gel permeation chromatography (GPC) measurements showed that the presence of Ag NPs stabilized with oleylamine has no influence on the molecular weight and polydispersity of the PS matrix. The influence of silver content on the thermal properties of Ag/PS NCs was investigated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results indicated that resistance of PS to thermal degradation was improved upon incorporation of Ag NPs. The Ag/PS NCs have lower glass transition temperatures than neat PS because loosely packed oleylamine molecules at the interface caused the increase of free volume and chain segments mobility near the surface of Ag NPs.

  15. Colorful Polyelectrolytes: An Atom Transfer Radical Polymerization Route to Fluorescent Polystyrene Sulfonate.

    Science.gov (United States)

    Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Deville, Kyle; Russo, Paul S; Zhang, Donghui

    2016-03-01

    A labeled green fluorescent polystyrene sulfonate (LNaPSS) has been synthesized using atom transfer radical polymerization of a styrene sulfonate monomer with a fluorescent co-monomer, fluorescein thiocyanate-vinyl aniline. As a result this 100 % sulfonated polymer contains no hydrophobic patches along the chain backbone besides the fluorescent marker itself. The concentration of the fluorescent monomer was kept low to maintain the characteristic properties of the anionic polyelectrolyte, LNaPSS. ATRP conditions facilitated the production of polymers spanning a range of molecular weights from 35,000 to 175,000 in gram-scale batches with polydispersity indices of 1.01-1.24. Molecular weight increased with the monomer to initiator ratio. Gel permeation chromatography results show a unimodal distribution, and the polymer structure was also confirmed by (1)H NMR and FT-IR spectroscopy. Fluorescence spectroscopy confirmed covalent bonding of fluorescein isothiocyanate to the polymer, indicating that the polymer is suitable as a probe in fluorescence microscopy. To demonstrate this ability, the polymer was used to locate structural features in salt crystals formed during drying, as in the evaporation of sea mist. A second application to probe diffusion studies is also demonstrated.

  16. Molecular Mobility of n-Ethylene Glycol Dimethacrylate Glass Formers Upon Free Radical Polymerization

    Science.gov (United States)

    Plaza, Maria Teresa Viciosa

    When a liquid upon cooling avoids crystallization, it enters the supercooled state. If the temperature continues to decrease, the consequent increase of viscosity is reflected in the molecular mobility in such a way that the characteristic relaxation times of cooperative motions become of the same order of the experimentally accessible timescales. Further cooling finally transforms the highly viscous liquid into a glass, in which only local motions are allowed. The monomers n-ethylene glycol dimethacrylate (n-EGDMA) for n =1 to 4, that constitutes the object of this study, easily circumvent crystallization, being good candidates to study the molecular mobility in both supercooled and glassy states. Dielectric Relaxation Spectroscopy (DRS) was the technique chosen to obtain detailed information about their molecular mobility (Chapters 1 and 2). The first part of this work consisted in the dielectric characterization of the relaxation processes present above and below the glass transition temperature (Tg), which shifts to higher values with the molecular weight ( Mw), result confirmed by Differential Scanning Calorimetry (DSC). While the cooperative alpha-process associated to the glass transition, and the secondary beta process, depend on Mw, the other found secondary process, gamma, seems to be independent from this factor (Chapter 3). In the next Chapters different strategies were carried out in order to clarify the mechanisms in the origin of these two secondary relaxations (beta and gamma), and to learn about its respective relation with the main a relaxation. Monitoring the real time isothermal free radical polymerization of TrEGDMA by Temperature Modulated Differential Scanning Calorimetry (TMDSC), carried out at temperatures below the gamma T of the final polymer network, we shown among others two important features: i) the vitrification of the polymer in formation leads to relatively low degrees of conversion, and ii) the unreacted monomer is expelled from

  17. PREPARATION OF BLOCK COPOLYMERS OF POLY(STYRENE) AND POLY(T-BUTYL ACRYLATE) OF VARIOUS MOLECULAR WEIGHTS AND ARCHITECTURES BY ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    Science.gov (United States)

    Block copolymers of polystyrene and poly(t-butyl acrylate) were prepared using atom transfer radical polymerization techniques. These polymers were synthesized with a CuBr/N,N,N,NTernary hybrid polymeric nanocomposites through grafting of polystyrene on graphene oxide-TiO{sub 2} by surface initiated atom transfer radical polymerization (SI-ATRP)

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Arvind; Bansal, Ankushi; Behera, Babita; Jain, Suman L.; Ray, Siddharth S., E-mail: ssray@iip.res.in

    2016-04-01

    A ternary hybrid of graphene oxide-titania-polystyrene (GO-TiO{sub 2}-PS) nanocomposite is developed where polystyrene composition is regulated by controlling growth of polymer chains and nanoarchitectonics is discussed. Graphene Oxide-TiO{sub 2} (GO-TiO{sub 2}) nanocomposite is prepared by in-situ hydrothermal method and the surface is anchored with α-bromoisobutyryl bromide to activate GO-TiO{sub 2} as initiator for polymerization. In-situ grafting of polystyrene through surface initiated atom transfer radical polymerization (SI- ATRP) on this Br-functionalized nano-composite initiator yields GO-TiO{sub 2}-PS ternary hybrid. Varying the monomer amount and keeping the concentration of initiator constant, polystyrene chain growth is regulated with narrow poly-dispersivity to achieve desired composition. This composite is well characterized by various analytical techniques like FTIR, XRD, DSC, SEM, TEM, and TGA. - Highlights: • Nanocomposite of ternary hybrid of GO-TiO{sub 2} with polystyrene. • PS is surface grafted on GO-TiO{sub 2}. • Polymer chain lengths are well regulated by SI-ATRP living polymerization. • Thermal stability of this hybrid is relatively high.

  18. Ternary hybrid polymeric nanocomposites through grafting of polystyrene on graphene oxide-TiO_2 by surface initiated atom transfer radical polymerization (SI-ATRP)

    International Nuclear Information System (INIS)

    Kumar, Arvind; Bansal, Ankushi; Behera, Babita; Jain, Suman L.; Ray, Siddharth S.

    2016-01-01

    A ternary hybrid of graphene oxide-titania-polystyrene (GO-TiO_2-PS) nanocomposite is developed where polystyrene composition is regulated by controlling growth of polymer chains and nanoarchitectonics is discussed. Graphene Oxide-TiO_2 (GO-TiO_2) nanocomposite is prepared by in-situ hydrothermal method and the surface is anchored with α-bromoisobutyryl bromide to activate GO-TiO_2 as initiator for polymerization. In-situ grafting of polystyrene through surface initiated atom transfer radical polymerization (SI- ATRP) on this Br-functionalized nano-composite initiator yields GO-TiO_2-PS ternary hybrid. Varying the monomer amount and keeping the concentration of initiator constant, polystyrene chain growth is regulated with narrow poly-dispersivity to achieve desired composition. This composite is well characterized by various analytical techniques like FTIR, XRD, DSC, SEM, TEM, and TGA. - Highlights: • Nanocomposite of ternary hybrid of GO-TiO_2 with polystyrene. • PS is surface grafted on GO-TiO_2. • Polymer chain lengths are well regulated by SI-ATRP living polymerization. • Thermal stability of this hybrid is relatively high.

  19. Liquid-crystalline polyesters with end nitroxyl radical and their use in living free-radical polymerization

    Czech Academy of Sciences Publication Activity Database

    Razina, A B.; Sedláková, Zdeňka; Bouchal, Karel; Tenkovtsev, A. V.; Ilavský, Michal

    2002-01-01

    Roč. 44, č. 9 (2002), s. 924-930 ISSN 0965-545X R&D Projects: GA AV ČR KSK4050111 Institutional research plan: CEZ:AV0Z4050913 Keywords : liquid crystal * polyesters * nitroxyl radical Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.627, year: 2002

  1. Synthesis of Environmentally Responsive Polymers by Atom Transfer Radical Polymerization: Generation of Reversible Hydrophilic and Hydrophobic Surfaces

    Directory of Open Access Journals (Sweden)

    Vikas Mittal

    2010-05-01

    Full Text Available Environmentally responsive poly(N-isopropylacrylamide brushes were grafted from the surface of polymer particles or flat surfaces in order to generate reversible hydrophilic and hydrophobic surfaces. The use of atom transfer radical polymerization was demonstrated for the grafting of polymer brushes as it allows efficient control on the amount of grafted polymer. The polymer particles were generated with or without surfactant in the emulsion polymerization and their surface could be modified with the atom transfer radical polymerization (ATRP initiator. The uniform functionalization of the surface with ATRP initiator was responsible for the uniform grafting of polymer brushes. The grafted brushes responded reversibly with changes in temperature indicating that the reversible responsive behavior could be translated to the particle surfaces. The particles were observed to adsorb and desorb protein and virus molecules by changing the temperatures below or higher than 32 °C. The initiator functionalized particles could also be adsorbed on the flat surfaces. The adsorption process also required optimization of the heat treatment conditions to form a uniform layer of the particles on the substrate. The grafted polymer brushes also responded to the changes in temperatures similar to the spherical particles studied through water droplets placed on the flat substrates.

  2. Surface-Initiated Atom Transfer Radical Polymerization and Electrografting Technique as a Means For Attaining Tailor-Made Polymer Coatings

    DEFF Research Database (Denmark)

    Chernyy, Sergey

    2012-01-01

    strategies for initiator grafting, physicochemical properties of polymer brushes and basic principles of quartz crystal microbalance technique (QCM) are discussed. In Chapter 2 various ATRP conditions are probed. The effects of solvent polarity, monomer concentration, initiator surface density, ligand nature......Atom transfer radical polymerization initiated from a surface of various substrates (SI-ATRP) has become a progressively popular technique for obtaining thin polymer films with predetermined properties. The present work addresses the main features of SI-ATRP with respect to the controllability...... and temperature on the kinetics of methyl methacrylate polymerization are elucidated. The strategy was based on the observation of dry polymer thickness versus time evolution by means of ellipsometry, profilometry and IR spectroscopy. An alternative approach, constituting Chapter 3, was based on optimization...

  3. Surface PEGylation of mesoporous silica materials via surface-initiated chain transfer free radical polymerization: Characterization and controlled drug release.

    Science.gov (United States)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Huang, Qiang; Huang, Hongye; Wan, Qing; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-12-01

    As a new type of mesoporous silica materials with large pore diameter (pore size between 2 and 50nm) and high specific surface areas, SBA-15 has been widely explored for different applications especially in the biomedical fields. The surface modification of SBA-15 with functional polymers has demonstrated to be an effective way for improving its properties and performance. In this work, we reported the preparation of PEGylated SBA-15 polymer composites through surface-initiated chain transfer free radical polymerization for the first time. The thiol group was first introduced on SBA-15 via co-condensation with γ-mercaptopropyltrimethoxysilane (MPTS), that were utilized to initiate the chain transfer free radical polymerization using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and itaconic acid (IA) as the monomers. The successful modification of SBA-15 with poly(PEGMA-co-IA) copolymers was evidenced by a series of characterization techniques, including 1 H NMR, FT-IR, TGA and XPS. The final SBA-15-SH- poly(PEGMA-co-IA) composites display well water dispersity and high loading capability towards cisplatin (CDDP) owing to the introduction of hydrophilic PEGMA and carboxyl groups. Furthermore, the CDDP could be released from SBA-15-SH-poly(PEGMA-co-IA)-CDDP complexes in a pH dependent behavior, suggesting the potential controlled drug delivery of SBA-15-SH-poly(PEGMA-co-IA). More importantly, the strategy should be also useful for fabrication of many other functional materials for biomedical applications owing to the advantages of SBA-15 and well monomer adoptability of chain transfer free radical polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Activators generated by electron transfer for atom transfer radical polymerization of styrene in the presence of mesoporous silica nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khezri, Khezrollah, E-mail: kh.khezri@ut.ac.ir [School of Chemistry, University College of Science, University of Tehran, PO Box 14155-6455, Tehran (Iran, Islamic Republic of); Roghani-Mamaqani, Hossein [Department of Polymer Engineering, Sahand University of Technology, PO Box 51335-1996, Tabriz (Iran, Islamic Republic of)

    2014-11-15

    Graphical abstract: Effect of mesoporous silica nanoparticles (MCM-41) on the activator generated by electron transfer for atom transfer radical polymerization (AGET ATRP) is investigated. Decrement of conversion and number average molecular weight and also increment of polydispersity index (PDI) values are three main results of addition of MCM-41 nanoparticles. Incorporation of MCM-41 nanoparticles in the polystyrene matrix can clearly increase thermal stability and decrease glass transition temperature of the nanocomposites. - Highlights: • Spherical morphology, hexagonal structure, and high surface area with regular pore diameters of the synthesized MCM-41 nanoparticles are examined. • AGET ATRP of styrene in the presence of MCM-41 nanoparticles is performed. • Effect of MCM-41 nanoparticles addition on the polymerization rate, conversion and molecular weights of the products are discussed. • Improvement in thermal stability of the nanocomposites and decreasing T{sub g} values was also observed by incorporation of MCM-41 nanoparticles. - Abstract: Activator generated by electron transfer for atom transfer radical polymerization was employed to synthesize well-defined mesoporous silica nanoparticles/polystyrene composites. Inherent features of spherical mesoporous silica nanoparticles were evaluated by nitrogen adsorption/desorption isotherm, X-ray diffraction and scanning electron microscopy analysis techniques. Conversion and molecular weight evaluations were carried out using gas and size exclusion chromatography respectively. By the addition of only 3 wt% mesoporous silica nanoparticles, conversion decreases from 81 to 58%. Similarly, number average molecular weight decreases from 17,116 to 12,798 g mol{sup −1}. However, polydispersity index (PDI) values increases from 1.24 to 1.58. A peak around 4.1–4.2 ppm at proton nuclear magnetic resonance spectroscopy results clearly confirms the living nature of the polymerization. Thermogravimetric

  5. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Huihui; Qian, Bin; Zhang, Wei [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); Lan, Minbo, E-mail: minbolan@ecust.edu.cn [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-02-15

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm{sup 2}, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  6. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-01-01

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm"2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  7. Monte Carlo simulation on kinetics of batch and semi-batch free radical polymerization

    KAUST Repository

    Shao, Jing; Tang, Wei; Xia, Ru; Feng, Xiaoshuang; Chen, Peng; Qian, Jiasheng; Song, Changjiang

    2015-01-01

    experimental and simulation studies, we showed the capability of our Monte Carlo scheme on representing polymerization kinetics in batch and semi-batch processes. Various kinetics information, such as instant monomer conversion, molecular weight

  8. Radical-Scavenging Activity of Thiols, Thiobarbituric Acid Derivatives and Phenolic Antioxidants Determined Using the Induction Period Method for Radical Polymerization of Methyl Methacrylate

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2012-04-01

    Full Text Available The radical-scavenging activities of two thiols, eight (thiobarbituric acid derivatives and six chain-breaking phenolic antioxidants were investigated using the induction period method for polymerization of methyl methacrylate (MMA initiated by thermal decomposition of 2,2’-azobisisobutyronitrile (AIBN and monitored by differential scanning calorimetry (DSC. The induction period (IP for the thiols 2-mercaptoethanol (ME and 2-mercapto-1-methylimidazole (MMI was about half that for phenolic antioxidants. Except for the potent inhibitor 5,5-dimethyl-2-thiobarbituric acid (3, the IP for thiobarbituric acid derivatives was about one tenth of that for phenolic antioxidants. The IP for 1,3,5-trimethyl-2-thiobarbituric acid (1 and 5-allyl-1, 3-dimethyl-2-thiobarbituric acid (7 was less than that of the control, possibly due to inhibition by a small amount of atmospheric oxygen in the DSC container. The ratio of the chain inhibition to that of chain propagation (CI/CP for the thiols and thiobarbituric acid compounds except for 1, 3 and 7 was about 10 times greater or greater than that for phenolic compounds. A kinetic chain length (KCL about 10% greater than that of the control was observed for 1, suggesting that 1 had chain transfer reactivity in the polymerization of MMA. The average molecular weight of polymers formed from thiobarbituric acid derivatives is discussed.

  9. In Situ Investigation of Electrochemically Mediated Surface-Initiated Atom Transfer Radical Polymerization by Electrochemical Surface Plasmon Resonance.

    Science.gov (United States)

    Chen, Daqun; Hu, Weihua

    2017-04-18

    Electrochemically mediated atom transfer radical polymerization (eATRP) initiates/controls the controlled/living ATRP chain propagation process by electrochemically generating (regenerating) the activator (lower-oxidation-state metal complex) from deactivator (higher-oxidation-state metal complex). Despite successful demonstrations in both of the homogeneous polymerization and heterogeneous systems (namely, surface-initiated ATRP, SI-ATRP), the eATRP process itself has never been in situ investigated, and important information regarding this process remains unrevealed. In this work, we report the first investigation of the electrochemically mediated SI-ATRP (eSI-ATRP) by rationally combining the electrochemical technique with real-time surface plasmon resonance (SPR). In the experiment, the potential of a SPR gold chip modified by the self-assembled monolayer of the ATRP initiator was controlled to electrochemically reduce the deactivator to activator to initiate the SI-ATRP, and the whole process was simultaneously monitored by SPR with a high time resolution of 0.1 s. It is found that it is feasible to electrochemically trigger/control the SI-ATRP and the polymerization rate is correlated to the potential applied to the gold chip. This work reveals important kinetic information for eSI-ATRP and offers a powerful platform for in situ investigation of such complicated processes.

  10. Kinetics of Waterborne Alkyd/Acrylic Hybrid Resin Free Radical Polymerization by Two Systems of Redox and Thermal Initiators

    Directory of Open Access Journals (Sweden)

    shirin Madadi

    2012-12-01

    Full Text Available Kinetics of radical polymerizations of waterborne alkyd/acrylic hybrid resin via batch mini-emulsion technique was studied using redox initiators (TBHP/Fe2+/EDTA/AsAc  and  TBHP/Fe2+/EDTA/SFS at relatively low temperatures and thermal initiators (BPO, KPS and AIBN at higher temperatures to seek the most suitable initiator system. At the end of all reactions the unreacted monomer content was reduced using post-polymerization technique; consequently, leading to increased monomer conversion and flm formation with improved properties. The kinetics of mini-emulsion polymerization showed that in all redox initiator systems (Fe2+ catalyst + EDTA chelating agent, the radials are produced at relatively low temperature with more effcient control of the reactor temperature. It was found that at 45°C TBHP/Fe2+/EDTA/SFS redox initiator system leads to 98% monomer conversion, a much higher rate than that of systems involved thermal initiators.

  11. Poly(vinyl acetate-Based Block Copolymer/Clay Nanocomposites Prepared by In Situ Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    M.A. Semsarzadeh

    2009-12-01

    Full Text Available Atom transfer radical polymerization of styrene (St and methyl methacrylate (MMA was performed at 90oC in the absence and presence of nanoclay (Cloisite 30B. Trichloromethyl-terminated poly(vinyl acetate telomerand CuCl/ PMDETA were used as a macroinitiator and catalyst system, respectively. The experimental results showed that the atom transfer radical polymerization of St and MMA in the absence or presence of nanoclay proceeds via a controlled/living mode. It was observed that nanoclay significantly enhances the homopolymerization rate of MMA, which was attributed to the activated conjugated C=C bond of MMA monomer via interaction between the carbonyl group of MMA monomer and the hydroxyl moiety (Al-O-H of nanoclay as well as the effect of nanoclay on the dynamic equilibrium between the active (macro radicals and dormant species.Homopolymerization rate of St (a non-coordinative monomer with nanoclay decreased slightly in the presence of nanoclay. This could be explained by insertion of a portion of macroinitiator into the clay galleries, where no sufficient St monomer exists due to the low compatibility or interaction of St monomer with nanoclay to react with the macroinitiator. The results obtained from XRD, TEM and TGA analyses were fully in agreement with the kinetic data. Structure of the poly(vinyl acetate-bpolystyrene nanocomposite was found to be a combination of stacking layers and exfoliated structures while poly(vinyl acetate-b-poly(methyl methacryale nanocomposite had an exfoliated structure. This difference in the structure of nanocomposites was attributed to the different capability of the monomers (styrene and methyl methacrylate to react with the hydroxyl moiety (Al-O-H of nanoclay.

  12. Synthesis of Well-Defined Three-Arm Star-Branched Polystyrene through Arm-First Coupling Approach by Atom Transfer Radical Polymerization

    OpenAIRE

    Shahabuddin, Syed; Hamime Ismail, Fatem; Mohamad, Sharifah; Muhamad Sarih, Norazilawati

    2015-01-01

    Here we describe a simple route to synthesize three-arm star-branched polystyrene. Atom transfer radical polymerization technique has been utilized to yield branched polystyrene involving Williamson coupling strategy. Initially a linear polymeric chain of predetermined molecular weight has been synthesized which is further end-functionalized into a primary alkyl bromide moiety, a prime requisition for Williamson reaction. The end-functionalized polymer is then coupled using 1,1,1-tris(4-hydro...

  13. Highly Branched Polyisobutylene by Radical Polymerization under Li[CB11(CH3)(12)] Catalysis

    Czech Academy of Sciences Publication Activity Database

    Volkis, V.; Shoemaker, R. K.; Michl, Josef

    2012-01-01

    Roč. 45, č. 23 (2012), s. 9250-9257 ISSN 0024-9297 Institutional research plan: CEZ:AV0Z40550506 Keywords : Dodecamethylcarba-closo-dodecaborate(-)Anion * polymerization * LiCB11(CH3)(12) Subject RIV: CC - Organic Chemistry Impact factor: 5.521, year: 2012

  14. Surface-Initiated Graft Atom Transfer Radical Polymerization of Methyl Methacrylate from Chitin Nanofiber Macroinitiator under Dispersion Conditions

    Directory of Open Access Journals (Sweden)

    Ryo Endo

    2015-08-01

    Full Text Available Surface-initiated graft atom transfer radical polymerization (ATRP of methyl methacrylate (MMA from self-assembled chitin nanofibers (CNFs was performed under dispersion conditions. Self-assembled CNFs were initially prepared by regeneration from a chitin ion gel with 1-allyl-3-methylimidazolium bromide using methanol; the product was then converted into the chitin nanofiber macroinitiator by reaction with α-bromoisobutyryl bromide in a dispersion containing N,N-dimethylformamide. Surface-initiated graft ATRP of MMA from the initiating sites on the CNFs was subsequently carried out under dispersion conditions, followed by filtration to obtain the CNF-graft-polyMMA film. Analysis of the product confirmed the occurrence of the graft ATRP on the surface of the CNFs.

  15. Ferroferric oxide/polystyrene (Fe3O4/PS superparamagnetic nanocomposite via facile in situ bulk radical polymerization

    Directory of Open Access Journals (Sweden)

    2010-03-01

    Full Text Available Organo-modified ferroferric oxide superparamagnetic nanoparticles, synthesized by the coprecipitation of superparamagnetic nanoparticles in presence of oleic acid (OA, were incorporated in polystyrene (PS by the facile in situ bulk radical polymerization by using 2,2-azobisisobutyronitrile (AIBN as initiator. The transmission electron microscopy (TEM analysis of the resultant uniform ferroferric oxide/polystyrene superparamagnetic nanocomposite (Fe3O4/PS showed that the superparamagnetic nanoparticles had been dispersed homogeneously in the polymer matrix due to the surface grafted polystyrene, confirmed by Fourier transform infrared (FT-IR spectroscopy and thermogravimetric analysis (TGA. The superparamagnetic property of the Fe3O4/PS nanocomposite was testified by the vibrating sample magnetometer (VSM analysis. The strategy developed is expected to be applied for the large-scale industrial manufacturing of the superparamagnetic polymer nanocomposite.

  16. Crystalline TiO2 grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom-transfer radical polymerization

    International Nuclear Information System (INIS)

    Zhao Yuancong; Tu Qiufen; Wang Jin; Huang Qiongjian; Huang Nan

    2010-01-01

    Crystalline TiO 2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO 2 films by self-assembling, and the HUPA on TiO 2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO 2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.

  17. Crystalline TiO 2 grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom-transfer radical polymerization

    Science.gov (United States)

    Zhao, Yuancong; Tu, Qiufen; Wang, Jin; Huang, Qiongjian; Huang, Nan

    2010-12-01

    Crystalline TiO 2 films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO 2 films by self-assembling, and the HUPA on TiO 2 films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO 2 films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.

  18. A Visible Light Initiating System for Free Radical Promoted Cationic Polymerization

    Science.gov (United States)

    1994-02-02

    identify the end groups in the polymer of cyclohexene oxide. N,N-Dimethylnaphthyl amine (DNA), a compound with high fluorescence quantum yield, was used...candidates to be polymerized via a cationic mechanism include cyclic ethers, cyclic formals and acetals, vinyl ethers, and epoxy compounds . Of these...reported sensitizer, bears two dimethylamino groups, is direct evidence that an aromatic amine can be present in a cationically photopolymerizable system

  19. Pulsed-laser studies on the free-radical polymerization kinetics of styrene in microemulsion

    NARCIS (Netherlands)

    Manders, L.G.; Herk, van A.M.; German, A.L.; Sarnecki, J.; Schomäcker, R.; Schweer, J.

    1993-01-01

    A mean value of 339 L mol-1 s-1 was obtained for the propagation const. derived from pulsed-laser polymn. (PLP) of styrene in aq. AOT microemulsions. For accurate detns., simulations accounting for the esp. high radical concn. after the laser pulse in microemulsions were recommended. PLP with

  20. Preparation of polystyrene-poly(ethylene glycol) diblock copolymer by "living" free radical polymerization

    DEFF Research Database (Denmark)

    Chen, Xianyi; Gao, Bo; Kops, Jørgen

    1998-01-01

    terminated with a TEMPO unit (MPEG-TEMPO), which was further used to prepare the diblock copolymer PS-b-PEG by 'living' free radical polymerisation of styrene. The product was purified and identified by H-1 n.m.r. and GPC. However, large amounts of homopolystyrene was also formed by simultaneous thermal...

  1. Fabrication of ultrahydrophobic poly(lauryl acrylate) brushes on silicon wafer via surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Oztuerk, Esra; Turan, Eylem [Department of Chemistry, Faculty of Art and Science, Gazi University, 06500 Besevler, Ankara (Turkey); Caykara, Tuncer, E-mail: caykara@gazi.edu.tr [Department of Chemistry, Faculty of Art and Science, Gazi University, 06500 Besevler, Ankara (Turkey)

    2010-11-15

    In this report, ultrahydrophobic poly(lauryl acrylate) [poly(LA)] brushes were synthesized by surface-initiated atom transfer radical polymerization (SI-ATRP) of lauryl acrylate (LA) in N,N-dimethylformamide (DMF) at 90 deg. C. The formation of ultrahydrophobic poly(LA) films, whose thickness can be turned by changing polymerization time, is evidenced by using the combination of ellipsometry, X-ray photoelectron spectroscopy (XPS), grazing angle attenuated total reflectance-Fourier transform infrared spectroscopy (GATR-FTIR), atomic force microscopy (AFM), gel permeation chromatography (GPC), and water contact angle measurements. The SI-ATRP can be conducted in a well-controlled manner, as revealed by the linear kinetic plot, linear evolution of number-average molecular weights (M-bar{sub n}) versus monomer conversions, and the relatively narrow PDI (<1.28) of the grafted poly(LA) chains. The calculation of grafting parameters from experimental measurements indicated the synthesis of densely grafted poly(LA) films and allowed us to predict a 'brushlike' conformation for the chains in good solvent. The poly(LA) brushes exhibited high water contact angle of 163.3 {+-} 2.8{sup o}.

  2. 3D scaffolds from vertically aligned carbon nanotubes/poly(methyl methacrylate) composites via atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Tebikachew, Behabtu; Magina, Sandra [CICECO, Department of Chemistry, University of Aveiro (Portugal); Mata, Diogo; Oliveira, Filipe J.; Silva, Rui F. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro (Portugal); Barros-Timmons, Ana, E-mail: anabarros@ua.pt [CICECO, Department of Chemistry, University of Aveiro (Portugal)

    2015-01-15

    Vertically aligned carbon nanotubes (VACNTs) synthesized by Thermal Chemical Vapour Deposition (TCVD) were modified using an Ar:O{sub 2} (97:3) plasma to generate oxygen-containing functional groups on the surface for subsequent modification. X-ray photo-emission spectroscopy (XPS) and micro-Raman analyses confirmed the grafting of those functional groups onto the surface of the nanotubes as well as the removal of amorphous carbon produced and deposited on the VACNT forests during the CVD process. The plasma treated VACNT forests were further modified with 2-bromo-2-methylpropionyl bromide, an atom transfer radical polymerization (ATRP) initiator, to grow poly(methyl methacrylate) (PMMA) chains from the forests via ATRP. Scanning transmission electron microscopy (STEM) of the ensuing VACNT/PMMA composites confirmed the coating of the nanotube forests with the PMMA polymer. 3D scaffolds of polymeric composites with honeycomb like structure were then obtained. Compressive tests have shown that the VACNT/PMMA composite has higher compressive strength than the pristine forest. - Highlights: • Vertically aligned carbon nanotubes (VACNTs) were synthesized and plasma modified. • X-ray photo-emission and Raman spectroscopies confirmed the VACNTs modification. • Poly(methyl methacrylate) chains were grown via ATRP from the VACNTs. • STEM of the VACNT/PMMA composites confirmed that PMMA surrounds the nanotubes. • VACNT/PMMA composite has higher compressive strength compared to the pristine forest.

  3. 3D scaffolds from vertically aligned carbon nanotubes/poly(methyl methacrylate) composites via atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Tebikachew, Behabtu; Magina, Sandra; Mata, Diogo; Oliveira, Filipe J.; Silva, Rui F.; Barros-Timmons, Ana

    2015-01-01

    Vertically aligned carbon nanotubes (VACNTs) synthesized by Thermal Chemical Vapour Deposition (TCVD) were modified using an Ar:O 2 (97:3) plasma to generate oxygen-containing functional groups on the surface for subsequent modification. X-ray photo-emission spectroscopy (XPS) and micro-Raman analyses confirmed the grafting of those functional groups onto the surface of the nanotubes as well as the removal of amorphous carbon produced and deposited on the VACNT forests during the CVD process. The plasma treated VACNT forests were further modified with 2-bromo-2-methylpropionyl bromide, an atom transfer radical polymerization (ATRP) initiator, to grow poly(methyl methacrylate) (PMMA) chains from the forests via ATRP. Scanning transmission electron microscopy (STEM) of the ensuing VACNT/PMMA composites confirmed the coating of the nanotube forests with the PMMA polymer. 3D scaffolds of polymeric composites with honeycomb like structure were then obtained. Compressive tests have shown that the VACNT/PMMA composite has higher compressive strength than the pristine forest. - Highlights: • Vertically aligned carbon nanotubes (VACNTs) were synthesized and plasma modified. • X-ray photo-emission and Raman spectroscopies confirmed the VACNTs modification. • Poly(methyl methacrylate) chains were grown via ATRP from the VACNTs. • STEM of the VACNT/PMMA composites confirmed that PMMA surrounds the nanotubes. • VACNT/PMMA composite has higher compressive strength compared to the pristine forest

  4. Free Radical Addition Polymerization Kinetics without Steady-State Approximations: A Numerical Analysis for the Polymer, Physical, or Advanced Organic Chemistry Course

    Science.gov (United States)

    Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George

    2014-01-01

    A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…

  5. Simple preparation of thiol-ene particles in glycerol and surface functionalization by thiol-ene chemistry (TEC) and surface chain transfer free radical polymerization (SCT-FRP)

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Chiaula, Valeria; Yu, Liyun

    2018-01-01

    functionalization of excess thiol groups via photochemical thiol-ene chemistry (TEC) resulting in a functional monolayer. In addition, surface chain transfer free radical polymerization (SCT-FRP) was used for the first time to introduce a thicker polymer layer on the particle surface. The application potential...

  6. A DFT Study of R-X Bond Dissociation Enthalpies of Relevance to the Initiation Process of Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Gillies, Malcolm Bjørn; Matyjaszewski, Krzysztof; Norrby, Per-Ola

    2003-01-01

    DFT calculations at the B3P86/6-31G** level have been carried out to derive the bond dissociation energies (BDE) and free energies for a number of R-X systems (X ) Cl, Br, I, N3, and S2-CNMe2) that have been or can potentially be used as initiators for atom transfer radical polymerization (ATRP...

  7. Acrylamide-b-N-isopropylacrylamide block copolymers : Synthesis by atomic transfer radical polymerization in water and the effect of the hydrophilic-hydrophobic ratio on the solution properties

    NARCIS (Netherlands)

    Wever, Diego Armando Z.; Ramalho, Graham; Picchioni, Francesco; Broekhuis, Antonius Augustinus

    2014-01-01

    A series of block copolymers of acrylamide and N-isopropylacrylamide (NIPAM) characterized by different ratios between the length of the two blocks have been prepared through atomic transfer radical polymerization in water at room temperature. The solution properties of the block copolymers were

  8. NMR, ESI/MS, and MALDI-TOF/MS analysis of pear juice polymeric proanthocyanidins with potent free radical scavenging activity.

    Science.gov (United States)

    Es-Safi, Nour-Eddine; Guyot, Sylvain; Ducrot, Paul-Henri

    2006-09-20

    The structure of a polymeric proanthocyanidin fraction isolated from pear juice was characterized by NMR, ESI/MS, and MALDI-TOF/MS analyses, and its antioxidant activity was investigated using the DPPH free radical scavenging method. The results obtained from 13C NMR analysis showed the predominance of signals representative of procyanidins. Typical signals in the chemical shift region between 70 and 90 ppm demonstrated the exclusive presence of epicatechin units. The results obtained through negative ESI/MS analysis showed singly and doubly charged ions corresponding to the molecular mass of procyanidins with a degree of polymerization up to 22. The spectra obtained through MALDI-TOF/MS analysis revealed the presence of two series of tannin oligomers. Supporting the observations from NMR spectroscopy, the first series consists of well-resolved tannin identified as procyanidin polymers units with chain lengths of up to 25. A second series of monogalloyl flavan-3-ols polymers with polymerization degree up to 25 were also detected. This is the first mass spectrometric evidence confirming the existence of galloylated procyanidin oligomers in pear fruits. Within each of these oligomers, various signals exist suggesting the presence of several oligomeric tannins. The antioxidant properties of the polymeric fraction were investigated through reduction of the DPPH free radical, and the results obtained showed that the polymeric fraction exhibited a higher antioxidant power compared to those of (+)-catechin and B3 procyanidin dimer.

  9. Stereocontrol during the radical polymerization of methyl methacrylates with combined Lewis acids:Aluminium trichloride(AlCl3) and iron dichloride tetrahydrate

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The radical polymerization of methyl methacrylate(MMA) was carried out in the presence of combined Lewis acids of the AlCl3-FeCl2 system.Compared with the polymerization produced in the presence of single Lewis acids,AlCl3 or FeCl2,the MMA polymerization in the presence of AlCl3-FeCl2 composite in CHCl3 or 1-butanol produced a polymer with a higher isotacticity and in toluene produced a polymer with a much higher isotacticity(mm=50%) .The molecular weight and polydispersity of PMMA in the presence of Lewis acids were similar with those in the absence of Lewis acids,although Lewis acids decelerate the polymerization of MMA.The effects of the Lewis acids were greater in a solvent with a lower polarity.A possible stereocontrol mechanism of the polymerization was proposed.The Lewis acid composite of AlCl3-FeCl2 readily formed a complex with growing species.These complexes possessed apparent bulkiness that changes the direction of monomer addition to the growing radical center.

  10. Synthesis of Well-Defined Three-Arm Star-Branched Polystyrene through Arm-First Coupling Approach by Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Syed Shahabuddin

    2015-01-01

    Full Text Available Here we describe a simple route to synthesize three-arm star-branched polystyrene. Atom transfer radical polymerization technique has been utilized to yield branched polystyrene involving Williamson coupling strategy. Initially a linear polymeric chain of predetermined molecular weight has been synthesized which is further end-functionalized into a primary alkyl bromide moiety, a prime requisition for Williamson reaction. The end-functionalized polymer is then coupled using 1,1,1-tris(4-hydroxyphenylethane, a trifunctional core molecule, to give well-defined triple-arm star-branched polystyrene.

  11. Micropatterned Surfaces for Atmospheric Water Condensation via Controlled Radical Polymerization and Thin Film Dewetting.

    Science.gov (United States)

    Wong, Ian; Teo, Guo Hui; Neto, Chiara; Thickett, Stuart C

    2015-09-30

    Inspired by an example found in nature, the design of patterned surfaces with chemical and topographical contrast for the collection of water from the atmosphere has been of intense interest in recent years. Herein we report the synthesis of such materials via a combination of macromolecular design and polymer thin film dewetting to yield surfaces consisting of raised hydrophilic bumps on a hydrophobic background. RAFT polymerization was used to synthesize poly(2-hydroxypropyl methacrylate) (PHPMA) of targeted molecular weight and low dispersity; spin-coating of PHPMA onto polystyrene films produced stable polymer bilayers under appropriate conditions. Thermal annealing of these bilayers above the glass transition temperature of the PHPMA layer led to complete dewetting of the top layer and the formation of isolated PHPMA domains atop the PS film. Due to the vastly different rates of water nucleation on the two phases, preferential dropwise nucleation of water occurred on the PHPMA domains, as demonstrated by optical microscopy. The simplicity of the preparation method and ability to target polymers of specific molecular weight demonstrate the value of these materials with respect to large-scale water collection devices or other materials science applications where patterning is required.

  12. High-throughput optimization of nitroxide mediated radical polymerizations as basis for the synthesis of temperature-responsive copolymers

    NARCIS (Netherlands)

    Hoogenboom, R.; Becer, C.R.; Eggenhuisen, T.M.; Schubert, U.S.

    2008-01-01

    The development of controlled radical polymn. techniques, namely atom transfer radical polymn. (ATRP), reversible addn. fragmentation transfer (RAFT) and nitroxide mediated radical polymn. (NMP), have opened up unprecedented possibilities for the synthesis of well-defined macromol. architectures

  13. Rational preparation of dibenzothiophene-imprinted polymers by surface imprinting technique combined with atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yang, Wenming; Liu, Lukuan; Zhou, Zhiping; Liu, Hong; Xie, Binze; Xu, Wanzhen

    2013-01-01

    A computational simulation method is introduced to simulate the dibenzothiophene-monomer pre-assembly system of molecular imprinted polymers. The interaction type and intensity between dibenzothiophene and monomer are discussed from the binding energy and spatial position distribution. The simulation and analysis results indicate that the amount of the function monomer is not the more the better in preparing molecular imprinted polymers. Based on the above results, a novel dibenzothiophene-imprinted polymers with the favorable specific adsorption effect was prepared by surface imprinting technique combined with atom transfer radical polymerization. This combined technologies are used for preparing a desulfurization adsorbent for the first time. Various measures were selected to characterize the structure and morphology of the prepared adsorbent. The characterization results show that the adsorbent has suitable features for further adsorption process. A series of static adsorption experiments were conducted to analyze its adsorption performance. The adsorption process follows Elovich model by the kinetic analysis and Sips equation by the isothermal analysis. The approach we described will provide another opportunity in the deep desulfurization field.

  14. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    Science.gov (United States)

    Wang, Jingjing; Wei, Jun

    2016-09-01

    Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  15. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    International Nuclear Information System (INIS)

    Wang, Jingjing; Wei, Jun

    2016-01-01

    Highlights: • Crosslinked hydrogel brushes were grafted from SS surfaces for marine antifouling. • All brush-coated SS surfaces could effectively reduce the adhesion of biofouling. • The antifouling efficacy increased with the crosslinking density of hydrogels. - Abstract: Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  16. Synthesis of thermoresponsive poly(N-isopropylacrylamide) brush on silicon wafer surface via atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Turan, Eylem; Demirci, Serkan [Department of Chemistry, Faculty of Art and Science, Gazi University, 06500 Besevler, Ankara (Turkey); Caykara, Tuncer, E-mail: caykara@gazi.edu.t [Department of Chemistry, Faculty of Art and Science, Gazi University, 06500 Besevler, Ankara (Turkey)

    2010-08-31

    Thermoresponsive poly(N-isopropylacrylamide) [poly(NIPAM)] brush on silicon wafer surface was prepared by combining the self-assembled monolayer of initiator and atom transfer radical polymerization (ATRP). The resulting polymer brush was characterized by in situ reflectance Fourier transform infrared spectroscopy, atomic force microscopy and ellipsometry techniques. Gel permeation chromatography determination of the number-average molecular weight and polydispersity index of the brush detached from the silicon wafer surface suggested that the surface-initiated ATRP method can provide relatively homogeneous polymer brush. Contact angle measurements exhibited a two-stage increase upon heating over the board temperature range 25-45 {sup o}C, which is in contrast to the fact that free poly(NIPAM) homopolymer in aqueous solution exhibits a phase transition at ca. 34 {sup o}C within a narrow temperature range. The first de-wetting transition takes place at 27 {sup o}C, which can be tentatively attributed to the n-cluster induced collapse of the inner region of poly(NIPAM) brush close to the silicon surface; the second de-wetting transition occurs at 38 {sup o}C, which can be attributed to the outer region of poly(NIPAM) brush, possessing much lower chain density compared to that of the inner part.

  17. All solid-state polymer electrolytes prepared from a hyper-branched graft polymer using atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Higa, Mitsuru; Fujino, Yukiko; Koumoto, Taihei; Kitani, Ryousuke; Egashira, Satsuki

    2005-01-01

    We propose an all solid-state (liquid free) polymer electrolyte (SPE) prepared from a hyper-branched graft copolymer. The graft copolymer consisting of a poly(methyl methacrylate) main chain and poly(ethylene glycol) methyl ether methacrylate side chains was synthesized by atom transfer radical polymerization changing the average chain distance between side chains, side chain length and branched chain length of the proposed structure of the graft copolymer. The ionic conductivity of the SPEs increases with increasing the side chain length, branched chain length and/or average distance between the side chains. The ionic conductivity of the SPE prepared from POEM 9 whose POEM content = 51 wt% shows 2 x 10 -5 S/cm at 30 deg. C. The tensile strength of the SPEs decreases with increases the side chain length, branched chain length and/or average distance between the side chains. These results indicate that a SPE prepared from the hyper-branched graft copolymer has potential to be applied to an all-solid polymer electrolyte

  18. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing, E-mail: jjwang1@hotmail.com; Wei, Jun

    2016-09-30

    Highlights: • Crosslinked hydrogel brushes were grafted from SS surfaces for marine antifouling. • All brush-coated SS surfaces could effectively reduce the adhesion of biofouling. • The antifouling efficacy increased with the crosslinking density of hydrogels. - Abstract: Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  19. In situ development of self-reinforced cellulose nanocrystals based thermoplastic elastomers by atom transfer radical polymerization.

    Science.gov (United States)

    Yu, Juan; Wang, Chunpeng; Wang, Jifu; Chu, Fuxiang

    2016-05-05

    Recently, the utilization of cellulose nanocrystals (CNCs) as a reinforcing material has received a great attention due to its high elastic modulus. In this article, a novel strategy for the synthesis of self-reinforced CNCs based thermoplastic elastomers (CTPEs) is presented. CNCs were first surface functionalized with an initiator for surface-initiated atom transfer radical polymerization (SI-ATRP). Subsequently, SI-ATRP of methyl methacrylate (MMA) and butyl acrylate (BA) was carried out in the presence of sacrificial initiator to form CTPEs in situ. The CTPEs together with the simple blends of CNCs and linear poly(MMA-co-BA) copolymer (P(MMA-co-BA)) were characterized for comparative study. The results indicated that P(MMA-co-BA) was successfully grafted onto the surface of CNCs and the compatibility between CNCs and the polymer matrix in CTPEs was greatly enhanced. Specially, the CTPEs containing 2.15wt% CNCs increased Tg by 19.2°C and tensile strength by 100% as compared to the linear P(MMA-co-BA). Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-06-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  1. A peroxidase mimic with atom transfer radical polymerization activity constructed through the grafting of heme onto metal-organic frameworks.

    Science.gov (United States)

    Jiang, Wei; Pan, Yue; Yang, Jiebing; Liu, Yong; Yang, Yan; Tang, Jun; Li, Quanshun

    2018-07-01

    Atom transfer radical polymerization (ATRP) has been considered to be an efficient strategy for constructing functional macromolecules owing to its simple operation and versatile monomers, and thus it is of great significance to develop ideal catalysts with higher activity and perfect reusability. We constructed a peroxidase mimic through the grafting of heme onto metal-organic frameworks UiO-66-NH 2 (ZrMOF), namely Heme-ZrMOF. After the systematic characterization of structure, the composite Heme-ZrMOF was demonstrated to possess high peroxidase activity using 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) and 3,3',5,5'-tetramethylbenzidine as substrates. The enzyme mimic was then used as catalysts in the ATRP reactions of different monomers, in which favorable monomer conversion (44.6-98.0%) and product molecular weight (8600-25,600 g/mol) could be obtained. Compared to free heme, Heme-ZrMOF could efficiently achieve the easy separation of heme from the catalytic system and facilitate the ATRP reaction in an aqueous environment to avoid the utilization of organic solvents. In conclusion, the enzyme mimic Heme-ZrMOF could be potentially used as an effective catalyst for preparing well-defined polymers with biomedical applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. UV-Induced Radical Photo-Polymerization: A Smart Tool for Preparing Polymer Electrolyte Membranes for Energy Storage Devices

    Directory of Open Access Journals (Sweden)

    Claudio Gerbaldi

    2012-10-01

    Full Text Available In the present work, the preparation and characterization of quasi-solid polymer electrolyte membranes based on methacrylic monomers and oligomers, with the addition of organic plasticizers and lithium salt, are described. Noticeable improvements in the mechanical properties by reinforcement with natural cellulose hand-sheets or nanoscale microfibrillated cellulose fibers are also demonstrated. The ionic conductivity of the various prepared membranes is very high, with average values approaching 10-3 S cm-1 at ambient temperature. The electrochemical stability window is wide (anodic breakdown voltages > 4.5 V vs. Li in all the cases along with good cyclability in lithium cells at ambient temperature. The galvanostatic cycling tests are conducted by constructing laboratory-scale lithium cells using LiFePO4 as cathode and lithium metal as anode with the selected polymer electrolyte membrane as the electrolyte separator. The results obtained demonstrate that UV induced radical photo-polymerization is a well suited method for an easy and rapid preparation of easy tunable quasi-solid polymer electrolyte membranes for energy storage devices.

  3. The effect of polymerization mode on monomer conversion, free radical entrapment, and interaction with hydroxyapatite of commercial self-adhesive cements.

    Science.gov (United States)

    D'Alpino, Paulo Henrique Perlatti; Silva, Marília Santos; Vismara, Marcus Vinícius Gonçalves; Di Hipólito, Vinicius; Miranda González, Alejandra Hortencia; de Oliveira Graeff, Carlos Frederico

    2015-06-01

    This study evaluated the degree of conversion, the free radical entrapment, and the chemical interaction of self-adhesive resin cements mixed with pure hydroxyapatite, as a function of the polymerization activation mode among a variety of commercial self-adhesive cements. Four cements (Embrace WetBond, MaxCem Elite, Bifix SE, and RelyX U200) were mixed, combined with hydroxyapatite, dispensed into molds, and distributed into three groups, according to polymerization protocols: IP (photoactivation for 40s); DP (delayed photoactivation, 10 min self-curing plus 40s light-activated); and CA (chemical activation, no light exposure). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=10). The free radical entrapment values of the resin cements were characterized using Electron Paramagnetic Resonance (EPR) and the concentration of spins (number of spins/mass) calculated (n=3). Values were compared using two-way ANOVA and Tukey's post-hoc test (α=5%). X-ray diffraction (XRD) characterized the crystallinity of hydroxyapatite as a function of the chemical interactions with the resin cements. The tested parameters varied as a function of resin cement and polymerization protocol. Embrace WetBond and RelyX U200 demonstrated dependence on photoactivation (immediate or delayed), whereas MaxCem Elite exhibited dependence on the chemical activation mode. Bifix SE presented the best balance based on the parameters analyzed, irrespective of the activation protocol. Choice of polymerization protocol affects the degree of conversion, free radical entrapment, and the chemical interaction between hydroxyapatite and self-adhesive resin cement mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Facile Synthesis of Well-Defined MDMO-PPV Containing (TriBlock—Copolymers via Controlled Radical Polymerization and CuAAC Conjugation

    Directory of Open Access Journals (Sweden)

    Neomy Zaquen

    2015-02-01

    Full Text Available A systematic investigation into the chain transfer polymerization of the so-called radical precursor polymerization of poly(p-phenylene vinylene (PPV materials is presented. Polymerizations are characterized by systematic variation of chain transfer agent (CTA concentration and reaction temperature. For the chain transfer constant, a negative activation energy of −12.8 kJ·mol−1 was deduced. Good control over molecular weight is achieved for both the sulfinyl and the dithiocarbamate route (DTC. PPVs with molecular weights ranging from thousands to ten thousands g·mol−1 were obtained. To allow for a meaningful analysis of the CTA influence, Mark–Houwink–Kuhn–Sakurada (MHKS parameters were determined for conjugated MDMO-PPV ([2-methoxy-5-(3',7'-dimethyloctyloxy]-1,4-phenylenevinylene to α = 0.809 and k = 0.00002 mL·g−1. Further, high-endgroup fidelity of the CBr4-derived PPVs was proven via chain extension experiments. MDMO-PPV-Br was successfully used as macroinitiator in atom transfer radical polymerization (ATRP with acrylates and styrene. A more polar PPV counterpart was chain extended by an acrylate in single-electron transfer living radical polymerization (SET-LRP. In a last step, copper-catalyzed azide alkyne cycloaddition (CuAAC was used to synthesize block copolymer structures. Direct azidation followed by macromolecular conjugation showed only partial success, while the successive chain extension via ATRP followed by CuAAC afforded triblock copolymers of the poly(p-phenylene vinylene-block-poly(tert-butyl acrylate-block-poly(ethylene glycol (PPV-b-PtBuA-b-PEG.

  5. The potential of Cu(I)Cl/2,2'-bipyridine catalysis in a triblock copolymer preparation by atom transfer radical polymerization

    Czech Academy of Sciences Publication Activity Database

    Masař, Bohumil; Vlček, Petr; Kříž, Jaroslav

    2001-01-01

    Roč. 81, č. 14 (2001), s. 3514-3522 ISSN 0021-8995 R&D Projects: GA MŠk OC P1.10; GA AV ČR KSK2050602 Institutional research plan: CEZ:AV0Z4050913 Keywords : atom transfer radical polymerization * triblock copolymers * sequential synthesis Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.992, year: 2001

  6. New cobalt-mediated radical polymerization (CMRP of methyl methacrylate initiated by two single-component dinuclear β-diketone cobalt (II catalysts.

    Directory of Open Access Journals (Sweden)

    Feng Bao

    Full Text Available Two dinuclear cobalt complexes based on bis-diketonate ligands (ligand 1: 3,3'-(1,3-phenylenebis(1-phenylpropane-1,3-dione; ligand 2: 3,3'-(1,4-phenylenebis(1-phenylpropane-1,3-dione were successfully synthesized. The two neutral catalysts all showed satisfactory activities in the cobalt-mediated radical polymerization (CMRP of methyl methacrylate (MMA with the common initiator of azodiisobutyronitrile (AIBN. The resulting polymerizations have all of the characteristics of a living polymerization and displayed linear semilogarithmic kinetic plots, a linear correlation between the number-average molecular weight and the monomer conversion, and low polydispersities. Mono- or dicomponent low polydispersity polymers could be obtained by using the two dinuclear catalysts under proper reaction conditions. All these improvements facilitate the implementation of the acrylate CMRP and open the door to the scale-up of the syntheses and applications of the multicomponent low polydispersity polymers.

  7. Methyleneation of peptides by N,N,N,N-tetramethylethylenediamine (TEMED) under conditions used for free radical polymerization: a mechanistic study.

    Science.gov (United States)

    Shirangi, Mehrnoosh; Sastre Toraño, Javier; Sellergren, Börje; Hennink, Wim E; Somsen, Govert W; van Nostrum, Cornelus F

    2015-01-21

    Free radical polymerization is often used to prepare protein and peptide-loaded hydrogels for the design of controlled release systems and molecular imprinting materials. Peroxodisulfates (ammonium peroxodisulfates (APS) or potassium peroxodisulfates (KPS)) with N,N,N,N-tetramethylethylenediamine (TEMED) are frequently used as initiator and catalyst. However, exposure to these free radical polymerization reagents may lead to modification of the protein and peptide. In this work, we show the modification of lysine residues by ammonium peroxodisulfate (APS)/TEMED of the immunostimulant thymopentin (TP5). Parallel studies on a decapeptide and a library of 15 dipeptides were performed to reveal the mechanism of modification. LC-MS of APS/TEMED-exposed TP5 revealed a major reaction product with an increased mass (+12 Da) with respect to TP5. LC-MS(2) and LC-MS(3) were performed to obtain structural information on the modified peptide and localize the actual modification site. Interpretation of the obtained data demonstrates the formation of a methylene bridge between the lysine and arginine residue in the presence of TEMED, while replacing TEMED with a sodium bisulfite catalyst did not show this modification. Studies with the other peptides showed that the TEMED radical can induce methyleneation on peptides when lysine is next to arginine, proline, cysteine, aspargine, glutamine, histidine, tyrosine, tryptophan, and aspartic acid residues. Stability of peptides and protein needs to be considered when using APS/TEMED in in situ polymerization systems. The use of an alternative catalyst such as sodium bisulfite may preserve the chemical integrity of peptides during in situ polymerization.

  8. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization.

    Science.gov (United States)

    Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2016-12-21

    Transparent TiO 2 /PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO 2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO 2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO 2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO 2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO 2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO 2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO 2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO 2 content and could be increased up to 1.566 for 6.3 vol % TiO 2 content (1.492 for pristine PMMA).

  9. Atom Transfer Radical Polymerization of Styrene in Presence of Mesoporous Silica Nanoparticles: Application of Reverse, Simultaneous Reverse and Normal Initiation Techniques

    Directory of Open Access Journals (Sweden)

    Khezrollah Khezri

    2014-04-01

    Full Text Available Atom transfer radical polymerization (ATRP of styrene in presence of mesoporous silica nanoparticles was carried out at 110 °C. Reverse atom transfer radical polymerization (RATRP and simultaneous reverse and normal initiation for atom transfer radical polymerization (SR&NI ATRP techniques were used as two appropriate introduced techniques for circumventing oxidation problems. Usage of metal catalyst in its higher oxidation state was the main feature of these initiation techniques in which deficiencies of normal ATRP were circumvented. Structure, surface area and pore diameter of synthesized mesoporous silica nanoparticles were evaluated using X–ray diffraction and nitrogen adsorption/desorption isotherm analysis. Average particle size was estimated around 600 nm by electron microscopy images. In addition, according to these images, nanoparticles revealed an appropriate size distribution. Particles size and their distribution were examined using scanning. Final monomer conversion was determined by using gas chromatography. The number and weight average molecular weights (Mn and Mw and polydispersity indexes (PDI were also evaluated by gel permeation chromatography. According to the results obtained, addition of mesoporous silica nanoparticles in both RATRP and SR&NI ATRP systems revealed similar effects: decrement of conversion and Mn and also increment of PDI values observed by increasing of mesoporous silica nanoparticles content. Improvement in thermal stability of the nanocomposites in comparison with neat polystyrene was demonstrated by thermogravimetric analysis (TGA. Moreover, in case of nanocomposites, thermal stability was obtained by higher loading of nanoparticles. A decrease in glass transition temperature by higher content of mesoporous silica nanoparticles has been demonstrated by differential scanning calorimetry analysis.

  10. Controlled Grafting of Poly(methyl methacrylate) Brushes on Poly(vinylidene fluoride) Powders by Surface-initiated Atom Transfer Radical Polymerization

    Institute of Scientific and Technical Information of China (English)

    TANG Zhaoqi; LI Wei; LIU Lanqin; HUANG Lei; ZHOU Jin; YU Haiyin

    2009-01-01

    Controlled grafting of well-defined polymer brushes of methyl methacrylate (MMA) on the poly(vinylidene fluoride) (PVDF) powders was carded out by the surface-initiated atom transfer radical polymerization (ATRP). The ATRP initiator was anchored on the PVDF surface by alkaline treatment, followed by UV-induced bromination; then methyl methacrylate (MMA) was grafted onto the brominated PVDF by the ATRP technique. The chemical composition changes of PVDF were characterized by Fourier transform-infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). FT-IR and XPS results clearly indicated the successful graft of poly(methyl methacrylate) onto the PVDF surface.

  11. Surface modification of thermoplastic poly(vinyl alcohol)/saponite nanocomposites via surface-initiated atom transfer radical polymerization enhanced by air dielectric discharges barrier plasma treatment

    International Nuclear Information System (INIS)

    Zhen Weijun; Lu Canhui

    2012-01-01

    To improve the water resistance of thermoplastic poly(vinyl alcohol)/saponite nanocomposites (TPVA), a simple two-step method was developed for the covalent immobilization of atom transfer radical polymerization (ATRP) initiators on the TPVA surfaces enhanced by air dielectric barrier discharges (DBD) plasma treatment, and hydrophobic poly(methyl methacrylate) (PMMA) brushes were then grafted onto the surface of TPVA via surface-initiated atom transfer radical polymerization (SI-ATRP). The chemical composition, morphology and hydrophobicity of the modified TPVA surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. The water resistance of the surface-functionalized PMMA was evaluated by the contact angle and water adsorption method. It was shown that air DBD plasma treatment activated the TPVA surface and accelerated the immobilization of ATRP initiator on the TPVA surface. Compared with TPVA control, TPVA modified by SI-ATRP can be grafted well-defined and covalently tethered network PMMA brushes onto the surface and the hydrophobicity of TPVA were significantly enhanced.

  12. Well-defined polyethylene-based graft terpolymers by combining nitroxide-mediated radical polymerization, polyhomologation and azide/alkyne “click” chemistry†

    KAUST Repository

    Alkayal, Nazeeha

    2016-03-30

    Novel well–defined polyethylene–based graft terpolymers were synthesized via the “grafting onto” strategy by combining nitroxide-mediated radical polymerization (NMP), polyhomologation and copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC) “click” chemistry. Three steps were involved in this approach: (i) synthesis of alkyne-terminated polyethylene-b-poly(ε-caprolactone) (PE-b-PCL-alkyne) block copolymers (branches) by esterification of PE-b-PCL-OH with 4-pentynoic acid; the PE-b-PCL-OH was obtained by polyhomologation of dimethylsulfoxonium methylide to afford PE-OH, followed by ring opening polymerization of ε-caprolactone using the PE-OH as macroinitiator, (ii) synthesis of random copolymers of styrene (St) and 4-chloromethylstyrene (4-CMS) with various CMS contents, by nitroxide-mediated radical copolymerization (NMP), and conversion of chloride to azide groups by reaction with sodium azide (NaN3) (backbone) and (iii) “click” linking reaction to afford the PE-based graft terpolymers. All intermediates and final products were characterized by high-temperature size exclusion chromatography (HT-SEC), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance spectroscopy (1H NMR) and differential scanning calorimetry (DSC).

  13. Synthesis and characterization of TiO2/Ag/polymer ternary nanoparticles via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Park, Jung Tae; Koh, Joo Hwan; Seo, Jin Ah; Cho, Yong Soo; Kim, Jong Hak

    2011-01-01

    We report on the novel ternary hybrid materials consisting of semiconductor (TiO 2 ), metal (Ag) and polymer (poly(oxyethylene methacrylate) (POEM)). First, a hydrophilic polymer, i.e. POEM, was grafted from TiO 2 nanoparticles via the surface-initiated atom transfer radical polymerization (ATRP) technique. These TiO 2 -POEM brush nanoparticles were used to template the formation of Ag nanoparticles by introduction of a AgCF 3 SO 3 precursor and a NaBH 4 aqueous solution for reduction process. Successful grafting of polymeric chains from the surface of TiO 2 nanoparticles and the in situ formation of Ag nanoparticles within the polymeric chains were confirmed using transmission electron microscopy (TEM), UV-vis spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). FT-IR spectroscopy also revealed the specific interaction of Ag nanoparticles with the C=O groups of POEM brushes. This study presents a simple route for the in situ synthesis of both metal and polymer confined within the semiconductor, producing ternary hybrid inorganic-organic nanomaterials.

  14. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the “one-pot” synthetic approach of single-electron-transfer living radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Xu, Dazhuang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Liu, Liangji [Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Graphical abstract: The PEGylated graphene oxides with high water dispersibility, good biocompatibility as well as high drug loading capability were fabricated via “one-pot” SET-LRP. - Highlights: • Surface modification of graphene oxide with polymers. • One-pot single-electron-transfer living radical polymerization. • Improving drug delivery characteristics. • The synthetic approach is rather simple, universal and effective. - Abstract: Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient “one-pot” strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as {sup 1}H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  15. Effects of radical initiators, polymerization inhibitors, and other agents on the sonochemical unzipping of double-walled carbon nanotubes

    Science.gov (United States)

    Fukumori, Minoru; Hara, Shinnosuke; Ogawa, Takuji; Tanaka, Hirofumi

    2018-03-01

    The mechanism of graphene nanoribbon synthesis by the sonication-assisted unzipping of carbon nanotubes (CNTs) was investigated utilizing 4-methoxyphenol and 1,4-dimethoxybenzene as moieties of poly[(m-phenylenevinylene)-co-(2,5-dioctoxy-p-phenylenevinylene)]. The obtained results revealed that unzipping was promoted by 4-methoxyphenol owing to the facile abstraction of its phenolic hydrogen by sonication-generated radicals on CNTs, whereas 1,4-dimethoxybenzene did not facilitate unzipping, since its methoxy hydrogens were hardly abstracted. Moreover, unzipping was also facilitated by trans-stilbene, the double bond of which reacts with CNT radicals. Furthermore, we succeeded in using a general radical initiator, namely, 2,2‧-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride to promote unzipping, confirming that it is promoted by radical donors/trapping agents.

  16. Crystalline TiO{sub 2} grafted with poly(2-methacryloyloxyethyl phosphorylcholine) via surface-initiated atom-transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yuancong; Tu Qiufen; Wang Jin; Huang Qiongjian [Key Lab. of Advanced Technology for Materials, Education Ministry, School of Material Science and Technology of Southwest Jiaotong University, Chengdu, Sichuan (China); Huang Nan, E-mail: zhaoyc7320@163.com [Key Lab. of Advanced Technology for Materials, Education Ministry, School of Material Science and Technology of Southwest Jiaotong University, Chengdu, Sichuan (China)

    2010-12-15

    Crystalline TiO{sub 2} films were prepared by unbalanced magnetron sputtering and the structure was confirmed by XRD. An organic layer of 11-hydroxyundecylphosphonic acid (HUPA) was prepared on the TiO{sub 2} films by self-assembling, and the HUPA on TiO{sub 2} films was confirmed by FTIR analysis. Simultaneously, hydroxyl groups were introduced in the phosphonic acid molecules to provide a functionality for further chemical modification. 2-Methacryloyloxyethyl phosphorylcholine (MPC), a biomimetic monomer, was chemically grafted on the HUPA surfaces at room temperature by surface-initiated atom-transfer radical polymerization. The surface characters of TiO{sub 2} films modified by poly-MPC were confirmed by FTIR, XPS and SEM analysis. Platelet adhesion experiment revealed that poly-MPC modified surface was effective to inhibit platelet adhesion in vitro.

  17. Reverse atom transfer radical polymerization of methyl methacrylate initiated by AIBN/FeCl3/isophthalic acid system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The reverse ATRP of MMA using AIBN/FeCl3/ isophthalic acid as the initiating system was successfully performed. The new initiating system can be used to synthesize PMMA with high molecular weight and narrow polydis- persity index. The polymerization shows 'living'/controlled characteristics. Compared with other initiating system used in reverse ATRP, the easy availability and non-toxicity of isophthalic acid make it very attractive.

  18. Synthesis of diblock copolymers comprising poly(2-vinylpyridine-co-acrylonitrile) and polystyrene blocks by nitroxide-mediated radical polymerization

    Czech Academy of Sciences Publication Activity Database

    Lokaj, Jan; Poláková, Lenka; Holler, Petr; Starovoytova, Larisa; Štěpánek, Petr; Diat, O.

    2007-01-01

    Roč. 105, č. 3 (2007), s. 1616-1622 ISSN 0021-8995 R&D Projects: GA ČR GESON/03/E001 Institutional research plan: CEZ:AV0Z40500505 Keywords : 2-vinylpyridine-acrylonitrile copolymers * nitroxide-mediated radical copolymerization * chain extension Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.008, year: 2007

  19. Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium

    International Nuclear Information System (INIS)

    Dai, Jiangdong; Pan, Jianming; Xu, Longcheng; Li, Xiuxiu; Zhou, Zhiping; Zhang, Rongxian; Yan, Yongsheng

    2012-01-01

    Highlights: ► Atom transfer radical emulsion polymerization is a “living” and green technique. ► Nanoparticles can overcome mass transfer limitations and improve accessibility. ► Molecular imprinted nanoparticles with magnetic property for fast separation. ► The performance of imprinted nanoparticles was investigated in detail. ► Nanoparticles were used to selective recognize Tetracycline from water medium. - Abstract: In the work, we reported an effective method for the preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization (ATREP), and then as-prepared magnetic molecularly imprinted nanoparticles (MMINs) were evaluated as adsorbents for selective recognition of tetracycline (TC) molecules from aqueous medium. The resulting nanoparticles were characterized by FT-IR, TGA, VSM, SEM and TEM. The results demonstrated MMINs with a narrow diameter distribution were cross-linked with modified Fe 3 O 4 particles, composed of imprinted layer and exhibited good magnetic sensitivity, magnetic and thermal stability. Batch rebinding studies were carried out to determine the specific adsorption equilibrium, kinetics, and selective recognition. The estimated adsorption capacity of MMINs towards TC by the Langmuir isotherm model was 12.10 mg g −1 at 298 K, which was 6.33 times higher than that of magnetic non-molecularly imprinted nanoparticles (MNINs). The kinetic property of MMINs was well-described by the pseudo-second-order rate equation. The results of selective recognition experiments demonstrated outstanding affinity and selectivity towards TC over competitive antibiotics. The reusability of MMINs showed no obviously deterioration at least five repeated cycles in performance. In addition, the MMINs prepared were successfully applied to the extraction of TC from the spiked pork sample.

  20. Preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization for the selective recognition of tetracycline from aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Jiangdong; Pan, Jianming; Xu, Longcheng; Li, Xiuxiu [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhou, Zhiping [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Zhang, Rongxian [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Yan, Yongsheng, E-mail: djdxxx123@163.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191 (China)

    2012-02-29

    Highlights: Black-Right-Pointing-Pointer Atom transfer radical emulsion polymerization is a 'living' and green technique. Black-Right-Pointing-Pointer Nanoparticles can overcome mass transfer limitations and improve accessibility. Black-Right-Pointing-Pointer Molecular imprinted nanoparticles with magnetic property for fast separation. Black-Right-Pointing-Pointer The performance of imprinted nanoparticles was investigated in detail. Black-Right-Pointing-Pointer Nanoparticles were used to selective recognize Tetracycline from water medium. - Abstract: In the work, we reported an effective method for the preparation of molecularly imprinted nanoparticles with superparamagnetic susceptibility through atom transfer radical emulsion polymerization (ATREP), and then as-prepared magnetic molecularly imprinted nanoparticles (MMINs) were evaluated as adsorbents for selective recognition of tetracycline (TC) molecules from aqueous medium. The resulting nanoparticles were characterized by FT-IR, TGA, VSM, SEM and TEM. The results demonstrated MMINs with a narrow diameter distribution were cross-linked with modified Fe{sub 3}O{sub 4} particles, composed of imprinted layer and exhibited good magnetic sensitivity, magnetic and thermal stability. Batch rebinding studies were carried out to determine the specific adsorption equilibrium, kinetics, and selective recognition. The estimated adsorption capacity of MMINs towards TC by the Langmuir isotherm model was 12.10 mg g{sup -1} at 298 K, which was 6.33 times higher than that of magnetic non-molecularly imprinted nanoparticles (MNINs). The kinetic property of MMINs was well-described by the pseudo-second-order rate equation. The results of selective recognition experiments demonstrated outstanding affinity and selectivity towards TC over competitive antibiotics. The reusability of MMINs showed no obviously deterioration at least five repeated cycles in performance. In addition, the MMINs prepared were successfully

  1. TEMPO addition into pre-irradiated fluoropolymers and living-radical graft polymerization of styrene for preparation of polymer electrolyte membranes

    Energy Technology Data Exchange (ETDEWEB)

    Sawada, Shin-ichi, E-mail: sawada.shinnichi@jaea.go.j [Conducting Polymer Materials Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Suzuki, Akihiro; Terai, Takayuki [Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Maekawa, Yasunari, E-mail: maekawa.yasunari@jaea.go.j [Conducting Polymer Materials Research Group, Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA), 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2010-04-15

    We prepared proton exchange membranes (PEMs) by 2,2,6,6-tetramethylpiperidinyl-1-oxy (TEMPO)-mediated living-radical graft polymerization (LRGP) of styrene into fluoropolymer films and subsequent sulfonation. Poly(vinylidene fluoride) (PVDF) and poly(ethylene-co-tetrafluoroethylene) (ETFE) films were first irradiated and then treated with TEMPO solutions in various solvents. TEMPO addition was confirmed by the test of styrene grafting into TEMPO-treated films at 60 deg. C, at which the LRGP never proceeds. This test enabled us to differentiate the LRGP from the conventional graft polymerization. In order to gain a deep insight about TEMPO-addition reaction, the TEMPO-penetration behavior into the base polymer films was examined by a permeation experiment and computer simulation. Xylene and dioxane were appropriate solvents for the complete introduction of TEMPO into PVDF and ETFE films, respectively. Then, the LRGP of styrene was performed based on the fully TEMPO-capped films at 125 deg. C with various solvents. By using an alcoholic solvent, the degree of grafting was enhanced and it reached a maximum of 38%. This grafted film was sulfonated to prepare a PEM showing an ion exchange capacity of 2.2 meq/g and proton conductivity of 1.6x10{sup -1} S/cm.

  2. Preparation of high-capacity, weak anion-exchange membranes by surface-initiated atom transfer radical polymerization of poly(glycidyl methacrylate) and subsequent derivatization with diethylamine

    International Nuclear Information System (INIS)

    Qian, Xiaolei; Fan, Hua; Wang, Chaozhan; Wei, Yinmao

    2013-01-01

    Ion-exchange membrane is of importance for the development of membrane chromatography. In this work, a high-capacity anion-exchange membrane was prepared by grafting of glycidyl methacrylate (GMA) onto the surface of regenerated cellulose (RC) membranes via surface-initiated atom transfer radical polymerization (SI-ATRP) and subsequent derivatization with diethylamine. Attenuated total reflectance Fourier-transform infrared (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were used to characterize changes in the chemical functionality, surface topography and pore morphology of the modified membranes. The static capacity of the prepared anion-exchange membrane was evaluated with bovine serum albumin (BSA) as a model protein. The results indicated that the anion-exchange membrane which could reach a maximum capacity of 96 mg/mL for static adsorption possesses a higher adsorption capacity, and the adsorption capacity increases with the polymerization time. The effect of pH and salt concentration confirmed that the adsorption of BSA followed ion-exchange mechanism. The established method would have potential application in the preparation of anion-exchange membrane.

  3. Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer.

    Science.gov (United States)

    Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa

    2014-11-07

    Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. Copyright © 2014 Elsevier B.V. All

  4. Improving the organic and biological fouling resistance and removal of pharmaceutical and personal care products through nanofiltration by using in situ radical graft polymerization.

    Science.gov (United States)

    Lin, Yi-Li; Tsai, Chia-Cheng; Zheng, Nai-Yun

    2018-09-01

    In this study, an insitu radical graft polarization technique using monomers of 3-sulfopropyl methacrylate potassium salt (SPM) and 2-hydroxyethyl methacrylate (HEMA) was applied to a commercial nanofiltration membrane (NF90) to improve its removal of six commonly detected pharmaceutical and personal care products (PPCPs) and mitigate organic and biological fouling by humic acid (HA) and sodium alginate (SA). Compared with the virgin membrane, the modified NF90 membrane exhibited considerably improved fouling resistance and an increased reversible fouling percentage, especially for SA+HA composite fouling Moreover, the PPCP removal of the modified NF90 membrane was higher than that of the virgin membrane after SA and SA+HA fouling, respectively. Triclosan and carbamazepine, which are poorly rejected, could be effectively removed by modified membrane after SA or SA+HA fouling. Both monomers modified the membrane surface by increasing the hydrophilicity and decreasing the contact angle. The degree of grafting was quantified using attenuated total reflection Fourier-transform infrared spectroscopy. The mitigation in the fouling was evident from the low quantity of deposit formed on the modified membrane, as observed using scanning electron microscopy. A considerable amount of highly hydrophobic triclosan was adsorbed on the SA-fouled virgin membrane and penetrated through it. By contrast, the adsorption of triclosan was substantially lower in the SPM-modified membrane. After membrane modification, the fouling mechanism changed from solely intermediate blocking to both intermediate blocking and complete blocking after membrane modification. Thus, the in situ radical graft polymerization method effectively reduces organic and biological fouling and provides high PPCP removal, which is beneficial for fouling control and produces permeate of satisfactory quality for application in the field of membrane technology. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Homogeneous synthesis of cellulose acrylate-g-poly (n-alkyl acrylate) solid-solid phase change materials via free radical polymerization.

    Science.gov (United States)

    Qian, Yong-Qiang; Han, Na; Bo, Yi-Wen; Tan, Lin-Li; Zhang, Long-Fei; Zhang, Xing-Xiang

    2018-08-01

    A novel solid-solid phase change materials, namely, cellulose acrylate-g-poly (n-alkyl acrylate) (CA-g-PAn) (n = 14, 16 and 18) were successfully synthesized by free radical polymerization in N, N-dimethylacetamide (DMAc). The successful grafting was confirmed by fourier transform infrared spectra (FT-IR) and nuclear magnetic resonance (NMR). The properties of the CA-g-PAn copolymers were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The phase change temperatures and the melting enthalpies of CA-g-PAn copolymers are in the range of 10.1-53.2 °C and 15-95 J/g, respectively. It can be adjusted by the contents of poly (n-alkyl acrylate) and the length of alkyl side-chain. The thermal resistant temperatures of CA-g-PA14, 16 and 18 copolymers are 308 °C, 292 °C and 273 °C, respectively. It show that all of grafting materials exhibit good thermal stability and shape stability. Therefore, it is expected to be applied in the cellulose-based thermos-regulating field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Poly(glycidyl methacrylate) grafted CdSe quantum dots by surface-initiated atom transfer radical polymerization: Novel synthesis, characterization, properties, and cytotoxicity studies

    Energy Technology Data Exchange (ETDEWEB)

    Bach, Long Giang; Islam, Md. Rafiqul [Department of Imaging System Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of); Lee, Doh Chang [Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury (KINC), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701 (Korea, Republic of); Lim, Kwon Taek, E-mail: ktlim@pknu.ac.kr [Department of Imaging System Engineering, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2013-10-15

    A novel approach for the synthesis of poly(glycidyl methacrylate) grafted CdSe quantum dot (QDs) (PGMA-g-CdSe) was developed. The PGMA-g-CdSe nanohybrids were synthesized by the surface-initiated atom transfer radical polymerization of glycidyl methacrylate from the surface of the strategic initiator, CdSe-BrIB QDs prepared by the interaction of 2-bromoisobutyryl bromide (BrIB) and CdSe-OH QDs. The structure, morphology, and optical property of the PGMA-g-CdSe nanohybrids were analyzed by FT-IR, XPS, TGA, XRD, TEM, and PL. The as-synthesized PGMA-g-CdSe nanohybrids having multi-epoxide groups were employed for the direct coupling of biotin via ring-opening reaction of the epoxide groups to afford the Biotin-f-PGMA-g-CdSe nanobioconjugate. The covalent immobilization of biotin onto PGMA-g-CdSe was confirmed by FT-IR, XPS, and EDX. Biocompatibility and imaging properties of the Biotin-f-PGMA-g-CdSe were investigated by MTT bioassay and PL analysis, respectively. The cell viability study suggested that the biocompatibility was significantly enhanced by the functionalization of CdSe QDs by biotin and PGMA.

  7. Preparation of Mg(OH)_2 hybrid pigment by direct precipitation and graft onto cellulose fiber via surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Wang, Xiao; Zhang, Yue; Lv, Lihua; Cui, Yongzhu; Wei, Chunyan; Pang, Guibing

    2016-01-01

    Graphical abstract: - Highlights: • Adsorbed anionic dye molecules are conducive to preferential growth of (0 0 1) plane of Mg(OH)_2 crystal for Mg(OH)_2 pigments. • Uniform coverage of nanosized Mg(OH)_2 pigments on fiber surface is achieved via surface-initiated ATRP. • About 4 wt% of Mg(OH)_2 pigment on fiber surface shortens nearly half of burning time of cellulose. - Abstract: Mg(OH)_2 flame retardant hybrid pigment is synthesized through simultaneous solution precipitation and adsorption of anionic dyes (C.I. Acid Red 6). The Mg(OH)_2 hybrid pigment bearing vinyl groups after surface silane modification is immobilized onto the surface of bromo end-functional cellulose fiber by atom transfer radical polymerization (ATRP). The morphology and structure of Mg(OH)_2 pigments and cellulose fibers grafted with modified pigments are characterized. The thermal properties, flammability and color fastness of cellulose fibers grafted with modified pigments are measured. The results reveal that anionic dye molecules are adsorbed onto Mg(OH)_2 crystals and affect the formation of lamella-like Mg(OH)_2 crystals. The cellulose fiber grafted with modified Mg(OH)_2 hybrid pigment absorbs about four times heat more than original cellulose fiber with about 4% immobilization ratio of pigment, which shortens nearly half of afterflame time and afterglow time.

  8. Surface-Initiated Atom Transfer Radical Polymerization of Magnetite Nanoparticles with Statistical Poly(tert-butyl acrylate-poly(poly(ethylene glycol methyl ether methacrylate Copolymers

    Directory of Open Access Journals (Sweden)

    Patcharin Kanhakeaw

    2015-01-01

    Full Text Available This work presented the surface modification of magnetite nanoparticle (MNP with poly[(t-butyl acrylate-stat-(poly(ethylene glycol methyl ether methacrylate] copolymers (P[(t-BA-stat-PEGMA] via a surface-initiated “grafting from” atom transfer radical polymerization (ATRP. Loading molar ratio of t-BA to PEGMA was systematically varied (100 : 0, 75 : 25, 50 : 50, and 25 : 75, resp. such that the degree of hydrophilicity of the copolymers, affecting the particle dispersibility in water, can be fine-tuned. The reaction progress in each step of the synthesis was monitored via Fourier transform infrared spectroscopy (FTIR. The studies in the reaction kinetics indicated that PEGMA had higher reactivity than that of t-BA in the copolymerizations. Gel permeation chromatography (GPC indicated that the molecular weights of the copolymers increased with the increase of the monomer conversion. Transmission electron microscopy (TEM revealed that the particles were spherical with averaged size of 8.1 nm in diameter. Dispersibility of the particles in water was apparently improved when the copolymers were coated as compared to P(t-BA homopolymer coating. The percentages of MNP and the copolymer in the composites were determined via thermogravimetric analysis (TGA and their magnetic properties were investigated via vibrating sample magnetometry (VSM.

  9. Antibacterial inorganic-organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention.

    Science.gov (United States)

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2010-05-04

    To enhance the corrosion resistance of stainless steel (SS) and to impart its surface with antibacterial functionality for inhibiting biofilm formation and biocorrosion, well-defined inorganic-organic hybrid coatings, consisting of a polysilsesquioxane inner layer and quaternized poly(2-(dimethyamino)ethyl methacrylate) (P(DMAEMA)) outer blocks, were prepared via successive surface-initiated atom transfer radical polymerization (ATRP) of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). The cross-linked P(TMASPMA), or polysilsesquioxane, inner layer provided a durable and resistant coating to electrolytes. The pendant tertiary amino groups of the P(DMAEMA) outer block were quaternized with alkyl halide to produce a high concentration of quaternary ammonium groups with biocidal functionality. The so-synthesized inorganic-organic hybrid coatings on the SS substrates exhibited good anticorrosion and antibacterial effects and inhibited biocorrosion induced by sulfate-reducing bacteria (SRB) in seawater media, as revealed by antibacterial assay and electrochemical analyses, and they are potentially useful to steel-based equipment under harsh industrial and marine environments.

  10. Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion.

    Science.gov (United States)

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2009-03-01

    To improve the biocorrosion resistance of stainless steel (SS) and to confer the bactericidal function on its surface for inhibiting bacterial adhesion and biofilm formation, well-defined inorganic-organic hybrid coatings, consisting of the inner compact titanium oxide multilayers and outer dense poly(vinyl-N-hexylpyridinium) brushes, were successfully developed. Nanostructured titanium oxide multilayer coatings were first built up on the SS substrates via the layer-by-layer sol-gel deposition process. The trichlorosilane coupling agent, containing the alkyl halide atom-transfer-radical polymerization (ATRP) initiator, was subsequently immobilized on the titanium oxide coatings for surface-initiated ATRP of 4-vinylpyridine (4VP). The pyridium nitrogen moieties of the covalently immobilized 4VP polymer, or P(4VP), brushes were quaternized with hexyl bromide to produce a high concentration of quaternary ammonium salt on the SS surfaces. The excellent antibacterial efficiency of the grafted polycations, poly(vinyl-N-pyridinium bromide), was revealed by viable cell counts and atomic force microscopy images of the surface. The effectiveness of the hybrid coatings in corrosion protection was verified by the Tafel plot and electrochemical impedance spectroscopy measurements.

  11. Grafting of antibacterial polymers on stainless steel via surface-initiated atom transfer radical polymerization for inhibiting biocorrosion by Desulfovibrio desulfuricans.

    Science.gov (United States)

    Yuan, S J; Xu, F J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2009-06-01

    To enhance the biocorrosion resistance of stainless steel (SS) and to impart its surface with bactericidal function for inhibiting bacterial adhesion and biofilm formation, well-defined functional polymer brushes were grafted via surface-initiated atom transfer radical polymerization (ATRP) from SS substrates. The trichlorosilane coupling agent, containing the alkyl halide ATRP initiator, was first immobilized on the hydroxylated SS (SS-OH) substrates for surface-initiated ATRP of (2-dimethylamino)ethyl methacrylate (DMAEMA). The tertiary amino groups of covalently immobilized DMAEMA polymer or P(DMAEMA), brushes on the SS substrates were quaternized with benzyl halide to produce the biocidal functionality. Alternatively, covalent coupling of viologen moieties to the tertiary amino groups of P(DMAEMA) brushes on the SS surface resulted in an increase in surface concentration of quaternary ammonium groups, accompanied by substantially enhanced antibacterial and anticorrosion capabilities against Desulfovibrio desulfuricans in anaerobic seawater, as revealed by antibacterial assay and electrochemical studies. With the inherent advantages of high corrosion resistance of SS, and the good antibacterial and anticorrosion capabilities of the viologen-quaternized P(DMAEMA) brushes, the functionalized SS is potentially useful in harsh seawater environments and for desalination plants. Copyright 2009 Wiley Periodicals, Inc.

  12. Poly(glycidyl methacrylate) grafted CdSe quantum dots by surface-initiated atom transfer radical polymerization: Novel synthesis, characterization, properties, and cytotoxicity studies

    International Nuclear Information System (INIS)

    Bach, Long Giang; Islam, Md. Rafiqul; Lee, Doh Chang; Lim, Kwon Taek

    2013-01-01

    A novel approach for the synthesis of poly(glycidyl methacrylate) grafted CdSe quantum dot (QDs) (PGMA-g-CdSe) was developed. The PGMA-g-CdSe nanohybrids were synthesized by the surface-initiated atom transfer radical polymerization of glycidyl methacrylate from the surface of the strategic initiator, CdSe-BrIB QDs prepared by the interaction of 2-bromoisobutyryl bromide (BrIB) and CdSe-OH QDs. The structure, morphology, and optical property of the PGMA-g-CdSe nanohybrids were analyzed by FT-IR, XPS, TGA, XRD, TEM, and PL. The as-synthesized PGMA-g-CdSe nanohybrids having multi-epoxide groups were employed for the direct coupling of biotin via ring-opening reaction of the epoxide groups to afford the Biotin-f-PGMA-g-CdSe nanobioconjugate. The covalent immobilization of biotin onto PGMA-g-CdSe was confirmed by FT-IR, XPS, and EDX. Biocompatibility and imaging properties of the Biotin-f-PGMA-g-CdSe were investigated by MTT bioassay and PL analysis, respectively. The cell viability study suggested that the biocompatibility was significantly enhanced by the functionalization of CdSe QDs by biotin and PGMA.

  13. Green Polymer Chemistry: Investigating the Mechanism of Radical Ring-Opening Redox Polymerization (R3P of 3,6-Dioxa-1,8-octanedithiol (DODT

    Directory of Open Access Journals (Sweden)

    Emily Q. Rosenthal-Kim

    2015-04-01

    Full Text Available The mechanism of the new Radical Ring-opening Redox Polymerization (R3P of 3,6-dioxa-1,8-octanedithiol (DODT by triethylamine (TEA and dilute H2O2 was investigated. Scouting studies showed that the formation of high molecular weight polymers required a 1:2 molar ratio of DODT to TEA and of DODT to H2O2. Further investigation into the chemical composition of the organic and aqueous phases by 1H-NMR spectroscopy and mass spectrometry demonstrated that DODT is ionized by two TEA molecules (one for each thiol group and thus transferred into the aqueous phase. The organic phase was found to have cyclic disulfide dimers, trimers and tetramers. Dissolving DODT and TEA in water before the addition of H2O2 yielded a polymer with Mn = 55,000 g/mol, in comparison with Mn = 92,000 g/mol when aqueous H2O2 was added to a DODT/TEA mixture. After polymer removal, MALDI-ToF MS analysis of the residual reaction mixtures showed only cyclic oligomers remaining. Below the LCST for TEA in water, 18.7 °C, the system yielded a stable emulsion, and only cyclic oligomers were found. Below DODT/TEA and H2O2 1:2 molar ratio mostly linear oligomers were formed, with <20% cyclic oligomers. The findings support the proposed mechanism of R3P.

  14. End-Functionalized Poly(N-isopropylacrylamide with d-Glucosamine through Different Initiator from C-1 and C-2 Positions via Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Guihua Cui

    2016-11-01

    Full Text Available Regioselective modification of d-glucosamine (2-amino-2-deoxy-d-glucopyranose, GA through C-1 and C-2 positions to synthesized thermo-responsive D-Glucosamine-poly(N-iso-propylacrylamide (PNIPAM via atom transfer radical polymerization (ATRP was investigated for the first time. Two different schemes of the synthesis for GA derivatives (GA-PNIPAM (i and (ii with well-defined structures using 3,4,6-tri-o-acetyl-2-deoxy-2-phthalimido-β-d-glucopyranose and 1,3,4,6-tetra-o-acetyl-2-amino-2-deoxy-β-d-glucopyranose intermediates were examined. The GA-PNIPAM (ii had an amino at C-2 position, while there was a hydroxyl in GA-PNIPAM (i at this position. Both the resulting oligomers (i and (ii had a narrow dispersity, and no significant cytotoxic response of copolymers (i and (ii was observed in the cell line over the concentration range from 0.1 μg/mL to 1000 μg/mL at any of the exposure times. In addition, it was discovered that GA-PNIPAM (i and (ii inhibited the proliferation of Human Hepatocellular Carcinoma Cells HepG2 as the concentration and the time changed, and the inhibitory activity of polymer (ii was higher than that of he (i. The results suggest that the GA-PNIPAM polymers show excellent biocompatibility in vitro.

  15. Cotton fibers encapsulated with homo- and block copolymers: synthesis by the atom transfer radical polymerization grafting-from technique and solid-state NMR dynamic investigations.

    Science.gov (United States)

    Castelvetro, Valter; Geppi, Marco; Giaiacopi, Simone; Mollica, Giulia

    2007-02-01

    Cotton fibers were modified by surface-initiated atom transfer radical polymerization of ethyl acrylate (EA) followed by copolymerization with styrene. Either ethyl 2-bromopropionate as a sacrificial free initiator or Cu(II) as a deactivator was used to optimize the EA grafting yield and to preserve the livingness of the chain ends for the subsequent growth of a poly(styrene) (PSty) block from the poly(ethyl acrylate) (PEA) grafts. The polymer-encapsulated cotton fibers were analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry (DSC), thermogravimetric analysis, and solid-state NMR (high-resolution 13C cross-polarization magic angle spinning, 1H spin-lattice relaxation times, and 1H free induction decay analysis NMR). The latter allowed the detection of the dynamic modifications associated with the presence of homo- and block copolymer grafts. In particular, the results of the DSC and NMR investigations suggest a heterogeneous morphology of the g-PEA-b-PSty grafted skin, which could be described as an inner layer of g-PEA sandwiched between the semicrystalline cellulose of the core fiber and the high glass transition temperature PSty of the covalently linked outer layer. Such morphology results in a reduced molecular mobility of the PEA chains.

  16. Preparation of polymer brushes grafted graphene oxide by atom transfer radical polymerization as a new support for trypsin immobilization and efficient proteome digestion.

    Science.gov (United States)

    Guo, Cong; Zhao, Xinyuan; Zhang, Wanjun; Bai, Haihong; Qin, Weijie; Song, Haifeng; Qian, Xiaohong

    2017-08-01

    Highly efficient protein digestion is one of the key issues in the "bottom-up" strategy-based proteomic studies. Compared with the time-consuming solution-based free protease digestion, immobilized protease digestion offers a promising alternative with obviously improved sample processing throughput. In this study, we proposed a new immobilized protease digestion strategy using two kinds of polymer-grafted graphene oxide (GO) conjugated trypsin. The polymer brush grafted GO was prepared using in situ polymer growth on initiator-functionalized GO using surface-initiated atom transfer radical polymerization (SI-ATRP) and characterized by AFM, TEM, TGA, and XPS. The polymer brush grafted GO supports three-dimensional trypsin immobilization, which not only increases the loading amount but also improves accessibility towards protein substrates. Both of the two types of immobilized trypsin provide 700 times shorter digestion time, while maintaining comparable protein/peptide identification scale compared with that of free trypsin digestion. More interestingly, combined application of the two types of immobilized trypsin with different surface-grafted polymers leads to at least 18.3/31.3% enhancement in protein/peptide identification compared with that obtained by digestion using a single type, indicating the potential of this digestion strategy for deeper proteome coverage using limited mass spectrometer machine hour. We expect these advantages may find valuable application in high throughput clinical proteomic studies, which often involve processing of a large number of samples. Graphical abstract Preparation of polymer brushes grafted and trypsin immobilized graphene oxide and its application in proteome digestion and mass spectrometry identification.

  17. Preparation and self-assembly behavior of polystyrene-block-poly (dimethylaminoethyl methacrylate amphiphilic block copolymer using atom transfer radical polymerization

    Directory of Open Access Journals (Sweden)

    2008-03-01

    Full Text Available Asymmetric and semi-symmetric amphiphilic diblock copolymers polystyrene-block-poly (dimethylaminoethyl methacrylate (PS-b-PDMAEMA with the same PS block length of 62 repeat units and quite short (3 repeat units or equivalent (47 repeat units length of PDMAEMA have been prepared simply by varying the ratio of the bromine-terminated macroinitiator polystyrene (PS-Br to DMAEMA using atom transfer radical polymerization (ATRP. The chemical structures and compositions of the PS-b-PDMAEMA block copolymers are studied by nuclear magnetic resonance (NMR spectroscopy, gel permeation chromatography (GPC, and elementary analysis (EA. The self-assembly behaviors of copolymers in N,N-dimethyl formamide (DMF with different pH and dioxane/water binary solvent mixture by direct dissolution method (DD, are studied by transmission electron microscopy (TEM, electron diffracting analysis (EDA, and energy-dispersive analysis of X-rays (EDAX techniques. Transmission electron microscopy results suggest that asymmetric block copolymer PS62-b-PDMAEMA3 (the numbers in the form of footnotes represent repeated units of each monomer in the copolymer can form spherical core-shell micelles, large compound reverse micelles (LCRMs, hexagonal/rhombic phases, reverse hexagonal/rhombic phases, vesicles, reverse vesicles and necklace-like reverse micelles, controlled by common or selective solvent and pH, while most of the aggregates of semi-symmetric PS62-b-PDMAEMA47 are simply spherical, such as spherical core-shell micelles and reverse spherical core-shell micelles, besides hexagonal/rhombic phases. All above structures are controlled by three components of the free energy of aggregation: core-chain stretching, interfacial energy and intercoronal chain interaction.

  18. Surface polyPEGylation of Eu3+ doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    Science.gov (United States)

    Zeng, Guangjian; Liu, Meiying; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Huang, Hongye; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-03-01

    The Eu3+ doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu3+ doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface initiated ATRP. As compared with the traditional ATRP, the metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts such as copper ions. More importantly, the strategy described in this work should also be utilized for fabrications of many other luminescent polymer nanocomposites due to its good monomer adoptability.

  19. Vinylimidazole-Based Asymmetric Ion Pair Comonomers: Synthesis, Polymerization Studies and Formation of Ionically Crosslinked PMMA

    NARCIS (Netherlands)

    Jana, S.; Vasantha, V.A.; Stubbs, L.P.; Parthiban, A.; Vancso, Gyula J.

    2013-01-01

    Vinylimidazole-based asymmetric ion pair comonomers (IPCs) which are free from nonpolymerizable counter ions have been synthesized, characterized and polymerized by free radical polymerization (FRP), atom transfer radical polymerization (ATRP), and reversible addition-fragmentation chain transfer

  20. Exploration of mild copper-mediated coupling of organotrifluoroborates in the synthesis of thiirane-based inhibitors of matrix metalloproteinases.

    Science.gov (United States)

    Testero, Sebastian A; Bouley, Renee; Fisher, Jed F; Chang, Mayland; Mobashery, Shahriar

    2011-05-01

    The copper-mediated and non-basic oxidative cross-coupling of organotrifluoroborates with phenols was applied to elaboration of the structures of thiirane-based inhibitors of matrix metalloproteinases. By revision of the synthetic sequence to allow this cross-coupling as the final step, and taking advantage of the neutral nature of organotrifluoroborate cross-coupling, a focussed series of inhibitors showing aryloxy and alkenyloxy replacement of the phenoxy substituent was prepared. This reaction shows exceptional promise as an alternative to the classic copper-mediated but strongly basic Ullmann reaction, for the diversification of ether segments within base-labile lead structures. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Copper mediated controlled radical copolymerization of styrene and2-ethylhexyl acrylate and determination of their reactivity ratios.

    Directory of Open Access Journals (Sweden)

    Bishnu Prasad Koiry

    2014-10-01

    Full Text Available Copolymerization is an important synthetic tool to prepare polymers with desirable combination of properties which are difficult to achieve from the different homopolymers concerned. This investigation reports the copolymerization of 2-ethylhexyl acrylate (EHA and styrene using copper bromide (CuBr as catalyst in combination with N,N,N’,N,N- pentamethyldiethylenetriamine (PMDETA as ligand and 1-phenylethyl bromide (PEBr as initiator. Linear kinetic plot and linear increase in molecular weights versus conversion indicate that copolymerization reactions were controlled. The copolymer composition was calculated using 1H NMR studies. The reactivity ratio of styrene and EHA (r1 and r2 were determined using the Finemann-Ross (FR, inverted Finemann-Ross (FR and Kelen-Tudos (KT methods. Thermal properties of the copolymers were also studied by using TGA and DSC analysis.

  2. Surface polyPEGylation of Eu{sup 3+} doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangjian; Liu, Meiying [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Heng, Chunning [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an 710069 (China); Huang, Qiang; Mao, Liucheng; Huang, Hongye [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Hui, Junfeng [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an 710069 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and The Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2017-03-31

    Highlights: • Surface modification of HAp nanorods through the combination of ligand exchange reaction and metal free SI-ATRP. • HAp-polyPEGMA displayed high water dispersibility, good biocompatibility and biological imaging capability. • Metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts of conventional ATRP. - Abstract: The Eu{sup 3+} doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu{sup 3+} doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface

  3. Surface polyPEGylation of Eu"3"+ doped luminescent hydroxyapatite nanorods through the combination of ligand exchange and metal free surface initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Zeng, Guangjian; Liu, Meiying; Heng, Chunning; Huang, Qiang; Mao, Liucheng; Huang, Hongye; Hui, Junfeng; Deng, Fengjie; Zhang, Xiaoyong; Wei, Yen

    2017-01-01

    Highlights: • Surface modification of HAp nanorods through the combination of ligand exchange reaction and metal free SI-ATRP. • HAp-polyPEGMA displayed high water dispersibility, good biocompatibility and biological imaging capability. • Metal free ATRP can overcome the toxic and fluorescence quenching effects of metal catalysts of conventional ATRP. - Abstract: The Eu"3"+ doped luminescent hydroxyapatite (HAp) nanorods with uniform size and morphology can be synthesized by hydrothermal route. However, these HAp nanorods are coated by hydrophobic oleylamine, which makes them difficult to be dispersed in aqueous solution and impede their biomedical applications. In this work, Eu"3"+ doped luminescent polymers functionalized HAp nanorods were prepared through the combination of ligand exchange reaction and metal free surface initiated atom transfer radical polymerization (ATRP) method. In this procedure, the amino group functionalized HAp nanorods were first prepared by ligand exchange reaction using adenosine monophosphate (AMP) as ligand. Then the Br-containing initiators (HAp-Br) were introduced onto the surface of HAp-AMP nanorods through the amidation reaction. Finally, polymers functionalized HAp nanorods were prepared by metal free ATRP method using poly(ethylene glycol) methacrylate (PEGMA) as monomer and 10-phenylphenothiazine (PTH) as organic photocatalyst. The properties of these obtained HAp nanocomposites (HAP-polyPEGMA nanorods) were characterized by means of transmission electron microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis in detail. The cell imaging of these HAP-polyPEGMA nanorods was examined using laser scanning confocal microscope to evaluate their biomedical applications. We demonstrated for the first time that hydrophobic luminescent HAp nanorods can be functionalized with polyPEGMA through the combination of ligand exchange reaction and metal free surface initiated

  4. Electrospun regenerated cellulose nanofibrous membranes surface-grafted with polymer chains/brushes via the atom transfer radical polymerization method for catalase immobilization.

    Science.gov (United States)

    Feng, Quan; Hou, Dayin; Zhao, Yong; Xu, Tao; Menkhaus, Todd J; Fong, Hao

    2014-12-10

    In this study, an electrospun regenerated cellulose (RC) nanofibrous membrane with fiber diameters of ∼200-400 nm was prepared first; subsequently, 2-hydroxyethyl methacrylate (HEMA), 2-dimethylaminoethyl methacrylate (DMAEMA), and acrylic acid (AA) were selected as the monomers for surface grafting of polymer chains/brushes via the atom transfer radical polymerization (ATRP) method. Thereafter, four nanofibrous membranes (i.e., RC, RC-poly(HEMA), RC-poly(DMAEMA), and RC-poly(AA)) were explored as innovative supports for immobilization of an enzyme of bovine liver catalase (CAT). The amount/capacity, activity, stability, and reusability of immobilized catalase were evaluated, and the kinetic parameters (Vmax and Km) for immobilized and free catalase were determined. The results indicated that the respective amounts/capacities of immobilized catalase on RC-poly(HEMA) and RC-poly(DMAEMA) nanofibrous membranes reached 78 ± 3.5 and 67 ± 2.7 mg g(-1), which were considerably higher than the previously reported values. Meanwhile, compared to that of free CAT (i.e., 18 days), the half-life periods of RC-CAT, RC-poly(HEMA)-CAT, RC-poly(DMAEMA)-CAT, and RC-poly(AA)-CAT were 49, 58, 56, and 60 days, respectively, indicating that the storage stability of immobilized catalase was also significantly improved. Furthermore, the immobilized catalase exhibited substantially higher resistance to temperature variation (tested from 5 to 70 °C) and lower degree of sensitivity to pH value (tested from 4.0 and 10.0) than the free catalase. In particular, according to the kinetic parameters of Vmax and Km, the nanofibrous membranes of RC-poly(HEMA) (i.e., 5102 μmol mg(-1) min(-1) and 44.89 mM) and RC-poly(DMAEMA) (i.e., 4651 μmol mg(-1) min(-1) and 46.98 mM) had the most satisfactory biocompatibility with immobilized catalase. It was therefore concluded that the electrospun RC nanofibrous membranes surface-grafted with 3-dimensional nanolayers of polymer chains/brushes would be

  5. Polymer-Based Black Phosphorus (bP) Hybrid Materials by in Situ Radical Polymerization: An Effective Tool To Exfoliate bP and Stabilize bP Nanoflakes

    Science.gov (United States)

    2018-01-01

    Black phosphorus (bP) has been recently investigated for next generation nanoelectronic multifunctional devices. However, the intrinsic instability of exfoliated bP (the bP nanoflakes) toward both moisture and air has so far overshadowed its practical implementation. In order to contribute to fill this gap, we report here the preparation of new hybrid polymer-based materials where bP nanoflakes (bPn) exhibit a significantly improved stability. The new materials have been prepared by different synthetic paths including: (i) the mixing of conventionally liquid-phase exfoliated bP (in dimethyl sulfoxide, DMSO) with poly(methyl methacrylate) (PMMA) solution; (ii) the direct exfoliation of bP in a polymeric solution; (iii) the in situ radical polymerization after exfoliating bP in the liquid monomer (methyl methacrylate, MMA). This last methodology concerns the preparation of stable suspensions of bPn–MMA by sonication-assisted liquid-phase exfoliation (LPE) of bP in the presence of MMA followed by radical polymerization. The hybrids characteristics have been compared in order to evaluate the bP dispersion and the effectiveness of the bPn interfacial interactions with polymer chains aimed at their long-term environmental stabilization. The passivation of the bPn is particularly effective when the hybrid material is prepared by in situ polymerization. By using this synthetic methodology, the nanoflakes, even if with a gradient of dispersion (size of aggregates), preserve their chemical structure from oxidation (as proved by both Raman and 31P-solid state NMR studies) and are particularly stable to air and UV light exposure. The feasibility of this approach, capable of efficiently exfoliating bP while protecting the bPn, has been then verified by using different vinyl monomers (styrene and N-vinylpyrrolidone), thus obtaining hybrids where the nanoflakes are embedded in polymer matrices with a variety of intriguing thermal, mechanical, and solubility characteristics.

  6. Two- and Three-Component Visible Light Photoinitiating Systems for Radical Polymerization Based on Onium Salts: An Overview of Mechanistic and Laser Flash Photolysis Studies

    Directory of Open Access Journals (Sweden)

    María L. Gómez

    2012-01-01

    Full Text Available A review of our work on two- and-three component photoinitiator systems is presented. The emphasis is in on visible light polymerization in aqueous media. The systems discussed comprise a synthetic dye as sensitizer and an onium salt as coinitiator, or a dye-amine-onium salt with the amine as coinitiator and the onium salt as an enhancer of the polymerization efficiency. The effect of the composition of the system on the photopolymerization kinetics was analyzed. To this end, the photophysics and photochemistry of the dye under polymerization conditions was explored by means of stationary and time-resolved spectroscopic methods. Different dyes and onium salts were investigated. The action mechanism of the different photoinitiators systems is discussed.

  7. Effect of Graphene Oxide on the Reaction Kinetics of Methyl Methacrylate In Situ Radical Polymerization via the Bulk or Solution Technique

    Directory of Open Access Journals (Sweden)

    Ioannis S. Tsagkalias

    2017-09-01

    Full Text Available The synthesis of nanocomposite materials based on poly(methyl methacrylate and graphene oxide (GO is presented using the in situ polymerization technique, starting from methyl methacrylate, graphite oxide, and an initiator, and carried out either with (solution or without (bulk in the presence of a suitable solvent. Reaction kinetics was followed gravimetrically and the appropriate characterization of the products took place using several experimental techniques. X-ray diffraction (XRD data showed that graphite oxide had been transformed to graphene oxide during polymerization, whereas FTIR spectra revealed no significant interactions between the polymer matrix and GO. It appears that during polymerization, the initiator efficiency was reduced by the presence of GO, resulting in a reduction of the reaction rate and a slight increase in the average molecular weight of the polymer formed, measured by gel permeation chromatography (GPC, along with an increase in the glass transition temperature obtained from differential scanning calorimetry (DSC. The presence of the solvent results in the suppression of the gel-effect in the reaction rate curves, the synthesis of polymers with lower average molecular weights and polydispersities of the Molecular Weight Distribution, and lower glass transition temperatures. Finally, from thermogravimetric analysis (TG, it was verified that the presence of GO slightly enhances the thermal stability of the nano-hybrids formed.

  8. The comparison of in vivo properties of water-soluble HPMA-based polymer conjugates with doxorubicin prepared by controlled RAFT or free radical polymerization

    Czech Academy of Sciences Publication Activity Database

    Chytil, Petr; Šírová, Milada; Koziolová, Eva; Ulbrich, Karel; Říhová, Blanka; Etrych, Tomáš

    2015-01-01

    Roč. 64, Suppl. 1 (2015), S41-S49 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : HPMA copolymers * RAFT polymerization * drug delivery system Subject RIV: EB - Genetics ; Molecular Biology; CE - Biochemistry (MBU-M) Impact factor: 1.643, year: 2015 http://www.biomed.cas.cz/physiolres/pdf/64%20Suppl%201/64_S41.pdf

  9. Synthesis and polymerization of vinyl triazolium ionic liquids

    Science.gov (United States)

    Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof; Adzima, Brian

    2018-05-15

    Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.

  10. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    Science.gov (United States)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  11. Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low temperature route to produce porous solid materials.

    Science.gov (United States)

    Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin

    2017-10-01

    We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown.

  12. Radiation induced emulsion polymerization

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1990-01-01

    High energy radiation is particularly favored for the initiation of emulsion polymerization. The yield of free radicals, for example, from the radiolysis of the aqueous phase, is high; G(radical) values of 5-7. In addition, the rather special kinetics associated with emulsion polymerization lead, in general, to very large kinetic chain lengths, even with 'non-ideal' monomers such as vinyl acetate. Together, high polymerization rates at low doses become possible. There are some important advantages of radiation polymerization compared with chemical initiators, such as potassium persulfate. Perhaps the most important among them is the temperature independence of the initiation step. This makes low temperature polymerization very accessible. With monomers such as vinyl acetate, where chain termination to monomer is predominant, low temperatures lead to often highly desirable higher molecular weights. With styrene, the classical ideally behaved monomer, there are the advantages such as, for example, the feasibility of using cationic monomers. These and some attendant disadvantages are discussed in detail, including pilot plant studies

  13. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization (ATRP) from Poly(vinyl chloride)- co -chlorinated Poly(vinyl chloride) (PVC- co -CPVC) Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Suree; Yue, Yanfeng; Kuo, Li-Jung; Mehio, Nada; Li, Meijun; Gill, Gary; Tsouris, Costas; Mayes, Richard T.; Saito, Tomonori; Dai, Sheng

    2016-04-20

    The need to secure future supplies of energy attracts researchers in several countries to a vast resource of nuclear energy fuel: uranium in seawater (estimated at 4.5 billion tons in seawater). In this study, we developed effective adsorbent fibers for the recovery of uranium from seawater via atom-transfer radical polymerization (ATRP) from a poly- (vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. ATRP was employed in the surface graft polymerization of acrylonitrile (AN) and tert-butyl acrylate (tBA), precursors for uranium-interacting functional groups, from PVC-co-CPVC fiber. The [tBA]/[AN] was systematically varied to identify the optimal ratio between hydrophilic groups (from tBA) and uranyl-binding ligands (from AN). The best performing adsorbent fiber, the one with the optimal [tBA]/[AN] ratio and a high degree of grafting (1390%), demonstrated uranium adsorption capacities that are significantly greater than those of the Japan Atomic Energy Agency (JAEA) reference fiber in natural seawater tests (2.42-3.24 g/kg in 42 days of seawater exposure and 5.22 g/kg in 49 days of seawater exposure, versus 1.66 g/kg in 42 days of seawater exposure and 1.71 g/kg in 49 days of seawater exposure for JAEA). Adsorption of other metal ions from seawater and their corresponding kinetics were also studied. The grafting of alternative monomers for the recovery of uranium from seawater is now under development by this versatile technique of ATRP.

  14. Tuning the Solubility of Copper Complex in Atom Transfer Radical Self-Condensing Vinyl Polymerizations to Control Polymer Topology via One-Pot to the Synthesis of Hyperbranched Core Star Polymers

    Directory of Open Access Journals (Sweden)

    Zong-Cheng Chen

    2014-09-01

    Full Text Available In this paper, we propose a simple one-pot methodology for proceeding from atom transfer reaction-induced conventional free radical polymerization (AT-FRP to atom transfer self-condensing vinyl polymerization (AT-SCVP through manipulation of the catalyst phase homogeneity (i.e., CuBr/2,2'-bipyridine (CuBr/Bpy in a mixture of styrene (St, 4-vinyl benzyl chloride (VBC, and ethyl 2-bromoisobutyrate. Tests of the solubilities of CuBr/Bpy and CuBr2/Bpy under various conditions revealed that both temperature and solvent polarity were factors affecting the solubility of these copper complexes. Accordingly, we obtained different polymer topologies when performing AT-SCVP in different single solvents. We investigated two different strategies to control the polymer topology in one-pot: varying temperature and varying solvent polarity. In both cases, different fractions of branching revealed the efficacy of varying the polymer topology. To diversify the functionality of the peripheral space, we performed chain extensions of the resulting hyperbranched poly(St-co-VBC macroinitiator (name as: hbPSt MI with either St or tBA (tert-butyl acrylate. The resulting hyperbranched core star polymer had high molecular weights (hbPSt-g-PSt: Mn = 25,000, Đ = 1.77; hbPSt-g-PtBA: Mn = 27,000, Đ = 1.98; hydrolysis of the tert-butyl groups of the later provided a hyperbranched core star polymer featuring hydrophilic poly(acrylic acid segments.

  15. Ultrahigh Molecular Weight Linear Block Copolymers: Rapid Access by Reversible-Deactivation Radical Polymerization and Self- Assembly into Large Domain Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mapas, Jose Kenneth D.; Thomay, Tim; Cartwright, Alexander N.; Ilavsky, Jan; Rzayev, Javid

    2016-05-05

    Block copolymer (BCP) derived periodic nanostructures with domain sizes larger than 150 nm present a versatile platform for the fabrication of photonic materials. So far, the access to such materials has been limited to highly synthetically involved protocols. Herein, we report a simple, “user-friendly” method for the preparation of ultrahigh molecular weight linear poly(solketal methacrylate-b-styrene) block copolymers by a combination of Cu-wire-mediated ATRP and RAFT polymerizations. The synthesized copolymers with molecular weights up to 1.6 million g/mol and moderate dispersities readily assemble into highly ordered cylindrical or lamella microstructures with domain sizes as large as 292 nm, as determined by ultra-small-angle x-ray scattering and scanning electron microscopy analyses. Solvent cast films of the synthesized block copolymers exhibit stop bands in the visible spectrum correlated to their domain spacings. The described method opens new avenues for facilitated fabrication and the advancement of fundamental understanding of BCP-derived photonic nanomaterials for a variety of applications.

  16. Designing of fluorescent and magnetic imprinted polymer for rapid, selective and sensitive detection of imidacloprid via activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique

    Science.gov (United States)

    Kumar, Sunil; Karfa, Paramita; Madhuri, Rashmi; Sharma, Prashant K.

    2018-05-01

    In this work, we report on a dual-behavior electrochemical/optical sensor for sensitive determination of Imidacloprid by fluorescent dye (fluorescein, FL) and imprinted polymer modified europium doped superparamagnetic iron oxide nanoparticles (FL@SPIONs@MIP). The imidacloprid (IMD)-imprinted polymer was directly synthesized on the Eu-SPIONs surface via Activators regenerated by the electron transfer-atom transfer radical polymerization (ARGET-ATRP) technique. Preparation, characterization and application of the prepared FL@SPIONs@MIP were systematically investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), fluorescence spectroscopy and electrochemical techniques. The electrochemical experiments exhibited a remarkable selectivity of the prepared sensor towards IMD. Determination of IMD by the square wave stripping voltammetry method represented a wide linear range of 0.059-0.791 μg L-1 with a detection limit of 0.0125 μg L-1. In addition, the fluorescence method shows a linear range of 0.039-0.942 μg L-1 and LOD of 0.0108 μg L-1. The fluorescence property of prepared FL@SPIONs@MIP was used for rapid, on-spot but selective detection of IMD in real samples. The proposed electrode displayed excellent repeatability and long-term stability and was successfully applied for quantitative and trace level determination of IMD in several real samples.

  17. Copper-mediated oxidative degradation of catecholamines and oxidative damage of protein

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, P.R.; Harria, M.I.N.; Felix, J.M.; Hoffmann, M.E. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Biologia

    1997-12-31

    Full text. Degradative oxidation of catecholamines has been a matter of large interest in recent years due to the evidences associating their autoxidation with the etiology of neurotoxic and cardiotoxic processes. In this work we present data on the degradative oxidation of catecholamines of physiological importance: isoproterenol (IP), epinephrine (EP), norepinephrine (NEP), deoxyepinephrine (DEP) and dopamine (DA). The degradative oxidation of the catecholamines was followed by measurement of spectral changes and oxygen consumption by neutral aqueous solutions. The data show that Cu{sup 2+} strongly accelerated the rate of catecholamine oxidation, following the decreasing order; EP>DEP>IP>NEP>DA. The production of superoxide anion radical during catecholamine oxidation was very slow, even in the presence of Cu{sup 2+}. The ability of IP to induce damages on bovine serum albumin (BSA) was determined by measuring the formation of carbonyl-groups in the protein, detected by reduction with tritiated Na BH{sub 4}. The incubation of BSA with IP (50-500{mu}M), in the presence of 100{mu}M Cu{sup 2+} leaded to an increased and dose dependent {sup 3} H-incorporation by the oxidized protein. The production of oxidative damage by IP/Cu{sup 2+} was accompanied by marked BSA fragmentation, detected by SDS-polyacrylamide gel dependent (25-400{mu}M IP) des appearance of the original BSA band and appearance of smaller fragments spread in the gel, when incubation has been done in the presence of 100{mu}M Cu{sup 2+}. These results suggest that copper-catalysed oxidative degradation of proteins induced by catecholamines might be critically involved in the toxic action of these molecules

  18. Palladium- and copper-mediated N-aryl bond formation reactions for the synthesis of biological active compounds

    Directory of Open Access Journals (Sweden)

    Burkhard Koenig

    2011-01-01

    Full Text Available N-Arylated aliphatic and aromatic amines are important substituents in many biologically active compounds. In the last few years, transition-metal-mediated N-aryl bond formation has become a standard procedure for the introduction of amines into aromatic systems. While N-arylation of simple aromatic halides by simple amines works with many of the described methods in high yield, the reactions may require detailed optimization if applied to the synthesis of complex molecules with additional functional groups, such as natural products or drugs. We discuss and compare in this review the three main N-arylation methods in their application to the synthesis of biologically active compounds: Palladium-catalysed Buchwald–Hartwig-type reactions, copper-mediated Ullmann-type and Chan–Lam-type N-arylation reactions. The discussed examples show that palladium-catalysed reactions are favoured for large-scale applications and tolerate sterically demanding substituents on the coupling partners better than Chan–Lam reactions. Chan–Lam N-arylations are particularly mild and do not require additional ligands, which facilitates the work-up. However, reaction times can be very long. Ullmann- and Buchwald–Hartwig-type methods have been used in intramolecular reactions, giving access to complex ring structures. All three N-arylation methods have specific advantages and disadvantages that should be considered when selecting the reaction conditions for a desired C–N bond formation in the course of a total synthesis or drug synthesis.

  19. Copper-mediated C-H activation/C-S cross-coupling of heterocycles with thiols

    KAUST Repository

    Ranjit, Sadananda

    2011-11-04

    We report the synthesis of a series of aryl- or alkyl-substituted 2-mercaptobenzothiazoles by direct thiolation of benzothiazoles with aryl or alkyl thiols via copper-mediated aerobic C-H bond activation in the presence of stoichiometric CuI, 2,2′-bipyridine and Na 2CO 3. We also show that the approach can be extended to thiazole, benzimidazole, and indole substrates. In addition, we present detailed mechanistic investigations on the Cu(I)-mediated direct thiolation reactions. Both computational studies and experimental results reveal that the copper-thiolate complex [(L)Cu(SR)] (L: nitrogen-based bidentate ligand such as 2,2′-bipyridine; R: aryl or alkyl group) is the first reactive intermediate responsible for the observed organic transformation. Furthermore, our computational studies suggest a stepwise reaction mechanism based on a hydrogen atom abstraction pathway, which is more energetically feasible than many other possible pathways including β-hydride elimination, single electron transfer, hydrogen atom transfer, oxidative addition/reductive elimination, and σ-bond metathesis. © 2011 American Chemical Society.

  20. Functionalization and Polymerization on the CNT Surfaces

    KAUST Repository

    Albuerne, Julio

    2013-07-01

    In this review we focus on the current status of using carbon nanotube (CNT) as a filler for polymer nanocomposites. Starting with the historical background of CNT, its distinct properties and the surface functionalization of the nanotube, the three different surface polymerization techniques, namely grafting "from", "to" and "through/in between" were discussed. Wider focus has been given on "grafting from" surface initiated polymerizations, including atom transfer radical polymerization (ATRP), reversible addition fragmentation chain-transfer (RAFT) Polymerization, nitroxide mediated polymerization (NMP), ring opening polymerization (ROP) and other miscellaneous polymerization methods. The grafting "to" and "through / in between" also discussed and compared with grafting from polymerization. The merits and shortcomings of all three grafting methods were discussed and the bottleneck issue in grafting from method has been highlighted. Furthermore the current and potential future industrial applications were deliberated. Finally the toxicity issue of CNTs in the final product has been reviewed with the limited available literature knowledge. © 2013 Bentham Science Publishers.

  1. Preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) monolithic column by in situ polymerization and a click reaction for capillary liquid chromatography of small molecules and proteins.

    Science.gov (United States)

    Lin, Zian; Yu, Ruifang; Hu, Wenli; Zheng, Jiangnan; Tong, Ping; Zhao, Hongzhi; Cai, Zongwei

    2015-07-07

    Combining free radical polymerization with click chemistry via a copper-mediated azide/alkyne cycloaddition (CuAAC) reaction in a "one-pot" process, a facile approach was developed for the preparation of a poly(3'-azido-3'-deoxythymidine-co-propargyl methacrylate-co-pentaerythritol triacrylate) (AZT-co-PMA-co-PETA) monolithic column. The resulting poly(AZT-co-PMA-co-PETA) monolith showed a relatively homogeneous monolithic structure, good permeability and mechanical stability. Different ratios of monomers and porogens were used for optimizing the properties of a monolithic column. A series of alkylbenzenes, amides, anilines, and benzoic acids were used to evaluate the chromatographic properties of the polymer monolith in terms of hydrophobic, hydrophilic and cation-exchange interactions, and the results showed that the poly(AZT-co-PMA-co-PETA) monolith exhibited more flexible adjustment in chromatographic selectivity than that of the parent poly(PMA-co-PETA) and AZT-modified poly(PMA-co-PETA) monoliths. Column efficiencies for toluene, DMF, and formamide with 35,000-48,000 theoretical plates per m could be obtained at a linear velocity of 0.17 mm s(-1). The run-to-run, column-to-column, and batch-to-batch repeatabilities of the retention factors were less than 4.2%. In addition, the proposed monolith was also applied to efficient separation of sulfonamides, nucleobases and nucleosides, anesthetics and proteins for demonstrating its potential.

  2. Nitroxide radicals formed in situ as polymer chain growth regulators

    International Nuclear Information System (INIS)

    Kolyakina, Elena V; Grishin, Dmitry F

    2009-01-01

    Published data on controlled synthesis of macromolecules using nitroxide radicals, formed in situ during polymerization, as polymer chain growth regulators are systematized and generalized. The attention is focused on the mechanism of polymer chain growth control during reversibly inhibited radical homopolymerization and the effect of structure of precursors and regulating additives on the polymerization kinetics of monomers of different nature and the molecular-mass characteristics of the polymers thus formed. The key methods for generation of nitroxide radicals directly during polymerization are considered. The prospects for development and practical use of these approaches for the synthesis of new polymeric materials are evaluated.

  3. Influence of CO2 on ultrasound-induced polymerizations in high-pressure fluids

    NARCIS (Netherlands)

    Kuijpers, M.W.A.; Jacobs, L.J.M.; Kemmere, M.F.; Keurentjes, J.T.F.

    2005-01-01

    A strong viscosity increase upon polymerization hinders cavitation and subsequent radical formation during an ultrasound-induced bulk polymerization. Ultrasound-induced radical polymerizations of methyl methacrylate (MMA) have been performed in CO2-expanded MMA, as well as in bulk MMA. For this

  4. Thermoplastic elastomers via controlled radical graft polymerization

    NARCIS (Netherlands)

    Tuzcu, G.

    2012-01-01

    Rubbery behavior with a consistent modulus over a wide temperature range is a challenge in the search for ultimate structure-property relations of thermoplastic elastomers (TPEs). This feature is closely related to the phase separation behavior of the constitutional segments and the Tg of the

  5. Nanoparticles from a controlled polymerization process

    International Nuclear Information System (INIS)

    Tirumala, V.R.; Caneba, G.T.; Dar, Y.; Wang, H.-H.; Mancini, D.C.

    2003-01-01

    Free-radical retrograde precipitation polymerization process in the past has shown excellent control characteristics over reaction rate, molecular weight, and in the entrapment of live radicals for the generation of block copolymers. The same principle has now been extended to study the reaction confinement to a nanoscale region. Nanosized polymer particles have been reported to form from block copolymers, conventional precipitation polymerization methods, or through emulsion polymerization approaches. In this work, we present a new method of generating nanosized polymer particles by polymerizing the monomer in an environment that precipitates the polymer above the lower critical solution temperature. The nanoparticles have been characterized by both tapping-mode atomic force microscopy observations and in situ synchrotron time-resolved small-angle X-ray scattering analysis. The results from both the techniques showed the formation of nanoparticles in the size range of 15-30 nm, directly from the polymerization process.

  6. Enhanced binding capacity of boronate affinity adsorbent via surface modification of silica by combination of atom transfer radical polymerization and chain-end functionalization for high-efficiency enrichment of cis-diol molecules

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; He, Maofang; Wang, Chaozhan; Wei, Yinmao, E-mail: ymwei@nwu.edu.cn

    2015-07-30

    Boronate affinity materials have been widely used for specific separation and preconcentration of cis-diol molecules, but most do not have sufficient capacity due to limited binding sites on the material surface. In this work, we prepared a phenylboronic acid-functionalized adsorbent with a high binding capacity via the combination of surface-initiated atom transfer radical polymerization (SI-ATRP) and chain-end functionalization. With this method, the terminal chlorides of the polymer chains were used fully, and the proposed adsorbent contains dense boronic acid polymers chain with boronic acid on the chain end. Consequently, the proposed adsorbent possesses excellent selectivity and a high binding capacity of 513.6 μmol g{sup −1} for catechol and 736.8 μmol g{sup −1} for fructose, which are much higher than those of other reported adsorbents. The dispersed solid-phase extraction (dSPE) based on the prepared adsorbent was used for extraction of three cis-diol drugs (i.e., epinephrine, isoprenaline and caffeic acid isopropyl ester) from plasma; the eluates were analyzed by HPLC-UV. The reduced amount of adsorbent (i.e., 2.0 mg) could still eliminate interferences efficiently and yielded a recovery range of 85.6–101.1% with relative standard deviations ranging from 2.5 to 9.7% (n = 5). The results indicated that the proposed strategy could serve as a promising alternative to increase the density of surface functional groups on the adsorbent; thus, the prepared adsorbent has the potential to effectively enrich cis-diol substances in real samples. - Highlights: • Boronate adsorbent is prepared via ATRP and chain-end functionalization. • The adsorbent has quite high binding capacity for cis-diols. • Binding capacity is easily manipulated by ATRP condition. • Chain-end functionalization can improve binding capacity significantly. • Reduced adsorbent is consumed in dispersed solid-phase extraction of cis-diols.

  7. Elektroaktive polymerer

    DEFF Research Database (Denmark)

    West, K.

    Traditionelt tænker vi på polymerer (plastik) som elektrisk isolerende materialer - det som er udenpå ledningerne. I dag kender vi imidlertid også polymerer med intrinsisk elektrisk ledningsevne, og plast er på vej ind i anvendelser, der tidligereudelukkende var baseret på metaller og uorganiske...... halvledere. Hertil kommer, at en del af de ledende polymerer kan stimuleres til at skifte mellem en ledende og en halvledende tilstand, hvorved de ændret både form og farve. I foredraget gives der enrække eksempler på anvendelse af polymerer som elektriske komponenter - rækkende fra polymer elektronik over...

  8. Condensation Polymerization

    Indian Academy of Sciences (India)

    they work on hyperbranched ... nally accepted, and the study of polymers gained momentum .... and BB are taken; i.e., there is stoichiometric balance. ... Each growing polymer radical has a fairly short life time (< 1 minute), and hence fairly.

  9. Prevention of iron- and copper-mediated DNA damage by catecholamine and amino acid neurotransmitters, L-DOPA, and curcumin: metal binding as a general antioxidant mechanism.

    Science.gov (United States)

    García, Carla R; Angelé-Martínez, Carlos; Wilkes, Jenna A; Wang, Hsiao C; Battin, Erin E; Brumaghim, Julia L

    2012-06-07

    Concentrations of labile iron and copper are elevated in patients with neurological disorders, causing interest in metal-neurotransmitter interactions. Catecholamine (dopamine, epinephrine, and norepinephrine) and amino acid (glycine, glutamate, and 4-aminobutyrate) neurotransmitters are antioxidants also known to bind metal ions. To investigate the role of metal binding as an antioxidant mechanism for these neurotransmitters, L-dihydroxyphenylalanine (L-DOPA), and curcumin, their abilities to prevent iron- and copper-mediated DNA damage were quantified, cyclic voltammetry was used to determine the relationship between their redox potentials and DNA damage prevention, and UV-vis studies were conducted to determine iron and copper binding as well as iron oxidation rates. In contrast to amino acid neurotransmitters, catecholamine neurotransmitters, L-DOPA, and curcumin prevent significant iron-mediated DNA damage (IC(50) values of 3.2 to 18 μM) and are electrochemically active. However, glycine and glutamate are more effective at preventing copper-mediated DNA damage (IC(50) values of 35 and 12.9 μM, respectively) than L-DOPA, the only catecholamine to prevent this damage (IC(50) = 73 μM). This metal-mediated DNA damage prevention is directly related to the metal-binding behaviour of these compounds. When bound to iron or copper, the catecholamines, amino acids, and curcumin significantly shift iron oxidation potentials and stabilize Fe(3+) over Fe(2+) and Cu(2+) over Cu(+), a factor that may prevent metal redox cycling in vivo. These results highlight the disparate antioxidant activities of neurotransmitters, drugs, and supplements and highlight the importance of considering metal binding when identifying antioxidants to treat and prevent neurodegenerative disorders.

  10. Polymerization Simulator for Introductory Polymer and Material Science Courses

    Science.gov (United States)

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  11. Polar-Nonpolar Radical Copolymerization under Li+ Catalysis

    Science.gov (United States)

    2008-09-21

    bonds or aromatic rings. Thus, we propose that a transfer of a methyl radical from CB11Me12C to IB triggers a radical polymerization chain that yields ...b-PIB and the resulting CB11Me11 byproduct concurrently triggers a cationic polymerization chain that yields l-PIB terminated with a carborate anion...tetrahydrofuran and passed through a column of alumina about five times to remove the bulk of the catalyst. A Soxhlet apparatus was used to recover

  12. Radical Evil

    Directory of Open Access Journals (Sweden)

    Carlos Manrique

    2007-12-01

    Full Text Available There is an aporia in Kant’s analysis of evil: he defines radical evilas an invisible disposition of the will, but he also demands an inferential connection between visible evil actions and this invisible disposition. This inference,however, undermines the radical invisibility of radical evil according to Kant’s own definition of the latter. Noting how this invisibility of moral worth is a distinctive feature of Kant’s approach to the moral problem, the paper then asks why, in the Groundwork, he nonetheless forecloses a question about evil that seems to be consistent with this approach. It is argued that to account for this aporia and this foreclosure, one has to interrogate the way in which the category of religion orients Kant’s incipient philosophy of history in Die Religion.

  13. Polymerization of N-(fluoro phenyl) maleimides

    International Nuclear Information System (INIS)

    Barrales-Rienda, J.M.; Ramos, J.G.; Chaves, M.S.

    1979-01-01

    Poly(N-aryl maleimide)s of characteristic structures have been synthesized and some of their physical properties studied. The polymerization of N-(fluoro phenyl) maleimides by free-radical initiation in bulk or in solution and by anionic catalyst have been studied to compare the characteristics of polymerization by γ-ray irradiation with that by free-radical initiation. The polymers were characterized by elemental analysis, intrinsic viscosity, spectroscopy (IR and NMR), programmed thermogravimetric analysis, and x-ray diffraction. Spectra of polymers prepared by radiation and anionic polymerization were nearly identical with those of polymers prepared by free-radical polymerization initiated by azobisisobutyronitrile in bulk or in solution and by the self-initiated thermal polymerization. A variety of reaction conditions were tried, but all attempts to change the molecular structure of the polymers were unsuccessful. Rates of thermal degradation for poly[N-(fluoro phenyl) maleimide]s have been analyzed by using a multiple-heating-rate procedure. Overall activation energy, order of reaction, and frequency factor have been evaluated. 6 figures, 8 tables

  14. Tunable, Quantitative Fenton-RAFT Polymerization via Metered Reagent Addition.

    Science.gov (United States)

    Nothling, Mitchell D; McKenzie, Thomas G; Reyhani, Amin; Qiao, Greg G

    2018-05-10

    A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H 2 O 2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Polymeric Coatings for Combating Biocorrosion

    Science.gov (United States)

    Guo, Jing; Yuan, Shaojun; Jiang, Wei; Lv, Li; Liang, Bin; Pehkonen, Simo O.

    2018-03-01

    Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  16. Engineering a horseradish peroxidase C stable to radical attacks by mutating multiple radical coupling sites.

    Science.gov (United States)

    Kim, Su Jin; Joo, Jeong Chan; Song, Bong Keun; Yoo, Young Je; Kim, Yong Hwan

    2015-04-01

    Peroxidases have great potential as industrial biocatalysts. In particular, the oxidative polymerization of phenolic compounds catalyzed by peroxidases has been extensively examined because of the advantage of this method over other conventional chemical methods. However, the industrial application of peroxidases is often limited because of their rapid inactivation by phenoxyl radicals during oxidative polymerization. In this work, we report a novel protein engineering approach to improve the radical stability of horseradish peroxidase isozyme C (HRPC). Phenylalanine residues that are vulnerable to modification by the phenoxyl radicals were identified using mass spectrometry analysis. UV-Vis and CD spectra showed that radical coupling did not change the secondary structure or the active site of HRPC. Four phenylalanine (Phe) residues (F68, F142, F143, and F179) were each mutated to alanine residues to generate single mutants to examine the role of these sites in radical coupling. Despite marginal improvement of radical stability, each single mutant still exhibited rapid radical inactivation. To further reduce inactivation by radical coupling, the four substitution mutations were combined in F68A/F142A/F143A/F179A. This mutant demonstrated dramatic enhancement of radical stability by retaining 41% of its initial activity compared to the wild-type, which was completely inactivated. Structure and sequence alignment revealed that radical-vulnerable Phe residues of HPRC are conserved in homologous peroxidases, which showed the same rapid inactivation tendency as HRPC. Based on our site-directed mutagenesis and biochemical characterization, we have shown that engineering radical-vulnerable residues to eliminate multiple radical coupling can be a good strategy to improve the stability of peroxidases against radical attack. © 2014 Wiley Periodicals, Inc.

  17. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  18. Heterofunctional Glycopolypeptides by Combination of Thiol-Ene Chemistry and NCA Polymerization.

    Science.gov (United States)

    Krannig, Kai-Steffen; Schlaad, Helmut

    2016-01-01

    Glycopolypeptides are prepared either by the polymerization of glycosylated amino acid N-carboxyanhydrides (NCAs) or by the post-polymerization functionalization of polypeptides with suitable functional groups. Here we present a method for the in-situ functionalization and (co-) polymerization of allylglycine N-carboxyanhydride in a facile one-pot procedure, combining radical thiol-ene photochemistry and nucleophilic ring-opening polymerization techniques, to yield well-defined heterofunctional glycopolypeptides.

  19. Radical fashion and radical fashion innovation

    NARCIS (Netherlands)

    Zhang, D.; Benedetto, Di A.C.

    2010-01-01

    This is a study of the related concepts of radical fashion and radical fashion innovation. Radical fashions are defined here as those that may never enter the market at all, and exist primarily on runway shows, in exhibitions and in publicity; by contrast, radical fashion innovations may be very

  20. Mechanism and kinetics of addition polymerizations

    CERN Document Server

    Kucera, M

    1991-01-01

    This volume presents an up-to-date survey of knowledge concerning addition type polymerizations. It contains nine chapters, each of which covers a particular basic term. Whenever necessary, the phenomena are discussed from the viewpoint of both stationary and non-stationary state of radical, ionic (i.e. anionic and cationic) and coordination polymerization. Special attention has been paid to the propagation process. It provides not only a general overview but also information on important special cases (theoretical conditions of propagation, influence of external factors, controlled propagatio

  1. Nitroxide-mediated controlled radical polymerisation: towards control of molar mass Controlled Radical Polymerisation

    NARCIS (Netherlands)

    Bon, S.A.F.; Bergman, F.A.C.; Es, van J.J.G.S.; Klumperman, B.; German, A.L.; Matyjaszewski, K.

    1998-01-01

    The mechanism of the TEMPO-mediated controlled radical polymerization of styrene in bulk is discussed. It is shown that the isotropic correlation time (tc) of a nitroxide can be used as a measure of the diffusive rate coefficient of trapping (ketD). A general empirical relationship for the density

  2. Radiation-induced polymerization and radiation effect on polymers

    International Nuclear Information System (INIS)

    Seguchi, Tadao

    1977-12-01

    The processes of radiation-induced polymerization of monomers and also radiation effects on polymers have been studied by instrumental analyses of electron spin resonance (ESR), nuclear magnetic resonance (NMR) and electron microscopy. In radiation-induced polymerization, graft-copolymerization and absorbed state polymerization were taken up. For graft-copolymerization, monomers such as methylmethacrylate and butadiene were made to react with irradiated polyethylene, and behaviors of the initiating radicals and propagating radicals were followed under the reaction by ESR. For absorbed state polymerization, acrylonitrile/zeolite and methylmethacrylate/zeolite were chosen. Absorbed monomers were irradiated at 77 0 K and polymerized at room temperature. Active species and the concentrations were measured by ESR and the yields of polymer were observed by NMR. In radiation effect on polymers, polyvinylfluoride, polyvinylidenfluoride and polytetrafluoroethylene were taken up. Active species trapped in the polymer matrixes were identified and decay and reactivity of the species were also studied. On the basis of information from the electron microscopy and x-ray analysis, radiation effects on these polymers are described. In polytetrafluoroethylene produced by radiation polymerization, the relation between morphology and polymerization conditions and also the process of crystallization during polymerization were studied. (auth.)

  3. First example of a reversible single-crystal-to-single-crystal polymerization-depolymerization accompanied by a magnetic anomaly for a transition-metal complex with an organic radical.

    Science.gov (United States)

    Ovcharenko, Victor I; Fokin, Sergey V; Kostina, Elvina T; Romanenko, Galina V; Bogomyakov, Artem S; Tretyakov, Eugene V

    2012-11-19

    The reaction of copper(II) hexafluoroacetylacetonate [Cu(hfac)2] with the stable nitronyl nitroxide 2-(1-ethyl-3-methyl-1H-pyrazol-4-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (L(a)) resulted in a paired heterospin complex [[Cu(hfac)2]3(μ-O,N-L(a))2][Cu(hfac)2(O-L(a))2]. The crystals of the compound were found to be capable of a reversible single-crystal-to-single-crystal (SC-SC) transformation initiated by the variation of temperature. At room temperature, the molecular structure of [[Cu(hfac)2]3(μ-O,N-L(a))2][Cu(hfac)2(O-L(a))2] is formed by the alternating fragments of the pair complex. Cooling the crystals of the complex below 225 K caused considerable mutual displacements of adjacent molecules, which ended in a transformation of the molecular structure into a polymer chain structure. A reversible topotactic polymerization-depolymerization coordination reaction actually takes place in the solid during repeated cooling-heating cycles: [[Cu(hfac)2]3(μ-O,N-L(a))2][Cu(hfac)2(O-L(a))2] ⇌ Cu(hfac)2(μ-O,N-L(a))]∞. Polymerization during cooling is the result of the anomalously great shortening of intermolecular distances (from 4.403 Å at 295 K to 2.460 Å at 150 K; Δd = 1.943 Å) between the terminal Cu atoms of the trinuclear fragments {[[Cu(hfac)2]3(μ-O,N-L(a))2]} and the noncoordinated N atoms of the pyrazole rings of the mononuclear {[Cu(hfac)2(O-L(a))2]} fragments. When the low-temperature phase was heated above 270 K, the polymer chain structure was destroyed and the compound was again converted to the pair molecular complex. The specifics of the given SC-SC transformation lies in the fact that the process is accompanied by a magnetic anomaly, because the intracrystalline displacements of molecules lead to a considerable change in the mutual orientation of the paramagnetic centers, which, in turn, causes modulation of the exchange interaction between the odd electrons of the Cu(2+) ion and nitroxide. On the temperature curve of

  4. RAFT polymerization and some of its applications.

    Science.gov (United States)

    Moad, Graeme; Rizzardo, Ezio; Thang, San H

    2013-08-01

    Reversible addition-fragmentation chain transfer (RAFT) is one of the most robust and versatile methods for controlling radical polymerization. With appropriate selection of the RAFT agent for the monomers and reaction conditions, it is applicable to the majority of monomers subject to radical polymerization. The process can be used in the synthesis of well-defined homo-, gradient, diblock, triblock, and star polymers and more complex architectures, which include microgels and polymer brushes. In this Focus Review we describe how the development of RAFT and RAFT application has been facilitated by the adoption of continuous flow techniques using tubular reactors and through the use of high-throughput methodology. Applications described include the use of RAFT in the preparation of polymers for optoelectronics, block copolymer therapeutics, and star polymer rheology control agents. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Near-Infrared Free-Radical and Free-Radical-Promoted Cationic Photopolymerizations by In-Source Lighting Using Upconverting Glass.

    Science.gov (United States)

    Kocaarslan, Azra; Tabanli, Sevcan; Eryurek, Gonul; Yagci, Yusuf

    2017-11-13

    A method is presented for the initiation of free-radical and free-radical-promoted cationic photopolymerizations by in-source lighting in the near-infrared (NIR) region using upconverting glass (UCG). This approach utilizes laser irradiation of UCG at 975 nm in the presence of fluorescein (FL) and pentamethyldiethylene triamine (PMDETA). FL excited by light emitted from the UCG undergoes electron-transfer reactions with PMDETA to form free radicals capable of initiating polymerization of methyl methacrylate. To execute the corresponding free-radical-promoted cationic polymerization of cyclohexene oxide, isobutyl vinyl ether, and N-vinyl carbazole, it was necessary to use FL, dimethyl aniline (DMA), and diphenyliodonium hexafluorophosphate as sensitizer, coinitiator, and oxidant, respectively. Iodonium ions promptly oxidize DMA radicals formed to the corresponding cations. Thus, cationic polymerization with efficiency comparable to the conventional irradiation source was achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. "Click" i polymerer 2

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2012-01-01

    "Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer......"Click"-reaktioner til fremstilling af ledende polymerer med funktionelle håndtag og bipolymermaterialer...

  7. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  8. A model of frontal polymerization using complex initiation

    Directory of Open Access Journals (Sweden)

    P. M. Goldfeder

    1999-01-01

    Full Text Available Frontal polymerization is a process in which a spatially localized reaction zone propagates into a monomer, converting it into a polymer. In the simplest case of free-radical polymerization, a mixture of monomer and initiator is placed in a test tube. A reaction is then initiated at one end of the tube. Over time, a self-sustained thermal wave, in which chemical conversion occurs, is produced. This phenomenon is possible because of the highly exothermic nature of the polymerization reactions.

  9. Time-resolved small-angle neutron scattering study on soap-free emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Motokawa, Ryuhei [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Koizumi, Satoshi [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan)]. E-mail: koizumi@neutrons.tokai.jaeri.go.jp; Hashimoto, Takeji [Research Group of Soft Matter and Neutron Scattering, Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195 (Japan); Nakahira, Takayuki [Department of Applied Chemistry and Biotechnology, Chiba University, Chiba-shi, Chiba 263-8522 (Japan); Annaka, Masahiko [Department of Chemistry, Kyushu University, Fukuoka 812-8581 (Japan)

    2006-11-15

    We investigated an aqueous soap-free emulsion polymerization process of Poly(N-isopropylacrylamide)-block-poly(ethylene glycol) by ultra-small-angle and time-resolved small-angle neutron scattering methods. The results indicate that the compartmentalization of chain end radicals into solid-like micelle cores crucially leads to the quasi-living behavior of the radical polymerization by prohibiting recombination process.

  10. A pulse radiolysis study of emulsion polymerization

    International Nuclear Information System (INIS)

    McAskill, N.A.

    1976-01-01

    The emulsion polymerisation of slightly water soluble monomers such as styrene occurs initially in micelles of surfactant swollen with monomer and later in larger particles consisting of polymer swollen with monomer and stabilized with an outer layer of surfactant. There is considerable controversy on whether the reaction sites of polymerization are inside or on the surface of the particle or micelle. The relative amounts of micelle and particles present at various stages of the polymerization are also nuclear. In the present study the OH radical formed by pulse radiolysis has been used as a probe to investigate the site of solubilization of styrene in various surfactant micelles. Two products can be distinguished by UV spectrometry, a benzyl type radical formed by OH addition to the side chain of styrene and a cyclohexadienyl type radical formed by addition to the ring. Wide differences in the relative amounts of each product were observed suggesting that in some surfactants the styrene ring is buried inside the micelle whilst in other systems the styrene appears to be so solubilized at the interface leaving both the ring and the side chain open to attack by the OH radical. (author)

  11. Initiation of MMA polymerization by iniferters based on dithiocarbamates

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available Twelve modified dithiocarbamates and a thiuramdisulfide used for the initiation of methyl methacrylate (MMA polymerization were synthesized in this study. The polymerization of MMA was followed by determine the yield and molar mass of the obtained PMMA as a function of polymerization time. Four of the synthesized dithiocarbamates S-benzyl-N,N-dibenzyldithiocarbamate, S-allyl-N,N-dibenzyldithiocarbamate S-benzyl-N,N-diisobutyldithiocarbamate and S-benzoyl-N,N-diisobutyldithiocarbamate, as well as N,N,N',N'-tetrabenzylthiuramdisulfide acted as iniferters. They were active as the initiators of the photo and/or thermally initiated radical polymerization of MMA in bulk and inert solvents (benzene and toluene. S Benzyl - N,N - dibenzyldithiocarbamate can be successfully used for the initiation of MMA polymerization in a polar solvent such as dimethylacetamide.

  12. STUDIES ON VINYL POLYMERIZATION WITH INITIATION SYSTEM CONTAINING AMINE DERIVATIVES

    Institute of Scientific and Technical Information of China (English)

    QIU Kunyuan; ZHANG Jingyi; FENG Xinde(S. T. Voong)

    1983-01-01

    Two main types of amine-containing initiation systems were studied in this work. In the case of MMA polymerization initiated by BPO-amine (DMT, DHET, DMA) redox systems, it was found that the polymerization rate and colour stability of the polymer for different amine systems were in the following order: DMT≈DHET>DMA. Accordingly, BPO-DMT and BPO-DHET are effective initiators. In the case of MEMA polymerization by amine (DMT, DHET, DMA) alone, it was found that the polymerization rate and the percentage of conversion for these different amine systems were in the following order: DMT≥DHET>DMA. The polymerization rate and the percentage of conversion also increased with the increase of DMT concentration. From the kinetic investigation the rate equation of Rp=K [DMT]1/2 [MEMA]3/2 was obtained, and the overall activation energy of polymerization was calculated to be 34.3 KJ/mol (8.2 Kcal/mol). Moreover, the polymerization of MEMA in the presence of DMT was strongly inhibited by hydroquinone, indicating the polymerization being free radical in nature. From these results, the mechanism of MEMA polymerization initiated by amine was proposed.

  13. Synthesis of polystyrene with high melting temperature through BDE/CuCl catalyzed polymerization

    Institute of Scientific and Technical Information of China (English)

    WAN; Xiaolong

    2001-01-01

    [1]Ewen, J. A., Novel method for plastic production, Science (in Chinese), 1997, 9: 34.[2]Brintzinger, H. H., Fischer, D., Waymouth, R. M. et al., Stereospecific olefin polymerization with chiral metallocene catalysts, Angewandte Chemie International Edition in English, 1995, 34(11): 1143.[3]Matyjaszewski, K., Atom transfer radical polymerization, role of various components and reaction conditions, Polym. Prep., 1997, 38(2): 736.[4]Wang, J. S., Matyjaszewski, K., Controlled/"living" radical polymerization, atom transfer radical polymerization in the presence of transition-metal complex, J. Am. Soc., 1995, 117: 5614.[5]Wang, J. S., Matyjaszewski, K., Controlled/"living" radical polymerization, halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process, Macromolecules, 1995, 28: 7901.[6]Koto, M., Kamigaito, M., Sawamoto, M. et al., Polymerization of methyl methacrylate with the carbon tetrachloride/dichloro-tris(triphenyphosphine) ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possible of living radical polymerization, Macromolecules, 1995, 28: 1721.[7]Ando, T., Kato, M., Living radical polymerization of methyl methacrylate with Ruthenium complex: formation of polymers with controlled molecular weights and very narrow distributions, Macromolecules, 1996, 29: 1070.[8]Granel, C., Dubios, P., Jerome, R. et al., Controlled radical polymerization of methacrylic monomers in the presence of a bis(ortho-chelated) arylnickel(II) complex and different activated alkyl halides, Macromolecules, 1996, 29: 8576.[9]Granel, C., Moineau, G., Lecome, P. et al., (Meth)acrylates pseudo-living radical polymerization in the presence of transition metal complexes: the kharasch reaction revisited, Polym. Prep., 1997, 38(1): 450.[10]Ando, T., Kamigaito, M., Sawamoto, M., Iron(II) chloride complex for living radical polymerization of methyl methacrylate, Macromolecules, 1997, 30: 4507.[11

  14. THE KINETICS OF METHYL METHACRYLATE POLYMERIZATION INITIATED BY THE VOLATILE PRODUCTS OF A METHYL METHACRYLATE PLASMA

    Institute of Scientific and Technical Information of China (English)

    杨梅林; 马於光; 郑莹光; 沈家骢

    1990-01-01

    It is found that the volatile products of methyl methacrylate plasma can very actively initiate the polymerization of the monomer to produce ultrahigh molecular weight polymers. This polymerization of MMA occurs by a livlng free radical mechanism with instantaneous initiation and monomer transfer.

  15. Síntese de copolímeros em bloco de p-acetoxiestireno com isopreno através de polimerização "viva" via radical livre Synthesis of block copolymers from p-acetoxystyrene and isoprene by "living" free radical polymerization

    Directory of Open Access Journals (Sweden)

    José Carlos Moreira

    2004-09-01

    Full Text Available Neste trabalho, é mostrada a síntese de homopolímeros de p-acetoxiestireno e copolímeros diblocos de p-acetoxiestireno com isopreno, utilizando um iniciador TEMPO-modificado, por um processo de polimerização "viva" via radical livre. As análises de GPC indicaram a formação de copolímeros em bloco com massas molares e polidispersão mais altas quando comparadas aos dos homopolímeros correspondentes. Os copolímeros em bloco poli(p-acetoxiestireno-b-isopreno foram preparados com controle de composição e massa molar até 94500 u.m.a. As análises de DSC mostraram que a transição vítrea do bloco de p-acetoxiestireno foi de 5 a 18 °C mais baixa que aquelas obtidas para os homopolímeros correspondentes. A transição vítrea do bloco de isopreno apresentou valores similares àqueles dos homopolímeros de poliisopreno (-67 a -55 °C.In this work we show the synthesis of homopolymers and diblock copolymers of p-acetoxystyrene and isoprene by using TEMPO-modified free radical initiator. The GPC analyses have shown an increase in the molar masses and in the polydispersity of the copolymers in comparison with their corresponding homopolymer. Poly(p-acetoxystyrene-b-isoprene were prepared with good control of composition and molar mass up to 94,500 a.m.u. DSC analyses have shown a glass transition temperature decrease of 5-18 °C for the poly(p-acetoxystyrene segment in copolymers compared to that observed for the parent homopolymer. The glass transition temperature of polyisoprene segment in copolymers remained similar to those observed for the homopolymers (-67 to -55 °C.

  16. Radical Change by Entrepreneurial Design

    National Research Council Canada - National Science Library

    Roberts, Nancy C

    1998-01-01

    .... How radical change in public policy has occurred in the past is then documented. We find examples of radical change by chance, radical change by consensus, radical change by learning, and radical change by entrepreneurial design...

  17. 13C Kinetic isotopic effect of polymerization on monomers with multiple bond

    International Nuclear Information System (INIS)

    Berman, E.L.; Polyakov, V.B.; Makovetskij, K.L.; Golenko, T.G.; Galimov, Eh.M.; AN SSSR, Moscow. Inst. Organicheskoj Khimii; AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1988-01-01

    13 C kinetic isotopic effect (KIE) of anionic and radical polymerization and metathesis reaction of monomers with multiple bonds are studied and correlation between the found KIE values of polymerization and the structure of transition state is established. 13 C KIE of polymerization reactions are investigated using monomers with natural content of the isotope. Polymerization was carried out using high-vacuum equipment: radical polymerization of methyl acrylate (MA) and vinyl acetate in benzene solution under the effect of benzoyl peroxide (60 deg C); anionic polymerization of MA, initiated by potassium butyl cellosolvolate, was realized in mass at 25 deg C; cyclopentene metathesis reaction was conducted in benzene under the effect of initiating system WCl 6 - (C 3 H 5 ) 2 Si(CH 3 ) 2 at -30 deg C; phenylacetylene polymers were prepared by polymerization in benzene solution at 20 deg C under the effect of WCl 6 . It is ascertained that 13 C KIE of radical and anionic polymerization of olefins and cycloolefin metathesis constitutes 2.0 -2.4%. Polymerization of compound with ternary bond is accompanied by a lower value of 13 C KIE (<1%), which is explained by double bond of reacting bond in transition state

  18. Selective enzymatic degradation of self-assembled particles from amphiphilic block copolymers obtained by the combination of N-carboxyanhydride and nitroxide-mediated polymerization

    NARCIS (Netherlands)

    Habraken, G.J.M.; Peeters, M.; Thornton, P.D.; Koning, C.E.; Heise, A.

    2011-01-01

    Combining controlled radical polymerizations and a controlled polypeptide synthetic technique, such as N-carboxyanhydride (NCA) ring-opening polymerization, enables the generation of well-defined block copolymers to be easily accessible. Here we combine NCA polymerization with the nitroxide-mediated

  19. Radiation-induced polymerization of water-saturated styrene in a wide range of dose rate

    International Nuclear Information System (INIS)

    Takezaki, J.; Okada, T.; Sakurada, I.

    1978-01-01

    Radiation-induced polymerization of water-saturated styrene (water content 3.5 x 10 -2 mole/liter) was carried out in a wide range of dose rate between 1.2 x 10 3 and 1.8 x 10 7 rad/sec, and compared with the polymerization of the moderately dried styrene (water content 3.2 x 10 -3 mole/liter). Molecular weight distribution curves of the polymerization products showed that they were generally consisted of four parts, namely, oligomers, radical, cationic, and super polymers. Contributions of the four constituents to the polymerization and the number average degrees of polymerization (DP) of the four kinds of polymers were calculated by the graphical analysis of the curves. The rate of radical polymerization and DP of radical polymers are independent of the water content; the dose rate dependences of the polymerization rate and DP agree with the well known square root and inverse square root laws, respectively, of the radical polymerization of styrene. The rate of ionic polymerization is directly proportional to the dose rate, but it decreases, at a given dose rate, inversely proportional to the water content of styrene. DP of ionic polymer is independent of the dose rate but decreases with increasing water content. The super polymer of DP about 10 4 is not formed in the case of the moderately dried styrene. G values for the initiating radical and ion formation are calculated to be independently of the dose rate and water content, 0.66 and 0.027, respectively. It was suggested that oligomer was formed in the early stage by the interaction of cation with anion and only those cations which had survived underwent polymerization. 10 figures, 4 tables

  20. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng

    2015-09-01

    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  1. STUDY ON THE KINETICS OF POLYMERIZATION OF MMA BY COPPER(Ⅱ) CHELATING RESINS

    Institute of Scientific and Technical Information of China (English)

    WangHongzuo; JiangYuanzhang; 等

    1993-01-01

    The polymerization of MMA initiated by copper(Ⅱ) chelating resins/CCl4 system was studied.From the kinetic data,the kinetic equation of polymerization can be expressed as Rp=Ke-56400/RT[MMA]1.57[CCl4]m[RESIN-Cu]0.18 where m:3-4.5,when[CCl4] 0.1-6.93M.The free radical polymerization mechanism is proposed.The primary radicals are formed by the process of complexation-chlorine transformation among the copper(Ⅱ) chelating resin,CCl4 and methacrylate.

  2. A radical approach to radical innovation

    NARCIS (Netherlands)

    D. Deichmann (Dirk); J.C.M. van den Ende (Jan)

    2014-01-01

    textabstractInnovation pays. Amazon, Apple, Facebook, Google – nearly every one of today’s most successful companies has a talent for developing radical new ideas. But how best to encourage radical initiative taking from employees, and does their previous success or failure at it play a role?

  3. Atom transfer radical copolymerization of styrene and butyl acrylate

    NARCIS (Netherlands)

    Chambard, G.; Klumperman, B.; Matyjaszewski, K.

    2000-01-01

    Atom transfer radical polymerization of styrene and butyl acrylate has been investigated from a kinetic point of view. Attention is focused on the activation of the dormant species as well as on the termination that plays a role in these reactions. It has been shown that the activation of a styrene

  4. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    Science.gov (United States)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High

  5. "Living" free radical photopolymerization initiated from surface-grafted iniferter monolayers

    NARCIS (Netherlands)

    de Boer, B.; Simon, H.K.; Werts, M.P L; van der Vegte, E.W.; Hadziioannou, G

    2000-01-01

    A method for chemically modifying a surface with grafted monolayers of initiator groups, which can be used for a "living" free radical photopolymerization, is described. By using "living" free radical polymerizations, we were able to control the length of the grafted polymer chains and therefore the

  6. “Living” Free Radical Photopolymerization Initiated from Surface-Grafted Iniferter Monolayers

    NARCIS (Netherlands)

    Boer, B. de; Simon, H.K.; Werts, M.P.L.; Vegte, E.W. van der; Hadziioannou, G.

    2000-01-01

    A method for chemically modifying a surface with grafted monolayers of initiator groups, which can be used for a “living” free radical photopolymerization, is described. By using “living” free radical polymerizations, we were able to control the length of the grafted polymer chains and therefore the

  7. Radiation-induced polymerisation of 2,3-dihydrofuran: free-radical or cationic mechanism?

    International Nuclear Information System (INIS)

    Janovsky, Igor; Naumov, Sergej; Knolle, Wolfgang; Mehnert, Reiner

    2005-01-01

    Concentrated (10 mol%) solutions of 2,3-dihydrofuran in CFCl 2 CF 2 Cl matrix were irradiated at 77 K and several intermediates (dimer radical cation, dihydrofuryl radical, and polymer radicals) were observed by low-temperature EPR spectroscopy. The irradiated solutions yielded after melting a polymeric product, which was characterised by IR spectroscopy and gel permeation chromatography. The polydisperse polymer is assumed to be formed mainly by a cationic process initiated by a dimer carbocation. The free-radical mechanism via the dihydrofuryl radical leads to low molecular weight oligomers only. Quantum chemical calculations support the interpretation of the experimental results

  8. Free radical inactivation of trypsin

    International Nuclear Information System (INIS)

    Cudina, Ivana; Jovanovic, S.V.

    1988-01-01

    Reactivities of free radical oxidants, radical OH, Br2-anion radical and Cl 3 COO radical and a reductant, CO2-anion radical, with trypsin and reactive protein components were determined by pulse radiolysis of aqueous solutions at pH 7, 20 0 C. Highly reactive free radicals, radical OH, Br2-anion radical and CO2-anion radical, react with trypsin at diffusion controlled rates. Moderately reactive trichloroperoxy radical, k(Cl 3 COO radical + trypsin) preferentially oxidizes histidine residues. The efficiency of inactivation of trypsin by free radicals is inversely proportional to their reactivity. The yields of inactivation of trypsin by radical OH, Br2-anion radical and CO2-anion radical are low, G(inactivation) = 0.6-0.8, which corresponds to ∼ 10% of the initially produced radicals. In contrast, Cl 3 COO radical inactivates trypsin with ∼ 50% efficiency, i.e. G(inactivation) = 3.2. (author)

  9. Controlled free radical polymerization of vinyl acetate with cobalt ...

    Indian Academy of Sciences (India)

    The high molecular weight of polyvinyl acetate (PVAc) with its relatively low molecular distribution without unreacted monomer ... properties of the polymer indicated a lower glass transition state. The easily ..... vision software). The ease of ...

  10. UV curing by radical, cationic and concurrent radicalcationic polymerization

    International Nuclear Information System (INIS)

    Pappas, S.P.

    1984-01-01

    UV and EB curing represent complementary technologies with respective advantages and disadvantages. This paper deals with the design and evaluation of UV curable coatings to optimize cure rate and film properties. Topics included are state-of-the-art photoinitiator systems, light intensity effects, retardation of air-inhibition, adhesion, and amplification of photons for enhanced speed of cure

  11. Controlled radical polymerization of vinyl acetate in presence of ...

    Indian Academy of Sciences (India)

    the catalyst produced specific sequences of VAc on the chain with different thermal and microstructural properties and crystallinity. ... of (co)polymers with well-defined molecular parameters. (Mw/Mn) .... pH value was adjusted to 4·7 with.

  12. REVERSE ATOM TRANSFER RADICAL POLYMERIZATION IN MINIEMULSION. (R829580)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. COPPER(I)-CATALYZED ATOM TRANSFER RADICAL POLYMERIZATIONS. (R826735)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. ATOM TRANSFER RADICAL POLYMERIZATION IN SUPERCRITICAL CARBON DIOXIDE. (R826735)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  15. TRANSITION METAL CATALYZED ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Olefin copolymerization using atom transfer radical polymerization (ATRP)

    NARCIS (Netherlands)

    Venkatesh, R.; Klumperman, B.

    2003-01-01

    Olefin copolymers of alpha-olefins with polar monomers with various architectures remain an ultimate goal in polyolefin engineering. The present paper is a more detailed study on the copolymn. of alpha-olefins (1-octene) with acrylates (Me acrylate). Comparison of reaction kinetics between free

  17. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  18. Synthesis of nanosized (polymerization in miniemulsion employing in situ surfactant formation.

    Science.gov (United States)

    Guo, Yi; Zetterlund, Per B

    2011-10-18

    A novel method for synthesis of ultrafine polymeric nanoparticles of diameters less than 20 nm has been developed. The method is based on miniemulsion polymerization exploiting combination of the in situ surfactant generation approach (whereby the surfactant is formed at the oil-water interface by reaction between an organic acid and a base) and ultrasonication. Conventional radical polymerization and nitroxide-mediated radical polymerization of styrene have been conducted in miniemulsion using oleic acid/potassium hydroxide, demonstrating that particles with diameters less than 20 nm can be obtained by this approach at surfactant contents much lower than traditionally required in microemulsion polymerizations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Light-harvesting organic photoinitiators of polymerization.

    Science.gov (United States)

    Lalevée, Jacques; Tehfe, Mohamad-Ali; Dumur, Frédéric; Gigmes, Didier; Graff, Bernadette; Morlet-Savary, Fabrice; Fouassier, Jean-Pierre

    2013-02-12

    Two new photoinitiators with unprecedented light absorption properties are proposed on the basis of a suitable truxene skeleton where several UV photoinitiators PI units such as benzophenone and thioxanthone are introduced at the periphery and whose molecular orbitals MO can be coupled with those of the PI units: a red-shifted absorption and a strong increase of the molecular extinction coefficients (by a ≈ 20-1000 fold factor) are found. These compounds are highly efficient light-harvesting photoinitiators. The scope and practicality of these photoinitiators of polymerization can be dramatically expanded, that is, both radical and cationic polymerization processes are accessible upon very soft irradiation conditions (halogen lamp, LED…︁) thanks to the unique light absorption properties of the new proposed structures. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Studies on radiation-induced graft polymerization

    International Nuclear Information System (INIS)

    Omichi, Hideki

    1978-09-01

    Radiation-induced graft polymerization is used extensively to improve physical properties of polymers, but few processes are now commercialized. The reason for this is partly inadequate basic research on the reaction and partly the difficulty in developing the grafting process with large radiation source. Firstly, new techniques are proposed of studying kinetics of the graft polymerization in heterogeneous system. Based on the grafting yield, the molecular weight of graft chains, and the amount of radicals given by ESR and activation analysis, kinetic parameters are obtained and the reaction mechanism of grafting process is discussed. Secondly, the development of grafting process of poly (vinyl chloride)-butadiene is described. By study of the reaction, process design, construction and operation of the pilot plant, and economic analysis of the process, this process with 60 Co gamma ray sources is shown to be industrially promising. (author)

  1. Radiation-induced emulsion polymerization of tetrafluoroethylene

    International Nuclear Information System (INIS)

    Suwa, Takeshi

    1979-10-01

    The radiation-induced emulsifier-free emulsion polymerization of tetrafluoroethylene (TFE) has been studied at initial pressure 2 - 25 kg/cm 2 and temperature 30 0 - 110 0 C for dose rate 0.57 x 10 4 - 3.0 x 10 4 rad/hr. Polytetrafluoroethylene (PTFE), a hydrophobic polymer, forms as a stable latex in the absence of an emulsifier. Stability of the latex is governed by the dose rate/TFE pressure ratio; it increases with sufficient TFE monomer. PTFE particles produced in this polymerization system are stable due to the carboxyl end groups and adsorption of OH - and HF on the particles. PTFE latex of molecular weight higher than 2 x 10 7 is obtained by addition of a radical scavenger such as hydroquinone. The molecular weight of PTFE can be measured from the heat of crystallization conveniently with high reliability, which was found in the course of study on the melting and crystallization behavior. (author)

  2. Radiation-induced polymerization of hydrogen cyanide

    International Nuclear Information System (INIS)

    Mozhaev, P.S.; Kichigina, G.A.; Kiryukhin, D.P.

    1995-01-01

    The chain reaction of HCN polymerization in a γ-radiation field does not occur at 77 K. When irradiated HCN is warmed up to ambient temperature, a polymer is formed. The heat of polymerization of HCN is 44.0±6.0 kJ/mol and the polymer yield reaches 2.5% for a dose of 725 kGy. Amorphous polymer products (with yields increasing up to 33.5%) and needle crystals (presumably HCN tetramer) are formed upon storage of irradiated HCN at room temperature. The polymer is stable below 700 K, has a conductivity of 3x10 -5 Ω -1 cm -f1 , and displays an EPR spectrum typical of polyconjugated systems. A radical mechanism of the formation of conjugated chain -C=N-C=N- is suggested. The tetramer is produced by a combination of aminocyanocarbene biradicals

  3. Modeling the chemistry of plasma polymerization using mass spectrometry.

    Science.gov (United States)

    Ihrig, D F; Stockhaus, J; Scheide, F; Winkelhake, Oliver; Streuber, Oliver

    2003-04-01

    The goal of the project is a solvent free painting shop. The environmental technologies laboratory is developing processes of plasma etching and polymerization. Polymerized thin films are first-order corrosion protection and primer for painting. Using pure acetylene we get very nice thin films which were not bonded very well. By using air as bulk gas it is possible to polymerize, in an acetylene plasma, well bonded thin films which are stable first-order corrosion protections and good primers. UV/Vis spectroscopy shows nitrogen oxide radicals in the emission spectra of pure nitrogen and air. But nitrogen oxide is fully suppressed in the presence of acetylene. IR spectroscopy shows only C=O, CH(2) and CH(3) groups but no nitrogen species. With the aid of UV/Vis spectra and the chemistry of ozone formation it is possible to define reactive traps and steps, molecule depletion and processes of proton scavenging and proton loss. Using a numerical model it is possible to evaluate these processes and to calculate theoretical mass spectra. Adjustment of theoretical mass spectra to real measurements leads to specific channels of polymerization which are driven by radicals especially the acetyl radical. The estimated theoretical mass spectra show the specific channels of these chemical processes. It is possible to quantify these channels. This quantification represents the mass flow through this chemical system. With respect to these chemical processes it is possible to have an idea of pollutant production processes.

  4. Polymeric bicontinuous microemulsions

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.W.; Lipic, P.M.

    1997-01-01

    High molecular weight block copolymers can be viewed as macromolecular surfactants when blended with thermodynamically incompatible homopolymers. This Letter describes the formation of polymeric bicontinuous microemulsions in nurtures containing a model diblock copolymer and two homopolymers. Alt...

  5. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng; Hadjichristidis, Nikolaos; Schlaad, Helmut

    2015-01-01

    . In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges

  6. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  7. Radiation-induced graft polymerization of amphiphilic monomers with different polymerization characteristics onto hydrophobic polysilane

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hidenori; Iwasaki, Isao; Kunai, Yuichiro [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Sato, Nobuhiro, E-mail: sato-n@rri.kyoto-u.ac.j [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Matsuyama, Tomochika [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2011-08-15

    The structures of poly(methyl-n-propylsilane) (PMPrS) amphiphilically modified through {gamma}-ray-induced graft polymerization were investigated with {sup 1}H NMR measurement. By the use of methyl methacrylate (MMA) or diethyl fumarate (DEF) as monomers for the graft polymerization, grafting yield rose with increasing total absorption dose and monomer concentrations, but decreased with increasing dose rate. This result means that grafting yield of modified PMPrS can be controlled by changing irradiation conditions. However, the number of PMMA or PDEF graft chains per PMPrS chain was estimated to be less than 1.0 by analysis of {sup 1}H NMR spectra, and this value was lower than that we had expected. To improve graft density, maleic anhydride (MAH), which is known as a non-homopolymerizable monomer in radical polymerization, was used as a monomer for grafting. As a result, high density grafting (one MAH unit for 4.2 silicon atoms) was attained. It demonstrates that the structure of {gamma}-ray-modified polysilane strongly depends on the polymerization characteristics of grafted monomers.

  8. FROM ATOM TRANSFER RADICAL ADDITION TO ATOM TRANSFER RADICAL POLYMERIZATION. (R829580)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  9. Orgasm after radical prostatectomy

    NARCIS (Netherlands)

    Koeman, M; VanDriel, MF; Schultz, WCMW; Mensink, HJA

    Objective To evaluate the ability to obtain and the quality of orgasm after radical prostatectomy, Patients and methods The orgasms experienced after undergoing radical prostatectomy were evaluated in 20 men (median age 65 years, range 56-76) using a semi-structured interview and a self-administered

  10. Physiology of free radicals

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals imply that every atom, molecule, ion, group of atoms, or molecules with one or several non-paired electrons in outer orbital. Among these are: nitrogenoxide (NO•, superoxide-anion-radical (O2•-, hydroxyl radical (OH•, peroxyl radical (ROO•, alcoxyl radical (RO• and hydroperoxyl radical (HO2•. However, reactive oxygen species also include components without non-paired electrons in outer orbital (so-called reactive non-radical agents, such as: singlet oxygen (1O2, peroxynitrite (ONOO-, hydrogen-peroxide (H2O2, hypochloric acid (eg. HOCl and ozone (O3. High concentrations of free radicals lead to the development of oxidative stress which is a precondition for numerous pathological effects. However, low and moderate concentrations of these matter, which occur quite normally during cell metabolic activity, play multiple significant roles in many reactions. Some of these are: regulation of signal pathways within the cell and between cells, the role of chemoattractors and leukocyte activators, the role in phagocytosis, participation in maintaining, changes in the position and shape of the cell, assisting the cell during adaption and recovery from damage (e.g.caused by physical effort, the role in normal cell growth, programmed cell death (apoptosis and cell ageing, in the synthesis of essential biological compounds and energy production, as well as the contribution to the regulation of the vascular tone, actually, tissue vascularization.

  11. Radicals in arithmetic

    NARCIS (Netherlands)

    W.J. Palenstijn (Willem Jan)

    2014-01-01

    htmlabstractLet K be a field. A radical is an element of the algebraic closure of K of which a power is contained in K. In this thesis we develop a method for determining what we call entanglement. This describes unexpected additive relations between radicals, and is encoded in an entanglement

  12. Radicals in arithmetic

    NARCIS (Netherlands)

    Palenstijn, Willem Jan

    2014-01-01

    Let K be a field. A radical is an element of the algebraic closure of K of which a power is contained in K. In this thesis we develop a method for determining what we call entanglement. This describes unexpected additive relations between radicals, and is encoded in an entanglement group. We give

  13. Muonium and muonic radicals

    International Nuclear Information System (INIS)

    Burkhard, P.; Fischer, H.; Roduner, E.; Strub, W.; Geeson, D.; Symons, M.C.R.

    1985-01-01

    An energetic positive muon which is injected in a liquid sample of substrate molecules (S) creates an ionization track consisting of substrate cations (S + ) and electrons. Near the end of this track the muon may combine with an electron to form muonium (Mu) which is observable in inert liquids, but which reacts by addition to form a radical. Alternatively, the electron can add to S to form S - , which then combines with the muon to form the radical. Furthermore, instead of ending up in Mu or in a radical the muon may stay in a diamagnetic environment as a solvated muon, or as a muon substituting a proton in a molecule. Of interest in these schemes are the mechanisms and rates of formation of muonated radicals and in particular the rate constants for their reactions to products. Investigations are based on the observation of Mu and the radical by means of the μSR technique in transverse magnetic fields. (Auth.)

  14. Plasma polymerization by Softplasma

    DEFF Research Database (Denmark)

    Jiang, J.; Wu, Zhenning; Benter, Maike

    2008-01-01

    , external electrode, and electrodeless microwave or high frequency reactors. [3] Softplasma™ is an internal electrode plasma setup powered by low frequenc~ gower supply. It was developed in late 90s for surface treatment of silicone rubber. [ ]- 5] It is a low pressure, low electron density, 3D homogenous......In the late 19th century, the first depositions - known today as plasma polymers, were reported. In the last century, more and more research has been put into plasma polymers. Many different deposition systems have been developed. [1, 2] Shi F. F. broadly classified them into internal electrode...... plasma. In this study, we are presenting the surface modification"pf polymers by plasma polymerization using Softplasma™. Softplasma™ can be used for two major types of polymerization: polymerization of vinyl monomers, where plasma acts as initiator; chemical vapour deposition, where plasma acts...

  15. Various aspects of ultrasound assisted emulsion polymerization process.

    Science.gov (United States)

    Korkut, Ibrahim; Bayramoglu, Mahmut

    2014-07-01

    In this paper, the effects of ultrasonic (US) power, pulse ratio, probe area and recipe composition were investigated on two process responses namely, monomer (methyl methacrylate, MMA) conversion and electrical energy consumption per mass of product polymer (PMMA). Pulsed mode US is more suitable than continuous mode US for emulsion polymerization. The probe (tip) area has little effect on the yield of polymerization when comparing 19 and 13 mm probes, 13 mm probe performing slightly better for high conversion levels. Meanwhile, large probe area is beneficial for high conversion efficiency of electric energy to US energy as well as for high radical generation yield per energy consumed. The conversion increased slightly and electrical energy consumption decreased substantially by using a recipe with high SDS and monomer concentrations. Conclusions presented in this paper may be useful for scale-up of US assisted emulsion polymerization. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Polymeric peptide pigments with sequence-encoded properties

    Energy Technology Data Exchange (ETDEWEB)

    Lampel, Ayala; McPhee, Scott A.; Park, Hang-Ah; Scott, Gary G.; Humagain, Sunita; Hekstra, Doeke R.; Yoo, Barney; Frederix, Pim W. J. M.; Li, Tai-De; Abzalimov, Rinat R.; Greenbaum, Steven G.; Tuttle, Tell; Hu, Chunhua; Bettinger, Christopher J.; Ulijn, Rein V.

    2017-06-08

    Melanins are a family of heterogeneous polymeric pigments that provide ultraviolet (UV) light protection, structural support, coloration, and free radical scavenging. Formed by oxidative oligomerization of catecholic small molecules, the physical properties of melanins are influenced by covalent and noncovalent disorder. We report the use of tyrosine-containing tripeptides as tunable precursors for polymeric pigments. In these structures, phenols are presented in a (supra-)molecular context dictated by the positions of the amino acids in the peptide sequence. Oxidative polymerization can be tuned in a sequence-dependent manner, resulting in peptide sequence–encoded properties such as UV absorbance, morphology, coloration, and electrochemical properties over a considerable range. Short peptides have low barriers to application and can be easily scaled, suggesting near-term applications in cosmetics and biomedicine.

  17. Simulation of styrene polymerization reactors: kinetic and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    A. S. Almeida

    2008-06-01

    Full Text Available A mathematical model for the free radical polymerization of styrene is developed to predict the steady-state and dynamic behavior of a continuous process. Special emphasis is given for the kinetic and thermodynamic models, where the most sensitive parameters were estimated using data from an industrial plant. The thermodynamic model is based on a cubic equation of state and a mixing rule applied to the low-pressure vapor-liquid equilibrium of polymeric solutions, suitable for modeling the auto-refrigerated polymerization reactors, which use the vaporization rate to remove the reaction heat from the exothermic reactions. The simulation results show the high predictive capability of the proposed model when compared with plant data for conversion, average molecular weights, polydispersity, melt flow index, and thermal properties for different polymer grades.

  18. Salvage robotic radical prostatectomy

    Directory of Open Access Journals (Sweden)

    Samuel D Kaffenberger

    2014-01-01

    Full Text Available Failure of non-surgical primary treatment for localized prostate cancer is a common occurrence, with rates of disease recurrence ranging from 20% to 60%. In a large proportion of patients, disease recurrence is clinically localized and therefore potentially curable. Unfortunately, due to the complex and potentially morbid nature of salvage treatment, radical salvage surgery is uncommonly performed. In an attempt to decrease the morbidity of salvage therapy without sacrificing oncologic efficacy, a number of experienced centers have utilized robotic assistance to perform minimally invasive salvage radical prostatectomy. Herein, we critically evaluate the existing literature on salvage robotic radical prostatectomy with a focus on patient selection, perioperative complications and functional and early oncologic outcomes. These results are compared with contemporary and historical open salvage radical prostatectomy series and supplemented with insights we have gained from our experience with salvage robotic radical prostatectomy. The body of evidence by which conclusions regarding the efficacy and safety of robotic salvage radical prostatectomy can be drawn comprises fewer than 200 patients with limited follow-up. Preliminary results are promising and some outcomes have been favorable when compared with contemporary open salvage prostatectomy series. Advantages of the robotic platform in the performance of salvage radical prostatectomy include decreased blood loss, short length of stay and improved visualization. Greater experience is required to confirm the long-term oncologic efficacy and functional outcomes as well as the generalizability of results achieved at experienced centers.

  19. Emulsion polymerization with high energy radiation

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1992-01-01

    High energy radiation, particularly that of cobalt-60 or caesium-137 gamma-rays, provides in principle an ideal initiator for emulsion polymerization. The high free radical yields from the radiolysis of the aqueous phase combined with the high kinetic chain lengths associated with emulsion polymerization lead to a highly effective utilization of the radiation. There are other important advantages compared with the use of chemical initiators such as potassium persulfate. These are outlined in the chapter, together with some attendant disadvantages. Radiation-induced initiation is temperature independent, and low temperature polymerizations can be conducted with ease. Monomers that mainly terminate their growing chains by chain transfer to monomer give higher molecular weights at lower temperatures. Industrially, vinyl acetate is an important example of such a monomer, and it has been studied using radiation initiation. Both laboratory and pilot plant studies have been carried out and reported. The results are summarized in this chapter. Styrene is the classical example of a material that under a number of conditions closely obeys the so-called ideal Smith-Ewart kinetics. It has been found that under similar conditions but substituting radiation for potassium persulfate as the initiator, ideal kinetics were closely followed. Most of the conventional and some non-standard vinyl and diene monomers have been studied to some extent with radiation-initiated polymerizations in emulsion. To conserve space however, this chapter presents and discusses the results obtained only with styrene and vinyl acetate, both in laboratory and pilot plant investigations. Other monomers and special situations are referenced either directly or to the other available reviews. (orig.)

  20. Inflation of a Polymeric Menbrane

    DEFF Research Database (Denmark)

    Kristensen, Susanne B.; Larsen, Johannes R.; Hassager, Ole

    1998-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane.......We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane....

  1. Comparison of Polymer Networks Synthesized by Conventional Free Radical and RAFT Copolymerization Processes in Supercritical Carbon Dioxide

    OpenAIRE

    Patricia Pérez-Salinas; Gabriel Jaramillo-Soto; Alberto Rosas-Aburto; Humberto Vázquez-Torres; María Josefa Bernad-Bernad; Ángel Licea-Claverie; Eduardo Vivaldo-Lima

    2017-01-01

    There is a debate in the literature on whether or not polymer networks synthesized by reversible deactivation radical polymerization (RDRP) processes, such as reversible addition-fragmentation radical transfer (RAFT) copolymerization of vinyl/divinyl monomers, are less heterogeneous than those synthesized by conventional free radical copolymerization (FRP). In this contribution, the syntheses by FRP and RAFT of hydrogels based on 2-hydroxyethylene methacrylate (HEMA) and ethylene glycol dimet...

  2. Synthesis and Characterization of the in Situ Bulk Polymerization of PMMA Containing Graphene Sheets Using Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Mohammad A. Aldosari

    2013-03-01

    Full Text Available Polymethylmethacrylate–graphene (PMMA/RGO nanocomposites were prepared via in situ bulk polymerization using two different preparation techniques. In the first approach, a mixture of graphite oxide (GO and methylmethacrylate monomers (MMA were polymerized using a bulk polymerization method with a free radical initiator. After the addition of the reducing agent hydrazine hydrate (HH, the product was reduced via microwave irradiation (MWI to obtain R-(GO-PMMA composites. In the second approach, a mixture of graphite sheets (RGO and MMA monomers were polymerized using a bulk polymerization method with a free radical initiator to obtain RGO-(PMMA composites. The composites were characterized by FTIR, 1H-NMR and Raman spectroscopy and XRD, SEM, TEM, TGA and DSC. The results indicate that the composite obtained using the first approach, which involved MWI, had a better morphology and dispersion with enhanced thermal stability compared with the composites prepared without MWI.

  3. Gnosticism and Radical Feminism

    DEFF Research Database (Denmark)

    Cahana, Jonathan

    2016-01-01

    and radical feminism would easily fall under this definition. There is, however, one major difference: since radical feminism is a relatively recent phenomenon which also benefited from modern modes of text production and preservation, almost all of the sources are still with us. This, in turn, may allow us...... to use radical feminism to make certain aspects of ancient Gnosticism re-emerge from their long submersion, provided that enough similarities can be independently drawn between the two phenomena to merit such a comparison. This paper therefore presents a comparison between concepts and positions...

  4. Homegrown religious radicalization

    DEFF Research Database (Denmark)

    Khawaja, Iram

    It has been reported that a growing number of youngsters from Western Europe are engaging in conflicts motivated by religious and political conflicts in the Middle East. This paper explores the reasons behind this seemingly religious radicalization from the point of view of the youngsters...... youngsters and parents of youngsters who have chosen a radicalized path in life. The paper will shed light on how the sense of and yearning for belonging and recognition have to be taken into account in our understanding of homegrown religious radicalization...

  5. Radical chemistry of artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2011-12-29

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  6. Radical chemistry of artemisinin

    Science.gov (United States)

    Denisov, Evgenii T.; Solodova, S. L.; Denisova, Taisa G.

    2010-12-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  7. Radical chemistry of artemisinin

    International Nuclear Information System (INIS)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G

    2010-01-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  8. Radical's view of sciences

    International Nuclear Information System (INIS)

    Mittal, J.P.

    2004-01-01

    Full text: General concept in radiation biology is that free radicals are highly reactive and they can damage vital cellular molecules leading to injurious effects. However, in this talk, evidence will be presented through the techniques of electron paramagnetic resonance ( EPR ) and pulse radiolysis that free radicals can be highly selective in their reaction with the target molecules. In addition, attempts will be made to present a brief account of emerging scenario of free radical generation, identification and their involvement in radiation damage mechanisms in chemical and biological systems

  9. Radical chemistry of artemisinin

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, Evgenii T; Solodova, S L; Denisova, Taisa G [Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region (Russian Federation)

    2010-12-29

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  10. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  11. Polymerized and functionalized triglycerides

    Science.gov (United States)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  12. Polymerization by radiation. Application

    International Nuclear Information System (INIS)

    Romero, M.; Fernandez Miranda, J.

    1997-01-01

    Achieved results of the research work done in the field of radiation polymerization are summarized. Developing new chromatographic matrices, the radiation grafting of Glycidyl methacrylate on the surface of Low Density Polyethylene beads was studied. The dependence of both, the grafted degree and width of the grafted layer, with the radiation dose applied, is presented

  13. RAFT polymerization mediated bioconjugation strategies

    OpenAIRE

    Bulmuş, Volga

    2011-01-01

    This review aims to highlight the use of RAFT polymerization in the synthesis of polymer bioconjugates. It covers two main bioconjugation strategies using the RAFT process: (i) post-polymerization bioconjugations using pre-synthesized reactive polymers, and (ii) bioconjugations via in situ polymerization using biomolecule-modified monomers or chain transfer agents. © 2011 The Royal Society of Chemistry.

  14. Moderate and Radical Islam

    National Research Council Canada - National Science Library

    Rabasa, Angel

    2005-01-01

    This report presents the statement of Angel Rabasa, PhD, Senior Policy Analyst, The RAND Corporation, to the Committee on Armed Services, Defense Review Terrorism and Radical Islam Gap Panel, United...

  15. The entry of free radicals into polystyrene latex particles

    International Nuclear Information System (INIS)

    Adams, M.E.; Trau, M.; Gilbert, R.C.; Napper, D.R.

    1988-01-01

    Mechanistic understanding of the processes governing the kinetics of emulsion polymerization has both scientific and technical interest. One component of this process that is poorly understood at present is that of free radical entry into latex particles. Measurements were made of the entry rate coefficient as a function of temperature for free radicals entering polystyrene latex particles in seeded emulsion polymerizations initiated by γ-rays. The activation energy for entry was found to be less than 24 ± 3 kJ mol -1 , consistent with entry being controlled by a physical (e.g. diffusional) rather than a chemical process. Measurement of the entry rate coefficient as a function of the γ-ray dose rate suggested that the factors that determine the entry rate when the primary free radicals are uncharged are similar to those that determine the entry rate for charged free radicals derived from chemical initiation by peroxydisulfate. This result was consistent with measurements of the entry rate coefficient of charged free radicals derived from peroxydisulfate; these data were found to be virtually independent of both the extent of the latex surface coverage by the anionic surfactant sodium dodecyl sulfate and the ionic strength of the continuous phase. The data refute several proposals given in the literature for the rate-determining step for entry, being inconsistent with control by collision of free radicals with the latex particles, surfactant desorption, and an electrostatic barrier arising from the colloidal nature of the entering free radical. The origin of the activation energy for entry remains obscure

  16. Violent Radicalization in Europe

    DEFF Research Database (Denmark)

    Dalgaard-Nielsen, Anja

    2010-01-01

    When, why, and how do people living in a democracy become radicalized to the point of being willing to use or directly support the use of terrorist violence against fellow citizens? This question has been at the center of academic and public debate over the past years as terrorist attacks...... within this field and to answer the question: From an empirical point of view, what is known and what is not known about radicalization connected to militant Islamism in Europe?...

  17. Determination of the free radical concentration ratio in the copolymerization of methyl acrylate and styrene. Application of radical trapping and 15N NMR spectroscopy

    NARCIS (Netherlands)

    Kelemen, P.; Klumperman, B.

    2004-01-01

    15N-labeled nitroxides are employed to trap propagating radicals in the copolymn. of styrene and Me acrylate. The resulting polymeric alkoxyamines are analyzed by 15N NMR.The assignment of the obsd. bands to the two possible end groups of the propagating copolymer chain is achieved by comparison of

  18. A Versatile Approach to Unimolecular Water-Soluble Carriers: ATRP of PEGMA with Hydrophobic Star-Shaped Polymeric Core Molecules as an Alternative for PEGylation

    NARCIS (Netherlands)

    Schramm, O.G.; Pavlov, G.M.; Erp, van H.H.P; Meier, M.A.R.; Hoogenboom, R.; Schubert, U.S.

    2009-01-01

    New amphiphilic star-shaped architectures with dense hydrophilic shells were synthesized by a combination of ring-opening polymerization (ROP) of e-caprolactone (CL) and atom transfer radical polymerization (ATRP) of different poly(ethylene glycol) methacrylates (PEGMAs). The PCL hydrophobic cores

  19. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources

    Directory of Open Access Journals (Sweden)

    Jacques Lalevée

    2015-04-01

    Full Text Available Photoinitiators (PI or photoinitiating systems (PIS usable in light induced cationic polymerization (CP and free radical promoted cationic polymerization (FRPCP reactions (more specifically for cationic ring opening polymerization (ROP together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  20. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources.

    Science.gov (United States)

    Lalevée, Jacques; Mokbel, Haifaa; Fouassier, Jean-Pierre

    2015-04-20

    Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) reactions (more specifically for cationic ring opening polymerization (ROP)) together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  1. Radiation polymerization of tetrafluoroethylene

    International Nuclear Information System (INIS)

    Kadoi, H.; Lugao, A.B.; Oikawa, H.

    1984-01-01

    Tetrafluoroethylene (TFE) monomer was obtained by means of the pyrolysis of chlorodifluoromethane (R-22). The experiments were carried out in quartz tube with temperature between 700 0 and 800 0 C. The principal reaction of the pyrolysis is considered to be: 2CHClF2 ----> C 2 F 4 +2HCl. However, by-products such as HF, C 3 F 6 , C 2 HClF 4 , C 4 F 8 etc are also produced in the pyrolysis process. The conversions of R-22 varied from 30 to 50%, depending upon the temperature, pressure and flow rate of R-22 in the furnace. Finally the TFE monomer of purity higher than 99.98% was obtained by fractional distillation in low temperatures ranging from -10 0 to -30 0 C. The bulk polymerization of this monomer induced by γ-rays from 3000Ci cobalt-60 source was studied at various temperatures (room temperature, 0 0 , -23 0 and -78 0 C). The monomers were introduced into stainless steel vessels of 15 and 60 ml volume under vacuum. The control of polymerization reaction was rather hard at temperatures higher than -23 0 C due to the difficulty of removing the heat of reaction. However, the polymerization at -78 0 C was very easy to control. The white polymer particles were obtained in agglomerated state. The IR spectra of the polymers were consistent with those of commercial products. The melting points of samples were between 326 0 and 331 0 C. (Author) [pt

  2. Laparoscopic radical trachelectomy.

    Science.gov (United States)

    Rendón, Gabriel J; Ramirez, Pedro T; Frumovitz, Michael; Schmeler, Kathleen M; Pareja, Rene

    2012-01-01

    The standard treatment for patients with early-stage cervical cancer has been radical hysterectomy. However, for women interested in future fertility, radical trachelectomy is now considered a safe and feasible option. The use of minimally invasive surgical techniques to perform this procedure has recently been reported. We report the first case of a laparoscopic radical trachelectomy performed in a developing country. The patient is a nulligravid, 30-y-old female with stage IB1 adenocarcinoma of the cervix who desired future fertility. She underwent a laparoscopic radical trachelectomy and bilateral pelvic lymph node dissection. The operative time was 340 min, and the estimated blood loss was 100mL. There were no intraoperative or postoperative complications. The final pathology showed no evidence of residual disease, and all pelvic lymph nodes were negative. At 20 mo of follow-up, the patient is having regular menses but has not yet attempted to become pregnant. There is no evidence of recurrence. Laparoscopic radical trachelectomy with pelvic lymphadenectomy in a young woman who desires future fertility may also be an alternative technique in the treatment of early cervical cancer in developing countries.

  3. Radiation chemistry of polymeric system

    International Nuclear Information System (INIS)

    Machi, Sueo; Ishigaki, Isao

    1978-01-01

    Among wide application of radiation in the field of polymer chemistry, practices of polymerization, graft polymerization, bridging, etc. are introduced hereinafter. As for the radiation sources of radiation polymerization, in addition to the 60 Co-γ ray with long permeation distance which has been usually applied, electron beam accelerators with high energy, large current and high reliability have come to be produced, and the liquid phase polymerization by electron beam has attracted attention industrially. Concerning polymerizing reactions, explanations were given to electron beam polymerization under high dose rate, the polymerization in supercooling state or under high pressure, and emulsifying polymerization. As for radiation bridging, radiation is applied for the bridging of hydrogel, acceleration of bridging and improvement of radiation resistance. It is also utilized for reforming membranes by graft polymerization, and synthesis of polymers for medical use. Application of fixed enzymes in the medical field has been investigated by fixing various enzymes by low temperature γ-ray polymerization with glassy monomers such as HEMA. (Kobatake, H.)

  4. Radical dematerialization and degrowth

    Science.gov (United States)

    Kallis, Giorgos

    2017-05-01

    The emission targets agreed in Paris require a radical reduction of material extraction, use and disposal. The core claim of this article is that a radical dematerialization can only be part and parcel of degrowth. Given that capitalist economies are designed to grow, this raises the question of whether, and under what circumstances, the inevitable `degrowth' can become socially sustainable. Three economic policies are discussed in this direction: work-sharing, green taxes and public money. This article is part of the themed issue 'Material demand reduction'.

  5. Muon substituted free radicals

    International Nuclear Information System (INIS)

    Burkhard, P.; Fischer, H.; Roduner, E.; Strub, W.; Gygax, F.N.; Brinkman, G.A.; Louwrier, P.W.F.; McKenna, D.; Ramos, M.; Webster, B.C.

    1984-01-01

    Spin polarized energetic positive muons are injected as magnetic probes into unsaturated organic liquids. They are implemented via fast chemical processes ( -10 s) in various molecules. Of particular interest among these are muonium substituted free radicals. The technique allows determination of accurate rate coefficients for fast chemical reactions of radicals. Furthermore, radiochemical processes occuring in picoseconds after injection of the muon are studied. Of fundamental interest are also the structural and dynamical implications of substituting a proton by a muon, or in other terms, a hydrogen atom by a muonium atom. Selected examples for each of these three types of experiments are given. (Auth.)

  6. Surface water retardation around single-chain polymeric nanoparticles: critical for catalytic function?

    Science.gov (United States)

    Stals, Patrick J M; Cheng, Chi-Yuan; van Beek, Lotte; Wauters, Annelies C; Palmans, Anja R A; Han, Songi; Meijer, E W

    2016-03-01

    A library of water-soluble dynamic single-chain polymeric nanoparticles (SCPN) was prepared using a controlled radical polymerisation technique followed by the introduction of functional groups, including probes at targeted positions. The combined tools of electron paramagnetic resonance (EPR) and Overhauser dynamic nuclear polarization (ODNP) reveal that these SCPNs have structural and surface hydration properties resembling that of enzymes.

  7. Comb-like thermoresponsive polymeric materials : Synthesis and effect of macromolecular structure on solution properties

    NARCIS (Netherlands)

    Wever, D. A. Z.; Riemsma, E.; Picchioni, F.; Broekhuis, A. A.

    2013-01-01

    A series of comb-like block and random copolymers based on acrylamide (AM) and N-isopropylacrylamide (NIPAM) have been prepared by atom transfer radical polymerization (ATRP). The number of side-arms, the length of the AM and NIPAM blocks as well as the distribution of the two monomers (block or

  8. Packaging based on polymeric materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available In the past two years the consumption of common in the developed countries world wide (high tonnage polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging materials, are presented in this article. Recycling methods, as well as the development trends of polymeric packaging materials are also presented.

  9. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  10. Synthesis of magnetic polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2010-05-13

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  11. Synthesis of magnetic polymeric microspheres

    International Nuclear Information System (INIS)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I

    2010-01-01

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  12. Counter radicalization development assistance

    OpenAIRE

    van Hippel, Karin

    2006-01-01

    The paper reviews current research and practice and recommends strategies for development agencies working in the Arab and Muslim world. It builds on the basic assumption that the realization of the Millennium Development Goals will be vital to reduce support for terrorism in the long term. Within this overall framework, emphasis is placed on particular programs that could be specifically applied to counter radicalization.

  13. Radically enhanced molecular recognition

    KAUST Repository

    Trabolsi, Ali; Khashab, Niveen M.; Fahrenbach, Albert C.; Friedman, Douglas C.; Colvin, Michael T.; Coti, Karla K.; Bení tez, Diego S.; Tkatchouk, Ekaterina; Olsen, John Carl; Belowich, Matthew E.; Carmieli, Raanan; Khatib, Hussam A.; Goddard, William Andrew III; Wasielewski, Michael R.; Stoddart, Fraser Fraser Raser

    2009-01-01

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication. © 2010 Macmillan Publishers Limited. All rights reserved.

  14. Sexuality Following Radical Prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Serefoglu, Ege C; Albersen, Maarten

    2017-01-01

    incontinence in relation to sexual activity after surgery. This can present at the time of orgasm (ie, climacturia) or arise during arousal. In general, the problem subsides with time and pelvic floor training and tension penile loops can be used as treatments. Orgasmic disturbances after radical prostatectomy...

  15. Radically enhanced molecular recognition

    KAUST Repository

    Trabolsi, Ali

    2009-12-17

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication. © 2010 Macmillan Publishers Limited. All rights reserved.

  16. Online Radicalization: Bangladesh Perspective

    Science.gov (United States)

    2017-06-09

    radicalization through cyberspace, Bangladesh mostly implements hard powers such as removing contents and restricting access to the internet. However, freedom...cyberspace, Bangladesh mostly implements hard powers such as removing contents and restricting access to the internet. However, freedom of speech...67 An Organizational Approach to Implement the Measures........................................ 69 Formation of

  17. Cation radicals of xanthophylls.

    Science.gov (United States)

    Galinato, Mary Grace I; Niedzwiedzki, Dariusz; Deal, Cailin; Birge, Robert R; Frank, Harry A

    2007-10-01

    Carotenes and xanthophylls are well known to act as electron donors in redox processes. This ability is thought to be associated with the inhibition of oxidative reactions in reaction centers and light-harvesting pigment-protein complexes of photosystem II (PSII). In this work, cation radicals of neoxanthin, violaxanthin, lutein, zeaxanthin, beta-cryptoxanthin, beta-carotene, and lycopene were generated in solution using ferric chloride as an oxidant and then studied by absorption spectroscopy. The investigation provides a view toward understanding the molecular features that determine the spectral properties of cation radicals of carotenoids. The absorption spectral data reveal a shift to longer wavelength with increasing pi-chain length. However, zeaxanthin and beta-cryptoxanthin exhibit cation radical spectra blue-shifted compared to that of beta-carotene, despite all of these molecules having 11 conjugated carbon-carbon double bonds. CIS molecular orbital theory quantum computations interpret this effect as due to the hydroxyl groups in the terminal rings selectively stabilizing the highest occupied molecular orbitals of preferentially populated s-trans-isomers. The data are expected to be useful in the analysis of spectral results from PSII pigment-protein complexes seeking to understand the role of carotene and xanthophyll cation radicals in regulating excited state energy flow, in protecting PSII reaction centers against photoinhibition, and in dissipating excess light energy absorbed by photosynthetic organisms but not used for photosynthesis.

  18. Single-electron transfer living radical copolymerization of SWCNT-g-PMMA via graft from approach

    Czech Academy of Sciences Publication Activity Database

    Jaisankar, S. N.; Haridharan, N.; Murali, A.; Ponyrko, Sergii; Špírková, Milena; Mandal, A. B.; Matějka, Libor

    2014-01-01

    Roč. 55, č. 13 (2014), s. 2959-2966 ISSN 0032-3861 R&D Projects: GA ČR GAP108/12/1459 Institutional support: RVO:61389013 Keywords : single electron transfer * single-walled carbon nanotubes * controlled radical polymerization Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.562, year: 2014

  19. Free radical transfer in polymers

    International Nuclear Information System (INIS)

    Sonntag, C. von; Bothe, E.; Ulanski, P.

    1998-01-01

    For the present study of free-radical transfer in polymers pulse radiolysis and product studies have been carried out in aqueous solutions using thus far only the water-soluble polymers polyacrylic acid, polymethacrylic acid and polyvinyl alcohol. When OH radicals, generated in the radiolysis of N 2 O-saturated aqueous solutions, react with polymers the lifetime of the polymer radical thus created very much depends on the number of radicals per polymer chain. When there are a large number of radicals per chain their bimolecular decay may be faster than the corresponding (diffusion controlled) decay of monomeric radicals, but when the macromolecule contains only few or even just one radical their lifetime is considerably prolonged. Highly charged polymers such as polyacrylic acid at high pH attain a rod-like conformation which again favors a long lifetime of the radicals. Under such conditions, radical transfer reactions can occur. For example, in polyacrylic acid OH radicals generate two kinds of radicals side by side. The radical in β-position to the carboxylate group converts into the thermodynamically more stable α-radicals by an H-transfer reaction as can be followed by spectrophotometry. Besides radical transfer reactions β-fragmentation reactions occur causing chain scission. Such reactions can be followed in a pulse radiolysis experiment by conductometry, because counter ions are released upon chain scission. Such a process is especially effective in the case of polymethacrylic acid, where it results in a chain depolymerization. An intramolecular H-abstraction is also observed in the γ-radiolysis of polyacrylic acid with the corresponding peroxyl radicals. This causes a chain reaction to occur. The resulting hydroperoxides are unstable and decarboxylate given rise to acetylacetone-like products. In polyvinyl alcohol the peroxyl radicals in α-position to the alcohol function undergo HO 2 -elimination. This prevents a scission of the polymer chain in the

  20. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  1. Biodegradable Polyelectrolyte Obtained by Radiation Polymerization

    International Nuclear Information System (INIS)

    Craciun, G.; Martin, D.; Manaila, E.; Nemtanu, M.; Brasoveanu, M.; Ighigeanu, D.

    2009-01-01

    Poly electrolytes are water-soluble polymers carrying ionic charge along the polymer chain. Depending upon the charge, these polymers are anionic or cationic. The inherent solid - liquid separating efficiency makes these poly electrolytes a unique class of polymers which find extensive application in potable water, industrial raw and process water, municipal sewage treatment, mineral processing and metallurgy, oil drilling and recovery, etc. Also, due to their ability to produce advanced induced coagulation, a considerable amount of bacteria and viruses are precipitated together with the suspended solids. Especially the acrylamide polymers are very efficacious for water treatment but acrylamide is a toxic monomer and therefore their use are governed by international standards that provide the residual acrylamide monomer content (RAMC) in them be less than 0.05%. Under these circumstances our attention was focused on the following research steps that are presented in this paper: 1) Preparation of a special class of poly electrolytes, named Pn, with very low RAMC values, based on electron beam (EB), microwave (MW) and EB + MW induced co-polymerization of aqueous solutions containing appropriate mixtures of acrylamide (AMD) and acrylic acid (AA) monomers (AMD - AA co-polymers). The Pn were obtained by radiation technology with very small RAMC (under 0.01%) as well as in a wide range of molecular weights and charge densities. Very low AMD monomer content of Pn is due to the major advantages of radiation induced polymerization in aqueous solution containing monomers. Due to water presence in the EB irradiated system, irradiated water radicals facilitate the polymerization process and increase rate and level of monomers conversion in co-polymers. Also, once again, by the presence of water, which absorbs MW energy very strongly, the MW polymerization reaction rate is much enhanced resulting in a reaction time about 50-100 times lowers than by conventional heating. Also

  2. Photo-triggered solvent-free metamorphosis of polymeric materials.

    Science.gov (United States)

    Honda, Satoshi; Toyota, Taro

    2017-09-11

    Liquefaction and solidification of materials are the most fundamental changes observed during thermal phase transitions, yet the design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion remains challenging. Here, we demonstrate that solvent-free repeatable molecular architectural transformation between liquid-star and nonliquid-network polymers that relies on cleavage and reformation of a covalent bond in hexaarylbiimidazole. Liquid four-armed star-shaped poly(n-butyl acrylate) and poly(dimethyl siloxane) with 2,4,5-triphenylimidazole end groups were first synthesized. Subsequent oxidation of the 2,4,5-triphenylimidazoles into 2,4,5-triphenylimidazoryl radicals and their coupling with these liquid star polymers to form hexaarylbiimidazoles afforded the corresponding nonliquid network polymers. The resulting nonliquid network polymers liquefied upon UV irradiation and produced liquid star-shaped polymers with 2,4,5-triphenylimidazoryl radical end groups that reverted to nonliquid network polymers again by recoupling of the generated 2,4,5-triphenylimidazoryl radicals immediately after terminating UV irradiation.The design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion is challenging. Here, the authors show solvent-free repeatable molecular architectural transformation between liquid-star and non-liquid-network polymers by the cleavage and reformation of covalent bonds in the polymer chain.

  3. Effect of Monomer Dosing Rate in the Preparation of Mesoporous Polystyrene Nanoparticles by Semicontinuous Heterophase Polymerization

    Directory of Open Access Journals (Sweden)

    Dalia Y. Sosa

    2014-12-01

    Full Text Available The semicontinuous heterophase polymerization of styrene in the presence of cross-linking and porogen agents was carried out. Latexes with close to 20% solid content, which contained mesoporous nanoparticles with 28 nm in average diameters, up to 0.5 cm3/g in porosity and 6–8 nm in pore diameters were obtained. By varying the monomer dosing rate over the micellar solution, an unexpected direct dependence of instantaneous conversion on the monomer dosing rate was found. This was ascribed to the higher average number of radicals per particle attained in the polymerization at the higher dosing rate, which in turn would arise from the higher gel percentage in the polymer. It is believed that the cross-linked chains prevent encounters between radicals, delaying the bimolecular termination reactions and allowing the existence of more than one radical inside the particles, which in turn increases the propagation rate.

  4. Muonium-containing vinyl radicals

    International Nuclear Information System (INIS)

    Rhodes, C.J.; Symons, M.C.R.; Roduner, E.; Heming, M.

    1987-01-01

    Exposure of trimethylsilylacetylene and bis(trimethylsilyl)acetylene to positive muons gave radicals whose muon-electron hyperfine coupling constants establish that the corresponding vinyl radicals were formed. (author)

  5. Radical-scavenging Activity of Natural Methoxyphenols vs. Synthetic Ones using the Induction Period Method

    Directory of Open Access Journals (Sweden)

    Seiichiro Fujisawa

    2007-02-01

    Full Text Available The radical-scavenging activities of the synthetic antioxidants 2-allyl-4-X-phenol (X=NO2, Cl, Br, OCH3, COCH3, CH3, t-(CH33, C6H5 and 2,4-dimethoxyphenol, and the natural antioxidants eugenol and isoeugenol, were investigated using differential scanning calorimetry (DSC by measuring their anti-1,1-diphenyl-2-picrylhydrazyl (DPPH radical activity and the induction period for polymerization of methyl methacrylate (MMA initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN and benzoyl peroxide (BPO. 2-Allyl-4-methoxyphenol and 2,4-dimethoxy-phenol scavenged not only oxygen-centered radicals (PhCOO. derived from BPO, but also carbon-centered radicals (R. derived from the AIBN and DPPH radical much more efficiently, in comparison with eugenol and isoeugenol. 2-Allyl-4-methoxyphenol may be useful for its lower prooxidative activity.

  6. Scavenging of free-radical metabolites of aniline xenobiotics and drugs by amino acid derivatives: toxicological implications of radical-transfer reactions.

    Science.gov (United States)

    Michail, Karim; Baghdasarian, Argishti; Narwaley, Malyaj; Aljuhani, Naif; Siraki, Arno G

    2013-12-16

    We investigated a novel scavenging mechanism of arylamine free radicals by poly- and monoaminocarboxylates. Free radicals of arylamine xenobiotics and drugs did not react with oxygen in peroxidase-catalyzed reactions; however, they showed marked oxygen uptake in the presence of an aminocarboxylate. These free-radical intermediates were identified using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and electron paramagnetic resonance (EPR) spectrometry. Diethylenetriaminepentaacetic acid (DTPA), a polyaminocarboxylate, caused a concentration-dependent attenuation of N-centered radicals produced by the peroxidative metabolism of arylamines with the subsequent formation of secondary aliphatic carbon-centered radicals stemming from the cosubstrate molecule. Analogously, N,N-dimethylglycine (DMG) and N-methyliminodiacetate (MIDA), but not iminodiacetic acid (IDA), demonstrated a similar scavenging effect of arylamine-derived free radicals in a horseradish peroxidase/H2O2 system. Using human promyelocytic leukemia (HL-60) cell lysate as a model of human neutrophils, DTPA, MIDA, and DMG readily reduced anilinium cation radicals derived from the arylamines and gave rise to the corresponding carbon radicals. The rate of peroxidase-triggered polymerization of aniline was studied as a measure of nitrogen-radical scavenging. Although, IDA had no effect on the rate of aniline polymerization, this was almost nullified in the presence of DTPA and MIDA at half of the molar concentration of the aniline substrate, whereas a 20 molar excess of DMPO caused only a partial inhibition. Furthermore, the yield of formaldehyde, a specific reaction endproduct of the oxidation of aminocarboxylates by aniline free-radical metabolites, was quantitatively determined. Azobenzene, a specific reaction product of peroxidase-catalyzed free-radical dimerization of aniline, was fully abrogated in the presence of DTPA, as confirmed by GC/MS. Under aerobic conditions, a radical-transfer reaction

  7. In situ polymerization of vinyl monomers in polyester yarns

    International Nuclear Information System (INIS)

    Avny, Y.; Rebenfeld, L.; Weigmann, H.D.

    1978-01-01

    The effects of a pretreatment of polyester (PET) yarns with a strongly interacting solvent such as dimethylformamide (DMF) on vinyl monomer incorporation were investigated. When the DMF pretreatment is carried out at high temperatures (above 120 0 C), the swollen PET structure is stabilized by solvent-induced secondary crystallization. This substrate is highly suitable for the incorporation of vinyl monomers. In situ polymerization of vinyl monomers in DMF-treated PET was investigated using chemical and γ-irradiation polymerization techniques, both in the presence and in the absence of excess monomer outside the PET fibers. When polymerization was carried out in a system in which a constant supply of free radicals was available from the outside of the PET fibers, lower initiator concentrations and smaller γ-irradiation doses were necessary. These results are attributed to a low efficiency of the initiator inside the PET fiber due to mobility restrictions. Water uptake and moisture regain of PET yarns containing poly(hydroxyethyl methacrylate) and poly(acrylic acid) were also investigated. When most of the vinyl polymer was inside the PET fiber, water absorption was limited. The changes in mechanical properties of the PET yarns resulting from the DMF pretreatment were partially reversed by in situ polymerization of vinyl monomers

  8. Free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  9. Trends in radical prostatectomy.

    Science.gov (United States)

    Eastham, James; Tokuda, Yuji; Scardino, Peter

    2009-02-01

    The surgical treatment of prostate cancer ideally removes the entire cancer, avoids excessive blood loss or serious perioperative complications, and results in complete recovery of continence and potency. To achieve this, the surgeon must excise sufficient periprostatic tissue to cure the cancer while preserving the cavernosal nerves required for erectile function and the neuromusculature required for normal urinary and bowel function. Here we will examine recent trends in radical prostatectomy, focusing on surgical technique.

  10. Synthesis of polyalkylacrylate nanolatexes by microemulsion polymerization method

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sabagh

    2012-12-01

    Full Text Available The paper concerns with the radical polymerization of [octadecyl acrylate (ODA, isooctyl acrylate (iso-OA and α-olefins 1-Octene (n-O]. These microemulsions were stabilized by sodium dodecyl sulfate (SDS and initiated by water-soluble initiator potassium persulfate (KPS. The nanolatex particle sizes were determined by transmission electron microscope (TEM. They were situated between 10 and 100 nm. The microstructures were confirmed by FT-IR and molecular weights determined by Gel permeation chromatography (GPC. The obtained M. wt. were (≈70 × 103, 101 × 103 and 153 × 103 g/mol. The polydispersity, molecular weights, and particle sizes were discussed in the light of micelle formation and shape of the alkyl group via emulsion polymerization.

  11. Surface Initiated Polymerizations via e-ATRP in Pure Water

    Directory of Open Access Journals (Sweden)

    Seyed Schwan Hosseiny

    2013-10-01

    Full Text Available Here we describe the combined process of surface modification with electrochemical atom transfer radical polymerization (e-ATRP initiated from the surface of a modified gold-electrode in a pure aqueous solution without any additional supporting electrolyte. This approach allows for a very controlled growth of the polymer chains leading towards a steady increase in film thickness. Electrochemical quartz crystal microbalance displayed a highly regular increase in surface confined mass only after the addition of the pre-copper catalyst which is reduced in situ and transformed into the catalyst. Even after isolation and washing of the modified electrode surface, reinitiation was achieved with retention of the controlled electrochemical ATRP reaction. This reinitiation after isolation proves the livingness of the polymerization. This approach has interesting potential for smart thin film materials and offers also the possibility of post-modification via additional electrochemical induced reactions.

  12. Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.

    Science.gov (United States)

    Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming

    2014-03-01

    Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction. Copyright © 2014. Published by Elsevier Ltd.

  13. Combining On-Line Characterization Tools with Modern Software Environments for Optimal Operation of Polymerization Processes

    Directory of Open Access Journals (Sweden)

    Navid Ghadipasha

    2016-02-01

    Full Text Available This paper discusses the initial steps towards the formulation and implementation of a generic and flexible model centric framework for integrated simulation, estimation, optimization and feedback control of polymerization processes. For the first time it combines the powerful capabilities of the automatic continuous on-line monitoring of polymerization system (ACOMP, with a modern simulation, estimation and optimization software environment towards an integrated scheme for the optimal operation of polymeric processes. An initial validation of the framework was performed for modelling and optimization using literature data, illustrating the flexibility of the method to apply under different systems and conditions. Subsequently, off-line capabilities of the system were fully tested experimentally for model validations, parameter estimation and process optimization using ACOMP data. Experimental results are provided for free radical solution polymerization of methyl methacrylate.

  14. Highly Defined Multiblock Copolypeptoids: Pushing the Limits of Living Nucleophilic Ring-Opening Polymerization

    KAUST Repository

    Fetsch, Corinna

    2012-06-05

    Advanced macromolecular engineering requires excellent control over the polymerization reaction. Living polymerization methods are notoriously sensitive to impurities, which makes a practical realization of such control very challenging. Reversible-deactivation radical polymerization methods are typically more robust, but have other limitations. Here, we demonstrate by repeated (ge;10 times) chain extension the extraordinary robustness of the living nucleophilic ring-opening polymerization of N-substituted glycine N-carboxyanhydrides, which yields polypeptoids. We observe essentially quantitative end-group fidelity under experimental conditions that are comparatively easily managed. This is employed to synthesize a pentablock quinquiespolymer with high definition. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A Self-Reporting Photocatalyst for Online Fluorescence Monitoring of High Throughput RAFT Polymerization.

    Science.gov (United States)

    Yeow, Jonathan; Joshi, Sanket; Chapman, Robert; Boyer, Cyrille Andre Jean Marie

    2018-04-25

    Translating controlled/living radical polymerization (CLRP) from batch to the high throughput production of polymer libraries presents several challenges in terms of both polymer synthesis and characterization. Although recently there have been significant advances in the field of low volume, high throughput CLRP, techniques able to simultaneously monitor multiple polymerizations in an "online" manner have not yet been developed. Here, we report our discovery that 5,10,15,20-tetraphenyl-21H,23H-porphine zinc (ZnTPP) is a self-reporting photocatalyst that can mediate PET-RAFT polymerization as well as report on monomer conversion via changes in its fluorescence properties. This enables the use of a microplate reader to conduct high throughput "online" monitoring of PET-RAFT polymerizations performed directly in 384-well, low volume microtiter plates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Highly Defined Multiblock Copolypeptoids: Pushing the Limits of Living Nucleophilic Ring-Opening Polymerization

    KAUST Repository

    Fetsch, Corinna; Luxenhofer, Robert

    2012-01-01

    Advanced macromolecular engineering requires excellent control over the polymerization reaction. Living polymerization methods are notoriously sensitive to impurities, which makes a practical realization of such control very challenging. Reversible-deactivation radical polymerization methods are typically more robust, but have other limitations. Here, we demonstrate by repeated (ge;10 times) chain extension the extraordinary robustness of the living nucleophilic ring-opening polymerization of N-substituted glycine N-carboxyanhydrides, which yields polypeptoids. We observe essentially quantitative end-group fidelity under experimental conditions that are comparatively easily managed. This is employed to synthesize a pentablock quinquiespolymer with high definition. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Collaborative Research: Polymeric Multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shenqiang [Temple Univ., Philadelphia, PA (United States). College of Engineering

    2017-04-20

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of molecular charge-transfer crystals has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer solids. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PI seeks to fundamental understanding of the control of organic crystals to demonstrate and explore room temperature multiferroicity. The experimental results have been verified through the theoretical modeling.

  18. Polymerization with freezing

    International Nuclear Information System (INIS)

    Ben-Naim, E; Krapivsky, P L

    2005-01-01

    Irreversible aggregation processes involving reactive and frozen clusters are investigated using the rate equation approach. In aggregation events, two clusters join irreversibly to form a larger cluster; additionally, reactive clusters may spontaneously freeze. Frozen clusters do not participate in merger events. Generally, freezing controls the nature of the aggregation process, as demonstrated by the final distribution of frozen clusters. The cluster mass distribution has a power-law tail, F k ∼k -γ , when the freezing process is sufficiently slow. Different exponents, γ = 1 and 3, are found for the constant and the product aggregation rates, respectively. For the latter case, the standard polymerization model, either no gels, or a single gel, or even multiple gels, may be produced

  19. Photo and radiation chemistry of polymeric systems and nanomaterials

    International Nuclear Information System (INIS)

    Mikhaylov, A.I.

    2004-01-01

    New approaches of analytical ESR-spectroscopy to studying of free-radical and electron-transport processes at radiation-chemical and photochemical modification both fictionalization of polymeric systems and nanomaterials were surveyed. Measuring techniques using of ESR-spectroscopy of paramagnetic centers were fulfilled. The radiation-chemical processes of modification, microencapsulation and kinetic stabilization of thermodynamically incompatible systems and interfaces for nanomaterials including fullerenes, nanotubes, nanofibres, etc. and composites on the basis of synthetic and natural polymers including plant fibers, fluoropolymers, polyolefins, etc. were developed

  20. Preparation of a Fluorocarbon Polymerizable Surfactant and Its Application in Emulsion Polymerization of Fluorine-Containing Acrylate

    Directory of Open Access Journals (Sweden)

    Meng Zhao

    2017-11-01

    Full Text Available A novel polymerizable fluorocarbon surfactant, perfluoro (4–methyl–3, 6–dioxaoct–7–ene sodium sulfonate (PSVNa, was synthesized and characterized. The fluorocarbon surfactant PSVNa and its mixture PSVNa/SDS were used as emulsifiers during the emulsion polymerization of DFHMA/MMA. The investigation of polymerization kinetics, particle size, and stability of the emulsions revealed that PSVNa has excellent emulsifying properties. The NMR spectrum of the copolymer and the detection of residual PSVNa show that more than 95% of the fluorocarbon surfactants have been linked to the polymer chains by radical polymerization, which will greatly reduce the environmental pollution caused by fluorinated surfactants.

  1. Polymeric micelles for drug targeting.

    Science.gov (United States)

    Mahmud, Abdullah; Xiong, Xiao-Bing; Aliabadi, Hamidreza Montazeri; Lavasanifar, Afsaneh

    2007-11-01

    Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.

  2. Improved Mechanical Performance Fracture Properties and Reliability of Radical-Cured Thermosets

    Energy Technology Data Exchange (ETDEWEB)

    Redline, Erica Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bolintineanu, Dan S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lane, J. Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stevens, Mark J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Alam, Todd M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Celina, Mathias C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-10-01

    The aim of this study was to alter polymerization chemistry to improve network homogeneity in free-radical crosslinked systems. It was hypothesized that a reduction in heterogeneity of the network would lead to improved mechanical performance. Experiments and simulations were carried out to investigate the connection between polymerization chemistry, network structure and mechanical properties. Experiments were conducted on two different monomer systems - the first is a single monomer system, urethane dimethacrylate (UDMA), and the second is a two-monomer system consisting of bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) in a ratio of 70/30 BisGMA/TEGDMA by weight. The methacrylate systems were crosslinked using traditional radical polymeriza- tion (TRP) with azobisisobutyronitrile (AIBN) or benzoyl peroxide (BPO) as an initiator; TRP systems were used as the control. The monomers were also cross-linked using activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) as a type of controlled radical polymerization (CRP). FTIR and DSC were used to monitor reac- tion kinetics of the systems. The networks were analyzed using NMR, DSC, X-ray diffraction (XRD), atomic force microscopy (AFM), and small angle X-ray scattering (SAXS). These techniques were employed in an attempt to quantify differences between the traditional and controlled radical polymerizations. While a quantitative methodology for characterizing net- work morphology was not established, SAXS and AFM have shown some promising initial results. Additionally, differences in mechanical behavior were observed between traditional and controlled radical polymerized thermosets in the BisGMA/TEGDMA system but not in the UDMA materials; this finding may be the result of network ductility variations between the two materials. Coarse-grained molecular dynamics simulations employing a novel model of the CRP reaction were carried out for

  3. Grafting study of polysulfone polymeric membranes by gamma ray irradiation

    International Nuclear Information System (INIS)

    Furtado Filho, Acacio A.M.; Gomes, Ailton de S.

    2011-01-01

    Radiation-induced grafting of styrene poli sulfone films were investigated by simultaneous method in solution using gamma-ray from a radio nuclide 60 Co source. The gamma-ray energy of high intensity induced breaking of chemical bonds leading to free radical formation. The radical start a conventional polymerization sequence comparable with that obtained with a chemical catalyst acting as initiator. The effects of grafting conditions such as irradiation total dose, dose rate and addition of cross linking agent, were studied by means of morphology analysis, thermal degradation and crystallinity. After the grafting reaction, the membranes were submitted to an exhaustive extraction with solvent to remove the polystyrene homopolymer formed. The degree of grafting (DOG) was analyzed by percentage of weight increase. As a result, the reaction always follows the same pattern: DOG increases rapidly initially whilst propagation is the main reaction, then more slowly as termination becomes more frequent. (author)

  4. In Situ Monitoring of RAFT Polymerization by Tetraphenylethylene-Containing Agents with Aggregation-Induced Emission Characteristics.

    Science.gov (United States)

    Liu, Shunjie; Cheng, Yanhua; Zhang, Haoke; Qiu, Zijie; Kwok, Ryan T K; Lam, Jacky W Y; Tang, Ben Zhong

    2018-05-22

    A facile and efficient approach is demonstrated to visualize the polymerization in situ. A group of tetraphenylethylene (TPE)-containing dithiocarbamates were synthesized and screened as agents for reversible addition fragmentation chain transfer (RAFT) polymerizations. The spatial-temporal control characteristics of photochemistry enabled the RAFT polymerizations to be ON and OFF on demand under alternating visible light irradiation. The emission of TPE is sensitive to the local viscosity change owing to its aggregation-induced emission characteristic. Quantitative information could be easily acquired by the naked eye without destroying the reaction system. Furthermore, the versatility of such a technique was well demonstrated by 12 different polymerization systems. The present approach thus demonstrated a powerful platform for understanding the controlled living radical polymerization process. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Polymethylene-based copolymers by polyhomologation or by its combination with controlled/living and living polymerizations

    KAUST Repository

    Zhang, Hefeng

    2014-01-20

    Polyhomologation, recently developed by Shea, is a borane-initiated living polymerization of ylides leading to linear polymethylenes (C1 polymerization) with controlled molecular weight, low polydispersity, and well-defined structures. In this Review, the copolyhomologation of different ylides as well as the combination of polyhomologation with controlled/living (nitroxide-mediated, atom transfer radical, reversible addition-fragmentation chain-transfer) and living (ring opening, anionic) polymerizations is discussed. Polyhomologation of ylides, in combination with living and controlled/living polymerizations, leads to a plethora novel well-defined polymethylene (polyethylene)-based polymeric materials, which are very important for understanding/improving the behavior of industrial polyethylenes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Novel Carbazole Skeleton-Based Photoinitiators for LED Polymerization and LED Projector 3D Printing

    Directory of Open Access Journals (Sweden)

    Assi Al Mousawi

    2017-12-01

    Full Text Available Radical chemistry is a very convenient way to produce polymer materials. Here, an application of a particular photoinduced radical chemistry is illustrated. Seven new carbazole derivatives Cd1–Cd7 are incorporated and proposed as high performance near-UV photoinitiators for both the free radical polymerization (FRP of (methacrylates and the cationic polymerization (CP of epoxides utilizing Light Emitting Diodes LEDs @405 nm. Excellent polymerization-initiating abilities are found and high final reactive function conversions are obtained. Interestingly, these new derivatives display much better near-UV polymerization-initiating abilities compared to a reference UV absorbing carbazole (CARET 9H-carbazole-9-ethanol demonstrating that the new substituents have good ability to red shift the absorption of the proposed photoinitiators. All the more strikingly, in combination with iodonium salt, Cd1–Cd7 are likewise preferred as cationic photoinitiators over the notable photoinitiator bis(2,4,6-trimethylbenzoylphenylphosphine oxide (BAPO for mild irradiation conditions featuring their remarkable reactivity. In particular their utilization in the preparation of new cationic resins for LED projector 3D printing is envisioned. A full picture of the included photochemical mechanisms is given.

  7. Studies in reactive extrusion processing of biodegradable polymeric materials

    Science.gov (United States)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  8. Polymeric conductors and superconductors

    International Nuclear Information System (INIS)

    Goodings, E.P.

    1975-01-01

    The production of electrically conductive polymers which are flexible ans capable of being shaped by normal processes, is discussed. The relation between the structure of the polymer and its ability to transport electric charge is considered. The main problem is to combine high conductivity with good processability and it is shown that stacked-planar systems are superior to conjugated polymers. Good mechanical properties have yet to be achieved. In some way the rigid pi-bonded systems must be combined with a conventional sigma-bonded polymer without destroying its flexibility and tensile properties. The structure will contain a radical ion system to provide charge carriers but it is not yet known how to design the polymer structure to give high carrier mobility. Further work is required on organic superconductors in unravelling the relationship between charge carrier mobility and the supermolecular structure of polymers. (UK)

  9. Organometallic Polymeric Conductors

    Science.gov (United States)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  10. Manipulating radicals: Using cobalt to steer radical reactions

    OpenAIRE

    Chirilă, A.

    2017-01-01

    This thesis describes research aimed at understanding and exploiting metallo-radical reactivity and explores reactions mediated by square planar, low-spin cobalt(II) complexes. A primary goal was to uncover novel reactivity of discrete cobalt(III)-bound carbene radicals generated upon reaction of the cobalt(II) catalysts with carbene precursors. Another important goal was to replace cobalt(II)-porphyrin catalysts with cheaper and easier to prepare metallo-radical analogues. Therefore the cata...

  11. Cationic polymerization of styrene by means of pulse radiolysis

    International Nuclear Information System (INIS)

    Egusa, S.; Arai, S.; Kira, A.; Imamura, M.; Tabata, Y.

    1977-01-01

    The radiation-induced cationic polymerization of styrene has been studied by microsecond pulse radiolysis. It was possible to observe absorption bands of a monomer cation radical (St. + ) at 630 nm and at 350 nm in a mixture of isopentane and n-butyl chloride at - 165 0 C. Three absorption bands, around 1600 nm, at 600 nm and at 450 nm, grew in parallel with the decay of St. + after pulse. The 1600-nm and 600-nm bands were assigned to an associated dimer cation radical (St 2 . + ), and the 450-nm band to a bonded dimer cation radical (St-St. + ) by comparison of absorption spectra of α-methylstyrene, 1,2-dihydronaphthalene and trans-β-methylstyrene. The kinetic behaviour of these species suggests that St-St. + and a part of St 2 . + are formed by the reaction of St. + with a styrene monomer, and the rest of St 2 . + may be formed by positive charge transfer from a solvent cation radical to an auto-associated neutral dimer of styrene. A long-lived absorption band at 340 nm grew with the decay of St-St. + . This band is considered due to a growing polymer carbonium ion. (author)

  12. Emulsion Polymerization of Tung Oil-Based Latexes with Asolectin as a Biorenewable Surfactant

    Directory of Open Access Journals (Sweden)

    Ashley Johns

    2016-11-01

    Full Text Available Bio-based vesicles, with potential application in drug delivery and/or catalyst encapsulation, have been prepared by the free radical emulsion co-polymerization of tung oil, divinylbenzene (DVB, n-butyl methacrylate (BMA, and asolectin in a xylene/water mixture. The free radical polymerization was initiated by di-tert-butyl peroxide (DTBP at 100 °C in a convection oven. Molecular weights of approximately 11,000 Da were measured by Matrix-assisted Laser Desorption/Ionization-Time of Flight (Maldi-TOF for tung oil-asolectin copolymers, verifying that significant polymerization occurs under the cure conditions employed. The cure of the co-monomer mixture employed in this work was monitored by Dielectric Analysis (DEA, while changes in the Raman spectrum of all co-monomers before and after the cure, along with differential scanning calorimetry (DSC analysis, have been used to verify the need of a post-cure step and completion of the polymerization reaction. Scanning Transmission Electron Microscopy (STEM images of the emulsion after polymerization indicate that vesicles were formed, and vesicle size distribution of samples prepared with different amounts of tung oil were determined using a Zetasizer.

  13. De fysica van polymere materialen

    NARCIS (Netherlands)

    Struik, L.C.E.

    1987-01-01

    Rede, uitgesproken ter gelegenheid van de aanvaarding van het ambt van buitengewoon hoogleraar in de fysica van polymere materialen aan de Universitelt Twente op donderdag 22 januarì 1987 door Dr.lr. L.C.E. Struik.

  14. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng; Hadjichristidis, Nikolaos; Gnanou, Yves

    2014-01-01

    .e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  15. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Zhao, Junpeng; Zhang, Hefeng; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands

  16. Pulsed-laser polymerization in compartmentalized liquids. 1. Polymerization in vesicles

    NARCIS (Netherlands)

    Jung, M.; Casteren, van I.A.; Monteiro, M.J.; Herk, van A.M.; German, A.L.

    2000-01-01

    Polymerization in vesicles is a novel type of polymerization in heterogeneous media, leading to parachute-like vesicle-polymer hybrid morphologies. To explore the kinetics of vesicle polymerizations and to learn more about the actual locus of polymerization we applied the pulsed-laser polymerization

  17. Increased recombination of CH3 radicals on stainless steel

    International Nuclear Information System (INIS)

    Gorodetsky, A.E.; Zalavutdinov, R.Kh.; Zakharov, A.P.; Vnukov, S.P.; Varshavskaya, I.G.; Makhankov, A.N.; Mazul, I.V.; Federici, G.

    2005-01-01

    By using a so-called 'stream technique', which consists of flowing gas in laminar regime along a quartz tube, we determine that CH 3 radicals are completely removed from the pumped mixture (CH 4 /C X H Y /H 2 /H/CH 3 ) after several hundred collisions with the inner surface of a stainless steel insert (T = 380-470 K). The methyl sticking coefficient decreased to ∼10 -6 and the recombination coefficient increased up to ∼0.01 at impingement with the metal surface. After passing through the heated zone no hydrocarbon deposition occurred at 300 K. However, unsaturated hydrocarbons, which formed in discharge zone and appeared as a result of interaction of radicals with stainless steel, condensed in a liquid phase at a temperature of ∼130 K and partial pressure of 0.01-0.1 Pa. Liquid films underwent partial polymerization and formed island deposits, which were stable at 300 K

  18. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications.

    Science.gov (United States)

    Wen, Gang; Guo, ZhiGuang; Liu, Weimin

    2017-03-09

    Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world

  19. Polyolefin nanocomposites in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine, E-mail: griselda.barrera@ufrgs.br [Universidade Federal do Rio Grande de Sul - UFRGS, Porto Alegre, RS (Brazil); Basso, Nara R.S. [Pontificia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS (Brazil); Quijada, Raul [Universidad de Chile, Santiago (Chile)

    2011-07-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  20. Polyolefin nanocomposites in situ polymerization

    International Nuclear Information System (INIS)

    Galland, Griselda Barrera; Fim, Fabiana de C.; Milani, Marceo A.; Silva, Silene P. da; Forest, Tadeu; Radaelli, Gislaine; Basso, Nara R.S.; Quijada, Raul

    2011-01-01

    Polyethylene and polypropylene nanocomposites using grapheme nanosheets and treated chrysotile have been synthesized by in situ polymerization using metallocene catalysts. The fillers have been submitted to acid, thermal and/ou ultrasound treatments before to introduce them into the polymerization reactor. A complete characterization of the fillers has been done. The nanocomposites have been characterized by SEM, TEM, DRX and AFM. The thermal, mechanic -dynamic, mechanical and electrical properties of the nanocomposites are discussed. (author)

  1. Electroactivity in Polymeric Materials

    CERN Document Server

    2012-01-01

    Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles.  The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.  This book captures: A complete introduction to electroactive materials including examples and recent developments The theory and applications of numerous topics like electroactive bending of dielectric elastomers and electroactive contraction and expansion New topics, such as biomimetic applications and energy harvesting This is a must-read within the electroactive community, particularly for professionals and graduate students who are interested in the ...

  2. Purification of inkjet ink from water using liquid phase, electric discharge polymerization and cellulosic membrane filtration.

    Science.gov (United States)

    Jordan, Alexander T; Hsieh, Jeffery S; Lee, Daniel T

    2013-01-01

    A method to separate inkjet ink from water was developed using a liquid phase, electric discharge process. The liquid phase, electric discharge process with filtration or sedimentation was shown to remove 97% of inkjet ink from solutions containing between 0.1-0.8 g/L and was consistent over a range of treatment conditions. Additionally, particle size analysis of treated allyl alcohol and treated propanol confirmed the electric discharge treatment has a polymerization mechanism, and small molecule analysis of treated methanol using gas chromatography and mass spectroscopy confirmed the mechanism was free radical initiated polymerization.

  3. Sulfonated amphiphilic block copolymers : synthesis, self-assembly in water, and application as stabilizer in emulsion polymerization

    Science.gov (United States)

    Jiguang Zhang; Matthew R. Dubay; Carl J. Houtman; Steven J. Severtson

    2009-01-01

    Described is the synthesis of diblock copolymers generated via sequential atom transfer radical polymerization (ATRP) of poly(n-butyl acrylate) (PnBA) followed by chain augmentation with either sulfonated poly(2-hydroxyethyl methacrylate) (PHEMA) or poly(2-hydroxyethyl acrylate) (PHEA) blocks. ATRP of PHEMA or PHEA from PnBA macroinitiator was conducted in acetone/...

  4. Role of nanoclay shape and surface characteristics on the morphology and thermal properties of polystyrene nanocomposites synthesized via emulsion polymerization

    CSIR Research Space (South Africa)

    Greesh, N

    2013-10-01

    Full Text Available This work evaluates the role of the surface properties and shape of clay type on the morphology, thermal, and thermo-mechanical properties of the polystyrene (PS)/clay nanocomposites prepared via free-radical emulsion polymerization. Attapulgite...

  5. Photocatalysed (Methacrylate Polymerization by (Antimony-Doped Tin Oxide Nanoparticles and Photoconduction of Their Crosslinked Polymer Nanoparticle Composites

    Directory of Open Access Journals (Sweden)

    J. C. M. Brokken-Zijp

    2010-01-01

    Full Text Available In the absence of another (photoradical initiator Sb:SnO2 nanoparticles (0≤Sb≤13 at % photocatalyze during irradiation with UV light the radical polymerization of (methacrylate monomers. When cured hard and transparent (>98% films with a low haze (0 at % nanoparticles can be attractive fillers for other photocatalytic applications photorefractive materials, optoelectronic devices and sensors.

  6. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1982-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in non-polar solvents (cyclohexane, carbon tetrachloride, n-butylchloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations. These cations dimerize in a diffusion-controlled reaction. The next step of chain-growth is slower by 3 to 4 orders of magnitude. In carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of radical cations with solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The reaction mechanism established shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  7. Primary processes of the radiation-induced cationic polymerization of aromatic olefins studied by pulse radiolysis

    International Nuclear Information System (INIS)

    Brede, O.; Boes, J.; Helmstreit, W.; Mehnert, R.

    1981-01-01

    By pulse radiolysis of solutions of aromatic olefins (styrene, 1-methylstyrene, 1,1-diphenylethylene) in nonpolar solvents (cyclohexane, carbon tetrachloride, n-butyl chloride) the mechanism and kinetics of primary processes of radiation-induced cationic polymerization were investigated. In cyclohexane, radical cations of the olefins are generated by charge transfer from solvent cations (k about 10 11 l mol -1 s -1 ). These cations dimerize in a diffusion-controlled reaction (k approximately 10 10 l mol -1 s -1 ). The next step of chain-growth is slower by 3 to 4 orders of magnitude. Furthermore, in carbon tetrachloride and in n-butyl chloride growing olefin cations are produced by a reaction of the radical cations with the solvent as well as by addition of solvent carbonium ions to the monomer. In strongly acidic aqueous solution of olefins radical cations produced indirectly from hydroxycyclohexadienyl radicals dimerize and react in a subsequent step by deprotonation forming non-saturated dimer radicals. The established reaction mechanism shows that in the case of radiation-induced cationic polymerization it is not possible to define a uniform first step of the chain reaction. (author)

  8. Characterization of Free Radicals By Electron Spin Resonance Spectroscopy in Biochars from Pyrolysis at High Heating Rates and at High Temperatures

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Anker Degn; Larsen Andresen, Mogens

    of mathematical models that can predict yields, composition and rates of product (char, tar, light gases) formation from fast pyrolysis. The modeling of cross-linking and polymerization reactions in biomass pyrolysis includes the formation of free radicals and their disappearance. Knowledge about these radical...... reactions is important in order to achieve the high fuel conversion at short residence times. However, little is known about the extent of free radical reactions in pulverized biomass at fast pyrolysis conditions.The concentration and type of free radicals from the decay (termination stage) of pyrolysis...... to the less efficient catalytic effects of potassium on the bond-breaking and radical re-attachments. The high Si levels in the rice husk caused an increase in the char radical concentration compared to the wheat straw because the free radicals were trapped in a char consisting of a molten amorphous silica...

  9. Hydroxyl radical reactivity with diethylhydroxylamine

    International Nuclear Information System (INIS)

    Gorse, R.A. Jr.; Lii, R.R.; Saunders, B.B.

    1977-01-01

    Diethylhydroxylamine (DEHA) reacts with gas-phase hydroxyl radicals on every third collision, whereas the corresponding reaction in aqueous solution is considerably slower. The high gas-phase reactivity explains the predicted inhibitory effect of DEHA in atmospheric smog processes. Results from the studies in the aqueous phase are helpful in predicting the mechanism of the reaction of DEHA with hydroxyl radicals

  10. Muoniated acyl and thioacyl radicals

    International Nuclear Information System (INIS)

    McKenzie, Iain; Brodovitch, Jean-Claude; Ghandi, Khashayar; Percival, Paul W.

    2006-01-01

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and 14 N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and 14 N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy

  11. Muoniated acyl and thioacyl radicals

    Energy Technology Data Exchange (ETDEWEB)

    McKenzie, Iain [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Brodovitch, Jean-Claude [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Ghandi, Khashayar [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada); Percival, Paul W. [TRIUMF and Department of Chemistry, 8888 University Drive, Simon Fraser University, Burnaby B.C., V5A 1S6 (Canada)]. E-mail: percival@sfu.ca

    2006-03-31

    The product of the reaction of muonium with tert-butylisocyanate was previously assigned as the muoniated tert-butylaminyl radical (I. McKenzie, J.-C. Brodovitch, K. Ghandi, S. Kecman, P. W. Percival, Physica B 326 (2003) 76). This assignment is incorrect since the muon and {sup 14}N hyperfine-coupling constants (hfcc) of this radical would have the opposite sign, which is in conflict with the experimental results. The radical is now reassigned as the muoniated N-tert-butylcarbamoyl radical, based on the similarities between the experimental muon and {sup 14}N hfcc and hfcc calculated at the UB3LYP/6-311G(d,p)//UB3LYP/EPR-III level. The large zero-point energy in the N-Mu bond results in the dissociation barrier of the muoniated N-tert-butylcarbamoyl radical being above the combined energy of the reactants, in contrast to the N-tert-butylcarbamoyl radical where the dissociation barrier lies below the combined energy of the reactants. The reaction of muonium with tert-butylisothiocyanate produced both conformers of the muoniated N-tert-butylthiocarbamoyl radical and their assignment was based on the similarities between the experimental and calculated muon hfcc. These are the first acyl and thioacyl radicals to be directly detected by muon spin spectroscopy.

  12. SENSITIVITY ANALYSIS OF KINETIC CONSTANTS AS A TOOL FOR ELUCIDATING THE POLYMERIZATION MECHANISM OF ACRYL-FURANIC COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Jurgen Lange

    2013-12-01

    Full Text Available By means of the sensitivity analysis of kinetics constants in a proposed mechanism for radical polymerization of acrylfuranic compounds [Furfuryl Acrylate (FA and Methacrylate (FM],it is elucidated which elementary steps are relevant in the phenomenology. In this analysis, the application of Come's methodology allows to classify the elementary steps of a mechanism in three categories: Non-sensible, Non-determinant, Sensible. The results obtained with this tool in modeling of experimental data in free radical polymerization of FA and FM suggest that kinetic mechanism consists mainly on five elementary steps: 1 Primary initiation, 2 propagation, 3 degradative transfers (which include intermolecular and primary, 4 re-initiation and 5 cross-termination. Thus, taking into account these elementary steps in mathematical modeling, the polymerization of FA and FM in different experimental conditions was successfully simulated.

  13. Effect of tamoxifen in RAFT miniemulsion polymerization during the synthesis of polymer nanoparticles

    Directory of Open Access Journals (Sweden)

    Tailane Sant'Anna Moreira

    2014-01-01

    Full Text Available Tamoxifen (TXF is currently the only hormonal agent used for treatment of breast cancer. Although very effective, TXF presents low solubility in water, which affects its absorption and bioavailability. A common strategy to overcome this barrier is the formulation of a drug delivery system (DDS in order to increase the drug stability and improve the treatment effectiveness. Reversible addition-fragmentation chain transfer (RAFT polymerization is the most versatile method of controlled/living radical polymerization (CLRP, allowing for synthesis of well-defined polymers and being adapted to a wide range of polymerization systems. Miniemulsion polymerization is a dispersed system that is commonly used to prepare nanoparticles (NP with 50 to 500 nm of diameter. The aim of this work was to evaluate the effect of the in situ incorporation of TXF during miniemulsion conventional and RAFT polymerizations, using methyl methacrylate (MMA as monomer. Although the in situ addition of TXF promoted a slight reduction of the reaction rate, it did not affect the final particle size distribution of the latex or the molecular weight control exerted by the RAFT agent. The obtained results suggest that in situ incorporation of TXF during the synthesis of polymer NP via RAFT polymerization allows for production of a polymer DDS for different uses, such as the breast cancer treatment.

  14. Plasma-polymerized alkaline anion-exchange membrane: Synthesis and structure characterization

    International Nuclear Information System (INIS)

    Hu Jue; Meng Yuedong; Zhang Chengxu; Fang Shidong

    2011-01-01

    After-glow discharge plasma polymerization was developed for alkaline anion-exchange membranes synthesis using vinylbenzyl chloride as monomer. X-ray photoelectron spectroscopy and attenuated total reflection Fourier transform infrared spectroscopy were used to characterize the chemical structure properties of plasma-polymerized membranes. Ion-exchange capacities of quaternized poly(vinylbenzyl chloride) (QPVBC) membranes were measured to evaluate their capability of hydroxyl ion transport. A mechanism of plasma polymerization using VBC as monomer that accounts for the competitive effects of free radicals polymerization and plasma ablation in the plasma polymerization process was proposed. Our results indicate that plasma discharge power influences the contents of functional groups and the structure of the plasma polymer membranes, which attribute to the coactions of polymerization and ablation. The properties of uniform morphology, good adhesion to the substrate, high thermal stability and satisfying anion conduction level suggest the potential application of QPVBC membrane deposited at discharge power of 20 W in alkaline direct methanol fuel cells.

  15. Design and synthesis of structurally well-defined functional polypropylenes via transition metal-mediated olefin polymerization chemistry

    Institute of Scientific and Technical Information of China (English)

    Dong Jinyong

    2006-01-01

    Functionalization of polyolefins is an industrially important yet scientifically challenging research subject.This paper summarizes our recent effort to access structurally well-defined functional polypropylenes via transition metal-mediated olefin polymerization.In one approach,polypropylenes containing side chain functional groups of controlled concentrations were obtained by Ziegler-Natta-catalyzed copolymerization of propylene in combination with either living anionic or controlled radical polymerization of polar monomers.The copolymerization of propylene with 1,4-divinylbenzene using an isospecific MgC12-supported TIC14 catalyst yielded potypropylenes containing pendant styrene moieties.Both metalation reaction with n-butyllithium and hydrochlorination reaction with dry hydrogen chloride selectively and quantitatively occurred at the pendant reactive sites,generating polymeric benzyllithium and 1-chloroethylbenzene species.These species initiated living anionic polymerization of styrene(S)and atom transfer radical polymerization(in the presence of CuC1 and pentamethyldiethylenetriamine) of methyl methacrylate(MMA),respectively,resulting in functional polypropylene graft copolymers(PP-g-PS and PP-g-PMMA)with controllable graft lengths.In another approach,chain end-functionalized polypropylenes containing a terminal OH-group with controlled molecular weights were directly prepared by propylene polymerization with a metaUocene catalyst through a selective aluminum chain transfer reaction.Both approaches proved to be desirable polyolefin functionalization routes in terms of efficiency and polymer structure controllability.

  16. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization

    International Nuclear Information System (INIS)

    Jia Xin; Li Yanfeng; Zhang Bo; Cheng Qiong; Zhang Shujiang

    2008-01-01

    Poly(vinyl alcohol)/kaolinite intercalated nanocomposites (Kao-PVA) were prepared via in situ intercalation radical polymerization. Vinyl acetate (VAc) was intercalated into kaolinite by a displacement method using dimethyl sulfoxide/kaolinite (Kao-DMSO) as the intermediate. Then, PVAc/kaolinite (Kao-PVAc) was obtained via radical polymerization with benzoyl peroxide (BPO) as initiator. Last, PVAc/kaolinite was saponified via direct-hydrolysis with NaOH solution in order to obtain PVA/kaolinite nanocomposites, which was characterized by Fourier-Transformation spectroscopy (FTIR), wide X-ray diffraction (WXRD) and transmission electron microscopy (TEM). Their differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results of the obtained PVA/kaolinite suggested that the thermal properties had an obvious improvement

  17. Polymeric media for tritium fixation

    International Nuclear Information System (INIS)

    Franz, J.A.; Burger, L.L.

    1975-01-01

    The synthesis and leach testing of several polymeric media for tritium fixation are presented. Tritiated bakelite, poly(acrylonitrile) and polystyrene successfully fixed tritium. Tritium leach rates at the tracer level appear to be negligible. Advantages and disadvantages of the processes are discussed, and further bench-scale investigations underway are reported. Rough cost estimates are presented for the different media and are compared with alternate approaches such as deep-well injection and long-term tank storage. Polymeric media costs are high compared to deep-well storage and are of the same order of magnitude per liter of water as for isotopic enrichment. With this limitation, polymeric media can be economically feasible only for highly concentrated tritiated wastes. It is recommended that the bakelite and polystyrene processes be examined on a larger scale to permit more accurate cost analysis and process design. (auth)

  18. Olefin metathesis and metathesis polymerization

    CERN Document Server

    Ivin, K J

    1997-01-01

    This book is a follow-up to Ivins Olefin Metathesis, (Academic Press, 1983). Bringing the standard text in the field up to date, this Second Edition is a result of rapid growth in the field, sparked by the discovery of numerous well-defined metal carbene complexes that can act as very efficient initiators of all types of olefin metathesis reaction, including ring-closing metathesis of acyclic dienes, enynes, and dienynes; ring-opening metathesis polymerizationof cycloalkenes, acyclic diene metathesis polymerization; and polymerization of alkynes, as well as simple olefin metathesis. Olefin Metathesis and Metathesis Polymerization provides a broad, up-to-date account of the subject from its beginnings in 1957 to the latest applications in organic synthesis. The book follows the same format as the original, making it useful toteachers and to researchers, and will be of particular interest to those working in the fields of organic chemistry, polymer chemistry, organometallic chemistry, catalysis, materials scien...

  19. Emulsifier-free emulsion polymerization of tetrafluoroethylene by radiation. IV. Effects of additives on Polymer molecular weight

    International Nuclear Information System (INIS)

    Watanabe, T.; Suwa, T.; Okamoto, J.; Machi, S.

    1979-01-01

    Poly(tetrafluoroethylene)(PTFE) of high molecular weight, 4.5 x 10 7 , was incidentally obtained at earlier study of an emulsifier-free emulsion polymerization of tetrafluoroethylene by radiation. In order to clarify this phenomenon, the effects of additives, in particular radical scavengers, on the molecular weight of PTFE and its polymerization behavior were studied. It was found that the molecular weight of PTFE is increased by the addition of hydroquinone, benzoquinone, α-pinene, dl-limonene, and ethylenediamine but is decreased by oxygen and triethylamine. A PTFE latex with molecular weight higher than 2 x 10 7 was obtained in the presence of hydroquinone. It is concluded that additives such as hydroquinone and benzaquinone, which rapidly scavenge the primary radicals (OH, H, and e/sub aq/ - ) in the aqueous phase but not the growing polymer radicals in PTFE particles, are most effective in increasing the molecular weight

  20. Polymerization-crosslinking of renewable itaconic acid in water and in deep eutectic solvents

    Czech Academy of Sciences Publication Activity Database

    Bednarz, S.; Pólćwiartek, K.; Wityk, J.; Strachota, Beata; Kredatusová, Jana; Beneš, Hynek; Wesolowska-Pietak, A.; Kowalski, G.

    2017-01-01

    Roč. 95, October (2017), s. 241-254 ISSN 0014-3057 R&D Projects: GA MŠk(CZ) 7AMB14PL021 Grant - others:International Visegrad Fund under Small Grant Programme(XE) 21620101 Institutional support: RVO:61389013 Keywords : free radical polymerization * crosslinking * hydrogels Subject RIV: DM - Solid Waste and Recycling OBOR OECD: Environmental sciences (social aspects to be 5.7) Impact factor: 3.531, year: 2016

  1. The Effect of the Chain Length on MMA Free Radicl Polymerization

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the polymerization process of methyl methacrylate (MMA), the Arrhenius parameters (activation energy and frequency factor) of propagating reaction monotonically decrease with increasing monomer conversion. At the beginning and middle stage of the propagating reaction, the increase of radical chain length is the main reason of above mentioned change. And at the end stage, the sharp decrease of kp indicates that the activation energy is approximately incline to zero and the propagating reaction is controlled by molecular diffusion motion.

  2. On-demand photoinitiated polymerization

    Science.gov (United States)

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  3. Pentafluorosulfanyl Substituents in Polymerization Catalysis.

    Science.gov (United States)

    Kenyon, Philip; Mecking, Stefan

    2017-10-04

    Highly electron-withdrawing pentafluorosulfanyl groups were probed as substituents in an organometallic catalyst. In Ni(II) salicylaldiminato complexes as an example case, these highly electron-withdrawing substituents allow for polymerization of ethylene to higher molecular weights with reduced branching due to significant reductions in β-hydrogen elimination. Combined with the excellent functional group tolerance of neutral Ni(II) complexes, this suppression of β-hydrogen elimination allows for the direct polymerization of ethylene in water to nanocrystal dispersions of disentangled, ultrahigh-molecular-weight linear polyethylene.

  4. Radiation Induced Polymerization of Pyrrole

    International Nuclear Information System (INIS)

    Sarada Idris; Ratnam, C.T.; Ahmad Ashrif Abu Bakar

    2016-01-01

    We demonstrate the polymerization of pyrrole by gamma irradiation. The pyrrole films were exposed to gamma ray from cobalt 60 source at doses ranging from 0 to 150 kGy. The films were subjected to structural and morphological analyses by using FTIR, SEM and AFM techniques. Similar studies were also made on pristine pyrrole film which serve as control. Results revealed that pyrrole has been successfully polymerized through irradiation induced reactions. The SEM images depicted the formation of cauliflower shape upon gamma irradiation. The structural changes of pyrrole also evidenced by FTIR spectra. Surface topography and roughness of pyrrole before and after gamma irradiation found to show significant differences. (author)

  5. Development of water-borne thermosetting paint by radiation-induced emulsion polymerization

    International Nuclear Information System (INIS)

    Makuuchi, K.; Katakai, A.; Nakayama, H.

    1981-01-01

    In previous papers the features of γ-ray induced emulsion polymerization were studied to use the emulsion as vehicles for water-borne paint. In this paper, the physical properties of thermosetting paints made with emulsions containing N-(n-butoxymethyl)acrylamide (NBM) and hydroxyl and carboxyl functionality were investigated. Since NBM moieties can react with amide, hydroxyl, and carboxyl groups, NBM copolymer emulsions prepared in this study have the self-crosslinking capability. As far as it was investigated, it was difficult to prepare a stable emulsion containing 10% of NBM by the conventional emulsion polymerization by using a water soluble radical initiator such as persulfate. In addition to 1-liter reactor, a pilot-scale plant of 70 liters reactor was used for γ-ray induced emulsion polymerization. Experimental details are given, and results are discussed. (author)

  6. Ionic polymerization of p-methoxystyrene and other styrene derivatives by radiation. [Gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, K; Pepper, D C [Trinity Coll., Dublin (Ireland)

    1976-01-01

    Polymerization of p-methoxystyrene by radiation was studied in bulk. Upon drying the monomer, the rate of polymerization, Rsub(p), became greater, changing its dose rate dependence from 0.5 to 1. The molecular weight distribution of the obtained polymers failed to give a bimodal curve; however, the peak molecular weight increased with higher Rsub(p). These kinetic features can be explained by a coexistence of radical and cationic mechanisms, as has been established in styrene, though there remain ambiguities about the effects of additives. Copolymerizations with styrene and 2-chloroethyl vinyl ether also showed a cationic nature for the reaction. A survey of possibilities of ionic polymerization by radiation was also carried out in ten ring-substituted styrene derivatives.

  7. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    Science.gov (United States)

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  8. Radical production in biological systems

    International Nuclear Information System (INIS)

    Johnson, J.R.; Akabani, G.

    1994-10-01

    This paper describes our effort to develop a metric for radiation exposure that is more fundamental than adsorbed dose and upon which a metric for exposure to chemicals could be based. This metric is based on the production of radicals by the two agents. Radicals produced by radiation in biological systems commonly assumed to be the same as those produced in water despite the presence of a variety of complex molecules. This may explain why the extensive efforts to describe the relationship between energy deposition (track structure) and molecular damage to DNA, based on the spectrum of radicals produced, have not been successful in explaining simple biological effects such as cell killing. Current models assume that DNA and its basic elements are immersed in water-like media and only model the production and diffusion of water-based radicals and their interaction with DNA structures; these models lack the cross sections associated with each macro-component of DNA and only treat water-based radicals. It has been found that such models are not realistic because DNA is not immersed in pure water. A computer code capable of simulating electron tracks, low-energy electrons, energy deposition in small molecules, and radical production and diffusion in water like media has been developed. This code is still in at a primitive stage and development is continuing. It is being used to study radical production by radiation, and radical diffusion and interactions in simple molecular systems following their production. We are extending the code to radical production by chemicals to complement our PBPK modeling efforts. It therefore has been developed primarily for use with radionuclides that are in biological materials, and not for radiation fields

  9. Free radical homopolymerization of a vinylferrocene/cyclodextrin complex in water

    Directory of Open Access Journals (Sweden)

    Helmut Ritter

    2010-06-01

    Full Text Available We report the radical initiated homopolymerization of a soluble vinylferrocene cyclodextrin-complex in water. Uncomplexed vinylferrocene 1 and the corresponding homopolymer are hydrophobic and completely insoluble in water. Complexation of 1 with methyl-β-cyclodextrin 2 results in clearly water-soluble structures due to incorporation of the ferrocene moiety into the cyclodextrin cavity. After free radical polymerization of the water-soluble complexed monomer, corresponding to polyvinylferrocene (PVFc, the water-soluble polymer is obtained due to the host guest interactions. Those polymeric complexes are stable in water up to about 90 °C. Above this temperature the polymer precipitates due to decomplexation. The complex was investigated by 1H NMR spectrometry, dynamic light scattering (DLS, differential scanning calorimetry (DSC, and lower critical solution temperature (LCST measurements.

  10. Guest Editorial: Processes of Radicalization and De-Radicalization

    Directory of Open Access Journals (Sweden)

    Donatella Della Porta

    2012-05-01

    Full Text Available The study of radicalization and de-radicalization, understood as processes leading towards the increased or decreased use of political violence, is central to the question of how political violence emerges, how it can be prevented, and how it can be contained. The focus section of this issue of the International Journal of Conflict and Violence addresses radicalization and de-radicalization, seeking to develop a more comprehensive understanding of the processes, dynamics, and mechanisms involved and taking an interdisciplinary approach to overcome the fragmentation into separate disciplines and focus areas. Contributions by Pénélope Larzillière, Felix Heiduk, Bill Kissane, Hank Johnston, Christian Davenport and Cyanne Loyle, Veronique Dudouet, and Lasse Lindekilde address repressive settings, legitimacy, institutional aspects, organizational outcomes, and dynamics in Europe, Asia, Africa, and North and South America.

  11. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization

  12. Redox properties of free radicals

    International Nuclear Information System (INIS)

    Neta, P.

    1981-01-01

    Results of electron transfer reactions observed and monitored by pulse radiolysis are reported. This technique allows determination of the first one-electron reduction or oxidation of a compound rather than the overall two-electron transfer usually reported. Pulse radiolysis allows the determination of absolute rate constants for reactions of free radicals and helps elucidate the mechanisms involved. Studies using this technique to study radicals derived from quinones, nitro compounds, pyridines, phenols, and anilines are reported. Radicals of biochemical interest arising from riboflavin, ascorbic acid, vitamin K 3 , vitamin E, MAD + , porphyrins, etc. have also been studied

  13. Hot wire radicals and reactions

    International Nuclear Information System (INIS)

    Zheng Wengang; Gallagher, Alan

    2006-01-01

    Threshold ionization mass spectroscopy is used to measure radical (and stable gas) densities at the substrate of a tungsten hot wire (HW) reactor. We report measurements of the silane reaction probability on the HW and the probability of Si and H release from the HW. We describe a model for the atomic H release, based on the H 2 dissociation model. We note major variations in silicon-release, with dependence on prior silane exposure. Measured radical densities versus silane pressure yield silicon-silane and H-silane reaction rate coefficients, and the dominant radical fluxes to the substrate

  14. Hydroperoxide Traces in Common Cyclic Ethers as Initiators for Controlled RAFT Polymerizations.

    Science.gov (United States)

    Eggers, Steffen; Abetz, Volker

    2018-04-01

    Herein, a reversible addition-fragmentation chain transfer (RAFT) polymerization is introduced for reactive monomers like N-acryloylpyrrolidine or N,N-dimethylacrylamide working without a conventional radical initiator. As a very straightforward proof of principle, the method takes advantage of the usually inconvenient radical-generating hydroperoxide contaminations in cyclic ethers like tetrahydrofuran or 1,4-dioxane, which are very common solvents in polymer sciences. The polymerizations are surprisingly well controlled and the polymers can be extended with a second block, indicating their high livingness. "Solvent-initiated" RAFT polymerizations hence prove to be a feasible access to tailored materials with minimal experimental effort and standard laboratory equipment, only requiring the following ingredients: hydroperoxide-contaminated solvent, monomer, and RAFT agent. In other respects, however, the potential coinitiating ability of the used solvent is to be considered when investigating the kinetics of RAFT polymerizations or aiming for the synthesis of high-livingness polymers, e.g., multiblock copolymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. N-Vinylcarbazole: As an Additive for Thermal Polymerization at Room Temperature with in situ Formation of Ag(0 Nanoparticules

    Directory of Open Access Journals (Sweden)

    Mohamad-Ali Tehfe

    2015-08-01

    Full Text Available N-vinylcarbazole (NVK is proposed as an additive for acrylates thermal free radical polymerization (FRP and epoxy thermal ring opening polymerization (ROP at room temperature. The new initiating systems are based on a silane/silver salt/N-vinylcarbazole interaction, which ensures good to excellent polymerization. Moreover, the polymerization is much more efficient under air than under argon. The effects of the N-vinylcarbazole, silane, silver salt and monomer structures are investigated. Interestingly, silver nanoparticles Ag(0 are formed in situ. The as-synthesized nanocomposite materials contained spherical nanoparticles homogeneously dispersed in the polymer matrices. Polymers and nanoparticles were characterized by Differential Scanning Calorimetry (DSC, Transmission Electron Microscopy (TEM, Energy-Dispersive X-ray Spectrometry (EDS, Fourier Transform Infrared Spectroscopy (FTIR, and UV-vis spectroscopy. A coherent picture of the involved chemical mechanisms is presented.

  16. Synthesis and Characterization of Novel Polymethylene-Based 3-Miktoarm Star Copolymers by Combining Polyhomologation with Other Living Polymerizations

    KAUST Repository

    Altaher, Maryam

    2015-01-01

    Polyethylene (PE) is produced in a huge scale globally and has plenty of desirable properties. It is used in coating, packaging, and artificial joint replacements. The growing need for high performance polyethylene led to the development of new catalysts, monomers and polymerizations. The synthesis of polymethylene (equivalent to polyethylene) by living polyhomologation opened the way to well-defined polymethylenes-based polymeric materials with controlled structure, molecular weight and narrow polydispersity. Such model polymers are substantial to study the structure-properties relationships. This research presents a new strategy based on the in situ formation of B-thexyl-silaboracyclic serving as initiating sites for the polyhomologation of dimethylsulfoxonium methylide. Combination with metal-free ring-opening polymerization (ROP) of ɛ-caprolactone (CL) and atom transfer radical polymerization (ATRP) of styrene led to three polymethylene-based 3-miktoarm stars copolymers PCL(PM-OH)2, Br-PCL(PM-OH)2 and PS(PM-OH)2.

  17. Synthesis and photostabilizing performance of a polymeric HALS based on 1,2,2,6,6-pentamethylpiperidine and vinyl acetate

    Directory of Open Access Journals (Sweden)

    Marcelo Aparecido Chinelatto

    2015-01-01

    Full Text Available Abstract Polymeric hindered amine light stabilizers (polymeric HALS have been extensively studied because they combine a high ability to protect the polymers against harmful effects of weathering with minimum physical loss. In this study a new polymeric N-methylated HALS was synthesized by the radical copolymerization of a cyclic tertiary amine with vinyl acetate (VAc. 4-Acryloyloxy-1,2,2,6,6-pentamethylpiperidine (APP, the cyclic tertiary amine, was prepared by the initial conversion of 2,2,6,6-tetramethyl-4-piperidinol derivatives via two different routes. The APP/VAc copolymer synthesized was characterized by size exclusion chromatography (SEC, Fourier transform infrared spectroscopy (FTIR and carbon-13 nuclear magnetic resonance (13C NMR. The photostabilizing performance, particularly the induction period of polypropylene (PP films containing different concentrations of APP/VAc copolymer, when exposed to accelerated aging, was comparable to that of PP films compounded with commercial polymeric HALS.

  18. Synthesis and Characterization of Novel Polymethylene-Based 3-Miktoarm Star Copolymers by Combining Polyhomologation with Other Living Polymerizations

    KAUST Repository

    Altaher, Maryam

    2015-05-01

    Polyethylene (PE) is produced in a huge scale globally and has plenty of desirable properties. It is used in coating, packaging, and artificial joint replacements. The growing need for high performance polyethylene led to the development of new catalysts, monomers and polymerizations. The synthesis of polymethylene (equivalent to polyethylene) by living polyhomologation opened the way to well-defined polymethylenes-based polymeric materials with controlled structure, molecular weight and narrow polydispersity. Such model polymers are substantial to study the structure-properties relationships. This research presents a new strategy based on the in situ formation of B-thexyl-silaboracyclic serving as initiating sites for the polyhomologation of dimethylsulfoxonium methylide. Combination with metal-free ring-opening polymerization (ROP) of ɛ-caprolactone (CL) and atom transfer radical polymerization (ATRP) of styrene led to three polymethylene-based 3-miktoarm stars copolymers PCL(PM-OH)2, Br-PCL(PM-OH)2 and PS(PM-OH)2.

  19. CONTINENT RADICAL PROSTATECTOMY

    Directory of Open Access Journals (Sweden)

    Yu. P. Sernyak

    2013-01-01

    Full Text Available Objective: to evaluate the impact of dissection of the dorsal venous complex without pre-ligation, suturing, or coagulation during radical prostatectomy (RPE in patients with localized prostate cancer (PC on the quality of surgery and the function of urinary retention.Subjects and methods. The data of 42 patients who had undergone posterior and anterior anatomical repair and vesicourethral anastomosis using a V-lock suture after prostatectomy were analyzed. All the patients were divided into 2 groups. Group 1 consisted of 22 patients in whom the dorsal venous complex was closed using a 3-0 vicryl suture before urethral dissection. Group 2 included 20 patients in whom the urethra was dissected without suturing the venous complex.Results. In group 1, complete urinary retention after catheter removal was noted in 9 (40.9 % and 15 (68 % patients within 24 hours and after 3 months, respectively. Following 12 months, two (9 % patients were observed to have partial mild urinary incontinence (as many as 2 pads per day. Group 2 patients showed complete urinary retention in 17 (85 % cases on the first day after catheter removal; all the patients retained urine 3 months later.Conclusion. In patients with localized PC, dissection of the dorsal venous complex without presuturing during laparoscopic RPE exerts a considerable impact on the preservation of urinary retention, namely 45% more of the patients reported complete urinary retention in early periods and 10 % more did this in later periods. At the same time, there was no statistically significant increase in intraoperative blood loss (p > 0.05, the number of positive edges, or biochemical recurrences.

  20. CONTINENT RADICAL PROSTATECTOMY

    Directory of Open Access Journals (Sweden)

    Yu. P. Sernyak

    2014-07-01

    Full Text Available Objective: to evaluate the impact of dissection of the dorsal venous complex without pre-ligation, suturing, or coagulation during radical prostatectomy (RPE in patients with localized prostate cancer (PC on the quality of surgery and the function of urinary retention.Subjects and methods. The data of 42 patients who had undergone posterior and anterior anatomical repair and vesicourethral anastomosis using a V-lock suture after prostatectomy were analyzed. All the patients were divided into 2 groups. Group 1 consisted of 22 patients in whom the dorsal venous complex was closed using a 3-0 vicryl suture before urethral dissection. Group 2 included 20 patients in whom the urethra was dissected without suturing the venous complex.Results. In group 1, complete urinary retention after catheter removal was noted in 9 (40.9 % and 15 (68 % patients within 24 hours and after 3 months, respectively. Following 12 months, two (9 % patients were observed to have partial mild urinary incontinence (as many as 2 pads per day. Group 2 patients showed complete urinary retention in 17 (85 % cases on the first day after catheter removal; all the patients retained urine 3 months later.Conclusion. In patients with localized PC, dissection of the dorsal venous complex without presuturing during laparoscopic RPE exerts a considerable impact on the preservation of urinary retention, namely 45% more of the patients reported complete urinary retention in early periods and 10 % more did this in later periods. At the same time, there was no statistically significant increase in intraoperative blood loss (p > 0.05, the number of positive edges, or biochemical recurrences.

  1. Novel polymeric materials from triglycerides

    Science.gov (United States)

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  2. Novel solid state polymeric batteries

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, A.; Glasse, M.; Latham, R.; Linford, R.

    1986-01-01

    AC conductivity measurements have been performed on a number of polymeric electrolytes containing Mg, Ca, Sr and Zn perchlorates and Mg and Ca thiocyanates. The electrolytes were characterized using DSC. Results are reported of preliminary tests of cells incorporating anodes of the above metals. 11 refs.

  3. Reactive surfactants in heterophase polymerization

    NARCIS (Netherlands)

    Guyot, A.; Tauer, K.; Asua, J.M.; Es, van J.J.G.S.; Gauthier, C.; Hellgren, A.C.; Sherrington, D.C.; Montoya-Goni, A.; Sjöberg, M.; Sindt, O.; Vidal, F.F.M.; Unzue, M.; Schoonbrood, H.A.S.; Schipper, E.T.W.M.; Lacroix-Desmazes, P.

    1999-01-01

    This paper summarizes the work carried out during 3 years in a Network of the program "Human Capital and Mobility" of the European Union CHRX 93-0159 entitled "Reactive surfactants in heterophase polymerization for high performance polymers". A series of about 25 original papers will be published in

  4. Biodegradable polymeric prodrugs of naltrexone

    NARCIS (Netherlands)

    Bennet, D.B.; Li, X.; Adams, N.W.; Kim, S.W.; Hoes, C.J.T.; Hoes, C.J.T.; Feijen, Jan

    1991-01-01

    The development of a biodegradable polymeric drug delivery system for the narcotic antagonist naltrexone may improve patient compliance in the treatment of opiate addiction. Random copolymers consisting of the ¿-amino acids N5-(3-hydroxypropyl--glutamine and -leucine were synthesized with equimolar

  5. Preparations of spherical polymeric particles from Tanzanian ...

    African Journals Online (AJOL)

    Spherical Polymeric Particles (SPP) have been prepared from Tanzanian Cashew Nut Shell Liquid (CNSL) by suspension polymerization technique involving either step-growth or chain- growth polymerization mechanisms. The sizes of the SPP, which ranged from 0.1 to 2.0 mm were strongly influenced by the amounts of ...

  6. Radical Change by Entrepreneurial Design

    National Research Council Canada - National Science Library

    Roberts, Nancy C

    1998-01-01

    .... Radical change by entrepreneurial design then becomes the focal point, in order to acquaint the reader with the strategies and tactics of well-known entrepreneurs who have been successful in molding...

  7. Penile rehabilitation after radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Ohl, Dana A; Ralph, David

    2013-01-01

    The pathophysiology of erectile dysfunction after radical prostatectomy (RP) is believed to include neuropraxia, which leads to temporarily reduced oxygenation and subsequent structural changes in penile tissue. This results in veno-occlusive dysfunction, therefore, penile rehabilitation programmes...

  8. Radical prostatectomy. Results and indications

    International Nuclear Information System (INIS)

    Jacqmin, D.

    1997-01-01

    Radical prostatectomy is the surgical curative treatment of localized prostate cancer. The survival is good in young patients (<70) with T2 N0M0 tumors and more than 10 year's life expectancy. Side-effects are urinary incontinence, impotence and anastomosis stricture. Quality of life should be considered as an important factor for the choice of the patient between radical prostatectomy, radiotherapy and follow-up. (author)

  9. Radical Islamism and Failed Developmentalism

    OpenAIRE

    Rahnema, Saeed

    2008-01-01

    The rise of radical Islamism in recent years does not limit the applicability of the concept of cultural nationalism. Rather the two are intertwined in ways which this article will attempt to highlight. Islam took specific national forms as modern nation-states arose and the contemporary resurgence of radical Islamism also follows that modern pattern. I examine the emergence of the three most important movements in the Islamic world, namely, the Muslim Brotherhood in Egypt, Jama'at-e Islami i...

  10. Glycine Polymerization on Oxide Minerals

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH3 + group of adsorbed Gly to the nucleophilic NH2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  11. Glycine Polymerization on Oxide Minerals.

    Science.gov (United States)

    Kitadai, Norio; Oonishi, Hiroyuki; Umemoto, Koichiro; Usui, Tomohiro; Fukushi, Keisuke; Nakashima, Satoru

    2017-06-01

    It has long been suggested that mineral surfaces played an important role in peptide bond formation on the primitive Earth. However, it remains unclear which mineral species was key to the prebiotic processes. This is because great discrepancies exist among the reported catalytic efficiencies of minerals for amino acid polymerizations, owing to mutually different experimental conditions. This study examined polymerization of glycine (Gly) on nine oxide minerals (amorphous silica, quartz, α-alumina and γ-alumina, anatase, rutile, hematite, magnetite, and forsterite) using identical preparation, heating, and analytical procedures. Results showed that a rutile surface is the most effective site for Gly polymerization in terms of both amounts and lengths of Gly polymers synthesized. The catalytic efficiency decreased as rutile > anatase > γ-alumina > forsterite > α- alumina > magnetite > hematite > quartz > amorphous silica. Based on reported molecular-level information for adsorption of Gly on these minerals, polymerization activation was inferred to have arisen from deprotonation of the NH 3 + group of adsorbed Gly to the nucleophilic NH 2 group, and from withdrawal of electron density from the carboxyl carbon to the surface metal ions. The orientation of adsorbed Gly on minerals is also a factor influencing the Gly reactivity. The examination of Gly-mineral interactions under identical experimental conditions has enabled the direct comparison of various minerals' catalytic efficiencies and has made discussion of polymerization mechanisms and their relative influences possible Further systematic investigations using the approach reported herein (which are expected to be fruitful) combined with future microscopic surface analyses will elucidate the role of minerals in the process of abiotic peptide bond formation.

  12. Laparoscopic radical cystectomy: key points

    Directory of Open Access Journals (Sweden)

    D. V. Perlin

    2018-01-01

    Full Text Available Background. Radical cystectomy remains the golden standard for treatment of muscle invasive bladder cancer. Objective: to duplicate with highest accuracy the open radical cystectomy procedure, which we successfully utilized earlier in our clinic, in the of laparoscopic conditions in order to preserve the advantages of minimally invasive procedures and retain the reliability of the tried and tested open surgery.Materials and methods. In the report were included 35 patients (27 men and 8 women with bladder cancer, who underwent laparoscopic radical cystectomy in Volgograd Regional Center of Urology and Nephrology between April 2013 and March 2016. Only the patients who had been submitted to full intracorporal ileal conduits were included.Results. The mean operative time was 378 minutes, the mean blood loss was 285 millilitres, the mean length of hospital stay was 12.4 days, only 20 % of patients required the narcotic anesthetics. The postoperative complication rate was 11.4 %. However, the majority of the patients were successfully treated with minimally invasive procedures. Generally, our results were similar to other reported studies.Conclusion. Laparoscopic radical cystectomy is a safe and efficient modality of treatment of bladder cancer. However, it needs more procedures and longer observation period to establish laparoscopic radical cystectomy as an alternative to open radical cystectomy.

  13. The games radicals play : special issue on free radicals and radical ions

    OpenAIRE

    Walton, J.C.; Williams, F.

    2015-01-01

    Chemistry and Physics have aptly been described as “most excellent children of Intellect and Art” [1]. Both these “children” engage with many playthings, and molecules rank as one of their first favorites, especially radicals, which are amongst the most lively and exciting. Checking out radicals dancing to the music of entropy round their potential energy ballrooms is surely both entertaining and enlightening. Radicals’ old favorite convolutions are noteworthy, but the new styles, modes and a...

  14. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    Science.gov (United States)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  15. Conversion of alkyl radicals to allyl radicals in irradiated single crystal mats of polyethylene

    International Nuclear Information System (INIS)

    Fujimura, T.; Hayakawa, N.; Kuriyama, I.

    1978-01-01

    The decay of alkyl radicals, the conversion of alkyl radicals to allyl radicals and the trapping of allyl radicals in irradiated single crystal mats of polyethylene have been studied by electron spin resonance (e.s.r.). It has been suggested that in the crystal core alkyl radicals react with trans-vinylene double bonds and are converted into trans-vinylene allyl radicals; at the crystal surface, alkyl radicals react with vinyl end groups and are converted into allyl radicals with vinyl end groups. The decay of radical pairs and the formation of trans-vinylene double bonds are discussed. (author)

  16. 17.9.3 Radical cations of diazo compounds

    Science.gov (United States)

    Davies, A. G.

    This document is part of Subvolume E2 `Phosphorus-Centered Radicals, Radicals Centered on Other Heteroatoms, Organic Radical Ions' of Volume 26 `Magnetic Properties of Free Radicals' of Landolt-Börnstein Group II `Molecules and Radicals'.

  17. SCATTERING FROM RAMIFIED POLYMERIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    M.Benhamou

    2004-01-01

    Full Text Available Here, of great interest to us is a quantitative study of the scattering properties from ramified polymeric systems of arbitrary topology. We consider three types of systems, namely ramified polymers in solution, ramified polymer blends, or ternary mixtures made of two ramified polymers of different chemical nature immersed in a good solvent. To achieve the goal of the study, use is made of the Random Phase Approximation. First we determine the exact expression of the form factor of an ideal ramified polymer of any topology, from which we extract the exact expression of its gyration radius. Using the classical Zimm's formulae and the exact form factor, we determine all scattering properties of these three types of ramified polymeric systems. The main conclusion is that ramification of the chains induces drastic changes of the scattering properties.

  18. Polymeric nanoparticles for optical sensing.

    Science.gov (United States)

    Canfarotta, Francesco; Whitcombe, Michael J; Piletsky, Sergey A

    2013-12-01

    Nanotechnology is a powerful tool for use in diagnostic applications. For these purposes a variety of functional nanoparticles containing fluorescent labels, gold and quantum dots at their cores have been produced, with the aim of enhanced sensitivity and multiplexing capabilities. This work will review progress in the application of polymeric nanoparticles in optical diagnostics, both for in vitro and in vivo detection, together with a discussion of their biodistribution and biocompatibility. © 2013.

  19. High-conversion emulsion polymerization

    NARCIS (Netherlands)

    Maxwell, I.A.; Verdurmen, E.M.F.J.; German, A.L.

    1992-01-01

    The four important factors that det. the rate of emulsion polymn. are the propagation rate coeff., the latex-particle concn., the monomer concn. in the latex particles, and the free-radical concn. in the latex particles. Both theor. considerations and exptl. evidence suggested that the important

  20. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  1. Graft polymerization of vynil monomers at carbon black surface (1)

    International Nuclear Information System (INIS)

    Haryono Arumbinang.

    1976-01-01

    Effect of aromatic condensates containing functional group on carbon black surface, effect of pH condensates on carbon black chemisorption, analysis and configuration of functional group, the crystal structure, property measurement standard, particle diameter measurement, oil adsorption, colour capacity, volatile acid content, electric resistence and the volume of the granular or carbon black dust, are given. Electron paramagnetic resonance determination of the amount of free radicals on carbon black surface, its oxidation and effects on the surface and inner structure of carbon black, and graft polymerization by radiation copolymerization, are discussed. Experiments on radiation graft copolymerization by acrylic acid, methacrylate, and glycidol methacrylate, in a vacuum condition, have been carried out. It is concluded that further research on the modification and configuration of carbon black should be developed. (author)

  2. Photoionization of the OH radical

    International Nuclear Information System (INIS)

    Dehmer, P.M.

    1985-01-01

    The hydroxyl radical (OH) is one of the most thoroughly studied free radicals because of its importance in atmospheric chemistry, combustion processes, and the interstellar medium. Detailed experimental and theoretical studies have been performed on the ground electronic state (X 2 PI/sub i/) and on the four lowest bound excited electronic states (A 2 Σ + , B 2 Σ + , D 2 Σ - , and C 2 Σ + ). However, because it is difficult to distinguish the spectrum of OH from the spectra of the various radical precursors, the absorption spectrum in the wavelength region below 1200 A has not been well characterized. In the present work, the spectrum of OH has been determined in the wavelength region from 750 to 950 A using the technique of photoionization mass spectrometry. This technique allows complete separation of the spectrum of OH from that of the other components of the discharge and permits the unambiguous determination of the spectrum of OH

  3. Efficient, environmentally-friendly and specific valorization of lignin: promising role of non-radical lignolytic enzymes.

    Science.gov (United States)

    Wang, Wenya; Zhang, Chao; Sun, Xinxiao; Su, Sisi; Li, Qiang; Linhardt, Robert J

    2017-06-01

    Lignin is the second most abundant bio-resource in nature. It is increasingly important to convert lignin into high value-added chemicals to accelerate the development of the lignocellulose biorefinery. Over the past several decades, physical and chemical methods have been widely explored to degrade lignin and convert it into valuable chemicals. Unfortunately, these developments have lagged because of several difficulties, of which high energy consumption and non-specific cleavage of chemical bonds in lignin remain the greatest challenges. A large number of enzymes have been discovered for lignin degradation and these are classified as radical lignolytic enzymes and non-radical lignolytic enzymes. Radical lignolytic enzymes, including laccases, lignin peroxidases, manganese peroxidases and versatile peroxidases, are radical-based bio-catalysts, which degrade lignins through non-specific cleavage of chemical bonds but can also catalyze the radical-based re-polymerization of lignin fragments. In contrast, non-radical lignolytic enzymes selectively cleave chemical bonds in lignin and lignin model compounds and, thus, show promise for use in the preparation of high value-added chemicals. In this mini-review, recent developments on non-radical lignolytic enzymes are discussed. These include recently discovered non-radical lignolytic enzymes, their metabolic pathways for lignin conversion, their recent application in the lignin biorefinery, and the combination of bio-catalysts with physical/chemical methods for industrial development of the lignin refinery.

  4. Donor free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550

    1980-04-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.

  5. Radical feminists & trans activists truce

    OpenAIRE

    Mackay, F.

    2014-01-01

    #GenderWeek: Truce! When radical feminists and trans feminists empathise\\ud Feminist Times\\ud By Finn Mackay \\ud read all #GenderWeek articles.\\ud We wanted to explore the ground between the polarised, entrenched positions in the so-called “TERF-war”. Radical feminists on one pole, trans-inclusionary feminists and trans activists on the other. The disputed territory being women-only space, language and the ever changing legal framework surrounding gender.\\ud Entrenchment leads to stalemate. S...

  6. Development of deodorizing materials by radiation graft polymerization

    International Nuclear Information System (INIS)

    Sugo, Takanobu; Okamoto, Jiro; Fujiwara, Kunio; Sekiguchi, Hideo.

    1989-01-01

    With the development of society, the countermeasures for service water and sewerage in large cities and the environment preservation in industrial districts become difficult as their scale becomes larger. There are many unsolved problems, for example photochemical smog due to harmful gases, exhaust gas from automobiles, and smell of toilets and home waste water. The deodorizing materials used so far are mainly inorganic substances, and their ability of adsorbing harmful gases is very low. Besides, those are mostly granular, and limited in the formability. Therefore, it is expected to develop the fibrous adsorbent which has large adsorbing surface area and is easy to make filters. The chemical structures of the compounds having smell are shown. Eight legal bad smell substances which exert large influence to environment even in very small amount are designated. In this paper, the method of introducing functional radicals into existing fiber materials by the application of radiation graft polymerization process and the test of removing smelling compositions by using the obtained resin are reported. The experimental method, and the results of radiation graft polymerization, the adsorption of basic gases and acid gases, and gas flow test are described. (K.I.)

  7. Polymerization of an acetoxyvinyl substituted chlorocyclophosphazene

    NARCIS (Netherlands)

    Bosscher, G; Jekel, AP; vandeGrampel, JC

    The vinyl acetate derivative, gem-isopropyl-2-(alpha-acetoxyvinyl)tetrachlorocyclotriphosphazene (1), has been used in radical homopolymerization and copolymerization reactions with methyl methacrylate, (MMA) and styrene. The 1,1-disubstituted olefin did not undergo radical homopolymerization.

  8. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu

    2012-05-02

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  9. Nanoporous Polymeric Grating-Based Biosensors

    KAUST Repository

    Gao, Tieyu; Hsiao, Vincent; Zheng, Yue Bing; Huang, Tony Jun

    2012-01-01

    We demonstrate the utilization of an interferometrically created nanoporous polymeric gratings as a platform for biosensing applications. Aminopropyltriethoxysilane (APTES)-functionalized nanoporous polymeric gratings was fabricated by combining holographic interference patterning and APTES-functionalization of pre-polymer syrup. The successful detection of multiple biomolecules indicates that the biofunctionalized nanoporous polymeric gratings can act as biosensing platforms which are label-free, inexpensive, and applicable as high-throughput assays. Copyright © 2010 by ASME.

  10. Volumetric polymerization shrinkage of contemporary composite resins

    OpenAIRE

    Nagem Filho, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill ...

  11. Reaction between protein radicals and other biomolecules

    DEFF Research Database (Denmark)

    Østdal, H.; Davies, M.J.; Andersen, Henrik Jørgen

    2002-01-01

    The present study investigates the reactivity of bovine serum albumin (BSA) radicals towards different biomolecules (urate, linoleic acid, and a polypeptide, poly(Glu-Ala-Tyr)). The BSA radical was formed at room temperature through a direct protein-to-protein radical transfer from H(2)O(2....... Subsequent analysis showed a decrease in the concentration of urate upon reaction with the BSA radical, while the BSA radical in the presence of poly(Glu-Ala-Tyr) resulted in increased formation of the characteristic protein oxidation product, dityrosine. Reaction between the BSA radical and a linoleic acid...

  12. Laparoscopically assisted vaginal radical trachelectomy

    International Nuclear Information System (INIS)

    Bielik, T.; Karovic, M.; Trska, R.

    2013-01-01

    Purpose: Radical trachelectomy is a fertility-sparing procedure with the aim to provide adequate oncological safety to patients with cervical cancer while preserving their fertility. The purpose of this study was to retrospectively evaluate, in a series of 3 patients, the feasibility, morbidity, and safety of laparoscopically assisted vaginal radical trachelectomy for early cervical cancer. Patients and Methods: Three non consecutive patients with FIGO stage IA1 and IB1 cervical cancer was evaluated in a period of years 2008 - 2011. The patients underwent a laparoscopic pelvic lymphadenectomy and radical parametrectomy class II procedure according to the Piver classification. The section of vaginal cuff, trachelectomy, permanent cerclage and isthmo-vaginal anastomosis ware realised by vaginal approach. Results: The median operative time, the median blood loss and the mean number of resected pelvic nodes was comparable with published data. Major intraoperative complications did not occur and no patient required a blood transfusion. The median follow-up time was 33 (38-59) months. One vaginal recurrence occurred in 7 months after primary surgery. The patient was underwent a radicalisation procedure and adjuvant oncologic therapy and now is free of disease. Conclusions: Laparoscopically assisted vaginal radical trachelectomy (LAVRT)may be an alternative in fertility-preserving surgery for early cervical cancer. The procedure offers patients potential benefits of minimally invasive surgery with adequate oncological safety, but it should be reserved for oncologic surgeons trained in advanced laparoscopic procedures. (author)

  13. Is Radical Innovation Management Misunderstood?

    DEFF Research Database (Denmark)

    Kristiansen, Jimmi Normann; Gertsen, Frank

    2015-01-01

    This paper poses a critical view on radical innovation (RI) management research and practice. The study investigates how expected RI performance influences firms’ under- standing of their RI capability. RI performance is often based on output measures such as market shares or fiscal return...

  14. Exploring the Theories of Radicalization

    Directory of Open Access Journals (Sweden)

    Maskaliūnaitė Asta

    2015-12-01

    Full Text Available After the London bombings in July 2005, the concern of terrorism scholars and policy makers has turned to “home-grown” terrorism and potential for political violence from within the states. “Radicalization” became a new buzz word. This article follows a number of reviews of the literature on radicalization and offers another angle for looking at this research. First, it discusses the term “radicalization” and suggests the use of the following definition of radicalization as a process by which a person adopts belief systems which justify the use of violence to effect social change and comes to actively support as well as employ violent means for political purposes. Next, it proposes to see the theories of radicalization focusing on the individual and the two dimensions of his/her motivation: whether that motivation is internal or external and whether it is due to personal choice or either internal (due to some psychological traits or external compulsion. Though not all theories fall neatly within these categories, they make it possible to make comparisons of contributions from a variety of different areas thus reflecting on the interdisciplinary nature of the study of terrorism in general and radicalization as a part of it.

  15. Erectile function after radical prostatectomy

    DEFF Research Database (Denmark)

    Fode, Mikkel; Frey, Anders; Jakobsen, Henrik

    2016-01-01

    collected database and a cross-sectional, questionnaire-based study in patients following radical prostatectomy. Erectile function was assessed with the IIEF-5 and the question "Is your erectile function as good as before the surgery (yes/no)". Patients were included if they were sexually active before...

  16. Polymeric membrane materials for artificial organs.

    Science.gov (United States)

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  17. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  18. Technological Application of Maltodextrins According to the Degree of Polymerization

    Directory of Open Access Journals (Sweden)

    Zenaida Saavedra-Leos

    2015-11-01

    Full Text Available Maltodextrin (MX is an ingredient in high demand in the food industry, mainly for its useful physical properties which depend on the dextrose equivalent (DE. The DE has however been shown to be an inaccurate parameter for predicting the performance of the MXs in technological applications, hence commercial MXs were characterized by mass spectrometry (MS to determine their molecular weight distribution (MWD and degree of polymerization (DP. Samples were subjected to different water activities (aw. Water adsorption was similar at low aw, but radically increased with the DP at higher aw. The decomposition temperature (Td showed some variations attributed to the thermal hydrolysis induced by the large amount of adsorbed water and the supplied heat. The glass transition temperature (Tg linearly decreased with both, aw and DP. The microstructural analysis by X-ray diffraction showed that MXs did not crystallize with the adsorption of water, preserving their amorphous structure. The optical micrographs showed radical changes in the overall appearance of the MXs, indicating a transition from a glassy to a rubbery state. Based on these characterizations, different technological applications for the MXs were suggested.

  19. The inhibition mechanisms of quinones and phenols present in wood for the vinyl polymerization

    International Nuclear Information System (INIS)

    Nobashi, Kenzo; Yokota, Tokuo

    1977-01-01

    The inhibitory effects and mechanisms of the quinones and phenols present in wood for the vinyl polymerization initiated with γ-rays and other initiation systems were investigated. The results obtained are summarized as follows; (1) Although phenolic compounds like isotaxiresinol inhibit the γ-ray initiated polymerization of methyl methacrylate (MMA) under the presence of air, they have no inhibitory effects in vacuo. On the other hand, o-benzoquinone and mansonones show strong inhibitory or retarding effects in vacuo. These facts indicate that oxygen may be important for the phenols to inhibit the vinyl polymerization. (2) It is shown qualitatively that there is a relationship between the strength of inhibitory action of quinones and their normal redox potentials. (3) PMMA produced under the presence of o-benzoquinone is found to include the fraction having extremely large chain length based on gel permeation chromatogram. (4) Based on the reaction products of orthoquinones and azobisisobutyronitrile, which was assumed as a model of polymer radicals, the inhibition reaction with polymer chain radical is concluded to take place upon the oxygen atoms of the quinones. (auth.)

  20. KINETICS AND MECHANISM OF PHOTOINDUCED POLYMERIZATION BY α,α-DIMETHOXY-α-PHENYL ACETOPHENONE

    Institute of Scientific and Technical Information of China (English)

    WANG Xiuzhi; LI Miaozhen; CHANG Zhiying; WANG Erjian

    1993-01-01

    α,α- dimethoxy- α-phenyl acetophenone (DMPA) is an efficient and thermally stable photoinitiator.Here its spectral characteristics in the transient state were shown. The transient species were identified as a benzoyl radical and a dimethoxyl benzyl radical that played a primary initiation role in polymerization. The kinetics and mechanism of the bulk polymerization of MMA were investigated. The exponent of DMPA concentration and κp/κt1/2 value were found to be 0.5 and 0.066 mol-1/2l1/2 s-1/2 , respectively. The existence of oxygen led to obtain the polymer with higher molecular weight, which can be attributed to the occurrence of the subsequent polymerization induced by active polymer end group. In the photocrosslinking reaction, the dependence of DMPA content on initial rate has been found. A principal reason is that the sample contained higher percentage of DMPA has higher light-absorbed efficiency. In solid film, higher concentration of DMPA is permitted to be used because there is little excited state self-quenching effect in the rigid medium.

  1. Some regularities of separate and simultaneous radiation polymerization of vinyl acetate and acrylonitrile in adsorption layer on aerosil surface

    International Nuclear Information System (INIS)

    Mund, S.L.; Bruk, M.A.; Abkin, A.D.

    1976-01-01

    The kinetics has been studied of initial stage radiation copolymerization and separate radiation polymerization of aerosil adsorbed vinylacetate (VA) and acrylonitrile (AN). The monomers were irradiated using a Co 60 gamma source or a RUP-400 X-ray unit. Infrared spectroscopy, nuclear magnetic resonance and gravimetry were used in the study. It has been found that in the dose rate interval studied (over 60-450 rad./sec) the break of kinetic chains during the polymerization of VA and its mixtures with AN is due to the reaction of degenerate transfer of the chains to the surface hydroxyl groups. When AN is polymerized, biomolecular break of chains prevails. The effective activation energy of polymerization is 1.5 kcal/mol for VA and 2.5 kcal/mol for AN. The order of polymerization rates by the concentration of adsorbed monomers at 50 deg, as well as by the irradiation dose rate is equal to 1 and 1 for VA and 3/2 and 0.7 for AN, respectively. The calculated values of copolymerization constants coincide with those characteristic of their radical polymerization in liquid phase. Isotherms for adsorption of VA and AN on aerosil at 30, 50 and 70 deg have been studied [ru

  2. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization.

    Science.gov (United States)

    Keddie, Daniel J

    2014-01-21

    The discovery of reversible-deactivation radical polymerization (RDRP) has provided an avenue for the synthesis of a vast array of polymers with a rich variety of functionality and architecture. The preparation of block copolymers has received significant focus in this burgeoning research field, due to their diverse properties and potential in a wide range of research environments. This tutorial review will address the important concepts behind the design and synthesis of block copolymers using reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is arguably the most versatile of the RDRP methods due to its compatibility with a wide range of functional monomers and reaction media along with its relative ease of use. With an ever increasing array of researchers that possess a variety of backgrounds now turning to RDRP, and RAFT in particular, to prepare their required polymeric materials, it is pertinent to discuss the important points which enable the preparation of high purity functional block copolymers with targeted molar mass and narrow molar mass distribution using RAFT polymerization. The key principles of appropriate RAFT agent selection, the order of monomer addition in block synthesis and potential issues with maintaining high end-group fidelity are addressed. Additionally, techniques which allow block copolymers to be accessed using a combination of RAFT polymerization and complementary techniques are touched upon.

  3. Flavonoids as scavengers of nitric oxide radical.

    NARCIS (Netherlands)

    van Acker, S.A.B.E.; Tromp, M.N.J.L.; Haenen, G.R.M.M.; van der Vijgh, W.J.F.; Bast, A.

    1995-01-01

    Flavonoids are a group of naturally occurring compounds used, e.g., in the treatment of vascular endothelial damage. They are known to be excellent scavengers of oxygen free radicals. Since the nitric oxide radical (

  4. O conceito de mal radical The concept of radical evil

    Directory of Open Access Journals (Sweden)

    Adriano Correia

    2005-01-01

    Full Text Available A noção de mal radical aparece em Kant no contexto da discussão da religião nos limites da simples razão e busca dar conta da complexa relação entre o respeito pela lei moral e o amor-próprio na definição do móbil para a ação. Na busca por identificar o fundamento da propensão para o mal no homem, Kant se vê diante da dificuldade de ter de articular natureza e liberdade, e ainda que a noção de mal radical possa conservar algumas ambigüidades, permite conceber uma noção de responsabilidade compatível com uma inata propensão para o mal. Neste texto busco explicitar alguns passos fundamentais na construção do conceito por Kant.The concept of radical evil appears in Kant's theory when he discusses the religion in the limits of the mere reason and aims explain the complex relationship between respect for the moral law and the self-love, for establish the motive of the action. By aiming identify the basis of human inclination to evil, Kant is faced with the trouble of have to put nature and freedom in connection. Despite of the concept of radical evil retain some ambiguity, it allows conceive a notion of responsibility suitable to an inherent inclination to evil. In this paper is my purpose to explain some basic moments of Kantian formulation of that notion.

  5. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands for time and skilled technical personnel, HVTs are currently used in only a few research laboratories worldwide. Instead, most researchers in this filed are attracted to more facile Schlenk techniques. The basic principle of this technique followed in all laboratories is substantially the same, i.e. the use of alternate vacuum and inert gas atmosphere in glass apparatus for the purification/charging of monomer, solvents, additives, and for the manipulation of air-sensitive compounds such as alkyl metal initiators, organometallic or organic catalysts. However, it is executed quite differently in each research group in terms of the structure of Schlenk apparatus (manifolds, connections, purification/storage flasks, reactors, etc.), the use of small supplementary devices (soft tubing, cannulas, stopcocks, etc.) and experimental procedures. The operational methods are partly purpose-oriented while also featured by a high flexibility, which makes it impossible to describe in detail each specific one. In this chapter we will briefly exemplify the application of Schlenk techniques for anionic polymerization by describing the performance of a few experiments from our own work.

  6. Free radicals in chemical carcinogenesis.

    Science.gov (United States)

    Clemens, M R

    1991-12-15

    During the past decade, remarkable progress has been made in our understanding of cancer-causing agents, mechanisms of cancer formation and the behavior of cancer cells. Cancer is characterized primarily by an increase in the number of abnormal cells derived from a given normal tissue, invasion of adjacent tissues by these abnormal cells, and lymphatic or blood-borne spread of malignant cells to regional lymph nodes and to distant sites (metastasis). It has been estimated that about 75-80% of all human cancers are environmentally induced, 30-40% of them by diet. Only a small minority, possibly no more than 2% of all cases, result purely from inherent genetic changes. Several lines of evidence confirm that the fundamental molecular event or events that cause a cell to become malignant occur at the level of the DNA and a variety of studies indicate that the critical molecular event in chemical carcinogenesis is the interaction of the chemical agent with DNA. The demonstration that DNA isolated from tumor cells can transfect normal cells and render them neoplastic provides direct proof that an alteration of the DNA is responsible for cancer. The transforming genes, or oncogenes, have been identified by restriction endonuclease mapping. One of the characteristics of tumor cells generated by transformation with viruses, chemicals, or radiation is their reduced requirement for serum growth factors. A critical significance of electrophilic metabolites of carcinogenes in chemical carcinogenesis has been demonstrated. A number of "proximate" and "ultimate" metabolites, especially those of aromatic amines, were described. The "ultimate" forms of carcinogens actually interact with cellular constituents to cause neoplastic transformation and are the final metabolic products in most pathways. Recent evidence indicates that free radical derivatives of chemical carcinogens may be produced both metabolically and nonenzymatically during their metabolism. Free radicals carry no

  7. Muonium radicals in benzene-styrene mixtures

    International Nuclear Information System (INIS)

    Ng, B.W.; Stadlbauer, J.W.; Walker, D.C.

    1984-01-01

    Muonium radicals were observed through their μ + SR precession frequencies in high transverse magnetic fields in pure benzene, pure styrene and their mixtures, all as liquids at room temperature. In benzene-styrene mixtures, the radicals obtained in each pure liquid are both present, so no slow (10 -9 -10 -5 s) intermolecular exchange occurs; but strong selectivity was found with the formation of the radical from styrene being about eight-times more probable than the radical from benzene. (Auth.)

  8. Free radicals in health and disease

    International Nuclear Information System (INIS)

    Gonet, B.

    1993-01-01

    Free radicals appear in the cells as the result of exogenic factors (ionizing radiation, UV) or reactions naturally occurring in the cell. Free radical reactions may cause destruction of macromolecules (DNA, lipids, proteins). Free radical pathology is important in many diseases and aging processes in organisms

  9. Oxygen free radicals in rheumatoid arthritis

    NARCIS (Netherlands)

    P. Biemond (Pieter)

    1986-01-01

    textabstractCurrent knowledge strongly suggests that oxygen free radicals are involved in the pathogenesis of RA. Additional information about the mechanism of free radical attack is necessary in order to find out if interaction with the mechanism of free radical damage can be used in the treatment

  10. Radical carbonylations using a continuous microflow system

    Directory of Open Access Journals (Sweden)

    Takahide Fukuyama

    2009-07-01

    Full Text Available Radical-based carbonylation reactions of alkyl halides were conducted in a microflow reactor under pressurized carbon monoxide gas. Good to excellent yields of carbonylated products were obtained via radical formylation, carbonylative cyclization and three-component coupling reactions, using tributyltin hydride or TTMSS as a radical mediator.

  11. Hydrophilization of Poly(ether ether ketone) Films by Surface-initiated Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Eskimergen, Rüya; Burkrinsky, J.T.

    2008-01-01

    and confirmed by ATR FTIR, water contact ang;le, and Thermal Gravimetric Analysis (TGA). The surface topography was evaluated by "Atomic Force Microscopy (AFM). X-ray Photoelectron Spectroscopy (XPS) has been used to investigate the degree of functionalization. The performed modification allowed for successful...

  12. Novel Polymers Based on Atom Transfer Radical Polymerization of 2-Methoxyethyl Acrylate

    DEFF Research Database (Denmark)

    Bednarek, Melania; Jankova Atanasova, Katja; Hvilsted, Søren

    2007-01-01

    macroinitiators, however, for the latter the controlled conditions were somehow difficult to maintain. The amphiphilic behavior of the diblock copolymers lead to phase separation resulting in two glass transition temperatures as detected by DSC. Contact angle (Y) investigations with water on PMEA, PMMA...

  13. Protein repellent hydrophilic grafts prepared by surface-initiated atom transfer radical polymerization from polypropylene

    DEFF Research Database (Denmark)

    Fristrup, Charlotte Juel; Jankova Atanasova, Katja; Eskimergen, Rüya

    2012-01-01

    with Attenuated Total Reflectance (ATR) Fourier Transform Infrared (FTIR) spectroscopy and Water Contact Angle (WCA) measurements. Confocal fluorescence microscopy of modified and unmodified substrates immersed in labelled insulin aspart showed superior repulsion of this protein for the poly(PEGMA) grafts, due...

  14. Surface Modification of Nanoporous 1,2-Polybutadiene by Atom Transfer Radical Polymerization or Click Chemistry

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Jankova Atanasova, Katja; Schulte, Lars

    2010-01-01

    ATRP-grafting of hydrophilic polyacrylates and click of MPEG, the originally hydrophobic samples transformed into hydrophilic nanoporous materials. The successful modification was confirmed by infrared spectroscopy, contact angle measurements and measurements of spontaneous water uptake, while...... the morphology was investigated by small-angle X-ray scattering and transmission electron microscopy....

  15. Radical Polymerization of Styrene and Styrene–Butylmethacrylate in a Counterrotating Twin Screw Extruder

    NARCIS (Netherlands)

    Goot, A.J. van der; Janssen, L.P.B.M.

    1997-01-01

    This article describes the copolymerization of styrene–butylmethacrylate (St-BMA) and the homopolymerization of styrene (St) in a counterrotating twin screw extruder. The effect of prepolymerization on both the product properties and process was studied. It turned out that the process of reactive

  16. Radical polymerization of styrene and styrene-butylmethacrylate in a counterrotating twin screw extruder

    NARCIS (Netherlands)

    vanderGoot, AJ; Janssen, LPB

    1997-01-01

    This article describes the copolymerization of styrene-butylmethacrylate (St-BMA) and the homopolymerization of styrene (St) in a counterrotating twin screw extruder. The effect of prepolymerization on both the product properties and process was studied. It turned out that the process of reactive

  17. Surface-Initiated Atom Transfer Radical Polymerization from Electrospun Mats: An Alternative to Nafion

    DEFF Research Database (Denmark)

    Javakhishvili, Irakli; Dimitrov, Ivaylo; Tynelius, Oskar

    2017-01-01

    , respectively. The membrane morphology is probedby scanning electron microscopy. A membrane with protonconductivity as high as 100 mS cm−1 is obtained. Long-termdurability study in direct methanol fuel cells is conducted forover 1500 h demonstrating the viability of this novel facileapproach....

  18. PHOTOLYTIC AND FREE RADICAL POLYMERIZATION OF EPOXIDIZED PLANT OIL TRIGLYCERIDES. (R829576)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Surface-Initiated Polymerization by Means of Novel, Stable, Non-Ester-Based Radical Initiator

    Czech Academy of Sciences Publication Activity Database

    Bain, E. D.; Dawes, K.; Ozcam, A. E.; Hu, X.; Gorman, C. B.; Šrogl, Jiří; Genzer, J.

    2012-01-01

    Roč. 45, č. 9 (2012), s. 3802-3815 ISSN 0024-9297 Institutional support: RVO:61388963 Keywords : self-assembled monolayers * poly(acrylic acid) brushes * thermoresponsive polymer Subject RIV: CC - Organic Chemistry Impact factor: 5.521, year: 2012

  20. REMOVAL OF CATALYST IN ATOM TRANSFER RADICAL POLYMERIZATION USING ION EXCHANGE RESINS. (R826735)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. WATER-BORNE BLOCK AND STATISTICAL COPOLYMERS SYNTHESIZED USING ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. RATIONAL DESIGN OF THE CATALYST FOR ATOM TRANSFER RADICAL POLYMERIZATION IN AQUEOUS MEDIA. (R829580)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  3. THE EFFECT OF LIGANDS ON ATOM TRANSFER RADICAL POLYMERIZATION IN WATER-BORNE SYSTEMS. (R826735)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  4. IMMOBILIZATION OF THE COPPER CATALYST IN ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  5. ATOM TRANSFER RADICAL POLYMERIZATION OF STYRENE IN TOLUENE-WATER MIXTURES. (R829580)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. NMR MONITORING OF CHAIN-END FUNCTIONALITY IN ATOM TRANSFER RADICAL POLYMERIZATION OF STYRENE. (R829580)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Polymeric implant of methylprednisolone for spinal injury ...

    African Journals Online (AJOL)

    Polymeric implant of methylprednisolone for spinal injury: preparation and characterization. Bo Yin, Jian-Jun Ji, Ming Yang. Abstract. Purpose: To improve the effectiveness and reduce the systemic side effects of methylprednisolone in traumatic spinal injuries, its polymeric implants were prepared using chitosan and sodium ...

  8. KINETICS OF POLYMERIZATION OF METHYL METHACRYLATE INITIATED BY COPPER POLYPROPYLENE-BASED POLYAMIDOXIME-SODIUM SULFITE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    WU Jinyuan; YANG Yiguang; YANG Chaoxiong

    1992-01-01

    The aqueous polymerization of methyl methacrylate initiated by copper polypropylene-based polyamidoxime ( PPAO - Cu ) - sodium sulfite system was investigated . The overall rate of polymerization (Rp) is Rp=9.7 × 1012 e-21, 200/RT [MMA]0.88 [ Na2 SO 3 ]0.50 The length of the induction period (τ) is inversely proportional to the concentration of sodium sulfite and independent of the amount of polymer supported copper and the concentration of monomer. It could be expressed as follows:1τ=1.2× 1012e-15,600/RT[ Na2SO3] =KτRi The polymerization is initiated by a primary radical generated from the redox reaction rather than induced by "coordination-proton transfer" mechanism.

  9. Metathesis Polymerization Reactions Induced by the Bimetallic Complex (Ph4P2[W2(μ-Br3Br6

    Directory of Open Access Journals (Sweden)

    Despoina Chriti

    2015-12-01

    Full Text Available The reactivity of the bimetallic complex (Ph4P2[W2(μ-Br3Br6] ({W 2.5 W}7+, a′2e3 towards ring opening metathesis polymerization (ROMP of norbornene (NBE and some of its derivatives, as well as the mechanistically related metathesis polymerization of phenylacetylene (PA, is presented. Our results show that addition of a silver salt (AgBF4 is necessary for the activation of the ditungsten complex. Polymerization of PA proceeds smoothly in tetrahydrofuran (THF producing polyphenylacetylene (PPA in high yields. On the other hand, the ROMP of NBE and its derivatives is more efficient in CH2Cl2, providing high yields of polymers. 13C Cross Polarization Magic Angle Spinning (CPMAS spectra of insoluble polynorbornadiene (PNBD and polydicyclopentadiene (PDCPD revealed the operation of two mechanisms (metathetic and radical for cross-linking, with the metathesis pathway prevailing.

  10. A muoniated radical in selenium

    International Nuclear Information System (INIS)

    Reid, I.D.; Cox, S.F.J.; Jayasooriya, U.A.; Zimmermann, U.

    2003-01-01

    We report new 0.3 T transverse-field μSR experiments in crystalline Se which show only a small, slowly relaxing muon signal at 300 K, accounting for about 30% of the incoming muon polarization. However, at 90 K signals are observed around 74 and 157 MHz, characteristic of a radical with a hyperfine coupling of 231 MHz. Very fast relaxation which increases with temperature makes these signals impossible to follow beyond 200 K. Above 400 K a quickly relaxing diamagnetic signal becomes visible, its relaxation falling with increasing temperature. In the melt (>490 K) just a single non-relaxing diamagnetic signal is seen. These observations may be explained by electron spin-exchange with a muoniated radical

  11. Role of radiolytically generated species in radiation induced polymerization of sodium p-styrene sulphonate (SSS) in aqueous solution: Steady state and pulse radiolysis study

    International Nuclear Information System (INIS)

    Bhardwaj, Y.K.; Mohan, H.; Sabharwal, S.; Majali, A.B.

    2000-01-01

    Radiation induced polymerization of sodium p-styrene sulphonate (SSS) in aqueous solution has been investigated by steady state and pulse radiolysis techniques. Effect of dose, dose rate, monomer concentration, pH and ambient conditions on polymerization was investigated. The reactions of primary radicals of water radiolysis such as OH radical, e - aq , H atom, O· - and some oxidizing radicals like N· 3 , Cl· - 2 ,Br· - 2 , and reducing specie like CO· - 2 with SSS have also been investigated. SSS reacts with OH radical with a rate constant of 5.9x10 9 dm 3 mol -1 s -1 at pH 6.3. The results indicate that ∼83% of OH radicals undergo electron transfer reaction resulting in a cation radical species while remaining ∼17% react via addition reaction. The hydrated electron reacts with SSS with a rate constant 1.3x10 10 dm 3 mol -1 s -1 to form an anion that undergoes fast protonation to form H-adduct at pH 6.3. At high pH (>10) the anion is able to transfer electron to methyl vilogen and p-nitro aceto phenone (p-NAP) where as H-adduct is unable to transfer electron. At pH ∼1 H atom reaction with SSS is diffusion controlled with a rate constant of 5x10 9 dm 3 mol -1 s -1 and results in formation of H adduct. It was seen that anion reacts with solute an order faster than cation generated radiolytically indicating anionic initiation of polymerization of SSS. Molecular weight of the polymer formed by radiation polymerization, determined by viscosity measurement, are of the order of 10 7 and higher molecular weight polymers are obtained at lower dose rates. In presence of a crosslinking agent gelation of polymer is much faster than the monomer and a polymer concentration ∼20% is most efficiently crosslinked. (author)

  12. Oxidative coupling and polymerization of pyrroles

    International Nuclear Information System (INIS)

    Hansen, Gregers Hendrik; Henriksen, Rikke Morck; Kamounah, Fadhil S.; Lund, Torben; Hammerich, Ole

    2005-01-01

    The electrochemical oxidation of 2,4-dimethyl-3-ethylpyrrole in acetonitrile has been studied using cyclic voltammetry, constant current coulometry, preparative electrolyses and ab initio calculations. The product analysis after the preparative electrolyses was carried out by HPLC combined with UV-vis and electrospray ionization MS detection. The aim of the work was to address some of the unresolved problems in the oxidative oligomerization and polymerization of alkylpyrroles. The title compound was chosen as a model for studies of pyrroles that are more basic than the solvent-supporting electrolyte system and for that reason are forced to serve as the base accepting the protons released during the coupling steps. The voltammograms obtained by cyclic voltammetry at a substrate concentration of 2 mM and voltage scan rates between 0.02 and 2 V s -1 showed a characteristic trace-crossing phenomenon that could be demonstrated by digital simulation to be related to that fact that the deprotonations of the initially formed dimer dication are slow with second order rate constants in the range 10 3 -10 4 M -1 s -1 . The relative stability of the different tautomers of the protonated pyrrole monomer and the corresponding 2,2'-dimer was determined by ab initio calculations at the RHF 6-31G(d) level. The studies also included investigations of the effects resulting from addition of a non-nucleophilic base, 2,6-di-tert-butylpyridine, to the voltammetry solutions. The major product observed after preparative electrolyses was a trimer the structure of which is proposed to include a central 2H-pyrrole unit. Since 2H-pyrroles are stronger bases than the corresponding 1H-pyrroles, the trimer is effectively protected against further oxidation by protonation. Two other trimers were observed as minor or trace products as well as a 1H,2H-dimer and several tetramers, also in trace amounts. In addition to the dimer, the trimers and the tetramers, a number of other minor products could be

  13. DNA Binding Hydroxyl Radical Probes

    OpenAIRE

    Tang, Vicky J; Konigsfeld, Katie M; Aguilera, Joe A; Milligan, Jamie R

    2012-01-01

    The hydroxyl radical is the primary mediator of DNA damage by the indirect effect of ionizing radiation. It is a powerful oxidizing agent produced by the radiolysis of water and is responsible for a significant fraction of the DNA damage associated with ionizing radiation. There is therefore an interest in the development of sensitive assays for its detection. The hydroxylation of aromatic groups to produce fluorescent products has been used for this purpose. We have examined four different c...

  14. Anatomical landmarks of radical prostatecomy.

    Science.gov (United States)

    Stolzenburg, Jens-Uwe; Schwalenberg, Thilo; Horn, Lars-Christian; Neuhaus, Jochen; Constantinides, Costantinos; Liatsikos, Evangelos N

    2007-03-01

    In the present study, we review current literature and based on our experience, we present the anatomical landmarks of open and laparoscopic/endoscopic radical prostatectomy. A thorough literature search was performed with the Medline database on the anatomy and the nomenclature of the structures surrounding the prostate gland. The correct handling of puboprostatic ligaments, external urethral sphincter, prostatic fascias and neurovascular bundle is necessary for avoiding malfunction of the urogenital system after radical prostatectomy. When evaluating new prostatectomy techniques, we should always take into account both clinical and final oncological outcomes. The present review adds further knowledge to the existing "postprostatectomy anatomical hazard" debate. It emphasizes upon the role of the puboprostatic ligaments and the course of the external urethral sphincter for urinary continence. When performing an intrafascial nerve sparing prostatectomy most urologists tend to approach as close to the prostatic capsula as possible, even though there is no concurrence regarding the nomenclature of the surrounding fascias and the course of the actual neurovascular bundles. After completion of an intrafascial technique the specimen does not contain any periprostatic tissue and thus the detection of pT3a disease is not feasible. This especially becomes problematic if the tumour reaches the resection margin. Nerve sparing open and laparoscopic radical prostatectomy should aim in maintaining sexual function, recuperating early continence after surgery, without hindering the final oncological outcome to the procedure. Despite the different approaches for radical prostatectomy the key for better results is the understanding of the anatomy of the bladder neck and the urethra.

  15. Radical Smiles Rearrangement: An Update

    Directory of Open Access Journals (Sweden)

    Ingrid Allart-Simon

    2016-07-01

    Full Text Available Over the decades the Smiles rearrangement and its variants have become essential synthetic tools in modern synthetic organic chemistry. In this mini-review we summarized some very recent results of the radical version of these rearrangements. The selected examples illustrate the synthetic power of this approach, especially if it is incorporated into a domino process, for the preparation of polyfunctionalized complex molecules.

  16. Free radical reactions of daunorubicin

    International Nuclear Information System (INIS)

    Houee-Levin, C.

    1991-01-01

    Daunorubicin is an antitumor antibiotic activated in vivo by reduction. Its mechanism of action involves DNA and topoisomerase attack, but side effects are cytotoxicity related to free radical formation. Therefore the mechanism of the one-electron reduction of the drug and the reactions of the daunorubicin transients towards compounds of biological interest have been studied by the methods of radiolysis, in order to provide possible explanations of the drug mechanism of action. Their relative importance in cellular conditions is discussed [fr

  17. Geoscientists and the Radical Middle

    Science.gov (United States)

    Tinker, S. W.

    2015-12-01

    Addressing the great challenges facing society requires industry, government, and academia to work together. I call this overlap space, where compromises are made and real solutions determined, the Radical Middle. Radical because it can appear at times as if the loudest and most publicly influential voices lie outside of the actual solution space, content to provoke but not problem-solve. One key area where geoscientists can play a lead role in the Radical Middle is in the overlap between energy, the environment, and the economy. Globally, fossil fuels still represent 85% of the aggregate energy mix. As existing conventional oil and natural-gas reservoir production continues to slowly decline, unconventional reservoirs, led today by shale and other more expensive resources, will represent a growing part of the oil and gas production mix. Many of these unconventional reservoirs require hydraulic fracturing. The positive economic impact of hydraulic fracturing and associated natural gas and oil production on the United States economy is well documented and undeniable. Yet there are environmental concerns about fracking, and some states and nations have imposed moratoria. This energy-environment-economy space is ideal for leadership from the geosciences. Another such overlap space is the potential for geoscience leadership in relations with China, whose economy and global presence continue to expand. Although China is building major hydropower and natural-gas power plants, as well as nuclear reactors, coal is still king—with the associated environmental impacts. Carbon sequestration—onshore in brine and to enhance oil recovery, as well as offshore—could prove viable. It is vital that educated and objective geoscientists from industry, government, and academia leave their corners and work together in the Radical Middle to educate the public and develop and deliver balanced, economically sensible energy and environmental strategies.

  18. Fluid Effects in Polymers and Polymeric Composites

    CERN Document Server

    Weitsman, Y Jack

    2012-01-01

    Fluid Effects in Polymers and Polymeric Composites, written by the late Dr. Y. Jack Weitsman, addresses the wide range of parameters that affect the interaction of fluids with polymers and polymeric composites. The book aims at broadening the scope of available data, mostly limited up to this time to weight-gain recordings of fluid ingress into polymers and composites, to the practical circumstances of fluctuating exposure. Various forms of experimental data are given, in conjunction with theoretical models derived from basic scientific principles, and correlated with severity of exposure conditions and interpreted by means of rationally based theoretical models. The practical implications of the effects of fluids are discussed. The issue of fluid effects on polymers and polymeric composites is of concern to engineers and scientists active in aerospace and naval structures, as an increasing portion of these structures are made of polymeric composites and employ polymeric adhesives as a joining device. While...

  19. Hydrophilic crosslinked-polymeric surface capable of effective suppression of protein adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Kamon, Yuri; Inoue, Naoko; Mihara, Erika; Kitayama, Yukiya; Ooya, Tooru; Takeuchi, Toshifumi, E-mail: takeuchi@gold.kobe-u.ac.jp

    2016-08-15

    Highlights: • Three hydrophilic crosslinked polymers were examined for protein adsorption. • All polymers showed low nonspecific adsorption of negatively charged proteins. • Poly(MMPC) showed the lowest adsorption for positively charged proteins. • Poly(MMPC) is able to reduce nonspecific adsorption of a wide range of proteins. - Abstract: We investigated the nonspecific adsorption of proteins towards three hydrophilic crosslinked-polymeric thin layers prepared by surface-initiated atom transfer radical polymerization using N,N′-methylenebisacrylamide, 2-(methacryloyloxy)ethyl-[N-(2-methacryloyloxy)ethyl]phosphorylcholine (MMPC), or 6,6′-diacryloyl-trehalose crosslinkers. Protein binding experiments were performed by surface plasmon resonance with six proteins of different pI values including α-lactalbumin, bovine serum albumin (BSA), myoglobin, ribonuclease A, cytochrome C, and lysozyme in buffer solution at pH 7.4. All of the obtained crosslinked-polymeric thin layers showed low nonspecific adsorption of negatively charged proteins at pH 7.4 such as α-lactalbumin, BSA, and myoglobin. Nonspecific adsorption of positively charged proteins including ribonuclease A, cytochrome C, and lysozyme was the lowest for poly(MMPC). These results suggest poly(MMPC) can effectively reduce nonspecific adsorption of a wide range of proteins that are negatively or positively charged at pH 7.4. MMPC is a promising crosslinker for a wide range of polymeric materials requiring low nonspecific protein binding.

  20. On the synthesis of peptide imprinted polymers by a combined suspension-Epitope polymerization method

    International Nuclear Information System (INIS)

    Kotrotsiou, O.; Chaitidou, S.; Kiparissides, C.

    2009-01-01

    In the past, molecularly imprinted polymers (MIPs), prepared by free-radical bulk polymerization, have been used for the selective recognition of small biomolecules (i.e., amino acids and amino acid derivatives). Presently, there is a need for the synthesis of MIPs capable of recognizing larger biomolecules (i.e., peptides and proteins). Moreover, it is highly desirable the production of MIP microparticles with well-defined morphological characteristics (e.g., particle size distribution, porosity, etc.) via particulate polymerization techniques. In the present study, the synthesis of molecularly imprinted microparticles, produced via the suspension and inverse suspension polymerization methods, using the 'epitope approach', is reported. The hydrophobic (i.e., Boc-Trp-Trp-Trp) or hydrophilic (i.e., His-Phe) oligo-peptides were employed as template molecules. The potential of the combined suspension polymerization method with the 'epitope approach' for the production of MIP microparticles is demonstrated, as well as the specificity and selectivity characteristics of the MIP microparticles towards hydrophobic and hydrophilic oligo-peptides. The proposed method appears to be a very promising and efficient technique for separation of proteins.