WorldWideScience

Sample records for copper-chloride hybrid thermochemical

  1. Copper chloride electrolyzer for the production of hydrogen via the copper-chlorine thermochemical cycle

    Science.gov (United States)

    Roy, Rahul Dev

    Hydrogen is considered a key element in solving the upcoming energy crisis, it is not the primary fuel source but an "energy carrier" similar to electricity and has to be produced using some other hydrogen rich source. Thermochemical water decomposition is a promising alternative to steam-methane reforming and electrolytic water splitting for a sustainable method of large-scale hydrogen production. The Copper-Chlorine thermochemical cycle is one of prime contenders among all the other thermochemical cycles being studied because of its low energy requirements compared to others and mild operating conditions, therefore making it available to be readily integrated to the available nuclear reactors or solar energy installations. This present work focuses on the study and development of a proton exchange membrane (PEM) electrolyzer cell for the Copper-Chlorine thermo chemical cycle to obtain a better understanding through experiments and models of this process. Different operating and design parameters such as temperature, flow rate, current density, membranes and gas diffusion layers were considered to reduce the voltage and hence increase the efficiency of the electrolyzer. The effects of catalyst and mass transfer were studied on the thin film electrode using a rotating disk electrode (RDE) setup. A mathematical model was also developed to monitor the performance of the electrolyzer by predicting the change in concentration of copper chloride in the system with respect to time. It is observed that flow rate and temperature plays a major role in decreasing the voltage drop. There was no effect of catalyst in the anode when compared to a bare anode at lower flow rates; but at higher flow rates there was significant decrease in voltage drop when a carbon cloth was placed at the anode end. High surface area carbon black has comparable activity towards CuCl oxidation with conventional catalyst like Platinum or Ruthenium oxide. It is also seen that mass transfers possess a

  2. Development of the Hybrid Sulfur Thermochemical Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Summers, William A.; Steimke, John L

    2005-09-23

    The production of hydrogen via the thermochemical splitting of water is being considered as a primary means for utilizing the heat from advanced nuclear reactors to provide fuel for a hydrogen economy. The Hybrid Sulfur (HyS) Process is one of the baseline candidates identified by the U.S. Department of Energy [1] for this purpose. The HyS Process is a two-step hybrid thermochemical cycle that only involves sulfur, oxygen and hydrogen compounds. Recent work has resulted in an improved process design with a calculated overall thermal efficiency (nuclear heat to hydrogen, higher heating value basis) approaching 50%. Economic analyses indicate that a nuclear hydrogen plant employing the HyS Process in conjunction with an advanced gas-cooled nuclear reactor system can produce hydrogen at competitive prices. Experimental work has begun on the sulfur dioxide depolarized electrolyzer, the major developmental component in the cycle. Proof-of-concept tests have established proton-exchange-membrane cells (a state-of-the-art technology) as a viable approach for conducting this reaction. This is expected to lead to more efficient and economical cell designs than were previously available. Considerable development and scale-up issues remain to be resolved, but the development of a viable commercial-scale HyS Process should be feasible in time to meet the commercialization schedule for Generation IV gas-cooled nuclear reactors.

  3. Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH2 Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Emanuela Mastronardo

    2017-01-01

    Full Text Available For the thermochemical performance implementation of Mg(OH2 as a heat storage medium, several hybrid materials have been investigated. For this study, high-performance hybrid materials have been developed by exploiting the authors’ previous findings. Expanded graphite (EG/carbon nanotubes (CNTs-Mg(OH2 hybrid materials have been prepared through Mg(OH2 deposition-precipitation over functionalized, i.e., oxidized, or un-functionalized EG or CNTs. The heat storage performances of the carbon-based hybrid materials have been investigated through a laboratory-scale experimental simulation of the heat storage/release cycles, carried out by a thermogravimetric apparatus. This study offers a critical evaluation of the thermochemical performances of developed materials through their comparison in terms of heat storage and output capacities per mass and volume unit. It was demonstrated that both EG and CNTs improves the thermochemical performances of the storage medium in terms of reaction rate and conversion with respect to pure Mg(OH2. With functionalized EG/CNTs-Mg(OH2, (i the potential heat storage and output capacities per mass unit of Mg(OH2 have been completely exploited; and (ii higher heat storage and output capacities per volume unit were obtained. That means, for technological applications, as smaller volume at equal stored/released heat.

  4. Local hybrid functionals: an assessment for thermochemical kinetics.

    Science.gov (United States)

    Kaupp, Martin; Bahmann, Hilke; Arbuznikov, Alexei V

    2007-11-21

    Local hybrid functionals with position-dependent exact-exchange admixture are a new class of exchange-correlation functionals in density functional theory that promise to advance the available accuracy in many areas of application. Local hybrids with different local mixing functions (LMFs) governing the position dependence are validated for the heats of formation of the extended G3/99 set, and for two sets of barriers of hydrogen-transfer and heavy-atom transfer reactions (HTBH38 and NHTBH38 databases). A simple local hybrid Lh-SVWN with only Slater and exact exchange plus local correlation and a one-parameter LMF, g(r)=b(tau(W)(r)tau(r)), performs best and provides overall mean absolute errors for thermochemistry and kinetics that are a significant improvement over standard state-of-the-art global hybrid functionals. In particular, this local hybrid functional does not suffer from the systematic deterioration that standard functionals exhibit for larger molecules. In contrast, local hybrids based on generalized gradient approximation exchange tend to give rise to nonintuitive LMFs, and no improved functionals have been obtained along this route. The LMF is a real-space function and thus can be analyzed in detail. We use, in particular, graphical analyses to rationalize the performance of different local hybrids for thermochemistry and reaction barriers.

  5. An exergetic/energetic/economic analysis of three hydrogen production processes - Electrolysis, hybrid, and thermochemical

    Science.gov (United States)

    Funk, J. E.; Eisermann, W.

    This paper presents the results of a combined first and second law analysis, along with capital and operating costs, for hydrogen production from water by means of electrolytic, hybrid, and thermochemical processes. The processes are SPE and Lurgi electrolysis with light water reactor power generation and sulfur cycle hybrid, thermochemical and SPE electrolysis with a very high temperature reactor primary energy source. Energy and Exergy (2nd law) flow diagrams for the process are shown along with the location and magnitude of the process irreversibilities. The overall process thermal (1st law) efficiencies vary from 25 to 51% and the exergetic (2nd law) efficiencies, referred to the fuel for the primary energy source, vary from 22 to 45%. Capital and operating costs, escalated to 1979 dollars, are shown for each process for both the primary energy source and the hydrogen production plant. All costs were taken from information available in the open literature and are for a plant capacity of 100 x 10 to the 6th SCF/day. Production costs vary from 10 to 18 $/GJ, based on the higher heating value of hydrogen, and are based on a 90% plant operating factor with a 21% annual charge on total capital costs.

  6. Development of a New Thermochemical and Electrolytic Hybrid Hydrogen Production System for Sodium Cooled FBR

    Science.gov (United States)

    Nakagiri, Toshio; Kase, Takeshi; Kato, Shoichi; Aoto, Kazumi

    A new thermo-chemical and electrolytic hybrid hydrogen production system in lower temperature range is newly proposed by the Japan Nuclear Cycle Development Institute (JAEA) to realize the hydrogen production from water by using the heat generation of sodium cooled Fast Breeder Reactor (FBR). The system is based on sulfuric acid (H2SO4) synthesis and decomposition process developed earlier (Westinghouse process), and sulfur trioxide (SO3) decomposition process is facilitated by electrolysis with ionic oxygen conductive solid electrolyte to reduce the operation temperature 200-300°C lower than Westinghouse process. SO3 decomposition with the voltage lower than 0.5V was confirmed in the temperature range of 500 to 600°C and theoretical thermal efficiency of the system evaluated based on chemical reactions was within the range of 35% to 55% under the influence of H2SO4 concentration and heat recovery. Furthermore, hydrogen production experiments to substantiate the whole process were performed. Stable hydrogen and oxygen production were observed in the experiments, and maximum duration of the experiments was about 5 hours.

  7. Preparation of Pure Copper Powder from Acidic Copper Chloride Waste Etchant

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The method for the recycling of copper from copper chloride solution was developed. This process consists of extraction of copper, purification and particle size reduction. In the first step, reductive metal scraps were added to acidic copper chloride waste enchants produced in the PCB industry to obtain copper powder.Composition analysis showed that this powder contained impurities such as Fe, Ni, and water. So, drying and purification were carried out by using microwave and a centrifugal separator. Thereby the copper powder had a purity of higher than 99% and spherical form in morphology. The copper powder size was decreased by ball milling.

  8. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    Science.gov (United States)

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-05-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.

  9. EFFECT OF UV LASER ON SPECTRAL PROPERTIES OF BORATE GLASSES DOPED WITH COPPER CHLORIDE NANOCRYSTALS

    Directory of Open Access Journals (Sweden)

    A. N. Babkina

    2017-01-01

    Full Text Available We present the results of the pulsed ultraviolet laser effect on the spectral properties of the potassium-aluminium-borate glasses doped with the copper chloride nanocrystals with the average size of 3.1-6.3 nm. We have studied the changes of the exciton absorption spectra of the CuCl nanocrystals induced by different duration of the laser exposure. The results show the possibility of the laser-induced crystallization and growth of the nanocrystals. For the first time the effect of the irreversible photochromism has been obtained in the potassium-aluminium-borate glasses doped with the copper chloride nanocrystals. The effect is associated with the formation of the temperature stable Cu0n colloidal color centers.

  10. Comparative characteristics of copper, copper chloride, and copper bromide vapor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, M.A.; Petrash, G.G.; Trofimov, A.N.

    1980-03-01

    The paper reports the results of a comparative study of copper and copper halide vapor lasers emitting in a repetitively-pulsed regime. Copper chloride and copper bromide vapor lasers are found to have identical lasing characteristics under any excitation conditions. These characteristics are different from those of a copper vapor laser. An average lasing power of 13 W has been obtained for all lasers studied for an efficiency of 1%. It is shown that the choice of a laser will largely depend on the laser design suitability for a specific application.

  11. Acute lethal and teratogenic effects of tributyltin chloride and copper chloride on mahi mahi (Coryphaena hippurus) eggs and larvae.

    Science.gov (United States)

    Adema-Hannes, Rachel; Shenker, Jonathan

    2008-10-01

    Acute and chronic bioassays were used to evaluate the lethal and sublethal effects of copper chloride and tributyltin chloride on mahi mahi (Coryphaena hippurus) embryos, a pelagic life stage often found in the surface microlayer where anthropogenic contaminants can accumulate. Acute bioassay testing determined the median lethal concentration (LC50) for the test organism after 48 h of exposure. Chronic toxicity tests were used to determine the measurement of sublethal parameters, such as developmental abnormalities after 72-h exposures to the toxicants. Embryos were collected 4 h postfertilization and subsequently exposed to 1, 5, 25, 50, and 100 microg/L of copper chloride and 3, 10, 20, 30, and 50 microg/L of tributyltin chloride. Analysis of hatch rate percentage determined that the mean 48-h LC50 of copper chloride and tributyltin chloride was 32.8 and 16.7 microg/L, respectively, based on the pooled data of four experiments with four replicates for each metal. Consistent abnormalities, such as yolk sac swelling, spinal deformities, and decreased hatch rates, were observed for each metal. Teratogenic responses to copper chloride and tributyltin chloride demonstrate the need to investigate further the impacts of pollution in the open oceans to a species indigenous to, and commercially important to, the Florida (USA) coasts. This information could then lead to the future development of a surface microlayer bioassay using mahi mahi embryos.

  12. Frequency Scale Factors for Some Double-Hybrid Density Functional Theory Procedures: Accurate Thermochemical Components for High-Level Composite Protocols.

    Science.gov (United States)

    Chan, Bun; Radom, Leo

    2016-08-09

    In the present study, we have obtained geometries and frequency scale factors for a number of double-hybrid density functional theory (DH-DFT) procedures. We have evaluated their performance for obtaining thermochemical quantities [zero-point vibrational energies (ZPVE) and thermal corrections for 298 K enthalpies (ΔH298) and 298 K entropies (S298)] to be used within high-level composite protocols (using the W2X procedure as a probe). We find that, in comparison with the previously prescribed protocol for optimization and frequency calculations (B3-LYP/cc-pVTZ+d), the use of contemporary DH-DFT methods such as DuT-D3 and DSD-type procedures leads to a slight overall improved performance compared with B3-LYP. A major strength of this approach, however, lies in the better robustness of the DH-DFT methods in that the largest deviations are notably smaller than those for B3-LYP. In general, the specific choices of the DH-DFT procedure and the associated basis set do not drastically change the performance. Nonetheless, we find that the DSD-PBE-P86/aug'-cc-pVTZ+d combination has a very slight edge over the others that we have examined, and we recommend its general use for geometry optimization and vibrational frequency calculations, in particular within high-level composite methods such as the higher-level members of the WnX series of protocols. The scale factors determined for DSD-PBE-P86/aug'-cc-pVTZ+d are 0.9830 (ZPVE), 0.9876 (ΔH298), and 0.9923 (S298).

  13. Thermochemical Process Development Unit

    Data.gov (United States)

    Federal Laboratory Consortium — This facility is used to demonstrate and evaluate the thermochemical conversion of biomass to produce syngas or pyrolysis oil that can be further converted to fuels...

  14. Thermochemical surface engineering of steels

    DEFF Research Database (Denmark)

    Thermochemical Surface Engineering of Steels provides a comprehensive scientific overview of the principles and different techniques involved in thermochemical surface engineering, including thermodynamics, kinetics principles, process technologies and techniques for enhanced performance of steels...

  15. Thermochemical reactor systems and methods

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard

    2016-11-29

    Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.

  16. Thermochemical reactor systems and methods

    Science.gov (United States)

    Lipinski, Wojciech; Davidson, Jane Holloway; Chase, Thomas Richard

    2016-11-29

    Thermochemical reactor systems that may be used to produce a fuel, and methods of using the thermochemical reactor systems, utilizing a reactive cylindrical element, an optional energy transfer cylindrical element, an inlet gas management system, and an outlet gas management system.

  17. A thermochemical energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Toyeguti, K.; Indzima, T.

    1982-08-09

    Mercury is used as the active mass of the anode in the converter and 0/sub 2/ is used as the active cathode material. The reaction of Mercury + 1/2 0/sub 2/-Hg0 occurs with a discharge. With heating to 500/sup 0/C the regeneration of the Mercury, Hg0 yields Mercury + 1/2 0/sub 2/, occurs. The device for performing the thermochenical conversion of energy contains an element body, an oxygen chamber, an oxygen electrode, a chamber with an alkaline liquid electrolyte, a separator, an auxiliary separator, an electrode and a chamber with the Mercury. The thermochemical reaction occurs in the reactor to which the Hg0 is transported along a pipe which has a refrigerator and a valve. The Mercury is fed into the element from a reservoir. The Mercury reduced in the reactor and in a reaction tower is fed into it through a closed cycle. The bellows is connected with the reactor by a pipe with a refrigerator. Through it the 0/sub 2/ goes in a closed cycle to the chamber. The current forming reactions are Hg + 20H-anion yields Hg0 + H/sub 2/0 + 2e and 1/2 0/sub 2/ + H/sub 2/0 + 2e yields 20H-anion. The voltage on the outleads of the element is approximately 0.3 volts.

  18. High Performance Electrolyzers for Hybrid Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Dr. John W. Weidner

    2009-05-10

    Extensive electrolyzer testing was performed at the University of South Carolina (USC). Emphasis was given to understanding water transport under various operating (i.e., temperature, membrane pressure differential and current density) and design (i.e., membrane thickness) conditions when it became apparent that water transport plays a deciding role in cell voltage. A mathematical model was developed to further understand the mechanisms of water and SO2 transport, and to predict the effect of operating and design parameters on electrolyzer performance.

  19. Innovative solar thermochemical water splitting.

    Energy Technology Data Exchange (ETDEWEB)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)

    2008-02-01

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  20. Relative bioavailability of copper in tribasic copper chloride to copper in copper sulfate for laying hens based on egg yolk and feather copper concentrations.

    Science.gov (United States)

    Kim, J W; Kim, J H; Shin, J E; Kil, D Y

    2016-07-01

    This experiment was conducted to determine the relative bioavailability (RBV) of Cu in tribasic copper chloride (TBCC) to Cu in copper sulfate (monohydrate form; CuSO4·H2O) for layer diets based on egg yolk and feather Cu concentrations. A total of 252, 72-wk-old Hy-Line Brown laying hens were allotted to 1 of 7 treatments with 6 replicates consisting of 6 hens per replicate in a completely randomized design. Hens were fed corn-soybean meal-based basal diets supplemented with 0 (basal), 100, 200, or 300 mg/kg Cu from CuSO4 or TBCC for 4 wk. Results indicated that egg production, egg weight, and egg mass were not affected by dietary treatments. However, increasing inclusion levels of Cu in diets from CuSO4 decreased (P hens fed diets containing CuSO4 than for hens fed diets containing TBCC. The values for the RBV of Cu in TBCC to Cu in CuSO4 based on log10 transformed egg yolk and feather Cu concentrations were 107.4% and 69.5%, respectively. These values for the RBV of Cu in TBCC did not differ from Cu in CuSO4 (100%). The RBV measured in egg yolk did not differ from the RBV measured in feather. In conclusion, the RBV of Cu in TBCC to Cu in CuSO4 can be determined using Cu concentrations of egg yolk and feathers although the values depend largely on target tissues of laying hens. For a practical application, however, the RBV value of Cu in TBCC to Cu in CuSO4 could be 88.5% when the RBV values determined using egg yolk and feather Cu concentrations were averaged.

  1. Research report for fiscal 1998. Research concerning studies for development of thermochemical solar hybrid fuel production system; 1998 nendo chosa hokokusho. Netsukagakuteki solar hybrid nenryo seisan system no kaihatsu kenkyu ni kakawaru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A solar heat-aided system is investigated, in which CO2 is recycled, with methanol, dimethyl ether, etc., serving as carriers of the solar heat energy. In the evaluation of validity of the system as a whole, the system scale and economy and technologies necessary for the system were studied, which was to find out whether solar methanol production was commercially feasible in the sun belt. It was concluded that solar methanol was capable of competing against LNG (liquefied natural gas) in cost, that Japan was able to establish its own technologies for developing coal gasification solar reactors using overseas technologies for information, and that therefore such a system was technologically and economically valid. In the study of related technologies as is, surveys were conducted on coal gasification, natural gas reforming furnaces, methanol synthesis, dimethyl ether synthesis, light condensing technology, current state and cost of solar reactors, etc. Also investigated were the marketability of solar hybrid fuel, CO2 reduction efficiency, and the construction cost at the assumed site of construction (Australia). (NEDO)

  2. OECD/NEA thermochemical database

    Energy Technology Data Exchange (ETDEWEB)

    Byeon, Kee Hoh; Song, Dae Yong; Shin, Hyun Kyoo; Park, Seong Won; Ro, Seung Gy

    1998-03-01

    This state of the art report is to introduce the contents of the Chemical Data-Service, OECD/NEA, and the results of survey by OECD/NEA for the thermodynamic and kinetic database currently in use. It is also to summarize the results of Thermochemical Database Projects of OECD/NEA. This report will be a guide book for the researchers easily to get the validate thermodynamic and kinetic data of all substances from the available OECD/NEA database. (author). 75 refs.

  3. Development of a seasonal thermochemical storage system

    NARCIS (Netherlands)

    Cuypers, R.; Maraz, N.; Eversdijk, J.; Finck, C.J.; Henquet, E.M.P.; Oversloot, H.P.; Spijker, J.C. van 't; Geus, A.C. de

    2012-01-01

    In our laboratories, a seasonal thermochemical storage system for dwellings and offices is being designed and developed. Based on a thermochemical sorption reaction, space heating, cooling and generation of domestic hot water will be achieved with up to 100% renewable energy, by using solar energy a

  4. CFD Studies on Biomass Thermochemical Conversion

    Directory of Open Access Journals (Sweden)

    Lifeng Yan

    2008-06-01

    Full Text Available Thermochemical conversion of biomass offers an efficient and economically process to provide gaseous, liquid and solid fuels and prepare chemicals derived from biomass. Computational fluid dynamic (CFD modeling applications on biomass thermochemical processes help to optimize the design and operation of thermochemical reactors. Recent progression in numerical techniques and computing efficacy has advanced CFD as a widely used approach to provide efficient design solutions in industry. This paper introduces the fundamentals involved in developing a CFD solution. Mathematical equations governing the fluid flow, heat and mass transfer and chemical reactions in thermochemical systems are described and sub-models for individual processes are presented. It provides a review of various applications of CFD in the biomass thermochemical process field.

  5. Combustion of thermochemically torrefied sugar cane bagasse.

    Science.gov (United States)

    Valix, M; Katyal, S; Cheung, W H

    2017-01-01

    This study compared the upgrading of sugar bagasse by thermochemical and dry torrefaction methods and their corresponding combustion behavior relative to raw bagasse. The combustion reactivities were examined by non-isothermal thermogravimetric analysis. Thermochemical torrefaction was carried out by chemical pre-treatment of bagasse with acid followed by heating at 160-300°C in nitrogen environment, while dry torrefaction followed the same heating treatment without the chemical pretreatment. The results showed thermochemical torrefaction generated chars with combustion properties that are closer to various ranks of coal, thus making it more suitable for co-firing applications. Thermochemical torrefaction also induced greater densification of bagasse with a 335% rise in bulk density to 340kg/m(3), increased HHVmass and HHVvolume, greater charring and aromatization and storage stability. These features demonstrate the potential of thermochemical torrefaction in addressing the practical challenges in using biomass such as bagasse as fuel.

  6. Recent review of thermochemical hydrogen production

    Science.gov (United States)

    Beghi, G. E.

    A survey is presented on the development to date of thermochemical water decomposition methods for the production of hydrogen. It is shown that: (1) both the technological feasibility of thermochemical processes and their competitiveness with water electrolysis have been demonstrated; (2) the scaling up of thermochemical methods to industrial production levels may proceed with existing technology; (3) the slowing down of programs concerned with the development of high temperature nuclear reactors could delay the scaling up of thermochemical hydrogen production to industrial levels; (4) this delay could, however, increase interest in such water decomposition processes as those employing photoreactions; and (5) the efficiency of thermochemical hydrogen production is highest in the case of systems with dedicated heat sources rated above 1000 MWth.

  7. Experimental and computational thermochemical study of oxindole

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Margarida S., E-mail: msmirand@fc.up.p [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Centro de Geologia da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Matos, M. Agostinha R., E-mail: marmatos@fc.up.p [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Morais, Victor M.F., E-mail: vmmorais@icbas.up.p [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Instituto de Ciencias Biomedicas Abel Salazar, ICBAS, Universidade do Porto, P-4099-003 Porto (Portugal); Liebman, Joel F., E-mail: jliebman@umbc.ed [Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States)

    2010-09-15

    An experimental and computational thermochemical study was performed for oxindole. The standard (p{sup 0}=0.1MPa) molar enthalpy of formation of solid oxindole was derived from the standard molar energy of combustion, in oxygen, at T = 298.15 K, measured by static bomb combustion calorimetry. The respective standard molar enthalpy of sublimation, at T = 298.15 K, was measured by Calvet microcalorimetry. The standard molar enthalpy of formation in the gas phase was derived as -(66.8 {+-} 3.2) kJ . mol{sup -1}. Density functional theory calculations with the B3LYP hybrid functional and the 6-31G* and 6-311G** sets have also been performed in order to obtain the most stable conformation of oxindole. A comparison has been made between the structure of oxindole and that of the related two-ring molecules: indoline and 2-indanone and the one-ring molecules: pyrrolidine and 2,3-dihydropyrrole. The G3(MP2)//B3LYP method and appropriate reactions were used to obtain estimates of the standard molar enthalpy of formation of oxindole in the gas phase, at T = 298.15 K. Computationally obtained estimates of the enthalpy of formation of oxindole are in very good agreement with the experimental gas phase value. The aromaticity of oxindole was evaluated through the analysis of the nucleus independent chemical shifts (NICS) obtained from the B3LYP/6-311G** wave functions.

  8. Thermochemical behavior of pretreated biomass

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Amit Kumar

    2011-07-01

    Mankind has to provide a sustainable alternative to its energy related problems. Bioenergy is considered as one of the potential renewable energy resources and as a result bioenergy market is also expected to grow dramatically in future. However, logistic issues are of serious concern while considering biomass as an alternative to fossil fuel. It can be improved by introducing pretreated wood pellet. The main objective of this thesis is to address thermochemical behaviour of steam exploded pretreated biomass. Additionally, process aspects of torrefaction were also considered in this thesis. Steam explosion (SE) was performed in a laboratory scale reactor using Salix wood chips. Afterwards, fuel and thermochemical aspects of SE residue were investigated. It was found that Steam explosion pretreatment improved both fuel and pellet quality. Pyrolysis of SE residue reveals that alerted biomass composition significantly affects its pyrolysis behaviour. Contribution from depolymerized components (hemicellulose, cellulose and lignin) of biomass was observed explicitly during pyrolysis. When devolatilization experiment was performed on pellet produced from SE residue, effect of those altered components was observed. In summary, pretreated biomass fuel characteristics is significantly different in comparison with untreated biomass. On the other hand, Process efficiency of torrefaction was found to be governed by the choice of appropriate operating conditions and the type of biomass.

  9. Biomass thermochemical conversion program. 1985 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  10. A Feasibility Study on Low Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    Science.gov (United States)

    Haruman, Esa; Sun, Yong; Triwiyanto, Askar; Manurung, Yupiter H. P.; Adesta, Erry Y.

    2011-04-01

    In this work, the feasibility of using an industrial fluidized bed furnace to perform low temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitridingcarburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen and carbon containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  11. Some Aspects of Thermochemical Decomposition of Peat

    Directory of Open Access Journals (Sweden)

    Y. A. Losiuk

    2008-01-01

    Full Text Available The paper considers peculiar features of thermochemical decomposition of peat as a result of quick pyrolysis. Evaluation of energy and economic expediency of the preliminary peat decomposition process for obtaining liquid and gaseous products has been made in the paper. The paper reveals prospects pertaining to application of the given technology while generating electric power and heat.

  12. Some Aspects of Thermochemical Decomposition of Peat

    OpenAIRE

    Y. A. Losiuk; S. V. Gibric; S. V. Korchinenko

    2008-01-01

    The paper considers peculiar features of thermochemical decomposition of peat as a result of quick pyrolysis. Evaluation of energy and economic expediency of the preliminary peat decomposition process for obtaining liquid and gaseous products has been made in the paper. The paper reveals prospects pertaining to application of the given technology while generating electric power and heat.

  13. 2009 Thermochemical Conversion Platform Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, John [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program’s Thermochemical Conversion platform review meeting, held on April 14-16, 2009, at the Sheraton Denver Downtown, Denver, Colorado.

  14. Thermochemical heat storage - system design issues

    NARCIS (Netherlands)

    Jong, A.J. de; Trausel, F.; Finck, C.J.; Vliet, L.D. van; Cuypers, R.

    2014-01-01

    Thermochemical materials (TCMs) are a promising solution for seasonal heat storage, providing the possibility to store excess solar energy from the warm season for later use during the cold season, and with that all year long sustainable energy. With our fixed bed, vacuum reactors using zeolite as T

  15. Thermochemical heat storage - system design issues

    NARCIS (Netherlands)

    Jong, A.J. de; Trausel, F.; Finck, C.J.; Vliet, L.D. van; Cuypers, R.

    2014-01-01

    Thermochemical materials (TCMs) are a promising solution for seasonal heat storage, providing the possibility to store excess solar energy from the warm season for later use during the cold season, and with that all year long sustainable energy. With our fixed bed, vacuum reactors using zeolite as

  16. Thermochemical characteristics of chitosan-polylactide copolymers

    Science.gov (United States)

    Goruynova, P. E.; Larina, V. N.; Smirnova, N. N.; Tsverova, N. E.; Smirnova, L. A.

    2016-05-01

    The energies of combustion of chitosan and its block-copolymers with different polylactide contents are determined in a static bomb calorimeter. Standard enthalpies of combustion and formation are calculated for these substances. The dependences of the thermochemical characteristics on block-copolymer composition are determined and discussed.

  17. Development of a new thermo-chemical and electrolytic hybrid hydrogen production process utilizing the heat from medium temperature heat source : development of the 1NL/h hydrogen production experimental apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Takai, T.; Nakagiri, T.; Inagaki, Y. [Japan Atomic Energy Agency, O-arai, Ibaraki (Japan)

    2007-07-01

    A promising energy conversion system is a high efficiency hydrogen production system that uses nuclear heat. This paper presented the results of a study that developed a 1N/L hydrogen production experimental apparatus. The paper presented the results of an experiment that was conducted to evaluate the hydrogen production efficiency and clarify technical problems for development of a large-scale hydrogen production apparatus. The paper discussed the principals and characteristics of the hybrid hydrogen production in lower temperature range (HHLT) process and presented details on the hydrogen production apparatus and experiment. This included a discussion of the experimental conditions and experimental results. This was followed by a discussion that included an evaluation of hydrogen production efficiency and influence of efficiency of sulfur trioxide electrolysis. Last the paper presented technical problems from the experimental results. It was concluded that hydrogen production efficiency was evaluated about 2 per cent by trial evaluation. A 55 per cent efficiency was expected and therefore, the apparatus required improvement and optimization in order to obtain higher efficiency in the future. 6 refs., 2 tabs., 3 figs.

  18. Economic comparison of solar hydrogen generation by means of thermochemical cycles and electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Graf, D.; Monnerie, N.; Roeb, M.; Schmitz, M.; Sattler, C. [German Aerospace Center, Institute of Technical Thermodynamics, Solar Research, Linder Hoehe, 51147 Cologne (Germany)

    2008-09-15

    Hydrogen is acclaimed to be an energy carrier of the future. Currently, it is mainly produced by fossil fuels, which release climate-changing emissions. Thermochemical cycles, represented here by the hybrid-sulfur cycle and a metal oxide based cycle, along with electrolysis of water are the most promising processes for 'clean' hydrogen mass production for the future. For this comparison study, both thermochemical cycles are operated by concentrated solar thermal power for multistage water splitting. The electricity required for the electrolysis is produced by a parabolic trough power plant. For each process investment, operating and hydrogen production costs were calculated on a 50 MW{sub th} scale. The goal is to point out the potential of sustainable hydrogen production using solar energy and thermochemical cycles compared to commercial electrolysis. A sensitivity analysis was carried out for three different cost scenarios. As a result, hydrogen production costs ranging from 3.9-5.6 EUR/kg for the hybrid-sulfur cycle, 3.5-12.8 EUR/kg for the metal oxide based cycle and 2.1-6.8 EUR/kg for electrolysis were obtained. (author)

  19. Hydrogen production by water decomposition using a combined electrolytic-thermochemical cycle

    Science.gov (United States)

    Farbman, G. H.; Brecher, L. E.

    1976-01-01

    A proposed dual-purpose power plant generating nuclear power to provide energy for driving a water decomposition system is described. The entire system, dubbed Sulfur Cycle Water Decomposition System, works on sulfur compounds (sulfuric acid feedstock, sulfur oxides) in a hybrid electrolytic-thermochemical cycle; performance superior to either all-electrolysis systems or presently known all-thermochemical systems is claimed. The 3345 MW(th) graphite-moderated helium-cooled reactor (VHTR - Very High Temperature Reactor) generates both high-temperature heat and electric power for the process; the gas stream at core exit is heated to 1850 F. Reactor operation is described and reactor innards are illustrated. A cost assessment for on-stream performance in the 1990's is optimistic.

  20. LASL thermochemical hydrogen status on September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Cox, K.E.

    1979-01-01

    The work described in this report was accomplished during the period October 1, 1978 to September 30, 1979. Most of the effort was applied to a study of the Los Alamos Scientific Laboratory (LASL) hybrid bismuth sulfate cycle. The work included a conceptual design of the cycle and experimental work to verify the design conditions. Key findings were: a 50.8% efficiency was obtained when an improved cycle design was coupled to a fusion energy source at 1500 K; experimental results showed an endothermic heat requirement of +172 kJ/mol for the decomposition of Bi/sub 2/O/sub 3/.2SO/sub 3/ to Bi/sub 2/O/sub 3/.SO/sub 3/, and SO/sub 3/; reaction times for bismuth sulfate decomposition were determined as a function of temperature. At 1240 K, < 1.5 min were required for the first two stages of decomposition from Bi/sub 2/O/sub 3/.3SO/sub 3/ to Bi/sub 2/O/sub 3/; tests made to determine the feasibility of decomposing Bi/sub 2/O/sub 3/.2SO/sub 3/ in a 1 inch diameter rotary kiln showed that Bi/sub 2/O/sub 3/.2SO/sub 3/ could be decomposed continuously. In related work, support was given to the DOE Thermochemical Cycle Evaluation Panel (Funk). The Second Annual International Energy Agency (IEA) Workshop on Thermochemical Hydrogen Production from Water met on September 24 to 27, 1979 at Los Alamos.

  1. Fundamental study of novel mid-and low-temperature solar thermochemical energy conversion

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A new approach to application of mid-and low-temperature solar thermochemical technology was in-troduced and investigated.Concentrated solar thermal energy in the range of 150―300℃ can be effi-ciently converted into high-grade solar fuel by integrating this technique with the endothermic reaction of hydrocarbons.The conversion mechanism of upgrading the low-grade solar thermal energy to high-grade chemical energy was examined based on the energy level.The new mechanism was used to integrate two novel solar thermal power systems:A solar/methanol fuel hybrid thermal power plant and a solar-hybrid combined cycle with inherent CO2 separation using chemical-looping combustion,for developing highly efficient solar energy use to generate electricity.An innovative prototype of a 5-kW solar receiver/reactor,as the key process for realizing the proposed system,was designed and manu-factured.Furthermore,experimental validation of energy conversion of the mid-and low-temperature solar thermochemical processes were conducted.In addition,a second practical and viable approach to the production of hydrogen,in combination with the novel mid-and low-temperature solar thermo-chemical process,was proposed and demonstrated experimentally in the manufactured solar re-ceiver/reactor prototype through methanol steam reforming.The results obtained here indicate that the development of mid-and low-temperature solar thermochemical technology may provide a promising and new direction to efficient utilization of low-grade solar thermal energy,and may enable step-wise approaches to cost-effective,globally scalable solar energy systems.

  2. Fundamental study of novel mid- and low-temperature solar thermochemical energy conversion

    Institute of Scientific and Technical Information of China (English)

    JIN HongGuang; HONG Hui; SUI Jun; LIU QiBin

    2009-01-01

    A new approach to application of mid- and low-temperature solar thermochemical technology was in-troduced and investigated. Concentrated solar thermal energy in the range of 150--300℃ can be effi-ciently converted into high-grade solar fuel by integrating this technique with the endothermic reaction of hydrocarbons. The conversion mechanism of upgrading the low-grade solar thermal energy to high-grade chemical energy was examined based on the energy level. The new mechanism was used to integrate two novel solar thermal power systems: A solar/methanol fuel hybrid thermal power plant and a solar-hybrid combined cycle with inherent CO2 separation using chemical-looping combustion, for developing highly efficient solar energy use to generate electricity. An innovative prototype of a 5-kW solar receiver/reactor, as the key process for realizing the proposed system, was designed and manu-factured. Furthermore, experimental validation of energy conversion of the mid- and low-temperature solar thermochemical processes were conducted. In addition, a second practical and viable approach to the production of hydrogen, in combination with the novel mid- and low-temperature solar thermo-chemical process, was proposed and demonstrated experimentally in the manufactured solar re-ceiver/reactor prototype through methanol steam reforming. The results obtained here indicate that the development of mid- and low-temperature solar thermochemical technology may provide a promising and new direction to efficient utilization of low-grade solar thermal energy, and may enable step-wise approaches to cost-effective, globally scalable solar energy systems.

  3. A web service infrastructure for thermochemical data.

    Science.gov (United States)

    Paolini, Christopher P; Bhattacharjee, Subrata

    2008-07-01

    W3C standardized Web Services are becoming an increasingly popular middleware technology used to facilitate the open exchange of chemical data. While several projects in existence use Web Services to wrap existing commercial and open-source tools that mine chemical structure data, no Web Service infrastructure has yet been developed to compute thermochemical properties of substances. This work presents an infrastructure of Web Services for thermochemical data retrieval. Several examples are presented to demonstrate how our Web Services can be called from Java, through JavaScript using an AJAX methodology, and within commonly used commercial applications such as Microsoft Excel and MATLAB for use in computational work. We illustrate how a JANAF table, widely used by chemists and engineers, can be quickly reproduced through our Web Service infrastructure.

  4. Solar Thermochemical Hydrogen Production Plant Design

    OpenAIRE

    Littlefield, Jesse

    2012-01-01

    A plant was designed that uses a solar sulfur-ammonia thermochemical water-splitting cycle for the production of hydrogen. Hydrogen is useful as a fuel for stationary and mobile fuel cells. The chemical process simulator Aspen Plus® was used to model the plant and conduct simulations. The process utilizes the electrolytic oxidation of aqueous ammonium sulfite in the hydrogen production half cycle and the thermal decomposition of molten potassium pyrosulfate and gaseous sulfur trioxide in t...

  5. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  6. Materials study supporting thermochemical hydrogen cycle sulfuric acid decomposer design

    Science.gov (United States)

    Peck, Michael S.

    Increasing global climate change has been driven by greenhouse gases emissions originating from the combustion of fossil fuels. Clean burning hydrogen has the potential to replace much of the fossil fuels used today reducing the amount of greenhouse gases released into the atmosphere. The sulfur iodine and hybrid sulfur thermochemical cycles coupled with high temperature heat from advanced nuclear reactors have shown promise for economical large-scale hydrogen fuel stock production. Both of these cycles employ a step to decompose sulfuric acid to sulfur dioxide. This decomposition step occurs at high temperatures in the range of 825°C to 926°C dependent on the catalysis used. Successful commercial implementation of these technologies is dependent upon the development of suitable materials for use in the highly corrosive environments created by the decomposition products. Boron treated diamond film was a potential candidate for use in decomposer process equipment based on earlier studies concluding good oxidation resistance at elevated temperatures. However, little information was available relating the interactions of diamond and diamond films with sulfuric acid at temperatures greater than 350°C. A laboratory scale sulfuric acid decomposer simulator was constructed at the Nuclear Science and Engineering Institute at the University of Missouri-Columbia. The simulator was capable of producing the temperatures and corrosive environments that process equipment would be exposed to for industrialization of the sulfur iodide or hybrid sulfur thermochemical cycles. A series of boron treated synthetic diamonds were tested in the simulator to determine corrosion resistances and suitability for use in thermochemical process equipment. These studies were performed at twenty four hour durations at temperatures between 600°C to 926°C. Other materials, including natural diamond, synthetic diamond treated with titanium, silicon carbide, quartz, aluminum nitride, and Inconel

  7. Bioenergy II : Biomass Valorisation by a Hybrid Thermochemical Fractionation Approach

    NARCIS (Netherlands)

    de Wild, Paul J.; den Uil, Herman; Reith, Johannes H.; Lunshof, Anton; Hendriks, Carlijn; van Eck, Ernst R. H.; Heeres, Erik J.

    2009-01-01

    The need for green renewable sources is adamant because of the adverse effects of the increasing use of fossil fuels on our society. Biomass has been considered as a very attractive candidate for green energy carriers, chemicals and materials. The development of cheap and efficient fractionation tec

  8. An Investigation on Low-Temperature Thermochemical Treatments of Austenitic Stainless Steel in Fluidized Bed Furnace

    Science.gov (United States)

    Haruman, E.; Sun, Y.; Triwiyanto, A.; Manurung, Y. H. P.; Adesta, E. Y.

    2012-03-01

    In this study, the feasibility of using an industrial fluidized bed furnace to perform low-temperature thermochemical treatments of austenitic stainless steels has been studied, with the aim to produce expanded austenite layers with combined wear and corrosion resistance, similar to those achievable by plasma and gaseous processes. Several low-temperature thermochemical treatments were studied, including nitriding, carburizing, combined nitriding-carburizing (hybrid treatment), and sequential carburizing and nitriding. The results demonstrate that it is feasible to produce expanded austenite layers on the investigated austenitic stainless steel by the fluidized bed heat treatment technique, thus widening the application window for the novel low-temperature processes. The results also demonstrate that the fluidized bed furnace is the most effective for performing the hybrid treatment, which involves the simultaneous incorporation of nitrogen and carbon together into the surface region of the component in nitrogen- and carbon-containing atmospheres. Such hybrid treatment produces a thicker and harder layer than the other three processes investigated.

  9. Screening analysis of solar thermochemical hydrogen concepts.

    Energy Technology Data Exchange (ETDEWEB)

    Diver, Richard B., Jr.; Kolb, Gregory J.

    2008-03-01

    A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

  10. Microencapsulation of salts for enhanced thermochemical storage materials

    NARCIS (Netherlands)

    Cuypers, R.; Jong, A.J. de; Eversdijk, J.; Spijker, J.C. van 't; Oversloot, H.P.; Ingenhut, B.L.J.; Cremers, R.K.H.; Papen-Botterhuis, N.E.

    2013-01-01

    Thermochemical storage is a new and emerging long-term thermal storage for residential use (cooling, heating & domestic hot water generation), offering high thermal storage density without the need for thermal insulation during storage (Fig. 1). However, existing materials for thermochemical storage

  11. TEA: A Code Calculating Thermochemical Equilibrium Abundances

    Science.gov (United States)

    Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver

    2016-07-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.

  12. Biomass thermochemical gasification: Experimental studies and modeling

    Science.gov (United States)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  13. Thermochemical factors affecting the dehalogenation of aromatics.

    Science.gov (United States)

    Sadowsky, Daniel; McNeill, Kristopher; Cramer, Christopher J

    2013-12-17

    Halogenated aromatics are one of the largest chemical classes of environmental contaminants, and dehalogenation remains one of the most important processes by which these compounds are degraded and detoxified. The thermodynamic constraints of aromatic dehalogenation reactions are thus important for understanding the feasibility of such reactions and the redox conditions necessary for promoting them. Accordingly, the thermochemical properties of the (poly)fluoro-, (poly)chloro-, and (poly)bromobenzenes, including standard enthalpies of formation, bond dissociation enthalpies, free energies of reaction, and the redox potentials of Ar-X/Ar-H couples, were investigated using a validated density functional protocol combined with continuum solvation calculations when appropriate. The results highlight the fact that fluorinated aromatics stand distinct from their chloro- and bromo- counterparts in terms of both their relative thermodynamic stability toward dehalogenation and how different substitution patterns give rise to relevant properties, such as bond strengths and reduction potentials.

  14. Solar Thermochemical Hydrogen Production Research (STCH)

    Energy Technology Data Exchange (ETDEWEB)

    Perret, Robert [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2011-05-01

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meeting on October 8 and 9, 2008. This document reports the initial selection process for development investment in STCH projects, the evaluation process meant to reduce the number of projects as a means to focus resources on development of a few most-likely-to-succeed efforts, the obstacles encountered in project inventory reduction and the outcomes of the evaluation process. Summary technical status of the projects under evaluation is reported and recommendations identified to improve future project planning and selection activities.

  15. 2011 Biomass Program Platform Peer Review. Thermochemical Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Grabowski, Paul E. [Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s Thermochemical Conversion Platform Review meeting.

  16. Active Thermochemical Tables: thermochemistry for the 21st century

    Energy Technology Data Exchange (ETDEWEB)

    Ruscic, Branko [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Pinzon, Reinhardt E [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Laszewski, Gregor von [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Kodeboyina, Deepti [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Burcat, Alexander [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Leahy, David [Sandia National Laboratories, Livermore, CA 94551 (United States); Montoy, David [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wagner, Albert F [Chemistry Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2005-01-01

    Active Thermochemical Tables (ATcT) are a good example of a significant breakthrough in chemical science that is directly enabled by the US DOE SciDAC initiative. ATcT is a new paradigm of how to obtain accurate, reliable, and internally consistent thermochemistry and overcome the limitations that are intrinsic to the traditional sequential approach to thermochemistry. The availability of high-quality consistent thermochemical values is critical in many areas of chemistry, including the development of realistic predictive models of complex chemical environments such as combustion or the atmosphere, or development and improvement of sophisticated high-fidelity electronic structure computational treatments. As opposed to the traditional sequential evolution of thermochemical values for the chemical species of interest, ATcT utilizes the Thermochemical Network (TN) approach. This approach explicitly exposes the maze of inherent interdependencies normally ignored by the conventional treatment, and allows, inter alia, a statistical analysis of the individual measurements that define the TN. The end result is the extraction of the best possible thermochemistry, based on optimal use of all the currently available knowledge, hence making conventional tabulations of thermochemical values obsolete. Moreover, ATcT offer a number of additional features that are neither present nor possible in the traditional approach. With ATcT, new knowledge can be painlessly propagated through all affected thermochemical values. ATcT also allows hypothesis testing and evaluation, as well as discovery of weak links in the TN. The latter provides pointers to new experimental or theoretical determinations that can most efficiently improve the underlying thermochemical body of knowledge.

  17. Thermochemical energy storage : critical review and recent advances

    Energy Technology Data Exchange (ETDEWEB)

    Haji Abedin, A.; Rosen, M.A. [University of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Engineering and Applied Science

    2010-07-01

    The global increase in energy demand and environmental concerns are promoting the use of more efficient and cleaner energy technologies. Examples include advanced systems for waste energy recovery and energy integration. Thermochemical thermal energy storage (TES) is an emerging method with the potential for high energy density storage. It is not yet commercial and research and development is needed to better understand and design the technology and to resolve other practical aspects before commercial implementation can occur. TES is an advanced technology for storing thermal energy that can mitigate environmental impacts and facilitate more efficient and clean energy systems. This paper presented the principles of thermochemical TES and recent advances. Thermochemical TES was also critically assessed and compared with other TES types. The advantages and disadvantages of thermochemical TES were also considered as they relate to other TES types. It was concluded that thermochemical TES has the highest potential to achieve the required compact thermal energy storage where space is limited. 13 refs., 2 tabs., 1 fig.

  18. Thermochemical valorization and characterization of household biowaste.

    Science.gov (United States)

    Vakalis, S; Sotiropoulos, A; Moustakas, K; Malamis, D; Vekkos, K; Baratieri, M

    2016-04-15

    Valorization of municipal solid waste (MSW), by means of energy and material recovery, is considered to be a crucial step for sustainable waste management. A significant fraction of MSW is comprised from food waste, the treatment of which is still a challenge. Therefore, the conventional disposal of food waste in landfills is being gradually replaced by recycling aerobic treatment, anaerobic digestion and waste-to-energy. In principle, thermal processes like combustion and gasification are preferred for the recovery of energy due to the higher electrical efficiency and the significantly less time required for the process to be completed when compared to biological process, i.e. composting, anaerobic digestion and transesterification. Nonetheless, the high water content and the molecular structure of biowaste are constraining factors in regard to the application of thermal conversion pathways. Investigating alternative solutions for the pre-treatment and more energy efficient handling of this waste fraction may provide pathways for the optimization of the whole process. In this study, by means of utilizing drying/milling as an intermediate step, thermal treatment of household biowaste has become possible. Household biowaste has been thermally processed in a bench scale reactor by means of torrefaction, carbonization and high temperature pyrolysis. According to the operational conditions, fluctuating fractions of biochar, bio-oil (tar) and syngas were recovered. The thermochemical properties of the feedstock and products were analyzed by means of Simultaneous Thermal Analysis (STA), Ultimate and Proximate analysis and Attenuated Total Reflectance (ATR). The analysis of the products shows that torrefaction of dried household biowaste produces an energy dense fuel and high temperature pyrolysis produces a graphite-like material with relatively high yield.

  19. Thermochemical Conversion: Using Heat and Catalysts to Make Biofuels and Bioproducts

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-07-29

    This fact sheet discusses the Bioenergy Technologies Office's thermochemical conversion critical technology goal. And, how through the application of heat, robust thermochemical processes can efficiently convert a broad range of biomass.

  20. Capabilities to Support Thermochemical Hydrogen Production Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Daniel M. Ginosar

    2009-05-01

    This report presents the results of a study to determine if Idaho National Laboratory (INL) has the skilled staff, instrumentation, specialized equipment, and facilities required to take on work in thermochemical research, development, and demonstration currently being performed by the Nuclear Hydrogen Initiative (NHI). This study outlines the beneficial collaborations between INL and other national laboratories, universities, and industries to strengthen INL's thermochemical efforts, which should be developed to achieve the goals of the NHI in the most expeditious, cost effective manner. Taking on this work supports INL's long-term strategy to maintain leadership in thermochemical cycle development. This report suggests a logical path forward to accomplish this transition.

  1. New Developments in Thermo-Chemical Diffusion Processes

    Institute of Scientific and Technical Information of China (English)

    Bernd Edenhofer

    2004-01-01

    Thermo-chemical diffusion processes like carburising, nitriding and boronizing play an important part in modern manufacturing technologies. They exist in many varieties depending on the type of diffusing element used and the respective process procedure. The most important industrial heat treatment process is case-hardening, which consists of thermochemical diffusion process carburising or its variation carbonitriding, followed by a subsequent quench. The latest developments of using different gaseous carburising agents and increasing the carburising temperature are one main area of this paper. The other area is the evolvement of nitriding and especially the ferritic nitrocarburising process by improved process control and newly developed process variations using carbon, nitrogen and oxygen as diffusing elements in various process steps. Also boronizing and special thermo-chemical processes for stainless steels are discussed.

  2. A techno-economic review of thermochemical cellulosic biofuel pathways.

    Science.gov (United States)

    Brown, Tristan R

    2015-02-01

    Recent advances in the thermochemical processing of biomass have resulted in efforts to commercialize several cellulosic biofuel pathways. Until commercial-scale production is achieved, however, techno-economic analysis is a useful methodology for quantifying the economic competitiveness of these pathways with petroleum, providing one indication of their long-term feasibility under the U.S. revised Renewable Fuel Standard. This review paper covers techno-economic analyses of thermochemical cellulosic biofuel pathways in the open literature, discusses and compares their results, and recommends the adoption of additional analytical methodologies that will increase the value of future pathway analyses.

  3. Thermochemical production of hydrogen via multistage water splitting processes

    Science.gov (United States)

    Funk, J. E.

    1975-01-01

    This paper presents and reviews the fundamental thermodynamic principles underlying thermochemical water splitting processes. The overall system is considered first and the temperature limitation in process thermal efficiency is developed. The relationship to an ideal water electrolysis cell is described and the nature of efficient multistage reaction processes is discussed. The importance of the reaction entropy change and the relation of the reaction free energy change to the work of separation is described. A procedure for analyzing thermochemical water splitting processes is presented and its use to calculate individual stage efficiency is demonstrated. A number of processes are used to illustrate the concepts and procedures.

  4. Evaluation of wastewater treatment requirements for thermochemical biomass liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D C [Pacific Northwest Lab., Richland, WA (United States)

    1992-04-01

    Biomass can provide a substantial energy source. Liquids are preferred for use as transportation fuels because of their high energy density and handling ease and safety. Liquid fuel production from biomass can be accomplished by any of several different processes including hydrolysis and fermentation of the carbohydrates to alcohol fuels, thermal gasification and synthesis of alcohol or hydrocarbon fuels, direct extraction of biologically produced hydrocarbons such as seed oils or algae lipids, or direct thermochemical conversion of the biomass to liquids and catalytic upgrading to hydrocarbon fuels. This report discusses direct thermochemical conversion to achieve biomass liquefaction and the requirements for wastewater treatment inherent in such processing. 21 refs.

  5. Critical Evaluation of Thermochemical Properties of C1-C4 Species: Updated Group-Contributions to Estimate Thermochemical Properties

    Science.gov (United States)

    Burke, S. M.; Simmie, J. M.; Curran, H. J.

    2015-03-01

    A review of literature on enthalpies of formation and molar entropies for alkanes, alkenes, alcohols, hydroperoxides, and their associated radicals has been compiled and critically evaluated. By comparing literature values, the overall uncertainty in thermochemical properties of small hydrocarbons and oxygenated hydrocarbons can be highlighted. In general, there is good agreement between heat of formation values in the literature for stable species; however, there is greater uncertainty in the values for radical species and for molar entropy values. Updated values for a group-additivity method for the estimation of thermochemical properties based on the evaluated literature data are proposed. The new values can be used to estimate thermochemical data for larger, combustion-relevant species for which no calculations or measurements currently exist, with increased confidence.

  6. Assessment of thermochemical data on steel deoxidation

    Directory of Open Access Journals (Sweden)

    Gómez, P.

    2009-08-01

    Full Text Available It is proposed to develop a method to judge the certainty on the information regarding to deoxidation equilibria of iron melts. To accomplish this objective, thermochemical data was collated and then evaluated. The basic knowledge on deoxidation conditions are framed by the non-ideal Henrian behaviour of diluted solutions of both deoxidizer and oxygen in liquid iron in equilibrium with a pure oxide. Conventional deoxidation reactions were considered at 1,873 K such that in their equilibrium constants, only first order interaction coefficients were considered. The criteria in selecting the most appropriated free energy equation was based on evaluating them under two critical composition points: 1 where they satisfy an oxygen to deoxidizer ratio dictated by its stoichiometry and 2 where oxygen contents at a given amount of deoxidizer reaches a minimum value. These data were plotted on logarithmic scales to appreciate the effects of deoxidizer’s valences. Once such information was classified, under restrictions 1 and 2, previous compositions were related to deoxidizer´s electronegativities.

    El presente artículo propone desarrollar un método para juzgar la certidumbre de la información pertinente al equilibrio de desoxidación de fundidos de hierro. Para lograr este objetivo, se recolectaron y evaluaron datos termoquímicos existentes. Las teorías sobre desoxidación se describen mediante el comportamiento Henriano de soluciones diluidas del agente desoxidante y el hierro fundido en equilibrio con un óxido. En este estudio, solo se consideran reacciones convencionales a 1.873 K, de forma tal que se consideraron las constantes de equilibrio y coeficientes de interacción de primer orden. El criterio empleado para utilizar la expresión más adecuada de la energía libre se basó en evaluar dos puntos críticos: uno, donde se satisface una relación oxígeno/desoxidante dictada por la estequiometría y dos,cuando el contenido de ox

  7. SUNgas: Thermochemical Approaches to Solar Fuels

    Science.gov (United States)

    Davidson, Jane

    2013-04-01

    Solar energy offers an intelligent solution to reduce anthropogenic emissions of greenhouse gases and to meet an expanding global demand for energy. A transformative change from fossil to solar energy requires collection, storage, and transport of the earth's most abundant but diffuse and intermittent source of energy. One intriguing approach for harvest and storage of solar energy is production of clean fuels via high temperature thermochemical processes. Concentrated solar energy is the heat source and biomass or water and carbon dioxide are the feedstocks. Two routes to produce fuels using concentrated solar energy and a renewable feed stock will be discussed: gasification of biomass or other carbonaceous materials and metal oxide cycles to produce synthesis gas. The first and most near term route to solar fuels is to gasify biomass. With conventional gasification, air or oxygen is supplied at fuel-rich levels to combust some of the feedstock and in this manner generate the energy required for conversion to H2 and CO. The partial-combustion consumes up to 40% of the energetic value of the feedstock. With air combustion, the product gas is diluted by high levels of CO2 and N2. Using oxygen reduces the product dilution, but at the expense of adding an oxygen plant. Supplying the required heat with concentrated solar radiation eliminates the need for partial combustion of the biomass feedstock. As a result, the product gas has an energetic value greater than that of the feedstock and it is not contaminated by the byproducts of combustion. The second promising route to solar fuels splits water and carbon dioxide. Two-step metal-oxide redox cycles hold out great potential because they the temperature required to achieve a reasonable degree of dissociation is lower than direct thermal dissociation and O2 and the fuel are produced in separate steps. The 1^st step is the endothermic thermal dissociation of the metal oxide to the metal or lower-valence metal oxide. The 2

  8. Probabilistic thermo-chemical analysis of a pultruded composite rod

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation c

  9. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...

  10. Thermochemical conversion of waste tyres-a review.

    Science.gov (United States)

    Labaki, Madona; Jeguirim, Mejdi

    2016-10-27

    A review of the energy recovery from waste tyres is presented and focuses on the three thermochemical processes used to valorise waste tyres: pyrolysis, gasification, and combustion/incineration. After recalling the chemical composition of tyres, the thermogravimetric behaviours of tyres or their components under different atmospheres are described. Different kinetic studies on the thermochemical processes are treated. Then, the three processes were investigated, with a particular attention given to the gasification, due to the information unavailability on this process. Pyrolysis is a thermochemical conversion to produce a hydrocarbon rich gas mixture, condensable liquids or tars, and a carbon-rich solid residue. Gasification is a form of pyrolysis, carried out at higher temperatures and under given atmosphere (air, steam, oxygen, carbon dioxide, etc.) in order to yield mainly low molecular weight gaseous products. Combustion is a process that needs a fuel and an oxidizer with an ignition system to produce heat and/or steam. The effects of various process parameters such as temperature, heating rate, residence time, catalyst addition, etc. on the energy efficiency and the products yields and characteristics are mainly reviewed. These thermochemical processes are considered to be the more attractive and practicable methods for recovering energy and material from waste tyres. For the future, they are the main promising issue to treat and valorise used tyres. However, efforts should be done in developing more efficient technical systems.

  11. Biomass Program 2007 Program Peer Review - Thermochemical Conversion Platform Summary

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Biomass Program Peer Review for the Thermochemical Platform, held on July 9th and 10th in Golden, Colorado.

  12. Thermochemically Driven Gas-Dynamic Fracturing (TDGF)

    Energy Technology Data Exchange (ETDEWEB)

    Michael Goodwin

    2008-12-31

    This report concerns efforts to increase oil well productivity and efficiency via a method of heating the oil-bearing rock of the well, a technique known as Thermochemical Gas-Dynamic Fracturing (TGDF). The technique uses either a chemical reaction or a combustion event to raise the temperature of the rock of the well, thereby increasing oil velocity, and oil pumping rate. Such technology has shown promise for future application to both older wellheads and also new sites. The need for such technologies in the oil extraction field, along with the merits of the TGDF technology is examined in Chapter 1. The theoretical basis underpinning applications of TGDF is explained in Chapter 2. It is shown that productivity of depleted well can be increased by one order of magnitude after heating a reservoir region of radius 15-20 m around the well by 100 degrees 1-2 times per year. Two variants of thermal stimulation are considered: uniform heating and optimal temperature distribution in the formation region around the perforation zone. It is demonstrated that the well productivity attained by using equal amounts of thermal energy is higher by a factor of 3 to 4 in the case of optimal temperature distribution as compared to uniform distribution. Following this theoretical basis, two practical approaches to applying TDGF are considered. Chapter 3 looks at the use of chemical intiators to raise the rock temperature in the well via an exothermic chemical reaction. The requirements for such a delivery device are discussed, and several novel fuel-oxidizing mixtures (FOM) are investigated in conditions simulating those at oil-extracting depths. Such FOM mixtures, particularly ones containing nitric acid and a chemical initiator, are shown to dramatically increase the temperature of the oil-bearing rock, and thus the productivity of the well. Such tests are substantiated by preliminary fieldwork in Russian oil fields. A second, more cost effective approach to TGDF is considered in

  13. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  14. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    Energy Technology Data Exchange (ETDEWEB)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially

  15. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  16. Thermochemical water decomposition. [hydrogen separation for energy applications

    Science.gov (United States)

    Funk, J. E.

    1977-01-01

    At present, nearly all of the hydrogen consumed in the world is produced by reacting hydrocarbons with water. As the supply of hydrocarbons diminishes, the problem of producing hydrogen from water alone will become increasingly important. Furthermore, producing hydrogen from water is a means of energy conversion by which thermal energy from a primary source, such as solar or nuclear fusion of fission, can be changed into an easily transportable and ecologically acceptable fuel. The attraction of thermochemical processes is that they offer the potential for converting thermal energy to hydrogen more efficiently than by water electrolysis. A thermochemical hydrogen-production process is one which requires only water as material input and mainly thermal energy, or heat, as an energy input. Attention is given to a definition of process thermal efficiency, the thermodynamics of the overall process, the single-stage process, the two-stage process, multistage processes, the work of separation and a process evaluation.

  17. ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    BROWN,LC; LENTSCH,RD; BESENBRUCH,GE; SCHULTZ,KR; FUNK,JE

    2003-02-01

    OAK-B135 A hydrogen economy will need significant new sources of hydrogen. Unless large-scale carbon sequestration can be economically implemented, use of hydrogen reduces greenhouse gases only if the hydrogen is produced with non-fossil energy sources. Nuclear energy is one of the limited options available. One of the promising approaches to produce large quantities of hydrogen from nuclear energy efficiently is the Sulfur-Iodine (S-I) thermochemical water-splitting cycle, driven by high temperature heat from a helium Gas-Cooled Reactor. They have completed a study of nuclear-driven thermochemical water-splitting processes. The final task of this study was the development of a flowsheet for a prototype S-I production plant. An important element of this effort was the evaluation of alternative flowsheets and selection of the reference design.

  18. TEA: A Code for Calculating Thermochemical Equilibrium Abundances

    CERN Document Server

    Blecic, Jasmina; Bowman, M Oliver

    2015-01-01

    We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. (1958) and Eriksson (1971). It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp (1999), the free thermochemical equilibrium code CEA (Chemical Equilibrium with Applications), and the example given by White et al. (1958). Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is ...

  19. Thermochemical conversion of microalgal biomass into biofuels: a review.

    Science.gov (United States)

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed.

  20. Thermochemical structure of the Earth's mantle and continental crust

    DEFF Research Database (Denmark)

    Guerri, Mattia

    A detailed knowledge of the Earth's thermal structure and chemical composition is fundamental in order to understand the processes driving the planet ormation and evolution. The inaccessibility of most of the Earth's interior makes the determination of its thermo-chemical conditions a challenging...... in determining crustal seismic discontinuities. In the second chapter, I deal about the possibility to disentangle the dynamic and isostatic contribution in shaping the Earth's surface topography. Dynamic topography is directly linked to mantle convection driven by mantle thermo-chemical anomalies, and can...... argue therefore that our understandings of the lithosphere density structure, needed to determine the isostatic topography, and of the mantle density and viscosity, required to compute the dynamic topography, are still too limited to allow a robust determination of mantle convection effects on the Earth...

  1. Observations of Circumstellar Thermochemical Equilibrium: The Case of Phosphorus

    Science.gov (United States)

    Milam, Stefanie N.; Charnley, Steven B.

    2011-01-01

    We will present observations of phosphorus-bearing species in circumstellar envelopes, including carbon- and oxygen-rich shells 1. New models of thermochemical equilibrium chemistry have been developed to interpret, and constrained by these data. These calculations will also be presented and compared to the numerous P-bearing species already observed in evolved stars. Predictions for other viable species will be made for observations with Herschel and ALMA.

  2. Thermochemical data for CVD modeling from ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Ho, P. [Sandia National Labs., Albuquerque, NM (United States); Melius, C.F. [Sandia National Labs., Livermore, CA (United States)

    1993-12-31

    Ab initio electronic-structure calculations are combined with empirical bond-additivity corrections to yield thermochemical properties of gas-phase molecules. A self-consistent set of heats of formation for molecules in the Si-H, Si-H-Cl, Si-H-F, Si-N-H and Si-N-H-F systems is presented, along with preliminary values for some Si-O-C-H species.

  3. Hydrogen peroxide thermochemical oscillator as driver for primordial RNA replication.

    Science.gov (United States)

    Ball, Rowena; Brindley, John

    2014-06-06

    This paper presents and tests a previously unrecognized mechanism for driving a replicating molecular system on the prebiotic earth. It is proposed that cell-free RNA replication in the primordial soup may have been driven by self-sustained oscillatory thermochemical reactions. To test this hypothesis, a well-characterized hydrogen peroxide oscillator was chosen as the driver and complementary RNA strands with known association and melting kinetics were used as the substrate. An open flow system model for the self-consistent, coupled evolution of the temperature and concentrations in a simple autocatalytic scheme is solved numerically, and it is shown that thermochemical cycling drives replication of the RNA strands. For the (justifiably realistic) values of parameters chosen for the simulated example system, the mean amount of replicant produced at steady state is 6.56 times the input amount, given a constant supply of substrate species. The spontaneous onset of sustained thermochemical oscillations via slowly drifting parameters is demonstrated, and a scheme is given for prebiotic production of complementary RNA strands on rock surfaces.

  4. Vertically Discontinuous Seismic Signatures From Continuous Thermochemical Plumes

    Science.gov (United States)

    Harris, A. C.; Kincaid, C.; Savage, B.

    2008-12-01

    To interpret seismic signatures associated with mantle upwellings, we must understand the distribution of thermochemical heterogeneities within mantle plumes. Thermochemical heterogeneities are expected to arise within plumes by the incorporation of subducted lithosphere (Eclogite and Harzburgite) that has reached the plume source region (thermal boundary layers in the mantle). We analyze laboratory experiments in conjunction with seismic velocity models to predict the seismic signature of thermochemical plumes. Laboratory experiments are fully three-dimensional and use glucose syrup (Rayleigh number: 106) to model the mantle and a two-layer subducted lithosphere, where composition (viscosity and density) is controlled by water content. Experiments show heterogeneous upwellings with variations in both temperature and composition that are more complex than predicted in previous plume models. Spatial distributions for temperature and composition in representative, repeatable types of thermochemical upwellings are tracked through time, scaled to mantle values and used to calculate predicted seismic velocities. Apparent seismic velocity signals are estimated for patterns in thermochemical heterogeneity with length scales ranging from 1 to 300 km and excess temperatures from 50 to 300°C. Results show that if plumes are purely thermal they can be identified in the usual way, by slow velocities. However, if plumes are a mixture of compositions, as predicted by laboratory models, their velocity structure is more complex. An Ecolgite lens within a plume at ~300km depth with an excess temperature of 250°C can have the same velocity as regular mantle with no excess temperature. A Harzburgite lobe of a plume head (up to half of the plume volume) at 300km depth with an excess temperature of 225°C can have the same Vs as regular mantle with no excess temperature, but can only mask up to 55°C in Vp. Spatial variations in temperature control velocity structure above 300km

  5. System and process for producing fuel with a methane thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Diver, Richard B.

    2015-12-15

    A thermochemical process and system for producing fuel are provided. The thermochemical process includes reducing an oxygenated-hydrocarbon to form an alkane and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. Another thermochemical process includes reducing a metal oxide to form a reduced metal oxide, reducing an oxygenated-hydrocarbon with the reduced metal oxide to form an alkane, and using the alkane in a reforming reaction as a reducing agent for water, a reducing agent for carbon dioxide, or a combination thereof. The system includes a reformer configured to perform a thermochemical process.

  6. The Removal of NH3-N from the Waste Water of Producing Tribasic Copper Chloride from Waste Etching Solution Containing Copper%含铜蚀刻废液生产碱式氯化铜废水的脱氨氮处理

    Institute of Scientific and Technical Information of China (English)

    邹鸿图

    2012-01-01

    本论文针对利用含铜蚀刻废液生产碱式氯化铜(TBCC)豹过程中产生高氨氮废水的问题,提出了废水的脱氨氮处理工艺——蒸氨,并针对蒸氨设备进行了具体参数的调试,提出了找出了最佳的生产条件:蒸氨进料的pH不能低于11.3(25℃),处理量为3.5m3/h,蒸汽开度为88%。%The paper presented a method to treat the waste water from producing tribasical copper chloride from waste etching solution containing copper, which contains high NH3-N. The method was ammonia steaming, and experiments were done to test the removal rate at different operating parameters. The best operating parameter was thought to be: pH ≥ 11.3 (25 ℃), inlet amount of waste water 3.5 m3/h, opening of steaming valve 88 %.

  7. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and

  8. New applications with time-dependent thermochemical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Koukkari, P. [VTT Chemical Technology, Espoo (Finland); Laukkanen, L. [VTT Automation, Espoo (Finland); Penttilae, K. [Kemira Engineering Oy, Helsinki (Finland)

    1996-12-31

    A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)

  9. Thermochemical heat storage. State-of-the-art report

    Energy Technology Data Exchange (ETDEWEB)

    Oelert, G.; Behret, H.; Friedel, W.; Hennemann, B.; Hodgett, D.; Purper, G.; Nelson, B.; Westermark, M.

    1982-01-01

    In practically all areas of energy conservation R and D (solar, waste heat, heat pumps, production processes) the storage of energy has been identified as a critical requirement in the optimization of systems. The energy storage densities theoretically achievable in thermochemical storage are much higher than those of sensible or latent heat storage and furthermore, thermochemical heat storage (TCHS), in contrast to the two former techniques, has been considered in the past to be theoretically free of heat losses. This project was designed to: characterize the major areas of possible TCHS use in Sweden; analyze the state of TCHS development worldwide; assess the prospects of TCHS in Sweden; and identify TCHS R and D needs as complementary efforts within energy conservation development. The approach, background, and the chemical, technical and social/economical investigations as well as the overall assessment of TCHS technology and the R and D recommendations are compiled in this report. The result of the study shows that the economy for long term thermochemical heat storage is not very favorable. However, this is true for any long term storage under the assumption that oil will be available at a reasonable price even at the end of this century. If by then oil is not available at all for heating of buildings, it is important to know what other systems can possibly be used. An important conclusion of the study is that practical design problems have often been underestimated. It is also clear that it could still be worthwhile to continue work on some systems.

  10. Open-loop thermochemical cycles for the production of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Conger, W.L.

    1979-01-01

    The concept of open-loop thermochemical cycles (cycles which have additional or other feedstocks than water and produce materials in addition to hydrogen and oxygen) is introduced. Preliminary analysis of possible feedstocks available indicates substantial quantities of hydrogen could possibly be produced through open-cycles. The advantages of open-cycles include the conversion of unwanted waste products to useful products while producing hydrogen. A compilation of open processes which would have SO/sub 2/ in addition to water as feedstock and which would produce sulfuric acid in addition to hydrogen and oxygen is given.

  11. Estimating Equivalency of Explosives Through A Thermochemical Approach

    Energy Technology Data Exchange (ETDEWEB)

    Maienschein, J L

    2002-07-08

    The Cheetah thermochemical computer code provides an accurate method for estimating the TNT equivalency of any explosive, evaluated either with respect to peak pressure or the quasi-static pressure at long time in a confined volume. Cheetah calculates the detonation energy and heat of combustion for virtually any explosive (pure or formulation). Comparing the detonation energy for an explosive with that of TNT allows estimation of the TNT equivalency with respect to peak pressure, while comparison of the heat of combustion allows estimation of TNT equivalency with respect to quasi-static pressure. We discuss the methodology, present results for many explosives, and show comparisons with equivalency data from other sources.

  12. Non-equilibrium thermochemical heat storage in porous media

    DEFF Research Database (Denmark)

    Nagel, T.; Shao, H.; Singh, Ashok

    2013-01-01

    Thermochemical energy storage can play an important role in the establishment of a reliable renewable energy supply and can increase the efficiency of industrial processes. The application of directly permeated reactive beds leads to strongly coupled mass and heat transport processes that also...... compressible gas flow through a porous solid is presented along with its finite element implementation where solid-gas reactions occur and both phases have individual temperature fields. The model is embedded in the Theory of Porous Media and the derivation is based on the evaluation of the Clausius...

  13. High Efficiency Solar Thermochemical Reactor for Hydrogen Production.

    Energy Technology Data Exchange (ETDEWEB)

    McDaniel, Anthony H. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2017-09-30

    This research and development project is focused on the advancement of a technology that produces hydrogen at a cost that is competitive with fossil-based fuels for transportation. A twostep, solar-driven WS thermochemical cycle is theoretically capable of achieving an STH conversion ratio that exceeds the DOE target of 26% at a scale large enough to support an industrialized economy [1]. The challenge is to transition this technology from the laboratory to the marketplace and produce hydrogen at a cost that meets or exceeds DOE targets.

  14. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After pre-

  15. Multi-scale visualization and characterization of lignocellulosic plant cell wall deconstruction during thermochemical pretreatment

    Science.gov (United States)

    Shishir P. S. Chundawat; Bryon S. Donohoe; Leonardo da Costa Sousa; Thomas Elder; Umesh P. Agarwal; Fachuang Lu; John Ralph; Michael E. Himmel; Venkatesh Balan; Bruce E. Dale

    2011-01-01

    Deconstruction of lignocellulosic plant cell walls to fermentable sugars by thermochemical and/or biological means is impeded by several poorly understood ultrastructural and chemical barriers. A promising thermochemical pretreatment called ammonia fiber expansion (AFEX) overcomes the native recalcitrance of cell walls through subtle morphological and physicochemical...

  16. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    DEFF Research Database (Denmark)

    Rafique, Rashad; Poulsen, Tjalfe; Nizami, Abdul-Sattar

    2010-01-01

    -treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 degrees C-150 degrees C). Results showed that thermo-chemical pretreatment has high effect...

  17. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.

    2009-01-01

    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After

  18. Low temperature thermochemical treatment of stainless steel; bridging from science to technology

    DEFF Research Database (Denmark)

    Christiansen, Thomas; Hummelshøj, Thomas Strabo; Somers, Marcel A. J.

    2010-01-01

    The present contribution gives an overview of some of the fundamental scientific aspects of low temperature thermochemical treatment of stainless steel, in particular the characterisation of socalled expanded austenite is addressed. Selected technological examples of thermochemical treatment...... of stainless steel are presented....

  19. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2007-12-28

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  20. Bibliographic Review about Solar Hydrogen Production Through Thermochemical Cycles; Revision Bibliografica sobre la Produccion de Hidrogeno Solar Mediante Ciclos Termoquimicos

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.

    2008-08-06

    This report presents a summary of the different thermical processes used to obtain hydrogen through solar energy, paying more attention to the production of hydrogen from water through thermochemical cycles. In this aspect, it is briefly y described the most interesting thermochemical cycles, focusing on thermochemical cycles based on oxides. (Author) 25 refs.

  1. Thermochemical processes for hydrogen production by water decomposition. Progress report, April 1--December 31, 1975

    Energy Technology Data Exchange (ETDEWEB)

    Perlmutter, D.D.; Myers, A.L.

    1975-12-01

    The interest in hydrogen as a chemical feedstock and as a possible non-polluting fuel has continued to be high, affected by recent estimates of 1980 prices for imported natural gas in the range of $3.00/MM Btu. Our exhaustive survey of multi-step thermochemical and hybrid cycles concluded that the most promising prospects to date are (1) a modification of Abraham's ANL-4 cycle, and (2) the Rohm and Haas multi-reaction, single reactor cycle. Both sequences utilize iodine-based oxidation-reduction chemistry and each ultimately produces hydrogen via an iodide vapor decomposition, in the first case from NH/sub 4/I, in the second from HI. Process feasibility depends on demonstration of separation steps of relatively low energy requirements. Further research is proposed along four lines: (1) modeling and computation focusing on selectivity in gas-solid reactions, (2) experimental studies of solids flow and mixing, as well as mass transfer and chemical reaction in rotating and/or oscillating kiln reactors, (3) kinetics of the crucial reactions in the ANL-4 and Rohm and Haas cycles, and gas separations associated with these processes, and (4) flow sheet evaluations and preliminary economics.

  2. Thermochemical Modeling of the Uranium-Cerium-Oxygen System

    Energy Technology Data Exchange (ETDEWEB)

    Voit, Stewart L [ORNL; Besmann, Theodore M [ORNL

    2010-10-01

    The objective of the Fuel Cycle R&D Program, Advanced Fuels campaign is to provide the research and development necessary to develop low loss, high quality nuclear fuels for ultra-high burnup reactor operation. Primary work in this area will be focused on the ceramic and metallic fuel systems. The goal of the current work is to enhance the understanding of ceramic nuclear fuel thermochemistry to support fuel research and development efforts. The thermochemical behavior of oxide nuclear fuel under irradiation is dependent on the oxygen to metal ratio (O:M). In fluorite-structured fuel, the actinide metal cation is bonded with {approx}2 oxygen atoms on a crystal lattice and as the metal atoms fission, fission fragments and free oxygen are created. The resulting fission fragments will contain some oxide forming elements, however these are insufficient to bind to all the liberated oxygen and therefore, there is an average increase in O:M with fuel burnup. Some of the fission products also form species that will migrate to and react with the cladding surface in a phenomenon known as Fuel Clad Chemical Interaction (FCCI). Cladding corrosion is life-limiting so it is desirable to understand influencing factors, such as oxide thermochemistry, which can be used to guide the design and fabrication of higher burn up fuel. A phased oxide fuel thermochemical model development effort is underway within the Advanced Fuels Campaign. First models of binary oxide systems are developed. For nuclear fuel system this means U-O and transuranic systems such as Pu-O, Np-O and Am-O. Next, the binary systems will be combined to form pseudobinary systems such as U-Pu-O, etc. The model development effort requires the use of data to allow optimization based on known thermochemical parameters as a function of composition and temperature. Available data is mined from the literature and supplemented by experimental work as needed. Due to the difficulty of performing fuel fabrication development

  3. Interaction of stress and phase transformations during thermochemical surface engineering

    DEFF Research Database (Denmark)

    Jespersen, Freja Nygaard

    Low temperature nitriding of austenitic stainless steel causes a surface zone of expanded austenite, which improves the wear resistance of the stainless steel while preserving the stainless behavior. During nitriding huge residual stresses are introduced in the treated zone, arising from the volume...... expansion that accompanies the dissolution of high nitrogen contents in expanded austenite. An intriguing phenomenon during low-temperature nitriding, is that the residual stresses evoked by dissolution of nitrogen in the solid state, affect the thermodynamics and the diffusion kinetics of nitrogen...... dissolution. The present project is devoted to understanding the mutual interaction of stresses and phase transformations during thermochemical surface engineering by combining numerical modelling with experimental materials science. The modelling was done by combining solid mechanics with thermodynamics...

  4. Thermo-Chemical Convection in Europa's Icy Shell with Salinity

    Science.gov (United States)

    Han, L.; Showman, A. P.

    2005-01-01

    Europa's icy surface displays numerous pits, uplifts, and chaos terrains that have been suggested to result from solid-state thermal convection in the ice shell, perhaps aided by partial melting. However, numerical simulations of thermal convection show that plumes have insufficient buoyancy to produce surface deformation. Here we present numerical simulations of thermochemical convection to test the hypothesis that convection with salinity can produce Europa's pits and domes. Our simulations show that domes (200-300 m) and pits (300-400 m) comparable to the observations can be produced in an ice shell of 15 km thick with 5-10% compositional density variation if the maximum viscosity is less than 10(exp 18) Pa sec. Additional information is included in the original extended abstract.

  5. Characteristics of thermochemical treated EN10090 X50 steel

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, S.; Graf, K.; Scheid, A., E-mail: scheid@ufpr.br [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil); Moreno, A. [SDS Plasma, Sao Jose dos Pinhais, PR (Brazil)

    2014-07-01

    EN10090 X50 steel is commonly used for engine valves to withstand severe operation conditions involving high temperature and corrosion from fuel and combustion gas. Usually, to enhance wear performance, valves undergo nitriding thermochemical treatment by salt baths. The aim of this work is to produce diffusion layers at least 20μm thick with hardness higher than 700HV by plasma surface treatment with no continuous compounds layer using nitrogen and methane based atmospheres. Samples were characterized by laser Confocal and scanning electron microscopy, X-ray diffraction and Vickers hardness. Salt bath treatment induced formation of undesirable compounds layer at the surface and a diffusion layer thicker than 40μm, with hardness arising 1280HV{sub 0,010}. Plasma surface treatment produced diffusion layer thicker than 40μm with no continuous compounds layer and mean hardness varying from 750 to 960HV{sub 0,010}. (author)

  6. Moving bed reactor for solar thermochemical fuel production

    Science.gov (United States)

    Ermanoski, Ivan

    2013-04-16

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  7. Kinetics of Microstructure Evolution during Gaseous Thermochemical Surface Treatment

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.; Christiansen, Thomas

    2005-01-01

    The incorporation of nitrogen or carbon in steel is widely applied to provide major improvements in materials performance with respect to fatigue, wear, tribology and atmospheric corrosion. These improvements rely on a modification of the surface adjacent region of the material, by the (internal......) precipitation of alloying element nitrides/carbides or by the development of a continuous layer of iron-based (carbo-) nitrides. The evolution of the microstructure during thermochemical treatments is not only determined by solid state diffusion, but in many cases also by the kinetics of the surface reactions...... and the interplay with mechanical stress. In the present article a few examples, covering research on the interaction of carbon and/or nitrogen with iron-based metals, are included to illustrate the various aspects of gas-metal interactions....

  8. Observations, Thermochemical Calculations, and Modeling of Exoplanetary Atmospheres

    CERN Document Server

    Blecic, Jasmina

    2016-01-01

    This dissertation as a whole aims to provide means to better understand hot-Jupiter planets through observing, performing thermochemical calculations, and modeling their atmospheres. We used Spitzer multi-wavelength secondary-eclipse observations and targets with high signal-to-noise ratios, as their deep eclipses allow us to detect signatures of spectral features and assess planetary atmospheric structure and composition with greater certainty. Chapter 1 gives a short introduction. Chapter 2 presents the Spitzer secondary-eclipse analysis and atmospheric characterization of WASP-14b. WASP-14b is a highly irradiated, transiting hot Jupiter. By applying a Bayesian approach in the atmospheric analysis, we found an absence of thermal inversion contrary to theoretical predictions. Chapter 3 describes the infrared observations of WASP-43b Spitzer secondary eclipses, data analysis, and atmospheric characterization. WASP-43b is one of the closest-orbiting hot Jupiters, orbiting one of the coolest stars with a hot Ju...

  9. Hydrogen production via thermochemical cycles based on sulfur chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, M.A.; Conger, W.L.; Carty, R.H.; Funk, J.E.; Cox, K.E.

    1976-01-01

    A class of closed thermochemical cycles for hydrogen production based on sulfur chemistry is presented. This class is described by the following set of chemical reactions: M + H/sub 2/O reversible MO + H/sub 2/ (low temperature); MO + 0.5S reversible M + 0.5SO/sub 2/ (high temperature); M'O + 1.5SO/sub 2/ reversible M'SO/sub 4/ + 0.5S (low temperature); and M'SO/sub 4/ reversible M'O + SO/sub 2/ + 0.5O/sub 2/ (high temperature). Experimental investigation of some of the reactions is presented. Thermodynamic analysis indicates efficiencies of the range of 40 to 50 percent and sometimes higher. Not all of the reactions in the proposed cycles have been verified in the literature or through experimentation.

  10. An approach to thermochemical modeling of nuclear waste glass

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, T.M.; Beahm, E.C. [Oak Ridge National Lab., TN (United States); Spear, K.E. [Pennsylvania State Univ., University Park, PA (United States)

    1998-11-01

    This initial work is aimed at developing a basic understanding of the phase equilibria and solid solution behavior of the constituents of waste glass. Current, experimentally determined values are less than desirable since they depend on measurement of the leach rate under non-realistic conditions designed to accelerate processes that occur on a geologic time scale. The often-used assumption that the activity of a species is either unity or equal to the overall concentration of the metal can also yield misleading results. The associate species model, a recent development in thermochemical modeling, will be applied to these systems to more accurately predict chemical activities in such complex systems as waste glasses.

  11. Non-equilibrium thermochemical heat storage in porous media

    DEFF Research Database (Denmark)

    Nagel, T.; Shao, H.; Singh, Ashok

    2013-01-01

    Thermochemical energy storage can play an important role in the establishment of a reliable renewable energy supply and can increase the efficiency of industrial processes. The application of directly permeated reactive beds leads to strongly coupled mass and heat transport processes that also...... compressible gas flow through a porous solid is presented along with its finite element implementation where solid-gas reactions occur and both phases have individual temperature fields. The model is embedded in the Theory of Porous Media and the derivation is based on the evaluation of the Clausius......-Duhem inequality. Special emphasis is placed on the interphase coupling via mass, momentum and energy interaction terms and their effects are partially illustrated using numerical examples. Novel features of the implementation of the described model are verified via comparisons to analytical solutions...

  12. Thermochemical Nonequilibrium Analysis of Oxygen in Shock Tube Flows

    Science.gov (United States)

    Neitzel, Kevin; Kim, Jae Gang; Boyd, Iain D.

    The successful development of hypersonic vehicles requires a detailed knowledge of the flow physics around the vehicle. The physics knowledge and modeling confidence drives the development of the major vehicle flight systems including the thermal protection system and flight control system. Specifically, an understanding of the thermochemical nonequilibrium behavior is crucial for this flight regime. The hypersonic flight regime involves an extremely high level of energy so a small error in the modeling of the energy processes can result in drastic changes in the vehicle design, including prohibitive design requirements. This emphasizes the need for a deep understanding of the underlying flow phenomena and molecular energy transfer processes in order to adequately design a hypersonic vehicle computationally.

  13. Thermochemical treatment of biogas digestate solids to produce organic fertilisers

    DEFF Research Database (Denmark)

    Pantelopoulos, Athanasios

    Anaerobic digestion of animal manures has been proposed as a process with twofold advantage. The production of biogas, a renewable source of energy, and the treatment of animal manures to increase their agronomic value and reduce their environmental impact. However, the residual of anaerobic...... velocity during thermal treatment influence the evaporation rate of water from the manure solids. At the same time, they also influence the ammonia emission rates, Lowering manure pH (controlling the NH4+ - NH3 equilibrium) can potentially reduce the loss rate. Furthermore, the changes occurring...... digestate nitrogen content (Paper I), ii) determine their C and N dynamics after soil incorporation (Paper II) and iii) assess the plant N and P uptake of ryegrass amended with different thermochemical treatments of the solids (Paper III). For a more mechanistic understanding of the processes involved...

  14. Thermochemical and thermophysical properties of alkaline-earth perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Yamanaka, Shinsuke [Department of Nuclear Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan)]. E-mail: yamanaka@nucl.eng.osaka-u.ac.jp; Kurosaki, Ken [Department of Nuclear Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Maekawa, Takuji [Department of Nuclear Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan); Matsuda, Tetsushi [Nuclear Fuel Industries, Ltd., Ohaza-Noda 950, Kumatori-cho, Sennan-gun, Osaka 590-0481 (Japan); Kobayashi, Shin-ichi [Nuclear Fuel Industries, Ltd., Ohaza-Noda 950, Kumatori-cho, Sennan-gun, Osaka 590-0481 (Japan); Uno, Masayoshi [Department of Nuclear Engineering, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871 (Japan)

    2005-09-01

    In order to contribute to safety evaluation of high burnup oxide fuels, we studied the thermochemical and thermophysical properties of alkaline-earth perovskites known as oxide inclusions. Polycrystalline samples of alkaline-earth perovskites, BaUO{sub 3}, BaZrO{sub 3}, BaCeO{sub 3}, BaMoO{sub 3}, SrTiO{sub 3}, SrZrO{sub 3}, SrCeO{sub 3}, SrMoO{sub 3}, SrHfO{sub 3} and SrRuO{sub 3}, were prepared and the thermal expansion coefficient, melting temperature, elastic moduli, Debye temperature, microhardness, heat capacity, and thermal conductivity were measured. The relationship between some physical properties was studied.

  15. Estimation of thermochemical behavior of spallation products in mercury target

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Kaoru; Kaminaga, Masanori; Haga, Katsuhiro; Kinoshita, Hidetaka; Aso, Tomokazu; Teshigawara, Makoto; Hino, Ryutaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-02-01

    In order to examine the radiation safety of a spallation mercury target system, especially source term evaluation, it is necessary to clarify the chemical forms of spallation products generated by spallation reaction with proton beam. As for the chemical forms of spallation products in mercury that involves large amounts of spallation products, these forms were estimated by using the binary phase diagrams and the thermochemical equilibrium calculation based on the amounts of spallation product. Calculation results showed that the mercury would dissolve Al, As, B, Be, Bi, C, Co, Cr, Fe, Ga, Ge, Ir, Mo, Nb, Os, Re, Ru, Sb, Si, Ta, Tc, V and W in the element state, and Ag, Au, Ba, Br, Ca, Cd, Ce, Cl, Cs, Cu, Dy, Er, Eu, F, Gd, Hf, Ho, I, In, K, La, Li, Lu, Mg, Mn, Na, Nd, Ni, O, Pb, Pd, Pr, Pt, Rb, Rh, S, Sc, Se, Sm, Sn, Sr, Tb, Te, Ti, Tl, Tm, Y, Yb, Zn and Zr in the form of inorganic mercury compounds. As for As, Be, Co, Cr, Fe, Ge, Ir, Mo, Nb, Os, Pt, Re, Ru, Se, Ta, V, W and Zr, precipitation could be occurred when increasing the amounts of spallation products with operation time of the spallation target system. On the other hand, beryllium-7 (Be-7), which is produced by spallation reaction of oxygen in the cooling water of a safety hull, becomes the main factor of the external exposure to maintain the cooling loop. Based on the thermochemical equilibrium calculation to Be-H{sub 2}O binary system, the chemical forms of Be in the cooling water were estimated. Then the Be could exist in the form of cations such as BeOH{sup +}, BeO{sup +} and Be{sup 2+} under the condition of less than 10{sup -8} of the Be mole fraction in the cooling water. (author)

  16. Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables).

    Energy Technology Data Exchange (ETDEWEB)

    Burcat, A.; Ruscic, B.; Chemistry; Technion - Israel Inst. of Tech.

    2005-07-29

    The thermochemical database of species involved in combustion processes is and has been available for free use for over 25 years. It was first published in print in 1984, approximately 8 years after it was first assembled, and contained 215 species at the time. This is the 7th printed edition and most likely will be the last one in print in the present format, which involves substantial manual labor. The database currently contains more than 1300 species, specifically organic molecules and radicals, but also inorganic species connected to combustion and air pollution. Since 1991 this database is freely available on the internet, at the Technion-IIT ftp server, and it is continuously expanded and corrected. The database is mirrored daily at an official mirror site, and at random at about a dozen unofficial mirror and 'finger' sites. The present edition contains numerous corrections and many recalculations of data of provisory type by the G3//B3LYP method, a high-accuracy composite ab initio calculation. About 300 species are newly calculated and are not yet published elsewhere. In anticipation of the full coupling, which is under development, the database started incorporating the available (as yet unpublished) values from Active Thermochemical Tables. The electronic version now also contains an XML file of the main database to allow transfer to other formats and ease finding specific information of interest. The database is used by scientists, educators, engineers and students at all levels, dealing primarily with combustion and air pollution, jet engines, rocket propulsion, fireworks, but also by researchers involved in upper atmosphere kinetics, astrophysics, abrasion metallurgy, etc. This introductory article contains explanations of the database and the means to use it, its sources, ways of calculation, and assessments of the accuracy of data.

  17. Radiation thermo-chemical models of protoplanetary disks I. Hydrostatic disk structure and inner rim

    NARCIS (Netherlands)

    Woitke, P.; Kamp, I.; Thi, W. -F.

    Context. Emission lines from protoplanetary disks originate mainly in the irradiated surface layers, where the gas is generally warmer than the dust. Therefore, interpreting emission lines requires detailed thermo-chemical models, which are essential to converting line observations into

  18. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W.; Ribe, F.L.

    1981-01-21

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  19. Thermochemical Ablation Therapy of VX2 Tumor Using a Permeable Oil-Packed Liquid Alkali Metal

    OpenAIRE

    2015-01-01

    Objective Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors. Methods Permeable oil-packed sodium–potassium (NaK) was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluat...

  20. Enhanced Adhesion of Continuous Nanoporous Au Layers by Thermochemical Oxidation of Glassy Carbon

    Directory of Open Access Journals (Sweden)

    Lori Ana Bromberg

    2014-07-01

    Full Text Available The fabrication of a nanoporous gold (NPG-based catalyst on a glassy carbon (GC support results normally in large isolated and poorly adhering clusters that suffer considerable material loss upon durability testing. This work exploits thermochemical oxidation of GC, which, coupled with the utilization of some recent progress in fabricating continuous NPG layers using a Pd seed layer, aims to enhance the adhesion to the GC surface. Thermochemical oxidation causes interconnected pores within the GC structure to open and substantially improves the wettability of the GC surface, which are both beneficial toward the improvement of the overall quality of the NPG deposit. It is demonstrated that thermochemical oxidation neither affects the efficiency of the Au0.3Ag0.7 alloy (NPG precursor deposition nor hinders the achievement of continuity in the course of the NPG fabrication process. Furthermore, adhesion tests performed by a rotating disk electrode setup on deposits supported on thermochemically-oxidized and untreated GCs ascertain the enhanced adhesion on the thermochemically-oxidized samples. The best adhesion results are obtained on a continuous NPG layer fabricated on thermochemically-oxidized GC electrodes seeded with a dense network of Pd clusters.

  1. Solar Metal Sulfate-Ammonia Based Thermochemical Water Splitting Cycle for Hydrogen Production

    Science.gov (United States)

    Huang, Cunping (Inventor); T-Raissi, Ali (Inventor); Muradov, Nazim (Inventor)

    2014-01-01

    Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO.sub.4--NH3 cycle for producing H2 and O2 from a closed system including feeding an aqueous (NH3)(4)SO3 solution into a photoctalytic reactor to oxidize the aqueous (NH3)(4)SO3 into aqueous (NH3)(2)SO4 and reduce water to hydrogen, mixing the resulting aqueous (NH3)(2)SO4 with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH4)(2)SO4 and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH3 and H2O and solid ZnSO4(s), heating solid ZnSO4 at a high temperature reactor to produce a gaseous mixture of SO2 and O2 and solid product ZnO, mixing the gaseous mixture of SO2 and O2 with an NH3 and H2O stream in an absorber to form aqueous (NH4)(2)SO3 solution and separate O2 for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH4)(2)SO4 solution to close the water splitting cycle wherein gaseous H2 and O2 are the only products output from the closed ZnSO4--NH3 cycle.

  2. Thermochemical Fragment Energy Method for Biomolecules: Application to a Collagen Model Peptide.

    Science.gov (United States)

    Suárez, Ernesto; Díaz, Natalia; Suárez, Dimas

    2009-06-09

    Herein, we first review different methodologies that have been proposed for computing the quantum mechanical (QM) energy and other molecular properties of large systems through a linear combination of subsystem (fragment) energies, which can be computed using conventional QM packages. Particularly, we emphasize the similarities among the different methods that can be considered as variants of the multibody expansion technique. Nevertheless, on the basis of thermochemical arguments, we propose yet another variant of the fragment energy methods, which could be useful for, and readily applicable to, biomolecules using either QM or hybrid quantum mechanical/molecular mechanics methods. The proposed computational scheme is applied to investigate the stability of a triple-helical collagen model peptide. To better address the actual applicability of the fragment QM method and to properly compare with experimental data, we compute average energies by carrying out single-point fragment QM calculations on structures generated by a classical molecular dynamics simulation. The QM calculations are done using a density functional level of theory combined with an implicit solvent model. Other free-energy terms such as attractive dispersion interactions or thermal contributions are included using molecular mechanics. The importance of correcting both the intermolecular and intramolecular basis set superposition error (BSSE) in the QM calculations is also discussed in detail. On the basis of the favorable comparison of our fragment-based energies with experimental data and former theoretical results, we conclude that the fragment QM energy strategy could be an interesting addition to the multimethod toolbox for biomolecular simulations in order to investigate those situations (e.g., interactions with metal clusters) that are beyond the range of applicability of common molecular mechanics methods.

  3. Membranes for H2 generation from nuclear powered thermochemical cycles.

    Energy Technology Data Exchange (ETDEWEB)

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra (University of California, Davis, CA); Iyer, Ratnasabapathy G. (University of California, Davis, CA); Axness, Marlene

    2006-11-01

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

  4. Commercial Alloys for Sulfuric Acid Vaporization in Thermochemical Hydrogen Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas M. Lillo; Karen M. Delezene-Briggs

    2005-10-01

    Most thermochemical cycles being considered for producing hydrogen include a processing stream in which dilute sulfuric acid is concentrated, vaporized and then decomposed over a catalyst. The sulfuric acid vaporizer is exposed to highly aggressive conditions. Liquid sulfuric acid will be present at a concentration of >96 wt% (>90 mol %) H2SO4 and temperatures exceeding 400oC [Brown, et. al, 2003]. The system will also be pressurized, 0.7-3.5 MPa, to keep the sulfuric acid in the liquid state at this temperature and acid concentration. These conditions far exceed those found in the commercial sulfuric acid generation, regeneration and handling industries. Exotic materials, e.g. ceramics, precious metals, clad materials, etc., have been proposed for this application [Wong, et. al., 2005]. However, development time, costs, reliability, safety concerns and/or certification issues plague such solutions and should be considered as relatively long-term, optimum solutions. A more cost-effective (and relatively near-term) solution would be to use commercially-available metallic alloys to demonstrate the cycle and study process variables. However, the corrosion behavior of commercial alloys in sulfuric acid is rarely characterized above the natural boiling point of concentrated sulfuric acid (~250oC at 1 atm). Therefore a screening study was undertaken to evaluate the suitability of various commercial alloys for concentration and vaporization of high-temperature sulfuric acid. Initially alloys were subjected to static corrosion tests in concentrated sulfuric acid (~95-97% H2SO4) at temperatures and exposure times up to 200oC and 480 hours, respectively. Alloys with a corrosion rate of less than 5 mm/year were then subjected to static corrosion tests at a pressure of 1.4 MPa and temperatures up to 375oC. Exposure times were shorter due to safety concerns and ranged from as short as 5 hours up to 144 hours. The materials evaluated included nickel-, iron- and cobalt

  5. Thermochemical scanning probe lithography of protein gradients at the nanoscale

    Science.gov (United States)

    Albisetti, E.; Carroll, K. M.; Lu, X.; Curtis, J. E.; Petti, D.; Bertacco, R.; Riedo, E.

    2016-08-01

    Patterning nanoscale protein gradients is crucial for studying a variety of cellular processes in vitro. Despite the recent development in nano-fabrication technology, combining nanometric resolution and fine control of protein concentrations is still an open challenge. Here, we demonstrate the use of thermochemical scanning probe lithography (tc-SPL) for defining micro- and nano-sized patterns with precisely controlled protein concentration. First, tc-SPL is performed by scanning a heatable atomic force microscopy tip on a polymeric substrate, for locally exposing reactive amino groups on the surface, then the substrate is functionalized with streptavidin and laminin proteins. We show, by fluorescence microscopy on the patterned gradients, that it is possible to precisely tune the concentration of the immobilized proteins by varying the patterning parameters during tc-SPL. This paves the way to the use of tc-SPL for defining protein gradients at the nanoscale, to be used as chemical cues e.g. for studying and regulating cellular processes in vitro.

  6. Solar Thermochemical Hydrogen Production via Terbium Oxide Based Redox Reactions

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-01-01

    Full Text Available The computational thermodynamic modeling of the terbium oxide based two-step solar thermochemical water splitting (Tb-WS cycle is reported. The 1st step of the Tb-WS cycle involves thermal reduction of TbO2 into Tb and O2, whereas the 2nd step corresponds to the production of H2 through Tb oxidation by water splitting reaction. Equilibrium compositions associated with the thermal reduction and water splitting steps were determined via HSC simulations. Influence of oxygen partial pressure in the inert gas on thermal reduction of TbO2 and effect of water splitting temperature (TL on Gibbs free energy related to the H2 production step were examined in detail. The cycle (ηcycle and solar-to-fuel energy conversion (ηsolar-to-fuel efficiency of the Tb-WS cycle were determined by performing the second-law thermodynamic analysis. Results obtained indicate that ηcycle and ηsolar-to-fuel increase with the decrease in oxygen partial pressure in the inert flushing gas and thermal reduction temperature (TH. It was also realized that the recuperation of the heat released by the water splitting reactor and quench unit further enhances the solar reactor efficiency. At TH=2280 K, by applying 60% heat recuperation, maximum ηcycle of 39.0% and ηsolar-to-fuel of 47.1% for the Tb-WS cycle can be attained.

  7. Thermochemical liquefaction characteristics of microalgae in sub- and supercritical ethanol

    Energy Technology Data Exchange (ETDEWEB)

    You, Qiao; Chen, Liang [College of Environmental Science and Engineering, Hunan University, Changsha (China); Key Laboratory of Environment Biology and Pollution Control, Ministry of Education, Changsha (China)

    2011-01-15

    Thermochemical liquefaction characteristics of Spirulina, a kind of high-protein microalgae, were investigated with the sub- and supercritical ethanol as solvent in a 1000 mL autoclave. The influences of various liquefaction parameters on the yields of products (bio-oil and residue) from the liquefaction of Spirulina were studied, such as the reaction temperature (T), the S/L ratio (R{sub 1}, solid: Spirulina, liquid: ethanol), the solvent filling ratio (R{sub 2}) and the type and dosage of catalyst. Without catalyst, the bio-oil yields were in the range of 35.4 wt.% and 45.3 wt.% depending on the changes of T, R{sub 1} and R{sub 2}. And the bio-oil yields increased generally with increasing T and R{sub 2}, while the bio-oil yields reduced with increasing R{sub 1}. The FeS catalyst was certified to be an ideal catalyst for the liquefaction of Spirulina microalgae for its advantages on promoting bio-oil production and suppressing the formation of residue. The optimal dosage of catalyst (FeS) was ranging from 5-7 wt.%. The elemental analyses and FT-IR and GC-MS measurements for the bio-oils revealed that the liquid products have much higher heating values than the crude Spirulina sample and fatty acid ethyl ester compounds were dominant in the bio-oils, irrespective of whether catalyst was used. (author)

  8. Environmental impacts of thermochemical biomass conversion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; McKinney, M.D.; Norton, M.V.; Abrams, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    Thermochemical conversion in this study is limited to fast pyrolysis, upgrading of fast pyrolysis oils, and gasification. Environmental impacts of all types were considered within the project, but primary emphasis was on discharges to the land, air, and water during and after the conversion processes. The project discussed here is divided into five task areas: (1) pyrolysis oil analysis; (2) hydrotreating of pyrolysis oil; (3) gas treatment systems for effluent minimization; (4) strategic analysis of regulatory requirements; and (5) support of the IEA Environmental Systems Activity. The pyrolysis oil task was aimed at understanding the oil contaminants and potential means for their removal. The hydrotreating task was undertaken to better define one potential means for both improving the quality of the oil but also removing contaminants from the oil. Within Task 3, analyses were done to evaluate the results of gasification product treatment systems. Task 4 was a review and collection of regulatory requirements which would be applicable to the subject processes. The IEA support task included input to and participation in the IEA Bioenergy activity which directly relates to the project subject. Each of these tasks is described along with the results. Conclusions and recommendations from the overall project are given.

  9. Thermochemical Study of Lanthanum Complex Crystal with β-Alanine

    Institute of Scientific and Technical Information of China (English)

    陈平初; 屈松生; 詹正坤; 吴新明

    2002-01-01

    Lanthanum complex crystal with β-alanine (1∶3) was synthesized. Through the DTA,TG,chemistry analysis and comparison with literature, it shows that its form is {[La2(β-ala)6* (H2O)4](ClO4)6*H2O}n, and its purity is 98.86%. The dissolution enthalpy of the reactants and products in 2 mol*L-1 HCl solution (298.15K) was measured by using the isoperibol reaction calorimetry. ΔrHm was calculated by a designed thermochemical cycle of the coordination reaction. From the results and other auxiliary quantities, the standard molar enthalpy of formation of [La2(β-ala)6*(H2O)4](ClO4)6*H2O is obtained to be ΔfHm°{[La2(β-ala)6*(H2O)4](ClO4)6*H2O} = - 7062.911 kJ*mol-1.

  10. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  11. Thermochemical hydrogen generation of indium oxide thin films

    Science.gov (United States)

    Lim, Taekyung; Ju, Sanghyun

    2017-03-01

    Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD) and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  12. Testing of an advanced thermochemical conversion reactor system

    Science.gov (United States)

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions.

  13. Thermochemical Properties and Decomposition Kinetics of Ammonium Magnesium Phosphate Monohydrate

    Institute of Scientific and Technical Information of China (English)

    WU,Jian; YUAN,Ai-Qun; HUANG,Zai-Yin; TONG,Zhang-Fa; CHEN,Jie; LIANG,Rong-Lan

    2007-01-01

    Ammonium magnesium phosphate monohydrate NH4MgPO4·H2O was prepared via solid state reaction at room temperature and characterized by XRD, FT-IR and SEM. Thermochemical study was performed by an isoperibol solution calorimeter, non-isothermal measurement was used in a multivariate non-linear regression analysis to determine the kinetic reaction parameters. The results show that the molar enthalpy of reaction above is (28.795±0.182) kJ/mol (298.15 K), and the standard molar enthalpy of formation of the title complex is (-2185.43±13.80)kJ/mol (298.15 K). Kinetics analysis shows that the second decomposition of NH4MgPO4·H2O acts as a double-step reaction: an nth-order reaction (Fn) with n=4.28, E1=147.35 kJ/mol, A1=3.63×1013 s-1 is followed by a second-order reaction (F2) with E2=212.71 kJ/mol, A2= 1.82×1018 s-1.

  14. A Thermo-Chemical Reactor for analytical atomic spectrometry

    Science.gov (United States)

    Gilmutdinov, A. Kh.; Nagulin, K. Yu.

    2009-01-01

    A novel atomization/vaporization system for analytical atomic spectrometry is developed. It consists of two electrically and thermally separated parts that can be heated separately. Unlike conventional electrothermal atomizers in which atomization occurs immediately above the vaporization site and at the same instant of time, the proposed system allows analyte atomization via an intermediate stage of fractional condensation as a two stage process: Vaporization → Condensation → Atomization. The condensation step is selective since vaporized matrix constituents are mainly non-condensable gases and leave the system by diffusion while analyte species are trapped on the cold surface of a condenser. This kind of sample distillation keeps all the advantages of traditional electrothermal atomization and allows significant reduction of matrix interferences. Integration into one design a vaporizer, condenser and atomizer gives much more flexibility for in situ sample treatment and thus the system is called a Thermo-Chemical Reactor (TCR). Details of the design, temperature measurements, vaporization-condensation-atomization mechanisms of various elements in variety of matrices are investigated in the TCR with spectral, temporal and spatial resolution. The ability of the TCR to significantly reduce interferences and to conduct sample pyrolysis at much higher temperatures as compared to conventional electrothermal atomizers is demonstrated. The analytical potential of the system is shown when atomic absorption determination of Cd and Pb in citrus leaves and milk powder without the use of any chemical modification.

  15. Design Principles of Perovskites for Thermochemical Oxygen Separation.

    Science.gov (United States)

    Ezbiri, Miriam; Allen, Kyle M; Gàlvez, Maria E; Michalsky, Ronald; Steinfeld, Aldo

    2015-06-08

    Separation and concentration of O2 from gas mixtures is central to several sustainable energy technologies, such as solar-driven synthesis of liquid hydrocarbon fuels from CO2 , H2 O, and concentrated sunlight. We introduce a rationale for designing metal oxide redox materials for oxygen separation through "thermochemical pumping" of O2 against a pO2 gradient with low-grade process heat. Electronic structure calculations show that the activity of O vacancies in metal oxides pinpoints the ideal oxygen exchange capacity of perovskites. Thermogravimetric analysis and high-temperature X-ray diffraction for SrCoO3-δ , BaCoO3-δ and BaMnO3-δ perovskites and Ag2 O and Cu2 O references confirm the predicted performance of SrCoO3-δ , which surpasses the performance of state-of-the-art Cu2 O at these conditions with an oxygen exchange capacity of 44 mmol O 2 mol SrCoO 3-δ(-1) exchanged at 12.1 μmol O 2 min(-1)  g(-1) at 600-900 K. The redox trends are understood due to lattice expansion and electronic charge transfer.

  16. A thermochemically derived global reaction mechanism for detonation application

    Science.gov (United States)

    Zhu, Y.; Yang, J.; Sun, M.

    2012-07-01

    A 4-species 4-step global reaction mechanism for detonation calculations is derived from detailed chemistry through thermochemical approach. Reaction species involved in the mechanism and their corresponding molecular weight and enthalpy data are derived from the real equilibrium properties. By substituting these global species into the results of constant volume explosion and examining the evolution process of these global species under varied conditions, reaction paths and corresponding rates are summarized and formulated. The proposed mechanism is first validated to the original chemistry through calculations of the CJ detonation wave, adiabatic constant volume explosion, and the steady reaction structure after a strong shock wave. Good agreement in both reaction scales and averaged thermodynamic properties has been achieved. Two sets of reaction rates based on different detailed chemistry are then examined and applied for numerical simulations of two-dimensional cellular detonations. Preliminary results and a brief comparison between the two mechanisms are presented. The proposed global mechanism is found to be economic in computation and also competent in description of the overall characteristics of detonation wave. Though only stoichiometric acetylene-oxygen mixture is investigated in this study, the method to derive such a global reaction mechanism possesses a certain generality for premixed reactions of most lean hydrocarbon mixtures.

  17. Testing of an advanced thermochemical conversion reactor system

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  18. Liquid fuel utilization in SOFC hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Marco; Traverso, Alberto; Magistri, Loredana [TPG-DIMSET, University of Genoa, Via Montallegro 1, 16145 Genoa (Italy)

    2009-10-15

    The interest in solid oxide fuel cell systems comes from their capability of converting the chemical energy of traditional fuels into electricity, with high efficiency and low pollutant emissions. In this paper, a study of the design space of solid oxide fuel cell and gas turbine hybrids fed by methanol and kerosene is presented for stationary power generation in isolated areas (or transportation). A 500 kW class hybrid system was analysed using WTEMP original software developed by the Thermochemical Power Group of the University of Genoa. The choice of fuel-processing strategy and the influence of the main design parameters on the thermoeconomic characteristics of hybrid systems were investigated. The low capital and fuel cost of methanol systems make them the most attractive solutions among those investigated here. (author)

  19. Thermochemical Evolution of Earth's Core with Magnesium Precipitation

    Science.gov (United States)

    O'Rourke, J. G.; Stevenson, D. J.

    2014-12-01

    Vigorous convection within Earth's outer core drives a dynamo that has sustained a global magnetic field for at least 3.5 Gyr. Traditionally, people invoke three energy sources for the dynamo: thermal convection from cooling and freezing, compositional convection from light elements expelled by the growing inner core, and, perhaps, radiogenic heating from potassium-40. New theoretical and experimental work, however, indicates that the thermal and electrical conductivities of the outer core may be as much as three times higher than previously assumed. The implied increase in the adiabatic heat flux casts doubt on the ability of the usual mechanisms to explain the dynamo's longevity. Here, we present a quantitative model of the crystallization of magnesium-bearing minerals from the cooling core—a plausible candidate for the missing power source. Recent diamond-anvil cell experiments suggest that magnesium can partition into core material if thermodynamic equilibrium is achieved at high temperatures (>5000 K). We develop a model for core/mantle differentiation in which most of the core forms from material equilibrated at the base of a magma ocean as Earth slowly grows, but a small portion (~10%) equilibrated at extreme conditions in the aftermath of a giant impact. We calculate the posterior probability distribution for the original concentrations of magnesium and other light elements (chiefly oxygen and silicon) in the core, constrained by partitioning experiments and the observed depletion of siderophile elements in Earth's mantle. We then simulate the thermochemical evolution of cores with plausible compositions and thermal structures from the end of accretion to the present, focusing on the crystallization of a few percent of the initial core as ferropericlase and bridgmanite. Finally, we compute the associated energy release and verify that our final core compositions are consistent with the available seismological data.

  20. Biomass thermochemical conversion - overview of results; Biomassan jalostus - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, K. [VTT Energy, Espoo (Finland). Energy Production Technologies

    1995-12-31

    In this Bioenergy research program the thermochemical conversion activities are mainly concentrated in three fields (1) flash pyrolysis and the use of wood oil in boilers and engines (2) biomass gasification for gas engine power plants and finally (3) conversion of black liquor and extractives in a pulp mill to various liquid fuels. Parallel to activities in Finland also significant work has been done in EU-Joule and Apas projects and in the IEA Bioenergy Agreement. In the area of flash pyrolysis technology, three new laboratory and PDU-units have been installed to VTT in order to produce various qualities of bio oils from wood and straw. The quality of pyrolysis oils have been characterized by physical and chemical methods supported by EU and IEA networks. Several companies are carrying out pyrolysis activities as well: Neste Oy is testing the wood oil in a 200 kW boiler, Waertsilae Diesel Oy is testing Canadian wood oil in a 1.5 MWe diesel power plant engine and Vapo Oy is carrying out investigations to produce pyrolysis oils in Finland. The biomass gasification coupled to a gas engine is an interesting alternative for small scale power production parallel to existing fluid bed boiler technology. VTT has installed a circulating fluid bed gasifier with advanced gas cleaning system to test various technologies in order to feed the gas to an engine. In order to produce liquid fuels at a pulp mill, the laboratory work has continued using crude soap as a raw material for high pressure liquid phase treatment and atmospheric pyrolysis process. The quality of the oil is like light fuel oil or diesel fuel, possibilities to use it as a lubricant will be investigated

  1. The computation of thermo-chemical nonequilibrium hypersonic flows

    Science.gov (United States)

    Candler, Graham

    1989-01-01

    Several conceptual designs for vehicles that would fly in the atmosphere at hypersonic speeds have been developed recently. For the proposed flight conditions the air in the shock layer that envelops the body is at a sufficiently high temperature to cause chemical reaction, vibrational excitation, and ionization. However, these processes occur at finite rates which, when coupled with large convection speeds, cause the gas to be removed from thermo-chemical equilibrium. This non-ideal behavior affects the aerothermal loading on the vehicle and has ramifications in its design. A numerical method to solve the equations that describe these types of flows in 2-D was developed. The state of the gas is represented with seven chemical species, a separate vibrational temperature for each diatomic species, an electron translational temperature, and a mass-average translational-rotational temperature for the heavy particles. The equations for this gas model are solved numerically in a fully coupled fashion using an implicit finite volume time-marching technique. Gauss-Seidel line-relaxation is used to reduce the cost of the solution and flux-dependent differencing is employed to maintain stability. The numerical method was tested against several experiments. The calculated bow shock wave detachment on a sphere and two cones was compared to those measured in ground testing facilities. The computed peak electron number density on a sphere-cone was compared to that measured in a flight test. In each case the results from the numerical method were in excellent agreement with experiment. The technique was used to predict the aerothermal loads on an Aeroassisted Orbital Transfer Vehicle including radiative heating. These results indicate that the current physical model of high temperature air is appropriate and that the numerical algorithm is capable of treating this class of flows.

  2. Effects of thermochemical pretreatment on the biodegradability of sludge from a biological wastewater treatment system

    Directory of Open Access Journals (Sweden)

    Ick-Tae Yeom

    2010-07-01

    Full Text Available The effects of thermochemical pretreatment on the sludge biodegradability were examined. Two types of tests were conducted: aerobic biodegradation and denitrification using thermochemically pretreated sludge as carbon source. In the aerobic biodegradation tests, the biodegradation efficiency for the sludge pretreated at 60, 70, 80 and 90oC (pH 11 was 1.4-2.2 times higher than that for the untreated sludge. The biodegradation efficiency for the supernatant was also about 1.9 times higher than that for the particulates. The biodegradation enhancement for the thermochemically pretreated sludge was demonstrated in denitrification tests. The supernatant showed its potential as a carbon source for the denitrification process.

  3. High-efficient thermochemical sorption refrigeration driven by low-grade thermal energy

    Institute of Scientific and Technical Information of China (English)

    LI TingXian; WANG RuZhu; WANG LiWei

    2009-01-01

    Thermochemical sorption refrigeration powered by low-grade thermal energy is one of the en ergy-saving and environment friendly green refrigeration technologies. The operation principle of sorption refrigeration system is based on the thermal effects of reversible physicochemical reaction processes between sorbents and refrigerants. This paper presents the developing study on the differ ent thermochemical sorption refrigeration cycles, and some representative high-efficient thermo chemical sorption refrigeration cycles were evaluated and analyzed based on the conventional single-effect sorption cycle. These advanced sorption refrigeration cycles mainly include the heat and mass recovery sorption cycle, double-effect sorption cycle, multi-effect sorption cycle, combined douhie-way sorption cycle, and double-effect and double-way sorption cycle with internal heat recovery.Moreover, the developing tendency of the thermochemical sorption refrigeration is also predicted in this paper.

  4. Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting.

    Science.gov (United States)

    Ermanoski, I; Miller, J E; Allendorf, M D

    2014-05-14

    Widespread adoption of solar-thermochemical fuel production depends on its economic viability, largely driven by the efficiency of use of the available solar resource. Herein, we analyze the efficiency of two-step cycles for thermochemical hydrogen production, with emphasis on efficiency. Owing to water thermodynamics, isothermal H2 production is shown to be impractical and inefficient, irrespective of reactor design or reactive oxide properties, but an optimal temperature difference between cycle steps, for which efficiency is the highest, can be determined for a wide range of other operating parameters. A combination of well-targeted pressure and temperature swing, rather than either individually, emerges as the most efficient mode of operation of a two-step thermochemical cycle for solar fuel production.

  5. Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu-Cl cycle

    Energy Technology Data Exchange (ETDEWEB)

    Naterer, G. [Canada Research Chair Professor, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street, Oshawa, Ontario L1H 7K4 (Canada); Suppiah, S. [Manager, Hydrogen Isotopes Technology Branch, AECL, Chalk River, Ontario K0J 1J0 (Canada); Lewis, M. [Chemist, Chemical Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439 (United States); Gabriel, K. [Associate Provost, Research, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Dincer, I.; Rosen, M.A. [Professor of Mechanical Engineering, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Fowler, M. [Assistant Professor of Chemical Engineering, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1 (Canada); Rizvi, G. [Assistant Professor of Mechanical Engineering, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Easton, E.B. [Assistant Professor of Chemistry, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4 (Canada); Ikeda, B.M.; Pioro, I. [Associate Professor, Faculty of Energy Systems and Nuclear Science, UOIT, 2000 Simcoe St., Oshawa, ON L1H 7K4 (Canada); Kaye, M.H.; Lu, L. [Assistant Professor, Faculty of Energy Systems and Nuclear Science, UOIT, 2000 Simcoe Street, Oshawa, Ontario L1H 7K4 (Canada); Spekkens, P. [Vice President of Science and Technology Development, Ontario Power Generation, 889 Brock Road, Pickering, Ontario (Canada); Tremaine, P. [Professor of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1 (Canada); Mostaghimi, J. [Canada Research Chair Professor, Mechanical Engineering, University of Toronto, Toronto, Ontario M5S 3E5 (Canada); Avsec, J. [Assistant Professor, Faculty of Energy Technology, Univ. of Maribor, Hocevarjev trg 1, 8270 Krsko (Slovenia); Jiang, J. [Professor and NSERC/UNENE Senior Industrial Research Chair, Electrical and Computer Engineering, Univ. of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2009-04-15

    This paper presents recent Canadian advances in nuclear-based production of hydrogen by electrolysis and the thermochemical copper-chlorine (Cu-Cl) cycle. This includes individual process and reactor developments within the Cu-Cl cycle, thermochemical properties, advanced materials, controls, safety, reliability, economic analysis of electrolysis at off-peak hours, and integrating hydrogen plants with Canada's nuclear power plants. These enabling technologies are being developed by a Canadian consortium, as part of the Generation IV International Forum (GIF) for hydrogen production from the next generation of nuclear reactors. (author)

  6. THERMOCHEMICAL ENERGY STORAGE FOR SEASONAL BALANCE OF SURPLUS ELECTRICITY AND HEAT DEMAND IN DOMESTIC BUILDINGS

    OpenAIRE

    Schmidt, Matthias; Linder, Marc Philipp

    2016-01-01

    Thermochemical storage systems are predestined to store thermal energy for a long time since the storage principle itself is free of losses and allows for very high energy densities. Therefore we developed a new approach where electricity, p. e. from private PV-panels in the summer, is used to charge a thermochemical reaction system. The reaction product then can be stored in an inexpensive tank at room temperature. If there is heat demand during the winter part of the material can be supplie...

  7. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.)

    DEFF Research Database (Denmark)

    Gunnarsson, Ingólfur Bragi; Kuglarz, Mariusz; Karakashev, Dimitar Borisov

    2015-01-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior...... to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted...

  8. Importance of the ligand basis set in ab initio thermochemical calculations of transition metal species

    Science.gov (United States)

    Plascencia, Cesar; Wang, Jiaqi; Wilson, Angela K.

    2017-10-01

    The impact of basis set choice has been considered for a series of transition metal (TM) species. The need for higher level correlation consistent basis sets on both the metal and ligand has been investigated, and permutations in the pairings of basis set used for TM's and basis set used for ligands can lead to effective routes to complete basis set (CBS) limit extrapolations of thermochemical energetics with little change in thermochemical predictions as compared to those resulting from the use of traditional basis set pairings, while enabling computational cost savings. Basis set superposition errors (BSSE) that can arise have also been considered.

  9. Density functional investigation of the thermophysical and thermochemical properties of talc [Mg3Si4O10(OH)2

    Science.gov (United States)

    Ulian, Gianfranco; Valdrè, Giovanni

    2015-02-01

    The knowledge of the P, T behavior of talc is very important in mineralogical-petrological and geophysical research fields because talc can be considered a hydrous phase that can recycle water into the Earth's mantle and also an important mineral in both industrial and technological applications. However, very few works have been presented to fully characterize the thermodynamic properties of this mineral, especially at atomic scale. In a previous work, we modeled the structural and mechanical properties of talc using the B3LYP-D* hybrid density functional, which included a correction for the dispersive forces and all-electron Gaussian-type orbital basis sets. The results were in good agreement with single-crystal X-ray and neutron diffraction experimental data. Here, we extend the investigation to the thermochemical and thermophysical properties of talc using the same density functional approach and the quasi-harmonic approximation, providing the thermal equation of state, the heat capacity and the entropy of the mineral at different P, T conditions.

  10. Renewable energy from corn residues by thermochemical conversion

    Science.gov (United States)

    Yu, Fei

    Declining fossil oil reserve, skyrocket price, unsecured supplies, and environment pollution are among the many energy problems we are facing today. It is our conviction that renewable energy is a solution to these problems. The long term goal of the proposed research is to develop commercially practical technologies to produce energy from renewable resources. The overall objective of my research is to study and develop thermochemical processes for converting bulky and low-energy-density biomass materials into bio-fuels and value-added bio-products. The rationale for the proposed research is that, once such processes are developed, processing facility can be set up on or near biomass product sites, reducing the costs associated with transport of bulky biomass which is a key technical barrier to biomass conversion. In my preliminary research, several conversion technologies including atmospheric pressure liquefaction, high pressure liquefaction, and microwave pyrolysis have been evaluated. Our data indicated that microwave pyrolysis had the potential to become a simple and economically viable biomass conversion technology. Microwave pyrolysis is an innovative process that provides efficient and uniform heating, and are robust to type, size and uniformity of feedstock and therefore suitable for almost any waste materials without needing to reduce the particle size. The proposed thesis focused on in-depth investigations of microwave pyrolysis of corn residues. My first specific aim was to examine the effects of processing parameters on product yields. The second specific research aim was to characterize the products (gases, bio-oils, and solid residues), which was critical to process optimization and product developments. Other research tasks included conducting kinetic modeling and preliminary mass and energy balance. This study demonstrated that microwave pyrolysis could be optimized to produce high value syngas, liquid fuels and pyrolytic carbons, and had a great

  11. Thermo-chemical Ice Penetrator for Icy Moons

    Science.gov (United States)

    Arenberg, J. W.; Lee, G.; Harpole, G.; Zamel, J.; Sen, B.; Ross, F.; Retherford, K. D.

    2016-12-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  12. Thermochemical properties for isooctane and carbon radicals: computational study.

    Science.gov (United States)

    Snitsiriwat, Suarwee; Bozzelli, Joseph W

    2013-01-17

    Thermochemical properties for isooctane, its internal rotation conformers, and radicals with corresponding bond energies are determined by use of computational chemistry. Enthalpies of formation are determined using isodesmic reactions with B3LYP density function theory and composite CBS-QB3 methods. Application of group additivity with comparison to calculated values is illustrated. Entropy and heat capacities are determined using geometric parameters, internal rotor potentials, and frequencies from B3LYP/6-31G(d,p) calculations for the lowest energy conformer. Internal rotor potentials are determined for the isooctane parent and for the primary, secondary, and tertiary radicals in order to identify isomer energies. Intramolecular interactions are shown to have a significant effect on the enthalpy of formation of the isooctane parent and its radicals. The computed standard enthalpy of formation for the lowest energy conformers of isooctane from this study is -54.40 ± 1.60 kcal mol(-1), which is 0.8 kcal mol(-1) lower than the evaluated experimental value -53.54 ± 0.36 kcal mol(-1). The standard enthalpy of formation for the primary radical for a methyl on the quaternary carbon is -5.00 ± 1.69 kcal mol(-1), for the primary radical on the tertiary carbon is -5.18 ± 1.69 kcal mol(-1), for the secondary isooctane radical is -9.03 ± 1.84 kcal mol(-1), and for the tertiary isooctane radical is -12.30 ± 2.02 kcal mol(-1). Bond energy values for the isooctane radicals are 100.64 ± 1.73, 100.46 ± 1.73, 96.41 ± 1.88 and 93.14 ± 2.05 kcal mol(-1) for C3•CCCC2, C3CCCC2•, C3CC•CC2, and C3CCC•C2, respectively. Entropy and heat capacity values are reported for the lowest energy homologues.

  13. Thermo-chemical simulation of a composite offshore vertical axis wind turbine blade

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case...

  14. A new high-flux solar furnace for high-temperature thermochemical research

    Energy Technology Data Exchange (ETDEWEB)

    Haueter, P.; Seitz, T.; Steinfeld, A. [Paul Scherrer Inst., Villigen (Switzerland). Solar Process Technology Group

    1999-02-01

    A new high-flux solar furnace, capable of delivering up to 40 kW at peak concentration ratios exceeding 5000, is operational at PSI. Its optical design characteristics, main engineering features, and operating performance are described. This solar concentrating facility will be used principally for investigating the thermochemical processing of solar fuels at temperatures as high as 2500 K.

  15. Potential of summer legumes for thermochemical conversion to synthetic fuel in the southeast USA

    Science.gov (United States)

    Fallow periods during the summer in some crop rotations of the Southeast USA could potentially be used to grow feedstocks for energy production. The objective of this study was to evaluate Crotolaria juncea and cowpeas (Vigna unguiculata) as species to be used as feedstocks for thermochemical conver...

  16. A review on the properties of salt hydrates for thermochemical storage

    NARCIS (Netherlands)

    Trausel, F.; Jong, A.J. de; Cuypers, R.

    2014-01-01

    Solar energy is capable of supplying enough energy to answer the total demand of energy in dwellings. However, because of the discrepancy between energy supply and energy demand, an efficient way of storing thermal energy is crucial. Thermochemical storage of heat in salt hydrates provides an effici

  17. Neutralization and Acid Dissociation of Hydrogen Carbonate Ion: A Thermochemical Approach

    Science.gov (United States)

    Koga, Nobuyoshi; Shigedomi, Kana; Kimura, Tomoyasu; Tatsuoka, Tomoyuki; Mishima, Saki

    2013-01-01

    A laboratory inquiry into the thermochemical relationships in the reaction between aqueous solutions of NaHCO[subscript 3] and NaOH is described. The enthalpy change for this reaction, delta[subscript r]H, and that for neutralization of strong acid and NaOH(aq), delta[subscript n]H, are determined calorimetrically; the explanation for the…

  18. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    NARCIS (Netherlands)

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; Jong, A.J. de; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span (relea

  19. Thermochemical stability and nonstoichiometry of yttria-stabilized bismuth oxide solid solutions

    NARCIS (Netherlands)

    Kruidhof, H.; Vries, de K.J.; Burggraaf, A.J.

    1990-01-01

    The thermochemical stability of fast oxygen ion conducting yttria stabilized bismuthoxide (YSB) solid solutions containing 22.0–32.5 mol% of yttria was investigated. It was shown that in the temperature range between 650–740 C the stabilized cubic δ-phase containing less than 31.8 mol% of yttria is

  20. Radiation thermo-chemical models of protoplanetary disks I. Hydrostatic disk structure and inner rim

    NARCIS (Netherlands)

    Woitke, P.; Kamp, I.; Thi, W. -F.

    2009-01-01

    Context. Emission lines from protoplanetary disks originate mainly in the irradiated surface layers, where the gas is generally warmer than the dust. Therefore, interpreting emission lines requires detailed thermo-chemical models, which are essential to converting line observations into understandin

  1. Thermochemical hydrogen production via a cycle using barium and sulfur - Reaction between barium sulfide and water

    Science.gov (United States)

    Ota, K.; Conger, W. L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653-866 C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. An expression was derived for the rate of hydrogen formation.

  2. Improving Students' Chemical Literacy Levels on Thermochemical and Thermodynamics Concepts through a Context-Based Approach

    Science.gov (United States)

    Cigdemoglu, Ceyhan; Geban, Omer

    2015-01-01

    The aim of this study was to delve into the effect of context-based approach (CBA) over traditional instruction (TI) on students' chemical literacy level related to thermochemical and thermodynamics concepts. Four eleventh-grade classes with 118 students in total taught by two teachers from a public high school in 2012 fall semester were enrolled…

  3. Improving Students' Chemical Literacy Levels on Thermochemical and Thermodynamics Concepts through a Context-Based Approach

    Science.gov (United States)

    Cigdemoglu, Ceyhan; Geban, Omer

    2015-01-01

    The aim of this study was to delve into the effect of context-based approach (CBA) over traditional instruction (TI) on students' chemical literacy level related to thermochemical and thermodynamics concepts. Four eleventh-grade classes with 118 students in total taught by two teachers from a public high school in 2012 fall semester were enrolled…

  4. Thermo-chemical simultion of a composite offshore vertical axis wind turbine blade

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study three dimensional steady state thermo-chemical simulation of a pultrusion process is investigated by using the finite element/nodal control volume (FE/NCV) technique. Pultrusion simulation of a composite having a C-shaped cross section is performed as a validation case. The

  5. The role of labile sulfur compounds in thermochemical sulfate reduction

    Science.gov (United States)

    Amrani, A.; Zhang, T.; Ma, Q.; Ellis, G.S.; Tang, Y.

    2008-01-01

    The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S??, organic S) at temperatures of 330 and 356 ??C under a constant confining pressure. The in-situ pH was buffered to 3.5 (???6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (???0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of

  6. Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment

    Science.gov (United States)

    Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan

    2013-04-01

    ) upwelling of the ambient material in the vicinity of the dense material (mechanism of selective withdrawal (Lister, 1989)), and (iii) cold downwellings sliding along the bottom boundary, and forcing the dense material upwards. The objective of this study is to compare the efficiency of entrainment by each of these mechanisms, and its dependence on the density and viscosity anomaly of the dense material with respect to the ambient mantle. To perform this study, we have developed a two-dimensional FEM code to model thermal convection in a hollow cylinder domain with presence of chemical heterogeneities, and using a realistic viscosity profile. We present the results of the simulations that demonstrate the entrainment mechanisms described above. In addition, we perfom numerical experiments in a Cartesian box domain, where the bottom right boundary of the box is deformed to resemble the geometry of an LLSVP edge. In some of the experiments, the bottom left part of the boundary is moving towards the right boundary, simulating a slab sliding along the core-mantle boundary towards an LLSVP. These experiments allow a detailed study of the process of entrainment, and its role in the thermochemical evolution of the Earth.

  7. The role of labile sulfur compounds in thermochemical sulfate reduction

    Science.gov (United States)

    Amrani, Alon; Zhang, Tongwei; Ma, Qisheng; Ellis, Geoffrey S.; Tang, Yongchun

    2008-06-01

    The reduction of sulfate to sulfide coupled with the oxidation of hydrocarbons to carbon dioxide, commonly referred to as thermochemical sulfate reduction (TSR), is an important abiotic alteration process that most commonly occurs in hot carbonate petroleum reservoirs. In the present study we focus on the role that organic labile sulfur compounds play in increasing the rate of TSR. A series of gold-tube hydrous pyrolysis experiments were conducted with n-octane and CaSO4 in the presence of reduced sulfur (e.g. H2S, S°, organic S) at temperatures of 330 and 356 °C under a constant confining pressure. The in-situ pH was buffered to 3.5 (∼6.3 at room temperature) with talc and silica. For comparison, three types of oil with different total S and labile S contents were reacted under similar conditions. The results show that the initial presence of organic or inorganic sulfur compounds increases the rate of TSR. However, organic sulfur compounds, such as 1-pentanethiol or diethyldisulfide, were significantly more effective in increasing the rate of TSR than H2S or elemental sulfur (on a mole S basis). The increase in rate is achieved at relatively low concentrations of 1-pentanethiol, less than 1 wt% of the total n-octane, which is comparable to the concentration of organic S that is common in many oils (∼0.3 wt%). We examined several potential reaction mechanisms to explain the observed reactivity of organic LSC. First, the release of H2S from the thermal degradation of thiols was discounted as an important mechanism due to the significantly greater reactivity of thiol compared to an equivalent amount of H2S. Second, we considered the generation of olefines in association with the elimination of H2S during thermal degradation of thiols because olefines are much more reactive than n-alkanes during TSR. In our experiments, olefines increased the rate of TSR, but were less effective than 1-pentanethiol and other organic LSC. Third, the thermal decomposition of

  8. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  9. High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria

    National Research Council Canada - National Science Library

    William C. Chueh; Christoph Falter; Mandy Abbott; Danien Scipio; Philipp Furler; Sossina M. Haile; Aldo Steinfeld

    2010-01-01

    .... By using a solar cavity-receiver reactor, we combined the oxygen uptake and release capacity of cerium oxide and facile catalysis at elevated temperatures to thermochemically dissociate CO 2 and H 2...

  10. Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high-density reactive bed

    OpenAIRE

    Michel, Benoit; Mazet, Nathalie; Mauran, Sylvain; Stitou, Driss; Jing XU

    2012-01-01

    International audience; This paper focuses on the characterization and modeling of a solid/gas thermochemical reaction between a porous reactive bed and moist air flowing through it. The aim is the optimization of both energy density and permeability of the reactive bed, in order to realize a high density thermochemical system for seasonal thermal storage for house heating application. Several samples with different implementation parameters (density, binder, diffuser, porous bed texture) hav...

  11. Spinel Metal Oxide-Alkali Carbonate-Based, Low-Temperature Thermochemical Cycles for Water Splitting and CO_2 Reduction

    OpenAIRE

    Xu, Bingjun; Bhawe, Yashodhan; Davis, Mark E.

    2013-01-01

    A manganese oxide-based, thermochemical cycle for water splitting below 1000 °C has recently been reported. The cycle involves the shuttling of Na+ into and out of manganese oxides via the consumption and formation of sodium carbonate, respectively. Here, we explore the combinations of three spinel metal oxides and three alkali carbonates in thermochemical cycles for water splitting and CO_2 reduction. Hydrogen evolution and CO_2 reduction reactions of metal oxides with a given alkali carbona...

  12. Thermo-chemical, mechanical and resin flow integrated analysis in pultrusion

    Science.gov (United States)

    Carlone, Pierpaolo; Rubino, Felice; Palazzo, Gaetano S.

    2016-10-01

    The present work discusses some numerical outcomes provided by an integrated analysis of impregnation, thermo-chemical and stress/strain aspects in a conventional pultrusion process. The impregnation models describes resin flow and pressure distribution in the initial portion of the die, solving a non-homogeneous non-isothermal/reactive multiphase problem, using a finite volume scheme. The thermochemical model describes the heat transfer and degree of cure evolution of the processing resin. Finally, the stress/strain model computes the part distortion and in process stresses due to thermal, chemical, mechanical strains. An applicative case study is presented, simulating the impregnation step of the pultrusion process of a fiberglass-epoxy resin composite rod.

  13. A thermochemical calculation of the pyroxene saturation surface in the system diopside-albite-anorthite

    Science.gov (United States)

    Hon, R.; Henry, D. J.; Navrotsky, A.; Weill, D. F.

    1981-01-01

    The pyroxene saturation surface in the system diopside-albite-anorthite may be calculated to + or - 10 C from thermochemical data over most of its composition range. The thermochemical data used are the experimentally determined enthalpies of mixing of the ternary liquids and the enthalpy of fusion of diopside. These are combined with a mixing model for the configurational entropy in the melt and the activity of CaMgSi2O6 in the clinopyroxene, which is less than unity due to departures from CaMgSi2O6 stoichiometry. The two-lattice melt model appears to work satisfactorily throughout the pyroxene primary phase field but probably needs modification at more anorthite-rich compositions.

  14. Materials-Related Aspects of Thermochemical Water and Carbon Dioxide Splitting: A Review

    Directory of Open Access Journals (Sweden)

    Robert Pitz-Paal

    2012-10-01

    Full Text Available Thermochemical multistep water- and CO2-splitting processes are promising options to face future energy problems. Particularly, the possible incorporation of solar power makes these processes sustainable and environmentally attractive since only water, CO2 and solar power are used; the concentrated solar energy is converted into storable and transportable fuels. One of the major barriers to technological success is the identification of suitable active materials like catalysts and redox materials exhibiting satisfactory durability, reactivity and efficiencies. Moreover, materials play an important role in the construction of key components and for the implementation in commercial solar plants. The most promising thermochemical water- and CO2-splitting processes are being described and discussed with respect to further development and future potential. The main materials-related challenges of those processes are being analyzed. Technical approaches and development progress in terms of solving them are addressed and assessed in this review.

  15. Thermochemical ablation of carbon/carbon composites with non-linear thermal conductivity

    Directory of Open Access Journals (Sweden)

    Li Wei-Jie

    2014-01-01

    Full Text Available Carbon/carbon composites have been typically used to protect a rocket nozzle from high temperature oxidizing gas. Based on the Fourier’s law of heat conduction and the oxidizing ablation mechanism, the ablation model with non-linear thermal conductivity for a rocket nozzle is established in order to simulate the one-dimensional thermochemical ablation rate on the surface and the temperature distributions by using a written computer code. As the presented results indicate, the thermochemical ablation rate of a solid rocket nozzle calculated by using actual thermal conductivity, which is a function of temperature, is higher than that by a constant thermal conductivity, so the effect of thermal conductivity on the ablation rate of a solid rocket nozzle made of carbon/carbon composites cannot be neglected.

  16. Thermochemical sulphate reduction and Huayuan lead-zinc ore deposit in Hunan, China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In recent years, some arguments with regard to the organicmineralization of MVT lead-zinc ore deposit are focused on the thermochemical sulphate reduction in the presence of organic matter. Based on the research into the organic geochemistry and C, O, S isotopes of mineralized host rocks, mineral gas fluid inclusion and solid bitumen from Huayuan (W. Hunan, China) lead-zinc ore deposit formed in the algal limestones of Qingxudong formation, Lower Cambrian, the authors consider that a lot of organic matter occurred and participated in mineralization. The organic matter from different sources participated in the mineralization with two main forms: thermochemical sul-phate reduction and thermal degradation which supplied abundant H2S for the precipitation.

  17. Properties of 15HN Steel after Various Thermo-Chemical Treatments

    Directory of Open Access Journals (Sweden)

    L. Klimek

    2007-07-01

    Full Text Available The aim of conducted research was to find universal steel that may serve to regenerate machine elements by MULTIPLEX method – or cladding of alloy steel and then subjecting to thermo-chemical treatment. This paper presents the results of metallographic examination, hardness distribution and selected tribological properties of vacuum carburized, sulphonitrided and vacuum nitrided layers obtained on 15HN steel. The results demonstrate that on 15HN steel (carburizing steel, nitrided and sulphonitrided layers show good durability and tribological properties. Therefore, it is possible to use it to regenerate machine elements by cladding method and then treat them by different thermo-chemical ways in order to obtain desired properties.

  18. Thermochemical energy storage with ammonia: Aiming for the sunshot cost target

    Science.gov (United States)

    Lavine, Adrienne S.; Lovegrove, Keith M.; Jordan, Joshua; Anleu, Gabriela Bran; Chen, Chen; Aryafar, Hamarz; Sepulveda, Abdon

    2016-05-01

    Thermochemical energy storage has the potential to reduce the cost of concentrating solar thermal power. This paper presents recent advances in ammonia-based thermochemical energy storage (TCES), supported by an award from the U.S. Dept. of Energy SunShot program. Advances have been made in three areas: identification of promising approaches for underground containment of the gaseous products of the dissociation reaction, demonstration that ammonia synthesis can be used to generate steam for a supercritical-steam Rankine cycle, and a preliminary design for integration of the endothermic reactors within a tower receiver. Based on these advances, ammonia-based TCES shows promise to meet the 15/kWht SunShot cost target.

  19. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.).

    Science.gov (United States)

    Gunnarsson, Ingólfur B; Kuglarz, Mariusz; Karakashev, Dimitar; Angelidaki, Irini

    2015-04-01

    The aim of this study was to develop an efficient thermochemical method for treatment of industrial hemp biomass, in order to increase its bioconversion to succinic acid. Industrial hemp was subjected to various thermochemical pretreatments using 0-3% H2SO4, NaOH or H2O2 at 121-180°C prior to enzymatic hydrolysis. The influence of the different pretreatments on hydrolysis and succinic acid production by Actinobacillus succinogenes 130Z was investigated in batch mode, using anaerobic bottles and bioreactors. Enzymatic hydrolysis and fermentation of hemp material pretreated with 3% H2O2 resulted in the highest overall sugar yield (73.5%), maximum succinic acid titer (21.9 g L(-1)), as well as the highest succinic acid yield (83%). Results obtained clearly demonstrated the impact of different pretreatments on the bioconversion efficiency of industrial hemp into succinic acid.

  20. Application of Thermochemical Modeling to Assessment/Evaluation of Nuclear Fuel Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Besmann, Theodore M [University of South Carolina, Columbia; McMurray, Jake W [ORNL; Simunovic, Srdjan [ORNL

    2016-01-01

    The combination of new fuel compositions and higher burn-ups envisioned for the future means that representing fuel properties will be much more important, and yet more complex. Behavior within the oxide fuel rods will be difficult to model owing to the high temperatures, and the large number of elements generated and their significant concentrations that are a result of fuels taken to high burn-up. This unprecedented complexity offers an enormous challenge to the thermochemical understanding of these systems and opportunities to advance solid solution models to describe these materials. This paper attempts to model and simulate that behavior using an oxide fuels thermochemical description to compute the equilibrium phase state and oxygen potential of LWR fuel under irradiation.

  1. Experimental results of a 3 k Wh thermochemical heat storage module for space heating application

    OpenAIRE

    Finck, C.J.; Henquet, E.M.R.; Soest, C.F.L. van; Oversloot, H.P.; de Jong, A. J.; Cuypers, R.; Spijker, J.C. van 't

    2014-01-01

    A 3 kWh thermochemical heat storage (TCS) module was built as part of an all-in house system implementation focusing on space heating application at a temperature level of 40 ºC and a temperature lift of 20 K. It has been tested and measurements showed a maximum water circuit temperature span (released by adsorption) of 20 – 51 K which is by all means suitable for space heating.

  2. Implementation and application of adaptive mesh refinement for thermochemical mantle convection studies

    OpenAIRE

    Leng, Wei; Zhong, Shijie

    2011-01-01

    Numerical modeling of mantle convection is challenging. Owing to the multiscale nature of mantle dynamics, high resolution is often required in localized regions, with coarser resolution being sufficient elsewhere. When investigating thermochemical mantle convection, high resolution is required to resolve sharp and often discontinuous boundaries between distinct chemical components. In this paper, we present a 2-D finite element code with adaptive mesh refinement techniques for si...

  3. Thermochemical properties and contribution groups for ketene dimers and related structures from theoretical calculations.

    Science.gov (United States)

    Morales, Giovanni; Martínez, Ramiro

    2009-07-30

    This research's main goals were to analyze ketene dimers' relative stability and expand group additivity value (GAV) methodology for estimating the thermochemical properties of high-weight ketene polymers (up to tetramers). The CBS-Q multilevel procedure and statistical thermodynamics were used for calculating the thermochemical properties of 20 cyclic structures, such as diketenes, cyclobutane-1,3-diones, cyclobut-2-enones and pyran-4-ones, as well as 57 acyclic base compounds organized into five groups. According to theoretical heat of formation predictions, diketene was found to be thermodynamically favored over cyclobutane-1,3-dione and its enol-tautomeric form (3-hydroxycyclobut-2-enone). This result did not agree with old combustion experiments. 3-Hydroxycyclobut-2-enone was found to be the least stable dimer and its reported experimental detection in solution may have been due to solvent effects. Substituted diketenes had lower stability than substituted cyclobutane-1,3-diones with an increased number of methyl substituents, suggesting that cyclobutane-1,3-dione type dimers are the major products because of thermodynamic control of alkylketene dimerization. Missing GAVs for the ketene dimers and related structures were calculated through linear regression on the 57 acyclic base compounds. Corrections for non next neighbor interactions (such as gauche, eclipses, and internal hydrogen bond) were needed for obtaining a highly accurate and precise regression model. To the best of our knowledge, the hydrogen bond correction for GAV methodology is the first reported in the literature; this correction was correlated to MP2/6-31Gdagger and HF/6-31Gdagger derived geometries to facilitate its application. GAVs assessed by the linear regression model were able to reproduce acyclic compounds' theoretical thermochemical properties and experimental heat of formation for acetylacetone. Ring formation and substituent position corrections were calculated by consecutively

  4. Effect of thermochemical treatment on the surface morphology and hydrophobicity of heterogeneous ion-exchange membranes

    Science.gov (United States)

    Vasil'eva, V. I.; Pismenskaya, N. D.; Akberova, E. M.; Nebavskaya, K. A.

    2014-08-01

    A comparative analysis is performed on the effect thermochemical treatment in aqueous, alkali, and acid media has on the surface morphology and hydrophobicity of swelling heterogeneous ion-exchanged membranes. A correlation between changes in surface morphology and hydrophobicity is established. It is shown that under prolonged (50 h) membrane thermal treatment above room temperature, hydrophobicity is reduced due to substantial enlargement of cavities and cracks resulting from the partial destruction of inert binder (polyethylene) and reinforcing poly-ɛ-caproamide fabric (capron).

  5. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Werner, R.W. (ed.)

    1982-11-01

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  6. New developments of the CARTE thermochemical code: I-parameter optimization

    Science.gov (United States)

    Desbiens, N.; Dubois, V.

    We present the calibration of the CARTE thermochemical code that allows to compute the properties of a wide variety of CHON explosives. We have developed an optimization procedure to obtain an accurate multicomponents EOS (fluid phase and condensed phase of carbon). We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and we extensively compare our calculations with measured detonation properties for several explosives.

  7. New developments of the CARTE thermochemical code: I-parameter optimization

    Directory of Open Access Journals (Sweden)

    Dubois V.

    2011-01-01

    Full Text Available We present the calibration of the CARTE thermochemical code that allows to compute the properties of a wide variety of CHON explosives. We have developed an optimization procedure to obtain an accurate multicomponents EOS (fluid phase and condensed phase of carbon. We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and we extensively compare our calculations with measured detonation properties for several explosives.

  8. Comparative Life Cycle Assessment of Lignocellulosic Ethanol Production: Biochemical Versus Thermochemical Conversion

    Science.gov (United States)

    Mu, Dongyan; Seager, Thomas; Rao, P. Suresh; Zhao, Fu

    2010-10-01

    Lignocellulosic biomass can be converted into ethanol through either biochemical or thermochemical conversion processes. Biochemical conversion involves hydrolysis and fermentation while thermochemical conversion involves gasification and catalytic synthesis. Even though these routes produce comparable amounts of ethanol and have similar energy efficiency at the plant level, little is known about their relative environmental performance from a life cycle perspective. Especially, the indirect impacts, i.e. emissions and resource consumption associated with the production of various process inputs, are largely neglected in previous studies. This article compiles material and energy flow data from process simulation models to develop life cycle inventory and compares the fossil fuel consumption, greenhouse gas emissions, and water consumption of both biomass-to-ethanol production processes. The results are presented in terms of contributions from feedstock, direct, indirect, and co-product credits for four representative biomass feedstocks i.e., wood chips, corn stover, waste paper, and wheat straw. To explore the potentials of the two conversion pathways, different technological scenarios are modeled, including current, 2012 and 2020 technology targets, as well as different production/co-production configurations. The modeling results suggest that biochemical conversion has slightly better performance on greenhouse gas emission and fossil fuel consumption, but that thermochemical conversion has significantly less direct, indirect, and life cycle water consumption. Also, if the thermochemical plant operates as a biorefinery with mixed alcohol co-products separated for chemicals, it has the potential to achieve better performance than biochemical pathway across all environmental impact categories considered due to higher co-product credits associated with chemicals being displaced. The results from this work serve as a starting point for developing full life cycle

  9. Thermochemical ablation of carbon/carbon composites with non-linear thermal conductivity

    OpenAIRE

    2014-01-01

    Carbon/carbon composites have been typically used to protect a rocket nozzle from high temperature oxidizing gas. Based on the Fourier’s law of heat conduction and the oxidizing ablation mechanism, the ablation model with non-linear thermal conductivity for a rocket nozzle is established in order to simulate the one-dimensional thermochemical ablation rate on the surface and the temperature distributions by using a written computer code. As the presented re...

  10. Solar thermochemical reactor, methods of manufacture and use thereof and thermogravimeter

    Energy Technology Data Exchange (ETDEWEB)

    Klausner, James F.; Petrasch, Joerg

    2017-06-06

    A solar thermochemical reactor contains an outer member, an inner member disposed within an outer member, wherein the outer member surrounds the inner member and wherein the outer member has an aperture for receiving solar radiation. An inner cavity and an outer cavity are formed by the inner member and outer member and a reactive material that is capable of being magnetically stabilized is disposed in the outer cavity between the inner member and the outer member.

  11. Techniques for the estimation of Heats of Explosion (HEX) using thermochemical codes

    Science.gov (United States)

    Fifer, Robert A.; Morris, Jeffrey B.

    1993-09-01

    Procedures are outlined for calculating the heats of explosion (HEX) of neat energetic materials or propellant/explosive formulations using thermochemical codes. The 'exact' method and three approximate techniques are described; the approximate techniques either eliminate the need to sum the internal energies of the predicted products, or eliminate the need to specify a freeze-out temperature. The various techniques are illustrated for HMX and a nitrocellulose/nitroglycerine (NC/NG) mixture.

  12. Global thermochemical inversion of seismic waveforms, gravity satellite data, and topography

    Science.gov (United States)

    Fullea, J.; Lebedev, S.; Martinec, Z.

    2016-12-01

    Conventional methods of seismic tomography, topography, gravity and electromagnetic data analysis and geodynamic modelling constrain distributions of seismic velocity, density, electrical conductivity, and viscosity at depth, all depending on temperature and composition of Earth's rocks. However, modelling and interpretation of multiple data provide a multifaceted image of the true thermochemical structure of the Earth that needs to be consistently integrated. A simple combination of gravity, electromagnetic, geodynamics, petrological and seismic models alone is insufficient due to the non-uniqueness and different sensitivities of these models, and the internal consistency relationships that must connect all the intermediate parameters describing the Earth. In fact, global Earth models based on different observables often lead to rather different images of the Earth. A breakthrough in global and consistent imaging of the fine-scale thermochemical hydrous and rheological structure of the Earth's lithosphere and underlying mantle is needed. Thermodynamic and petrological links between seismic velocities, density, electrical conductivity, viscosity, melt, water, temperature, pressure and composition within the Earth can now be modelled accurately using new methods of computational petrology and data from laboratory experiments. The growth of very large terrestrial and satellite geophysical data over the last few years, together with the advancement of petrological and geophysical modelling techniques, now present an opportunity for global, thermochemical and deformation 3D imaging of the lithosphere and underlying upper mantle with unprecedented resolution. Here we present a method for self-consistent joint inversion of multiple data sets, including seismic, satellite gravity and surface topography data, applied to obtain a detailed and robust global thermochemical image of the lithosphere and underlying upper mantle. This project combines state-of-the-art seismic

  13. Thermo-chemical process with sewage sludge by using CO2.

    Science.gov (United States)

    Kwon, Eilhann E; Yi, Haakrho; Kwon, Hyun-Han

    2013-10-15

    This work proposed a novel methodology for energy recovery from sewage sludge via the thermo-chemical process. The impact of CO2 co-feed on the thermo-chemical process (pyrolysis and gasification) of sewage sludge was mainly investigated to enhance thermal efficiency and to modify the end products from the pyrolysis and gasification process. The CO2 injected into the pyrolysis and gasification process enhance the generation of CO. As compared to the thermo-chemical process in an inert atmosphere (i.e., N2), the generation of CO in the presence of CO2 was enhanced approximately 200% at the temperature regime from 600 to 900 °C. The introduction of CO2 into the pyrolysis and gasification process enabled the condensable hydrocarbons (tar) to be reduced considerably by expediting thermal cracking (i.e., approximately 30-40%); thus, exploiting CO2 as chemical feedstock and/or reaction medium for the pyrolysis and gasification process leads to higher thermal efficiency, which leads to environmental benefits. This work also showed that sewage sludge could be a very strong candidate for energy recovery and a raw material for chemical feedstock.

  14. Thermochemical recovery of heat contained in flue gases by means of bioethanol conversion

    Science.gov (United States)

    Pashchenko, D. I.

    2013-06-01

    In the present paper consideration is being given to the use of bioethanol in the schemes of thermochemical recovery of heat contained in exit flue gases. Schematic diagrams illustrate the realization of thermochemical heat recovery by implementing ethanol steam conversion and conversion of ethanol by means of products of its complete combustion. The feasibility of attaining a high degree of recovery of heat contained in flue gases at the moderate temperature (up to 450°C) of combustion components is demonstrated in the example of the energy balance of the system for thermochemical heat recovery. The simplified thermodynamic analysis of the process of ethanol steam conversion was carried out in order to determine possible ranges of variation of process variables (temperature, pressure, composition) of a reaction mixture providing the efficient heat utilization. It was found that at the temperature above 600 K the degree of ethanol conversion is near unity. The equilibrium composition of products of reaction of ethanol steam conversion has been identified for different temperatures at which the process occurs at the ratio H2O/EtOH = 1 and at the pressure of 0.1 MPa. The obtained results of calculation agree well with the experimental data.

  15. Application of program LAURA to thermochemical nonequilibrium flow through a nozzle

    Science.gov (United States)

    Gnoffo, Peter A.

    1991-01-01

    Program LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) is an upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for 3D viscous hypersonic flows in chemical and thermal nonequilibrium. The algorithm is derived using a finite-volume formulation in which the inviscid components of flux across cell walls are described with a modified Roe's averaging and with second-order corrections based on Yee's Symmetric Total Variation Diminishing scheme. The code has been applied to Problem 8.2 of this workshop for the case of thermochemical nonequilibrium flow through a nozzle. Chemical reaction rates are defined with the model of Park (1987). Thermal nonequilibrium is modeled using a two-temperature approximation in which the vibrational energies of all molecules are assumed to be in equilibrium at a single temperature which is generally different from the translational-rotational temperature. Two grids were used to define the flow for the original problem, with a stagnation temperature of 6500 K. A third case with a stagnation temperature of 10,000 K is also presented. The solution domain includes the converging nozzle, subsonic flow domain in which the gas is substantially in thermochemical equilibrium and the diverging nozzle, hypersonic flow domain in which the gas is substantially in thermochemical nonequilibrium.

  16. Recommended Ideal-Gas Thermochemical Functions for Heavy Water and its Substituent Isotopologues

    Science.gov (United States)

    Simkó, Irén; Furtenbacher, Tibor; Hrubý, Jan; Zobov, Nikolai F.; Polyansky, Oleg L.; Tennyson, Jonathan; Gamache, Robert R.; Szidarovszky, Tamás; Dénes, Nóra; Császár, Attila G.

    2017-06-01

    Accurate temperature-dependent ideal-gas internal partition functions, Qint(T), and several derived thermochemical functions are reported for heavy water, with an oxygen content corresponding to the isotopic composition of Vienna Standard Mean Ocean Water (VSMOW), and its constituent isotopologues, D216O, D217O, and D218O, for temperatures between 0 and 6000 K. The nuclear-spin-dependent partition functions are obtained by the direct summation technique, involving altogether about 16 000 measured and more than nine million computed bound rovibrational energy levels for the three molecules. Reliable standard uncertainties, as a function of temperature, are estimated for each thermochemical quantity determined, including the enthalpy, the entropy, and the isobaric heat capacity of the individual nuclear-spin-equilibrated isotopologues and of heavy water. The accuracy of the heavy-water ideal-gas Cp(T) is unprecedented, below 0.01% up to 1800 K. All the thermochemical functions are reported, in 1 K increments, in the supplementary material.

  17. Active Thermochemical Tables: Sequential Bond Dissociation Enthalpies of Methane, Ethane, and Methanol, and the Related Thermochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Ruscic, Branko

    2015-07-16

    Active Thermochemical Tables (ATcT) thermochemistry for the sequential bond dissociations of methane, ethane, and methanol systems were obtained by analyzing and solving a very large thermochemical network (TN). Values for all possible C–H, C–C, C–O, and O–H bond dissociation enthalpies at 298.15 K (BDE298) and bond dissociation energies at 0 K (D0) are presented. The corresponding ATcT standard gas-phase enthalpies of formation of the resulting CHn, n = 4–0 species (methane, methyl, methylene, methylidyne, and carbon atom), C2Hn, n = 6–0 species (ethane, ethyl, ethylene, ethylidene, vinyl, ethylidyne, acetylene, vinylidene, ethynyl, and ethynylene), and COHn, n = 4–0 species (methanol, hydroxymethyl, methoxy, formaldehyde, hydroxymethylene, formyl, isoformyl, and carbon monoxide) are also presented. The ATcT thermochemistry of carbon dioxide, water, hydroxyl, and carbon, oxygen, and hydrogen atoms is also included, together with the sequential BDEs of CO2 and H2O. The provenances of the ATcT enthalpies of formation, which are quite distributed and involve a large number of relevant determinations, are analyzed by variance decomposition and discussed in terms of principal contributions. The underlying reasons for periodic appearances of remarkably low and/or unusually high BDEs, alternating along the dissociation sequences, are analyzed and quantitatively rationalized. The present ATcT results are the most accurate thermochemical values currently available for these species.

  18. Benchmarking the DFT+U method for thermochemical calculations of uranium molecular compounds and solids.

    Science.gov (United States)

    Beridze, George; Kowalski, Piotr M

    2014-12-18

    Ability to perform a feasible and reliable computation of thermochemical properties of chemically complex actinide-bearing materials would be of great importance for nuclear engineering. Unfortunately, density functional theory (DFT), which on many instances is the only affordable ab initio method, often fails for actinides. Among various shortcomings, it leads to the wrong estimate of enthalpies of reactions between actinide-bearing compounds, putting the applicability of the DFT approach to the modeling of thermochemical properties of actinide-bearing materials into question. Here we test the performance of DFT+U method--a computationally affordable extension of DFT that explicitly accounts for the correlations between f-electrons - for prediction of the thermochemical properties of simple uranium-bearing molecular compounds and solids. We demonstrate that the DFT+U approach significantly improves the description of reaction enthalpies for the uranium-bearing gas-phase molecular compounds and solids and the deviations from the experimental values are comparable to those obtained with much more computationally demanding methods. Good results are obtained with the Hubbard U parameter values derived using the linear response method of Cococcioni and de Gironcoli. We found that the value of Coulomb on-site repulsion, represented by the Hubbard U parameter, strongly depends on the oxidation state of uranium atom. Last, but not least, we demonstrate that the thermochemistry data can be successfully used to estimate the value of the Hubbard U parameter needed for DFT+U calculations.

  19. Revisiting the BaO2/BaO redox cycle for solar thermochemical energy storage.

    Science.gov (United States)

    Carrillo, A J; Sastre, D; Serrano, D P; Pizarro, P; Coronado, J M

    2016-03-21

    The barium peroxide-based redox cycle was proposed in the late 1970s as a thermochemical energy storage system. Since then, very little attention has been paid to such redox couples. In this paper, we have revisited the use of reduction-oxidation reactions of the BaO2/BaO system for thermochemical heat storage at high temperatures. Using thermogravimetric analysis, reduction and oxidation reactions were studied in order to find the main limitations associated with each process. Furthermore, the system was evaluated through several charge-discharge stages in order to analyse its possible degradation after repeated cycling. Through differential scanning calorimetry the heat stored and released were also determined. Oxidation reaction, which was found to be slower than reduction, was studied in more detail using isothermal tests. It was observed that the rate-controlling step of BaO oxidation follows zero-order kinetics, although at high temperatures a deviation from Arrhenius behaviour was observed probably due to hindrances to anionic oxygen diffusion caused by the formation of an external layer of BaO2. This redox couple was able to withstand several redox cycles without deactivation, showing reaction conversions close to 100% provided that impurities are previously eliminated through thermal pre-treatment, demonstrating the feasibility of this system for solar thermochemical heat storage.

  20. Reuse of microalgae grown in full-scale wastewater treatment ponds: Thermochemical pretreatment and biogas production.

    Science.gov (United States)

    Passos, Fabiana; Felix, Leonardo; Rocha, Hemyle; Pereira, Jackson de Oliveira; de Aquino, Sérgio

    2016-06-01

    This study assessed thermochemical pretreatment of microalgae harvested from a full-scale wastewater treatment pond prior to its anaerobic digestion using acid and alkaline chemical doses combined with thermal pretreatment at 80°C. Results indicated that alkaline and thermal pretreatment contributed mostly to glycoprotein and pectin solubilisation; whilst acid pretreatment solubilised mostly hemicellulose, with lower effectiveness for proteins. Regarding the anaerobic biodegradability, biochemical methane potential (BMP) tests showed that final methane yield was enhanced after almost all pretreatment conditions when compared to non-pretreated microalgae, with the highest increase for thermochemical pretreatment at the lowest dose (0.5%), i.e. 82% and 86% increase for alkaline and acid, respectively. At higher doses, salt toxicity was revealed by K(+) concentrations over 5000mg/L. All BMP data from pretreated biomass was successfully described by the modified Gompertz model and optimal condition (thermochemical 0.5% HCl) showed an increase in final methane yield and the process kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Deep Structures and Initiation of Plate Tectonics in Thermochemical Mantle Convection Models

    Science.gov (United States)

    Hansen, U.; Stein, C.

    2015-12-01

    Recently deep thermochemical structures have been studied intensively. The observed large anomalies with reduced seismic velocities (LLSVPs) beneath Africa and the Pacific are obtained in numerical models as an initial dense layer at the core-mantle boundary (CMB) is pushed up to piles by the convective flow (e.g., McNamara et al., EPSL 229, 1-9, 2010). Adding a dense CMB layer to a model featuring active plate tectonics, Trim et al. (EPSL 405, 1-14, 2014) find that surface mobility is strongly hindered by the dense material and can even vanish completely for a CMB layer that has a too high density or too large a volume.In a further study we employed a fully rheological model in which oceanic plates form self-consistently. We observe that an initial dense CMB layer strongly affects the formation of plates and therefore the onset time of plate tectonics. We present a systematic 2D parameter study exploring the time of plate initiation and discuss the resulting deep thermal and thermochemical structures in a self-consistent thermochemical mantle convection system.

  2. Thermochemical processes for water splitting - status and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Weirich, W.; Behr, F. (Technische Hochschule Aachen (Germany, F.R.). Lehrstuhl fuer Reaktortechnik); Knoche, K.F. (Technische Hochschule Aachen (Germany, F.R.). Lehrstuhl fuer Technische Thermodynamik und Inst. fuer Thermodynamik); Barnert, H. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Reaktorentwicklung)

    1984-04-01

    In this paper we discuss the proposals for processes which have already been realised in form of bench scale units or which have been planned, as well as those which have a high degree of development potential. A part of these cycles have in common the splitting of sulfuric acids which causes corrosion problems unsolved up to now. The essential part of the metal/metal hydride-processes is a hydrogen permeable membrane which separates the hydrogen acceptor from the water containing electrolyte melt. Actually we are intending to build up a lab cycle using a TiNi-basis membrane. The metal membranes offer a number of further interesting applications, such as (1) hydrogen production from gas mixtures at high temperatures, and (2) tritium separation from the helium of the HTR primary cooling circuit. A further promising process is the hydrocarbon hybrid cycle, in which the reduction of methanol to methane and oxygen is the key reaction. Till now we can detect a methane yield of up to 50%. An interesting combined procedure for the production of hydrogen and electricity is proposed, where sulphuric acid is decomposed by means of coal. The detailed mass and energy balance shows an efficiency of up to 57%. Thermodynamic analysis for the watersplitting cycles indicates efficiencies up to 50%. Further research and development work is necessary in order to solve material problems and to demonstrate the suitability and availability of the techniques using larger scale laboratory and prototype units.

  3. Interest of absorption spectroscopy for the control of industrial processes. Application to H2 massive production

    Science.gov (United States)

    Croizé, L.; Doizi, D.; Larousse, B.; Pailloux, A.; Reaux, D.; Gallou, C.; Dauvois, V.; Roujou, J. L.; Zanella, Y.; Carles, P.

    2010-08-01

    Absorption and TDLA spectroscopies find their applications in a lot of fields of research. The purpose of this article is to show how these methods can bring significant advances in chemical research projects. “H2 massive production” using nuclear heat together with a thermochemical cycle is an important way to massively produce hydrogen, a potential energy vector. The sulfur-iodine cycle and the hybrid copper-chloride thermochemical cycles are some good candidates for water splitting. In the case of the sulfur-iodine thermochemical cycle, the overall efficiency of the process essentially depends on the efficiency of HI section. Using optical techniques, such as a FTIR spectrometer for H2O and HI concentrations determination, and a TDL spectrometer for I2 measurements, it enables to get very significant results that will be useful to build a new thermodynamic model of the HI separation. This nonintrusive method has avoided any vapor change and prevented tedious experiments in harsh environments. The same methodology is now applied for the study of the hydrolysis reaction of the thermochemical hybrid copper-chloride cycle. The study of this reaction is very important to assess the viability of this cycle because this reaction is not thermodynamically favored and it only occurs if a large excess of water is used. To better understand the influence of various parameters, such as water stoichiometry, temperature, reaction duration, an experimental setup has been designed and realized. The experimental setup uses two spectrometers to study the speciation of the gaseous phase and optimize the kinetics of the hydrolysis reaction. Concentrations of HCl and H2O are obtained by fitting experimental FTIR spectra with calculated spectra. Parasitic reactions can appear leading to formation of Cl2, measured by UV-Visible spectrophotometry. The high temperature reaction at around 530°C is the only reaction of this copper-chloride cycle which is thermodynamically favored. A

  4. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  5. Use of detailed thermochemical databases to model chemical interactions in the Severe Accident codes

    Energy Technology Data Exchange (ETDEWEB)

    Barrachin, M. [IPSN/DRS, CEA Cadarache (France)

    2001-07-01

    For the prevention, mitigation and management of severe accidents, many problems related to core melt have to be solved: fuel degradation, melting and relocation, convection in the core melt(s), coolability of the core melt(s), fission product release, hydrogen production, behavior of the materials of the protective layers, ex-vessel spreading of the core melt(s).. To solve these problems such properties like thermal conductivity, heat capacity, density, viscosity, evaporation or sublimation of melts, the solidification behavior (solid/liquid fraction), the tendency to trap or to release the fission products, the stratification of melts notably metallic and oxide, must be known. However most of these properties are delicate to measure directly at high temperature and/or in the radio-active environment produced by the fission products. Therefore some of them must be derived by calculations from the physical-chemical description of the melt: number of phases, phase compositions, proportions of solids and liquids and their respective oxidation state, miscibility of the liquids, solubility of one phase in another, etc. This information is given by the phase diagrams of the materials in presence. Since more than ten years, IPSN has developed in collaboration with THERMODATA (Grenoble, France) a very detailed thermochemical database for the complex system U-O-Zr-Fe-Ni-La-Ba-Ru-Sr-Si-Mg-Ca-Al-(H-Ar). The direct coupling between the severe accident (SA) Codes and a thermochemical code with its database is not actually possible because of the computer time consuming and the size of the database. For this reason, most of the Severe Accident codes usually have a very simplified description for the phase diagrams which are not in agreement with the status of the art. In this presentation, alternative methodologies are detailed with their respective difficulties, the goal being to build an interface between a thermochemical database and a SA Code and to get a fast, accurate and

  6. Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel

    Science.gov (United States)

    Piro, M. H. A.; Banfield, J.; Clarno, K. T.; Simunovic, S.; Besmann, T. M.; Lewis, B. J.; Thompson, W. T.

    2013-10-01

    Predictive capabilities for simulating irradiated nuclear fuel behavior are enhanced in the current work by coupling thermochemistry, isotopic evolution and heat transfer. Thermodynamic models that are incorporated into this framework not only predict the departure from stoichiometry of UO2, but also consider dissolved fission and activation products in the fluorite oxide phase, noble metal inclusions, secondary oxides including uranates, zirconates, molybdates and the gas phase. Thermochemical computations utilize the spatial and temporal evolution of the fission and activation product inventory in the pellet, which is typically neglected in nuclear fuel performance simulations. Isotopic computations encompass the depletion, decay and transmutation of more than 2000 isotopes that are calculated at every point in space and time. These computations take into consideration neutron flux depression and the increased production of fissile plutonium near the fuel pellet periphery (i.e., the so-called “rim effect”). Thermochemical and isotopic predictions are in very good agreement with reported experimental measurements of highly irradiated UO2 fuel with an average burnup of 102 GW d t(U)-1. Simulation results demonstrate that predictions are considerably enhanced when coupling thermochemical and isotopic computations in comparison to empirical correlations. Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  7. Thermochemical ablation therapy of VX2 tumor using a permeable oil-packed liquid alkali metal.

    Directory of Open Access Journals (Sweden)

    Ziyi Guo

    Full Text Available Alkali metal appears to be a promising tool in thermochemical ablation, but, it requires additional data on safety is required. The objective of this study was to explore the effectiveness of permeable oil-packed liquid alkali metal in the thermochemical ablation of tumors.Permeable oil-packed sodium-potassium (NaK was prepared using ultrasonic mixing of different ratios of metal to oil. The thermal effect of the mixture during ablation of muscle tissue ex vivo was evaluated using the Fluke Ti400 Thermal Imager. The thermochemical effect of the NaK-oil mixture on VX2 tumors was evaluated by performing perfusion CT scans both before and after treatment in 10 VX2 rabbit model tumors. VX2 tumors were harvested from two rabbits immediately after treatment to assess their viability using trypan blue and hematoxylin and eosin (H.E. staining.The injection of the NaK-oil mixture resulted in significantly higher heat in the ablation areas. The permeable oil controlled the rate of heat released during the NaK reaction with water in the living tissue. Perfusion computed tomography and its parameter map confirmed that the NaK-oil mixture had curative effects on VX2 tumors. Both trypan blue and H.E. staining showed partial necrosis of the VX2 tumors.The NaK-oil mixture may be used successfully to ablate tumor tissue in vivo. With reference to the controlled thermal and chemical lethal injury to tumors, using a liquid alkali in ablation is potentially an effective and safe method to treat malignant tumors.

  8. Thermochemical Properties of Hydrophilic Polymers from Cashew and Khaya Exudates and Their Implications on Drug Delivery.

    Science.gov (United States)

    Olorunsola, Emmanuel O; Bhatia, Partap G; Tytler, Babajide A; Adikwu, Michael U

    2016-01-01

    Characterization of a polymer is essential for determining its suitability for a particular purpose. Thermochemical properties of cashew gum (CSG) extracted from exudates of Anacardium occidentale L. and khaya gum (KYG) extracted from exudates of Khaya senegalensis were determined and compared with those of acacia gum BP (ACG). The polymers were subjected to different thermal and chemical analyses. Exudates of CSG contained higher amount of hydrophilic polymer. The pH of 2% w/v gum dispersions was in the order KYG application of cashew gum for formulation of basic and oxidizable drugs while using khaya gum for acidic drugs.

  9. New developments of the CARTE thermochemical code: Calculation of detonation properties of high explosives

    Science.gov (United States)

    Dubois, Vincent; Desbiens, Nicolas; Auroux, Eric

    2010-07-01

    We present the improvements of the CARTE thermochemical code which provides thermodynamic properties and chemical compositions of CHON systems over a large range of temperature and pressure with a very small computational cost. The detonation products are split in one or two fluid phase (s), treated with the MCRSR equation of state (EOS), and one condensed phase of carbon, modeled with a multiphase EOS which evolves with the chemical composition of the explosives. We have developed a new optimization procedure to obtain an accurate multicomponents EOS. We show here that the results of CARTE code are in good agreement with the specific data of molecular systems and measured detonation properties for several explosives.

  10. HYDRGN - a computerized technique for the analysis of thermochemical water-splitting cycles

    Energy Technology Data Exchange (ETDEWEB)

    Carty, R. H.; Conger, W. L.; Funk, J. E.; Barker, R.

    1977-06-01

    The HYDRGN computer program was designed to analyze closed thermochemical cycles for the production of hydrogen from water. This report includes the basic theory, assumptions, and methods of calculation used in this analysis along with a description of the program and its use. The source program and necessary data bank are available from the University of Kentucky. These may be obtained by sending a magnetic tape (minimum length 1200 ft) and a written request specifying the type of computer and recording characteristics of the tape. A small fee is charged for the recording and handling of the tape.

  11. Thermochemical hydrogen production via a cycle using barium and sulfur: reaction between barium sulfide and water

    Energy Technology Data Exchange (ETDEWEB)

    Ota, K.; Conger, W.L.

    1977-01-01

    The reaction between barium sulfide and water, a reaction found in several sulfur based thermochemical cycles, was investigated kinetically at 653 to 866/sup 0/C. Gaseous products were hydrogen and hydrogen sulfide. The rate determining step for hydrogen formation was a surface reaction between barium sulfide and water. The rate of formation of hydrogen can be expressed as: RH2 = 1.07 x 10/sup -2/ exp (-3180/RT) (mol H/sub 2//mol BaS s). Hydrogen sulfide was produced during the initial period of reaction and the quantity of hydrogen sulfide formed during this period decreased as the temperature of reaction was increased.

  12. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    OpenAIRE

    Rahul Bhosale; Anand Kumar; Fares AlMomani; Ujjal Ghosh; Mohammad Saad Anis; Konstantinos Kakosimos; Rajesh Shende; Marc A. Rosen

    2016-01-01

    The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based) step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar) step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and wat...

  13. Thermochemical characterization of pigeon pea stalk for its efficient utilization as an energy source

    Energy Technology Data Exchange (ETDEWEB)

    Katyal, S.K.; Iyer, P.V.R.

    2000-05-01

    Pigeon pea stalk is a widely available biomass species in India. In this article the potential use of pigeon pea stalk as a fuel source through thermochemical conversion methods such as combustion, gasification, and pyrolysis has been investigated through experimentation using a thermogravimetric analyzer and pilot-plant-scale equipment. It has been proposed that pigeon pea stalks can be effectively utilized in two ways. The first is to pyrolyze the material to produce value-added products such as char, tar, and fuel gas. The second alternative is to partially pyrolyze the material to remove tar-forming volatiles, followed by gasification of reactive char to generate producer gas.

  14. Thermochemical Biomass Gasification: A Review of the Current Status of the Technology

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2009-07-01

    Full Text Available A review was conducted on the use of thermochemical biomass gasification for producing biofuels, biopower and chemicals. The upstream processes for gasification are similar to other biomass processing methods. However, challenges remain in the gasification and downstream processing for viable commercial applications. The challenges with gasification are to understand the effects of operating conditions on gasification reactions for reliably predicting and optimizing the product compositions, and for obtaining maximal efficiencies. Product gases can be converted to biofuels and chemicals such as Fischer-Tropsch fuels, green gasoline, hydrogen, dimethyl ether, ethanol, methanol, and higher alcohols. Processes and challenges for these conversions are also summarized.

  15. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    wong, bunsen

    2014-11-20

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  16. New developments of the CARTE thermochemical code: A two-phase equation of state for nanocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Vincent, E-mail: vincent-jp.dubois@cea.fr; Pineau, Nicolas [CEA, DAM, DIF, F-91297 Arpajon (France)

    2016-01-07

    We developed a new equation of state (EOS) for nanocarbons in the thermodynamic range of high explosives detonation products (up to 50 GPa and 4000 K). This EOS was fitted to an extensive database of thermodynamic properties computed by molecular dynamics simulations of nanodiamonds and nano-onions with the LCBOPII potential. We reproduced the detonation properties of a variety of high explosives with the CARTE thermochemical code, including carbon-poor and carbon-rich explosives, with excellent accuracy.

  17. Interest of thermochemical data bases linked to complex equilibria calculation codes for practical applications

    Energy Technology Data Exchange (ETDEWEB)

    Cenerino, G. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Dept. de Protection de l`Environnement et des Installations; Chevalier, P.Y.; Fischer, E. [Thermodata, 38 -Saint-Martin-d`Heres (France); Marbeuf, A. [Centre National de la Recherche Scientifique (CNRS), 92 - Meudon-Bellevue (France). Lab. de Magnetisme et de Physique du Solide; Frenk, A. [Ecole Polytechnique Federale, Lausanne (Switzerland); Vahlas, C. [Laboratoire Marcel Mathieu, Centre Helioparc, 64 - Pau (France)

    1992-12-31

    Since 1974, Thermodata has been working on developing an Integrated Information System in Inorganic Chemistry. A major effort was carried on the thermochemical data assessment of both pure substances and multicomponent solution phases. The available data bases are connected to powerful calculation codes (GEMINI = Gibbs Energy Minimizer), which allow to determine the thermodynamical equilibrium state in multicomponent systems. The high interest of such an approach is illustrated by recent applications in as various fields as semi-conductors, chemical vapor deposition, hard alloys and nuclear safety. (author). 26 refs., 6 figs.

  18. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Bunsen [General Atomics, San Diego, CA (United States)

    2014-11-01

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  19. Design and construction of a cascading pressure reactor prototype for solar-thermochemical hydrogen production

    Science.gov (United States)

    Ermanoski, Ivan; Grobbel, Johannes; Singh, Abhishek; Lapp, Justin; Brendelberger, Stefan; Roeb, Martin; Sattler, Christian; Whaley, Josh; McDaniel, Anthony; Siegel, Nathan P.

    2016-05-01

    Recent work regarding the efficiency maximization for solar thermochemical fuel production in two step cycles has led to the design of a new type of reactor—the cascading pressure reactor—in which the thermal reduction step of the cycle is completed in multiple stages, at successively lower pressures. This approach enables lower thermal reduction pressures than in single-staged reactors, and decreases required pump work, leading to increased solar to fuel efficiencies. Here we report on the design and construction of a prototype cascading pressure reactor and testing of some of the key components. We especially focus on the technical challenges particular to the design, and their solutions.

  20. Synthesis and design of optimal biorefinery using an expanded network with thermochemical and biochemical biomass conversion platforms

    DEFF Research Database (Denmark)

    Cheali, Peam; Gernaey, Krist; Sin, Gürkan

    2013-01-01

    This study presents the development of an expanded biorefinery processing network for producing biofuels that combines biochemical and thermochemical conversion platforms. The expanded network is coupled to a framework that uses a superstructure based optimization approach to generate and compare...... of 72 processing intervals . This superstructure was integrated with an earlier developed superstructure for biochemical conversion routes thereby forming a formidable number of biorefinery alternatives. The expanded network was demonstrated to be versatile and useful as a decision support tool...... of a large number of alternatives at their optimal points. In this study the superstructure for thermochemical conversion route is formulated by using NREL studies of thermochemical conversion of biomass considering 3 biomass feedstocks, 2 products, 3 by-products and 18 processing intervals with combination...

  1. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-12-15

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

  2. Upper mantle compositional variations and discontinuity topography imaged beneath Australia from Bayesian inversion of surface-wave phase velocities and thermochemical modeling

    DEFF Research Database (Denmark)

    Khan, A.; Zunino, Andrea; Deschamps, F.

    2013-01-01

    models of the thermochemical and anisotropic structure of the mantle to 450 km depth. Dispersion data are linked to thermochemical parameters through a thermodynamic formalism for computing mantle mineral phase equilibria and physical properties. The inverse problem is solved using a probabilistic...

  3. Seismic evidence for a chemically distinct thermochemical reservoir in Earth's deep mantle beneath Hawaii

    Science.gov (United States)

    Zhao, Chunpeng; Garnero, Edward J.; McNamara, Allen K.; Schmerr, Nicholas; Carlson, Richard W.

    2015-09-01

    Nearly antipodal continent-sized zones of reduced seismic shear wave velocities exist at the base of Earth's mantle, one beneath the Pacific Ocean, the other beneath the South Atlantic Ocean and Africa. Geophysicists have attributed the low velocity zones to elevated temperatures associated with large-scale mantle convection processes, specifically, hot mantle upwelling in response to cooler subduction-related downwelling currents. Hypotheses have included superplumes, isochemical heterogeneity, and stable as well as metastable basal thermochemical piles. Here we analyze waveform broadening and travel times of S waves from 11 deep focus earthquakes in the southwest Pacific recorded in North America, resulting in 8500 seismograms studied that sample the deep mantle beneath the Pacific. Waveform broadening is referenced to a mean S-wave shape constructed for each event, to define a relative "misfit". Large misfits are consistent with multipathing that can broaden wave pulses. Misfits of deep mantle sampling S-waves infer that the structure in the northeast part of the low velocity province beneath the Pacific has a sharp side as well as a sloping sharp top to the feature. This sharp boundary morphology is consistent with geodynamic predictions for a stable thermochemical reservoir. The peak of the imaged pile is below Hawaii, supporting the hypothesis of a whole mantle plume beneath the hotspot.

  4. Heavy metal removal from sewage sludge ash by thermochemical treatment with gaseous hydrochloric acid.

    Science.gov (United States)

    Vogel, Christian; Adam, Christian

    2011-09-01

    Sewage sludge ash (SSA) is a suitable raw material for fertilizers due to its high phosphorus (P) content. However, heavy metals must be removed before agricultural application and P should be transferred into a bioavailable form. The utilization of gaseous hydrochloric acid for thermochemical heavy metal removal from SSA at approximately 1000 °C was investigated and compared to the utilization of alkaline earth metal chlorides. The heavy metal removal efficiency increased as expected with higher gas concentration, longer retention time and higher temperature. Equivalent heavy metal removal efficiency were achieved with these different Cl-donors under comparable conditions (150 g Cl/kg SSA, 1000 °C). In contrast, the bioavailability of the P-bearing compounds present in the SSA after thermal treatment with gaseous HCl was not as good as the bioavailability of the P-bearing compounds formed by the utilization of magnesium chloride. This disadvantage was overcome by mixing MgCO(3) as an Mg-donor to the SSA before thermochemical treatment with the gaseous Cl-donor. A test series under systematic variation of the operational parameters showed that copper removal is more depending on the retention time than the removal of zinc. Zn-removal was declined by a decreasing ratio of the partial pressures of ZnCl(2) and water.

  5. Characterisation of agroindustrial solid residues as biofuels and potential application in thermochemical processes.

    Science.gov (United States)

    Virmond, Elaine; De Sena, Rennio F; Albrecht, Waldir; Althoff, Christine A; Moreira, Regina F P M; José, Humberto J

    2012-10-01

    In the present work, selected agroindustrial solid residues from Brazil - biosolids from meat processing wastewater treatment and mixture of sawdust with these biosolids; residues from apple and orange juice industries; sugarcane bagasse; açaí kernels (Euterpe oleracea) and rice husk - were characterised as solid fuels and an evaluation of their properties, including proximate and ultimate composition, energy content, thermal behaviour, composition and fusibility of the ashes was performed. The lower heating value of the biomasses ranged from 14.31 MJkg(-1) to 29.14 MJkg(-1), on a dry and ash free basis (daf), all presenting high volatile matter content, varying between 70.57 wt.% and 85.36 wt.% (daf) what improves the thermochemical conversion of the solids. The fouling and slagging tendency of the ashes was predicted based on the fuel ash composition and on the ash fusibility correlations proposed in the literature, which is important to the project and operation of biomass conversion systems. The potential for application of the Brazilian agroindustrial solid residues studied as alternative energy sources in thermochemical processes has been identified, especially concerning direct combustion for steam generation.

  6. Surface Cleaning or Activation?Control of Surface Condition Prior to Thermo-Chemical Heat Treatment

    Institute of Scientific and Technical Information of China (English)

    Brigitte Haase; Juan Dong; Jens Heinlein

    2004-01-01

    Actual heat treatment processes must face increasing specifications with reference to process quality, safety and results in terms of reproducibility and repeatability. They can be met only if the parts' surface condition is controlled during manufacturing and, especially, prior to the treatment. An electrochemical method for the detection of a steel part's surface condition is presented, together with results, consequences, and mechanisms concerning surface pre-treatment before the thermochemical process. A steel surface's activity or passivity can be detected electrochemically, independently from the chemical background. The selected method was the recording of potential vs. time curves at small constant currents, using a miniaturized electrochemical cell, a (nearly) non-destructive electrolyte and a potentio-galvanostatic setup. The method enables to distinguish types of surface contamination which do not interfere with the thermochemical process, from passive layers which do and must be removed. Whereas some types of passive layers can be removed using conventional cleaning processes and agents, others are so stable that their effects can only be overcome by applying an additional activation pre-treatment, e.g. oxynitriding.

  7. Thermochemical nanolithography fabrication and atomic force microscopy characterization of functional nanostructures

    Science.gov (United States)

    Wang, Debin

    This thesis presents the development of a novel atomic force microscope (AFM) based nanofabrication technique termed as thermochemical nanolithography (TCNL). TCNL uses a resistively heated AFM cantilever to thermally activate chemical reactions on a surface with nanometer resolution. This technique can be used for fabrication of functional nanostructures that are appealing for various applications in nanofluidics, nanoelectronics, nanophotonics, and biosensing devices. This thesis research is focused on three main objectives. The first objective is to study the fundamentals of TCNL writing aspects. We have conducted a systematic study of the heat transfer mechanism using finite element analysis modeling, Raman spectroscopy, and local glass transition measurement. In addition, based on thermal kinetics analysis, we have identified several key factors to achieve high resolution fabrication of nanostructures during the TCNL writing process. The second objective is to demonstrate the use of TCNL on a variety of systems and thermochemical reactions. We show that TCNL can be employed to (1) modify the wettability of a polymer surface at the nanoscale, (2) fabricate nanoscale templates on polymer films for assembling nano-objects, such as proteins and DNA, (3) fabricate conjugated polymer semiconducting nanowires, and (4) reduce graphene oxide with nanometer resolution. The last objective is to characterize the TCNL nanostructures using AFM based methods, such as friction force microscopy, phase imaging, electric force microscopy, and conductive AFM. We show that they are useful for in situ characterization of nanostructures, which is particularly challenging for conventional macroscopic analytical tools, such as Raman spectroscopy, IR spectroscopy, and fluorescence microscopy.

  8. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    KAUST Repository

    Miki, Kenji

    2015-10-01

    © 2015 Elsevier Inc. The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.

  9. Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method

    Science.gov (United States)

    Jiang, Rui; Linzon, Yoav; Vitkin, Edward; Yakhini, Zohar; Chudnovsky, Alexandra; Golberg, Alexander

    2016-06-01

    Understanding the impact of all process parameters on the efficiency of biomass hydrolysis and on the final yield of products is critical to biorefinery design. Using Taguchi orthogonal arrays experimental design and Partial Least Square Regression, we investigated the impact of change and the comparative significance of thermochemical process temperature, treatment time, %Acid and %Solid load on carbohydrates release from green macroalgae from Ulva genus, a promising biorefinery feedstock. The average density of hydrolysate was determined using a new microelectromechanical optical resonator mass sensor. In addition, using Flux Balance Analysis techniques, we compared the potential fermentation yields of these hydrolysate products using metabolic models of Escherichia coli, Saccharomyces cerevisiae wild type, Saccharomyces cerevisiae RN1016 with xylose isomerase and Clostridium acetobutylicum. We found that %Acid plays the most significant role and treatment time the least significant role in affecting the monosaccharaides released from Ulva biomass. We also found that within the tested range of parameters, hydrolysis with 121 °C, 30 min 2% Acid, 15% Solids could lead to the highest yields of conversion: 54.134–57.500 gr ethanol kg‑1 Ulva dry weight by S. cerevisiae RN1016 with xylose isomerase. Our results support optimized marine algae utilization process design and will enable smart energy harvesting by thermochemical hydrolysis.

  10. Evaluation energy efficiency of bioconversion knot rejects to ethanol in comparison to other thermochemically pretreated biomass.

    Science.gov (United States)

    Wang, Zhaojiang; Qin, Menghua; Zhu, J Y; Tian, Guoyu; Li, Zongquan

    2013-02-01

    Rejects from sulfite pulp mill that otherwise would be disposed of by incineration were converted to ethanol by a combined physical-biological process that was comprised of physical refining and simultaneous saccharification and fermentation (SSF). The energy efficiency was evaluated with comparison to thermochemically pretreated biomass, such as those pretreated by dilute acid (DA) and sulfite pretreatment to overcome recalcitrance of lignocelluloses (SPORL). It was observed that the structure deconstruction of rejects by physical refining was indispensable to effective bioconversion but more energy intensive than that of thermochemically pretreated biomass. Fortunately, the energy consumption was compensated by the reduced enzyme dosage and the elevated ethanol yield. Furthermore, adjustment of disk-plates gap led to reduction in energy consumption with negligible influence on ethanol yield. In this context, energy efficiency up to 717.7% was achieved for rejects, much higher than that of SPORL sample (283.7%) and DA sample (152.8%). Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Chemical and thermochemical aspects of the ozonolysis of ethyl oleate: decomposition enthalpy of ethyl oleate ozonide.

    Science.gov (United States)

    Cataldo, Franco

    2013-01-01

    Neat ethyl oleate was ozonized in a bubble reactor and the progress of the ozonolysis was followed by infrared (FT-IR) spectroscopy and by the differential scanning calorimetry (DSC). The ozonolysis was conducted till a molar ratio O3/C=C≈1 when the exothermal reaction spontaneously went to completion. A specific thermochemical calculation on ethyl oleate ozonation has been made to determine the theoretical heat of the ozonization reaction using the group increment approach. A linear relationship was found both in the integrated absorptivity of the ozonide infrared band at 1110 cm(-1) and the ozonolysis time as well as the thermal decomposition enthalpy of the ozonides and peroxides formed as a result of the ozonation. The DSC decomposition temperature of ozonated ethyl oleate occurs with an exothermal peak at about 150-155 °C with a decomposition enthalpy of 243.0 kJ/mol at molar ratio O3/C=C≈1. It is shown that the decomposition enthalpy of ozonized ethyl oleate is a constant value (≈243 kJ/mol) at any stage of the O3/C=C once an adequate normalization of the decomposition enthalpy for the amount of the adsorbed ozone is taken into consideration. The decomposition enthalpy of ozonized ethyl oleate was also calculated using a simplified thermochemical model, obtaining a result in reasonable agreement with the experimental value.

  12. A thermochemical pathway for controlled synthesis of AlN nanoparticles in non-isothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Nersisyan, Hayk H. [Department of Nanomaterials Engineering, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); RASOM, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Yoo, Bung Uk [Graduate School of Energy Science and Technology, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Lee, Kab Ho [Department of Nanomaterials Engineering, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Lee, Jong Hyeon, E-mail: jonglee@cnu.ac.kr [Department of Nanomaterials Engineering, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Graduate School of Energy Science and Technology, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); RASOM, Chungnam National University, 79 Daehak-ro, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2015-03-20

    Highlights: • A non-isothermal combustion process was developed for synthesizing AlN nanoparticles. • Temperature-time profiles and combustion parameters were recorded and discussed. • AlN nanoparticles (50–200 nm) with a specific surface of 7.9–20.8 m{sup 2}/g were prepared. • The thermochemical mechanism of AlN formation in the combustion wave was clarified. - Abstract: The synthesis of AlN nanoparticles in non-isothermal high-temperature conditions was developed. The process involved Al{sub 2}O{sub 3}–Mg–NH{sub 4}Cl mixtures preparation and combustion in nitrogen atmosphere. Temperature profiles in the combustion waves were recorded by thermocouples, and the values of combustion temperature and wave velocity were determined from the recorded profiles. The existence of two independed combustion regimes with maximum temperatures of about 850 °C and 1400–1600 °C were revealed based on concentrations of NH{sub 4}Cl. AlN nanocrystals were obtained and investigated by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller surface area. AlN nanocrystals prepared under non-isothermal combustion process were comprised well distributed multi-faceted particles with an average size of 50–200 nm. The chemical reactions in the combustion wave were discussed and a possible thermochemical pathway for the synthesis of AlN nanoparticles was proposed.

  13. Systematic validation of non-equilibrium thermochemical models using Bayesian inference

    Energy Technology Data Exchange (ETDEWEB)

    Miki, Kenji [NASA Glenn Research Center, OAI, 22800 Cedar Point Rd, Cleveland, OH 44142 (United States); Panesi, Marco, E-mail: mpanesi@illinois.edu [Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 306 Talbot Lab, 104 S. Wright St., Urbana, IL 61801 (United States); Prudhomme, Serge [Département de mathématiques et de génie industriel, Ecole Polytechnique de Montréal, C.P. 6079, succ. Centre-ville, Montréal, QC, H3C 3A7 (Canada)

    2015-10-01

    The validation process proposed by Babuška et al. [1] is applied to thermochemical models describing post-shock flow conditions. In this validation approach, experimental data is involved only in the calibration of the models, and the decision process is based on quantities of interest (QoIs) predicted on scenarios that are not necessarily amenable experimentally. Moreover, uncertainties present in the experimental data, as well as those resulting from an incomplete physical model description, are propagated to the QoIs. We investigate four commonly used thermochemical models: a one-temperature model (which assumes thermal equilibrium among all inner modes), and two-temperature models developed by Macheret et al. [2], Marrone and Treanor [3], and Park [4]. Up to 16 uncertain parameters are estimated using Bayesian updating based on the latest absolute volumetric radiance data collected at the Electric Arc Shock Tube (EAST) installed inside the NASA Ames Research Center. Following the solution of the inverse problems, the forward problems are solved in order to predict the radiative heat flux, QoI, and examine the validity of these models. Our results show that all four models are invalid, but for different reasons: the one-temperature model simply fails to reproduce the data while the two-temperature models exhibit unacceptably large uncertainties in the QoI predictions.

  14. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.

    Science.gov (United States)

    Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas

    2016-01-05

    Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.

  15. Biochar potential evaluation of palm oil wastes through slow pyrolysis: Thermochemical characterization and pyrolytic kinetic studies.

    Science.gov (United States)

    Lee, Xin Jiat; Lee, Lai Yee; Gan, Suyin; Thangalazhy-Gopakumar, Suchithra; Ng, Hoon Kiat

    2017-03-22

    This research investigated the potential of palm kernel shell (PKS), empty fruit bunch (EFB) and palm oil sludge (POS), abundantly available agricultural wastes, as feedstock for biochar production by slow pyrolysis (50mLmin(-1) N2 at 500°C). Various characterization tests were performed to establish the thermochemical properties of the feedstocks and obtained biochars. PKS and EFB had higher lignin, volatiles, carbon and HHV, and lower ash than POS. The thermochemical conversion had enhanced the biofuel quality of PKS-char and EFB-char exhibiting increased HHV (26.18-27.50MJkg(-1)) and fixed carbon (53.78-59.92%), and decreased moisture (1.03-2.26%). The kinetics of pyrolysis were evaluated by thermogravimetry at different heating rates (10-40°C). The activation energies determined by Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa models were similar, and comparable with literature data. The findings implied that PKS and EFB are very promising sources for biochars synthesis, and the obtained chars possessed significant biofuel potential.

  16. Production of activated carbon by waste tire thermochemical degradation with CO2.

    Science.gov (United States)

    Betancur, Mariluz; Martínez, Juan Daniel; Murillo, Ramón

    2009-09-15

    The thermochemical degradation of waste tires in a CO(2) atmosphere without previous treatment of devolatilization (pyrolysis) in order to obtain activated carbons with good textural properties such as surface area and porosity was studied. The operating variables studied were CO(2) flow rate (50 and 150 mL/min), temperature (800 and 900 degrees C) and reaction time (1, 1.5, 2, 2.5 and 3h). Results show a considerable effect of the temperature and the reaction time in the porosity development. Kinetic measurements showed that the reactions involved in the thermochemical degradation of waste tire with CO(2), are similar to those developed in the pyrolysis process carried out under N(2) atmosphere and temperatures below 760 degrees C, for particles sizes of 500 microm and heating rate of 5 degrees C/min. For temperatures higher than 760 degrees C the CO(2) starts to oxidize the remaining carbon black. Activated carbon with a 414-m(2)/g surface area at 900 degrees C of temperature, 150 mL/min of CO(2) volumetric flow and 180 min of reaction time was obtained. In this work it is considering the no reactivity of CO(2) for devolatilization of the tires (up to 760 degrees C), and also the partial oxidation of residual char at high temperature for activation (>760 degrees C). It is confirmed that there are two consecutive stages (devolatilization and activation) developed from the same process.

  17. Contrasting effects of sulfur dioxide on cupric oxide and chloride during thermochemical formation of chlorinated aromatics.

    Science.gov (United States)

    Fujimori, Takashi; Nishimoto, Yoshihiro; Shiota, Kenji; Takaoka, Masaki

    2014-12-01

    Sulfur dioxide (SO2) gas has been reported to be an inhibitor of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) formation in fly ash. However, other research has suggested little or no inhibitory effect of SO2 gas. Although these studies focused on reactions between SO2 gas and gas-phase chlorine (Cl) species, no attention was paid to thermochemical gas-solid reactions. In this study, we found contrasting effects of SO2 gas depending on the chemical form of copper (CuO vs CuCl2) with a solid-phase inorganic Cl source (KCl). Chlorinated aromatics (PCDD/Fs, polychlorinated biphenyls, and chlorobenzenes) increased and decreased in model fly ash containing CuO + KCl and CuCl2 + KCl, respectively, with increased SO2 injection. According to in situ Cu K-edge and S K-edge X-ray absorption spectroscopy, Cl gas and CuCl2 were generated and then promoted the formation of highly chlorinated aromatics after thermochemical reactions of SO2 gas with the solid-phase CuO + KCl system. In contrast, the decrease in aromatic-Cls in a CuCl2 + KCl system with SO2 gas was caused mainly by the partial sulfation of the Cu. The chemical form of Cu (especially the oxide/chloride ratio) may be a critical factor in controlling the formation of chlorinated aromatics using SO2 gas.

  18. Effect of thermal, chemical and thermo-chemical pre-treatments to enhance methane production

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Rashad; Nizami, Abdul-Sattar; Murphy, Jerry D.; Kiely, Gerard [Department of Civil and Environmental Engineering, University College Cork (Ireland); Poulsen, Tjalfe Gorm [Department of Biotechnology, Chemistry and Environmental Engineering, Aalborg University (Denmark); Asam, Zaki-ul-Zaman [Department of Civil Engineering, National University of Ireland Galway (Ireland)

    2010-12-15

    The rise in oil price triggered the exploration and enhancement of various renewable energy sources. Producing biogas from organic waste is not only providing a clean sustainable indigenous fuel to the number of on-farm digesters in Europe, but also reducing the ecological and environmental deterioration. The lignocellulosic substrates are not completely biodegraded in anaerobic digesters operating at commercial scale due to their complex physical and chemical structure, which result in meager energy recovery in terms of methane yield. The focus of this study is to investigate the effect of pre-treatments: thermal, thermo-chemical and chemical pre-treatments on the biogas and methane potential of dewatered pig manure. A laboratory scale batch digester is used for these pre-treatments at different temperature range (25 C-150 C). Results showed that thermo-chemical pretreatment has high effect on biogas and methane potential in the temperature range (25-100 C). Maximum enhancement is observed at 70 C with increase of 78% biogas and 60% methane production. Thermal pretreatment also showed enhancement in the temperature range (50-10 C), with maximum enhancement at 100 C having 28% biogas and 25% methane increase. (author)

  19. Directly irradiated fluidized bed reactors for thermochemical processing and energy storage: Application to calcium looping

    Science.gov (United States)

    Tregambi, Claudio; Montagnaro, Fabio; Salatino, Piero; Solimene, Roberto

    2017-06-01

    Directly irradiated fluidized bed reactors are very promising in the context of concentrated solar power applications, as they can be operated at process temperatures high enough to perform thermochemical storage reactions with high energy density. Limestone calcination-carbonation is an appealing reaction for thermochemical storage applications due to the cheapness of the raw material, and the interesting value of the reaction enthalpy at fairly high process temperatures. Moreover, limestone calcination-carbonation is intensively studied in Calcium Looping (CaL) application for post combustion CO2 capture and sequestration. In this work, the dynamics of a directly irradiated 0.1 m ID fluidized bed reactor exposed to a 12 kWel simulated solar furnace is analyzed with specific reference to temperature distribution at the surface and in the bulk of the bed. Simulation of the solar radiation was performed through an array of three short arc Xe-lamps coupled with elliptical reflectors, yielding a peak flux of nearly 3000 kW m-2 and a total power of nearly 3 kW incident on the bed surface. Moreover, the directly irradiated fluidized bed reactor has been used to perform CaL tests by alternating solar-driven limestone calcination and autothermal recarbonation of lime. CaL has been investigated with the twofold perspective of: a) accomplishing energy storage by solar-driven calcination of limestone; b) perform solar-aided CO2 capture from flue gas to be embodied in carbon capture and sequestration schemes.

  20. The Deep Water Abundance on Jupiter: New Constraints from Thermochemical Kinetics and Diffusion Modeling

    CERN Document Server

    Visscher, Channon; Saslow, Sarah A

    2010-01-01

    We have developed a one-dimensional thermochemical kinetics and diffusion model for Jupiter's atmosphere that accurately describes the transition from the thermochemical regime in the deep troposphere (where chemical equilibrium is established) to the quenched regime in the upper troposphere (where chemical equilibrium is disrupted). The model is used to calculate chemical abundances of tropospheric constituents and to identify important chemical pathways for CO-CH4 interconversion in hydrogen-dominated atmospheres. In particular, the observed mole fraction and chemical behavior of CO is used to indirectly constrain the Jovian water inventory. Our model can reproduce the observed tropospheric CO abundance provided that the water mole fraction lies in the range (0.25-6.0) x 10^-3 in Jupiter's deep troposphere, corresponding to an enrichment of 0.3 to 7.3 times the protosolar abundance (assumed to be H2O/H2 = 9.61 x 10^-4). Our results suggest that Jupiter's oxygen enrichment is roughly similar to that for carb...

  1. Benchmark Study of the Structural and Thermochemical Properties of a Dihydroazulene/Vinylheptafulvene Photoswitch

    DEFF Research Database (Denmark)

    Koerstz, Mads; Elm, Jonas; Mikkelsen, Kurt Valentin

    2017-01-01

    We investigate the performance of four different density functional theory (DFT) functionals (M06-2X, ωB97X-D, PBE0, and B3LYP-D3BJ) for calculating the structural and thermochemical properties of the dihydroazulene/vinylheptafulvene photoswitch (DHA/VHF). We find that all the tested DFT function......We investigate the performance of four different density functional theory (DFT) functionals (M06-2X, ωB97X-D, PBE0, and B3LYP-D3BJ) for calculating the structural and thermochemical properties of the dihydroazulene/vinylheptafulvene photoswitch (DHA/VHF). We find that all the tested DFT......, indicating that the largest source of error when calculating storage free energies originates from errors in the calculated single point energies. It was found that ωB97X-D and M06-2X performed decently for predicting storage energies. While B3LYP-D3BJ and PBE0 generally underestimated the storage energy...

  2. Hybrid Metaheuristics

    CERN Document Server

    2013-01-01

    The main goal of this book is to provide a state of the art of hybrid metaheuristics. The book provides a complete background that enables readers to design and implement hybrid metaheuristics to solve complex optimization problems (continuous/discrete, mono-objective/multi-objective, optimization under uncertainty) in a diverse range of application domains. Readers learn to solve large scale problems quickly and efficiently combining metaheuristics with complementary metaheuristics, mathematical programming, constraint programming and machine learning. Numerous real-world examples of problems and solutions demonstrate how hybrid metaheuristics are applied in such fields as networks, logistics and transportation, bio-medical, engineering design, scheduling.

  3. Hybrid intermediaries

    OpenAIRE

    Cetorelli, Nicola

    2014-01-01

    I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...

  4. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available effect was observed for the elongation at break of the hybrid composites. The impact strength of the hybrid composites increased with the addition of glass fibres. The tensile and impact properties of thermoplastic natural rubber reinforced short... panels made from conventional structural materials. Figure 3 illustrates the performance of cellular biocomposite panels against conventional systems used for building and residential construction, namely a pre- cast pre-stressed hollow core concrete...

  5. Using a Laboratory Inquiry with High School Students to Determine the Reaction Stoichiometry of Neutralization by a Thermochemical Approach

    Science.gov (United States)

    Journal of Chemical Education, 2015

    2015-01-01

    This paper presents the design and practical application of a laboratory inquiry at high school chemistry level for systematic chemistry learning, as exemplified by a thermochemical approach to the reaction stoichiometry of neutralization using Job's method of continuous variation. In the laboratory inquiry, students are requested to propose the…

  6. Using a Laboratory Inquiry with High School Students to Determine the Reaction Stoichiometry of Neutralization by a Thermochemical Approach

    Science.gov (United States)

    Journal of Chemical Education, 2015

    2015-01-01

    This paper presents the design and practical application of a laboratory inquiry at high school chemistry level for systematic chemistry learning, as exemplified by a thermochemical approach to the reaction stoichiometry of neutralization using Job's method of continuous variation. In the laboratory inquiry, students are requested to propose the…

  7. Fuels production by the thermochemical transformation of the biomass; La production de carburants par transformation thermochimique de la biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Claudet, G. [CEA, 75 - Paris (France)

    2005-07-01

    The biomass is a local and renewable energy source, presenting many advantages. This paper proposes to examine the biomass potential in France, the energy valorization channels (thermochemical chains of thermolysis and gasification) with a special interest for the hydrogen production and the research programs oriented towards the agriculture and the forest. (A.L.B.)

  8. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid.

    Science.gov (United States)

    Nam, Seong-Nam; Jeong, Seongkyeong; Lim, Hojoo

    2014-01-30

    In this study, we have investigated the feasibility of using a thermochemical technique on ∼17% chrysotile-containing roofing sheet or slate (ACS), in which 5N sulfuric acid-digestive destruction was incorporated with 10-24-h heating at 100°C. The X-ray diffraction (XRD) and the polarized light microscopy (PLM) results have clearly shown that raw chrysotile asbestos was converted to non-asbestiform material with no crystallinity by the low temperature thermochemical treatment. As an alternative to the use of pricey sulfuric acid, waste sulfuric acid discharged from a semiconductor manufacturing process was reused for the asbestos-fracturing purpose, and it was found that similar removals could be obtained under the same experimental conditions, promising the practical applicability of thermochemical treatment of ACWs. A thermodynamic understanding based on the extraction rates of magnesium and silica from a chrysotile structure has revealed that the destruction of chrysotile by acid-digestion is greatly influenced by the reaction temperatures, showing a 80.3-fold increase in the reaction rate by raising the temperature by 30-100°C. The overall destruction is dependent upon the breaking-up of the silicon-oxide layer - a rate-limiting step. This study is meaningful in showing that the low temperature thermochemical treatment is feasible as an ACW-treatment method.

  9. Geodynamically Consistent Interpretation of Seismic Tomography for Thermal and Thermochemical Mantle Plumes

    Science.gov (United States)

    Samuel, H.; Bercovici, D.

    2006-05-01

    Recent theoretical developments as well as increased data quality and coverage have allowed seismic tomographic imaging to better resolve narrower structures at both shallow and deep mantle depths. However, despite these improvements, the interpretation of tomographic images remains problematic mainly because of: (1) the trade off between temperature and composition and their different influence on mantle flow; (2) the difficulty in determining the extent and continuity of structures revealed by seismic tomography. We present two geodynamic studies on mantle plumes which illustrate the need to consider both geodynamic and mineral physics for a consistent interpretation of tomographic images in terms of temperature composition and flow. The first study aims to investigate the coupled effect of pressure and composition on thermochemical plumes. Using both high resolution 2D numerical modeling and simple analytical theory we show that the coupled effect of composition and pressure have a first order impact on the dynamics of mantle thermochemical plumes in the lower mantle: (1) For low Si enrichment of the plume relative to a reference pyrolitic mantle, an oscillatory behavior of the plume head is observed; (2) For Si-enriched plume compositions, the chemical density excess of the plume increases with height, leading to stagnation of large plume heads at various depths in the lower mantle. As a consequence, these thermochemical plumes may display broad (~ 1200 km wide and more) negative seismic velocity anomalies at various lower mantle depths, which may not necessarily be associated with upwelling currents. The second study focuses on the identification of thermal mantle plumes by seismic tomography beneath the Hawaiian hot spot: we performed a set of 3D numerical experiments in a spherical shell to model a rising plume beneath a moving plate. The thermal structure obtained is converted into P and S wave seismic velocities using mineral physics considerations. We

  10. Global thermochemical imaging of the lithosphere using satellite and terrestrial observations

    Science.gov (United States)

    Fullea, Javier; Lebedev, Sergei; Martinec, Zdenek; Celli, Nicolas

    2017-04-01

    Conventional methods of seismic tomography, topography, gravity and electromagnetic data analysis and geodynamic modelling constrain distributions of seismic velocity, density, electrical conductivity, and viscosity at depth, all depending on temperature and composition of the rocks within the Earth. However, modelling and interpretation of multiple data sets provide a multifaceted image of the true thermochemical structure of the Earth that needs to be appropriately and consistently integrated. A simple combination of gravity, electromagnetic, geodynamics, petrological and seismic models alone is insufficient due to the non-uniqueness and different sensitivities of these models, and the internal consistency relationships that must connect all the intermediate parameters describing the Earth involved. Thermodynamic and petrological links between seismic velocities, density, electrical conductivity, viscosity, melt, water, temperature, pressure and composition within the Earth can now be modelled accurately using new methods of computational petrology and data from laboratory experiments. The growth of very large terrestrial and satellite (e.g., Swarm and GOCE ESA missions) geophysical data sets over the last few years, together with the advancement of petrological and geophysical modelling techniques, now present an opportunity for global, thermochemical and deformation 3D imaging of the lithosphere and underlying upper mantle with unprecedented resolution. This project combines state-of-the-art seismic waveform tomography (using both surface and body waves), newly available global gravity satellite data (geoid and gravity anomalies and new gradiometric measurements from ESA's GOCE mission) and surface heat flow and elevation within a self-consistent thermodynamic framework. The aim is to develop a method for detailed and robust global thermochemical image of the lithosphere and underlying upper mantle. In a preliminary study, we convert a state-of-the-art global

  11. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seong-Nam, E-mail: namsn76@gmail.com [Engineering Research Institute, Seoul National University, Daehak-dong, Gwanak-gu 151-744 (Korea, Republic of); Jeong, Seongkyeong [Environmental Resource Recirculation Division, National Institute of Environmental Research, Environmental Research Complex, Kyeongseo-dong, Seo-gu, Incheon 404-708 (Korea, Republic of); Lim, Hojoo [Indoor Environment and Noise Division, National Institute of Environmental Research, Environmental Research Complex, Kyeongseo-dong, Seo-gu, Incheon 404-708 (Korea, Republic of)

    2014-01-30

    Highlights: • Asbestos-containing roofing slates (ACS) were thermochemically treated. • 5 N H{sub 2}SO{sub 4} with 100 °C heating for 10–24 h showed complete disappearance. • Asbestiform of ACS was changed to non-asbestiform after treatment. • Favorable destruction was occurred at the Mg(OH){sub 2} layer rather than SiO{sub 2} sheet. • Equivalent treatability of waste acid brightened the feasibility of this approach. -- Abstract: In this study, we have investigated the feasibility of using a thermochemical technique on ∼17% chrysotile-containing roofing sheet or slate (ACS), in which 5 N sulfuric acid-digestive destruction was incorporated with 10–24-h heating at 100 °C. The X-ray diffraction (XRD) and the polarized light microscopy (PLM) results have clearly shown that raw chrysotile asbestos was converted to non-asbestiform material with no crystallinity by the low temperature thermochemical treatment. As an alternative to the use of pricey sulfuric acid, waste sulfuric acid discharged from a semiconductor manufacturing process was reused for the asbestos-fracturing purpose, and it was found that similar removals could be obtained under the same experimental conditions, promising the practical applicability of thermochemical treatment of ACWs. A thermodynamic understanding based on the extraction rates of magnesium and silica from a chrysotile structure has revealed that the destruction of chrysotile by acid-digestion is greatly influenced by the reaction temperatures, showing a 80.3-fold increase in the reaction rate by raising the temperature by 30–100 °C. The overall destruction is dependent upon the breaking-up of the silicon-oxide layer – a rate-limiting step. This study is meaningful in showing that the low temperature thermochemical treatment is feasible as an ACW-treatment method.

  12. New candidate for biofuel feedstock beyond terrestrial biomass for thermo-chemical process (pyrolysis/gasification) enhanced by carbon dioxide (CO2).

    Science.gov (United States)

    Kwon, Eilhann E; Jeon, Young Jae; Yi, Haakrho

    2012-11-01

    The enhanced thermo-chemical process (i.e., pyrolysis/gasification) of various macroalgae using carbon dioxide (CO(2)) as a reaction medium was mainly investigated. The enhanced thermo-chemical process was achieved by expediting the thermal cracking of volatile chemical species derived from the thermal degradation of the macroalgae. This process enables the modification of the end products from the thermo-chemical process and significant reduction of the amount of condensable hydrocarbons (i.e., tar, ∼50%), thereby directly increasing the efficiency of the gasification process.

  13. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled “Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges” (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  14. Thermo-chemical pretreatment and enzymatic hydrolysis for enhancing saccharification of catalpa sawdust.

    Science.gov (United States)

    Jin, Shuguang; Zhang, Guangming; Zhang, Panyue; Li, Fan; Fan, Shiyang; Li, Juan

    2016-04-01

    To improve the reducing sugar production from catalpa sawdust, thermo-chemical pretreatments were examined and the chemicals used including NaOH, Ca(OH)2, H2SO4, and HCl. The hemicellulose solubilization and cellulose crystallinity index (CrI) were significantly increased after thermo-alkaline pretreatments, and the thermo-Ca(OH)2 pretreatment showed the best improvement for reducing sugar production comparing to other three pretreatments. The conditions of thermo-Ca(OH)2 pretreatment and enzymatic hydrolysis were systematically optimized. Under the optimal conditions, the reducing sugar yield increased by 1185.7% comparing to the control. This study indicates that the thermo-Ca(OH)2 pretreatment is ideal for the saccharification of catalpa sawdust and that catalpa sawdust is a promising raw material for biofuel.

  15. 3D Thermochemical Numerical Model of a Convergent Zone With an Overriding Plate

    Science.gov (United States)

    Mason, W. G.; Moresi, L.; Betts, P. G.

    2008-12-01

    We have created a new three dimensional thermochemical numerical model of a convergent zone, in which a viscoplastic oceanic plate subducts beneath a viscous overriding plate, using the finite element Geoscience research code Underworld. Subduction is initiated by mantle flow induced by the gravitational instability of a slab tip, and buoyancy of the overriding plate. A cold thermal boundary layer envelopes both plates, and is partially dragged into the mantle along with the subducting slab. The trench rolls back as the slab subducts, and the overriding plate follows the retreating trench without being entrained into the upper mantle. The model is repeated with the overriding plate excluded, to analyse the influence of the overriding plate. The overriding plate retards the rate of subduction. Maximum strain rates, evident along the trench in the absence of an overriding plate, extend to a greater depth within the subducted portion of the slab in the presence of an overriding plate.

  16. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  17. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation.

    Science.gov (United States)

    Haussener, Sophia; Steinfeld, Aldo

    2012-01-19

    High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  18. Comparative study of thermochemical processes for hydrogen production from biomass fuels.

    Science.gov (United States)

    Biagini, Enrico; Masoni, Lorenzo; Tognotti, Leonardo

    2010-08-01

    Different thermochemical configurations (gasification, combustion, electrolysis and syngas separation) are studied for producing hydrogen from biomass fuels. The aim is to provide data for the production unit and the following optimization of the "hydrogen chain" (from energy source selection to hydrogen utilization) in the frame of the Italian project "Filiera Idrogeno". The project focuses on a regional scale (Tuscany, Italy), renewable energies and automotive hydrogen. Decentred and small production plants are required to solve the logistic problems of biomass supply and meet the limited hydrogen infrastructures. Different options (gasification with air, oxygen or steam/oxygen mixtures, combustion, electrolysis) and conditions (varying the ratios of biomass and gas input) are studied by developing process models with uniform hypothesis to compare the results. Results obtained in this work concern the operating parameters, process efficiencies, material and energetic needs and are fundamental to optimize the entire hydrogen chain.

  19. Entropy Analysis of Solar Two-Step Thermochemical Cycles for Water and Carbon Dioxide Splitting

    Directory of Open Access Journals (Sweden)

    Matthias Lange

    2016-01-01

    Full Text Available The present study provides a thermodynamic analysis of solar thermochemical cycles for splitting of H2O or CO2. Such cycles, powered by concentrated solar energy, have the potential to produce fuels in a sustainable way. We extend a previous study on the thermodynamics of water splitting by also taking into account CO2 splitting and the influence of the solar absorption efficiency. Based on this purely thermodynamic approach, efficiency trends are discussed. The comprehensive and vivid representation in T-S diagrams provides researchers in this field with the required theoretical background to improve process development. Furthermore, results about the required entropy change in the used redox materials can be used as a guideline for material developers. The results show that CO2 splitting is advantageous at higher temperature levels, while water splitting is more feasible at lower temperature levels, as it benefits from a great entropy change during the splitting step.

  20. Thermochemical studies on complex of [Sm(o-NBA)_3phen]_2

    Institute of Scientific and Technical Information of China (English)

    肖圣雄; 张建军; 李旭; 李强国; 任宁; 李环

    2010-01-01

    A ternary complex [Sm(o-NBA)3phen]2 (o-NBA: o-Nitrobenzoate; phen: 1,10-phenanthroline) was synthesized and characterized by elemental analysis, IR, molar conductance, and thermogravimetric analysis. The dissolution enthalpies of SmCl3·6H2O(s), o-HNBA(s) and phen·H2O(s) in mixed solvent (VHCl :VDMF :VDMSO=2:2:1) were determined by calorimetry at 298.15 K. The enthalpy change of the reaction was determined to be rHmΔθ=252.49±1.60 kJ/mol. Using the relevant data in the literature and a thermochemical recycle ...

  1. A Study of the Theoretical Potential of Thermochemical Exhaust Heat Recuperation for Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarthy, Veerathu K [ORNL; Daw, C Stuart [ORNL; Pihl, Josh A [ORNL; Conklin, Jim [ORNL

    2010-01-01

    We present a detailed thermodynamic analysis of thermochemical recuperation (TCR) applied to an idealized internal combustion engine with single-stage work extraction. Results for several different fuels are included. For a stoichiometric mixture of methanol and air, TCR can increase the estimated ideal engine Second Law efficiency by about 3% for constant pressure reforming and over 5% for constant volume reforming. For ethanol and isooctane the estimated Second Law efficiency increases for constant volume reforming are 9% and 11%, respectively. The Second Law efficiency improvements from TCR result primarily from the higher intrinsic exergy of the reformed fuel and pressure boost associated with gas mole increase. Reduced combustion irreversibility may also yield benefits for future implementations of combined cycle work extraction.

  2. A Study of the Theoretical Potential of Thermochemical Exhaust Heat Recuperation in Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Daw, C Stuart [ORNL; Pihl, Josh A [ORNL; Chakravarthy, Veerathu K [ORNL; Conklin, Jim [ORNL

    2010-01-01

    A detailed thermodynamic analysis of thermochemical recuperation (TCR) applied to an idealized internal combustion engine with single-stage work extraction is presented. Results for several different fuels are included. For a stoichiometric mixture of methanol and air, TCR can increase the estimated ideal engine second law efficiency by about 3% for constant pressure reforming and over 5% for constant volume reforming. For ethanol and isooctane, the estimated second law efficiency increases for constant volume reforming are 9 and 11%, respectively. The second law efficiency improvements from TCR result primarily from the higher intrinsic exergy of the reformed fuel and pressure boost associated with the gas mole increase. Reduced combustion irreversibility may also yield benefits for future implementations of combined cycle work extraction.

  3. Thermochemical recycling of mixture of scrap tyres and waste lubricating oil into high caloric value products

    Energy Technology Data Exchange (ETDEWEB)

    Abdul-Raouf, Manar E.; Maysour, Nermine E.; Abdul-Azim, Abdul-Azim A. [Egyptian Petroleum Research Institute, Nasr City, Cairo (Egypt); Amin, Mahasen S. [Faculty of Science, Benha University, Benha (Egypt)

    2010-06-15

    Scrap tyres and used lubricating oils represent together growing environmental problem because they are not biodegradable and their components cannot readily be recovered. In the present investigation, the thermochemical recycling of mixture of old tyres with waste lubricating oil by pyrolysis and the value of the products obtained have been studied. First, thermobalance experiments were carried out, studying the influence of the following variables: temperature, type of catalyst and catalyst concentration on the pyrolysis reaction of a mixture of 1/1 wt./wt. oil/tyre ratio. These thermobalance results were thoroughly investigated to study the effect of the main process variables on yields of derived products: oils, gases and solid residue. (author)

  4. Onboard Hydrogen Generation for a Spark Ignition Engine via Thermochemical Recuperation

    Science.gov (United States)

    Silva, Isaac Alexander

    A method of exhaust heat recovery from a spark-ignition internal combustion engine was explored, utilizing a steam reforming thermochemical reactor to produce a hydrogen-rich effluent, which was then consumed in the engine. The effects of hydrogen in the combustion process have been studied extensively, and it has been shown that an extension of the lean stability limit is possible through hydrogen enrichment. The system efficiency and the extension of the operational range of an internal combustion engine were explored through the use of a methane fueled naturally aspirated single cylinder engine co-fueled with syngas produced with an on board methane steam reformer. It was demonstrated that an extension of the lean stability limit is possible using this system.

  5. Thermochemical prediction of chemical form distributions of fission products in LWR mixed oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kouki; Furuya, Hirotaka [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1998-06-01

    Radial distribution of chemical forms of fission products (FPs) in LWR mixed oxide (MOX) fuel pins was theoretically predicted by a thermochemical computer code SOLGASMIX-PV. The amounts of fission products generated in the fuel were calculated by ORIGEN-2 code, and the radial distributions of temperature and oxygen potential were calculated by taking the neutron depression and oxygen redistribution in the fuel into account. A fuel pellet was radially divided into 51 sections and chemical forms of FPs were calculated in each section. The effects of linear heat rating (LHR) and average O/U ratio on radial distribution of chemical form were evaluated. It was found that the radial distribution of chemical forms depends strongly on the LHR and the O/M ratio, and is not proportional to that of burnup. (author)

  6. Thermochemical Water Splitting for Hydrogen Production Utilizing Nuclear Heat from an HTGR

    Institute of Scientific and Technical Information of China (English)

    WU Xinxin; ONUKI Kaoru

    2005-01-01

    A very promising technology to achieve a carbon free energy system is to produce hydrogen from water, rather than from fossil fuels. Iodine-sulfur (IS) thermochemical water decomposition is one promising process. The IS process can be used to efficiently produce hydrogen using the high temperature gas-cooled reactor (HTGR) as the energy source supplying gas at 1000℃. This paper describes that demonstration experiment for hydrogen production was carried out by an IS process at a laboratory scale. The results confirmed the feasibility of the closed-loop operation for recycling all the reactants besides the water, H2, and O2. Then the membrane technology was developed to enhance the decomposition efficiency. The maximum attainable one-pass conversion rate of HI exceeds 90% by membrane technology, whereas the equilibrium rate is about 20%.

  7. A Perspective on Thermochemical and Electrochemical Processes for Titanium Metal Production

    Science.gov (United States)

    Zhang, Ying; Fang, Zhigang Zak; Sun, Pei; Zheng, Shili; Xia, Yang; Free, Michael

    2017-10-01

    Titanium metal is produced commercially by the costly and energy-intensive Kroll process, which is highly matured and optimized. In the last several decades, many new methods have been proposed to reduce the production cost of Ti metal and thus widen its applications. These new methods can be categorized into two main groups: thermochemical and electrochemical methods. Even though detailed operations for different processes vary, the various processes in each category share the same principles. This article outlines the differences and the challenges between different processes on the basis of these shared principles, with an emphasis on the developmental processes. Although several of these new processes are at the laboratory or pilot-plant development stage, it is recognized that systematic fundamental research and open scientific exchanges are still sorely needed in this area to improve the new technologies.

  8. Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity.

    Science.gov (United States)

    Aubert, Julien; Amit, Hagay; Hulot, Gauthier; Olson, Peter

    2008-08-07

    Seismic waves sampling the top 100 km of the Earth's inner core reveal that the eastern hemisphere (40 degrees E-180 degrees E) is seismically faster, more isotropic and more attenuating than the western hemisphere. The origin of this hemispherical dichotomy is a challenging problem for our understanding of the Earth as a system of dynamically coupled layers. Previously, laboratory experiments have established that thermal control from the lower mantle can drastically affect fluid flow in the outer core, which in turn can induce textural heterogeneity on the inner core solidification front. The resulting texture should be consistent with other expected manifestations of thermal mantle control on the geodynamo, specifically magnetic flux concentrations in the time-average palaeomagnetic field over the past 5 Myr, and preferred eddy locations in flows imaged below the core-mantle boundary by the analysis of historical geomagnetic secular variation. Here we show that a single model of thermochemical convection and dynamo action can account for all these effects by producing a large-scale, long-term outer core flow that couples the heterogeneity of the inner core with that of the lower mantle. The main feature of this thermochemical 'wind' is a cyclonic circulation below Asia, which concentrates magnetic field on the core-mantle boundary at the observed location and locally agrees with core flow images. This wind also causes anomalously high rates of light element release in the eastern hemisphere of the inner core boundary, suggesting that lateral seismic anomalies at the top of the inner core result from mantle-induced variations in its freezing rate.

  9. Thermochemical analysis of laterite ore alkali roasting: Comparison of sodium carbonate, sodium sulfate, and sodium hydroxide

    Science.gov (United States)

    Samadhi, Tjokorde Walmiki

    2017-01-01

    The abundance of global nickel reserve is in fact dominated by low grade laterite ores containing only approximately 1.0-1.8 %-Ni. Indonesia is a major limonite and saprolite ores source, particularly in the Sulawesi, northern Maluku, and Papua islands. Production of nickel from laterites typically requires a pre-concentration step which breaks down the mineral crystalline structure, thereby facilitating the subsequent extraction of the valuable metals. This work discusses the thermochemical analysis of the alkali roasting of an Indonesian saprolite ore using Na2CO3, Na2SO4, and NaOH. These alkali compounds are selected due to their relatively low cost. The Factsage thermochemical computation package is used to predict thermodynamically stable gaseous, solution, pure liquid, and pure solid phases present in the roasting process at temperatures from 100 to 1200°C at ambient pressure, in inert atmosphere. The formation of a liquid solution (or slag) phase is interpreted as a major indicator of mineral structure breakdown. The computed slag formation temperatures are 373.2, 1041.4, and 792.0°C when using Na2CO3, Na2SO4, and NaOH, respectively. The masses of volatilized alkali at 1200°C with a total feed mass of 100 gram are 0.49, 3.24, and 3.25 mg for Na2CO3, Na2SO4, and NaOH, respectively. It is therefore hypothesized that Na2CO3 is the most competitive sodium-based alkali for saprolite ore roasting.

  10. A thermochemical model for shock-induced reactions (heat detonations) in solids

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, M.B. (Sandia National Laboratories, Albuquerque, New Mexico 87185 (US))

    1990-02-01

    Recent advances in studies of shock-induced chemistry in reactive solids have led to the recognition of a new class of energetic materials which are unique in their response to shock waves. Experimental work has shown that chemical energy can be released on a time scale shorter than shock-transit times in laboratory samples. However, for many compositions, the reaction products remain in the condensed state upon release from high pressure, and no sudden expansion takes place. Nevertheless, if such a reaction is sufficiently rapid, it can be modeled as a type of detonation, termed heat detonation'' in the present paper. It is shown that unlike an explosive detonation, an unsupported heat detonation will decay to zero unless certain conditions are met. An example of such a reaction is Fe{sub 2}O{sub 3} +2Al+shock{r arrow}Al{sub 2} O{sub 3} +2Fe (the standard thermite reaction). A shock-wave equation of state is determined from a mixture theory for reacted and unreacted porous thermite. The calculated shock temperatures are compared to experimentally measured shock temperatures, demonstrating that a shock-induced reaction takes place. Interpretation of the measured temperature history in the context of the thermochemical model implies that the principal rate-controlling kinetic mechanism is dynamic mixing at the shock front. Despite the similarity in thermochemical modeling of heat detonations to explosive detonations, the two processes are qualitatively very different in reaction mechanism as well as in the form the energy takes upon release, with explosives producing mostly work and heat detonations producing mostly heat.

  11. Ceramic carbon electrode-based anodes for use in the copper-chlorine thermochemical cycle

    Energy Technology Data Exchange (ETDEWEB)

    Ranganathan, S.; Easton, E.B. [Univ. of Ontario Inst. of Technology, Oshawa, ON (Canada). Faculty of Science

    2009-07-01

    A thermochemical cycle is a process by which water is decomposed into hydrogen and oxygen through a series of chemical reactions. The chemicals that are used in these reactions are regenerated and recycled during the process. Sol-gel chemistry is becoming more common for the synthesis of electrode materials. The sol-gel reaction can be conducted in the presence of a carbon black to form a ceramic carbon electrode (CCE). The resultant CCE structure contains electronically conductive carbon particle pathways that are bound together through the ceramic binder, which can also promote ion transport. The CCE structure also has a high active surface area and is chemically and thermally robust. This paper presented an investigation of CCE materials prepared using 3-aminopropyl trimethoxysilane. Several electrochemical experiments including cyclic voltammetry and electrochemical impedance spectroscopy were performed to characterize their suitability as anode electrode materials for use in the electrochemical step of the copper-chlorine thermochemical cycle. Subsequent experiments included the manipulation of the relative ratio of organosilane carbon precursors to gauge its impact on electrode properties and performance. An overview of the materials characterization and electrochemical measurements were also presented. Specifically, the paper presented the experiment with particular reference to the CCE preparation; electrochemical experiments; thermal analysis; and scanning electron microscopy. Results were also provided. These included TGA analysis; scanning electron microscopy analysis; electrochemical characterization; and anodic polarization. Characterization of these CCE material demonstrated that they had good thermal stability, could be used at high temperatures, and were therefore, very promising anode materials. 15 refs., 7 figs.

  12. In vitro thermal profile suitability assessment of acids and bases for thermochemical ablation: underlying principles.

    Science.gov (United States)

    Freeman, Laura A; Anwer, Bilal; Brady, Ryan P; Smith, Benjamin C; Edelman, Theresa L; Misselt, Andrew J; Cressman, Erik N K

    2010-03-01

    To measure and compare temperature changes in a recently developed gel phantom for thermochemical ablation as a function of reagent strength and concentration with several acids and bases. Aliquots (0.5-1 mL) of hydrochloric acid or acetic acid and sodium hydroxide or aqueous ammonia were injected for 5 seconds into a hydrophobic gel phantom. Stepwise increments in concentration were used to survey the temperature changes caused by these reactions. Injections were performed in triplicate, measured with a thermocouple probe, and plotted as functions of concentration and time. Maximum temperatures were reached almost immediately in all cases, reaching 75 degrees C-110 degrees C at the higher concentrations. The highest temperatures were seen with hydrochloric acid and either base. More concentrated solutions of sodium hydroxide tended to mix incompletely, such that experiments at 9 M and higher were difficult to perform consistently. Higher concentrations for any reagent resulted in higher temperatures. Stronger acid and base combinations resulted in higher temperatures versus weak acid and base combinations at the same concentration. Maximum temperatures obtained are in a range known to cause tissue coagulation, and all combinations tested therefore appeared suitable for further investigation in thermochemical ablation. Because of the loss of the reaction chamber shape at higher concentrations of stronger agents, the phantom does not allow complete characterization under these circumstances. Adequate mixing of reagents to maximize heating potential and avoid systemic exposure to unreacted acid and base must be addressed if the method is to be safely employed in tissues. In addition, understanding factors that control lesion shape in a more realistic tissue model will be critical. Copyright 2010 SIR. Published by Elsevier Inc. All rights reserved.

  13. Thermochemical storage for CSP via redox structured reactors/heat exchangers: The RESTRUCTURE project

    Science.gov (United States)

    Karagiannakis, George; Pagkoura, Chrysoula; Konstandopoulos, Athanasios G.; Tescari, Stefania; Singh, Abhishek; Roeb, Martin; Lange, Matthias; Marcher, Johnny; Jové, Aleix; Prieto, Cristina; Rattenbury, Michael; Chasiotis, Andreas

    2017-06-01

    The present work provides an overview of activities performed in the framework of the EU-funded collaborative project RESTRUCTURE, the main goal of which was to develop and validate a compact structured reactor/heat exchanger for thermochemical storage driven by 2-step high temperature redox metal oxide cycles. The starting point of development path included redox materials qualification via both theoretical and lab-scale experimental studies. Most favorable compositions were cobalt oxide/alumina composites. Preparation of small-scale structured bodies included various approaches, ranging from perforated pellets to more sophisticated honeycomb geometries, fabricated by extrusion and coating. Proof-of-concept of the proposed novel reactor/heat exchanger was successfully validated in small-scale structures and the next step included scaling up of redox honeycombs production. Significant challenges were identified for the case of extruded full-size bodies and the final qualified approach related to preparation of cordierite substrates coated with cobalt oxide. The successful experimental evaluation of the pilot reactor/heat exchanger system constructed motivated the preliminary techno-economic evaluation of the proposed novel thermochemical energy storage concept. Taking into account experimental results, available technologies and standard design aspects a model for a 70.5 MWe CSP plant was defined. Estimated LCOE costs were calculated to be in the range of reference values for Combined Cycle Power Plants operated by natural gas. One of main cost contributors was the storage system itself, partially due to relatively high cost of cobalt oxide. This highlighted the need to identify less costly and equally efficient to cobalt oxide redox materials.

  14. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.J.

    1994-09-01

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  15. Effect of the glassy carbon structure on the aspect ratio of micropoints of matrix field-emission cathodes prepared by thermochemical etching

    Science.gov (United States)

    Pleshkova, L. S.; Shesterkin, V. I.

    2016-11-01

    The application of thermochemical etching technology makes it possible to reveal and investigate the structure of SU-2000 glassy carbon using electron microscopy. The glassy carbon structure at the microscopic and nanoscopic levels is inhomogeneous and consists of pockets with an irregular cross section separated by partitions. This structure sets the limits on the aspect ratio of geometrical sizes and micropoint packing density in the matrix prepared by thermochemical etching.

  16. Solid State Thermochemical Decomposition of Neat 1,3,5,5-Tetranitrohexahydropyrimidine (DNNC) and its DNNC-d6 Perdeuterio-Labeled Analogue

    Science.gov (United States)

    2006-01-01

    SUPPLEMENTARY NOTES As published in Thermochimica Acta 440 (2006) 146-155. 14. ABSTRACT The solid state thermochemical decomposition kinetics and...Prescribed by ANSI Std. 239.18 Thermochimica Acta 440 (2006) 146–155 Solid state thermochemical decomposition of neat 1,3,5,5... Thermochimica Acta 440 (2006) 146–155 147 solid state, describe reactions occurring within a thin zone of reactant–product contact that advance into the

  17. Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi.

    Science.gov (United States)

    Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying

    2011-09-28

    The effects of white-rot and brown-rot fungal pretreatment on the chemical composition and thermochemical conversion of corn stover were investigated. Fungus-pretreated corn stover was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction analysis to characterize the changes in chemical composition. Differences in thermochemical conversion of corn stover after fungal pretreatment were investigated using thermogravimetric and pyrolysis analysis. The results indicated that the white-rot fungus Irpex lacteus CD2 has great lignin-degrading ability, whereas the brown-rot fungus Fomitopsis sp. IMER2 preferentially degrades the amorphous regions of the cellulose. The biopretreatment favors thermal decomposition of corn stover. The weight loss of IMER2-treated acid detergent fiber became greater, and the oil yield increased from 32.7 to 50.8%. After CD2 biopretreatment, 58% weight loss of acid detergent lignin was achieved and the oil yield increased from 16.8 to 26.8%.

  18. Influence of steel composition and plastic deformation on the surface properties induced by low temperature thermochemical processing

    DEFF Research Database (Denmark)

    Bottoli, Federico

    “PressPerfect” Project was to create a methodology to predict the performance of high quality stainless steels after forming and finishing treatments. The Ph.D. Project focused on the optimization of low-temperature thermochemical processes on severalstainless steel classes used for the surface treatment of industrial......Low-temperature thermochemical surface hardening by nitriding, carburizing and nitrocarburizing is used to improve the performance of stainless steels with respect to wear, fatigue and corrosion resistance.The dissolution of nitrogen and/or carbon atoms in the materials surface leads...... to the formation of a supersaturated solid solution known as expanded austenite, or S-Phase. Expanded austenite is characterized by high hardness, up to 1400 Vickers, and high compressive stresses in the surface region, which result in improved wear and fatigue resistance of the components. Along...

  19. Ab Initio Computations and Active Thermochemical Tables Hand in Hand: Heats of Formation of Core Combustion Species.

    Science.gov (United States)

    Klippenstein, Stephen J; Harding, Lawrence B; Ruscic, Branko

    2017-09-07

    The fidelity of combustion simulations is strongly dependent on the accuracy of the underlying thermochemical properties for the core combustion species that arise as intermediates and products in the chemical conversion of most fuels. High level theoretical evaluations are coupled with a wide-ranging implementation of the Active Thermochemical Tables (ATcT) approach to obtain well-validated high fidelity predictions for the 0 K heat of formation for a large set of core combustion species. In particular, high level ab initio electronic structure based predictions are obtained for a set of 348 C, N, O, and H containing species, which corresponds to essentially all core combustion species with 34 or fewer electrons. The theoretical analyses incorporate various high level corrections to base CCSD(T)/cc-pVnZ analyses (n = T or Q) using H2, CH4, H2O, and NH3 as references. Corrections for the complete-basis-set limit, higher-order excitations, anharmonic zero-point energy, core-valence, relativistic, and diagonal Born-Oppenheimer effects are ordered in decreasing importance. Independent ATcT values are presented for a subset of 150 species. The accuracy of the theoretical predictions is explored through (i) examination of the magnitude of the various corrections, (ii) comparisons with other high level calculations, and (iii) through comparison with the ATcT values. The estimated 2σ uncertainties of the three methods devised here, ANL0, ANL0-F12, and ANL1, are in the range of ±1.0-1.5 kJ/mol for single-reference and moderately multireference species, for which the calculated higher order excitations are 5 kJ/mol or less. In addition to providing valuable references for combustion simulations, the subsequent inclusion of the current theoretical results into the ATcT thermochemical network is expected to significantly improve the thermochemical knowledge base for less-well studied species.

  20. Ceria based inverse opals for thermochemical fuel production: Quantification and prediction of high temperature behavior

    Science.gov (United States)

    Casillas, Danielle Courtney

    Solar energy has the potential to supply more than enough energy to meet humanity's energy demands. Here, a method for thermochemical solar energy storage through fuel production is presented. A porous non-stoichiometric oxide, ceria, undergoes partial thermal reduction and oxidation with concentrated solar energy as a heat source, and water as an oxidant. The resulting yields for hydrogen fuel and oxygen are produced in two discrete steps, while the starting material maintains its original phase. Ordered porosity has been shown superior to random porosity for thermochemical fuel production applications, but stability limits for these structures are currently undefined. Ceria-based inverse opals are currently being investigated to assess the architectural influence on thermochemical hydrogen production. Low tortuosity and continuous interconnected pore network allow for facile gas transport and improved reaction kinetics. Ceria-based ordered materials have recently been shown to increase maximum hydrogen production over non-ordered porous ceria. Thermal stability of ordered porosity was quantified using quantitative image analysis. Fourier analysis was applied to SEM images of the material. The algorithm results in an order parameter gamma that describes the degree of long range order maintained by these structures, where gamma>4 signifies ordered porosity. According to this metric, a minimum zirconium content of 20 atomic percent (at%) is necessary for these architectures to survive aggressive annealing up to 1000°C. Zirconium substituted ceria (ZSC) with Zr loadings in excess of 20at% developed undesired tetragonal phases. Through gamma, we were able to find a balance between the benefit of zirconium additions on structural stability and its negative impact on phase. This work demonstrates the stability of seemingly delicate architectures, and the operational limit for ceria based inverse opals to be 1000°C for 1microm pore size. Inverse opals having sub

  1. Double layering of a thermochemical plume in the upper mantle beneath Hawaii

    Science.gov (United States)

    Ballmer, M. D.; Ito, G.; Wolfe, C. J.; Cadio, C.; Solomon, S. C.

    2012-04-01

    Volcanism far from plate boundaries has traditionally been explained by "classical" plume theory. Classical plumes are typically described as narrow thermal upwellings that rise through the entire mantle to be deflected into a thin (Iceland, are indeed well explained by near-classical thermal plumes. High-resolution seismic velocity images obtained from the PLUME project support the concept of a deep-rooted mantle plume beneath the Hawaiian hotspot. However, in detail these images challenge traditional concepts inasmuch as they indicate a low-velocity body in the upper mantle that is too thick (~400 km) and asymmetric to be interpreted as a classical pancake. Classical plume theory is, moreover, inconsistent with several geochemical characteristics of Hawaiian magmas, which point to a heterogeneous mantle source involving mafic lithologies such as eclogite and not an exclusively thermal (i.e., isochemical) origin¹. To explore the dynamical and melting behavior of plumes containing a substantial fraction (~15%) of eclogite, we performed three-dimensional numerical simulations of thermochemical convection. Relative to ambient-mantle peridotite, eclogite is intrinsically dense. This density contrast is sensitive to phase changes in the upper mantle; the contrast peaks at 410-300 km and lessens at about 250-190 km depth, where eclogite is subsequently removed by melting. For a plume core with an eclogite content >12%, these effects locally increase the density beyond that of the ambient mantle. Therefore, the upwelling column forms a broad and thick pool at depths of 450-300 km (which we term the deep eclogite pool, or DEP). As the DEP is well supported by the deeper stem of the plume and its non-eclogitic outskirts, it inflates to release a shallow thermal plume. This latter plume sustains hotspot volcanism and feeds a hot shallow pancake that compensates the seafloor swell. Our model predictions reconcile a range of characteristics for Hawaiian volcanism. We find

  2. Evaluation of the performance of MP4-based procedures for a wide range of thermochemical and kinetic properties

    Science.gov (United States)

    Yu, Li-Juan; Wan, Wenchao; Karton, Amir

    2016-11-01

    We evaluate the performance of standard and modified MPn procedures for a wide set of thermochemical and kinetic properties, including atomization energies, structural isomerization energies, conformational energies, and reaction barrier heights. The reference data are obtained at the CCSD(T)/CBS level by means of the Wn thermochemical protocols. We find that none of the MPn-based procedures show acceptable performance for the challenging W4-11 and BH76 databases. For the other thermochemical/kinetic databases, the MP2.5 and MP3.5 procedures provide the most attractive accuracy-to-computational cost ratios. The MP2.5 procedure results in a weighted-total-root-mean-square deviation (WTRMSD) of 3.4 kJ/mol, whilst the computationally more expensive MP3.5 procedure results in a WTRMSD of 1.9 kJ/mol (the same WTRMSD obtained for the CCSD(T) method in conjunction with a triple-zeta basis set). We also assess the performance of the computationally economical CCSD(T)/CBS(MP2) method, which provides the best overall performance for all the considered databases, including W4-11 and BH76.

  3. Thermochemical properties of some alkaline-earth silicates and zirconates. Fission product behaviour during molten core-concrete interactions

    Energy Technology Data Exchange (ETDEWEB)

    Huntelaar, M.E.

    1996-06-19

    This thesis aims to make a contribution to a better understanding of the chemical processes occurring during an ex-vessel MCCI accident with a western-type of nuclear reactor. Chosen is for a detailed thermochemical study of the silicates and zirconates of barium and strontium. In Chapter one a short introduction in the history of (research in) nuclear safety is given, followed by the state-of-the-art of molten core-concrete interactions in Chapter two. In both Chapters the role of chemical thermodynamics on this particular subject is dealt with. The experimental work on the silicates and zirconates of barium and strontium performed for this thesis, is described in the Chapters three, four, five, six, and parts of eight. In Chapter three the basis for all thermochemical measurements, the sample preparation is given. Because the sample preparation effects the accuracy of the thermodynamic measurements, a great deal of effort is spent in optimizing the synthesis of the silicates which resulted in the TEOS-method widely employed here. In the next Chapters the different thermochemical techniques used, are described: The low-temperature heat capacity measurements and the enthalpy increment measurements in Chapter four, the enthalpy-of-solution measurements in Chapter five, and measurements to determine the crystal structures in Chapter six. (orig.).

  4. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    Energy Technology Data Exchange (ETDEWEB)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector

  5. Simulating the Thermochemical Magmatic and Tectonic Evolution of Venus's Mantle and Lithosphere: Intrusive vs. Extrusive Magmatism

    Science.gov (United States)

    Tackley, Paul; Armann, Marina

    2013-04-01

    Here we extend the models of [1]. Numerical convection models of the thermochemical evolution of Venus are compared to present-day topography and geoid, recent resurfacing history and surface deformation. The models include melting, magmatism, decaying heat-producing elements, core cooling, realistic temperature-dependent viscosity and either stagnant lid or episodic lithospheric overturn. In [1] it was found that in stagnant lid convection the dominant mode of heat loss is magmatic heat pipe, which requires massive magmatism and produces very thick crust, inconsistent with observations. Partitioning of heat-producing elements into the crust helps but does not help enough. Episodic lid overturn interspersed by periods of quiescence effectively loses Venus's heat while giving lower rates of volcanism and a thinner crust. Calculations predict 5-8 overturn events over Venus's history, each lasting ~150 Myr, initiating in one place and then spreading globally. During quiescent periods convection keeps the lithosphere thin. Magmatism keeps the mantle temperature constant over Venus's history. Crustal recycling occurs by entrainment in stagnant lid convection, and by lid overturn in episodic mode. Venus-like amplitudes of topography and geoid can be produced in either stagnant or episodic modes, with a viscosity profile that is Earth-like but shifted to higher values. The basalt density inversion below the olivine-perovskite transition causes compositional stratification around 730 km; breakdown of this layering increases episodicity but far less than episodic lid overturn. The classical stagnant lid mode with interior temperature rheological temperature scale lower than TCMB is not reached because mantle temperature is controlled by magmatism while the core cools slowly from a superheated start. Core heat flow decreases with time, possibly shutting off the dynamo, particularly in episodic cases. Here we extend [1] by considering intrusive magmatism as an alternative to

  6. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Pattrick Calderoni

    2010-09-01

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the

  7. Hybrid microelectronic technology

    Science.gov (United States)

    Moran, P.

    Various areas of hybrid microelectronic technology are discussed. The topics addressed include: basic thick film processing, thick film pastes and substrates, add-on components and attachment methods, thin film processing, and design of thick film hybrid circuits. Also considered are: packaging hybrid circuits, automating the production of hybrid circuits, application of hybrid techniques, customer's view of hybrid technology, and quality control and assurance in hybrid circuit production.

  8. Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b

    CERN Document Server

    Stevenson, Kevin B; Nymeyer, Sarah; Madhusudhan, Nikku; Seager, Sara; Bowman, William C; Hardy, Ryan A; Deming, Drake; Rauscher, Emily; Lust, Nate B

    2010-01-01

    The nearby extrasolar planet GJ 436b--which has been labelled as a 'hot Neptune'--reveals itself by the dimming of light as it crosses in front of and behind its parent star as seen from Earth. Respectively known as the primary transit and secondary eclipse, the former constrains the planet's radius and mass, and the latter constrains the planet's temperature and, with measurements at multiple wavelengths, its atmospheric composition. Previous work using transmission spectroscopy failed to detect the 1.4-\\mu m water vapour band, leaving the planet's atmospheric composition poorly constrained. Here we report the detection of planetary thermal emission from the dayside of GJ 436b at multiple infrared wavelengths during the secondary eclipse. The best-fit compositional models contain a high CO abundance and a substantial methane (CH4) deficiency relative to thermochemical equilibrium models for the predicted hydrogen-dominated atmosphere. Moreover, we report the presence of some H2O and traces of CO2. Because CH...

  9. Single-domain chemical, thermochemical and thermal remanences in a basaltic rock

    CERN Document Server

    Draeger, U; Poidras, T; Riisager, J; Draeger, Ulrike; Pr\\'{e}vot, Michel; Poidras, Thierry; Riisager, Janna

    2005-01-01

    Tiny basaltic samples containing finely grained titanomagnetite with Curie temperature less than 100 C were heated in air in weak field (25 to 100microT) at temperatures between 400 and 560 C for times as long as 32 hours. Oxyexsolution of titanomagnetite resulted in the crystallization of interacting single domain particles with Curie point close to 540 C and the concomitant development of one of two types chemical remanence, depending upon thermal treatment: isothermal chemical remanence (CRM) or thermochemical remanence (TCRM), the latter acquired under the combined effects of chemical change and temperature decrease. CRM and TCRM acquired under various conditions were subjected to Thellier-type experiments. The CRM/TRM ratio is found to be less than one and increases rapidly with acquisition temperature (0.35 at 400 C, 0.65 at 450 C, and 0.90 at 500 C). Thus, very large underestimate of geomagnetic field paleostrength can occur when a natural CRM is not recognized as such and is believed to be a natural T...

  10. Thermochemical plots using JCZS2i piece-wise curve fits.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David L.; Schoof, Justin C.; Hobbs, Michael L.

    2013-10-01

    This report presents plots of specific heat, enthalpy, entropy, and Gibbs free energy for 1439 species in the JCZS2i database. Included in this set of species are 496 condensed-phase species and 943 gas-phase species. The gas phase species contain 80 anions and 112 cations for a total of 192 ions. The JCZS2i database is used in conjunction with the TIGER thermochemical code to predict thermodynamic states from ambient conditions to high temperatures and pressures. Predictions from the TIGER code using the JCZS2i database can be used in shock physics codes where temperatures may be as high as 20,000 K and ions may be present. Such high temperatures were not considered in the original JCZS database, and extrapolations made for these temperatures were unrealistic. For example, specific heat would sometimes go negative at high temperatures which fails the definition of specific heat. The JCZS2i database is a new version of the JCZS database that is being created to address these inaccuracies. The purpose of the current report is to visualize the high temperature extrapolations to insure that the specific heat, enthalpy, entropy, and Gibbs free energy predictions are reasonable up to 20,000 K.

  11. Computational study on thermochemical properties for perhalogenated methanols (CX3OH) (X = F, Cl, Br).

    Science.gov (United States)

    Alrawashdeh, Ahmad I; Poirier, Raymond A

    2015-04-16

    The perhalogenated methanols (CX3OH; X = F, Cl, and Br) are found in the atmosphere as products of the degradation of halocarbons. The thermochemical properties for these molecules have been calculated at the HF, MP2, and B3LYP levels of theories in conjunction with six different basis sets as well as at G3MP2 and CBS-QB3. Calculated properties include the gas-phase enthalpies of formation (ΔfH(0)), gas-phase acidities (ΔacidG(0)), gas-phase proton affinity, and bond dissociation energies of the C-O and O-H bonds of CX3OH. Excellent agreement is found between the results obtained using G3MP2 and CBS-QB3 methods and the available experimental data. The results obtained using MP2 are more consistent with the experimental, G3MP2, and CBS-QB3 values than those computed at B3LYP. In general, the 6-311+G(d,p) basis set when combined with the HF or MP2 level of theory produced better results than other basis sets considered in this study.

  12. Controlled Chemical Patterns with ThermoChemical NanoLithography (TCNL)

    Science.gov (United States)

    Carroll, Keith; Giordano, Anthony; Wang, Debin; Kodali, Vamsi; King, W. P.; Marder, S. R.; Riedo, E.; Curtis, J. E.

    2012-02-01

    Many research areas, both fundamental and applied, rely upon the ability to organize non-trivial assemblies of molecules on surfaces. In this work, we introduce a significant extension of ThermoChemical NanoLithography (TCNL), a high throughput chemical patterning technique that uses temperature-driven chemical reactions localized near the tip of a thermal cantilever. By combining a chemical kinetics based model with experiments, we have developed a protocol for varying the concentration of surface bound molecules. The result is an unprecedented ability to fabricate extremely complex patterns comprised of varying chemical concentrations, as demonstrated by sinusoidal patterns of amine groups with varying pitches (˜5-15 μm) and the replication of Leonardo da Vinci's Mona Lisa with dimensions of ˜30 x 40 μm^2. Programmed control of the chemical reaction rate should have widespread applications for a technique which has already been shown to nanopattern various substrates including graphene nanowires, piezoelectric crystals, and optoelectronic materials.

  13. Dynamic/Thermochemical Balance Drives Unusual Alkyl/F Exchange Reactions in Siloxides and Analogs.

    Science.gov (United States)

    Correra, Thiago C; Fernandes, André S; Riveros, José M

    2016-03-17

    A recent report has shown that siloxides can undergo an unusual Me/F exchange reaction promoted by NF3 in the gas phase ( Angew. Chem. Int. Ed. 2012, 51, 8632-8635). A more extensive study of this kind of exchange has been carried out using mass spectrometry techniques (FT-ICR), DFT calculations, natural bond orbital (NBO) analysis, and Born-Oppenheimer molecular dynamics simulations (BOMD), using NF3, SO2F2, and CF4 as fluorine donors and evaluating the effect of replacing the Si center by Ge and C. This comprehensive approach shows that NF3 is crucial for the exchange reaction, as SO2F2 forms SO3F(-) via a pentacoordinated channel whereas no reaction is observed for CF4. The uniqueness of NF3 is caused by favorable thermochemical consideration and by dynamic effects that preclude the formation of the ubiquitous Si-F pentacoordinated species. Me3GeO(-) was shown to be as reactive as siloxides toward NF3, whereas C analogs showed no reactions under our experimental conditions. The exchange reaction was also shown to take place for triethylsiloxides. These exchange reactions are examples of reaction systems that avoid the lower energy pathway and are driven by dynamic effects that cannot be explained by the potential energy surface.

  14. Chemical characterization of sulphur-iodine thermochemical cycle flowstreams by Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liberatore, Raffaele; Falconieri, Mauro; Lanchi, Michela; Spadoni, Annarita [ENEA CR, Casaccia (Italy)

    2010-07-01

    The Sulphur-Iodine (S-I) thermochemical cycle for hydrogen production from water is one of the widest investigated cycles in the world. Considered the complexity of the S-I process scheme, the focus on chemical characterization of the flowstreams in the loop plant is crucial in order to fully understand chemical equilibriums involved at varying hydriodic acid: (HI:I{sub 2}) ratio in the mixtures and to determine HI and I{sub 2} contents as well. Raman spectroscopy has been widely used to investigate iodine solutions, however few works deals with I{sub 2} in HI aqueous mixtures. The aim of the present study is to use Raman spectroscopy for a rapid qualitative and quantitative characterization of the HI-H{sub 2}O-I{sub 2} mixtures involved in the S-I process. At this purpose, Raman spectra of solutions with known HI and I{sub 2} concentration have been recorded at varying I{sub 2} and HI compositions. It has been found that the chemistry of these solutions is highly dependant on HI:I{sub 2} molar ratio. For ratio up to 1:1, the dominant iodine compounds are I{sub 3}{sup -} and its corresponding ion pair HI{sub 3}. At higher values, close to those of the hydriodic phase HIx of the Bunsen reaction, there is experimental evidence of the formation of higher polyiodine and polyiodides compounds. (orig.)

  15. Thermochemical Equilibrium Model of Synthetic Natural Gas Production from Coal Gasification Using Aspen Plus

    Directory of Open Access Journals (Sweden)

    Rolando Barrera

    2014-01-01

    Full Text Available The production of synthetic or substitute natural gas (SNG from coal is a process of interest in Colombia where the reserves-to-production ratio (R/P for natural gas is expected to be between 7 and 10 years, while the R/P for coal is forecasted to be around 90 years. In this work, the process to produce SNG by means of coal-entrained flow gasifiers is modeled under thermochemical equilibrium with the Gibbs free energy approach. The model was developed using a complete and comprehensive Aspen Plus model. Two typical technologies used in entrained flow gasifiers such as coal dry and coal slurry are modeled and simulated. Emphasis is put on interactions between the fuel feeding technology and selected energy output parameters of coal-SNG process, that is, energy efficiencies, power, and SNG quality. It was found that coal rank does not significantly affect energy indicators such as cold gas, process, and global efficiencies. However, feeding technology clearly has an effect on the process due to the gasifying agent. Simulations results are compared against available technical data with good accuracy. Thus, the proposed model is considered as a versatile and useful computational tool to study and optimize the coal to SNG process.

  16. Thermochemical cycles for energy storage: Thermal decomposition of ZnCO sub 4 systems

    Energy Technology Data Exchange (ETDEWEB)

    Wentworth, W.E. (Houston Univ., TX (United States))

    1992-04-01

    The overall objective of our research has been to develop thermochemical cycles that can be used for energy storage. A specific cycle involving ammonium hydrogen sulfate (NH{sub 4}HSO{sub 4}) has been proposed. Each reaction in the proposed cycle has been examined experimentally. Emphasis has been placed on the basic chemistry of these reactions. In the concluding phase of this research, reported herein, we have shown that when NH{sub 4}HSO{sub 4} is mixed with ZnO and decomposed, the resulting products can be released stepwise (H{sub 2}A{sub (g)} at {approximately}163{degrees}C, NH{sub 3(g)} at 365--418{degrees}C, and a mixture of SO{sub 2(g)} and SO{sub 3(g)} at {approximately}900{degrees}C) and separated by controlling the reaction temperature. Side reactions do not appear to be significant and the respective yields are high as would be required for the successful use of this energy storage reaction in the proposed cycle. Thermodynamic, kinetic, and other reaction parameters have been measured for the various steps of the reaction. Finally we have completed a detailed investigation of one particular reaction: the thermal decomposition of zinc sulfate (ZnSO{sub 4}). We have demonstrated that this reaction can be accelerated and the temperature required reduced by the addition of excess ZnO, V{sub 2}A{sub 5} and possibly other metal oxides.

  17. The flammability limits of lean fuel-air mixtures: thermochemical and kinetic criteria for explosion hazards.

    Science.gov (United States)

    Burgess, D; Hertzberg, M

    1975-01-01

    The present state of knowledge is reviewed concisely in terms of the experimental methods used, the effect of apparatus size, accuracy of data, methods of data presentation, and the sensitivity of the limits to initial temperature and pressure. The heat of combustion per mole of gas mixture at the lean limit is a reliable thermochemical criterion for the flammability of organic fuels with comparable reactivities. The limit calorific value for the heavy paraffins is 11.5 +/- 0.1 kcal mole -1. However, kinetic effects strongly influence this value. Highly reactive fuels (hydrogen, acetylene) require lower energy contents, whereas less reactive fuels (ammonia) require higher values. Hydrogen-starved fuels (carbon monoxide, cyanogen) show marked anomalies and are sensitive to impurities that can provide H-atom chain carriers. These kinetic effects are reflected in the experimentally measurable burning velocity of the fuel. This parameter is a key ingredient in the theory of flammable limits, which is briefly sketched. Five competing processes dissipate power from the combustion wave and quench it at some characteristic limit velocity. The prevalent consensus that the limits are controlled by natural convection is clearly demonstrated, and the complex interplay of kinetics and thermochemistry follows logically therefrom.

  18. Electrochemical hydrogen production from thermochemical cycles using a proton exchange membrane electrolyzer

    Energy Technology Data Exchange (ETDEWEB)

    Sivasubramanian, PremKumar; Ramasamy, Ramaraja P.; Holland, Charles E.; Weidner, John W. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Freire, Francisco J. [Chlorine Recycle Consultants, Miami Beach, FL 33140 (United States)

    2007-03-15

    The electrochemical step in two thermochemical cycles for hydrogen production is reported. One cycle involves the electrochemical oxidation of sulfur dioxide to sulfuric acid (both water and SO{sub 2} are reactants). The other cycle involves the oxidation of anhydrous hydrogen bromide to bromine (anhydrous HBr is the only reactant). In both cycles, protons are reduced at the cathode to produce hydrogen. The novelty of this work is that both anode reactions are carried out in the gas phase of a proton exchange membrane (PEM) electrolyzer, which enhances the transport rate of reactants to the electrode surface. The HBr process achieved 2.0A/cm{sup 2} at 1.91 V. The SO{sub 2} process reached 0.4A/cm{sup 2}, but behind this current density the cell experienced mass transfer limitations of water across the membrane. However, the voltage required to achieve 0.4A/cm{sup 2} was 0.835 V, compared to 1.025 V for the HBr process at this current density. (author)

  19. Thermochemical pretreatments of organic fraction of municipal solid waste from a mechanical-biological treatment plant.

    Science.gov (United States)

    Álvarez-Gallego, Carlos José; Fdez-Güelfo, Luis Alberto; de los Ángeles Romero Aguilar, María; Romero García, Luis Isidoro

    2015-02-09

    The organic fraction of municipal solid waste (OFMSW) usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT) plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC), soluble chemical oxygen demand (sCOD), total volatile fatty acids (TVFA) and acidogenic substrate as carbon (ASC). The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160-180-200 °C, 3.5-5.0-6.5 bar and 2-3-4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process.

  20. Evaluation of thermochemical pretreatment and continuous thermophilic condition in rice straw composting process enhancement.

    Science.gov (United States)

    Hosseini, Seyed Mohammad; Abdul Aziz, Hamidi

    2013-04-01

    The effects of thermochemical pretreatment and continuous thermophilic conditions on the composting of a mixture of rice straw residue and cattle manure were investigated using a laboratory-scale composting reactor. Results indicate that the composting period of rice straw can be shortened to less than 10 days by applying alkali pre-treatment and continuous thermophilic composting conditions. The parameters obtained on day 9 of this study are similar to the criteria level published by the Canadian Council of Ministers of the Environment. The moisture content, organic matter reduction, pH level, electrical conductivity, total organic carbon reduction, soluble chemical oxygen demand reduction, total Kjeldahl nitrogen, carbon-to-nitrogen ratio, and germination index were 62.07%, 16.99%, 7.30%, 1058 μS/cm, 17.00%, 83.43%, 2.06%, 16.75%, and 90.33%, respectively. The results of this study suggest that the application of chemical-biological integrated processes under thermophilic conditions is a novel method for the rapid degradation and maturation of rice straw residue.

  1. Thermochemical pretreatment of lignocellulose to enhance methane fermentation: II. Evaluation and application of pretreatment model.

    Science.gov (United States)

    Baugh, K D; Levy, J A; McCarty, P L

    1988-01-01

    A model was developed and evaluated as a tool for predicting the formation of soluble products from staged thermochemical treatment of lignocellulosic materials under acidic conditions typical of autohydrolysis. The model was used to predict the general trend of hemi-cellulose and cellulose hydrolysis between pH 2 and 4 and temperatures of 170-230 degrees C, and results were compared with experimental data. When the model was evaluated for this range of temperatures and pH values, results indicated: (1) a relatively low temperature (175 degrees C) during the first stage allows hydrolysis of the hemi-cellulose polysaccharides without significant mono-saccharide decomposition, (2) subsequent stages at higher temperatures (equal or greater than 200 degrees C) are needed for significant cellulose hydrolysis, but glucose decomposition will also occur, and, (3) a pH in the range of 2-2.5 will enhance polysaccharide hydrolysis while limiting monosaccharide decomposition. The model's predictions, indicating that the formation of biodegradable products could be optimized using Pretreatments at pH 2-2.5 for the pH range evaluated, were confirmed in experiments with white fir as a representative lig nocellulose.

  2. Thermochemical pretreatment and anaerobic digestion of dairy cow manure: Experimental and economic evaluation.

    Science.gov (United States)

    Passos, Fabiana; Ortega, Valentina; Donoso-Bravo, Andrés

    2017-03-01

    The aim of this study was to assess technically and economically the application thermochemical pretreatment in the anaerobic digestion of dairy cow manure. After selecting the optimum substrate to inoculum (S/I) ratio in a preliminary BMP test, the following tests compared 20 different pretreatment conditions varying temperature (100 and 37°C), exposure time (5 and 30min and 12 and 24h) and chemical doses (0.5, 2, 6 and 10% of HCl or NaOH). The highest value of maximum production rate was achieved at an S/I ratio of 0.25gVSsgVSi(-1). The major improvements of the methane potential were 23.6% with 10% of NaOH at 100°C for 5min and 20.6% with 2% of HCl at 37°C. The technical-economic analysis showed that the implementation of neither thermal alkali nor thermal-acid pretreatment would be feasible and the conventional one-step anaerobic digestion outperforms both alternatives.

  3. Thermochemical Properties of Hydrophilic Polymers from Cashew and Khaya Exudates and Their Implications on Drug Delivery

    Directory of Open Access Journals (Sweden)

    Emmanuel O. Olorunsola

    2016-01-01

    Full Text Available Characterization of a polymer is essential for determining its suitability for a particular purpose. Thermochemical properties of cashew gum (CSG extracted from exudates of Anacardium occidentale L. and khaya gum (KYG extracted from exudates of Khaya senegalensis were determined and compared with those of acacia gum BP (ACG. The polymers were subjected to different thermal and chemical analyses. Exudates of CSG contained higher amount of hydrophilic polymer. The pH of 2% w/v gum dispersions was in the order KYG < CSG < ACG. Calcium was the predominant ion in CSG while potassium was predominant in KYG. The FTIR spectra of CSG and KYG were similar and slightly different from that of ACG. Acacia and khaya gums exhibited the same thermal behaviour which is different from that of CSG. X-ray diffraction revealed that the three gums are the same type of polymer, the major difference being the concentration of metal ions. This work suggests the application of cashew gum for formulation of basic and oxidizable drugs while using khaya gum for acidic drugs.

  4. Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b.

    Science.gov (United States)

    Stevenson, Kevin B; Harrington, Joseph; Nymeyer, Sarah; Madhusudhan, Nikku; Seager, Sara; Bowman, William C; Hardy, Ryan A; Deming, Drake; Rauscher, Emily; Lust, Nate B

    2010-04-22

    The nearby extrasolar planet GJ 436b-which has been labelled as a 'hot Neptune'-reveals itself by the dimming of light as it crosses in front of and behind its parent star as seen from Earth. Respectively known as the primary transit and secondary eclipse, the former constrains the planet's radius and mass, and the latter constrains the planet's temperature and, with measurements at multiple wavelengths, its atmospheric composition. Previous work using transmission spectroscopy failed to detect the 1.4-mum water vapour band, leaving the planet's atmospheric composition poorly constrained. Here we report the detection of planetary thermal emission from the dayside of GJ 436b at multiple infrared wavelengths during the secondary eclipse. The best-fit compositional models contain a high CO abundance and a substantial methane (CH(4)) deficiency relative to thermochemical equilibrium models for the predicted hydrogen-dominated atmosphere. Moreover, we report the presence of some H(2)O and traces of CO(2). Because CH(4) is expected to be the dominant carbon-bearing species, disequilibrium processes such as vertical mixing and polymerization of methane into substances such as ethylene may be required to explain the hot Neptune's small CH(4)-to-CO ratio, which is at least 10(5) times smaller than predicted.

  5. Hydrogen production via thermochemical water-splitting by lithium redox reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Naoya [Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Miyaoka, Hiroki, E-mail: miyaoka@h2.hiroshima-u.ac.jp [Institute for Sustainable Sciences and Development, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Ichikawa, Takayuki; Kojima, Yoshitsugu [Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan); Institute for Advanced Materials Research, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8530 (Japan)

    2013-12-15

    Highlights: •Hydrogen production via water-splitting by lithium redox reactions possibly proceeds below 800 °C. •Entropy control by using nonequilibrium technique successfully reduces the reaction temperature. •The operating temperature should be further reduced by optimizing the nonequilibrium condition to control the cycle. -- Abstracts: Hydrogen production via thermochemical water-splitting by lithium redox reactions was investigated as energy conversion technique. The reaction system consists of three reactions, which are hydrogen generation by the reaction of lithium and lithium hydroxide, metal separation by thermolysis of lithium oxide, and oxygen generation by hydrolysis of lithium peroxide. The hydrogen generation reaction completed at 500 °C. The metal separation reaction is thermodynamically difficult because it requires about 3400 °C in equilibrium condition. However, it was indicated from experimental results that the reaction temperature was drastically reduced to 800 °C by using nonequilibrium technique. The hydrolysis reaction was exothermic reaction, and completed by heating up to 300 °C. Therefore, it was expected that the water-splitting by lithium redox reactions was possibly operated below 800 °C under nonequilibrium condition.

  6. Thermochemical hydrogen sensor based on Pt-coated nanofiber catalyst deposited on pyramidally textured thermoelectric film

    Science.gov (United States)

    Kim, Seil; Song, Yoseb; Lee, Young-In; Choa, Yong-Ho

    2017-09-01

    The hydrogen gas-sensing performance has been systemically investigated of a new type of thermochemical hydrogen (TCH) sensor, composed of pyramidally textured thermoelectric (TE) film and catalytic Pt-coated nanofibers (NFs) deposited over the TE film. The TE film was composed of stoichiometric Bi2Te3, synthesized by means of cost-effective electrochemical deposition onto a textured silicon wafer. The resulting pyramidally textured TE film played a critical role in maximizing hydrogen gas flow around the overlying Pt NFs, which were synthesized by means of electrospinning followed by sputtering and acted as a heating catalyst. The optimal temperature increase of the Pt NFs was determined by means of optimizations of the electrospinning and sputtering durations. The output voltage signal of the optimized TCH sensor based on Pt NFs was 17.5 times higher than that of a Pt thin film coated directly onto the pyramidal TE material by using the same sputtering duration, under the fixed conditions of 3 vol% H2 in air at room temperature. This observation can be explained by the increased surface area of (111) planes accessible on the Pt-coated NFs. The best response time and recovery time observed for the optimized TCH sensor based on Pt-coated NFs were respectively 17 and 2 s under the same conditions. We believe that this type of TCH sensor can be widely used for supersensitive hydrogen gas detection by employing small-size Pt NFs and various chalcogenide thin films with high thermoelectric performance.

  7. Overview of current biological and thermo-chemical treatment technologies for sustainable sludge management.

    Science.gov (United States)

    Zhang, Linghong; Xu, Chunbao Charles; Champagne, Pascale; Mabee, Warren

    2014-07-01

    Sludge is a semi-solid residue produced from wastewater treatment processes. It contains biodegradable and recalcitrant organic compounds, as well as pathogens, heavy metals, and other inorganic constituents. Sludge can also be considered a source of nutrients and energy, which could be recovered using economically viable approaches. In the present paper, several commonly used sludge treatment processes including land application, composting, landfilling, anaerobic digestion, and combustion are reviewed, along with their potentials for energy and product recovery. In addition, some innovative thermo-chemical techniques in pyrolysis, gasification, liquefaction, and wet oxidation are briefly introduced. Finally, a brief summary of selected published works on the life cycle assessment of a variety of sludge treatment and end-use scenarios is presented in order to better understand the overall energy balance and environmental burdens associated with each sludge treatment pathway. In all scenarios investigated, the reuse of bioenergy and by-products has been shown to be of crucial importance in enhancing the overall energy efficiency and reducing the carbon footprint.

  8. Solar thermochemical and electrochemical research - how they can help reduce the carbon dioxide burden

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, E.A. [Minnesota Univ., Minneapolis, MN (United States). Dept. of Mechanical Engineering

    1996-07-01

    Any process which decreases the use of fossil fuels as a prime energy source will be used only if it is attractive to industry. To be attractive, an alternative energy source must be cost effective. The only alternative prime energy sources which appear likely to be cost effective in the foreseeable future are nuclear fission and the various manifestations of solar. Fission, no matter how well it is engineered on earth, can cause major disasters because of human error; its apparent cost effectiveness is illusory. Thermonuclear fusion energy is no closer to fruition than it was fifty years ago, when it was first proposed. Solar energy is thermonuclear fusion. The source is far removed from humans. We can`t manipulate the safety devices. The realization that one cannot divorce nuclear energy from the hazards of human error and malice is already a given in public policy. Being a 5800K source, solar is most efficiently used when it is directly absorbed at the site of an endothermic reaction at the highest practicable temperature. In recognizing the special thermodynamic attributes of solar energy, for the past 20 years my students and I have explored various solar thermochemical and solar thermoelectrochemical processes. This paper presents a summary of some of our pertinent observations and suggests directions that I believe future research and development should take. (UK)

  9. Thermochemical Characterizations of Novel Vermiculite-LiCl Composite Sorbents for Low-Temperature Heat Storage

    Directory of Open Access Journals (Sweden)

    Yannan Zhang

    2016-10-01

    Full Text Available To store low-temperature heat below 100 °C, novel composite sorbents were developed by impregnating LiCl into expanded vermiculite (EVM in this study. Five kinds of composite sorbents were prepared using different salt concentrations, and the optimal sorbent for application was selected by comparing both the sorption characteristics and energy storage density. Textural properties of composite sorbents were obtained by extreme-resolution field emission scanning electron microscopy (ER-SEM and an automatic mercury porosimeter. After excluding two composite sorbents which would possibly exhibit solution leakage in practical thermal energy storage (TES system, thermochemical characterizations were implemented through simulative sorption experiments at 30 °C and 60% RH. Analyses of thermogravimetric analysis/differential scanning calorimetry (TGA/DSC curves indicate that water uptake of EVM/LiCl composite sorbents is divided into three parts: physical adsorption of EVM, chemical adsorption of LiCl crystal, and liquid–gas absorption of LiCl solution. Energy storage potential was evaluated by theoretical calculation based on TGA/DSC curves. Overall, EVMLiCl20 was selected as the optimal composite sorbent with water uptake of 1.41 g/g, mass energy storage density of 1.21 kWh/kg, and volume energy storage density of 171.61 kWh/m3.

  10. Thermochemical reaction mechanism of lead oxide with poly(vinyl chloride) in waste thermal treatment.

    Science.gov (United States)

    Wang, Si-Jia; Zhang, Hua; Shao, Li-Ming; Liu, Shu-Meng; He, Pin-Jing

    2014-12-01

    Poly(vinyl chloride) (PVC) as a widely used plastic that can promote the volatilization of heavy metals during the thermal treatment of solid waste, thus leading to environmental problems of heavy metal contamination. In this study, thermogravimetric analysis (TGA) coupled with differential scanning calorimeter, TGA coupled with Fourier transform infrared spectroscopy and lab-scale tube furnace experiments were carried out with standard PVC and PbO to explicate the thermochemical reaction mechanism of PVC with semi-volatile lead. The results showed that PVC lost weight from 225 to 230°C under both air and nitrogen with an endothermic peak, and HCl and benzene release were also detected. When PbO was present, HCl that decomposed from PVC instantly reacted with PbO via an exothermal gas-solid reaction. The product was solid-state PbCl2 at 501°C, PbCl2 melted, volatilized and transferred into flue gas or condensed into fly ash. Almost all PbCl2 volatilized above 900°C, while PbO just started to volatilize slowly at this temperature. Therefore, the chlorination effect of PVC on lead was apt to lower-temperature and rapid. Without oxygen, Pb2O was generated due to the deoxidizing by carbon, with oxygen, the amount of residual Pb in the bottom ash was significantly decreased.

  11. Occurrence of the Bunsen side reaction in the sulfur-iodine thermochemical cycle for hydrogen production

    Institute of Scientific and Technical Information of China (English)

    Qiao-qiao ZHU; Yan-wei ZHANG; Zhi YING; Jun-hu ZHOU; Zhi-hua WANG; Ke-fa CEN

    2013-01-01

    This study aimed to establish a closed-cycle operation technology with high thermal efficiency in the thermochemical sulfur-iodine cycle for large-scale hydrogen production.A series of experimental studies were performed to investigate the occurrence of side reactions in both the H2SO4 and HIx phases from the H2SO4/HI/I2/H2O quaternary system within a constant temperature range of 323-363 K.The effects of iodine content,water content and reaction temperature on the side reactions were evaluated.The results showed that an increase in the reaction temperature promoted the side reactions.However,they were prevented as the iodine or water content increased.The occurrence of side reactions was faster in kinetics and more intense in the H2SO4 phase than in the HIx phase.The sulfur or hydrogen sulfide formation reaction or the reverse Bunsen reaction was validated under certain conditions.

  12. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment.

    Science.gov (United States)

    Havukainen, Jouni; Nguyen, Mai Thanh; Hermann, Ludwig; Horttanainen, Mika; Mikkilä, Mirja; Deviatkin, Ivan; Linnanen, Lassi

    2016-03-01

    All life forms require phosphorus (P), which has no substitute in food production. The risk of phosphorus loss from soil and limited P rock reserves has led to the development of recycling P from industrial residues. This study investigates the potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment (ASH DEC) in Finland. An ASH DEC plant could receive 46-76 kt/a of sewage sludge ash to produce 51-85 kt/a of a P-rich product with a P2O5 content of 13-18%, while 320-750 kt/a of manure ash could be supplied to produce 350-830 kt/a of a P-rich product with a P content of 4-5%. The P2O5 potential in the total P-rich product from the ASH DEC process using sewage sludge and manure ash is estimated to be 25-47 kt/a, which is significantly more than the P fertilizer demand in Finland's agricultural industries. The energy efficiency of integrated incineration and the ASH DEC process is more dependent on the total solid content and the subsequent need for mechanical dewatering and thermal drying than on the energy required by the ASH DEC process. According to the results of this study, the treated sewage sludge and manure ash using the ASH DEC process represent significant potential phosphorus sources for P fertilizer production.

  13. Efficiency at maximum power of thermochemical engines with near-independent particles.

    Science.gov (United States)

    Luo, Xiaoguang; Liu, Nian; Qiu, Teng

    2016-03-01

    Two-reservoir thermochemical engines are established by using near-independent particles (including Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein particles) as the working substance. Particle and heat fluxes can be formed based on the temperature and chemical potential gradients between two different reservoirs. A rectangular-type energy filter with width Γ is introduced for each engine to weaken the coupling between the particle and heat fluxes. The efficiency at maximum power of each particle system decreases monotonously from an upper bound η(+) to a lower bound η(-) when Γ increases from 0 to ∞. It is found that the η(+) values for all three systems are bounded by η(C)/2 ≤ η(+) ≤ η(C)/(2-η(C)) due to strong coupling, where η(C) is the Carnot efficiency. For the Bose-Einstein system, it is found that the upper bound is approximated by the Curzon-Ahlborn efficiency: η(CA)=1-sqrt[1-η(C)]. When Γ → ∞, the intrinsic maximum powers are proportional to the square of the temperature difference of the two reservoirs for all three systems, and the corresponding lower bounds of efficiency at maximum power can be simplified in the same form of η(-)=η(C)/[1+a(0)(2-η(C))].

  14. Experimental proof of concept of a pilot-scale thermochemical storage unit

    Science.gov (United States)

    Tescari, Stefania; Singh, Abhishek; de Oliveira, Lamark; Breuer, Stefan; Agrafiotis, Christos; Roeb, Martin; Sattler, Christian; Marcher, Johnny; Pagkoura, Chrysa; Karagiannakis, George; Konstandopoulos, Athanasios G.

    2017-06-01

    The present study presents installation and operation of the first pilot scale thermal storage unit based on thermochemical redox-cycles. The reactive core is composed of a honeycomb ceramic substrate, coated with cobalt oxide. This concept, already analyzed and presented at lab-scale, is now implemented at a larger scale: a total of 280 kg of storage material including 90 kg of cobalt oxide. The storage block was implemented inside an existing solar facility and connected to the complete experimental set-up. This experimental set-up is presented, with focus on the measurement system and the possible improvement for a next campaign. Start-up and operation of the system is described during the first complete charge-discharge cycle. The effect of the chemical reaction on the stored capacity is clearly detected by analysis of the temperature distribution data obtained during the experiments. Furthermore two consecutive cycles show no evident loss of reactivity inside the material. The system is cycled between 650°C and 1000°C. In this temperature range, the total energy stored was about 50 kWh, corresponding to an energy density of 630 kJ/kg. In conclusion, the concept feasibility was successfully shown, together with a first calculation on the system performance.

  15. Definitive ideal-gas thermochemical functions of the H$_2$$^{16}$O molecule

    CERN Document Server

    Furtenbacher, Tibor; Hruby, Jan; Kyuberis, Aleksandra A; Zobov, Nikolai F; Polyansky, Oleg L; Tennyson, Jonathan; Császár, Attila G

    2016-01-01

    $Q_{\\rm int}$($T$), of the H$_2$$^{16}$O molecule is reported for temperatures between 0 and 6000 K. Determination of $Q_{\\rm int}$($T$) is principally based on the direct summation technique involving all accurate experimental energy levels known for H$_2$$^{16}$O (almost 20~000 rovibrational energies including an almost complete list up to a relative energy of 7500 \\cm), augmented with a less accurate but complete list of first-principles computed rovibrational energy levels up to the first dissociation limit, about 41~000 \\cm\\ (the latter list includes close to one million bound rovibrational energy levels up to $J = 69$, where $J$ is the rotational quantum number). Partition functions are developed for {\\it ortho}- and {\\it para}-H$_2$$^{16}$O as well as for their equilibrium mixture. Unbound rovibrational states above the first dissociation limit are considered using an approximate model treatment. The effect of the excited electronic states on the thermochemical functions is neglected, as their contribu...

  16. Efficiency at maximum power of thermochemical engines with near-independent particles

    Science.gov (United States)

    Luo, Xiaoguang; Liu, Nian; Qiu, Teng

    2016-03-01

    Two-reservoir thermochemical engines are established by using near-independent particles (including Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein particles) as the working substance. Particle and heat fluxes can be formed based on the temperature and chemical potential gradients between two different reservoirs. A rectangular-type energy filter with width Γ is introduced for each engine to weaken the coupling between the particle and heat fluxes. The efficiency at maximum power of each particle system decreases monotonously from an upper bound η+ to a lower bound η- when Γ increases from 0 to ∞ . It is found that the η+ values for all three systems are bounded by ηC/2 ≤η+≤ηC/(2 -ηC ) due to strong coupling, where ηC is the Carnot efficiency. For the Bose-Einstein system, it is found that the upper bound is approximated by the Curzon-Ahlborn efficiency: ηCA=1 -√{1 -ηC } . When Γ →∞ , the intrinsic maximum powers are proportional to the square of the temperature difference of the two reservoirs for all three systems, and the corresponding lower bounds of efficiency at maximum power can be simplified in the same form of η-=ηC/[1 +a0(2 -ηC ) ] .

  17. Thermochemical Study of Coordination of Holmium Chloride Hydrate with Diethylammonium Diethyldithiocarbamate

    Institute of Scientific and Technical Information of China (English)

    ZHAO Feng-qi; CHEN San-ping; JIAO Bao-juan; REN Yi-xia; GAO Sheng-li; SHI Qi-zhen

    2004-01-01

    The complex of holmium chloride hydrate with diethylammonium diethyldithiocarbamate(D-DDC) was synthesized via mixing their solutions in absolute alcohol under a dry N2 atmosphere. The elemental and chemical analyses show that the complex has the general formula Et2NH2[Ho(S2CNEt2)4]. It was also characterized by IR spectroscopy. The enthalpies of the dissolution of holmium chloride hydrate and D-DDC in absolute alcohol at 298.15 K, and the enthalpy changes of liquid-phase reactions of the formation of Et2NH2[Ho(S2CNEt2)4] at different temperatures were determined by microcalorimetry. On the basis of experimental and calculated results, three thermodynamic parameters(the activation enthalpy, the activation entropy and the activation free energy), the rate constant and three kinetic parameters(the apparent activation energy, the pre-exponential constant and the reaction order) of the liquid-phase reaction of the complex formation were obtained. The enthalpy change of the solid-phase complex formation reaction at 298.15 K was calculated by means of a thermochemical cycle.

  18. ABO3 (A = La, Ba, Sr, K; B = Co, Mn, Fe) perovskites for thermochemical energy storage

    Science.gov (United States)

    Babiniec, Sean M.; Coker, Eric N.; Ambrosini, Andrea; Miller, James E.

    2016-05-01

    The use of perovskite oxides as a medium for thermochemical energy storage (TCES) in concentrating solar power systems is reported. The known reduction/oxidation (redox) active perovskites LaxSr1-xCoyMn1-yO3 (LSCM) and LaxSr1-xCoyFe1-yO3 (LSCF) were chosen as a starting point for such research. Materials of the LSCM and LSCF family were previously synthesized, their structure characterized, and thermodynamics reported for TCES operation. Building on this foundation, the reduction onset temperatures are examined for LSCM and LSCF compositions. The reduction extents and onset temperatures are tied to the crystallographic phase and reaction enthalpies. The effect of doping with Ba and K is discussed, and the potential shortcomings of this subset of materials families for TCES are described. The potential for long-term stability of the most promising material is examined through thermogravimetric cycling, scanning electron microscopy, and dilatometry. The stability over 100 cycles (450-1050 °C) of an LSCM composition is demonstrated.

  19. Thermochemical remanence in single-domain particle assemblages can lead to paleointensity overestimates

    Science.gov (United States)

    Fabian, K.

    2009-04-01

    Single-domain (SD) particle ensembles are the best studied systems in rock magnetism. Yet, even for this simple system, a complete theoretical treatment of the acquisition of thermochemical remanent magnetization (TCRM) is missing. Based on the SD theory of chemical-remanent magnetization (CRM), it is generally taken for granted that TCRM acquisition is less efficient than acquisition of a thermoremanent magnetization (TRM), and that consequently the paleofield intensity is inevitably underestimated when a TCRM is interpreted as a TRM. Here it is shown that this conclusion holds only when a continuous chemical change (e.g. grain growth) takes place during remanence blocking. In cases where an initial TRM, at a later time and at lower temperature, is modified by chemical processes, the final TCRM can result in considerable paleofield overestimation when interpreted as a TRM. This is demonstrated for two different scenarios. First, partial grain dissolution after TRM acquisition and second, low-temperature oxidation. These mechanisms are not unlikely to occur in nature, and numerical experiments indicate that both would lead to perfectly straight Arai plots, which make such SD TCRMs indistinguishable from true TRMs in the Thellier experiment.

  20. Thermochemical model for shock-induced chemical reactions in porous thermite: The heat detonation model

    Energy Technology Data Exchange (ETDEWEB)

    Boslough, M.B.

    1989-01-01

    A thermochemical model has been developed that treats a shock-induced solid state chemical reaction as a special type of detonation, called a ''heat detonation'' to distinguish it from an ordinary explosive detonation and describe the final form that the chemical energy takes. According to shock temperature measurements, chemical energy can be released from porous reactive solids on a time scale shorter than shock-transit times in laboratory samples. By comparing the experimental shock temperature for porous thermite to that calculated by the model, the amount of thermite reacted when shocked to about 4 GPa was estimated to be between 60 and 70%. Calculated shock temperatures are extremely strong functions of the extent of reaction, but are relatively insensitive to the initial porosity and amount of volatile impurities. Thus, shock temperature measurements are the most useful for real-time studies of shock-induced exothermic chemical reactions in solids. 11 refs., 5 figs., 1 tab.

  1. Solar Hydrogen Production via a Samarium Oxide-Based Thermochemical Water Splitting Cycle

    Directory of Open Access Journals (Sweden)

    Rahul Bhosale

    2016-04-01

    Full Text Available The computational thermodynamic analysis of a samarium oxide-based two-step solar thermochemical water splitting cycle is reported. The analysis is performed using HSC chemistry software and databases. The first (solar-based step drives the thermal reduction of Sm2O3 into Sm and O2. The second (non-solar step corresponds to the production of H2 via a water splitting reaction and the oxidation of Sm to Sm2O3. The equilibrium thermodynamic compositions related to the thermal reduction and water splitting steps are determined. The effect of oxygen partial pressure in the inert flushing gas on the thermal reduction temperature (TH is examined. An analysis based on the second law of thermodynamics is performed to determine the cycle efficiency (ηcycle and solar-to-fuel energy conversion efficiency (ηsolar−to−fuel attainable with and without heat recuperation. The results indicate that ηcycle and ηsolar−to−fuel both increase with decreasing TH, due to the reduction in oxygen partial pressure in the inert flushing gas. Furthermore, the recuperation of heat for the operation of the cycle significantly improves the solar reactor efficiency. For instance, in the case where TH = 2280 K, ηcycle = 24.4% and ηsolar−to−fuel = 29.5% (without heat recuperation, while ηcycle = 31.3% and ηsolar−to−fuel = 37.8% (with 40% heat recuperation.

  2. Thermochemical and Vapor Pressure Behavior of Anthracene and Brominated Anthracene Mixtures.

    Science.gov (United States)

    Fu, Jinxia; Suuberg, Eric M

    2013-03-25

    The present work concerns the thermochemical and vapor pressure behavior of the anthracene (1) + 2-bromoanthracene (2) and anthracene (1) + 9-bromoanthracene (3) systems. Solid-liquid equilibrium temperature and differential scanning calorimetry studies indicate the existence of a minimum melting solid state near an equilibrium temperature of 477.65 K at x1 = 0.74 for the (1) + (2) system. Additionally, solid-vapor equilibrium studies for the (1) + (2) system show that the vapor pressure of the mixtures depends on composition, but does not follow ideal Raoult's law behaviour. The (1) + (3) system behaves differently from the (1) + (2) system. The (1) + (3) system has a solid solution like phase diagram. The system consists of two phases, an anthracene like phase and a 9-bromoanthracene like phase, while (1) + (2) mixtures only form a single phase. Moreover, experimental studies of the two systems suggest that the (1) + (2) system is in a thermodynamically lower energy state than the (1) + (3) system.

  3. Thermochemical Properties of Hydrophilic Polymers from Cashew and Khaya Exudates and Their Implications on Drug Delivery

    Science.gov (United States)

    Bhatia, Partap G.; Tytler, Babajide A.; Adikwu, Michael U.

    2016-01-01

    Characterization of a polymer is essential for determining its suitability for a particular purpose. Thermochemical properties of cashew gum (CSG) extracted from exudates of Anacardium occidentale L. and khaya gum (KYG) extracted from exudates of Khaya senegalensis were determined and compared with those of acacia gum BP (ACG). The polymers were subjected to different thermal and chemical analyses. Exudates of CSG contained higher amount of hydrophilic polymer. The pH of 2% w/v gum dispersions was in the order KYG < CSG < ACG. Calcium was the predominant ion in CSG while potassium was predominant in KYG. The FTIR spectra of CSG and KYG were similar and slightly different from that of ACG. Acacia and khaya gums exhibited the same thermal behaviour which is different from that of CSG. X-ray diffraction revealed that the three gums are the same type of polymer, the major difference being the concentration of metal ions. This work suggests the application of cashew gum for formulation of basic and oxidizable drugs while using khaya gum for acidic drugs. PMID:27990303

  4. Thermochemical Pretreatments of Organic Fraction of Municipal Solid Waste from a Mechanical-Biological Treatment Plant

    Directory of Open Access Journals (Sweden)

    Carlos José Alvarez-Gallego

    2015-02-01

    Full Text Available The organic fraction of municipal solid waste (OFMSW usually contains high lignocellulosic and fatty fractions. These fractions are well-known to be a hard biodegradable substrate for biological treatments and its presence involves limitations on the performance of anaerobic processes. To avoid this, thermochemical pretreatments have been applied on the OFMSW coming from a full-scale mechanical-biological treatment (MBT plant, in order to pre-hydrolyze the waste and improve the organic matter solubilisation. To study the solubilisation yield, the increments of soluble organic matter have been measured in terms of dissolved organic carbon (DOC, soluble chemical oxygen demand (sCOD, total volatile fatty acids (TVFA and acidogenic substrate as carbon (ASC. The process variables analyzed were temperature, pressure and NaOH dosage. The levels of work for each variable were three: 160–180–200 °C, 3.5–5.0–6.5 bar and 2–3–4 g NaOH/L. In addition, the pretreatment time was also modified among 15 and 120 min. The best conditions for organic matter solubilisation were 160 °C, 3 g NaOH/L, 6.5 bar and 30 min, with yields in terms of DOC, sCOD, TVFA and ASC of 176%, 123%, 119% and 178% respectively. Thus, predictably the application of this pretreatment in these optimum conditions could improve the H2 production during the subsequent Dark Fermentation process.

  5. Thermochemically evolved nanoplatelets of bismuth selenide with enhanced thermoelectric figure of merit

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Zulfiqar; Cao, Chuanbao, E-mail: cbcao@bit.edu.cn; Butt, Faheem K.; Tahir, Muhammad; Tanveer, M.; Aslam, Imran; Rizwan, Muhammad; Idrees, Faryal; Khalid, Syed [Research Centre of Materials Science, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Butt, Sajid [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-11-15

    We firstly present a simple thermochemical method to fabricate high-quality Bi{sub 2}Se{sub 3} nanoplatelets with enhanced figure of merit using elemental bismuth and selenium powders as precursors. The crystal structure of as synthesized products is characterized via X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM) measurements. Morphological and chemical synthetic parameters are investigated through a series of experiments; thickness and composition of the platelets are well controlled in large scale production. Subsequently spark plasma sintering (SPS) is performed to fabricate n-type nanostructured bulk thermoelectric materials. Raman Spectroscopy of the two selected samples with approximately of 50 and 100 nm thicknesses shows three vibrational modes. The lower thickness sample exhibits the maximum red shift of about 2.17 cm{sup -1} and maximum broadening of about 10 cm{sup -1} by in-plane vibrational mode E{sup 2}{sub g}. The enhanced value of figure of merit ∼0.41 is obtained for pure phase bismuth selenide to the best of our knowledge. We observe metallic conduction behavior while semiconducting behavior for nanostructured bismuth selenide is reported elsewhere which could be due to different synthetic techniques adopted. These results clearly suggest that our adopted synthetic technique has profound effect on the electronic and thermoelectric transport properties of this material.

  6. Crystal Sinking Modeling for Designing Iodine Crystallizer in Thermochemical Sulfur-Iodine Hydrogen Production Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byung Heung [Korea National University of Transportation, Chungju (Korea, Republic of); Jeong, Seong-Uk [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kang, Jeong Won [Korea University, Seoul (Korea, Republic of)

    2014-12-15

    SI process is a thermochemical process producing hydrogen by decomposing water while recycling sulfur and iodine. Various technologies have been developed to improve the efficiency on Section III of SI process, where iodine is separated and recycled. EED(electro-electrodialysis) could increase the efficiency of Section III without additional chemical compounds but a substantial amount of I{sub 2} from a process stream is loaded on EED. In order to reduce the load, a crystallization technology prior to EED is considered as an I{sub 2} removal process. In this work, I{sub 2} particle sinking behavior was modeled to secure basic data for designing an I{sub 2} crystallizer applied to I{sub 2}-saturated HI{sub x} solutions. The composition of HI{sub x} solution was determined by thermodynamic UVa model and correlation equations and pure properties were used to evaluate the solution properties. A multiphysics computational tool was utilized to calculate particle sinking velocity changes with respect to I{sub 2} particle radius and temperature. The terminal velocity of an I{sub 2} particle was estimated around 0.5 m/s under considered radius (1.0 to 2.5 mm) and temperature (10 to 50 .deg. C) ranges and it was analyzed that the velocity is more dependent on the solution density than the solution viscosity.

  7. Accurate fit and thermochemical analysis of the adsorption isotherms of methane in zeolite 13X

    Energy Technology Data Exchange (ETDEWEB)

    Llano-Restrepo, M. [University of Valle, Valle (Colombia). School of Chemical Engineering

    2010-07-01

    The recovery of methane from landfill gases and coal mines has become of the utmost importance because methane has a global-climate warming potential much higher than that of carbon dioxide. Zeolite 13X is widely used for the separation of methane and carbon dioxide from such sources. Accurate fits of the adsorption isotherms of methane in zeolite 13X are required for the rigorous simulation of that separation. In this work, a generalized statistical thermodynamic adsorption (GSTA) model has been used to obtain a very accurate correlation of a published set of adsorption isotherms of methane in zeolite 13X that were measured from 120 K to 273 K over the pressure range 0.07 Pa to 12.2 MPa. In contrast, none of five traditional adsorption models was capable of fitting these isotherms. A thermochemical interpretation of the correlation is provided and predictions for the isosteric heat of adsorption are made, which turn out to be in excellent agreement with the available experimental data.

  8. Radiation thermo-chemical models of protoplanetary disks I. Hydrostatic disk structure and inner rim

    CERN Document Server

    Woitke, Peter; Thi, Wing-Fai

    2009-01-01

    This paper introduces a new disk code, called ProDiMo, to calculate the thermo-chemical structure of protoplanetary disks and to interpret gas emission lines from UV to sub-mm. We combine frequency-dependent 2D dust continuum radiative transfer, kinetic gas-phase and UV photo-chemistry, ice formation, and detailed non-LTE heating & cooling balance with the consistent calculation of the hydrostatic disk structure. We include FeII and CO ro-vibrational line heating/cooling relevant for the high-density gas close to the star, and apply a modified escape probability treatment. The models are characterized by a high degree of consistency between the various physical, chemical and radiative processes, where the mutual feedbacks are solved iteratively. In application to a T Tauri disk extending from 0.5AU to 500AU, the models are featured by a puffed-up inner rim and show that the dense, shielded and cold midplane (z/r<0.1, Tg~Td) is surrounded by a layer of hot (5000K) and thin (10^7 to 10^8 cm^-3) atomic ga...

  9. Thermochemical pretreatment of meat and bone meal and its effect on methane production

    Institute of Scientific and Technical Information of China (English)

    Guangxue WU; Zhenhu HU; Mark G. HEALY; Xinmin ZHAN

    2009-01-01

    Since the solubilization of meat and bone meal (MBM) is a prerequisite in many MBM disposal approaches, enhancement of the solubilization by means of thermochemical pretreatment was investigated in this study at two temperatures (55℃ and 131℃) and six sodium hydroxide (NaOH) concentrations (0, 1.25, 2.5, 5,10 and 20 g/L). The MBM volatile solid (VS) reduction ratio was up to 66% and 70% at 55℃ and 131℃,respectively. At the same temperature, the VS reduction ratio increased with the increase in the dosage of NaOH.The study on the methane (CH4) production potential of pretreated MBM shows that the addition of NaOH at 55℃ did not cause the inhibition of the succeeding CH4 production process. However, CH4 production was inhibited by the addition of NaOH at 131℃. The CH4 production potential was in the range of 389 to 503 mL CH4/g VS MBM and 464 to 555 mL CH4/g VS MBM at 55℃ and 131℃, respectively.

  10. Hybrid Gear

    Science.gov (United States)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  11. Hybrid Qualifications

    DEFF Research Database (Denmark)

    has turned out as a major focus of European education and training policies and certainly is a crucial principle underlying the European Qualifications Framework (EQF). In this context, «hybrid qualifications» (HQ) may be seen as an interesting approach to tackle these challenges as they serve «two...... masters», i.e. by producing skills for the labour market and enabling individuals to progress more or less directly to higher education. The specific focus of this book is placed on conditions, structures and processes which help to combine VET with qualifications leading into higher education...

  12. Optimization of the Hybrid Sulfur Cycle for Nuclear Hydrogen Production Using UniSim Design

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Hun; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2009-05-15

    The sulfur-based thermochemical cycles are considered as the most promising methods to produce hydrogen. The Hybrid Sulfur (HyS) Cycle is a mixed thermochemical cycle with the sulfur-aided electrolysis as depicted in the Fig. 1. Hydrogen is produced from water by oxidizing sulfur dioxide in the low temperature electrolysis step and the sulfuric acid which is also produced in the electrolyzer proceeds to the high temperature thermochemical step. The sulfuric acid is concentrated in the concentrator first and then decomposed into steam and sulfur trioxide, which is further decomposed into sulfur dioxide and oxygen at high temperature (;1100 K) in the decomposer. After separated with oxygen in the separator, the sulfur dioxide is fed again to the electrolyzer to reduce the required electrode potential far below than that of the typical water electrolysis. Hydrogen is worth as a future energy carrier when it is produced cost effectively. In that sense, the energy efficiency of the hybrid sulfur cycle is needed to be improved as high as achievable. The flow sheet developed by Westinghouse, the first proposer of the cycle, is not optimized for the cycle efficiency. In the previous work, a detailed flow sheet model was developed and also the cycle efficiency of that was roughly estimated using the software CHEMKIN and CANARY based on the experimental data for the electrode potential and appropriate work of separation. The maximum efficiency was found to be 50.5% under the operating conditions of 10 bar and 1200K for decomposer and acid concentration of 60 mol% for decomposer, 60 wt. % for electrolyzer, respectively. In this study, more detailed flow sheet was developed and optimized by using software UniSim Design which is one of the most powerful process design and simulation tools.

  13. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  14. Continuity Controlled Hybrid Automata

    OpenAIRE

    Bergstra, J. A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of hybrid automata as timed transition systems. We also relate the synchronized product operator on hybrid automata to the parallel composition operator of the process algebra. It turns out that the f...

  15. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and

  16. Oxygen permeation and thermo-chemical stability of oxygen separation membrane materials for the oxyfuel process

    Energy Technology Data Exchange (ETDEWEB)

    Ellett, Anna Judith

    2009-07-01

    The reduction of CO{sub 2} emissions, generally held to be one of the most significant contributors to global warming, is a major technological issue. CO{sub 2} Capture and Storage (CCS) techniques applied to large stationary sources such as coal-fired power plants could efficiently contribute to the global carbon mitigation effort. The oxyfuel process, which consists in the burning of coal in an oxygen-rich atmosphere to produce a flue gas highly concentrated in CO{sub 2}, is a technology considered for zero CO{sub 2} emission coal-fired power plants. The production of this O{sub 2}-rich combustion gas from air can be carried out using high purity oxygen separation membranes. Some of the most promising materials for this application are mixed ionic-electronic conducting (MIEC) materials with perovskite and K{sub 2}NiF{sub 4} perovskite-related structures. The present work examines the selection of La{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (LSCF58), La{sub 2}NiO{sub 4+{delta}}, Pr{sub 0.58}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} (PSCF58) and Ba{sub 0.5}Sr{sub 0.5}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} (BSCF50) as membrane materials for the separation of O{sub 2} and N{sub 2} in the framework of the oxyfuel process with flue gas recycling. Annealing experiments were carried out on pellets exposed to CO{sub 2}, water vapour, O{sub 2} and Cr{sub 2}O{sub 3} in order to determine the thermo-chemical resistance to the atmospheres and the high temperature conditions present during membrane operation in a coal-fired power plant. The degradation of their microstructure was investigated using Scanning Electron Microscopy (SEM) in combination with electron dispersive spectroscopy (EDS) as well as X-Ray Diffraction (XRD). Also, the oxygen permeation fluxes of selected membranes were investigated as a function of temperature. The membrane materials selected were characterised using thermo-analytical techniques such as precision thermogravimetric

  17. Evaluation of the Relative Merits of Herbaceous and Woody Crops for Use in Tunable Thermochemical Processing

    Energy Technology Data Exchange (ETDEWEB)

    Park, Joon-Hyun [Ceres, Inc., Thousand Oaks, CA (United States); Martinalbo, Ilya [Choren USA, LLC, Houston, TX (United States)

    2011-12-01

    This report summarizes the work and findings of the grant work conducted from January 2009 until September 2011 under the collaboration between Ceres, Inc. and Choren USA, LLC. This DOE-funded project involves a head-to-head comparison of two types of dedicated energy crops in the context of a commercial gasification conversion process. The main goal of the project was to gain a better understanding of the differences in feedstock composition between herbaceous and woody species, and how these differences may impact a commercial gasification process. In this work, switchgrass was employed as a model herbaceous energy crop, and willow as a model short-rotation woody crop. Both crops are species native to the U.S. with significant potential to contribute to U.S. goals for renewable liquid fuel production, as outlined in the DOE Billion Ton Update (http://www1.eere.energy.gov/biomass/billion_ton_update.html, 2011). In some areas of the U.S., switching between woody and herbaceous feedstocks or blending of the two may be necessary to keep a large-scale gasifier operating near capacity year round. Based on laboratory tests and process simulations it has been successfully shown that suitable high yielding switchgrass and willow varieties exist that meet the feedstock specifications for large scale entrained flow biomass gasification. This data provides the foundation for better understanding how to use both materials in thermochemical processes. It has been shown that both switchgrass and willow varieties have comparable ranges of higher heating value, BTU content and indistinguishable hydrogen/carbon ratios. Benefits of switchgrass, and other herbaceous feedstocks, include its low moisture content, which reduce energy inputs and costs for drying feedstock. Compared to the typical feedstock currently being used in the Carbo-V® process, switchgrass has a higher ash content, combined with a lower ash melting temperature. Whether or not this may cause inefficiencies in the

  18. Physicochemical and thermal characteristics of the sludge produced after thermochemical treatment of petrochemical wastewater.

    Science.gov (United States)

    Verma, Shilpi; Prasad, Basheshwar; Mishra, I M

    2012-01-01

    The present work describes the physicochemical and thermal characteristics of the sludge generated after thermochemical treatment of wastewater from a petrochemical plant manufacturing purified terephthalic acid (PTA). Although FeCl3 was found to be more effective than CuSO4 in removing COD from wastewater, the settling and filtration characteristics of FeCl3 sludge were poorer. Addition of cationic polyacrylamide (CPAA; 0.050kg/m3) to the FeCl3 wastewater system greatly improved the values of the filter characteristics of specific cake resistance (1.2 x 10(8) m/kg) and resistance of filter medium (9.9 x 10(8) m(-1)) from the earlier values of 1.9 x 10(9) m/kg and 1.7 x 10(8) m(-1), respectively. SEM-EDAX and FTIR studies were undertaken, to understand the sludge structure and composition, respectively. The moisture distribution in the CuSO4 sludge, FeCl3 sludge and FeCl3 + CPAA sludge showed that the amount of bound water content in the CuSO4 and FeCl3 + CPAA sludges is less than that of the FeCl3 sludge and there was a significant reduction in the solid-water bond strength of FeCl3 + CPAA sludge, which was responsible for better settling and filtration characteristics. Due to the hazardous nature of the sludge, land application is not a possible route of disposal. The thermal degradation behaviour of the sludge was studied for its possible use as a co-fuel. The studies showed that degradation behaviour of the sludge was exothermic in nature. Because of the exothermic nature of the sludge, it can be used in making fuel briquettes or it can be disposed of via wet air oxidation.

  19. Relationships among Ionic Lattice Energies, Molecular (Formula Unit) Volumes, and Thermochemical Radii.

    Science.gov (United States)

    Jenkins, H. Donald B.; Roobottom, Helen K.; Passmore, Jack; Glasser, Leslie

    1999-08-01

    The linear generalized equation described in this paper provides a further dimension to the prediction of lattice potential energies/enthalpies of ionic solids. First, it offers an alternative (and often more direct) approach to the well-established Kapustinskii equation (whose capabilities have also recently been extended by our recent provision of an extended set of thermochemical radii). Second, it makes possible the acquisition of lattice energy estimates for salts which, up until now, except for simple 1:1 salts, could not be considered because of lack of crystal structure data. We have generalized Bartlett's correlation for MX (1:1) salts, between the lattice enthalpy and the inverse cube root of the molecular (formula unit) volume, such as to render it applicable across an extended range of ionic salts for the estimation of lattice potential energies. When new salts are synthesized, acquisition of full crystal structure data is not always possible and powder data provides only minimal structural information-unit cell parameters and the number of molecules per cell. In such cases, lack of information about cation-anion distances prevents use of the Kapustinskii equation to predict the lattice energy of the salt. However, our new equation can be employed even when the latter information is not available. As is demonstrated, the approach can be utilized to predict and rationalize the thermochemistry in topical areas of synthetic inorganic chemistry as well as in emerging areas. This is illustrated by accounting for the failure to prepare diiodinetetrachloroaluminum(III), [I(2)(+)][AlCl(4)(-)] and the instability of triiodinetetrafluoroarsenic(III), [I(3)(+)][AsF(6)(-)]. A series of effective close-packing volumes for a range of ions, which will be of interest to chemists, as measures of relative ionic size and which are of use in making our estimates of lattice energies, is generated from our approach.

  20. Partial melting in one-plate planets: Implications for thermo-chemical and atmospheric evolution

    Science.gov (United States)

    Plesa, A.-C.; Breuer, D.

    2014-08-01

    In the present work, we investigate the influence of partial melting on mantle dynamics, crustal formation, and volcanic outgassing of a one-plate planet using a 2D mantle convection code. When melt is extracted to form crust, the mantle material left behind is more buoyant than its parent material and depleted in radioactive heat sources. The extracted heat-producing elements are then enriched in the crust, which also has an insulating effect due to its lower thermal conductivity compared to the mantle. In addition, partial melting can influence the mantle rheology through the dehydration (water depletion) of the mantle material by volcanic outgassing. As a consequence, the viscosity of water-depleted regions increases more than two orders of magnitude compared to water-saturated rocks resulting in slower cooling rates. The most important parameter influencing the thermo-chemical evolution is the assumed density difference between the primitive and the depleted mantle material (i.e., between peridotite and harzburgite). With small or negligible values of compositional buoyancy, crustal formation including crustal delamination is very efficient, also resulting in efficient processing and degassing of the mantle. The convecting mantle below the stagnant lid depletes continuously with time. In contrast, with increasing compositional buoyancy, crustal formation and mantle degassing are strongly suppressed although partial melting is substantially prolonged in the thermal evolution. The crust shows strong lateral variations in thickness, and crustal delamination is reduced and occurs only locally. Furthermore, two to four different mantle reservoirs can form depending on the initial temperature distribution. Two of these reservoirs can be sustained during the entire evolution - a scenario possibly valid for Mars as it may explain the isotope characteristic of the Martian meteorites.

  1. Geochemical signatures of thermochemical sulfate reduction in controlled hydrous pyrolysis experiments

    Science.gov (United States)

    Zhang, T.; Ellis, G.S.; Walters, C.C.; Kelemen, S.R.; Wang, K.-s.; Tang, Y.

    2008-01-01

    A series of gold tube hydrous pyrolysis experiments was conducted in order to investigate the effect of thermochemical sulfate reduction (TSR) on gas generation, residual saturated hydrocarbon compositional alteration, and solid pyrobitumen formation. The intensity of TSR significantly depends on the H2O/MgSO4 mole ratio, the smaller the ratio, the stronger the oxidizing conditions. Under highly oxidizing conditions (MgSO4/hydrocarbon wt/wt 20/1 and hydrocarbon/H2O wt/wt 1/1), large amounts of H2S and CO2 are generated indicating that hydrocarbon oxidation coupled with sulfate reduction is the dominant reaction. Starting with a mixture of C21-C35 n-alkanes, these hydrocarbons are consumed totally at temperatures below the onset of hydrocarbon thermal cracking in the absence of TSR (400 ??C). Moreover, once the longer chain length hydrocarbons are oxidized, secondarily formed hydrocarbons, even methane, are oxidized to CO2. Using whole crude oils as the starting reactants, the TSR reaction dramatically lowers the stability of hydrocarbons leading to increases in gas dryness and gas/oil ratio. While their concentrations decrease, the relative distributions of n-alkanes do not change appreciably from the original composition, and consequently, are non-diagnostic for TSR. However, distinct molecular changes related to TSR are observed, Pr/n-C17 and Ph/n-C18 ratios decrease at a faster rate under TSR compared to thermal chemical alteration (TCA) alone. TSR promotes aromatization and the incorporation of sulfur and oxygen into hydrocarbons leading to a decrease in the saturate to aromatic ratio in the residual oil and in the generation of sulfur and oxygen rich pyrobitumen. These experimental findings could provide useful geochemical signatures to identify TSR in settings where TSR has occurred in natural systems. ?? 2008 Elsevier Ltd. All rights reserved.

  2. Distinguishing solid bitumens formed by thermochemical sulfate reduction and thermal chemical alteration

    Science.gov (United States)

    Kelemen, S.R.; Walters, C.C.; Kwiatek, P.J.; Afeworki, M.; Sansone, M.; Freund, H.; Pottorf, R.J.; Machel, H.G.; Zhang, T.; Ellis, G.S.; Tang, Y.; Peters, K.E.

    2008-01-01

    Insoluble solid bitumens are organic residues that can form by the thermal chemical alteration (TCA) or thermochemical sulfate reduction (TSR) of migrated petroleum. TCA may actually encompass several low temperature processes, such as biodegradation and asphaltene precipitation, followed by thermal alteration. TSR is an abiotic redox reaction where petroleum is oxidized by sulfate. It is difficult to distinguish solid bitumens associated with TCA of petroleum from those associated with TSR when both processes occur at relatively high temperature. The focus of the present work was to characterize solid bitumen samples associated with TCA or TSR using X-ray photoelectron spectroscopy (XPS). XPS is a surface analysis conducted on either isolated or in situ (>25 ??m diameter) solid bitumen that can provide the relative abundance and chemical speciation of carbon, organic and inorganic heteroatoms (NSO). In this study, naturally occurring solid bitumens from three locations, Nisku Fm. Brazeau River area (TSR-related), LaBarge Field Madison Fm. (TSR-related), and the Alaskan Brooks range (TCA-related), are compared to organic solids generated during laboratory simulation of the TSR and TCA processes. The abundance and chemical nature of organic nitrogen and sulfur in solid bitumens can be understood in terms of the nature of (1) petroleum precursor molecules, (2) the concentration of nitrogen by way of thermal stress and (3) the mode of sulfur incorporation. TCA solid bitumens originate from polar materials that are initially rich in sulfur and nitrogen. Aromaticity and nitrogen increase as thermal stress cleaves aliphatic moieties and condensation reactions take place. Organic sulfur in TCA organic solids remains fairly constant with increasing maturation (3.5 to ???17 sulfur per 100 carbons) into aromatic structures and to the low levels of nitrogen in their hydrocarbon precursors. Hence, XPS results provide organic chemical composition information that helps to

  3. Forensic methodology for the thermochemical characterization of ANNM and ANFO homemade explosives

    Energy Technology Data Exchange (ETDEWEB)

    Nazarian, Ashot; Presser, Cary, E-mail: cpresser@nist.gov

    2015-05-20

    Highlights: • The LDTR is a useful diagnostic for characterizing HME thermochemical behavior. • ANNM thermograms indicated sensitivity to varying HME composition. • ANFO measurements demonstrated sensitivity to fuel hydrocarbon volatility. • Mixture preparation time can be defined by studying vaporization effects on mass. - Abstract: Measurements were carried out to obtain thermal signatures of the most commonly used homemade explosive (HME) materials, i.e., ammonium nitrate/nitromethane and ammonium nitrate/No. 2 diesel fuel oil, using a novel laser-heating technique referred to as the laser-driven thermal reactor (LDTR). Experiments were performed for different compositions, initial masses, and steady-state temperatures, along with the effects associated with HME aging. For ammonium nitrate/nitromethane (ANNM), the NM/ANNM mass fractions investigated were 29% (stoichiometric value) and 14%; these experiments were with fresh mixtures. The 29% NM/ANNM mass fraction mixture was also aged to 3%. For ammonium nitrate/fuel oil (ANFO), a fresh stoichiometric FO/ANFO mass fraction of 6% was used initially, and aged mixtures were then investigated for mass fractions of 5.4%, 4.7%, 4.4%, and 3.7%. The results indicated that the LDTR thermograms (i.e., sample temperature change with time) for the mixed ANNM were different than the individual isolated components, and that the technique was sensitive to varying HME composition. In addition, changes in the thermograms as ANFO aged were attributed to the varying volatility of the fuel hydrocarbon fractions, and thus provide important information for forensics analysis as to the HME reactivity.

  4. Modeling of Thermochemical Behavior in an Industrial-Scale Rotary Hearth Furnace for Metallurgical Dust Recycling

    Science.gov (United States)

    Wu, Yu-Liang; Jiang, Ze-Yi; Zhang, Xin-Xin; Xue, Qing-Guo; Yu, Ai-Bing; Shen, Yan-Song

    2017-10-01

    Metallurgical dusts can be recycled through direct reduction in rotary hearth furnaces (RHFs) via addition into carbon-based composite pellets. While iron in the dust is recycled, several heavy and alkali metal elements harmful for blast furnace operation, including Zn, Pb, K, and Na, can also be separated and then recycled. However, there is a lack of understanding on thermochemical behavior related to direct reduction in an industrial-scale RHF, especially removal behavior of Zn, Pb, K, and Na, leading to technical issues in industrial practice. In this work, an integrated model of the direct reduction process in an industrial-scale RHF is described. The integrated model includes three mathematical submodels and one physical model, specifically, a three-dimensional (3-D) CFD model of gas flow and heat transfer in an RHF chamber, a one-dimensional (1-D) CFD model of direct reduction inside a pellet, an energy/mass equilibrium model, and a reduction physical experiment using a Si-Mo furnace. The model is validated by comparing the simulation results with measurements in terms of furnace temperature, furnace pressure, and pellet indexes. The model is then used for describing in-furnace phenomena and pellet behavior in terms of heat transfer, direct reduction, and removal of a range of heavy and alkali metal elements under industrial-scale RHF conditions. The results show that the furnace temperature in the preheating section should be kept at a higher level in an industrial-scale RHF compared with that in a pilot-scale RHF. The removal rates of heavy and alkali metal elements inside the composite pellet are all faster than iron metallization, specifically in the order of Pb, Zn, K, and Na.

  5. Thermochemical benchmarking of hydrocarbon bond separation reaction energies: Jacob's ladder is not reversed!

    Science.gov (United States)

    Krieg, Helge; Grimme, Stefan

    2010-10-01

    We reinvestigate the performance of Kohn-Sham density functional (DF) methods for a thermochemical test set of bond separation reactions of alkanes (BSR36) published recently by Steinmann et al. [J. Chem. Theory Comput. 5, 2950 (2009)]. According to our results, the tested approximations perform for this rather special benchmark as usual. We show that the choice of reference enthalpies plays a crucial role in the assessment. Due to the large stoichiometric factors involved, errors of various origin are strongly amplified. Inconsistent reference data are avoided by computing reference energies at the CCSD(T)/CBS level. These are compared to results for a variety of standard DFs. Two different versions of London dispersion corrections (DFT-D2 and DFT-D3) are applied and found to be very significant. The most accurate results are obtained with B2GPPLYP-D2 (MAD = 0.4 kcal mol-1) B2PLYP-D2 (MAD = 0.5 kcal mol-1) and B97-D2 (MAD = 0.9 kcal mol-1 methods. Dispersion corrections not only improve the computed BSR energies but also diminish the accuracy differences between the DFs. The previous DFT-D2 version performs better due to error compensation of medium-range correlation effects between the semi-classical and the density-based description. We strongly recommend not to overinterpret results regarding DF accuracy when based on a single set of chemical reactions and to use high-level theoretical data for benchmarking purposes.

  6. Microstructure and phase morphology during thermochemical processing of {alpha}{sub 2}-based titanium aluminide castings

    Energy Technology Data Exchange (ETDEWEB)

    Saqib, M. [Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering; Apgar, L.S. [Dayton Univ., OH (United States). Graduate Materials Engineering; Eylon, D. [Dayton Univ., OH (United States). Graduate Materials Engineering; Weiss, I. [Wright State Univ., Dayton, OH (United States). Dept. of Mechanical and Materials Engineering

    1995-12-31

    Changes in the microstructure, volume fraction and distribution of phases during different stages of thermochemical processing of Ti-25Al-10Nb-3V-1Mo (at.%) castings were investigated. Up to 14.5 at.% (0.35 wt.%) of hydrogen was introduced into the material by gas charging at temperatures between 650 and 980 C for times up to 20 h. The material was subsequently dehydrogenated by vacuum annealing at 650 C for 48 h. Investment cast Ti-25Al-10Nb-3V-1Mo alloy, hot isostatically pressed (HIP) at 1175 C at 260 MPa for 6 h, was used as the starting material. The microstructure of the as-HIP material consists of {alpha}{sub 2}, B2 and orthorhombic phases. The {alpha}{sub 2} phase exists in equiaxed, Widmanstaeten and cellular morphologies. The B2 phase is observed mainly along {alpha}{sub 2}/{alpha}{sub 2} boundaries. Some {alpha}{sub 2} Widmanstaeten also contain very fine orthorhombic phase in a plate-like morphology. Hydrogenation of the material modified the microstructure; however, the morphology of the {alpha}{sub 2} and B2 phases did not change. Furthermore, hydride precipitation and a higher volume fraction of the orthorhombic phase were observed compared with the as-HIP material. Following dehydrogenation, the hydrogen level in the material was found to be less than 0.1 at.% (0.0025wt.%). Transmission electron microscopy of the dehydrogenated material did not reveal the presence of hydride precipitates; however, the high volume fraction of the orthorhombic phase was found to persist following dehydrogenation. (orig.)

  7. Al4C3 Hydration Thermochemical Analysis for Burned Carbon-containing Refractories with Al

    Institute of Scientific and Technical Information of China (English)

    YANG Ding'ao; YU Zhiming; FAN Liuwu

    2003-01-01

    In this paper, X-ray diffractogram analysis and SEM observation of Al4 C3 formed at high temperature from carbon-containing refractories with Al have been carried out.Aluminum added to carbon-containing refractories reacts with C(s)to form Al4 C3(s) gradually during heating from 600 ℃ to 1200℃.It is considered that the interlocked structure of Al4 C3 plate crystals promotes the outstanding increase of hot modulus of rupture of carbon-containing refractories with Al. The HMOR of carbon-containing refractories added with Al additive from 0 to 5wt% increases by 2.8 times being from 6.5MPa to 18.2MPa.After a thermochemical calculation for hydration reaction processes of Al4 C3 and H2O(g), the equilibrium partial pressure chart of H2O(g)in H2O-Al4C3-Al(OH)3 system vs various temperatures has been attained . The H2O (g) partial pressure in the air needed for the Al4 C3 hydration reaction is no more than 10~18 atm at the temperature below 120℃.It is considered that the burned carbon-containing refractories with Al is extremely easy to hydrate and the cracking of burned carbon-containing refractories is generated because that the hydration expansion is 2.11 times during transforming from Al4 C3 to Al(OH)3.The fundamental measure against hydration of the refractories is to insulate the refractories from H2O(g)by various means such as pitch impregnation or other sealing materials.

  8. S-to-P heterogeneity ratio in the lower mantle and thermo-chemical implications

    Science.gov (United States)

    Tesoniero, Andrea; Cammarano, Fabio; Boschi, Lapo

    2016-07-01

    We evaluate the thermo-chemical state of the lower mantle by analysing the differences in the pattern of heterogeneity between shear and compressional velocity variations and the S-to-P heterogeneity ratio (RS/P=δlnVS/δlnVP) as mapped in our model SPani and in alternative joint models. Robust structural differences between VP and VS evidence the presence of compositional heterogeneity within the two Large Low Shear Velocity Provinces (LLSVPs). We find also an increasing decorrelation with depth that can be associated with compositional layering of the LLSVPs. In addition, our model shows heterogeneity in the transition zone and mid mantle by complex morphology of subducting slabs and further differences between VP and VS that point to an unexpected heterogeneous lower mantle. Precise estimates of compositional heterogeneities are not yet affordable because of the difficulty to provide quantitative measure of RS/P, making it difficult to use this ratio to evaluate chemical heterogeneity. For instance, RS/P global median value () drops from ˜2.8 to ˜1.9, at 2500 km depth when the VP component of SPani is replaced by a VP model resulting from a differently regularized inversion and obtaining an equally good data fit. An increase of 20% of the SPani VP anomalies also drastically reduces without significantly degrading the data fit. Noise in model parameters also leads to overestimate RS/P in the two LLSVPs as we show with synthetic tests. Additional mineral physics uncertainties for compositional effects on RS/P and for the conversion of δlnVS and δlnVP into density further complicates a precise chemical interpretation.

  9. Research, Development, and Field Testing of Thermochemical Recuperation for High Temperature Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Kurek, Harry; Kozlov, Aleksandr

    2014-03-31

    Gas Technology Institute (GTI) evaluated the technical and economic feasibility of utilizing a non-catalytic ThermoChemical Recuperation System (TCRS) to recover a significant amount of energy from the waste gases of natural gas fired steel reheat furnaces. The project was related to DOE-AMO’s (formerly known as ITP) one of the technical areas of interest: Technologies to improve energy efficiency and reduce the carbon footprint of equipment currently used in energy-intensive industries such as iron and steel, and reduce by at least 30% energy consumption and carbon dioxide emission compared to the conventional technologies. ThermoChemical Recuperation (TCR) is a technique that recovers sensible heat in the exhaust gas from an industrial process, furnace, engine etc., when a hydrocarbon fuel is used for combustion. TCR enables waste heat recovery by both combustion air preheat and hydrocarbon fuel (natural gas, for example) reforming into a higher calorific fuel. The reforming process uses hot flue gas components (H2O and CO2) or steam to convert the fuel into a combustible mixture of hydrogen (H2), carbon monoxide (CO), and some unreformed hydrocarbons (CnHm). Reforming of natural gas with recycled exhaust gas or steam can significantly reduce fuel consumption, CO2 emissions and cost as well as increase process thermal efficiency. The calorific content of the fuel can be increased by up to ~28% with the TCR process if the original source fuel is natural gas. In addition, the fuel is preheated during the TCR process adding sensible heat to the fuel. The Research and Development work by GTI was proposed to be carried out in three Phases (Project Objectives). • Phase I: Develop a feasibility study consisting of a benefits-derived economic evaluation of a ThermoChemical Recuperation (TCR) concept with respect to high temperature reheat furnace applications within the steel industry (and cross-cutting industries). This will establish the design parameters and

  10. Research, Development, and Field Testing of Thermochemical Recuperation for High Temperature Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Kurek, Harry; Kozlov, Aleksandr

    2014-03-31

    Gas Technology Institute (GTI) evaluated the technical and economic feasibility of utilizing a non-catalytic ThermoChemical Recuperation System (TCRS) to recover a significant amount of energy from the waste gases of natural gas fired steel reheat furnaces. The project was related to DOE-AMO’s (formerly known as ITP) one of the technical areas of interest: Technologies to improve energy efficiency and reduce the carbon footprint of equipment currently used in energy-intensive industries such as iron and steel, and reduce by at least 30% energy consumption and carbon dioxide emission compared to the conventional technologies. ThermoChemical Recuperation (TCR) is a technique that recovers sensible heat in the exhaust gas from an industrial process, furnace, engine etc., when a hydrocarbon fuel is used for combustion. TCR enables waste heat recovery by both combustion air preheat and hydrocarbon fuel (natural gas, for example) reforming into a higher calorific fuel. The reforming process uses hot flue gas components (H2O and CO2) or steam to convert the fuel into a combustible mixture of hydrogen (H2), carbon monoxide (CO), and some unreformed hydrocarbons (CnHm). Reforming of natural gas with recycled exhaust gas or steam can significantly reduce fuel consumption, CO2 emissions and cost as well as increase process thermal efficiency. The calorific content of the fuel can be increased by up to ~28% with the TCR process if the original source fuel is natural gas. In addition, the fuel is preheated during the TCR process adding sensible heat to the fuel. The Research and Development work by GTI was proposed to be carried out in three Phases (Project Objectives). • Phase I: Develop a feasibility study consisting of a benefits-derived economic evaluation of a ThermoChemical Recuperation (TCR) concept with respect to high temperature reheat furnace applications within the steel industry (and cross-cutting industries). This will establish the design parameters and

  11. 太阳能热化学储能研究进展%Research progress of solar thermochemical energy storage

    Institute of Scientific and Technical Information of China (English)

    吴娟; 龙新峰

    2014-01-01

    太阳能热发电技术对缓解全球资源紧张和改善环境有广阔的应用前景,大规模高温无损储热是太阳能热发电系统的关键。本文通过对显热储能、潜热储能和热化学储能3种热能储存方式的比较,认为热化学储能方法由于储能密度高,且可长期在环境温度下无热损储存,因而为太阳能热发电中的高温热能储存提供了一种潜在的方法。并对热化学储能在太阳能热力发电的应用上进行了技术经济分析,综述了几种有前景的热化学储能体系的研究进展,总结了各种储能体系的现存问题。根据热化学储能方法在实用化过程中存在的技术经济问题,指出了热化学储能技术的未来研究方向是储能反应器的设计、能量储存/释放循环性能探究、储能体系的选择及热化学储能系统的中试放大研究等。%The solar thermal power generation technology has broad application prospects in relieving global resources shortage and improving environment,while large-scale high temperature thermal storage without heat loss is the key in the solar thermal power systems. Three kinds of energy storage methods,including sensible heat storage,phase change energy storage and thermochemical energy storage are compared in this paper. Due to high energy storage density and long term storage energy at ambient temperature without heat loss,thermochemical energy storage technology offers a potential method for high temperature thermal energy storage in solar the thermal power generation system. Besides,technical and economic analysis of the thermochemical energy storage method for solar thermal power technology application is presented,and the recent progress of several promising thermochemical energy storage systems and existing problems are described. According to the technical and economic problems existing in practical application,future research on thermochemical energy storage technology

  12. Hybridized tetraquarks

    Directory of Open Access Journals (Sweden)

    A. Esposito

    2016-07-01

    Full Text Available We propose a new interpretation of the neutral and charged X,Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules but rather a manifestation of the interplay between the two. While meson molecules need a negative or zero binding energy, its counterpart for h-tetraquarks is required to be positive. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs0π± channel by the D0 Collaboration and the negative result presented subsequently by the LHCb Collaboration are understood in this scheme, together with a considerable portion of available data on X,Z particles. Considerations on a state with the same quantum numbers as the X(5568 are also made.

  13. Hybridized Tetraquarks

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    We propose a new interpretation of the neutral and charged X, Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules. The latter would require a negative or zero binding energy whose counterpart in h-tetraquarks is a positive quantity. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs pi+- channel by the D0 collaboration and the negative result presented subsequently by the LHCb collaboration are understood in this scheme, together with a considerable portion of available data on X, Z particles. Considerations on a state with the same quantum numbers as the X(5568) are also made.

  14. Oxidative damage of copper chloride overload to the cultured rat astrocytes.

    Science.gov (United States)

    Hu, Hao-Lu; Ni, Xiu-Shi; Duff-Canning, Sarah; Wang, Xiao-Ping

    2016-01-01

    Disorders of copper metabolism are associated with neurological dysfunction including Wilson's disease (WD). WD is a autosomal recessive disorder caused by mutations in the ATP7B gene resulting in the inability of the hepatocytes to remove excess copper. Gradual copper accumulation causes damage to liver, brain and other organs manifesting in liver disease, neurological and psychiatric symptoms. Also scond copper-neurometaboic disorder: Menkes disease charaterized with mutated ATP7A gene, is ralated with abnormally neuroal transmission and synaptogenesis. Parkinson's disease and Alzheimer's disease both are refered to some degree of copper/iron metabolism changes. The precise mechanisms by which excess copper causes neurological damage remain to be elucidated. In this study, we aimed to investigate the influence of excessive amounts of Cu(2+) on the oxidative damage response and survival of primary astrocytes from newborn rats. Primary cultured rat astrocytes were divided into three groups: 30 μmol/L CuCl2, 100 μmol/L CuCl2 and control. At 12, 24, 48, 96 and 120 hours of CuCl2 intervention, cell viability, intracellular reduced glutathione level and glutathion reductase activity, and nitric oxide secretion were determined. It was found that 30 μmol/L CuCl2 might stimulate the exaltation and the compensatory proliferation of astrocytes. The survival rate of astrocytes in the 100 μmol/L CuCl2 group was significantly decreased relative to the 30 μmol/L CuCl2 group. At 24 hours of CuCl2 intervention, intracellular reduced glutathione level and glutathion reductase activity were significantly decreased in the 100 μmol/L CuCl2 group compared to the control group. At 120 hours of CuCl2 intervention, nitric oxide secretion in the 100 μmol/L CuCl2 group was significantly greater than in the control group. Under pathological conditions, excessive amounts of Cu(2+) greatly damaged the growth and proliferation of astrocytes, reduced the anti-oxidative capacity of astrocytes by reducing intracellular glutathione level and glutathion reductase activity, worsened oxidative stress, and activated inflammation pathway by increasing nitric oxide secretion. By the way, all these findings might provide potential molecular therapeutic targets for the neurodegenerative diseases related Cu(2+) Metabolic Disorders, e.g., Wilson's disease, Parkinson's disease and Alzheimer's disease.

  15. Structure transitions between copper-sulphate and copper-chloride UPD phases on Au(111)

    Indian Academy of Sciences (India)

    Ilya V Pobelov; Gábor Nagy; Thomas Wandlowski

    2009-09-01

    Structure transitions between copper UPD adlayers on Au(111)-(1 × 1) in sulfuric acid and chloride containing electrolyte were investigated by in situ scanning tunnelling microscopy. We demonstrate that co-adsorbed sulphate ions in the (√3 × √3)R30° UPD adlayer are replaced by chloride ions and, depending on the halide coverage, a commensurate (2 × 2) or a slightly distorted (5 × 5)-like Cu-Cl UPD adlayer are formed. The stability ranges of these phases are controlled both by the electrode potential and the Cl- concentration. Phase transitions between the three UPD phases were monitored by time-resolved in situ STM. The observed structure details were attributed to mechanisms based on two-dimensional nucleation and growth processes.

  16. Research Progress on Thermochemical Heat Storage System%热化学蓄热系统研究进展

    Institute of Scientific and Technical Information of China (English)

    王智辉; 漥田光宏; 杨希贤; 刘学成; 何兆红; 大坂侑吾; 黄宏宇

    2015-01-01

    热化学蓄热通过可逆化学反应来储存和释放热量,其蓄热密度高于显热蓄热和相变蓄热,且能够实现能量的长期储存,在未来能源利用领域具有广阔前景.根据热化学蓄热系统的结构,可将其分为开式系统和闭式系统.本文针对开式系统和闭式系统,对蓄热材料、环境气氛条件、反应过程优化以及反应器设计等影响系统性能的重要因素进行概述与讨论,为热化学蓄热系统的发展和实际应用提供参考.%Thermochemical heat storage technology can store and discharge heat energy by reversible chemical reactions. It shows higher heat storage density and better long-term preservation ability than sensible heat storage and phase change heat storage, so that have a bright future in the energy application fields. According to the system configuration, thermochemical heat storage system is suggested to be divided into open and closed system. In terms of open and closed system, the crucial factors impacting on the system performance, such as heat storage materials, ambient atmosphere conditions, reaction progress optimization and reactor design, are discussed and summarized to provide some references for the development and practical applications of thermochemical heat storage system.

  17. Thermochemical seasonal solar heat storage with MgCl2.6H2O. First upscaling of the reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zondag, H.A. [Eindhoven University of Technology, Eindhoven (Netherlands); Kikkert, B.W.J.; Smeding, S.; Bakker, M. [ECN Solar Energy, Petten (Netherlands)

    2011-06-15

    In the summer, the available of solar heat exceeds the total heat demand of a building, but in the winter the heat demand is exceeding the solar supply. For the future conversion of a passive house into an energy neutral house, a solution is to store the excess of solar energy in summer, and to use it to meet the heat demand in winter. Water is traditionally used for storing heat (e.g. solar boiler), but seasonal heat storage requires large water tanks (>40m{sup 3}) that are too large to be placed inside an average family house. An alternative option is to store heat by means of chemical processes using the reversible reaction: A + B <-> C + heat. Such thermochemical heat storage has a 5 to 10 times higher energy storage density than water, with the additional benefit that, after charging, the heat can be stored for a long time without losses. With thermochemical materials, the entire heating demand of a low-energy house during winter could be met using a storage volume of 4 to 8 m3, that is charged during summer by solar collectors. Because of the large amount of thermochemical material required for such storages, as well as the strict safety regulations in the built environment, safety and cost of the materials are important aspects. Because of safety criteria, the focus in the present research is on water as the sorbate. Because of low cost and high storage density, the focus is on salt hydrates, rather than silicagel or zeolites. In this paper, R and D on system aspects, materials selection and characterization, as well as on reactor concepts is presented.

  18. Numerical investigation of a straw combustion boiler – Part I: Modelling of the thermo-chemical conversion of straw

    Directory of Open Access Journals (Sweden)

    Dernbecher Andrea

    2016-01-01

    Full Text Available In the framework of a European project, a straw combustion boiler in conjunction with an organic Rankine cycle is developed. One objective of the project is the enhancement of the combustion chamber by numerical methods. A comprehensive simulation of the combustion chamber is prepared, which contains the necessary submodels for the thermo-chemical conversion of straw and for the homogeneous gas phase reactions. Part I introduces the modelling approach for the thermal decomposition of the biomass inside the fuel bed, whereas part II deals with the simulation of the gas phase reactions in the freeboard.

  19. Mathematical Modeling for the Development of Equipment for Thermochemical Processing of Wood Waste in to Dimethyl Ether

    Science.gov (United States)

    Sadrtdinov, Almaz R.; Esmagilova, Liliya M.; Saldaev, Vladimir A.; Sattarova, Zulfiya G.; Mokhovikov, Alexey A.

    2016-08-01

    The paper describes the process of thermochemical wood waste processing in to dimethyl ether. The physical picture of the process of waste wood recycling was compiled and studied and the mathematical model in the form of differential and algebraic equations with initial and boundary conditions was developed on its basis. The mathematical model allows to determine the optimum operating parameters of synthesis gas producing process, suitable for the catalytic synthesis of dimethyl ether and to calculate the basic constructive parameters of the equipment flowsheet.

  20. Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Krikorian, O.H. (ed.)

    1982-02-09

    This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study.

  1. Thermochemical storage for ambient temperatures. Compact seasonal heat storage; Thermochemische opslag bij omgevingstemperatuur. Compacte seizoensopslag van warmte

    Energy Technology Data Exchange (ETDEWEB)

    Wemmers, A.K. [TNO Bouw en Ondergrond, Delft (Netherlands)

    2005-12-01

    The decoupling of demand and production of energy are important aspects in sustainable energy supply systems. Heat storage by commercially available techniques is realized for a temperature level higher than the ambient temperature. Heat loss is the result. By means of thermochemical storage heat can be stored more compact and on the level of ambient temperatures. [Dutch] De ontkoppeling van vraag en de opwekking van energie spelen een belangrijke rol bij de invulling van een duurzame energievoorziening. Opslag van warmte in huidige bekende technieken heeft plaats op een hoger temperatuurniveau dan de omgeving. Met warmteverlies tot gevolg. Met een nieuwe techniek, thermochemische opslag, kan compacter en op omgevingstemperatuurniveau worden opgeslagen.

  2. Simultaneous formation of ablative and thermochemical laser-induced periodic surface structures on Ti film at femtosecond irradiation

    Science.gov (United States)

    Dostovalov, A. V.; Korolkov, V. P.; Babin, S. A.

    2015-03-01

    Formation of laser-induced periodic surface structures (LIPSS) on the titanium surface at the presence of sharply focused fs radiation exhibits two different regimes. Conventional ablative LIPSS with low regularity are oriented orthogonally to the polarization direction of the incident beam, while thermochemical LIPSS with highly uniform periodicity are oriented along the polarization direction. These two types of LIPSS can co-exist and influence each other for arbitrary polarization and beam scanning directions. The observed regimes help to clarify mechanisms of LIPSS formation, as well as to form LIPSS of specific shapes and degrees of regularity.

  3. Syngas Production By Thermochemical Conversion Of H2o And Co2 Mixtures Using A Novel Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Pearlman, Howard [Advanced Cooling Technologies, Inc, Lancaster, PA (United States); Chen, Chien-Hua [Advanced Cooling Technologies, Inc, Lancaster, PA (United States)

    2014-08-27

    The Department of Energy awarded Advanced Cooling Technologies, Inc. (ACT) an SBIR Phase II contract (#DE-SC0004729) to develop a high-temperature solar thermochemical reactor for syngas production using water and/or carbon dioxide as feedstocks. The technology aims to provide a renewable and sustainable alternative to fossil fuels, promote energy independence and mitigate adverse issues associated with climate change by essentially recycling carbon from carbon dioxide emitted by the combustion of hydrocarbon fuels. To commercialize the technology and drive down the cost of solar fuels, new advances are needed in materials development and reactor design, both of which are integral elements in this program.

  4. Continuity Controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  5. Continuity controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  6. Thermochemical cycles based on metal oxides for solar hydrogen production; Ciclos termoquimicos basados en oxidos metalicos para produccion de hidrogeno solar

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Saavedra, R.; Quejido Cabezas, J.

    2012-11-01

    The growing demand for energy requires the development and optimization of alternative energy sources. One of the options currently being investigated is solar hydrogen production with thermochemical cycles. This process involves the use of concentrated solar radiation as an energy source to dissociate water through a series of endothermic and exothermic chemical reactions, for the purpose of obtaining hydrogen on a sustainable basis. Of all the thermochemical cycles that have been evaluated, the most suitable ones for implementation with solar energy are those based on metal oxides. (Author) 20 refs.

  7. Thermochemical of combustion products using thermodynamic properties obtained of statistical mechanics; Termoquimica dos produtos de combustao utilizando propriedades termodinamicas obtidas da mecanica estatistica

    Energy Technology Data Exchange (ETDEWEB)

    Pimentel, Carlos Alberto Rocha [Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil). Inst. de Engenharia Aeronautica; Hinckel, Jose Nivaldo; Koreeda, Jorge [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle]. E-mail: carlosal@aer.ita.cta.br; hinckel@sigma.dem.inpe.br

    1997-07-01

    This work presents the results of an analytical model and a computer program to obtain thermochemical properties of combustion products in a liquid rocket motors, using the method of statistical mechanic to calculation thermodynamic properties of the species. The equations of statistical mechanics and the technique of minimizing of Gibbs free energy are used to calculate the thermochemical functions and the equilibrium chemical composition. These methods are applied to the calculation of equilibrium properties of the combustion products in liquid rocket motors for different propellant pairs, O/F ratios and chamber pressures. The results obtained from this method are compared to those of NASA SP-273. (author)

  8. Technology for a Thermo-chemical Ice Penetrator for Icy Moons

    Science.gov (United States)

    Arenberg, Jonathan; Harpole, George; Zamel, James; Sen, Bashwar; Lee, Greg; Ross, Floyd; Retherford, Kurt D.

    2016-10-01

    The ability to place sensors or to take samples below the ice surface enables a wide variety of potential scientific investigations. Penetrating an ice cap can be accomplished via a mechanical drill, laser drill, kinetic impactor, or heated penetrator. This poster reports on the development of technology for the latter most option, namely a self-heated probe driven by an exothermic chemical reaction: a Thermo-chemical ice penetrator (TChIP). Our penetrator design employs a eutectic mix of alkali metals that produce an exothermic reaction upon contact with an icy surface. This reaction increases once the ice starts melting, so no external power is required. This technology is inspired by a classified Cold-War era program developed at Northrop Grumman for the US Navy. Terrestrial demonstration of this technology took place in the Arctic; however, this device cannot be considered high TRL for application at the icy moons of the solar system due to the environmental differences between Earth's Arctic and the icy moons. These differences demand a TChIP design specific to these cold, low mass, airless worlds. It is expected that this model of TChIP performance will be complex, incorporating all of the forces on the penetrator, gravity, the thermo-chemistry at the interface between penetrator and ice, and multi-phase heat and mass transport, and hydrodynamics. Our initial efforts are aimed at the development of a validated set of tools and simulations to predict the performance of the penetrator for both the environment found on these icy moons and for a terrestrial environment. The purpose of the inclusion of the terrestrial environment is to aid in model validation. Once developed and validated, our models will allow us to design penetrators for a specific scientific application on a specific body. This poster discusses the range of scientific investigations that are enabled by TChIP. We also introduce the development plan to advance TChIP to the point where it can be

  9. Study of thermochemical sulfate reduction mechanism using compound specific sulfur isotope analysis

    Science.gov (United States)

    Meshoulam, Alexander; Ellis, Geoffrey S.; Said Ahmad, Ward; Deev, Andrei; Sessions, Alex L.; Tang, Yongchun; Adkins, Jess F.; Liu, Jinzhong; Gilhooly, William P.; Aizenshtat, Zeev; Amrani, Alon

    2016-09-01

    The sulfur isotopic fractionation associated with the formation of organic sulfur compounds (OSCs) during thermochemical sulfate reduction (TSR) was studied using gold-tube pyrolysis experiments to simulate TSR. The reactants used included n-hexadecane (n-C16) as a model organic compound with sulfate, sulfite, or elemental sulfur as the sulfur source. At the end of each experiment, the S-isotopic composition and concentration of remaining sulfate, H2S, benzothiophene, dibenzothiophene, and 2-phenylthiophene (PT) were measured. The observed S-isotopic fractionations between sulfate and BT, DBT, and H2S in experimental simulations of TSR correlate well with a multi-stage model of the overall TSR process. Large kinetic isotope fractionations occur during the first, uncatalyzed stage of TSR, 12.4‰ for H2S and as much as 22.2‰ for BT. The fractionations decrease as the H2S concentration increases and the reaction enters the second, catalyzed stage. Once all of the oxidizable hydrocarbons have been consumed, sulfate reduction ceases and equilibrium partitioning then dictates the fractionation between H2S and sulfate (∼17‰). Experiments involving sparingly soluble CaSO4 show that during the second catalytic phase of TSR the rate of sulfate reduction exceeds that of sulfate dissolution. In this case, there is no apparent isotopic fractionation between source sulfate and generated H2S, as all of the available sulfate is effectively reduced at all reaction times. When CaSO4 is replaced with fully soluble Na2SO4, sulfate dissolution is no longer rate limiting and significant S-isotopic fractionation is observed. This supports the notion that CaSO4 dissolution can lead to the apparent lack of fractionation between H2S and sulfate produced by TSR in nature. The S-isotopic composition of individual OSCs record information related to geochemical reactions that cannot be discerned from the δ34S values obtained from bulk phases such as H2S, oil, and sulfate minerals, and

  10. Vapor compression CuCl heat pump integrated with a thermochemical water splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Zamfirescu, C., E-mail: Calin.Zamfirescu@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Naterer, G.F., E-mail: Greg.Naterer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada); Dincer, I., E-mail: Ibrahim.Dincer@uoit.ca [Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON, Canada L1H 74K (Canada)

    2011-01-10

    In this paper, the feasibility of using cuprous chloride (CuCl) as a working fluid in a new high temperature heat pump with vapor compression is analyzed. The heat pump is integrated with a copper-chlorine (Cu-Cl) thermochemical water splitting cycle for internal heat recovery, temperature upgrades and hydrogen production. The minimum temperature of heat supply necessary for driving the water splitting cycle can be lowered because the heat pump increases the working fluid temperature from 755 K up to {approx}950 K, at a high COP of {approx}6.5. Based on measured data available in past literature, the authors have determined the T-s diagram of CuCl, which is then used for the thermodynamic modeling of the cycle. In the heat pump cycle, molten CuCl is flashed in a vacuum where the vapor quality reaches {approx}2.5%, and then it is boiled to produce saturated vapor. The vapor is then compressed in stages (with inter-cooling and heat recovery), and condensed in a direct contact heat exchanger to transfer heat at a higher temperature. The heat pump is then integrated with a copper-chlorine water splitting plant. The heat pump evaporator is connected thermally with the hydrogen production reactor of the water splitting plant, which performs an exothermic reaction that generates heat at 760 K. Additional source heat is obtained from heat recovery from the hot reaction products of the oxy-decomposer. The heat pump transfers heat at {approx}950 K to the oxy-decomposer to drive its endothermic chemical reaction. It is shown that the heat required at the heat pump source can be obtained completely from internal heat recovery within the plant. First and second law analyses and a parametric study are performed for the proposed system to study the influence of the compressor's isentropic efficiency and temperature levels on the heat pump's COP. Two new indicators are presented: one represents the heat recovery ratio (the ratio between the thermal energy obtained by

  11. AVAILABILITY AND PHYSICAL PROPERTIES OF RESIDUES FROM MAJOR AGRICULTURAL CROPS FOR ENERGY CONVERSION THROUGH THERMOCHEMICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Yaning Zhang

    2012-01-01

    Full Text Available Plant residues from the major agricultural crops (wheat, rice, corn, soybean, sugarcane, coffee and cotton are abundantly available renewable resources that can be used to supply energy through thermochemical conversion processes. The available amounts of plant residues from these crops and their physical properties (moisture content, particle size, bulk density and porosity were determined. The annual residues from the wheat, rice, corn, soybean, sugarcane, coffee and cotton were 763.42, 698.10, 1729.92, 416.62, 16.85, 4.01 and 107.13 million tons, respectively. The total amount of plant residues was estimated at 3736.05 million tons with total energy content of 66.92 EJ. These residues can replace 2283.52 million tons of coal, 1551.78 million tons of oil and 1847.63 million m3 of natural gas. The moisture contents were 7.79, 6.58, 6.40, 7.30, 8.15, 7.86 and 7.45% for the wheat straw, rice straw, corn stalk, soybean stalk, sugarcane stalk, coffee husk and cotton stalk, respectively. The corn stalk and sugarcane stalk had a convex particle size distribution, the soybean stalk and cotton stalk had a concave particle size distribution, the wheat straw and rice straw had an increasing trend particle size distribution and the coffee husk had a decreasing trend particle size distribution. The average particle sizes for the wheat straw, rice straw, corn stalk, soybean stalk, sugarcane stalk, coffee husk and cotton stalk were 0.42, 0.40, 0.49, 0.43, 0.55, 0.67 and 0.38 mm, respectively. The average bulk density was 160.75, 166.29, 127.32, 242.34, 110.86, 349.06 and 230.55 kg m-3 for the wheat straw, rice straw, corn stalk, soybean stalk, sugarcane stalk, coffee husk and cotton stalk, respectively. The average porosity was 51.25, 83.20, 58.51, 68.03, 77.58, 64.85 and 74.55% for the wheat straw, rice straw, corn stalk, soybean stalk, sugarcane stalk, coffee husk and cotton stalk, respectively. The results obtained from this study indicate that different

  12. Thermochemical and Mechanistic Studies of Electrocatalytic Hydrogen Production by Cobalt Complexes Containing Pendant Amines

    Energy Technology Data Exchange (ETDEWEB)

    Wiedner, Eric S.; Appel, Aaron M.; DuBois, Daniel L.; Bullock, R. Morris

    2013-12-16

    Two cobalt(tetraphosphine) complexes [Co(PnC-PPh22NPh2)(CH3CN)](BF4)2 with a tetradentate phosphine ligand (PnC-PPh22NPh2 = 1,5-diphenyl-3,7-bis((diphenylphosphino)alkyl)-1,5-diaza-3,7-diphosphacyclooctane; alkyl = (CH2)2, n = 2 (L2); (CH2)3, n = 3 (L3)) have been studied for electrocatalytic hydrogen production using 1:1 [(DMF)H]+:DMF. A turnover frequency of 980 s–1 with an overpotential of 1210 mV was measured for [CoII(L2)(CH3CN)]2+, and a turnover frequency of 980 s–1 with an overpotential of 930 mV was measured for [CoII(L3)(CH3CN)]2+. Addition of water increases the turnover frequency of [CoII(L2)(CH3CN)]2+ to 19,000 s–1. The catalytic wave for each of these complexes occurs at the reduction potential of the corresponding HCoIII complex. Comprehensive thermochemical studies of [CoII(L2)(CH3CN)]2+ and [CoII(L3)(CH3CN)]2+ and species derived from them by addition/removal of protons/electrons were carried out using values measured experimentally and calculated using DFT. Notably, HCoI(L2) and HCoI(L2) were found to be remarkably strong hydride donors, with HCoI(L2) being a better hydride donor than BH4-. Mechanistic studies of these catalysts reveal that H2 formation can occur by protonation of a HCoII intermediate, and that the pendant amines of these complexes facilitate proton delivery to the cobalt center. The rate-limiting step for catalysis is a net intramolecular isomerization of the protonated pendant amine from the non-productive exo-isomer to the productive endo isomer. We thank Dr. Shentan Chen for many helpful discussions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. Computational resources were provided at the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Pacific Northwest National Laboratory is operated by Battelle for the

  13. Kinetics of uncatalyzed thermochemical sulfate reduction by sulfur-free paraffin

    Science.gov (United States)

    Zhang, Tongwei; Ellis, Geoffrey S.; Ma, Qisheng; Amrani, Alon; Tang, Yongchun

    2012-01-01

    To determine kinetic parameters of sulfate reduction by hydrocarbons (HC) without the initial presence of low valence sulfur, we carried out a series of isothermal gold-tube hydrous-pyrolysis experiments at 320, 340, and 360 °C under a constant confined pressure of 24.1 MPa. The reactants used consisted of saturated HC (sulfur-free) and CaSO4 in an aqueous solution buffered to three different pH conditions without the addition of elemental sulfur (S8) or H2S as initiators. H2S produced in the course of reaction was proportional to the extent of the reduction of CaSO4 that was initially the only sulfur-containing reactant. Our results show that the in situ pH of the aqueous solution (herein, in situ pH refers to the calculated pH value of the aqueous solution at certain experimental conditions) can significantly affect the rate of the thermochemical sulfate reduction (TSR) reaction. A substantial increase in the TSR reaction rate was observed with a decrease in the in situ pH. Our experimental results show that uncatalyzed TSR is a first-order reaction. The temperature dependence of experimentally measured H2S yields from sulfate reduction was fit with the Arrhenius equation. The determined activation energy for HC (sulfur-free) reacting with View the MathML sourceHSO4− in our experiments is 246.6 kJ/mol at pH values ranging from 3.0 to 3.5, which is slightly higher than the theoretical value of 227.0 kJ/mol using ab initio quantum chemical calculations on a similar reaction. Although the availability of reactive sulfate significantly affects the rate of reaction, a consistent rate constant was determined by accounting for the HSO4− ion concentration. Our experimental and theoretical approach to the determination of the kinetics of TSR is further validated by a reevaluation of several published experimental TSR datasets without the initial presence of native sulfur or H2S. When the effect of reactive sulfate concentration is appropriately accounted for, the

  14. Perspectives of advanced thermal management in solar thermochemical syngas production using a counter-flow solid-solid heat exchanger

    Science.gov (United States)

    Falter, Christoph; Sizmann, Andreas; Pitz-Paal, Robert

    2017-06-01

    A modular reactor model is presented for the description of solar thermochemical syngas production involving counter-flow heat exchangers that recuperate heat from the solid phase. The development of the model is described including heat diffusion within the reactive material as it travels through the heat exchanger, which was previously identified to be a possibly limiting factor in heat exchanger design. Heat transfer within the reactive medium is described by conduction and radiation, where the former is modeled with the three-resistor model and the latter with the Rosseland diffusion approximation. The applicability of the model is shown by the analysis of heat exchanger efficiency for different material thicknesses and porosities in a system with 8 chambers and oxidation and reduction temperatures of 1000 K and 1800 K, respectively. Heat exchanger efficiency is found to rise strongly for a reduction of material thickness, as the element mass is reduced and a larger part of the elements takes part in the heat exchange process. An increase of porosity enhances radiation heat exchange but deteriorates conduction. The overall heat exchange in the material is improved for high temperatures in the heat exchanger, as radiation dominates the energy transfer. The model is shown to be a valuable tool for the development and analysis of solar thermochemical reactor concepts involving heat exchange from the solid phase.

  15. Thermochemical water-splitting cycle, bench-scale investigations and process engineering. Annual report, October 1, 1978-September 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Caprioglio, G.; McCorkle, K.H.; Besenbruch, G.E.; Rode, J.S.

    1980-03-01

    A program to investigate thermochemical water splitting has been under way at General Atomic Company (GA) since October 1972. This document is an annual progress report of Department of Energy (DOE) sponsored process development work on the GA sulfur-iodine thermochemical water splitting cycle. The work consisted of laboratory bench-scale investigations, demonstration of the process in a closed-loop cycle demonstrator, and process engineering design studies. A bench-scale system, consisting of three subunits, has been designed to study the cycle under continuous flow conditions. The designs of subunit I, which models the main solution reaction and product separation, and subunit II, which models the concentration and decomposition of sulfuric acid, were presented in an earlier annual report. The design of subunit III, which models the purification and decomposition of hydrogen iodide, is given in this report. Progress on the installation and operation of subunits I and II is described. A closed-loop cycle demonstrator was installed and operated based on a DOE request. Operation of the GA sulfur-iodine cycle was demonstrated in this system under recycle conditions. The process engineering addresses the flowsheet design of a large-scale production process consisting of four chemical sections (I through IV) and one helium heat supply section (V). The completed designs for sections I through V are presented. The thermal efficiency of the process calculated from the present flowsheet is 47%.

  16. Recent initiatives in experimental thermodynamic studies on ionic liquids [IL]--the emergence of a standard thermochemical database for ILs.

    Science.gov (United States)

    Jenkins, Harry Donald Brooke

    2011-01-01

    One of the ultimate goals in the exciting on-going development and study of ionic liquids (ILs) must be the quest to establish "before synthesis" tools that could be used to predict and guide synthetic chemists towards ILs having "tuned" target properties. The tools needed in this exercise will come from many sources, not least from the acquisition of standard experimental thermodynamic data. The routine measurement of such data for new compounds had become very much a thing of the past in traditional chemistry. However with the surge of interest across the globe seen in these relatively new IL materials has come a recognition of the need to acquire experimental data and this review article seeks to assemble much of the emerging thermochemical data for ILs in one place. After all, there are very few data in current existing thermochemical databases that could offer much of a clue concerning the specific thermodynamic behaviour of ILs. We are charting new territory here. Development of any new large scale commercial process is preceded these days by a full study of its thermodynamic feasibility, usually at the pilot stage, and thus such data as are reported here are of the utmost value in this respect. It has a secondary role too in enabling predictions of missing data to become feasible and hence in predicting synthetic outcomes ahead of practical experiment. This commentary tracks very recent trends and developments on the more quantitative and thermodynamic aspects of this exciting chemistry.

  17. A novel thermochemical energy storage and transportation concept based on concentrated solar irradiation-aided CaO-looping

    Science.gov (United States)

    Obermeier, Jonas; Müller, Karsten; Karagiannakis, George; Stubos, Athanasios; Arlt, Wolfgang

    2016-05-01

    To overcome the temporal and regional gap of surplus solar energy, the concept of thermochemical heat storage is discussed. In this particular case, the application of CaO and CaCO3 as energy carrying compounds for a trans-regional energy distribution concept is analyzed regarding the effective energetic and exergetic storage density. In a comprehensive sensitivity analysis, the influences of reaction temperature, conversion and heat recovery strategies are worked out. It can be seen that the effective storage density is strongly influenced by the preheating of reactants from ambient to reaction temperature. Thus, high conversion rates during forward and reverse reaction as well as improved heat recovery ratios are necessary to achieve a high energetic storage density. In case of effective exergetic storage density, carbonation temperature reaches an optimum. The method presented in this contribution can be applied to similar thermochemical heat storage systems and the results are of great importance for the process design and development of the suggested concept.

  18. Discovery of Novel Perovskites for Solar Thermochemical Water Splitting from High-Throughput First-Principles Calculations

    Science.gov (United States)

    Emery, Antoine; Wolverton, Chris

    Among the several possible routes of hydrogen synthesis, thermochemical water splitting (TWS) cycles is a promising method for large scale production of hydrogen. The choice of metal oxide used in a TWS cycle is critical since it governs the rate and efficiency of the gas splitting process. In this work, we present a high-throughput density functional theory (HT-DFT) study of ABO3 perovskite compounds to screen for thermodynamically favorable two-step thermochemical water splitting materials. We demonstrate the use of two screens, based on thermodynamic stability and oxygen vacancy formation energy, on 5,329 different compositions to predict 139 stable potential candidate materials for water splitting applications. Several of these compounds have not been experimentally explored yet and present promising avenues for further research. Additionally, the large dataset of compounds and stability in our possession allowed us to revisit the structural maps for perovskites. This study shows the benefit of using first-principles calculations to efficiently screen an exhaustively large number of compounds at once. It provides a baseline for further studies involving more detailed exploration of a restricted number of those compounds.

  19. Bioenergy co-products derived from microalgae biomass via thermochemical conversion--life cycle energy balances and CO2 emissions.

    Science.gov (United States)

    Khoo, H H; Koh, C Y; Shaik, M S; Sharratt, P N

    2013-09-01

    An investigation of the potential to efficiently convert lipid-depleted residual microalgae biomass using thermochemical (gasification at 850 °C, pyrolysis at 550 °C, and torrefaction at 300 °C) processes to produce bioenergy derivatives was made. Energy indicators are established to account for the amount of energy inputs that have to be supplied to the system in order to gain 1 MJ of bio-energy output. The paper seeks to address the difference between net energy input-output balances based on a life cycle approach, from "cradle-to-bioenergy co-products", vs. thermochemical processes alone. The experimental results showed the lowest results of Net Energy Balances (NEB) to be 0.57 MJ/MJ bio-oil via pyrolysis, and highest, 6.48 MJ/MJ for gas derived via torrefaction. With the complete life cycle process chain factored in, the energy balances of NEBLCA increased to 1.67 MJ/MJ (bio-oil) and 7.01 MJ/MJ (gas). Energy efficiencies and the life cycle CO2 emissions were also calculated. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Application of MgCl{sub 2.}6H{sub 2}O for thermochemical seasonal solar heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Zondag, H.A. [Energy Research Centre of the Netherlands (ECN), Petten (Netherlands); Eindhoven Univ. of Technology (Netherlands). Dept. of Mechanical Engineering; Essen, V.M. van; Bleijendaal, L.P.J.; Kikkert, B.W.J.; Bakker, M. [Energy Research Centre of the Netherlands (ECN), Petten (Netherlands)

    2010-07-01

    The heat demand in the summer can be completely fulfilled using solar heat, but in the winter the heat demand is exceeding the solar supply. A solution is to store the excess of solar energy in the summer, and to use it to fulfill the heat demand in the winter. Water is traditionally used for storing heat (e.g. solar boiler), but seasonal heat storage requires large water tanks (>40m{sup 3}) that are too large to be placed inside a family building. An alternative option is to store heat by means of chemical processes using the reversible reaction: A+B<=>C+heat. With thermochemical heat storage, energy storage densities can be reached that are ten times higher than for heat storage in water. Additionally, after the thermochemical material has been charged, the heat can be stored for a very long time without losses. Interesting materials are cheap, non-toxic, non-corrosive, have sufficient energy storage density and have reaction temperatures in the proper range. A large materials inventory by ECN identified a number of interesting materials, including magnesium chloride hexahydrate (MgCl{sub 2.}6H{sub 2}O) as one of the most promising materials for seasonal heat storage (Zondag, 2007). (orig.)

  1. Application of MgCl2.6H2O for thermochemical seasonal solar heat storage

    Energy Technology Data Exchange (ETDEWEB)

    Zondag, H.A. [Eindhoven University of Technology, Eindhoven (Netherlands); Van Essen, V.M.; Bleijendaal, L.P.J.; Kikkert, B.W.J.; Bakker, M. [ECN Solar Energy, Petten (Netherlands)

    2010-11-15

    The heat demand in the summer can be completely fulfilled using solar heat, but in the winter the heat demand is exceeding the solar supply. A solution is to store the excess of solar energy in the summer, and to use it to fulfill the heat demand in the winter. Water is traditionally used for storing heat (e.g. solar boiler), but seasonal heat storage requires large water tanks (>40m{sup 3}) that are too large to be placed inside a residential building. An alternative option is to store heat by means of chemical processes using the reversible reaction: A+B->C+heat. With thermochemical heat storage, energy storage densities can be reached that are ten times higher than for heat storage in water. Additionally, after the thermochemical material has been charged, the heat can be stored for a very long time without losses. Interesting materials are cheap, non-toxic, non-corrosive, have sufficient energy storage density and have reaction temperatures in the proper range. A large materials inventory by ECN identified a number of interesting materials, including magnesium chloride hexahydrate (MgCl2.6H2O) as one of the most promising materials for seasonal heat storage.

  2. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I.

    Science.gov (United States)

    Keshavarz, Mohammad Hossein; Motamedoshariati, Hadi; Moghayadnia, Reza; Nazari, Hamid Reza; Azarniamehraban, Jamshid

    2009-12-30

    In this paper a new simple user-friendly computer code, in Visual Basic, has been introduced to evaluate detonation performance of high explosives and their thermochemical properties. The code is based on recently developed methods to obtain thermochemical and performance parameters of energetic materials, which can complement the computer outputs of the other thermodynamic chemical equilibrium codes. It can predict various important properties of high explosive including velocity of detonation, detonation pressure, heat of detonation, detonation temperature, Gurney velocity, adiabatic exponent and specific impulse of high explosives. It can also predict detonation performance of aluminized explosives that can have non-ideal behaviors. This code has been validated with well-known and standard explosives and compared the predicted results, where the predictions of desired properties were possible, with outputs of some computer codes. A large amount of data for detonation performance on different classes of explosives from C-NO(2), O-NO(2) and N-NO(2) energetic groups have also been generated and compared with well-known complex code BKW.

  3. A new computer code to evaluate detonation performance of high explosives and their thermochemical properties, part I

    Energy Technology Data Exchange (ETDEWEB)

    Keshavarz, Mohammad Hossein, E-mail: mhkeshavarz@mut-es.ac.ir [Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115 (Iran, Islamic Republic of); Motamedoshariati, Hadi; Moghayadnia, Reza; Nazari, Hamid Reza; Azarniamehraban, Jamshid [Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr P.O. Box 83145/115 (Iran, Islamic Republic of)

    2009-12-30

    In this paper a new simple user-friendly computer code, in Visual Basic, has been introduced to evaluate detonation performance of high explosives and their thermochemical properties. The code is based on recently developed methods to obtain thermochemical and performance parameters of energetic materials, which can complement the computer outputs of the other thermodynamic chemical equilibrium codes. It can predict various important properties of high explosive including velocity of detonation, detonation pressure, heat of detonation, detonation temperature, Gurney velocity, adiabatic exponent and specific impulse of high explosives. It can also predict detonation performance of aluminized explosives that can have non-ideal behaviors. This code has been validated with well-known and standard explosives and compared the predicted results, where the predictions of desired properties were possible, with outputs of some computer codes. A large amount of data for detonation performance on different classes of explosives from C-NO{sub 2}, O-NO{sub 2} and N-NO{sub 2} energetic groups have also been generated and compared with well-known complex code BKW.

  4. Thermal tests of a multi-tubular reactor for hydrogen production by using mixed ferrites thermochemical cycle

    Science.gov (United States)

    Gonzalez-Pardo, Aurelio; Denk, Thorsten; Vidal, Alfonso

    2017-06-01

    The SolH2 project is an INNPACTO initiative of the Spanish Ministry of Economy and Competitiveness, with the main goal to demonstrate the technological feasibility of solar thermochemical water splitting cycles as one of the most promising options to produce H2 from renewable sources in an emission-free way. A multi-tubular solar reactor was designed and build to evaluate a ferrite thermochemical cycle. At the end of this project, the ownership of this plant was transferred to CIEMAT. This paper reviews some additional tests with this pilot plant performed in the Plataforma Solar de Almería with the main goal to assess the thermal behavior of the reactor, evaluating the evolution of the temperatures inside the cavity and the relation between supplied power and reached temperatures. Previous experience with alumina tubes showed that they are very sensitive to temperature and flux gradients, what leads to elaborate an aiming strategy for the heliostat field to achieve a uniform distribution of the radiation inside the cavity. Additionally, the passing of clouds is a phenomenon that importantly affects all the CSP facilities by reducing their efficiency. The behavior of the reactor under these conditions has been studied.

  5. Improvement of the heat resistance of carbon steels by thermocycling thermochemical treatment with self-protective pastes based on boron carbide and aluminum

    Science.gov (United States)

    Polyansky, I.; Sizov, I.; Mishigdorzhiyn, U.; Butukhanov, V.

    2016-02-01

    The positive effect after thermocycling thermochemical treatment on the structure and properties of formation of boroaluminized layer on steel 20 was established. The research results of metallographic analysis, x-ray spectrometry microanalysis and microhardness were given. The modes of thermocycling treatment (temperature, speed of heating and cooling) were carried out.

  6. Radiation thermo-chemical models of protoplanetary disks. I. Hydrostatic disk structure and inner rim

    Science.gov (United States)

    Woitke, P.; Kamp, I.; Thi, W.-F.

    2009-07-01

    Context: Emission lines from protoplanetary disks originate mainly in the irradiated surface layers, where the gas is generally warmer than the dust. Therefore, interpreting emission lines requires detailed thermo-chemical models, which are essential to converting line observations into understanding disk physics. Aims: We aim at hydrostatic disk models that are valid from 0.1 AU to 1000 AU to interpret gas emission lines from UV to sub-mm. In particular, our interest lies in interpreting far IR gas emission lines, such as will be observed by the Herschel observatory, related to the Gasps open time key program. This paper introduces a new disk code called ProDiMo. Methods: We combine frequency-dependent 2D dust continuum radiative transfer, kinetic gas-phase and UV photo-chemistry, ice formation, and detailed non-LTE heating & cooling with the consistent calculation of the hydrostatic disk structure. We include Fe ii and CO ro-vibrational line heating/cooling relevant to the high-density gas close to the star, and apply a modified escape-probability treatment. The models are characterised by a high degree of consistency between the various physical, chemical, and radiative processes, where the mutual feedbacks are solved iteratively. Results: In application to a T Tauri disk extending from 0.5 AU to 500 AU, the models show that the dense, shielded and cold midplane (z/r ⪉ 0.1, T g≈ T d) is surrounded by a layer of hot (T g≈ 5000 K) and thin (n ≈10 7 to 10 8 cm-3) atomic gas that extends radially to about 10 AU and vertically up to z/r≈0.5. This layer is predominantly heated by the stellar UV (e.g. PAH-heating) and cools via Fe ii semi-forbidden and Oi 630 nm optical line emission. The dust grains in this “halo” scatter the starlight back onto the disk, which affects the photochemistry. The more distant regions are characterised by a cooler flaring structure. Beyond r ⪆ 100 AU, T g decouples from T d even in the midplane and reaches values of about T

  7. Mercury's thermo-chemical evolution from numerical models constrained by Messenger observations

    Science.gov (United States)

    Tosi, N.; Breuer, D.; Plesa, A. C.; Wagner, F.; Laneuville, M.

    2012-04-01

    The Messenger spacecraft, in orbit around Mercury for almost one year, has been delivering a great deal of new information that is changing dramatically our understanding of the solar system's innermost planet. Tracking data of the Radio Science experiment yielded improved estimates of the first coefficients of the gravity field that permit to determine the normalized polar moment of inertia of the planet (C/MR2) and the ratio of the moment of inertia of the mantle to that of the whole planet (Cm/C). These two parameters provide a strong constraint on the internal mass distribution and, in particular, on the core mass fraction. With C/MR2 = 0.353 and Cm/C = 0.452 [1], interior structure models predict a core radius as large as 2000 km [2], leaving room for a silicate mantle shell with a thickness of only ~ 400 km, a value significantly smaller than that of 600 km usually assumed in parametrized [3] as well as in numerical models of Mercury's mantle dynamics and evolution [4]. Furthermore, the Gamma-Ray Spectrometer measured the surface abundance of radioactive elements, revealing, besides uranium and thorium, the presence of potassium. The latter, being moderately volatile, rules out traditional formation scenarios from highly refractory materials, favoring instead a composition not much dissimilar from a chondritic model. Considering a 400 km thick mantle, we carry out a large series of 2D and 3D numerical simulations of the thermo-chemical evolution of Mercury's mantle. We model in a self-consistent way the formation of crust through partial melting using Lagrangian tracers to account for the partitioning of radioactive heat sources between mantle and crust and variations of thermal conductivity. Assuming the relative surface abundance of radiogenic elements observed by Messenger to be representative of the bulk mantle composition, we attempt at constraining the degree to which uranium, thorium and potassium are concentrated in the silicate mantle through a broad

  8. Regenerative Carbonate-Based Thermochemical Energy Storage System for Concentrating Solar Power

    Energy Technology Data Exchange (ETDEWEB)

    Gangwal, Santosh [Southern Research Inst., Durham, NC (United States); Muto, Andrew [Southern Research Inst., Durham, NC (United States)

    2017-08-30

    Southern Research has developed a thermochemical energy storage (TCES) technology that utilizes the endothermic-exothermic reversible carbonation of calcium oxide (lime) to store thermal energy at high-temperatures, such as those achieved by next generation concentrating solar power (CSP) facilities. The major challenges addressed in the development of this system include refining a high capacity, yet durable sorbent material and designing a low thermal resistance low-cost heat exchanger reactor system to move heat between the sorbent and a heat transfer fluid under conditions relevant for CSP operation (e.g., energy density, reaction kinetics, heat flow). The proprietary stabilized sorbent was developed by Precision Combustion, Inc. (PCI). A factorial matrix of sorbent compositions covering the design space was tested using accelerated high throughput screening in a thermo-gravimetric analyzer. Several promising formulations were selected for more thorough evaluation and one formulation with high capacity (0.38 g CO2/g sorbent) and durability (>99.7% capacity retention over 100 cycles) was chosen as a basis for further development of the energy storage reactor system. In parallel with this effort, a full range of currently available commercial and developmental heat exchange reactor systems and sorbent loading methods were examined through literature research and contacts with commercial vendors. Process models were developed to examine if a heat exchange reactor system and balance of plant can meet required TCES performance and cost targets, optimizing tradeoffs between thermal performance, exergetic efficiency, and cost. Reactor types evaluated included many forms, from microchannel reactor, to diffusion bonded heat exchanger, to shell and tube heat exchangers. The most viable design for application to a supercritical CO2 power cycle operating at 200-300 bar pressure and >700°C was determined to be a combination of a diffusion bonded heat

  9. Thermodynamic analysis of SCW NPP cycles with thermo-chemical co-generation of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Naidin, N.; Mokry, S.; Monichan, R.; Chophla, K.; Pioro, I. [Faculty of Energy Systems and Nuclear Science, Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)], E-mail: Maria.Naidin@mycampus.uoit.ca, Sarah.Mokry@mycampus.uoit.ca, Romson.Monichan@uoit.ca, Karan.Chophla@mycampus.uoit.ca, Igor.Pioro@uoit.ca; Naterer, G.; Gabriel, K. [Faculty of Engineering and Applied Science, Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)], E-mail: Greg.Naterer@uoit.ca, Kamiel.Gabriel@uoit.ca

    2009-07-01

    Research activities are currently conducted worldwide to develop Generation IV nuclear reactor concepts with the objective of improving thermal efficiency and increasing economic competitiveness of Generation IV Nuclear Power Plants (NPPs) compared to modern thermal power plants. The Super-Critical Water-cooled Reactor (SCWR) concept is one of the six Generation IV options chosen for further investigation and development in several countries including Canada and Russia. Water-cooled reactors operating at subcritical pressures (10 - 16 MPa) have provided a significant amount of electricity production for the past 50 years. However, the thermal efficiency of the current NPPs is not very high (30 - 35%). As such, more competitive designs, with higher thermal efficiencies, which will be close to that of modern thermal power plants (45 - 50%), need to be developed and implemented. Super-Critical Water (SCW) NPPs will have much higher operating parameters compared to current NPPs (i.e., steam pressures of about 25 MPa and steam outlet temperatures up to 625{sup o}C). Furthermore, SCWRs operating at higher temperatures can facilitate an economical co-generation of hydrogen through thermochemical cycles (particularly, the copper-chlorine cycle) or direct high-temperature electrolysis. The two SCW NPP cycles proposed by this paper are based on direct, regenerative, no-reheat and single-reheat configurations. As such, the main parameters and performance in terms of thermal efficiency of the SCW NPP concepts mentioned above are being analyzed. The cycles are generally comprised of: an SCWR, a SC turbine, one deaerator, ten feedwater heaters, and pumps. The SC turbine of the no-reheat cycle consists of one High-Pressure (HP) cylinder and two Low-Pressure (LP) cylinders. Alternatively, the SC turbine for the single-reheat cycle is comprised of one High-Pressure (HP) cylinder, one Intermediate-Pressure (IP) cylinder and two Low-Pressure (LP) cylinders. Since the single

  10. Experimental investigation on thermochemical sulfate reduction by H2S initiation

    Science.gov (United States)

    Zhang, T.; Amrani, A.; Ellis, G.S.; Ma, Q.; Tang, Y.

    2008-01-01

    Hydrogen sulfide (H2S) is known to catalyze thermochemical sulfate reduction (TSR) by hydrocarbons (HC), but the reaction mechanism remains unclear. To understand the mechanism of this catalytic reaction, a series of isothermal gold-tube hydrous pyrolysis experiments were conducted at 330 ??C for 24 h under a constant confining pressure of 24.1 MPa. The reactants used were saturated HC (sulfur-free) and CaSO4 in the presence of variable H2S partial pressures at three different pH conditions. The experimental results showed that the in-situ pH of the aqueous solution (herein, in-situ pH refers to the calculated pH of aqueous solution under the experimental conditions) can significantly affect the rate of the TSR reaction. A substantial increase in the TSR reaction rate was recorded with a decrease in the in-situ pH value of the aqueous solution involved. A positive correlation between the rate of TSR and the initial partial pressure of H2S occurred under acidic conditions (at pH ???3-3.5). However, sulfate reduction at pH ???5.0 was undetectable even at high initial H2S concentrations. To investigate whether the reaction of H2S(aq) and HSO4- occurs at pH ???3, an additional series of isothermal hydrous pyrolysis experiments was conducted with CaSO4 and variable H2S partial pressures in the absence of HC at the same experimental temperature and pressure conditions. CaSO4 reduction was not measurable in the absence of paraffin even with high H2S pressure and acidic conditions. These experimental observations indicate that the formation of organosulfur intermediates from H2S reacting with hydrocarbons may play a significant role in sulfate reduction under our experimental conditions rather than the formation of elemental sulfur from H2S reacting with sulfate as has been suggested previously (Toland W. G. (1960) Oxidation of organic compounds with aqueous sulphate. J. Am. Chem. Soc. 82, 1911-1916). Quantification of labile organosulfur compounds (LSC), such as thiols

  11. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...

  12. The Hybrid Museum: Hybrid Economies of Meaning

    DEFF Research Database (Denmark)

    Vestergaard, Vitus

    2013-01-01

    this article shows that there are two different museum mindsets where the second mindset leans towards participatory practices. It is shown how a museum can support a hybrid economy of meaning that builds on both a user generated economy of meaning and an institutional economy of meaning and adds value to both....... Such a museum is referred to as a hybrid museum....

  13. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  14. Hybrid Management in Hospitals

    DEFF Research Database (Denmark)

    Byrkjeflot, Haldor; Jespersen, Peter Kragh

    2010-01-01

    Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer......Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer...

  15. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  16. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  17. Realizing the Hybrid Library.

    Science.gov (United States)

    Pinfield, Stephen; Eaton, Jonathan; Edwards, Catherine; Russell, Rosemary; Wissenburg, Astrid; Wynne, Peter

    1998-01-01

    Outlines five projects currently funded by the United Kingdom's Electronic Libraries Program (eLib): HyLiFe (Hybrid Library of the Future), MALIBU (MAnaging the hybrid Library for the Benefit of Users), HeadLine (Hybrid Electronic Access and Delivery in the Library Networked Environment), ATHENS (authentication scheme), and BUILDER (Birmingham…

  18. Homoploid hybrid expectations

    Science.gov (United States)

    Homoploid hybrid speciation occurs when a stable, fertile, and reproductively isolated lineage results from hybridization between two distinct species without a change in ploidy level. Reproductive isolation between a homoploid hybrid species and its parents is generally attained via chromosomal re...

  19. Hybrid armature projectile

    Science.gov (United States)

    Hawke, Ronald S.; Asay, James R.; Hall, Clint A.; Konrad, Carl H.; Sauve, Gerald L.; Shahinpoor, Mohsen; Susoeff, Allan R.

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  20. Intraply Hybrid Composite Design

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1986-01-01

    Several theoretical approaches combined in program. Intraply hybrid composites investigated theoretically and experimentally at Lewis Research Center. Theories developed during investigations and corroborated by attendant experiments used to develop computer program identified as INHYD (Intraply Hybrid Composite Design). INHYD includes several composites micromechanics theories, intraply hybrid composite theories, and integrated hygrothermomechanical theory. Equations from theories used by program as appropriate for user's specific applications.

  1. Hybrid quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  2. Energy efficient thermochemical conversion of very wet biomass to biofuels by integration of steam drying, steam electrolysis and gasification

    DEFF Research Database (Denmark)

    Clausen, Lasse Røngaard

    2017-01-01

    A novel system concept is presented for the thermochemical conversion of very wet biomasses such as sewage sludge and manure. The system integrates steam drying, solid oxide electrolysis cells (SOEC) and gasification for the production of synthetic natural gas (SNG). The system is analyzed....... The analysis shows that the total efficiency of the novel system is 69–70% depending on the biomass ash content, while the biomass to SNG energy ratio is 165%, which is near the theoretical maximum because electrolytic hydrogen is supplied to the synthesis gas. It is proposed to combine the novel system...... with an anaerobic digester for conversion of biomasses with high nitrogen content, such as sewage sludge. The organic nitrogen in the sewage sludge will be mineralized in the digester instead of ending up as N2 in the SNG product....

  3. The influence of thermochemical treatments on the lignocellulosic structure of wheat straw as studied by natural abundance 13C NMR

    Energy Technology Data Exchange (ETDEWEB)

    Habets, S.; Van Eck, E. [Solid-State NMR, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); De Wild, P.J.; Huijgen, W.J.J. [ECN Biomass and Energy Efficiency, Petten (Netherlands)

    2013-10-15

    The effects of thermochemical treatments (aquathermolysis, pyrolysis, and combinations thereof) on the lignocellulosic structure and composition of wheat straw were studied with 13C and 1H solid state NMR spectroscopy and proton T{sub 1p} relaxation measurements. Results show that aquathermolysis removes hemicellulose, acetyl groups, and ash minerals. As a result, the susceptibility of lignocellulose to pyrolysis is reduced most likely due to the removal of catalytically active salts, although recondensation of lignin during aquathermolysis treatment can also play a role. In contrast to pyrolysis of wheat straw, pyrolysis of aquathermolysed wheat straw leaves traces of cellulose in the char as well as more intense lignin methoxy peaks. Finally, it was found that both pyrolysis chars contain aliphatic chains, which were attributed to the presence of cutin or cutin-like materials, a macromolecule that covers the aerial surface of plants, not soluble in water and seemingly stable under the pyrolysis conditions applied.

  4. Temperature-Dependent Effects of FeS2 Thin Film Synthesized by Thermochemical Spraying: An Optical and Physicochemical Investigation

    Science.gov (United States)

    Kao, Chia-Tze; Shi, Jen-Bin; Lee, Hsuan-Wei; Cheng, Fu-Chou; Liu, Hung-Hsin; Lee, Ming-Way; Chan, Chih-Chieh; Huang, Chien-Wei; Lin, Hsien-Sheng; Wu, Po-Feng; Chen, Chin-Yi; Kao, Ming-Cheng; Young, San-Lin; Lin, Cheng-Li

    2016-02-01

    FeS2 pyrite films are used in a variety of applications including solar cells and, the potential scope for their utilization is increasing as their synthetic methods become more economical while maintaining or enhancing their high light absorption coefficients. The glass substrate temperature dependence on the formation of FeS2 pyrite films was investigated with respect to their optical and physicochemical properties. During the thermochemical spraying process the temperature was varied in the range of 190-290 °C. FeS2 nanocrystalline (40-70 nm) films, formed as a result of atmospheric spraying with glass substrate temperatures above 260 °C, were observed by SEM. Opto-electronic studies revealed that the nanocrystalline films had a direct band gap (1.3-1.6 eV) with a high light absorption coefficient (α > 7 × 104 cm-1 for λ application as high light-absorbing solar energy absorbers.

  5. The development of an explicit thermochemical nonequilibrium algorithm and its application to compute three dimensional AFE flowfields

    Science.gov (United States)

    Palmer, Grant

    1989-01-01

    This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.

  6. Thermochemical instability effects in SiC-based fibers and SiC{sub f}/SiC composites

    Energy Technology Data Exchange (ETDEWEB)

    Youngblood, G.E.; Henager, C.H.; Jones, R.H. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1997-08-01

    Thermochemical instability in irradiated SiC-based fibers with an amorphous silicon oxycarbide phase leads to shrinkage and mass loss. SiC{sub f}/SiC composites made with these fibers also exhibit mass loss as well as severe mechanical property degradation when irradiated at 800{degrees}C, a temperature much below the generally accepted 1100{degrees}C threshold for thermomechanical degradation alone. The mass loss is due to an internal oxidation mechanism within these fibers which likely degrades the carbon interphase as well as the fibers in SiC{sub f}/SiC composites even in so-called {open_quotes}inert{close_quotes} gas environments. Furthermore, the mechanism must be accelerated by the irradiation environment.

  7. Entropy production and efficiency analysis of the Bunsen reaction in the General Atomic sulfur-iodine thermochemical hydrogen production cycle

    Energy Technology Data Exchange (ETDEWEB)

    Davis, M.E.; Conger, W.L.

    1980-01-01

    An entropy production and efficiency analysis of the first reaction in the General Atomic sulfur-iodine thermochemical hydrogen production cycle has been carried out by simulating the reaction including the mixing of reactants and separation of the resulting phases. The reaction: 2H/sub 2/O(L) + SO/sub 2/(g) + (excess) I/sub 2/(g) = H/sub 2/SO/sub 4/ (sol)(Phase I) + 2 HI core (Phase II) was simulated at 388 K, which is slightly above the melting point of I/sup 2/. Analysis of only this reaction shows that the reaction should be run at 15 to 25% I/sub 2/ reacted and the greatest excess of H/sub 2/O which will produce two product phases. Actual operating conditions are however dependent on the total processing scheme. An entropy production and efficiency analysis along with economic factors for the entire process is necessary to obtain these conditions.

  8. Thermochemical method for the treatment of oil contaminated sand; Metodo termoquimico para tratamento de areia contaminada por oleo

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rosana C.G.M. [Fundacao Gorceix, Ouro Preto, MG (Brazil)]|[PETROBRAS S.A., Rio de Janeiro, RJ (Brazil); Khalil, Carlos N. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    In January 2000 there was a major oil spill in Guanabara Bay, Rio de Janeiro, which contaminated 2400 tons of sand. This work, based on NGS (Nitrogen Generating System) technology, was adapted for cleaning contaminated sand and recovering of spilled oil. NGS is a thermochemical method first developed for removal of paraffin deposits in production and export pipelines. The method is based on a strongly exothermic redox chemical reaction between two salts catalyzed in acidic pH. The reaction products are harmless to the environment and consist of nitrogen, sodium chloride, water and heat. By combining simultaneous effects of the treatment such as heating, turbulence and floatation, one can remove, within 98% of efficiency, spilling oil from contaminated sand. After treatment, removed oil can be securely returned to refining process. The method has proved to be efficient, fast, low cost and ecologically correct method for cleaning contaminated sand and can be applied in place right after a contamination event. (author)

  9. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories

    Science.gov (United States)

    Gokoglu, Suleyman A.

    1988-01-01

    This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.

  10. Corrigendum to "Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel"

    Science.gov (United States)

    Piro, M. H. A.; Banfield, J.; Clarno, K.; Simunovic, S.; Besmann, T. M.; Lewis, B. J.; Thompson, W. T.

    2016-09-01

    Figs. 7-9 in "Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel" [1] have a consistent error corresponding to the relative proportions of iodine. Reported concentrations of iodine in the original manuscript are approximately ten times higher than expected, and are comparable in atomic proportions to cesium. One would expect that the amount of cesium would be about one order of magnitude greater than iodine based on the difference in fission yields of 235U and 239Pu. A practical consequence of this error would affect the predicted quantity and chemical composition of iodine on the fuel surface, which is related to iodine-induced stress corrosion cracking [2].

  11. Thermochemical equilibrium calculations of high-temperature O2 generation on the early Earth: Giant asteroid impacts on land

    Directory of Open Access Journals (Sweden)

    PAVLE I. PREMOVIC

    2003-02-01

    Full Text Available Earth’s atmosphere is composed primarily of N2 and O2. The origin of free O2 in the early Earth’s atmosphere is still subject of considerable debate.1 Theoretical models suggest that the initial form of free O2 in the atmosphere has been oceanic H2O. Recent computation modelling has suggested that a superheated (ca. 2000 K H2O vapor atmosphere of 1.4x1021 kg (the present mass of the oceans lasting for about 3000 y could probably have been formed on Earth by an enormous (ca. 1028 J asteroid impact. In this report, the occurrence of the thermochemical dissociation of the vapor, creating a primitive oxygenic (ca. 0.1 of the present level (PAL of free O2 atmosphere.

  12. Thermochemical conversion of biomass in smouldering combustion across scales: The roles of heterogeneous kinetics, oxygen and transport phenomena.

    Science.gov (United States)

    Huang, Xinyan; Rein, Guillermo

    2016-05-01

    The thermochemical conversion of biomass in smouldering combustion is investigated here by combining experiments and modeling at two scales: matter (1mg) and bench (100g) scales. Emphasis is put on the effect of oxygen (0-33vol.%) and oxidation reactions because these are poorly studied in the literature in comparison to pyrolysis. The results are obtained for peat as a representative biomass for which there is high-quality experimental data published previously. Three kinetic schemes are explored, including various steps of drying, pyrolysis and oxidation. The kinetic parameters are found using the Kissinger-Genetic Algorithm method, and then implemented in a one-dimensional model of heat and mass transfer. The predictions are validated with thermogravimetric and bench-scale experiments and then analyzed to unravel the role of heterogeneous reaction. This is the first time that the influence of oxygen on biomass smouldering is explained in terms of both chemistry and transport phenomena across scales.

  13. Comparative study of the activity of nickel ferrites for solar hydrogen production by two-step thermochemical cycles

    Energy Technology Data Exchange (ETDEWEB)

    Fresno, Fernando [Solar Concentrating Systems, CIEMAT-PSA. Avda. Complutense, 22, 28040 Madrid (Spain); Yoshida, Tomoaki; Gokon, Nobuyuki; Kodama, Tatsuya [Department of Chemistry and Chemical Engineering and Center for Transdisciplinary Research, Niigata University, 8050 Ikarashi 2-nocho, Nishi-ku, Niigata 950-2181 (Japan); Fernandez-Saavedra, Rocio [Chemistry Division, CIEMAT. Avda. Complutense, 22, 28040 Madrid (Spain)

    2010-08-15

    In this work, we compare the activity of unsupported and monoclinic zirconia - supported nickel ferrites, calcined at two different temperatures, for solar hydrogen production by two-step water-splitting thermochemical cycles at low thermal reduction temperature. Commercial nickel ferrite, both as-received and calcined in the laboratory, as well as laboratory made supported NiFe{sub 2}O{sub 4}, are employed for this purpose. The samples leading to higher hydrogen yields, averaged over three cycles, are those calcined at 700 C in each group (supported and unsupported) of materials. The comparison of the two groups shows that higher chemical yields are obtained with the supported ferrites due to better utilisation of the active material. Therefore, the highest activity is obtained with ZrO{sub 2}-supported NiFe{sub 2}O{sub 4} calcined at 700 C. (author)

  14. Reduction of hazards from copper(I) chloride in a Cu-Cl thermochemical hydrogen production plant

    Energy Technology Data Exchange (ETDEWEB)

    Ghandehariun, Samane, E-mail: samane.ghandehariun@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Wang, Zhaolin, E-mail: zhaolin.wang@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Rosen, Marc A., E-mail: marc.rosen@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada); Naterer, Greg F., E-mail: greg.naterer@uoit.ca [Clean Energy Research Laboratory, Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario L1H 7K4 (Canada)

    2012-08-30

    Highlights: Black-Right-Pointing-Pointer Hazards are quantified for each process of the cycle where the CuCl may be present. Black-Right-Pointing-Pointer Using Cu{sub 2}OCl{sub 2} to absorb CuCl vapour is the most preferable option. Black-Right-Pointing-Pointer Utilization of a cooler at the outlet of the oxygen reactor is unadvisable. Black-Right-Pointing-Pointer If an atomization method is used for heat recovery, the fluid should be circulated. - Abstract: The copper-chlorine cycle of thermochemical water splitting, using various heat sources, is a promising technology for hydrogen production. The chemical hazards accompanying the new technology affect significantly the industrialization of the cycle, but have scarcely been examined. This paper addresses this need by examining the copper(I) chloride (CuCl) hazards that may be generated in the cycle. Regardless of the variations of Cu-Cl cycle, copper(I) chloride is always present, serving as an intermediate compound that may cause health concerns. In this paper, the CuCl hazards are quantified for each process from the generation source of the hazards along with the paths where the CuCl may be present. The processes of greatest relevance include oxygen production, heat recovery, solidification, and dissolution. The options for reducing the CuCl hazards in a Cu-Cl thermochemical hydrogen production plant are evaluated from the perspectives of variations of the Cu-Cl cycle, process integration, heat recovery, and equipment design. It is concluded that using the intake reactant Cu{sub 2}OCl{sub 2} for the oxygen production step to absorb CuCl vapor is the most preferable option compared with other alternatives such as absorbing CuCl vapor with water or CuCl{sub 2}, building additional structures inside the oxygen production reactor, and cooling the exiting gas at the outlet of the oxygen reactor.

  15. Sintering of Cu–Al2O3 nano-composite powders produced by a thermochemical route

    Directory of Open Access Journals (Sweden)

    MARIJA KORAC

    2007-11-01

    Full Text Available This paper presents the synthesis of nano-composite Cu–Al2O3 powder by a thermochemical method and sintering, with a comparative analysis of the mechanical and electrical properties of the obtained solid samples. Nano-crystalline Cu–Al2O3 powders were produced by a thermochemical method through the following stages: spray-drying, oxidation of the precursor powder, reduction by hydrogen and homogenization. Characterization of powders included analytical electron microscopy (AEM coupled with energy dispersive spectroscopy (EDS, differenttial thermal and thermogravimetric (DTA–TGA analysis and X-ray diffraction (XRD analysis. The size of the produced powders was 20–50 nm, with a noticeable presence of agglomerates. The composite powders were characterized by a homogenous distribution of Al2O3 in a copper matrix. The powders were cold pressed at a pressure of 500 MPa and sintered in a hydrogen atmosphere under isothermal conditions in the temperature range from 800 to 900 °C for up to 120 min. Characterization of the Cu–Al2O3 sintered system included determination of the density, relative volume change, electrical and mechanical properties, examination of the microstructure by SEM and focused ion beam (FIB analysis, as well as by EDS. The obtained nano-composite, the structure of which was, with certain changes, presserved in the final structure, provided a sintered material with a homogenеous distribution of dispersoid in a copper matrix, with exceptional effects of reinforcement and an excellent combination of mechanical and electrical properties.

  16. RECENT ADVANCES IN THE DEVELOPMENT OF THE HYBRID SULFUR PROCESS FOR HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, D.

    2010-07-22

    Thermochemical processes are being developed to provide global-scale quantities of hydrogen. A variant on sulfur-based thermochemical cycles is the Hybrid Sulfur (HyS) Process, which uses a sulfur dioxide depolarized electrolyzer (SDE) to produce the hydrogen. In the HyS Process, sulfur dioxide is oxidized in the presence of water at the electrolyzer anode to produce sulfuric acid and protons. The protons are transported through a cation-exchange membrane electrolyte to the cathode and are reduced to form hydrogen. In the second stage of the process, the sulfuric acid by-product from the electrolyzer is thermally decomposed at high temperature to produce sulfur dioxide and oxygen. The two gases are separated and the sulfur dioxide recycled to the electrolyzer for oxidation. The Savannah River National Laboratory (SRNL) has been exploring a fuel-cell design concept for the SDE using an anolyte feed comprised of concentrated sulfuric acid saturated with sulfur dioxide. The advantages of this design concept include high electrochemical efficiency and small footprint compared to a parallel-plate electrolyzer design. This paper will provide a summary of recent advances in the development of the SDE for the HyS process.

  17. The hydrogen hybrid option

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  18. Hybridization and extinction.

    Science.gov (United States)

    Todesco, Marco; Pascual, Mariana A; Owens, Gregory L; Ostevik, Katherine L; Moyers, Brook T; Hübner, Sariel; Heredia, Sylvia M; Hahn, Min A; Caseys, Celine; Bock, Dan G; Rieseberg, Loren H

    2016-08-01

    Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities.

  19. Spoof Plasmon Hybridization

    CERN Document Server

    Zhang, Jingjing; Luo, Yu; Shen, Xiaopeng; Maier, Stefan A; Cui, Tie Jun

    2016-01-01

    Plasmon hybridization between closely spaced nanoparticles yields new hybrid modes not found in individual constituents, allowing for the engineering of resonance properties and field enhancement capabilities of metallic nanostructure. Experimental verifications of plasmon hybridization have been thus far mostly limited to optical frequencies, as metals cannot support surface plasmons at longer wavelengths. Here, we introduce the concept of 'spoof plasmon hybridization' in highly conductive metal structures and investigate experimentally the interaction of localized surface plasmon resonances (LSPR) in adjacent metal disks corrugated with subwavelength spiral patterns. We show that the hybridization results in the splitting of spoof plasmon modes into bonding and antibonding resonances analogous to molecular orbital rule and plasmonic hybridization in optical spectrum. These hybrid modes can be manipulated to produce enormous field enhancements (larger than 5000) by tuning the separation between disks or alte...

  20. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  1. Pathways for the release of polonium from a lead-bismuth spallation target (thermochemical calculation); Verfluechtigungspfade des Poloniums aus einem Pb-Bi-Spallationstarget (Thermochemische Kalkulation)

    Energy Technology Data Exchange (ETDEWEB)

    Eichler, B.; Neuhausen, J

    2004-06-01

    An analysis of literature data for the thermochemical constants of polonium reveals considerable discrepancies in the relations of these data among each other as well as in their expected trends within the chalcogen group. This fact hinders a reliable assessment of possible reaction paths for the release of polonium from a liquid lead-bismuth spallation target. In this work an attempt is made to construct a coherent data set for the thermochemical properties of polonium and some of its compounds that are of particular importance with respect to the behaviour of polonium in a liquid Pb-Bi target. This data set is based on extrapolations using general trends throughout the periodic table and, in particular, within the chalcogen group. Consequently, no high accuracy should be attributed to the derived data set. However, the data set derived in this work is consistent with definitely known experimental data. Furthermore, it complies with the general trends of physicochemical properties within the chalcogen group. Finally, well known relations between thermochemical quantities are fulfilled by the data derived in this work. Thus, given the lack of accurate experimental data it can be regarded as best available data. Thermochemical constants of polonium hydride, lead polonide and polonium dioxide are derived based on extrapolative procedures. Furthermore, the possibility of formation of the gaseous intermetallic molecule BiPo, which has been omitted from discussion up to now, is investigated. From the derived thermochemical data the equilibrium constants of formation, release and dissociation reactions are calculated for different polonium containing species. Furthermore equilibrium constants are determined for the reaction of lead polonide and polonium dioxide with hydrogen, water vapour and the target components lead and bismuth. The most probable release pathways are discussed. From thermochemical evaluations polonium is expected to be released from liquid lead

  2. Holistic analysis of thermochemical processes by using solid biomass for fuel production in Germany; Ganzheitliche Analyse thermochemischer Verfahren bei der Nutzung fester Biomasse zur Kraftstoffproduktion in Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Henssler, Martin

    2015-04-28

    According to the German act ''Biokraftstoff-Nachhaltigkeitsverordnung'', biofuels must show a CO{sub 2eq}-reduction compared to the fossil reference fuel (83.8 g CO{sub 2eq}/MJ{sub fuel} /Richtlinie 98/70/EG/) of 35 % beginning with 2011. In new plants, which go into operation after the 31.12.2016 the CO{sub 2eq}-savings must be higher than 50 % in 2017 and higher than 60 % in 2018 /Biokraft-NachV/. The biofuels (methyl ester of rapeseed, bioethanol and biomethane) considered in this study do not meet these requirements for new plants. To comply with these rules new processes must be deployed. Alternative thermochemical generated fuels could be an option. The aim of this work is to evaluate through a technical, ecological and economic analysis (Well-to-Wheel) whether and under what conditions the thermochemical production of Fischer-Tropsch-diesel or -gasoline, hydrogen (H{sub 2}) and Substitute Natural Gas (SNG) complies with the targets. Four different processes are considered (fast pyrolysis and torrefaction with entrained flow gasifier, CHOREN Carbo-V {sup registered} -gasifier, Absorption Enhanced Reforming (AER-) gasifier). Beside residues such as winter wheat straw and residual forest wood, wood from short-rotation plantations is taken into account. The technical analysis showed that at present status (2010) two and in 2050 six plants can be operated energy-self-sufficient. The overall efficiency of the processes is in the range of 41.5 (Fischer-Tropsch-diesel or -gasoline) and 59.4 % (H{sub 2}). Furthermore, it was found that for 2010, all thermochemical produced fuels except the H{sub 2}-production from wood from short-rotation plantations in decentralised or central fast pyrolysis and in decentralised torrefactions with entrained flow gasifier keep the required CO{sub 2eq}-saving of 60 %. In 2050, all thermochemical produced fuels will reach these limits. The CO{sub 2eq}-saving is between 72 (H{sub 2}) and 95 % (Fischer

  3. Conceptual design model of the sulfur-iodine S-I thermochemical water splitting process for hydrogen production using nuclear heat source

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Rodriguez, Daniel; Parra, Lazaro Garcia, E-mail: dgr@instec.cu, E-mail: lgarcia@instec.cu [Departamento de Ingenieria Nuclear, Instituto Superior de Ciencias y Tecnologias Aplicadas, La Habana (Cuba)

    2011-07-01

    Hydrogen is the most indicated candidate for its implementation as energy carrier in a future sustainable scenario. The current hydrogen production is based on fossils fuels; they have a huge contribution to the atmosphere pollution. Thermochemical water-splitting cycles do not have this issue because they use solar or nuclear heat; their environment impact is smaller than conventional fuels. The software based on chemical process simulation (CPS) can be used to simulate the thermochemical water splitting cycle Sulfur-Iodine for hydrogen production. In the paper is developed a model for Sulfur-Iodine process in order to analyze his sensibility and calculate the efficiency and the influence of many parameters on this value. (author)

  4. Thermochemical pretreatment of lignocellulose residues: assessment of the effect on operational conditions and their interactions on the characteristics of leachable fraction.

    Science.gov (United States)

    Vásquez, Denisse; Contreras, Elsa; Palma, Carolyn; Carvajal, Andrea

    2015-01-01

    Annually, large amounts of agricultural residues are produced in Chile, which can be turned into a good opportunity to diversify the energy matrix. These residues have a slow hydrolysis stage during anaerobic digestion; therefore, the application of a pretreatment seems to be an alternative to improve the process. This work focused on applying a thermochemical pretreatment with NaOH on two lignocellulosic residues. The experiments were performed according to a 2(4) factorial design. The factors studied in a 2(4) factorial design were: temperature (60 and 120 °C), pretreatment time (10 and 30 minutes), NaOH dose (2 and 4%), and residue size (thermochemical pretreatment that promote maximum biogas production, which was caused due to the solubilization of a large amount of organic matter, but not because of the increase in biodegradability of the released organic matter.

  5. Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System

    Energy Technology Data Exchange (ETDEWEB)

    Nexant, Inc., San Francisco, California

    2011-05-01

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

  6. Henkin and Hybrid Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria;

    2014-01-01

    Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...... Henkin’s techniques are so important in hybrid logic. We do so by proving a completeness result for a hybrid type theory called HTT, probably the strongest hybrid logic that has yet been explored. Our completeness result builds on earlier work with a system called BHTT, or basic hybrid type theory...... is due to the first-order perspective, which lies at the heart of Henin’s best known work and hybrid logic....

  7. A hybrid water-splitting cycle using copper sulfate and mixed copper oxides

    Science.gov (United States)

    Schreiber, J. D.; Remick, R. J.; Foh, S. E.; Mazumder, M. M.

    1980-01-01

    The Institute of Gas Technology has derived and developed a hybrid thermochemical water-splitting cycle based on mixed copper oxides and copper sulfate. Similar to other metal oxide-metal sulfate cycles that use a metal oxide to 'concentrate' electrolytically produced sulfuric acid, this cycle offers the advantage of producing oxygen (to be vented) and sulfur dioxide (to be recycled) in separate steps, thereby eliminating the need of another step to separate these gases. The conceptual process flow-sheet efficiency of the cycle promises to exceed 50%. It has been completely demonstrated in the laboratory with recycled materials. Research in the electrochemical oxidation of sulfur dioxide to produce sulfuric acid and hydrogen performed at IGT indicates that the cell performance goals of 200 mA/sq cm at 0.5 V will be attainable using relatively inexpensive electrode materials.

  8. Optimization of the Thermosetting Pultrusion Process by Using Hybrid and Mixed Integer Genetic Algorithms

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2013-01-01

    In this paper thermo-chemical simulation of the pultrusion process of a composite rod is first used as a validation case to ensure that the utilized numerical scheme is stable and converges to results given in literature. Following this validation case, a cylindrical die block with heaters is added...... to the pultrusion domain of a composite part and thermal contact resistance (TCR) regions at the die-part interface are defined. Two optimization case studies are performed on this new configuration. In the first one, optimal die radius and TCR values are found by using a hybrid genetic algorithm based......) such that the total number of heaters is minimized while satisfying the constraints for the maximum composite temperature, the mean of the cure degree at the die exit and the pulling speed....

  9. Hybrid-renewable processes for biofuels production: concentrated solar pyrolysis of biomass residues

    Energy Technology Data Exchange (ETDEWEB)

    George, Anthe [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Geier, Manfred [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dedrick, Daniel E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The viability of thermochemically-derived biofuels can be greatly enhanced by reducing the process parasitic energy loads. Integrating renewable power into biofuels production is one method by which these efficiency drains can be eliminated. There are a variety of such potentially viable "hybrid-renewable" approaches; one is to integrate concentrated solar power (CSP) to power biomass-to-liquid fuels (BTL) processes. Barriers to CSP integration into BTL processes are predominantly the lack of fundamental kinetic and mass transport data to enable appropriate systems analysis and reactor design. A novel design for the reactor has been created that can allow biomass particles to be suspended in a flow gas, and be irradiated with a simulated solar flux. Pyrolysis conditions were investigated and a comparison between solar and non-solar biomass pyrolysis was conducted in terms of product distributions and pyrolysis oil quality. A novel method was developed to analyse pyrolysis products, and investigate their stability.

  10. BSA Hybrid Synthesized Polymer

    Institute of Scientific and Technical Information of China (English)

    Zong Bin LIU; Xiao Pei DENG; Chang Sheng ZHAO

    2006-01-01

    Bovine serum albumin (BSA), a naturally occurring biopolymer, was regarded as a polymeric material to graft to an acrylic acid (AA)-N-vinyl pyrrolidone (NVP) copolymer to form a biomacromolecular hybrid polymer. The hybrid polymer can be blended with polyethersulfone (PES) to increase the hydrophilicity of the PES membrane, which suggested that the hybrid polymer might have a wide application in the modification of biomaterials.

  11. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  12. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  13. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  15. Hybrid Unifying Variable Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    In order to compare new phenomenon of topology change,evolution,hybrid ratio and network characteristics of unified hybrid network theoretical model with unified hybrid supernetwork model,this paper constructed unified hybrid variable supernetwork model(HUVSM).The first layer introduces a hybrid ratio dr,the

  16. Large Unifying Hybrid Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    For depicting multi-hybrid process,large unifying hybrid network model(so called LUHNM)has two sub-hybrid ratios except dr.They are deterministic hybrid ratio(so called fd)and random hybrid ratio(so called gr),respectively.

  17. Hybrid Rocket Technology

    National Research Council Canada - National Science Library

    Sankaran Venugopal; K K Rajesh; V Ramanujachari

    2011-01-01

    With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems...

  18. Hybrid FOSS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers are continuing their efforts to further develop FOSS technologies. A hybrid FOSS technique (HyFOSS) employs conventional continuous grating...

  19. High-temperature thermochemical energy storage based on redox reactions using Co-Fe and Mn-Fe mixed metal oxides

    Science.gov (United States)

    André, Laurie; Abanades, Stéphane; Cassayre, Laurent

    2017-09-01

    Metal oxides are potential materials for thermochemical heat storage via reversible endothermal/exothermal redox reactions, and among them, cobalt oxide and manganese oxide are attracting attention. The synthesis of mixed oxides is considered as a way to answer the drawbacks of pure metal oxides, such as slow reaction kinetics, loss-in-capacity over cycles or sintering issues, and the materials potential for thermochemical heat storage application needs to be assessed. This work proposes a study combining thermodynamic calculations and experimental measurements by simultaneous thermogravimetric analysis and calorimetry, in order to identify the impact of iron oxide addition to Co and Mn-based oxides. Fe addition decreased the redox activity and energy storage capacity of Co3O4/CoO, whereas the reaction rate, reversibility and cycling stability of Mn2O3/Mn3O4 was significantly enhanced with added Fe amounts above 15 mol%, and the energy storage capacity was slightly improved. The formation of a reactive cubic spinel explained the improved re-oxidation yield of Mn-based oxides that could be cycled between bixbyite and cubic spinel phases, whereas a low reactive tetragonal spinel phase showing poor re-oxidation was formed below 15 mol% Fe. Thermodynamic equilibrium calculations predict accurately the behavior of both systems. The possibility to identify other suitable mixed oxides becomes conceivable, by enabling the selection of transition metal additives for tuning the redox properties of mixed metal oxides destined for thermochemical energy storage applications.

  20. Thermochemical parameters of minerals from oxygen-buffered hydrothermal equilibrium data: Method, application to annite and almandine

    Science.gov (United States)

    Zen, E.-A.

    1973-01-01

    Reversed univariant hydrothermal phase-equilibrium reactions, in which a redox reaction occurs and is controlled by oxygen buffers, can be used to extract thermochemical data on minerals. The dominant gaseous species present, even for relatively oxidizing buffers such as the QFM buffer, are H2O and H2; the main problem is to calculate the chemical potentials of these components in a binary mixture. The mixing of these two species in the gas phase was assumed by Eugster and Wones (1962) to be ideal; this assumption allows calculation of the chemical potentials of the two components in a binary gas mixture, using data in the literature. A simple-mixture model of nonideal mixing, such as that proposed by Shaw (1967), can also be combined with the equations of state for oxygen buffers to permit derivation of the chemical potentials of the two components. The two mixing models yield closely comparable results for the more oxidizing buffers such as the QFM buffer. For reducing buffers such as IQF, the nonideal-mixing correction can be significant and the Shaw model is better. The procedure of calculation of mineralogical thermochemical data, in reactions where hydrogen and H2O simultaneously appear, is applied to the experimental data on annite, given by Wones et al. (1971), and on almandine, given by Hsu (1968). For annite the results are: Standard entropy of formation from the elements, Sf0 (298, 1)=-283.35??2.2 gb/gf, S0 (298, 1) =+92.5 gb/gf. Gf0 (298, 1)=-1148.2??6 kcal, and Hf0 (298, 1)=-1232.7??7 kcal. For almandine, the calculation takes into account the mutual solution of FeAl2O4 (Hc) in magnetite and of Fe3O4 (Mt) in hercynite and the temperature dependence of this solid solution, as given by Turnock and Eugster (1962); the calculations assume a regular-solution model for this binary spinel system. The standard entropy of formation of almandine, Sf,A0 (298, 1) is -272.33??3 gb/gf. The third law entropy, S0 (298, 1) is +68.3??3 gb/gf, a value much less than the

  1. Geodynamic models of plumes from the margins of large thermo-chemical piles in the Earth's lowermost mantle

    Science.gov (United States)

    Steinberger, B. M.; Gassmoeller, R.; Mulyukova, E.

    2012-12-01

    We present geodynamic models featuring mantle plumes that are almost exclusively created at the margins of large thermo-chemical piles in the lowermost mantle. The models are based on global plate reconstructions since 300 Ma. Sinking subducted slabs not only push a heavy chemical layer ahead, such that dome-shaped structures form, but also push the thermal boundary layer (TBL) toward the chemical domes. At the steep edges it is forced upwards and begins to rise — in the lower part of the mantle as sheets, which then split into individual plumes higher in the mantle. The models explain why Large Igneous Provinces - commonly assumed to be caused by plumes forming in the TBL above the core-mantle boundary (CMB) - and kimberlites during the last few hundred Myr erupted mostly above the margins of the African and Pacific Large Low Shear Velocity Provinces (LLSVPs) of the lowermost mantle, which are probably chemically distinct from and heavier than the overlying mantle. Computations are done with two different codes, one based on spherical harmonic expansion, and CITCOM-S. The latter is combined with a self-consistent thermodynamic material model for basalt, harzburgite, and peridotite, which is used to derive a temperature- and presssure dependent database for parameters like density, thermal expansivity and specific heat. In terms of number and distribution of plumes, results are similar in both cases, but in the latter model, plume conduits are narrower, due to consideration of realistic lateral - in addition to radial - viscosity variations. For the latter case, we quantitatively compare the computed plume locations with actual hotspots and find that the good agreement is very unlikely (probability geometry, we also show results obtained with a 2-D finite element code. These results allow us to assess how much the computed long-term stability of the piles is affected by numerical diffusion. We have also conducted a systematic investigation, which configurations

  2. Thermochemical data and additivity group values for ten species of o-xylene low-temperature oxidation mechanism.

    Science.gov (United States)

    Canneaux, Sébastien; Vandeputte, Romain; Hammaecher, Catherine; Louis, Florent; Ribaucour, Marc

    2012-01-12

    o-Xylene could be a good candidate to represent the family of aromatic hydrocarbons in a surrogate fuel. This study uses computational chemistry to calculate standard enthalpies of formation at 298 K, Δ(f)H°(298 K), standard entropies at 298 K, S°(298 K), and standard heat capacities C(p)°(T) over the temperature range 300 K to 1500 K for ten target species present in the low-temperature oxidation mechanism of o-xylene: o-xylene (1), 2-methylbenzyl radical (2), 2-methylbenzylperoxy radical (3), 2-methylbenzyl hydroperoxide (4), 2-(hydroperoxymethyl)benzyl radical (5), 2-(hydroperoxymethyl)benzaldehyde (6), 1-ethyl-2-methylbenzene (7), 2,3-dimethylphenol (8), 2-hydroxybenzaldehyde (9), and 3-hydroxybenzaldehyde (10). Δ(f)H°(298 K) values are weighted averages across the values calculated using five isodesmic reactions and five composite calculation methods: CBS-QB3, G3B3, G3MP2, G3, and G4. The uncertainty in Δ(f)H°(298 K) is also evaluated. S°(298 K) and C(p)°(T) values are calculated at B3LYP/6-311G(d,p) level of theory from molecular properties and statistical thermodynamics through evaluation of translational, rotational, vibrational, and electronic partition functions. S°(298 K) and C(p)°(300 K) values are evaluated using the rigid-rotor-harmonic-oscillator model. C(p)°(T) values at T ≥ 400 K are calculated by treating separately internal rotation contributions and translational, external rotational, vibrational, and electronic contributions. The thermochemical properties of six target species are used to develop six new additivity groups taking into account the interaction between two substituents in ortho (ORT/CH2OOH/ME, ORT/ET/ME, ORT/CHO/OH, ORT/CHO/CH2OOH) or meta (MET/CHO/OH) positions, and the interaction between three substituents (ME/ME/OH123) located one beside the other (positions numbered 1, 2, 3) for two- or three-substituted benzenic species. Two other additivity groups are also developed using the thermochemical properties of

  3. Fretting Wear Behavior of Medium Carbon Steel Modified by Low Temperature Gas Multi-component Thermo-chemical Treatment

    Institute of Scientific and Technical Information of China (English)

    LUO Jun; ZHENG Jianfeng; PENG Jinfang; HE Liping; ZHU Minhao

    2010-01-01

    The introduction of surface engineering is expected to be an effective strategy against fretting damage. A large number of studies show that the low gas multi-component (such as carbon, nitrogen, sulphur and oxygen, etc) thermo-chemical treatment(LTGMTT) can overcome the brittleness of nitriding process, and upgrade the surface hardness and improve the wear resistance and fatigue properties of the work-pieces significantly. However, there are few reports on the anti-fretting properties of the LTGMTT modified layer up to now, which limits the applications of fretting. So this paper discusses the fretting wear behavior of modified layer on the surface of LZ50 (0.48%C) steel prepared by low temperature gas multi-component thermo-chemical treatment (LTGMTT) technology. The fretting wear tests of the modified layer flat specimens and its substrate (LZ50 steel) against 52100 steel balls with diameter of 40 mm are carried out under normal load of 150 N and displacement amplitudes varied from 2 μm to 40 μm. Characterization of the modified layer and dynamic analyses in combination with microscopic examinations were performed through the means of scanning electron microscope(SEM), optical microscope(OM), X-ray diffraction(XRD) and surface profilometer. The experimental results showed that the modified layer with a total thickness of 60 μm was consisted of three parts, i.e., loose layer, compound layer and diffusion layer. Compared with the substrate, the range of the mixed fretting regime(MFR) of the LTGMTT modified layer diminished, and the slip regime(SR) of the modified layer shifted to the direction of smaller displacement amplitude. The coefficient of friction(COF) of the modified layer was lower than that of the substrate in the initial stage. For the modified layer, the damage in partial slip regime(PSR) was very slight. The fretting wear mechanism of the modified layer both in MFR and SR was abrasive wear and delamination. The modified layer presented better wear

  4. SolarSyngas: Results from a virtual institute developing materials and key components for solar thermochemical fuel production

    Science.gov (United States)

    Roeb, Martin; Steinfeld, Aldo; Borchardt, Günter; Feldmann, Claus; Schmücker, Martin; Sattler, Christian; Pitz-Paal, Robert

    2016-05-01

    The Helmholtz Virtual Institute (VI) SolarSynGas brings together expertise from solar energy research and materials science to develop metal oxide based redox materials and to integrate them in a suitable way into related process technologies for two-step thermochemical production of hydrogen and carbon monoxide from water and CO2. One of the foci of experimental investigation was exploring the impact of doping on the feasibility of ceria-based materials - mainly by Zr-doping. The results indicate that a certain Zr-content enhances the reducibility and therefore the splitting performance. Increasing the Zr-content to x = 0.15 improved the specific CO2-splitting performance by 50% compared to pure ceria. This finding agrees with theoretical studies attributing the improvements to lattice modification caused by the introduction of Zr4+. Thermogravimetric relaxation experiments and equilibrium oxygen isotope exchange experiments with subsequent depth profiling analysis were carried out on ceria. As a result the reduction reaction of even dense samples of pure ceria with a grain size of about 20 µm is surface reaction controlled. The structure of the derived expression for the apparent activation energy suggests that the chemical surface exchange coefficient should show only a very weak dependence on temperature for ceria doped with lower valence cations. A solar receiver reactor exhibiting a foam-type reticulated porous ceramics made of ceria was tested. It could be shown that applying dual-scale porosity to those foams with mm-size pores for effective radiative heat transfer during reduction and μm-size pores within its struts for enhanced kinetics during oxidation allows enhancing the performance of the reactor significantly. Also a particle process concept applying solid-solid heat recovery from redox particles in a high temperature solar thermochemical process was analysed that uses ceramic spheres as solid heat transfer medium. This concept can be implemented

  5. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2015-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  6. HYBRID SULFUR ELECTROLYZER DEVELOPMENT FY09 SECOND QUARTER REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Herman, D; David Hobbs, D; Hector Colon-Mercado, H; Timothy Steeper, T; John Steimke, J; Mark Elvington, M

    2009-04-15

    The primary objective of the DOE-NE Nuclear Hydrogen Initiative (NHI) is to develop the nuclear hydrogen production technologies necessary to produce hydrogen at a cost competitive with other alternative transportation fuels. The focus of the NHI is on thermochemical cycles and high temperature electrolysis that can be powered by heat from high temperature gas reactors. The Savannah River National Laboratory (SRNL) has been tasked with the primary responsibility to perform research and development in order to characterize, evaluate and develop the Hybrid Sulfur (HyS) thermochemical process. This report documents work during the first quarter of Fiscal Year 2009, for the period between January 1, 2009 and March 31, 2009. The HyS Process is a two-step hybrid thermochemical cycle that is part of the 'Sulfur Family' of cycles. As a sulfur cycle, it uses high temperature thermal decomposition of sulfuric acid to produce oxygen and to regenerate the sulfur dioxide reactant. The second step of the process uses a sulfur dioxide depolarized electrolyzer (SDE) to split water and produce hydrogen by electrochemically reacting sulfur dioxide with H{sub 2}O. The SDE produces sulfuric acid, which is then sent to the acid decomposer to complete the cycle. The DOE NHI program is developing the acid decomposer at Sandia National Laboratory for application to both the HyS Process and the Sulfur Iodine Cycle. The SDE is being developed at SRNL. During FY05 and FY06, SRNL designed and conducted proof-of-concept testing for a SDE using a low temperature, PEM fuel cell-type design concept. The advantages of this design concept include high electrochemical efficiency, small footprint and potential for low capital cost, characteristics that are crucial for successful implementation on a commercial scale. During FY07, SRNL extended the range of testing of the SDE to higher temperature and pressure, conducted a 100-hour longevity test with a 60-cm{sup 2} single cell electrolyzer

  7. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  8. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  9. A Hybrid Imagination

    DEFF Research Database (Denmark)

    Jamison, Andrew; Christensen, Steen Hyldgaard; Botin, Lars

    contexts, or sites, for mixing scientific knowledge and technical skills from different fields and social domains into new combinations, thus fostering what the authors term a “hybrid imagination”. Such a hybrid imagination is especially important today, as a way to counter the competitive and commercial...

  10. Hybrid trajectory spaces

    NARCIS (Netherlands)

    Collins, P.J.

    2005-01-01

    In this paper, we present a general framework for describing and studying hybrid systems. We represent the trajectories of the system as functions on a hybrid time domain, and the system itself by its trajectory space, which is the set of all possible trajectories. The trajectory space is given a na

  11. Editorial: Hybrid Systems

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter

    2007-01-01

    An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....

  12. Thermochemical water decomposition cyle for hydrogen production%热化学循环分解水制氢

    Institute of Scientific and Technical Information of China (English)

    杨运嘉

    2001-01-01

    the thermochemical water decomposition cycle which consists of four gas-solid reaction of ca and Fe compounds for hydrogen production is discussed. The reactivity was improved by the introduction as a preparation method of the alkoxide and addition of graphite and lauric acid. Fine reactant Fe2O3 particles were homogeneously dispersed in the porous matrix of inert FeaTiOs with the sufficient strength of pellet.%文章所讨论的热化学循环分解水制氢是由Ca和Fe化合物的四步气-固反应所组成。在制备方法上,通过引入醇盐法并添加石墨和月桂酸将反应物Fe2O3颗粒均匀地分散在作为粘合剂的多孔惰性Fe2TeO5基质中,做成具有足够强度的丸,而使反应性得到改进。

  13. Non-severe thermochemical hydrolysis of stover from white corn and sequential enzymatic saccharification and fermentation to ethanol.

    Science.gov (United States)

    Vargas-Tah, Alejandra; Moss-Acosta, Cessna L; Trujillo-Martinez, Berenice; Tiessen, Axel; Lozoya-Gloria, Edmundo; Orencio-Trejo, Montserrat; Gosset, Guillermo; Martinez, Alfredo

    2015-12-01

    A parametric study, with an initial load of 15%w/w of dry stover from white corn, was conducted to evaluate the sequential thermochemical hydrolysis (TH), enzymatic saccharification (ES) and fermentation of the whole slurry with ethanologenic Escherichia coli. The TH was designed to release the maximum amount of xylose with a concomitant formation of minimal amounts of furans. It was found that 29.0% or 93.2% of the xylan was recovered as free xylose at 130°C after 8 min in the presence of 1% or 2%w/w H2SO4 and produced only 0.06 or 0.44 g/L of total furans, respectively. After 24h of ES, 76.14-77.18 g/L of monosaccharides (pentoses and hexoses) were obtained. These slurries, which contained 0.03-0.26 g/L of total furans and 5.14-5.91 g/L of acetate, were fermented with 3.7 g/L of ethanologenic E. coli to produce 24.5-23.5 g/L of ethanol.

  14. Thermochemical sulfate reduction in deep petroleum reservoirs: a molecular approach; Thermoreduction des sulfates dans les reservoirs petroliers: approche moleculaire

    Energy Technology Data Exchange (ETDEWEB)

    Hanin, S.

    2002-11-01

    The thermochemical sulfate reduction (TSR) is a set of chemical reactions leading to hydrocarbon oxidation and production of carbon dioxide and sour gas (H{sub 2}S) which is observed in deep petroleum reservoirs enriched in anhydrites (calcium sulfate). Molecular and isotopic studies have been conducted on several crude oil samples to determine which types of compounds could have been produced during TSR. Actually, we have shown that the main molecules formed by TSR were organo-sulfur compounds. Indeed, sulfur isotopic measurements. of alkyl-di-benzothiophenes, di-aryl-disulfides and thia-diamondoids (identified by NMR or synthesis of standards) shows that they are formed during TSR as their value approach that of the sulfur of the anhydrite. Moreover, thia-diamondoids are apparently exclusively formed during this phenomenon and can thus be considered as true molecular markers of TSR. In a second part, we have investigated with laboratory experiments the formation mechanism of the molecules produced during TSR. A first model has shown that sulfur incorporation into the organic matter occurred with mineral sulfur species of low oxidation degree. The use of {sup 34}S allowed to show that the sulfates reduction occurred during these simulations. At least, some experiments on polycyclic hydrocarbons, sulfurized or not, allowed to establish that thia-diamondoids could be formed by acid-catalysed rearrangements at high temperatures in a similar way as the diamondoids. (author)

  15. A review of producing hard coatings by means of duplex treatments using an electroplated coating–thermochemical treatment combination

    Directory of Open Access Journals (Sweden)

    Héctor Cifuentes Aya

    2011-12-01

    Full Text Available Duplex treatments have been developed to overcome the disadvantages presented by simple treatments to surfaces of different materials and have, in a combined and complementary way, the properties that each of these methods supplies individually. The difference between thermal expansion coefficients for Fe and Cr in hard chrome plating leads to crack formation in the deposited coat, through which corrosive agents migrate and reduce the system’s integrity.Direct deposition by physical vapour deposition (PVD, used for obtaining chromium nitride films on steel substrates, is limited by high production costs, the low thickness obtained and low resistance to corrosion due to the presence of micro pores. Some studies have combined an electroplated chromium with thermochemical treatments made in a controlled atmosphere or vacuum furnaces or by plasma. This kind of duplex treatment allows compounds such as CrxN, CrxCyN and CrxCy to be obtained from chemical and micro structural transformation of chromium with nitrogen and/or carbon, the sealing of cracks in the coating and increasing the magnitude of properties like hardness and density, improving wear and abrasion and corrosion resistance.

  16. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    Energy Technology Data Exchange (ETDEWEB)

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac No. 8532, Col. Progreso, C.P. 62550, Jiutepec, Morelos (Mexico)

    2012-07-01

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  17. Thermomechanical and Thermochemical Behavior of a Hafnium-20 Percent Tantalum Alloy. Ph.D. Thesis - North Carolina State Univ., Raleigh

    Science.gov (United States)

    Howell, J. P.

    1971-01-01

    An investigation was conducted to determine the thermomechanical and thermochemical behavior of a high temperature, oxidation resistant, hafnium-20 percent tantalum alloy. The elastic and shear moduli of this alloy were determined in air up to 1000 C and in vacuum up to 2000 C using a mechanical resonance technique. The internal friction of the alloy was measured up to temperatures greater than 1400 C. Room temperature stress-strain behavior of the oxidized and unoxidized alloy was established. The effect of annealing on the elastic and shear moduli of the extruded rod material was investigated. The martensitic-type phase transformation occurring in the alloy was studied using hot stage metallography and electron microscopy. Static oxidation tests were conducted on the alloy at temperatures from 1000 C to 1700 C with weight gain measurements made as a function of time and temperatures. Surface morphology studies were conducted on the oxide coatings formed at the different temperatures using scanning electron microscopy and X-ray diffraction techniques.

  18. Improved persistent luminescence of CaTiO{sub 3}:Pr by fluorine substitution and thermochemical treatment

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Songhak, E-mail: songhak.yoon@empa.ch [Laboratory for Solid State Chemistry and Catalysis, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Otal, Eugenio H.; Maegli, Alexandra E.; Karvonen, Lassi; Matam, Santhosh K. [Laboratory for Solid State Chemistry and Catalysis, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Ebbinghaus, Stefan G. [Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120 Halle/Saale (Germany); Walfort, Bernhard [LumiNova AG, Speicherstrasse 60A, CH-9053 Teufen (Switzerland); Hagemann, Hans [Department of Physical Chemistry, University of Geneva, Quai E. Ansermet 30, CH-1211 Geneva 4 (Switzerland); Pokrant, Simone [Laboratory for Solid State Chemistry and Catalysis, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Weidenkaff, Anke [Laboratory for Solid State Chemistry and Catalysis, Empa – Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Institute for Materials Science, University of Stuttgart, Heisenbergstrasse 3, 70569 Stuttgart (Germany)

    2014-11-15

    Highlights: • Synthesis of fluorine-substituted CaTiO{sub 3}:Pr phosphors. • Rietveld refinement of CaTi(O,F){sub 3}:Pr phosphors. • Afterglow intensity improvement of ca. 450% compared to CaTiO{sub 3}:Pr. - Abstract: Fluorine-substituted CaTiO{sub 3}:Pr phosphors were prepared by a solid-state reaction. Rietveld refinements of powder X-ray diffraction patterns revealed that increasing fluorine-substitution leads to the gradual shrinkage of the unit-cell. Enhanced afterglow intensities were observed with fluorine-substitution. Furthermore, the effect of annealing atmosphere was investigated by thermochemical treatment in different atmospheres (Ar, air and NH{sub 3}). UV–Vis diffuse reflectance spectra and photoluminescence excitation spectra revealed that Pr{sup 4+} in the pristine CaTi(O,F){sub 3}:Pr phosphor was partially reduced to Pr{sup 3+} under NH{sub 3} flow leading to an intensity improvement of ca. 450% compared to CaTiO{sub 3}:Pr. The substantial improvement of afterglow intensity by fluorine substitution and annealing in NH{sub 3} is considered to be connected with the generation of oxygen vacancies and the partial reduction of Pr{sup 4+} to Pr{sup 3+}.

  19. Application of high throughput pretreatment and co-hydrolysis system to thermochemical pretreatment. Part 2: Dilute alkali.

    Science.gov (United States)

    Li, Hongjia; Gao, Xiadi; Demartini, Jaclyn D; Kumar, Rajeev; Wyman, Charles E

    2013-11-01

    High throughput pretreatment (HTPH) and enzymatic hydrolysis systems are now vital for screening large numbers of biomass samples to investigate biomass recalcitrance over various pretreatment and enzymatic hydrolysis conditions. Although hydrothermal pretreatment is currently being employed in most high throughput applications, thermochemical pretreatment at low and high pH conditions can offer additional insights to better understand the roles of hemicellulose and lignin, respectively, in defining biomass recalcitrance. Thus, after successfully applying the HTPH approach to dilute acid pretreatment [Gao et al. (2012) Biotechnol. Bioeng. 110(3): 754-762], extension to dilute alkali pretreatment was also achieved using a similar single-step neutralization and buffering concept. In the latter approach, poplar and switchgrass were pretreated with 1 wt% sodium hydroxide at 120°C for different reaction times. Following pretreatment, an H₂Cit⁻/HCit²⁻ buffer with a pH of 4.5 was used to condition the pretreatment slurry to a pH range of 4.69-4.89, followed by enzymatic hydrolysis for 72 h of the entire mixture. Sugar yields showed different trends for poplar and switchgrass with increases in pretreatment times, demonstrating the method provided a clearly discernible screening tool at alkali conditions. This method was then applied to selected Populus tremuloides samples to follow ring-by-ring sugar release patterns. Observed variations were compared to results from hydrothermal pretreatments, providing new insights in understanding the influence of biomass structural differences on recalcitrance.

  20. Effects of Thermochemical Treatment on CuSbS 2 Photovoltaic Absorber Quality and Solar Cell Reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    de Souza Lucas, Francisco Willian; Welch, Adam W.; Baranowski, Lauryn L.; Dippo, Patricia C.; Hempel, Hannes; Unold, Thomas; Eichberger, Rainer; Blank, Beatrix; Rau, Uwe; Mascaro, Lucia H.; Zakutayev, Andriy

    2016-08-25

    CuSbS2 is a promising nontoxic and earth-abundant photovoltaic absorber that is chemically simpler than the widely studied Cu2ZnSnS4. However, CuSbS2 photovoltaic (PV) devices currently have relatively low efficiency and poor reproducibility, often due to suboptimal material quality and insufficient optoelectronic properties. To address these issues, here we develop a thermochemical treatment (TT) for CuSbS2 thin films, which consists of annealing in Sb2S3 vapor followed by a selective KOH surface chemical etch. The annealed CuSbS2 films show improved structural quality and optoelectronic properties, such as stronger band-edge photoluminescence and longer photoexcited carrier lifetime. These improvements also lead to more reproducible CuSbS2 PV devices, with performance currently limited by a large cliff-type interface band offset with CdS contact. Overall, these results point to the potential avenues to further increase the performance of CuSbS2 thin film solar cell, and the findings can be transferred to other thin film photovoltaic technologies.

  1. Thermochemical methods for the treatment of oil contaminated sand; Metodo termoquimico para tratamento de areia contaminada por oleo

    Energy Technology Data Exchange (ETDEWEB)

    Pimenta, Rosana C.G.M. [Fundacao Jose Bonifacio, Rio de Janeiro, RJ (Brazil); Khalil, Carlos N. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2003-07-01

    The Nitrogen Generating System (SGN in Portuguese) is a thermochemical method first developed for cleaning and removal of paraffin deposits in production and export pipelines. SGN is based on a redox chemical reaction between two salts which is catalyzed in acidic pH. The reaction is strongly exothermic and its products are nitrogen, sodium chloride, water and heat. All reaction products are harmless to the environment. In January 2000 there was a major oil spill in Guanabara Bay, Rio de Janeiro, which contaminated 2400 tons of sand. This work, developed at PETROBRAS Research Center (CENPES), was based on SGN technology which has been adapted for cleaning contaminated sand and recovering of spilled oil. By combining simultaneous effects of the SGN treatment such as heating, turbulence and floatation, one can remove, within 98% of efficiency, spilling oil from contaminated sand and removed oil can be securely returned to refining process. SGN technology has proved to be efficient, fast, low cost and ecologically correct method for cleaning contaminated sand and can be applied in loco right after a contamination event. (author)

  2. High-Temperature Thermochemical Storage with Redox-Stable Perovskites for Concentrating Solar Power, CRADA Number: CRD-14-554

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhiwen [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-05

    As part of a Federal Opportunity Announcement (FOA) Award, the project will be led by Colorado School of Mines (CSM) to explore and demonstrate the efficacy of highly reducible, redox-stable oxides to provide efficient thermochemical energy storage for heat release at temperatures of 900 degrees Celcius or more. NREL will support the material development for its application in a concentrating solar power (CSP) plant. In the project, NREL will provide its inventive system design, chemical looping for CSP, and use it as a platform to accommodate the chemical processes using a cost effective perovskite materials identified by CSM. NREL will design a 5-10kW particle receiver for perovskite reduction to store solar energy and help the development of a fluidized-bed reoxidation reactor and system integration. NREL will develop the demonstration receiver for on-sun test in the 5-10 kWt range in NREL's high flux solar furnace. NREL will assist in system analysis and provide techno-economic inputs for the overall system configuration.

  3. Co-combustion of bituminous coal and biomass fuel blends: Thermochemical characterization, potential utilization and environmental advantage.

    Science.gov (United States)

    Zhou, Chuncai; Liu, Guijian; Wang, Xudong; Qi, Cuicui

    2016-10-01

    The thermochemical characteristics and gaseous trace pollutant behaviors during co-combustion medium-to-low ash bituminous coal with typical biomass residues (corn stalk and sawdust) were investigated. Lowering of ignition index, burnout temperature and activation energy in the major combustion stage are observed in the coal/biomass blends. The blending proportion of 20% and 30% are regarded as the optimum blends for corn stalk and sawdust, respectively, in according the limitations of heating value, activation energy, flame stability and base/acid ratio. The reductions of gaseous As, Cd, Cu, Pb, Zn and polycyclic aromatic hydrocarbon (PAHs) were 4.5%, 7.8%, 6.3%, 9.8%, 9.4% and 17.4%, respectively, when co-combustion coal with 20% corn stalk. The elevated capture of trace elements were found in coal/corn stalk blend, while the coal/sawdust blend has the better PAHs control potential. The reduction mechanisms of gaseous trace pollutants were attributed to the fuel property, ash composition and relative residence time during combustion.

  4. Thermochemical micro imprinting of single-crystal diamond surface using a nickel mold under high-pressure conditions

    Science.gov (United States)

    Imoto, Yuji; Yan, Jiwang

    2017-05-01

    Single-crystal diamond is an important material for cutting tools, micro electro mechanical systems, optical devices, and semiconductor substrates. However, the techniques for producing microstructures on diamond surface with high efficiency and accuracy have not been established. This paper proposes a thermochemical imprinting method for transferring microstructures from a nickel (Ni) mold onto single-crystal diamond surface. The Ni mold was micro-structured by a nanoindenter and then pressed against the diamond surface under high temperature and pressure in argon atmosphere. Results show that microstructures on the Ni mold were successfully transferred onto the diamond surface, and their depth increased with both pressure and temperature. Laser micro-Raman spectroscopy, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses indicate that a graphite layer was formed over the contact area between diamond and Ni during pressing, and after washing by a mixed acid, the graphite layer could be completely removed. This study demonstrated the feasibility of a cost-efficient fabrication method for large-area microstructures on single-crystal diamond.

  5. Activated Carbon Catalysts for the Production of Hydrogen for the Sulfur-Iodine Thermochemical Water Splitting Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Lucia M. Petkovic; Daniel M. Ginosar; Harry W. Rollins; Kyle C Burch; Cristina Deiana; Hugo S. Silva; Maria F. Sardella; Dolly Granados

    2009-05-01

    Seven activated carbon catalysts obtained from a variety of raw material sources and preparation methods were examined for their catalytic activity to decompose hydroiodic acid (HI) to produce hydrogen; a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. Within the group of ligno-cellulosic steam-activated carbon catalysts, activity increased with surface area. However, both a mineral-based steam-activated carbon and a ligno-cellulosic chemically-activated carbon displayed activities lower than expected based on their higher surface areas. In general, ash content was detrimental to catalytic activity while total acid sites, as determined by Bohem’s titrations, seemed to favor higher catalytic activity within the group of steam-activated carbons. These results suggest, one more time, that activated carbon raw materials and preparation methods may have played a significant role in the development of surface characteristics that eventually dictated catalyst activity and stability as well.

  6. Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Petkovic, Lucia M.; Ginosar, Daniel M.; Rollins, Harry W.; Burch, Kyle C. [Idaho National Laboratory, Interfacial Chemistry, P.O. Box 1625, Idaho Falls, ID 83415-2208 (United States); Deiana, Cristina; Silva, Hugo S.; Sardella, Maria F.; Granados, Dolly [Instituto de Ingenieria Quimica, Facultad de Ingenieria, Universidad Nacional de San Juan, Libertador 1109 (oeste) 5400 San Juan (Argentina)

    2009-05-15

    Seven activated carbon catalysts obtained from a variety of raw material sources and preparation methods were examined for their catalytic activity to decompose hydrogen iodide (HI) to produce hydrogen, a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. Within the group of lignocellulosic steam-activated carbon catalysts, activity increased with surface area. However, both a mineral-based steam-activated carbon and a lignocellulosic chemically activated carbon displayed activities lower than expected based on their higher surface areas. In general, ash content was detrimental to catalytic activity while total acid sites, as determined by Boehm's titrations, seemed to favor higher catalytic activity within the group of steam-activated carbons. These results suggest that activated carbon raw materials and preparation methods may have played a significant role in the development of surface characteristics that eventually dictated catalyst activity and stability as well. (author)

  7. Thermochemical prediction of chemical form distributions of fission products in LWR oxide fuels irradiated to high burnup

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kouki; Furuya, Hirotaka [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1997-09-01

    Based on the result of micro-gamma scanning of a fuel pin irradiated to high burnup in a commercial PWR, the radial distribution of chemical forms of fission products (FPs) in LWR fuel pins was theoretically predicted by a thermochemical computer code SOLGASMIX-PV. The absolute amounts of fission products generated in the fuel was calculated by ORIGEN-2 code, and the radial distributions of temperature and oxygen potential were calculated by taking the neutron depression and oxygen redistribution in the fuel into account. A fuel pellet was radially divided into 51 sections and chemical forms of FPs were calculated in each section. In addition, the effects of linear heat rating (LHR) and average O/U ratio on radial distribution of chemical form were evaluated. It was found that approximately 13 mole% of the total amount of Cs compounds exists as CsI and virtually remaining fraction as Cs{sub 2}MoO{sub 4} under the operation condition of LHR below 400 W/cm. On the other hand, when LHR is beyond 400 W/cm under the transient operation condition, its distribution did not change so much from the one under normal operation condition. (author)

  8. Thermochemical properties of gibbsite, bayerite, boehmite, diaspore, and the aluminate ion between 0 and 350/degree/C

    Energy Technology Data Exchange (ETDEWEB)

    Apps, J.A.; Neil, J.M.; Jun, C.H.

    1989-01-01

    A requirement for modelling the chemical behavior of groundwater in a nuclear waste repository is accurate thermodynamic data pertaining to the participating minerals and aqueous species. In particular, it is important that the thermodynamic properties of the aluminate ion be accurately determined, because most rock forming minerals in the earth's crust are aluminosilicates, and most groundwaters are neutral to slightly alkaline, where the aluminate ion is the predominant aluminum species in solution. Without a precise knowledge of the thermodynamic properties of the aluminate ion aluminosilicate mineral solubilities cannot be determined. The thermochemical properties of the aluminate ion have been determined from the solubilities of the aluminum hydroxides and oxyhydroxides in alkaline solutions between 20 and 350/degree/C. An internally consistent set of thermodynamic properties have been determined for gibbsite, boehmite, diaspore and corundum. The thermodynamic properties of bayerite have been provisionally estimated and a preliminary value for ..delta..G/sub f, 298//sup 0/ of nordstrandite has been determined. 205 refs., 17 figs., 25 tabs.

  9. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groendijk, P.; Ferrari, D.; Stears, B.; Searcy, E. M.; Wright, C. T.; Hess, J. R.

    2011-05-01

    This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing. The design features a processing capacity of 2,205 U.S. tons (2,000 metric tonnes) of dry biomass per day and an ethanol yield of 83.8 gallons per dry U.S. ton of feedstock. The ethanol selling price corresponding to this design is $2.05 per gallon in 2007 dollars, assuming a 30-year plant life and 40% equity financing with a 10% internal rate of return and the remaining 60% debt financed at 8% interest. This ethanol selling price corresponds to a gasoline equivalent price of $3.11 per gallon based on the relative volumetric energy contents of ethanol and gasoline.

  10. Effect of NiO/SiO2 on thermo-chemical conversion of waste cooking oil to hydrocarbons.

    Science.gov (United States)

    Sani, J; Sokoto, A M; Tambuwal, A D; Garba, N A

    2017-05-01

    Increase in organic waste generation, dwindling nature of global oil reserves coupled with environmental challenges caused by waste oil disposal and burning of fossil fuels necessitated the need for alternative energy resources. Waste cooking oil obtained from the frying fish outlet was analyzed for its physicochemical properties using ASTM D-975 methods. Acid and Iodine values of the oil were 30.43 ± 0.32 mgKOH/g and 57.08 ± 0.43 mgI2/100 g respectively. Thermo-chemical conversion of the oil using NiO/SiO2 at different reaction conditions (pressure, temperature, and catalyst concentration) at a residence time of 3 h yielded 33.63% hydrocarbons. Hydro-catalytic pyrolysis of waste cooking oil at 400 °C, H2 pressure of 15 bars, and catalyst to oil ratio of 0.25 g/100 cm(3) resulted in highest hydrocarbon yield (41.98%). The fuel properties of the product were: cetane number (71.16), high heating value (41.43 MJ/kg), kinematic viscosity (2.01 mm(2)/s), density (0.94 g/ml), saponification value (185.1 ± 3.96 mgKOH/g), and iodine value (20.57 ± 0.20 I2/100 g) respectively. These results show that the NiO/SiO2 could be a suitable catalyst for conversion of waste vegetable oil to hydrocarbons.

  11. Effect of NiO/SiO2 on thermo-chemical conversion of waste cooking oil to hydrocarbons

    Directory of Open Access Journals (Sweden)

    J. Sani

    2017-05-01

    Full Text Available Increase in organic waste generation, dwindling nature of global oil reserves coupled with environmental challenges caused by waste oil disposal and burning of fossil fuels necessitated the need for alternative energy resources. Waste cooking oil obtained from the frying fish outlet was analyzed for its physicochemical properties using ASTM D-975 methods. Acid and Iodine values of the oil were 30.43 ± 0.32 mgKOH/g and 57.08 ± 0.43 mgI2/100 g respectively. Thermo-chemical conversion of the oil using NiO/SiO2 at different reaction conditions (pressure, temperature, and catalyst concentration at a residence time of 3 h yielded 33.63% hydrocarbons. Hydro-catalytic pyrolysis of waste cooking oil at 400 °C, H2 pressure of 15 bars, and catalyst to oil ratio of 0.25 g/100 cm3 resulted in highest hydrocarbon yield (41.98%. The fuel properties of the product were: cetane number (71.16, high heating value (41.43 MJ/kg, kinematic viscosity (2.01 mm2/s, density (0.94 g/ml, saponification value (185.1 ± 3.96 mgKOH/g, and iodine value (20.57 ± 0.20 I2/100 g respectively. These results show that the NiO/SiO2 could be a suitable catalyst for conversion of waste vegetable oil to hydrocarbons.

  12. Radiation thermo-chemical models of protoplanetary discs. III. Impact of inner rims on Spectral Energy Distributions

    CERN Document Server

    Thi, Wing-Fai; Kamp, Inga

    2010-01-01

    We study the hydrostatic density structure of the inner disc rim around HerbigAe stars using the thermo-chemical hydrostatic code ProDiMo. We compare the Spectral Energy Distributions (SEDs) and images from our hydrostatic disc models to that from prescribed density structure discs. The 2D continuum radiative transfer in ProDiMo includes isotropic scattering. The dust temperature is set by the condition of radiative equilibrium. In the thermal-decoupled case the gas temperature is governed by the balance between various heating and cooling processes. The gas and dust interact thermally via photoelectrons, radiatively, and via gas accommodation on grain surfaces. As a result, the gas is much hotter than in the thermo-coupled case, where the gas and dust temperatures are equal, reaching a few thousands K in the upper disc layers and making the inner rim higher. A physically motivated density drop at the inner radius ("soft-edge") results in rounded inner rims, which appear ring-like in near-infrared images. The...

  13. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  14. Hybrid propulsion technology program

    Science.gov (United States)

    1990-01-01

    Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.

  15. Thermoeconomic analysis of SOFC-GT hybrid systems fed by liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Marco; Traverso, Alberto; Magistri, Loredana; Massardo, Aristide [TPG-DIMSET, University of Genoa, Via Montallegro 1, 16145 Genoa (Italy)

    2010-02-15

    In the distributed power generation market, Solid Oxide Fuel Cell-Gas Turbine (SOFC-GT) hybrids are an attractive option. Prototypes are being tested around the world with different types of fuel, but mainly natural gas. In this publication, a study of SOFC-GT hybrids for operation with liquid fuels is presented. Two liquid fuels were investigated, methanol and kerosene, in four layouts, taking into account different fuel processing strategies. A 500 kW class hybrid system (HS) was analysed. Web-based ThermoEconomic Modular Program (WTEMP) software, developed by the Thermochemical Power Group of the University of Genoa, was used for the thermodynamic and investment analysis. Performance was calculated based on zero-dimensional component models. The economic assessment was performed with a through-life cost analysis approach. The cost of the conventional components was calculated with WTEMP cost equations. As a final result, methanol-fuelled HSs are shown to stand out for both their thermodynamic and economic performance. (author)

  16. Thermoeconomic analysis of pressurized hybrid SOFC systems with CO{sub 2} separation

    Energy Technology Data Exchange (ETDEWEB)

    Franzoni, A.; Magistri, L.; Traverso, A.; Massardo, A.F. [TPG-DiMSET, Universita di Genova, via Montallegro 1, 16145 Genoa (Italy)

    2008-02-15

    In this paper, the results of the thermodynamic and economic analyses of distributed power generation plants (1.5 MWe) are described and compared. The results of an exergetic analysis are also reported, as well as the thermodynamic details of the most significant streams of the plants. The integration of different hybrid solid oxide fuel cell (SOFC) system CO{sub 2} separation technologies characterizes the power plants proposed. A hybrid system with a tubular SOFC fed with natural gas with internal reforming has been taken as reference plant. Two different technologies have been considered for the same base system to obtain a low CO{sub 2} emission plant. The first technology involved a fuel decarbonization and CO{sub 2} separation process placed before the system feed, while the second integrated the CO{sub 2} separation and the energy cycle. The first option employed fuel processing, a technology (amine chemical absorption) viable for short-term implementation in real installations while the second option provided the CO{sub 2} separation by condensing the steam from the system exhaust. The results obtained, using a Web-based Thermo Economic Modular Program software, developed by the Thermochemical Power Group of the University of Genoa, showed that the thermodynamic and economic impact of the adoption of zero emission cycle layouts based on hybrid systems was relevant. (author)

  17. Examination of lignocellulosic fibers for chemical, thermal, and separations properties: Addressing thermo-chemical stability issues

    Science.gov (United States)

    Johnson, Carter David

    Natural fiber-plastic composites incorporate thermoplastic resins with fibrous plant-based materials, sometimes referred to as biomass. Pine wood mill waste has been the traditional source of natural fibrous feedstock. In anticipation of a waste wood shortage other fibrous biomass materials are being investigated as potential supplements or replacements. Perennial grasses, agricultural wastes, and woody biomass are among the potential source materials. As these feedstocks share the basic chemical building blocks; cellulose, hemicellulose, and lignin, they are collectively called lignocellulosics. Initial investigation of a number of lignocellulosic materials, applied to fiber-plastic composite processing and material testing, resulted in varied results, particularly response to processing conditions. Less thermally stable lignocellulosic filler materials were physically changed in observable ways: darkened color and odor. The effect of biomass materials' chemical composition on thermal stability was investigated an experiment involving determination of the chemical composition of seven lignocellulosics: corn hull, corn stover, fescue, pine, soy hull, soy stover, and switchgrass. These materials were also evaluated for thermal stability by thermogravimetric analysis. The results of these determinations indicated that both chemical composition and pretreatment of lignocellulosic materials can have an effect on their thermal stability. A second study was performed to investigate what effect different pretreatment systems have on hybrid poplar, pine, and switchgrass. These materials were treated with hot water, ethanol, and a 2:1 benzene/ethanol mixture for extraction times of: 1, 3, 6, 12, and 24 hours. This factorial experiment demonstrated that both extraction time and medium have an effect on the weight percent of extractives removed from all three material types. The extracted materials generated in the above study were then subjected to an evaluation of thermal

  18. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  19. Hybrid systems with constraints

    CERN Document Server

    Daafouz, Jamal; Sigalotti, Mario

    2013-01-01

    Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to

  20. Hybrid Bloch Brane

    CERN Document Server

    Bazeia, D; Losano, L

    2016-01-01

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios.

  1. Hybrid Bloch brane

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Lima, Elisama E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2017-02-15

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios. (orig.)

  2. Hybrid silicon evanescent devices

    Directory of Open Access Journals (Sweden)

    Alexander W. Fang

    2007-07-01

    Full Text Available Si photonics as an integration platform has recently been a focus of optoelectronics research because of the promise of low-cost manufacturing based on the ubiquitous electronics fabrication infrastructure. The key challenge for Si photonic systems is the realization of compact, electrically driven optical gain elements. We review our recent developments in hybrid Si evanescent devices. We have demonstrated electrically pumped lasers, amplifiers, and photodetectors that can provide a low-cost, scalable solution for hybrid integration on a Si platform by using a novel hybrid waveguide architecture, consisting of III-V quantum wells bonded to Si waveguides.

  3. Effects of ultrasonic and thermo-chemical pre-treatments on methane production from fat, oil and grease (FOG) and synthetic kitchen waste (KW) in anaerobic co-digestion.

    Science.gov (United States)

    Li, Chenxi; Champagne, Pascale; Anderson, Bruce C

    2013-02-01

    The effects of ultrasonic and thermo-chemical pre-treatments on the methane production potential of anaerobic co-digestion with synthetic kitchen waste (KW) or fat, oil and grease (FOG) were investigated. Non-linear regressions were fitted to accurately assess and compare the methane production from co-digestion under the various pre-treatment conditions and to achieve representative simulations and predictions. Ultrasonic pre-treatment was not found to improve methane production effectively from either FOG co-digestion or KW co-digestions. Thermo-chemical pre-treatment could increase methane production yields from both FOG and KW co-digestions. COD solubilization was found to effectively represent the effects of pre-treatment. A comprehensive evaluation indicated that the thermo-chemical pre-treatments of pH=10, 55°C and pH=8, 55°C provided the best conditions to increase methane production from FOG and KW co-digestions, respectively. The most effective enhancement of biogas production (288±0.85mLCH(4)/g TVS) was achieved from thermo-chemically pre-treated FOG co-digestion, which was 9.9±1.5% higher than FOG co-digestion without thermo-chemical pre-treatment.

  4. Chaotic mixer improves microarray hybridization.

    Science.gov (United States)

    McQuain, Mark K; Seale, Kevin; Peek, Joel; Fisher, Timothy S; Levy, Shawn; Stremler, Mark A; Haselton, Frederick R

    2004-02-15

    Hybridization is an important aspect of microarray experimental design which influences array signal levels and the repeatability of data within an array and across different arrays. Current methods typically require 24h and use target inefficiently. In these studies, we compare hybridization signals obtained in conventional static hybridization, which depends on diffusional target delivery, with signals obtained in a dynamic hybridization chamber, which employs a fluid mixer based on chaotic advection theory to deliver targets across a conventional glass slide array. Microarrays were printed with a pattern of 102 identical probe spots containing a 65-mer oligonucleotide capture probe. Hybridization of a 725-bp fluorescently labeled target was used to measure average target hybridization levels, local signal-to-noise ratios, and array hybridization uniformity. Dynamic hybridization for 1h with 1 or 10ng of target DNA increased hybridization signal intensities approximately threefold over a 24-h static hybridization. Similarly, a 10- or 60-min dynamic hybridization of 10ng of target DNA increased hybridization signal intensities fourfold over a 24h static hybridization. In time course studies, static hybridization reached a maximum within 8 to 12h using either 1 or 10ng of target. In time course studies using the dynamic hybridization chamber, hybridization using 1ng of target increased to a maximum at 4h and that using 10ng of target did not vary over the time points tested. In comparison to static hybridization, dynamic hybridization reduced the signal-to-noise ratios threefold and reduced spot-to-spot variation twofold. Therefore, we conclude that dynamic hybridization based on a chaotic mixer design improves both the speed of hybridization and the maximum level of hybridization while increasing signal-to-noise ratios and reducing spot-to-spot variation.

  5. Modelling of pressurised hybrid systems based on integrated planar solid oxide fuel cell (IP-SOFC) technology

    Energy Technology Data Exchange (ETDEWEB)

    Magistri, L.; Traverso, A.; Massardo, A.F. [TPG-DIMSET, University of Genoa, Via Montallegro 1, 16145 Genova (Italy); Cerutti, F.; Costamagna, P. [TPG-DICHEP, University of Genoa, Via Opera Pia 15, 16145 Genova (Italy); Bozzolo, M. [Rolls-Royce Fuel Cell Systems Ltd, PO Box 31, Derby DE24 8BJ (United Kingdom)

    2005-02-01

    This work describes different models, developed by the Thermochemical Power Group at the University of Genoa (Italy), for the simulation of solid oxide fuel cell and gas turbine hybrid systems. The paper focuses on both ''cores'' of the system: the fuel cell stack on the one hand and the turbomachinery and the auxiliaries on the other hand. Therefore, in the first part of the paper the models developed for the analysis of the Rolls-Royce Integrated Planar SOFC cells are presented; the results are compared to experimental data, and carefully analysed and discussed. In the second part of the paper, design and off design models of IP-SOFC pressurised hybrid systems in the range 250 kW-20 MW are presented; the hybrid performance results are presented and discussed, also taking ambient condition effects and a possible control strategy into account. Finally, using an in-house general purpose transient system analysis code (TRANSEO code), where chemical composition, heat transfer, and fluid dynamic influences vs. time are considered in detail, a preliminary time dependent investigation of a pressurised hybrid system behaviour is presented. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  6. Hybrid polymer microspheres

    Science.gov (United States)

    Rembaum, A.

    1980-01-01

    Techniques have been successfully tested for bonding polymeric spheres, typically 0.1 micron in diameter, to spheres with diameter up to 100 microns. Hybrids are being developed as improved packing material for ion-exchange columns, filters, and separators.

  7. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  8. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  9. Functional hybrid materials

    National Research Council Canada - National Science Library

    Fahmi, Amir; Pietsch, Torsten; Mendoza, Cesar; Cheval, Nicolas

    2009-01-01

    .... This paper describes our group's achievements towards the development of multifunctional nanostructures via self-assembly of hybrid systems based on the block copolymer PS-b-P4VP and inorganic nanoparticles (NPs...

  10. Hybrid Rocket Technology

    Directory of Open Access Journals (Sweden)

    Sankaran Venugopal

    2011-04-01

    Full Text Available With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems. Classical hybrids can be throttled for thrust tailoring, perform in-flight motor shutdown and restart. In classical hybrids, the fuel is stored in the form of a solid grain, requiring only half the feed system hardware of liquid bipropellant engines. The commonly used fuels are benign, nontoxic, and not hazardous to store and transport. Solid fuel grains are not highly susceptible to cracks, imperfections, and environmental temperature and are therefore safer to manufacture, store, transport, and use for launch. The status of development based on the experience of the last few decades indicating the maturity of the hybrid rocket technology is given in brief.Defence Science Journal, 2011, 61(3, pp.193-200, DOI:http://dx.doi.org/10.14429/dsj.61.518

  11. Nitrous Paraffin Hybrid Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nitrous Oxide Paraffin Hybrid engine (N2OP) is a proposed technology designed to provide small launch vehicles with high specific impulse, indefinitely storable...

  12. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  13. Structure and thermochemical properties of 2-methoxyfuran, 3-methoxyfuran, and their carbon-centered radicals using computational chemistry.

    Science.gov (United States)

    Hudzik, Jason M; Bozzelli, Joseph W

    2010-08-05

    Methoxyfurans are known components in a number of biofuel synthesis processes and their thermochemical properties are important to the stability, reaction paths, and chemical kinetics of these species. Enthalpies (DeltaH degrees (f298)), entropies (S degrees (298)), and heat capacities (C(p)(T)) are reported for 2-methoxyfuran and 3-methoxyfuran, cyclic ethers with possible biofuel implications, and their radicals corresponding to loss of hydrogen atoms. Standard enthalpies of formation are calculated at the B3LYP/6-31G(d,p), B3LYP/6-311G(2d,2p), CBS-QB3, G3MP2B3, and G3 levels of theory with isodesmic reactions to minimize calculation errors. Structures, vibrational frequencies, and internal rotor potentials are calculated at the B3LYP/6-31G(d,p) density functional level and are used to determine the entropy and heat capacities. The recommended ideal gas phase enthalpy of formation, from the average of the CBS-QB3 and G3MP2B3 levels of theory, for 2-methoxyfuran is -45.0 kcal mol(-1) and for 3-methoxyfuran is -41.1 kcal mol(-1). Bond dissociation energies are also calculated. The C-H bonds of the furan ring are approximately 120 kcal mol(-1), which is consistent with recent data on several alkylfurans; they are significantly stronger than non-aromatic, stable heterocyclic structures. The bond energy decreases to 98 kcal mol(-1) for the methoxy-methyl C-H bonds making this methyl site a favorable abstraction target and an important site for initial decomposition paths during combustion. Group additivity for furan is discussed and groups for furan and methoxyfuran carbon radicals are derived.

  14. Thermochemical methane reforming using WO{sub 3} as an oxidant below 1173 K by a solar furnace simulator

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T.; Shimizu, K. [Niigata Univ., Graduate School of Science and Technology, Niigata (Japan); Kitayama, Y.; Kodama, T. [Niigata Univ., Dept. of Chemistry and Chemical Engineering, Niigata (Japan)

    2001-07-01

    Thermochemical methane reforming by a reactive redox system of WO{sub 3} was demonstrated under direct irradiation of the metal oxide by a concentrated, solar-simulated Xe-lamp beam below 1173 K, for the purpose of converting solar high-temperature heat to chemical fuels. In the proposed cycling redox process, the metal oxide is expected to react with methane as an oxidant to produce syngas with a H{sub 2}/CO ratio of two, which is suitable for the production of methanol, and the reduced metal oxide which is oxidised back with steam in a separate step to generate hydrogen uncontaminated with carbon oxide. The ZrO{sub 2}-supported WO{sub 3} gave about 45% of CO yield and 55% of H{sub 2} yield with a H{sub 2}/CO ratio of about 2.4 in a temperature range of 1080-1160 K at a W/F ratio of 0.167 g min Ncm {sup -3} (W is the weight of WO{sub 3} phase and F is the flow rate of CH{sub 4}). The activity data under the solar simulation were compared to those for the WO{sub 3}/ZrO{sub 2} heated by irradiation of an infrared light. This comparison indicated that the CO selectivity was much improved to 76-85% in the solar-simulated methane reforming, probably by photochemical effect due to WO{sub 3} phase. The main solid product of WO{sub 2} in the reduced WO{sub 3}/ZrO{sub 2} was reoxidised to WO{sub 3} with steam to generate hydrogen below 1173 K. (Author)

  15. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Edwards, T.

    2009-06-11

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  16. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preprocessing supply system designs

    Energy Technology Data Exchange (ETDEWEB)

    Muth, jr., David J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Langholtz, Matthew H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jacobson, Jacob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwab, Amy [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Argo, Andrew [Sundrop Fuels, Golden, CO (United States); Brandt, Craig C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cafferty, Kara [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chiu, Yi-Wen [Argonne National Lab. (ANL), Argonne, IL (United States); Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Eaton, Laurence M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Searcy, Erin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-03-31

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to

  17. Deep mantle heat flow and thermal evolution of the Earth's core based on thermo-chemical mantle convection

    Science.gov (United States)

    Nakagawa, T.; Tackley, P.; Buffett, B.

    2004-12-01

    A coupled core-mantle evolution model that combines the global heat balance in the core with a fully-dynamical thermo-chemical mantle convection [Nakagawa and Tackley, 2004 published in EPSL] is used to investigate the deep mantle heat flow that is required to sustain the magnetic field generated by the geodynamo process. Effects of a radioactive heat source due to potassium in the core are also included in the global heat balance in the Earth??s core. Two important parameters are checked in this study; (1) density variation between depleted hartzbergite and basaltic material (0 to 3 percent) and (2) concentration of radioactive potassium in the core alloy (0ppm to 400ppm). The parameter set that most closely satisfies the criteria of size of the inner core (1220km at present time) is around 2 percent of density difference in a convecting mantle and 200ppm of radioactive heat source in the core. The concentration of potassium in the core is consistent with the geochemical approach [Murthy et al., 2003] but smaller than other successful thermal evolution models [Labrosse, 2003; Nimmo et al., 2004]. Heat flow through the core-mantle boundary and the contribution of radioactive heat sources in the core are consistent with theoretical estimates [e.g. Buffett, 2002] and geochemical constraints [Gessmann and Wood, 2002]. The power available to the geodynamo, based on the predicted heat flow through the core-mantle boundary, is approximately four times greater than the value predicted by numerical models of the geodynamo [Christensen and Kutzner, 2004] but closer to theoretical estimates [e.g. Buffett, 2002].

  18. Preliminary results from bench-scale testing of a sulfur-iodine thermochemical water-splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, D.; Allen, C.; Besenbruch, G.; McCorkle, K.; Norman, J.; Sharp, R.

    1980-07-01

    Portions of a bench-scale model of a sulfur-iodine thermochemical water-splitting cycle have been operated at General Atomic Company as part of a comprehensive program to demonstrate the technology for hydrogen production from nonfossil sources. The hydrogen program is funded by the US Department of Energy, the Gas Research Institute, and General Atomic Company. The bench-scale model consists of three subunits which can be operated separately or together and is capable of producing as much as 4 std liters/min (6.7 x 10/sup -5/ m/sup 3//s at standard conditions) of gaseous hydrogen. One subunit (main solution reaction) reacts liquid water, liquid iodine (I/sub 2/) and gaseous sulfur dioxide (SO/sub 2/) to form two separable liquid phases: 50 wt % sulfuric acid (H/sub 2/SO/sub 4/) and a solution of iodine in hydriodic acid (HI/sub x/). Another subunit (H/sub 2/SO/sub 4/ concentration and decomposition) concentrates the H/sub 2/SO/sub 4/ phase to the azeotropic composition, then decomposes it at high temperature over a catalyst to form gaseous SO/sub 2/ and oxygen. The third subunit (HI separation and decomposition) separates the HI from water and I/sub 2/ by extractive distillation with phosphoric acid (H/sub 3/PO/sub 4/) and decomposes the HI in the vapor phase over a catalyst to form I/sub 2/ and product hydrogen. This paper presents the results of on-going parametric studies to determine the operating characteristics, performance, and capacity limitations of major components.

  19. Hybridity in Disgrace

    Institute of Scientific and Technical Information of China (English)

    刘建平

    2015-01-01

    John Maxwell Coetzee's masterpiece-Disgrace is the representative work about post colonialism.The novel describes a series of disgraceful events happened between the white and the black in the post apartheid South Africa.The famous literature theory-hybridity of Homi K.Bhabha is the very key theory to analyze the work.In post apartheid South Africa,hybridity is the only way for the white and the black to coexist.

  20. Hybrid Baryon Signatures

    CERN Document Server

    Page, P R

    2000-01-01

    We discuss whether a low-lying hybrid baryon should be defined as a three quark - gluon bound state or as three quarks moving on an excited adiabatic potential. We show that the latter definition becomes exact, not only for very heavy quarks, but also for specific dynamics. We review the literature on the signatures of hybrid baryons, with specific reference to strong hadronic decays, electromagnetic couplings, diffractive production and production in psi decay.