WorldWideScience

Sample records for copper-catalyzed decarboxylative cross-coupling

  1. Copper-catalyzed decarboxylative trifluoromethylation of allylic bromodifluoroacetates.

    Science.gov (United States)

    Ambler, Brett R; Altman, Ryan A

    2013-11-01

    The development of new synthetic fluorination reactions has important implications in medicinal, agricultural, and materials chemistries. Given the prevalence and accessibility of alcohols, methods to convert alcohols to trifluoromethanes are desirable. However, this transformation typically requires four-step processes, specialty chemicals, and/or stoichiometric metals to access the trifluoromethyl-containing product. A two-step copper-catalyzed decarboxylative protocol for converting allylic alcohols to trifluoromethanes is reported. Preliminary mechanistic studies distinguish this reaction from previously reported Cu-mediated reactions.

  2. Copper-Catalyzed Decarboxylative Trifluoromethylation of Propargyl Bromodifluoroacetates.

    Science.gov (United States)

    Ambler, Brett R; Peddi, Santosh; Altman, Ryan A

    2014-07-15

    The development of efficient methods for accessing fluorinated functional groups is desirable. Herein, we report a two-step method that utilizes catalytic Cu for the decarboxylative trifluoromethylation of propargyl bromodifluoroacetates. This protocol affords a mixture of propargyl trifluoromethanes and trifluoromethyl allenes.

  3. Synthesis of Arylthiopyrimidines by Copper-catalyzed Aerobic Oxidative C-S Cross-coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ok Suk; Kim, Hyeji; Sohn, Jeong-Hun [Chungnam National University, Daejeon (Korea, Republic of); Lee, Hee-Seung [KAIST, Daejeon (Korea, Republic of); Shin, Hyunik [Yonsung Fine Chemicals R and D Center, Suwon (Korea, Republic of)

    2016-02-15

    Copper-catalyzed C–S cross-coupling reactions have been considered as powerful tools in synthetic chemistry and utilized for diverse heterocycle syntheses. In the reactions, the aspects of no need of ligands has been particular advantage over other metal catalysis. We have developed a Cu-catalyzed cascade reaction for the synthesis of fully substituted 2-arylthiopyrimidines from 3,4-dihydropyrimidine-2(1H)-thiones (DHPMs) under aerobic conditions. This cascade reaction of DHPM with aryl iodide proceeds presumably via sequential tautomerization, C–S cross-coupling, and oxidative dehydrogenation (oxidation followed by elimination). Considering that DHPM substrates were easily synthesized by Biginelli three component coupling reaction of aryl aldehyde, β-ketoester, and thiourea, the present method provides a direct access toward diverse 2-arylthiopyrimidines which have been used as a prominent substructure of drug molecules.

  4. Remote C−H Activation of Quinolines through Copper-Catalyzed Radical Cross-Coupling

    KAUST Repository

    Xu, Jun

    2016-01-12

    Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C-H bonds at the C5 position of 8-aminoquinoline through copper-catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single-electron-transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C-S cross-coupling. Importantly, our copper-catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C-O, C-Br, C-N, C-C, and C-I. These findings provide a fundamental insight into the activation of remote C-H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Selective Formation of Secondary Amides via the Copper-Catalyzed Cross-Coupling of Alkylboronic Acids with Primary Amides

    Science.gov (United States)

    Rossi, Steven A.; Shimkin, Kirk W.; Xu, Qun; Mori-Quiroz, Luis M.; Watson, Donald A.

    2014-01-01

    For the first time, a general catalytic procedure for the cross coupling of primary amides and alkylboronic acids is demonstrated. The key to the success of this reaction was the identification of a mild base (NaOSiMe3) and oxidant (di-tert-butyl peroxide) to promote the copper-catalyzed reaction in high yield. This transformation provides a facile, high-yielding method for the mono-alkylation of amides. PMID:23611591

  6. Gas-phase studies of copper catalyzed aerobic cross coupling of thiol esters and arylboronic acids

    Czech Academy of Sciences Publication Activity Database

    Tsybizová, A.; Schröder, Detlef; Roithová, J.; Henke, A.; Šrogl, Jiří

    2014-01-01

    Roč. 27, č. 3 (2014), s. 198-203 ISSN 0894-3230 R&D Projects: GA ČR GAP207/12/0846 Grant - others:GA ČR(CZ) GAP207/11/0338 Institutional support: RVO:61388963 Keywords : boronic acids * catalysis * copper * cross coupling * electrospray ionization * mass spectrometry * kinetic studies Subject RIV: CC - Organic Chemistry Impact factor: 1.380, year: 2014

  7. Synthesis of phenanthrenes through copper-catalyzed cross-coupling of N-tosylhydrazones with terminal alkynes.

    Science.gov (United States)

    Hossain, Mohammad Lokman; Ye, Fei; Liu, Zhenxing; Xia, Ying; Shi, Yi; Zhou, Lei; Zhang, Yan; Wang, Jianbo

    2014-09-19

    A novel protocol for the synthesis of phenanthrenes through the copper-catalyzed reaction of aromatic tosylhydrazones with terminal alkynes is explored. The reaction proceeds via the formation of an allene intermediate and subsequent six-π-electron cyclization-isomerization, affording phenanthrene derivatives in good yields. The transformation can be performed in two ways: (1) with N-tosylhydrazones derived from [1,1'-biphenyl]-2-carbaldehydes and terminal alkynes as the starting materials and (2) with N-tosylhydrazones derived from aromatic aldehydes and 2-alkynyl biphenyls as the starting materials. This new phenanthrene synthesis uses readily available starting materials and a cheap copper catalyst and has a wide range of functional group compatibility.

  8. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides

    KAUST Repository

    Srimontree, Watchara

    2017-06-05

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  9. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides.

    Science.gov (United States)

    Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus

    2017-06-16

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  10. Amide to Alkyne Interconversion via a Nickel/Copper-Catalyzed Deamidative Cross-Coupling of Aryl and Alkenyl Amides

    KAUST Repository

    Srimontree, Watchara; Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Rueping, Magnus

    2017-01-01

    A nickel-catalyzed deamidative cross-coupling reaction of amides with terminal alkynes as coupling partners was disclosed. This newly developed methodology allows the direct interconversion of amides to alkynes and enables a facile route for C(sp2)-C(sp) bond formation in a straightforward and mild fashion.

  11. Domino-Fluorination-Protodefluorination Enables Decarboxylative Cross-Coupling of α-Oxocarboxylic Acids with Styrene via Photoredox Catalysis.

    Science.gov (United States)

    Zhang, Muliang; Xi, Junwei; Ruzi, Rehanguli; Li, Nan; Wu, Zhongkai; Li, Weipeng; Zhu, Chengjian

    2017-09-15

    Domino-fluorination-protodefluorination decarboxylative cross-coupling of α-keto acids with styrene has been developed via photoredox catalysis. The critical part of this strategy is the formation of the carbon-fluorine (C-F) bond by the capture of a carbon-centered radical intermediate, which will overcome side reactions during the styrene radical functionalization process. Experimental studies have provided evidence indicating a domino-fluorination-protodefluorination pathway with α-keto acid initiating the photoredox cycle. The present catalytic protocol also affords a novel approach for the construction of α,β-unsaturated ketones under mild conditions.

  12. Decarboxylative Aminomethylation of Aryl- and Vinylsulfonates through Combined Nickel- and Photoredox-Catalyzed Cross-Coupling

    KAUST Repository

    Fan, Lulu; Jia, Jiaqi; Hou, Hong; Lefebvre, Quentin; Rueping, Magnus

    2016-01-01

    A mild approach for the decarboxylative aminomethylation of aryl sulfonates by the combination of photoredox and nickel catalysis through C−O bond cleavage is described for the first time. A wide range of aryl triflates as well as aryl mesylates, tosylates and alkenyl triflates afford the corresponding products in good to excellent yields.

  13. Decarboxylative Aminomethylation of Aryl- and Vinylsulfonates through Combined Nickel- and Photoredox-Catalyzed Cross-Coupling

    KAUST Repository

    Fan, Lulu

    2016-09-23

    A mild approach for the decarboxylative aminomethylation of aryl sulfonates by the combination of photoredox and nickel catalysis through C−O bond cleavage is described for the first time. A wide range of aryl triflates as well as aryl mesylates, tosylates and alkenyl triflates afford the corresponding products in good to excellent yields.

  14. Remote C−H Activation of Quinolines through Copper-Catalyzed Radical Cross-Coupling

    KAUST Repository

    Xu, Jun; Shen, Chao; Zhu, Xiaolei; Zhang, Pengfei; Ajitha, Manjaly John; Huang, Kuo-Wei; An, Zhongfu; Liu, Xiaogang

    2016-01-01

    Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C-H bonds at the C5 position of 8-aminoquinoline through copper

  15. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    Science.gov (United States)

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Enantioselective Copper-Catalyzed Carboetherification of Unactivated Alkenes**

    Science.gov (United States)

    Bovino, Michael T.; Liwosz, Timothy W.; Kendel, Nicole E.; Miller, Yan; Tyminska, Nina

    2014-01-01

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein is reported a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols that terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition state calculations support a cis-oxycupration stereochemistry-determining step. PMID:24798697

  17. Copper-Catalyzed Synthesis of Trifluoroethylarenes from Benzylic Bromodifluoroacetates.

    Science.gov (United States)

    Ambler, Brett R; Zhu, Lingui; Altman, Ryan A

    2015-08-21

    Trifluoroethylarenes are found in a variety of biologically active molecules, and strategies for accessing this substructure are important for developing therapeutic candidates and biological probes. Trifluoroethylarenes can be directly accessed via nucleophilic trifluoromethylation of benzylic electrophiles; however, current catalytic methods do not effectively transform electron-deficient substrates and heterocycles. To address this gap, we report a Cu-catalyzed decarboxylative trifluoromethylation of benzylic bromodifluoroacetates. To account for the tolerance of sensitive functional groups, we propose an inner-sphere mechanism of decarboxylation.

  18. Enantioselective copper-catalyzed carboetherification of unactivated alkenes.

    Science.gov (United States)

    Bovino, Michael T; Liwosz, Timothy W; Kendel, Nicole E; Miller, Yan; Tyminska, Nina; Zurek, Eva; Chemler, Sherry R

    2014-06-16

    Chiral saturated oxygen heterocycles are important components of bioactive compounds. Cyclization of alcohols onto pendant alkenes is a direct route to their synthesis, but few catalytic enantioselective methods enabling cyclization onto unactivated alkenes exist. Herein reported is a highly efficient copper-catalyzed cyclization of γ-unsaturated pentenols which terminates in C-C bond formation, a net alkene carboetherification. Both intra- and intermolecular C-C bond formations are demonstrated, thus yielding functionalized chiral tetrahydrofurans as well as fused-ring and bridged-ring oxabicyclic products. Transition-state calculations support a cis-oxycupration stereochemistry-determining step. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Synthesis of trifluoromethylated acetylenes via copper-catalyzed trifluoromethylation of alkynyltrifluoroborates

    KAUST Repository

    Zheng, Huidong

    2012-12-01

    A new method for the synthesis of trifluoromethylated acetylenes is developed which involves the copper-catalyzed trifluoromethylation of alkynyltrifluoroborates with an electrophilic trifluoromethylating reagent. This method offers significant advantages such as efficiency and mild and base-free reaction conditions. A plausible mechanism is proposed. © 2012 Elsevier Ltd. All rights reserved.

  20. Copper-Catalyzed Electrophilic Amination of Organoaluminum Nucleophiles with O-Benzoyl Hydroxylamines.

    Science.gov (United States)

    Zhou, Shuangliu; Yang, Zhiyong; Chen, Xu; Li, Yimei; Zhang, Lijun; Fang, Hong; Wang, Wei; Zhu, Xiancui; Wang, Shaowu

    2015-06-19

    A copper-catalyzed electrophilic amination of aryl and heteroaryl aluminums with N,N-dialkyl-O-benzoyl hydroxylamines that affords the corresponding anilines in good yields has been developed. The catalytic reaction proceeds very smoothly under mild conditions and exhibits good substrate scope. Moreover, the developed catalytic system is also well suited for heteroaryl aluminum nucleophiles, providing facile access to heteroaryl amines.

  1. Room-temperature base-free copper-catalyzed trifluoromethylation of organotrifluoroborates to trifluoromethylarenes

    KAUST Repository

    Huang, Yuanyuan; Fang, Xin; Lin, Xiaoxi; Li, Huaifeng; He, Weiming; Huang, Kuo-Wei; Yuan, Yaofeng; Weng, Zhiqiang

    2012-01-01

    An efficient room temperature copper-catalyzed trifluoromethylation of organotrifluoroborates under the base free condition using an electrophilic trifluoromethylating reagent is demonstrated. The corresponding trifluoromethylarenes were obtained in good to excellent yields and the reaction tolerates a wide range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  2. Copper-catalyzed trifluoromethylation of arylsulfinate salts using an electrophilic trifluoromethylation reagent

    KAUST Repository

    Lin, Xiaoxi

    2013-03-01

    A copper-catalyzed method for the trifluoromethylation of arylsulfinates with Togni\\'s reagent has been developed, affording aryltrifluoromethylsulfones in moderate to good yields. A wide range of functional groups in arylsulfinates are compatible with the reaction conditions. © 2013 Elsevier Ltd. All rights reserved.

  3. Room-temperature base-free copper-catalyzed trifluoromethylation of organotrifluoroborates to trifluoromethylarenes

    KAUST Repository

    Huang, Yuanyuan

    2012-12-01

    An efficient room temperature copper-catalyzed trifluoromethylation of organotrifluoroborates under the base free condition using an electrophilic trifluoromethylating reagent is demonstrated. The corresponding trifluoromethylarenes were obtained in good to excellent yields and the reaction tolerates a wide range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  4. Synthesis of trifluoromethylated acetylenes via copper-catalyzed trifluoromethylation of alkynyltrifluoroborates

    KAUST Repository

    Zheng, Huidong; Huang, Yuanyuan; Wang, Zhiwei; Li, Huaifeng; Huang, Kuo-Wei; Yuan, Yaofeng; Weng, Zhiqiang

    2012-01-01

    A new method for the synthesis of trifluoromethylated acetylenes is developed which involves the copper-catalyzed trifluoromethylation of alkynyltrifluoroborates with an electrophilic trifluoromethylating reagent. This method offers significant advantages such as efficiency and mild and base-free reaction conditions. A plausible mechanism is proposed. © 2012 Elsevier Ltd. All rights reserved.

  5. Copper-catalyzed azide alkyne cycloaddition polymer networks

    Science.gov (United States)

    Alzahrani, Abeer Ahmed

    The click reaction concept, introduced in 2001, has since spurred the rapid development and reexamination of efficient, high yield reactions which proceed rapidly under mild conditions. Prior to the discovery of facile copper catalysis in 2002, the thermally activated azide-alkyne or Huisgen cycloaddition reaction was largely ignored following its discovery in large part due to its slow kinetics, requirement for elevated temperature and limited selectivity. Now, arguably, the most prolific and capable of the click reactions, the copper-catalyzed azide alkyne cycloaddition (CuAAC) reaction is extremely efficient and affords exquisite control of the reaction. The orthogonally and chemoselectivity of this reaction enable its wide utility across varied scientific fields. Despite numerous inherent advantages and widespread use for small molecule synthesis and solution-based polymer chemistry, it has only recently and rarely been utilized to form polymer networks. This work focuses on the synthesis, mechanisms, and unique attributes of the CuAAC reaction for the fabrication of functional polymer networks. The photo-reduction of a series of copper(II)/amine complexes via ligand metal charge transfer was examined to determine their relative efficiency and selectivity in catalyzing the CuAAC reaction. The aliphatic amine ligands were used as an electron transfer species to reduce Cu(II) upon irradiation with 365 nm light while also functioning as an accelerating agent and as protecting ligands for the Cu(I) that was formed. Among the aliphatic amines studied, tertiary amines such as triethylamine (TEA), tetramethyldiamine (TMDA), N,N,N',N",N"-pentamethyldiethylenetriamine (PMDTA), and hexamethylenetetramine (HMTETA) were found to be the most effective. The reaction kinetics were accelerated by increasing the PMDETA : Cu(II) ratio with a ratio of ligand to Cu(II) of 4:1 yielding the maximum conversion in the shortest time. The sequential and orthogonal nature of the photo

  6. Copper-Catalyzed Trifluoromethylazidation of Alkynes: Efficient Access to CF3-Substituted Azirines and Aziridines.

    Science.gov (United States)

    Wang, Fei; Zhu, Na; Chen, Pinhong; Ye, Jinxing; Liu, Guosheng

    2015-08-03

    A novel method for convenient access to CF3-containing azirines has been developed, and involves a copper-catalyzed trifluoromethylazidation of alkynes and a photocatalyzed rearrangement. Both terminal and internal alkynes are compatible with the mild reaction conditions, thus delivering the CF3-containing azirines in moderate to good yields. The azirines can be converted into various CF3-substituted aziridines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Multigram Synthesis of a Chiral Substituted Indoline Via Copper-Catalyzed Alkene Aminooxygenation.

    Science.gov (United States)

    Sequeira, Fatima C; Bovino, Michael T; Chipre, Anthony J; Chemler, Sherry R

    2012-05-01

    (S)-5-Fluoro-2-(2,2,6,6-tetramethylpiperidin-1-yloxymethyl)-1-tosylindoline, a 2-methyleneoxy-substituted chiral indoline, was synthesized on multigram scale using an efficient copper-catalyzed enantioselective intramolecular alkene aminooxygenation. The synthesis is accomplished in four steps and the indoline is obtained in 89% ee (>98% after one recrystallization). Other highlights include efficient gram-scale synthesis of the (4R,5S)-di-Ph-box ligand and efficient separation of a monoallylaniline from its bis(allyl)aniline by-product by distillation under reduced pressure.

  8. Synthesis of alpha-tetrasubstituted triazoles by copper-catalyzed silyl deprotection/azide cycloaddition

    Directory of Open Access Journals (Sweden)

    Zachary L. Palchak

    2015-08-01

    Full Text Available Propargylamines are popular substrates for triazole formation, but tetrasubstituted variants have required multistep syntheses involving stoichiometric amounts of metal. A recent cyclohexanone–amine–silylacetylene coupling forms silyl-protected tetrasubstituted propargylamines in a single copper-catalyzed step. The development of the tandem silyl deprotection–triazole formation reported herein offers rapid access to alpha-tetrasubstituted triazoles. A streamlined two-step approach to this uncommon class of hindered triazoles will accelerate exploration of their therapeutic potential. The superior activity of copper(II triflate in the formation of triazoles from sensitive alkyne substrates extends to simple terminal alkynes.

  9. A new approach to ferrocene derived alkenes via copper-catalyzed olefination

    Directory of Open Access Journals (Sweden)

    Vasily M. Muzalevskiy

    2015-11-01

    Full Text Available A new approach to ferrocenyl haloalkenes and bis-alkenes was elaborated. The key procedure involves copper catalyzed olefination of N-unsubstituted hydrazones, obtained from ferrocene-containing carbonyl compounds and hydrazine, with polyhaloalkanes. The procedure is simple, cheap and could be applied for the utilization of environmentally harmful polyhalocarbons. The cyclic voltammetry study of the representative examples of the synthesized ferrocenyl alkenes shows the strong dependence of the cathodic behavior on the amount of vinyl groups: while for the monoalkene containing molecules no reduction is seen, the divinyl products are reduced in several steps.

  10. A new approach to ferrocene derived alkenes via copper-catalyzed olefination.

    Science.gov (United States)

    Muzalevskiy, Vasily M; Shastin, Aleksei V; Demidovich, Alexandra D; Shikhaliev, Namiq G; Magerramov, Abel M; Khrustalev, Victor N; Rakhimov, Rustem D; Vatsadze, Sergey Z; Nenajdenko, Valentine G

    2015-01-01

    A new approach to ferrocenyl haloalkenes and bis-alkenes was elaborated. The key procedure involves copper catalyzed olefination of N-unsubstituted hydrazones, obtained from ferrocene-containing carbonyl compounds and hydrazine, with polyhaloalkanes. The procedure is simple, cheap and could be applied for the utilization of environmentally harmful polyhalocarbons. The cyclic voltammetry study of the representative examples of the synthesized ferrocenyl alkenes shows the strong dependence of the cathodic behavior on the amount of vinyl groups: while for the monoalkene containing molecules no reduction is seen, the divinyl products are reduced in several steps.

  11. Development of Copper-Catalyzed Electrophilic Trifluoromethylation and Exploiting Cu/Cu2O Nanowires with Novel Catalytic Reactivity

    KAUST Repository

    Li, Huaifeng

    2014-06-01

    This thesis is based on research in Cu-catalyzed electrophilic trifluoromethylation and exploiting Cu/Cu2O nanowires with novel catalytic reactivity for developing of catalytic and greener synthetic methods. A large number of biological active pharmaceuticals and agrochemicals contain fluorine substituents (-F) or trifluoromethyl groups (-CF3) because these moieties often result in profound changes of their physical, chemical, and biological properties, such as metabolic stability and lipophilicity. For this reason, the introduction of fluorine or trifluoromethyl groups into organic molecules has attracted intensive attention. Among them, transition metal-catalyzed trifluoromethylation reactions has proved to be an efficient and reliable strategy to construct carbon-fluorine (C-F) and carbontrifluoromethyl (C-CF3) bond. We have developed a catalytic process for the first time for trifluoromethylation of terminal alkynes with Togni’s reagent, affording trifluoromethylated acetylenes in good to excellent yields. The reaction is conducted at room temperature and exhibits tolerance to a range of functional groups. Derived from this discovery, the extension of work of copper catalyzed electrophilic trifluoromethylation were investigated which include the electrophilic trifluoromethylation of arylsulfinate salts and electrophilic trifluoromethylation of organotrifluoroborates. Because of growing environmental concern, the development of greener synthetic methods has drawn much attention. Nano-sized catalysts are environment-friendly and an attractive green alternative to the conventional homogeneous catalysts. The nano-sized catalysts can be easily separated from the reaction mixture due to their insolubility and thus they can be used recycled. Notably, because of the high reactivities of nano-sized metal catalysts, the use of ligands can be avoided and the catalysts loadings can be reduced greatly. Moreover, the nano-sized catalysts can increase the exposed surface

  12. Copper-Catalyzed Sulfonyl Azide-Alkyne Cycloaddition Reactions: Simultaneous Generation and Trapping of Copper-Triazoles and -Ketenimines for the Synthesis of Triazolopyrimidines.

    Science.gov (United States)

    Nallagangula, Madhu; Namitharan, Kayambu

    2017-07-07

    First simultaneous generation and utilization of both copper-triazole and -ketenimine intermediates in copper-catalyzed sulfonyl azide-alkyne cycloaddition reactions is achieved for the one-pot synthesis of triazolopyrimidines via a novel copper-catalyzed multicomponent cascade of sulfonyl azides, alkynes, and azirines. Significantly, the reaction proceeds under very mild conditions in good yields.

  13. Copper-Catalyzed N-Arylation of Amides Using (S-N-Methylpyrrolidine-2-carboxylate as the Ligand

    Directory of Open Access Journals (Sweden)

    Dong-Sheng Ma

    2010-03-01

    Full Text Available (S-N-methylpyrrolidine-2-carboxylate, a derivative of natural L-proline, was found to be an efficient ligand for the copper-catalyzed Goldberg-type N-arylation of amides with aryl halides under mild conditions. A variety of N-arylamides were synthesized in good to high yields.

  14. Bis(trialkylsilyl) peroxides as alkylating agents in the copper-catalyzed selective mono-N-alkylation of primary amides.

    Science.gov (United States)

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-06-13

    The copper-catalyzed selective mono-N-alkylation of primary amides with bis(trialkylsilyl) peroxides as alkylating agents was reported. The results of a mechanistic study suggest that this reaction should proceed via a free radical process that includes the generation of alkyl radicals from bis(trialkylsilyl) peroxides.

  15. Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds with Hypervalent Iodine Reagents.

    Science.gov (United States)

    Hari, Durga Prasad; Waser, Jerome

    2016-02-24

    Alkynes have found widespread applications in synthetic chemistry, biology, and materials sciences. In recent years, methods based on electrophilic alkynylation with hypervalent iodine reagents have made acetylene synthesis more flexible and efficient, but they lead to the formation of one equivalent of an iodoarene as side-product. Herein, a more efficient strategy involving a copper-catalyzed oxy-alkynylation of diazo compounds with ethynylbenziodoxol(on)e (EBX) reagents is described, which proceeds with generation of nitrogen gas as the only waste. This reaction is remarkable for its broad scope in both EBX reagents and diazo compounds. In addition, vinyl diazo compounds gave enynes selectively as single geometric isomers. The functional groups introduced during the transformation served as easy handles to access useful building blocks for synthetic and medicinal chemistry.

  16. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    International Nuclear Information System (INIS)

    Paik, Seung Uk; Jung, Myoung Geun

    2012-01-01

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions

  17. Rapid Microwave-Assisted Copper-Catalyzed Nitration of Aromatic Halides with Nitrite Salts

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Seung Uk; Jung, Myoung Geun [Keimyung University, Daegu (Korea, Republic of)

    2012-02-15

    A rapid and efficient copper-catalyzed nitration of aryl halides has been established under microwave irradiation. The catalytic systems were found to be the most effective with 4-substituted aryl iodides leading to nearly complete conversions. Nitration of aromatic compounds is one of the important industrial processes as underlying intermediates in the manufacture of a wide range of chemicals such as dyes, pharmaceuticals, agrochemicals and explosives. General methods for the nitration of aromatic compounds utilize strongly acidic conditions employing nitric acid or a mixture of nitric and sulfuric acids, sometimes leading to problems with poor regioselectivity, overnitration, oxidized byproducts and excess acid waste in many cases of functionalized aromatic compounds. Several other nitrating agents or methods avoiding harsh reaction conditions have been explored using metal nitrates, nitrite salts, and ionic liquid-mediated or microwave-assisted nitrations. Recently, copper or palladium compounds have been successfully used as efficient catalysts for the arylation of amines with aryl halides under mild conditions.

  18. Copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines: synthesis of imidazopyridine derivatives.

    Science.gov (United States)

    Yu, Jipan; Jin, Yunhe; Zhang, Hao; Yang, Xiaobo; Fu, Hua

    2013-12-02

    A novel, efficient, and practical method for the synthesis of imidazopyridine derivatives has been developed through the copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines with N-(alkylidene)-4H-1,2,4-triazol-4-amines. The procedure occurs by cleavage of the N-N bond in the N-(alkylidene)-4H-1,2,4-triazol-4-amines and activation of an aryl C-H bond in the substituted pyridines. This is the first example of the preparation of imidazopyridine derivatives by using pyridines as the substrates by transition-metal-catalyzed C-H functionalization. This method should provide a novel and efficient strategy for the synthesis of other nitrogen heterocycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Relative Performance of Alkynes in Copper-Catalyzed Azide-Alkyne Cycloaddition

    Science.gov (United States)

    Kislukhin, Alexander A.; Hong, Vu P.; Breitenkamp, Kurt E.; Finn, M.G.

    2013-01-01

    Copper-catalyzed azide–alkyne cycloaddition (CuAAC) has found numerous applications in a variety of fields. We report here only modest differences in the reactivity of various classes of terminal alkynes under typical bioconjugative and preparative organic conditions. Propargyl compounds represent an excellent combination of azide reactivity, ease of installation, and cost. Electronically activated propiolamides are slightly more reactive, at the expense of increased propensity for Michael addition. Certain alkynes, including tertiary propargyl carbamates, are not suitable for bioconjugation due to copper-induced fragmentation. A fluorogenic probe based on such reactivity is available in one step from rhodamine 110 and can be useful for optimization of CuAAC conditions. PMID:23566039

  20. A TEMPO-free copper-catalyzed aerobic oxidation of alcohols.

    Science.gov (United States)

    Xu, Boran; Lumb, Jean-Philip; Arndtsen, Bruce A

    2015-03-27

    The copper-catalyzed aerobic oxidation of primary and secondary alcohols without an external N-oxide co-oxidant is described. The catalyst system is composed of a Cu/diamine complex inspired by the enzyme tyrosinase, along with dimethylaminopyridine (DMAP) or N-methylimidazole (NMI). The Cu catalyst system works without 2,2,6,6-tetramethyl-l-piperidinoxyl (TEMPO) at ambient pressure and temperature, and displays activity for un-activated secondary alcohols, which remain a challenging substrate for catalytic aerobic systems. Our work underscores the importance of finding alternative mechanistic pathways for alcohol oxidation, which complement Cu/TEMPO systems, and demonstrate, in this case, a preference for the oxidation of activated secondary over primary alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mechanistic Studies on the Copper-Catalyzed N-Arylation of Amides

    Science.gov (United States)

    Strieter, Eric R.; Bhayana, Brijesh; Buchwald, Stephen L.

    2009-01-01

    The copper-catalyzed N-arylation of amides, i.e., the Goldberg reaction, is an efficient method for the construction of products relevant to both industry and academic settings. Herein, we present mechanistic details concerning the catalytic and stoichiometric N-arylation of amides. In the context of the catalytic reaction, our findings reveal the importance of chelating diamine ligands in controlling the concentration of the active catalytic species. The consistency between the catalytic and stoichiometric results suggest that the activation of aryl halides occurs through a 1,2-diamine-ligated copper(I) amidate complex. Kinetic studies on the stoichiometric N-arylation of aryl iodides using 1,2-diamine ligated Cu(I) amidates also provide insights into the mechanism of aryl halide activation. PMID:19072233

  2. Copper-catalyzed one-pot synthesis of 1,2,4-triazoles from nitriles and hydroxylamine.

    Science.gov (United States)

    Xu, Hao; Ma, Shuang; Xu, Yuanqing; Bian, Longxiang; Ding, Tao; Fang, Xiaomin; Zhang, Wenkai; Ren, Yanrong

    2015-02-06

    A simple and efficient copper-catalyzed one-pot synthesis of substituted 1,2,4-triazoles through reactions of two nitriles with hydroxylamine has been developed. The protocol uses simple and readily available nitriles and hydroxylamine hydrochloride as the starting materials and inexpensive Cu(OAc)2 as the catalyst, and the corresponding 1,2,4-triazole derivatives are obtained in moderate to good yields. The reactions include sequential intermolecular addition of hydroxylamine to one nitrile to provide amidoxime, copper-catalyzed treatment of the amidoxime with another nitrile, and intramolecular dehydration/cyclization. This finding provides a new and useful strategy for synthesis of 1,2,4-triazole derivatives.

  3. Copper-catalyzed azide–alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(i) acetylides†

    OpenAIRE

    Hein, Jason E.; Fokin, Valery V.

    2010-01-01

    Copper-catalyzed azide–alkyne cycloaddition (CuAAC) is a widely utilized, reliable, and straightforward way for making covalent connections between building blocks containing various functional groups. It has been used in organic synthesis, medicinal chemistry, surface and polymer chemistry, and bioconjugation applications. Despite the apparent simplicity of the reaction, its mechanism involves multiple reversible steps involving coordination complexes of copper(i) acetylides of varying nucle...

  4. Copper-catalyzed transformation of ketones to amides via C(CO)-C(alkyl) bond cleavage directed by picolinamide.

    Science.gov (United States)

    Ma, Haojie; Zhou, Xiaoqiang; Zhan, Zhenzhen; Wei, Daidong; Shi, Chong; Liu, Xingxing; Huang, Guosheng

    2017-09-13

    Copper catalyzed chemoselective cleavage of the C(CO)-C(alkyl) bond leading to C-N bond formation with chelation assistance of N-containing directing groups is described. Inexpensive Cu(ii)-acetate serves as a convenient catalyst for this transformation. This method highlights the emerging strategy to transform unactivated alkyl ketones into amides in organic synthesis and provides a new strategy for C-C bond cleavage.

  5. Structural Determinants of Alkyne Reactivity in Copper-Catalyzed Azide-Alkyne Cycloadditions

    Directory of Open Access Journals (Sweden)

    Xiaoguang Zhang

    2016-12-01

    Full Text Available This work represents our initial effort in identifying azide/alkyne pairs for optimal reactivity in copper-catalyzed azide-alkyne cycloaddition (CuAAC reactions. In previous works, we have identified chelating azides, in particular 2-picolyl azide, as “privileged” azide substrates with high CuAAC reactivity. In the current work, two types of alkynes are shown to undergo rapid CuAAC reactions under both copper(II- (via an induction period and copper(I-catalyzed conditions. The first type of the alkynes bears relatively acidic ethynyl C-H bonds, while the second type contains an N-(triazolylmethylpropargylic moiety that produces a self-accelerating effect. The rankings of reactivity under both copper(II- and copper(I-catalyzed conditions are provided. The observations on how other reaction parameters such as accelerating ligand, reducing agent, or identity of azide alter the relative reactivity of alkynes are described and, to the best of our ability, explained.

  6. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature.

    Science.gov (United States)

    Do, Hien-Quang; Bachman, Shoshana; Bissember, Alex C; Peters, Jonas C; Fu, Gregory C

    2014-02-05

    The development of a mild and general method for the alkylation of amides with relatively unreactive alkyl halides (i.e., poor substrates for SN2 reactions) is an ongoing challenge in organic synthesis. We describe herein a versatile transition-metal-catalyzed approach: in particular, a photoinduced, copper-catalyzed monoalkylation of primary amides. A broad array of alkyl and aryl amides (as well as a lactam and a 2-oxazolidinone) couple with unactivated secondary (and hindered primary) alkyl bromides and iodides using a single set of comparatively simple and mild conditions: inexpensive CuI as the catalyst, no separate added ligand, and C-N bond formation at room temperature. The method is compatible with a variety of functional groups, such as an olefin, a carbamate, a thiophene, and a pyridine, and it has been applied to the synthesis of an opioid receptor antagonist. A range of mechanistic observations, including reactivity and stereochemical studies, are consistent with a coupling pathway that includes photoexcitation of a copper-amidate complex, followed by electron transfer to form an alkyl radical.

  7. RESULTS OF COPPER CATALYZED PEROXIDE OXIDATION (CCPO) OF TANK 48H SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T.; Pareizs, J.; Newell, J.; Fondeur, F.; Nash, C.; White, T.; Fink, S.

    2012-08-14

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. The following observations were made with respect to the major processing variables investigated. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. Testing with simulated slurries continues. Current testing is examining lower copper concentrations, refined peroxide addition rates, and alternate acidification methods. A revision of this report will provide updated findings with emphasis on defining recommended conditions for similar tests with actual waste samples.

  8. Vinyldisiloxanes: their synthesis, cross coupling and applications.

    Science.gov (United States)

    Sore, Hannah F; Boehner, Christine M; Laraia, Luca; Logoteta, Patrizia; Prestinari, Cora; Scott, Matthew; Williams, Katharine; Galloway, Warren R J D; Spring, David R

    2011-01-21

    During the studies towards the development of pentafluorophenyldimethylsilanes as a novel organosilicon cross coupling reagent it was revealed that the active silanolate and the corresponding disiloxane formed rapidly under basic conditions. The discovery that disiloxanes are in equilibrium with the silanolate led to the use of disiloxanes as cross coupling partners under fluoride free conditions. Our previous report focused on the synthesis and base induced cross coupling of aryl substituted vinyldisiloxanes with aryl halides; good yields and selectivities were achieved. As a continuation of our research, studies into the factors which influence the successful outcome of the cross coupling reaction with both alkyl and aryl substituted vinyldisiloxanes were examined and a proposed mechanism discussed. Further investigation into expanding the breadth and diversity of substituted vinyldisiloxanes in cross coupling was explored and applied to the synthesis of unsymmetrical trans-stilbenes and cyclic structures containing the trans-alkene architecture.

  9. Alkylsilyl Peroxides as Alkylating Agents in the Copper-Catalyzed Selective Mono-N-Alkylation of Primary Amides and Arylamines.

    Science.gov (United States)

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-07-06

    The copper-catalyzed selective mono-N-alkylation of primary amides or arylamines using alkylsilyl peroxides as alkylating agents is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the alkylsilyl peroxides, as well as to the primary amides and arylamines. Mechanistic studies suggest that the present reaction should proceed through a free-radical process that includes alkyl radicals generated from the alkylsilyl peroxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.

    Science.gov (United States)

    Yuan, Xiu; Miller, Christopher J; Pham, A Ninh; Waite, T David

    2014-06-01

    H indicated good agreement between thermodynamic and kinetic considerations for various key reactions involved, further validating the proposed mechanisms involved in both the autoxidation and the copper-catalyzed oxidation of NH2Q in circumneutral pH solutions. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Results Of Copper Catalyzed Peroxide Oxidation (CCPO) Of Tank 48H Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Peters, T. B.; Pareizs, J. M.; Newell, J. D.; Fondeur, F. F.; Nash, C. A.; White, T. L.; Fink, S. D.

    2012-12-13

    Savannah River National Laboratory (SRNL) performed a series of laboratory-scale experiments that examined copper-catalyzed hydrogen peroxide (H{sub 2}O{sub 2}) aided destruction of organic components, most notably tetraphenylborate (TPB), in Tank 48H simulant slurries. The experiments were designed with an expectation of conducting the process within existing vessels of Building 241-96H with minimal modifications to the existing equipment. Results of the experiments indicate that TPB destruction levels exceeding 99.9% are achievable, dependent on the reaction conditions. A lower reaction pH provides faster reaction rates (pH 7 > pH 9 > pH 11); however, pH 9 reactions provide the least quantity of organic residual compounds within the limits of species analyzed. Higher temperatures lead to faster reaction rates and smaller quantities of organic residual compounds. A processing temperature of 50°C as part of an overall set of conditions appears to provide a viable TPB destruction time on the order of 4 days. Higher concentrations of the copper catalyst provide faster reaction rates, but the highest copper concentration (500 mg/L) also resulted in the second highest quantity of organic residual compounds. The data in this report suggests 100-250 mg/L as a minimum. Faster rates of H{sub 2}O{sub 2} addition lead to faster reaction rates and lower quantities of organic residual compounds. An addition rate of 0.4 mL/hour, scaled to the full vessel, is suggested for the process. SRNL recommends that for pH adjustment, an acid addition rate 42 mL/hour, scaled to the full vessel, is used. This is the same addition rate used in the testing. Even though the TPB and phenylborates can be destroyed in a relative short time period, the residual organics will take longer to degrade to <10 mg/L. Low level leaching on titanium occurred, however, the typical concentrations of released titanium are very low (~40 mg/L or less). A small amount of leaching under these conditions is not

  12. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    Science.gov (United States)

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.

  13. Regiospecific decarboxylative allylation of nitriles

    Science.gov (United States)

    Recio, Antonio; Tunge, Jon A.

    2009-01-01

    Palladium-catalyzed decarboxylative α-allylation of nitriles readily occurs using Pd2(dba)3 and rac-BINAP. This catalyst mixture also allows the highly regiospecific α-allylation of nitriles in the presence of much more acidic α-protons. Thus, the reported method provides access to compounds that are not readily available via base-mediated allylation chemistries. Lastly, mechanistic investigations indicate that there is a competition between C- and N-allylation of an intermediate nitrile-stabilized anion and that N-allylation is followed by a rapid [3,3]-sigmatropic rearrangement. PMID:19921827

  14. Synthesis of ketene N,N-acetals by copper-catalyzed double-amidation of 1,1-dibromo-1-alkenes.

    Science.gov (United States)

    Coste, Alexis; Couty, François; Evano, Gwilherm

    2009-10-01

    An efficient procedure for the preparation of ketene N,N-acetals by copper-catalyzed double amidation of 1,1-dibromo-1-alkenes is reported. The reaction was found to be general, and ketene aminals could be obtained in good yields when potassium phosphate in toluene was used at 80 degrees C. The reaction was found to proceed through a regioselective monocoupling reaction followed by dehydrobromination and hydroamidation.

  15. Solvent effect on copper-catalyzed azide-alkyne cycloaddition (CuAAC): synthesis of novel triazolyl substituted quinolines as potential anticancer agents.

    Science.gov (United States)

    Ellanki, Amarender Reddy; Islam, Aminul; Rama, Veera Swamy; Pulipati, Ranga Prasad; Rambabu, D; Krishna, G Rama; Reddy, C Malla; Mukkanti, K; Vanaja, G R; Kalle, Arunasree M; Kumar, K Shiva; Pal, Manojit

    2012-05-15

    A regioselective route to novel mono triazolyl substituted quinolines has been developed via copper-catalyzed azide-alkyne cycloaddition (CuAAC) of 2,4-diazidoquinoline with terminal alkynes in DMF. The reaction provided bis triazolyl substituted quinolines when performed in water in the presence of Et(3)N. A number of the compounds synthesized showed promising anti-proliferative properties when tested in vitro especially against breast cancer cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries

    International Nuclear Information System (INIS)

    Zeng, Guisheng; Deng, Xiaorong; Luo, Shenglian; Luo, Xubiao; Zou, Jianping

    2012-01-01

    Highlights: ► Catalytic ion was first applied to the bioleaching process of spent lithium-ion batteries. ► The bioleaching efficiency was great improved from 43.1% to 99.9% in the presence of copper ion. ► A new reaction model was proposed to explain the catalytic mechanism. - Abstract: A copper-catalyzed bioleaching process was developed to recycle cobalt from spent lithium-ion batteries (mainly LiCoO 2 ) in this paper. The influence of copper ions on bioleaching of LiCoO 2 by Acidithiobacillus ferrooxidans (A.f) was investigated. It was shown that almost all cobalt (99.9%) went into solution after being bioleached for 6 days in the presence of 0.75 g/L copper ions, while only 43.1% of cobalt dissolution was obtained after 10 days without copper ions. EDX, XRD and SEM analyses additionally confirmed that the cobalt dissolution from spent lithium-ion batteries could be improved in the presence of copper ions. The catalytic mechanism was investigated to explain the enhancement of cobalt dissolution by copper ions, in which LiCoO 2 underwent a cationic interchange reaction with copper ions to form CuCo 2 O 4 on the surface of the sample, which could be easily dissolved by Fe 3+ .

  17. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guisheng, E-mail: zengguisheng@hotmail.com [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); Deng, Xiaorong [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Shenglian, E-mail: sllou@hnu.edu.cn [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Luo, Xubiao; Zou, Jianping [Key Laboratory of Jiangxi Province for Ecological Diagnosis-Remediation and Pollution Control, Nanchang Hangkong University, Nanchang 330063 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Catalytic ion was first applied to the bioleaching process of spent lithium-ion batteries. Black-Right-Pointing-Pointer The bioleaching efficiency was great improved from 43.1% to 99.9% in the presence of copper ion. Black-Right-Pointing-Pointer A new reaction model was proposed to explain the catalytic mechanism. - Abstract: A copper-catalyzed bioleaching process was developed to recycle cobalt from spent lithium-ion batteries (mainly LiCoO{sub 2}) in this paper. The influence of copper ions on bioleaching of LiCoO{sub 2} by Acidithiobacillus ferrooxidans (A.f) was investigated. It was shown that almost all cobalt (99.9%) went into solution after being bioleached for 6 days in the presence of 0.75 g/L copper ions, while only 43.1% of cobalt dissolution was obtained after 10 days without copper ions. EDX, XRD and SEM analyses additionally confirmed that the cobalt dissolution from spent lithium-ion batteries could be improved in the presence of copper ions. The catalytic mechanism was investigated to explain the enhancement of cobalt dissolution by copper ions, in which LiCoO{sub 2} underwent a cationic interchange reaction with copper ions to form CuCo{sub 2}O{sub 4} on the surface of the sample, which could be easily dissolved by Fe{sup 3+}.

  18. Nanocatalysts for Suzuki cross-coupling reactions

    KAUST Repository

    Fihri, Aziz

    2011-01-01

    This critical review deals with the applications of nanocatalysts in Suzuki coupling reactions, a field that has attracted immense interest in the chemical, materials and industrial communities. We intend to present a broad overview of nanocatalysts for Suzuki coupling reactions with an emphasis on their performance, stability and reusability. We begin the review with a discussion on the importance of Suzuki cross-coupling reactions, and we then discuss fundamental aspects of nanocatalysis, such as the effects of catalyst size and shape. Next, we turn to the core focus of this review: the synthesis, advantages and disadvantages of nanocatalysts for Suzuki coupling reactions. We begin with various nanocatalysts that are based on conventional supports, such as high surface silica, carbon nanotubes, polymers, metal oxides and double hydroxides. Thereafter, we reviewed nanocatalysts based on non-conventional supports, such as dendrimers, cyclodextrin and magnetic nanomaterials. Finally, we discuss nanocatalyst systems that are based on non-conventional media, i.e., fluorous media and ionic liquids, for use in Suzuki reactions. At the end of this review, we summarise the significance of nanocatalysts, their impacts on conventional catalysis and perspectives for further developments of Suzuki cross-coupling reactions (131 references). © 2011 The Royal Society of Chemistry.

  19. In situ generation of nitrilium from nitrile ylide and the subsequent Mumm rearrangement: copper-catalyzed synthesis of unsymmetrical diacylglycine esters.

    Science.gov (United States)

    Chen, Jijun; Shao, Ying; Ma, Liang; Ma, Meihua; Wan, Xiaobing

    2016-12-07

    A novel in situ generation of nitrilium from a nitrile ylide and the subsequent Mumm rearrangement of carboxylic acid, nitrile, and diazo compounds gave various unsymmetrical diacylglycine esters in moderate to high yields. This copper-catalyzed cascade reaction enables one-pot generation of two C-N bonds, one C[double bond, length as m-dash]O bond, and one C-H bond, with nitrogen as the only byproduct. The reaction has a broad functional-group tolerance, is rapid, easily scales up to the 100 mmol scale, and is insensitive to air and moisture.

  20. Copper-catalyzed difunctionalization of activated alkynes by radical oxidation-tandem cyclization/dearomatization to synthesize 3-trifluoromethyl spiro[4.5]trienones.

    Science.gov (United States)

    Hua, Hui-Liang; He, Yu-Tao; Qiu, Yi-Feng; Li, Ying-Xiu; Song, Bo; Gao, Pin; Song, Xian-Rong; Guo, Dong-Hui; Liu, Xue-Yuan; Liang, Yong-Min

    2015-01-19

    A copper-catalyzed difunctionalizing trifluoromethylation of activated alkynes with the cheap reagent sodium trifluoromethanesulfinate (NaSO2CF3 or Langlois' reagent) has been developed incorporating a tandem cyclization/dearomatization process. This strategy affords a straightforward route to synthesis of 3-(trifluoromethyl)-spiro[4.5]trienones, and presents an example of difunctionalization of alkynes for simultaneous formation of two carbon-carbon single bonds and one carbon-oxygen double bond. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nonafluorobutanesulfonyl azide as a shelf-stable highly reactive oxidant for the copper-catalyzed synthesis of 1,3-diynes from terminal alkynes.

    Science.gov (United States)

    Suárez, José Ramón; Collado-Sanz, Daniel; Cárdenas, Diego J; Chiara, Jose Luis

    2015-01-16

    Nonafluorobutanesulfonyl azide is a highly efficient reagent for the copper-catalyzed coupling of terminal alkynes to give symmetrical and unsymmetrical 1,3-diynes in good to excellent yields and with good functional group compatibility. The reaction is extremely fast (<10 min), even at low temperature (−78 °C), and requires substoichiometric amounts of a simple copper(I) or copper(II) salt (2–5 mol %) and an organic base (0.6 mol %). A possible mechanistic pathway is briefly discussed on the basis of model DFT theoretical calculations. The quantitative assessment of the safety of use and shelf stability of nonafluorobutanesulfonyl azide has confirmed that this reagent is a superior and safe alternative to other electrophilic azide reagents in use today.

  2. On modal cross-coupling in the asymptotic modal limit

    Science.gov (United States)

    Culver, Dean; Dowell, Earl

    2018-03-01

    The conditions under which significant modal cross-coupling occurs in dynamical systems responding to high-frequency, broadband forcing that excites many modes is studied. The modal overlap factor plays a key role in the analysis of these systems as the modal density (the ratio of number of modes to the frequency bandwidth) becomes large. The modal overlap factor is effectively the ratio of the width of a resonant peak (the damping ratio times the resonant frequency) to the average frequency interval between resonant peaks (or rather, the inverse of the modal density). It is shown that this parameter largely determines whether substantial modal cross-coupling occurs in a given system's response. Here, two prototypical systems are considered. The first is a simple rectangular plate whose significant modal cross-coupling is the exception rather than the norm. The second is a pair of rectangular plates attached at a point where significant modal cross-coupling is more likely to occur. We show that, for certain cases of modal density and damping, non-negligible cross coupling occurs in both systems. Under similar circumstances, the constraint force between the two plates in the latter system becomes broadband. The implications of this for using Asymptotic Modal Analysis (AMA) in multi-component systems are discussed.

  3. Direct catalytic cross-coupling of organolithium compounds

    NARCIS (Netherlands)

    Giannerini, Massimo; Fananas Mastral, Martin; Feringa, Ben L.

    Catalytic carbon-carbon bond formation based on cross-coupling reactions plays a central role in the production of natural products, pharmaceuticals, agrochemicals and organic materials. Coupling reactions of a variety of organometallic reagents and organic halides have changed the face of modern

  4. Nonlinear analysis of a cross-coupled quadrature harmonic oscillator

    DEFF Research Database (Denmark)

    Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens

    2005-01-01

    The dynamic equations governing the cross-coupled quadrature harmonic oscillator are derived assuming quasi-sinusoidal operation. This allows for an investigation of the previously reported tradeoff between close-to-carrier phase noise and quadrature precision. The results explain how nonlinearity...

  5. Solvent-free copper-catalyzed click chemistry for the synthesis of N-heterocyclic hybrids based on quinoline and 1,2,3-triazole

    Directory of Open Access Journals (Sweden)

    Martina Tireli

    2017-11-01

    Full Text Available Copper-catalyzed mechanochemical click reactions using Cu(II, Cu(I and Cu(0 catalysts have been successfully implemented to provide novel 6-phenyl-2-(trifluoromethylquinolines with a phenyl-1,2,3-triazole moiety at O-4 of the quinoline core. Milling procedures proved to be significantly more efficient than the corresponding solution reactions, with up to a 15-fold gain in yield. Efficiency of both solution and milling procedures depended on the p-substituent in the azide reactant, resulting in H < Cl < Br < I reactivity bias. Solid-state catalysis using Cu(II and Cu(I catalysts entailed the direct involvement of the copper species in the reaction and generation of highly luminescent compounds which hindered in situ monitoring by Raman spectroscopy. However, in situ monitoring of the milling processes was enabled by using Cu(0 catalysts in the form of brass milling media which offered a direct insight into the reaction pathway of mechanochemical CuAAC reactions, indicating that the catalysis is most likely conducted on the surface of milling balls. Electron spin resonance spectroscopy was used to determine the oxidation and spin states of the respective copper catalysts in bulk products obtained by milling procedures.

  6. Microstrip Cross-coupled Interdigital SIR Based Bandpass Filter

    Directory of Open Access Journals (Sweden)

    R. K. Maharjan

    2012-09-01

    Full Text Available A simple and compact 4.9 GHz bandpass filter for C-band applications is proposed. This paper presents a novel microstrip cross-coupled interdigital half-wavelength stepped impedance resonator (SIR based bandpass filter (BPF.The designed structure is similar to that of a combination of two parallel interdigital capacitors. The scattering parameters of the structure are measured using vector network analyzer (VNA. The self generated capacitive and inductive reactances within the interdigital resonators exhibited in a resonance frequency of 4.9 GHz. The resonant frequency and bandwidth of the capacitive cross-coupled resonator is directly optimized from the physical arrangement of the resonators. The measured insertion loss (S21 and return loss (S11 were 0.3 dB and 28 dB, respectively, at resonance frequency which were almost close to the simulation results.

  7. The role of flavon cross couplings in leptonic flavour mixing

    Energy Technology Data Exchange (ETDEWEB)

    Pascoli, Silvia [Institute for Particle Physics Phenomenology, Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom); Zhou, Ye-Ling [Institute for Particle Physics Phenomenology, Department of Physics, Durham University,South Road, Durham DH1 3LE (United Kingdom); Center for High Energy Physics, Peking University,No. 5 Yiheyuan Road, Beijing 100080 (China)

    2016-06-13

    In models with discrete flavour symmetries, flavons are critical to realise specific flavour structures. Leptonic flavour mixing originates from the misalignment of flavon vacuum expectation values which respect different residual symmetries in the charged lepton and neutrino sectors. Flavon cross couplings are usually forbidden, in order to protect these symmetries. Contrary to this approach, we show that cross couplings can play a key role and give raise to necessary corrections to flavour-mixing patterns, including a non-zero value for the reactor angle and CP violation. For definiteness, we present two models based on A{sub 4}. In the first model, all flavons are assumed to be real or pseudo-real, with 7 real degrees of freedom in the flavon sector in total. A sizable reactor angle associated with nearly maximal CP violation is achieved, and, as both originate from the same cross coupling, a sum rule results with a precise prediction for the value of the Dirac CP-violating phase. In the second model, the flavons are taken to be complex scalars, which can be connected with supersymmetric models and multi-Higgs models. The complexity properties of flavons provide new sources for generating the reactor angle. Models in this new approach introduce very few degrees of freedom beyond the Standard Model and can be more economical than those in the framework of extra dimension or supersymmetry.

  8. Studies on the decarboxylation of acetolactate in milk products

    OpenAIRE

    Mohr, Britta

    1997-01-01

    The effect of different parameters on the decarboxylation of acetolactate (ALA) to diacetyl and acetoin were studied. The distillation volume and the milk solids concentration had no significant effect on decarboxylation of ALA, whereas breakdown of ALA increased with decreasing pH and increasing temperature. Oxygenation increased diacetyl production from ALA, but diacetyl was lost from the model system. Oxygenation did not have an effect on acetoin production from ALA. Metal ions (Cu2+, Fe2+...

  9. Non-enzymic beta-decarboxylation of aspartic acid.

    Science.gov (United States)

    Doctor, V. M.; Oro, J.

    1972-01-01

    Study of the mechanism of nonenzymic beta-decarboxylation of aspartic acid in the presence of metal ions and pyridoxal. The results suggest that aspartic acid is first converted to oxalacetic acid by transamination with pyridoxal which in turn is converted to pyridoxamine. This is followed by decarboxylation of oxalacetic acid to form pyruvic acid which transaminates with pyridoxamine to form alanine. The possible significance of these results to prebiotic molecular evolution is briefly discussed.

  10. Fully recoverable rigid shape memory foam based on copper-catalyzed azide-alkyne cycloaddition (CuAAC) using a salt leaching technique.

    Science.gov (United States)

    Alzahrani, Abeer A; Saed, Mohand; Yakacki, Christopher M; Song, Han Byul; Sowan, Nancy; Walston, Joshua J; Shah, Parag K; McBride, Matthew K; Stansbury, Jeffrey W; Bowman, Christopher N

    2018-01-07

    This study is the first to employ the use of the copper-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization to form a tough and stiff, porous material from a well-defined network possessing a high glass transition temperature. The effect of the network linkages formed as a product of the CuAAC reaction, i.e., the triazoles, on the mechanical behavior at high strain was evaluated by comparing the CuAAC foam to an epoxy-amine-based foam, which consisted of monomers with similar backbone structures and mechanical properties (i.e., T g of 115 °C and a rubbery modulus of 1.0 MPa for the CuAAC foam, T g of 125 °C and a rubbery modulus of 1.2 MPa for the epoxy-amine foam). When each foam was compressed uniformly to 80% strain at ambient temperature, the epoxy-amine foam was severely damaged after only reaching 70% strain in the first compression cycle with a toughness of 300 MJ/m 3 . In contrast, the CuAAC foam exhibited pronounced ductile behavior in the glassy state with three times higher toughness of 850 MJ/m 3 after the first cycle of compression to 80% strain. Additionally, when the CuAAC foam was heated above T g after each of five compression cycles to 80% strain at ambient temperature, the foam completely recovered its original shape while exhibiting a gradual decrease in mechanical performance over the multiple compression cycles. The foam demonstrated almost complete shape fixity and recovery ratios even through five successive cycles, indicative of "reversible plasticity", making it highly desirable as a glassy shape memory foams.

  11. Synthesis of 4-substituted tetrahydropyridines by cross-coupling of enol phosphates

    DEFF Research Database (Denmark)

    Larsen, U.S.; Martiny, L.; Begtrup, M.

    2005-01-01

    Enol phosphates, synthesized from 4-piperidone, react by palladium catalyzed cross-coupling with arylboronic acids and by iron and palladium catalyzed cross-coupling with Grignard reagents to give 4-substituted tetrahydropyridines. (c) 2005 Elsevier Ltd. All rights reserved....

  12. Cross-Coupled Control for All-Terrain Rovers

    Directory of Open Access Journals (Sweden)

    Giulio Reina

    2013-01-01

    Full Text Available Mobile robots are increasingly being used in challenging outdoor environments for applications that include construction, mining, agriculture, military and planetary exploration. In order to accomplish the planned task, it is critical that the motion control system ensure accuracy and robustness. The achievement of high performance on rough terrain is tightly connected with the minimization of vehicle-terrain dynamics effects such as slipping and skidding. This paper presents a cross-coupled controller for a 4-wheel-drive/4-wheel-steer robot, which optimizes the wheel motors’ control algorithm to reduce synchronization errors that would otherwise result in wheel slip with conventional controllers. Experimental results, obtained with an all-terrain rover operating on agricultural terrain, are presented to validate the system. It is shown that the proposed approach is effective in reducing slippage and vehicle posture errors.

  13. Synthesis and characterization of cyclic polystyrene using copper-catalyzed alkyne-azide cycloaddition coupling - evaluation of physical properties and optimization of cyclization conditions

    Science.gov (United States)

    Elupula, Ravinder

    Polymers with a cyclic topology exhibit a range of unique and potentially useful physical properties, including reduced rates of degradation and increased rates of diffusion in bulk relative to linear analogs. However the synthesis of high purity cyclic polymers, and verification of their structural purity remains challenging. The copper-catalyzed azide-alkyne "click" cyclization route toward cyclic polymers has been used widely, due to its synthetic ease and its compatibility with diverse polymer backbones. Yet unoptimized click cyclization conditions have been observed to generate oligomeric byproducts. In order to optimize these cyclization conditions, and to better understand the structure of the higher molecular weight oligomers, these impurities have been isolated by size exclusion chromatography (SEC) and characterized by mass spectrometry (MS). Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass Spectrometry (MALDI-ToF) MS is a particularly valuable characterization tool and was used to determine that the high molecular weight impurities are predominantly cyclic oligomers. It should also be noted that the rapid analysis and small analyte requirements of this MS technique make it particularly attractive as a general tool for elucidating polymer architecture. Ability to tailor the physical properties of polymers by changing the architecture alone has garnered a lot of attention over the past few decades. Compared to their linear analogues, these novel polymer architectures behave completely different in nanoscale regime. Cyclic polymers are especially intriguing since we can compare the differences in the physical properties with that of the linear chains. One of the major physical property changes are T g-confinement effect. Using ATRP and "click chemistry" we have produced highly pure cyclic PS (c-PS) with number-average molecular weight (MW) of 3.4 kg/mol and 9.1 kg/mol. Bulk glass transition temperatures for c-PS were weakly depended on MWs

  14. Oxidative Decarboxylation of Levulinic Acid by Cupric Oxides

    Directory of Open Access Journals (Sweden)

    Lu Lin

    2010-11-01

    Full Text Available In this paper, cupric oxides was found to effectively oxidize levulinic acid (LA and lead to the decarboxylation of levulinic acid to 2-butanone. The effects of cupric oxide dosage, reaction time and initial pH value were investigated in batch experiments and a plausible mechanism was proposed. The results showed that LA decarboxylation over cupric oxides at around 300 °C under acidic conditions produced the highest yield of butanone (67.5%. In order to elucidate the catalytic activity of cupric oxides, XRD, AFM, XPS and H2-TPR techniques was applied to examine their molecular surfaces and their effects on the reaction process.

  15. Decarboxylation-based traceless linking with aroyl acrylic acids

    DEFF Research Database (Denmark)

    Nielsen, John

    1998-01-01

    beta-Keto carboxylic acids are known to decarboxylate readily. In our pursuit to synthesize beta-indolinyl propiophenones, we have exploited this chemistry as a mean of establishing a traceless handle. 2-Aroyl acrylic acids have been esterified to a trityl resin, after which Michael-type addition...

  16. Thermally decarboxylated sodium bicarbonate: Interactions with water vapour, calorimetric study

    Directory of Open Access Journals (Sweden)

    Natalia Volkova

    2013-06-01

    Full Text Available Isothermal titration calorimetry (ITC was used to study interactions between water vapour and the surface of thermally converted sodium bicarbonate (NaHCO3. The decarboxylation degree of the samples was varied from 3% to 35% and the humidity range was 54–100%. The obtained enthalpy values were all exothermic and showed a positive linear correlation with decarboxylation degrees for each humidity studied. The critical humidity, 75% (RHo, was determined as the inflection point on a plot of the mean−ΔHkJ/mole Na2CO3 against RH. Humidities above the critical humidity lead to complete surface dissolution. The water uptake (m was determined after each calorimetric experiment, complementing the enthalpy data. A mechanism of water vapour interaction with decarboxylated samples, including the formation of trona and Wegscheider’s salt on the bicarbonate surface is proposed for humidities below RHo. Keywords: Isothermal titration calorimetry, Sodium bicarbonate, Sodium carbonate, Trona salt, Wegscheider’s salt, Enthalpy, Relative humidity, Pyrolytic decarboxylation

  17. Oxygen Activated, Palladium Nanoparticle Catalyzed, Ultrafast Cross-Coupling of Organolithium Reagents

    NARCIS (Netherlands)

    Heijnen, Dorus; Tosi, Filippo; Vila, Carlos; Stuart, Marc C. A.; Elsinga, Philip H.; Szymanski, Wiktor; Feringa, Ben L.

    2017-01-01

    The discovery of an ultrafast cross-coupling of alkyland aryllithium reagents with a range of aryl bromides is presented. The essential role of molecular oxygen to form the active palladium catalyst was established; palladium nanoparticles that are highly active in cross-coupling reactions with

  18. FACTORS AFFECTED DECARBOXYLATION ACTIVITY OF ENTEROCOCCUS FAECIUM ISOLATED FROM RABBIT

    Directory of Open Access Journals (Sweden)

    František Buňka

    2012-04-01

    Full Text Available Normal 0 21 false false false SK JA X-NONE Biogenic amines (BA are basic nitrogenous compounds formed mainly by decarboxylation of amino acids. There are generated in course of microbial, vegetable and animal metabolisms. The aim of the study was to monitor factors affected production of biogenic amines by Enterococcus faecium, which is found in rabbit meat. Biogenic amines were analyzed by means of UPLC (ultrahigh performance liquid chromatography equipped with a UV/VIS DAD detector. Decarboxylation activity of E. faecium was mainly influenced by the cultivation temperature and the amount of NaCl in this study. E. faecium produced most of the monitored biogenic amines levels: tyramine ˂2500 mg.l-1; putrescine ˂30 mg.l-1; spermidine ˂10 mg.l-1 and cadaverine ˂5 mg.l-1.doi:10.5219/182

  19. Oxidative Decarboxylation of Levulinic Acid by Silver(I/Persulfate

    Directory of Open Access Journals (Sweden)

    Yan Gong

    2011-03-01

    Full Text Available The oxidative decarboxylation of levulinic acid (LA by silver(I/persulfate [Ag(I/S2O82−] has been investigated in this paper. The effects of buffer solution, initial pH value, time and temperature and dosages of Ag(I/S2O82− on the decarboxylation of LA were examined in batch experiments and a reaction scheme was proposed on basis of the reaction process. The experimental results showed that a solution of NaOH-KH2PO4 was comparatively suitable for the LA decarboxylation reaction by silver(I/persulfate. Under optimum conditions (temperature 160 °C, pH 5.0, and time 0.5 h, the rate of LA conversion in NaOH-KH2PO4 solutions with an initial concentration of 0.01 mol LA reached 70.2%, 2-butanone (methyl ethyl ketone was the single product in the gas phase and the resulted molar yield reached 44.2%.

  20. Carbon-13 isotope fractionation in the decarboxylation of phenylpropiolic (PPA) below and above its melting point and in the decarboxylation of PPA in phenylacetylene medium

    International Nuclear Information System (INIS)

    Zielinski, M.; Zielinska, A.; Papiernik-Zielinska, H.

    2000-01-01

    C-13 isotope fractionation in the decarboxylation of pure phenylpropiolic acid (PPA) below and above its melting point and the decarboxylation of PPA in phenylacetylene solutions has been investigated in sealed under vacuum reaction vessels. The reactive PPA undergoing decarboxylation polymerizes with the liquid product, phenylacetylene in reaction cage producing a condensation compound, which does not decarboxylate measurably in the 120-190 o C. Especially low final carbon dioxide yields (about 11%) have been obtained in the decarboxylation of PPA in phenylacetylene solution at 132 o C and below this temperature. The carbon dioxide is depleted in carbon-13. The ratio of the carbon isotope ratios of carboxylic carbon of PPA before decarboxylation, R( 13 C/ 12 C so ), and of the first portions of carbon dioxide obtained at partial decarboxylation R( 13 C/ 12 C) pf , located in the range 1.007-1.010, indicates that the pure kinetic fractionation of 13 C in the elementary decarboxylation step is negligible and the C-13 fractionation in the condensed phase dimer/monomer equilibria contributes mainly to the resultant experimental carbon isotope fractionation. A preliminary discussion of the experimental isotope findings is presented. (author)

  1. Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums

    KAUST Repository

    Li, Wenjun; Ajitha, Manjaly John; Lang, Ming; Huang, Kuo-Wei; Wang, Jian

    2017-01-01

    An example for the catalytic synthesis of densely functionalized 1,2,3-triazoles through a LUMO activation mode has been developed. The protocol is enabled by intermolecular cross coupling reactions of azides with in situ-generated alpha

  2. Suzuki-Miyaura cross-coupling reactions in aqueous media: Green and sustainable syntheses of biaryls

    KAUST Repository

    Polshettiwar, Vivek; Decottignies, Audrey; Len, Christophe; Fihri, Aziz

    2010-01-01

    Carbon-carbon cross-coupling reactions are among the most important processes in organic chemistry, and Suzuki-Miyaura reactions are among the most widely used protocols for the formation of carbon-carbon bonds. These reactions are generally

  3. Decarboxylation of Δ 9-tetrahydrocannabinol: Kinetics and molecular modeling

    Science.gov (United States)

    Perrotin-Brunel, Helene; Buijs, Wim; van Spronsen, Jaap; van Roosmalen, Maaike J. E.; Peters, Cor J.; Verpoorte, Rob; Witkamp, Geert-Jan

    2011-02-01

    Efficient tetrahydrocannabinol (Δ 9-THC) production from cannabis is important for its medical application and as basis for the development of production routes of other drugs from plants. This work presents one of the steps of Δ 9-THC production from cannabis plant material, the decarboxylation reaction, transforming the Δ 9-THC-acid naturally present in the plant into the psychoactive Δ 9-THC. Results of experiments showed pseudo-first order reaction kinetics, with an activation barrier of 85 kJ mol -1 and a pre-exponential factor of 3.7 × 10 8 s -1. Using molecular modeling, two options were identified for an acid catalyzed β-keto acid type mechanism for the decarboxylation of Δ 9-THC-acid. Each of these mechanisms might play a role, depending on the actual process conditions. Formic acid proved to be a good model for a catalyst of such a reaction. Also, the computational idea of catalysis by water to catalysis by an acid, put forward by Li and Brill, and Churchev and Belbruno was extended, and a new direct keto-enol route was found. A direct keto-enol mechanism catalyzed by formic acid seems to be the best explanation for the observed activation barrier and the pre-exponential factor of the decarboxylation of Δ 9-THC-acid. Evidence for this was found by performing an extraction experiment with Cannabis Flos. It revealed the presence of short chain carboxylic acids supporting this hypothesis. The presented approach is important for the development of a sustainable production of Δ 9-THC from the plant.

  4. Reducing mechanical cross-coupling in phased array transducers using stop band material as backing

    Science.gov (United States)

    Henneberg, J.; Gerlach, A.; Storck, H.; Cebulla, H.; Marburg, S.

    2018-06-01

    Phased array transducers are widely used for acoustic imaging and surround sensing applications. A major design challenge is the achievement of low mechanical cross-coupling between the single transducer elements. Cross-coupling induces a loss of imaging resolution. In this work, the mechanical cross-coupling between acoustic transducers is investigated for a generic model. The model contains a common backing with two bending elements bonded on top. The dimensions of the backing are small; thus, wave reflections on the backing edges have to be considered. This is different to other researches. The operating frequency in the generic model is set to a low kHz range. Low operating frequencies are typical for surround sensing applications. The influence of the backing on cross-coupling is investigated numerically. In order to reduce mechanical cross-coupling a stop band material is designed. It is shown numerically that a reduction in mechanical cross-coupling can be achieved by using stop band material as backing. The effect is validated with experimental testing.

  5. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.

    2010-10-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  6. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.; Streuff, Jan; Mukherjee, Herschel; Virgil, Scott C.; Stoltz, Brian M.

    2010-01-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  7. High Selectivity of Alkanes Production by Calcium Basic Soap Thermal Decarboxylation

    Directory of Open Access Journals (Sweden)

    Neonufa Godlief F.

    2018-01-01

    Full Text Available Renewable fuel production from vegetable oil and fat or its fatty acids by direct decarboxylation has been widely reported. An innovative approach to produce drop-in fuel via thermal catalytic decarboxylation of basic soap derived from palm stearin reported in this research. The catalytic effect of the calcium and magnesium metals in the basic soap and its decarboxylation on drop-in fuel yield and product distribution was studied. The catalytic effect was tested in the temperature range up to 370°C and atmospheric pressure for 5 hours in a batch reactor. It has been proved that the calcium basic soap decarboxylation, effectively produce the drop-in fuel in carbon ranges C8 – C20, in which more than 78% selectivity toward alkane. Whereas, only 70% selectivity toward alkane has been resulted from the magnesium basic soap decarboxylation.

  8. Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling in Continuous Flow

    Directory of Open Access Journals (Sweden)

    Christophe Len

    2017-05-01

    Full Text Available Carbon–carbon cross-coupling reactions are among the most important processes in organic chemistry and Suzuki–Miyaura reactions are the most widely used protocols. For a decade, green chemistry and particularly catalysis and continuous flow, have shown immense potential in achieving the goals of “greener synthesis”. To date, it seems difficult to conceive the chemistry of the 21st century without the industrialization of continuous flow process in the area of pharmaceuticals, drugs, agrochemicals, polymers, etc. A large variety of palladium Suzuki–Miyaura cross-coupling reactions have been developed using a continuous flow sequence for preparing the desired biaryl derivatives. Our objective is to focus this review on the continuous flow Suzuki–Miyaura cross-coupling using homogeneous and heterogeneous catalysts.

  9. Cross-Coupled Eye Movement Supports Neural Origin of Pattern Strabismus

    Science.gov (United States)

    Ghasia, Fatema F.; Shaikh, Aasef G.; Jacobs, Jonathan; Walker, Mark F.

    2015-01-01

    Purpose. Pattern strabismus describes vertically incomitant horizontal strabismus. Conventional theories emphasized the role of orbital etiologies, such as abnormal fundus torsion and misaligned orbital pulleys as a cause of the pattern strabismus. Experiments in animal models, however, suggested the role of abnormal cross-connections between the neural circuits. We quantitatively assessed eye movements in patients with pattern strabismus with a goal to delineate the role of neural circuits versus orbital etiologies. Methods. We measured saccadic eye movements with high-precision video-oculography in 14 subjects with pattern strabismus, 5 with comitant strabismus, and 15 healthy controls. We assessed change in eye position in the direction orthogonal to that of the desired eye movement (cross-coupled responses). We used fundus photography to quantify the fundus torsion. Results. We found cross-coupling of saccades in all patients with pattern strabismus. The cross-coupled responses were in the same direction in both eyes, but larger in the nonviewing eye. All patients had clinically apparent inferior oblique overaction with abnormal excylotorsion. There was no correlation between the amount of the fundus torsion or the grade of oblique overaction and the severity of cross-coupling. The disconjugacy in the saccade direction and amplitude in pattern strabismics did not have characteristics predicted by clinically apparent inferior oblique overaction. Conclusions. Our results validated primate models of pattern strabismus in human patients. We found no correlation between ocular torsion or oblique overaction and cross-coupling. Therefore, we could not ascribe cross-coupling exclusively to the orbital etiology. Patients with pattern strabismus could have abnormalities in the saccade generators. PMID:26024072

  10. Quantum Chemical Modeling of Enzymatic Reactions: The Case of Decarboxylation.

    Science.gov (United States)

    Liao, Rong-Zhen; Yu, Jian-Guo; Himo, Fahmi

    2011-05-10

    We present a systematic study of the decarboxylation step of the enzyme aspartate decarboxylase with the purpose of assessing the quantum chemical cluster approach for modeling this important class of decarboxylase enzymes. Active site models ranging in size from 27 to 220 atoms are designed, and the barrier and reaction energy of this step are evaluated. To model the enzyme surrounding, homogeneous polarizable medium techniques are used with several dielectric constants. The main conclusion is that when the active site model reaches a certain size, the solvation effects from the surroundings saturate. Similar results have previously been obtained from systematic studies of other classes of enzymes, suggesting that they are of a quite general nature.

  11. Manganese-Catalyzed Cross-Coupling of Aryl Halides and Grignard Reagents by a Radical Mechanism

    DEFF Research Database (Denmark)

    Antonacci, Giuseppe; Ahlburg, Andreas; Fristrup, Peter

    2017-01-01

    The substrate scope and the mechanism have been investigated for the MnCl2-catalyzed cross-coupling reaction between aryl halides and Grignard reagents. The transformation proceeds rapidly and in good yield when the aryl halide component is an aryl chloride containing a cyano or an ester group....... Two radical-clock experiments were carried out, and in both cases an intermediate aryl radical was successfully trapped. The cross-coupling reaction is therefore believed to proceed by an SRN1 mechanism, with a triorganomanganate complex serving as the most likely nucleophile and single-electron donor...

  12. Aqueous microwaves assisted cross-coupling reactions applied to unprotected nucleosides.

    Directory of Open Access Journals (Sweden)

    CHRISTOPHE eLEN

    2015-02-01

    Full Text Available Nucleoside analogues have attracted much attention due to their potential biological activities. Amongst all synthetic nucleosides, C5-modified pyrimidines and C7- or C8-modified purines have mostly been prepared using palladium cross-coupling reactions and then studied as antitumoral and antiviral agents. Our objective is to focus this review on the Suzuki-Miyaura and on the Heck cross-couplings of nucleosides using microwave irradiations which are an alternative technology compatible with green chemistry and sustainable development.

  13. Ruthenium(ii)-catalyzed olefination via carbonyl reductive cross-coupling.

    Science.gov (United States)

    Wei, Wei; Dai, Xi-Jie; Wang, Haining; Li, Chenchen; Yang, Xiaobo; Li, Chao-Jun

    2017-12-01

    Natural availability of carbonyl groups offers reductive carbonyl coupling tremendous synthetic potential for efficient olefin synthesis, yet the catalytic carbonyl cross-coupling remains largely elusive. We report herein such a reaction, mediated by hydrazine under ruthenium(ii) catalysis. This method enables facile and selective cross-couplings of two unsymmetrical carbonyl compounds in either an intermolecular or intramolecular fashion. Moreover, this chemistry accommodates a variety of substrates, proceeds under mild reaction conditions with good functional group tolerance, and generates stoichiometric benign byproducts. Importantly, the coexistence of KO t Bu and bidentate phosphine dmpe is vital to this transformation.

  14. CROSS-COUPLING BETWEEN ACCOMMODATION AND CONVERGENCE IS OPTIMIZED FOR A BROAD RANGE OF DIRECTIONS AND DISTANCES OF GAZE

    OpenAIRE

    Nguyen, Dorothy; Vedamurthy, Indu; Schor, Clifton

    2008-01-01

    Accommodation and convergence systems are cross-coupled so that stimulation of one system produces responses by both systems. Ideally, the cross-coupled responses of accommodation and convergence match their respective stimuli. When expressed in diopters and meter angles respectively, stimuli for accommodation and convergence are equal in the mid-sagittal plane when viewed with symmetrical convergence, where historically, the gains of the cross coupling (AC/A and CA/C ratios) have been quanti...

  15. Catalytic Intermolecular Cross-Couplings of Azides and LUMO-Activated Unsaturated Acyl Azoliums

    KAUST Repository

    Li, Wenjun

    2017-02-15

    An example for the catalytic synthesis of densely functionalized 1,2,3-triazoles through a LUMO activation mode has been developed. The protocol is enabled by intermolecular cross coupling reactions of azides with in situ-generated alpha,beta-unsaturated acyl azoliums. High yields and broad scope as well as the investigation of reaction mechanism are reported.

  16. Synthesis of Rhodamines from Fluoresceins Using Pd-Catalyzed C–N Cross-Coupling

    Science.gov (United States)

    2011-01-01

    A unified, convenient, and efficient strategy for the preparation of rhodamines and N,N′-diacylated rhodamines has been developed. Fluorescein ditriflates were found to undergo palladium-catalyzed C–N cross-coupling with amines, amides, carbamates, and other nitrogen nucleophiles to provide direct access to known and novel rhodamine derivatives, including fluorescent dyes, quenchers, and latent fluorophores. PMID:22091952

  17. A new paradigm for carbon-carbon bond formation: Aerobic, copper-templated cross-coupling

    Czech Academy of Sciences Publication Activity Database

    Villalobos, J. M.; Šrogl, Jiří; Liebeskind, L. S.

    2007-01-01

    Roč. 129, č. 51 (2007), s. 15734-15735 ISSN 0002-7863 Institutional research plan: CEZ:AV0Z40550506 Keywords : cross-coupling * copper * palladium Subject RIV: CC - Organic Chemistry Impact factor: 7.885, year: 2007

  18. The Manganese-Catalyzed Cross-Coupling Reaction and the Influence of Trace Metals

    DEFF Research Database (Denmark)

    Santilli, Carola; Beigbaghlou, Somayyeh Sarvi; Ahlburg, Andreas

    2017-01-01

    The substrate scope of the MnCl2-catalyzed cross-coupling between aryl halides and Grignard reagents has been extended to several methyl-substituted aryl iodides by performing the reaction at elevated temperature in a microwave oven. A radical clock experiment revealed the presence of an aryl...

  19. A cross-coupled-structure-based temperature sensor with reduced process variation sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Tie Meng; Cheng Xu, E-mail: tiemeng@mprc.pku.edu.c [Microprocessor Research and Development Center, Peking University, Beijing 100871 (China)

    2009-04-15

    An innovative, thermally-insensitive phenomenon of cascaded cross-coupled structures is found. And a novel CMOS temperature sensor based on a cross-coupled structure is proposed. This sensor consists of two different ring oscillators. The first ring oscillator generates pulses that have a period, changing linearly with temperature. Instead of using the system clock like in traditional sensors, the second oscillator utilizes a cascaded cross-coupled structure to generate temperature independent pulses to capture the result from the first oscillator. Due to the compensation between the two ring oscillators, errors caused by supply voltage variations and systematic process variations are reduced. The layout design of the sensor is based on the TSMC13G process standard cell library. Only three inverters are modified for proper channel width tuning without any other custom design. This allows for an easy integration of the sensor into cell-based chips. Post-layout simulations results show that an error lower than +-1.1 deg. C can be achieved in the full temperature range from -40 to 120 deg. C. As shown by SPICE simulations, the thermal insensitivity of the cross-coupled inverters can be realized for various TSMC technologies: 0.25 mum, 0.18 mum, 0.13 mum, and 65 nm.

  20. Higher dimensional models of cross-coupled oscillators and application to design

    KAUST Repository

    Elwakil, Ahmed S.; Salama, Khaled N.

    2010-01-01

    We present four-dimensional and five-dimensional models for classical cross-coupled LC oscillators. Using these models, sinusoidal oscillation condition, frequency and amplitude can be found. Further, undesired behaviors such as relaxation-mode oscillations and latchup can be explained and detected. A simple graphical design procedure is also described. © 2010 World Scientific Publishing Company.

  1. Mechanistic Implications for the Ni(I-Catalyzed Kumada Cross-Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Linda Iffland

    2017-11-01

    Full Text Available Herein we report on the cross-coupling reaction of phenylmagnesium bromide with aryl halides using the well-defined tetrahedral Ni(I complex, [(TriphosNiICl] (Triphos = 1,1,1-tris(diphenylphosphinomethylethane. In the presence of 0.5 mol % [(TriphosNiICl], good to excellent yields (75–97% of the respective coupling products within a reaction time of only 2.5 h at room temperature were achieved. Likewise, the tripodal Ni(IIcomplexes [(κ2-TriphosNiIICl2] and [(κ3-TriphosNiIICl](X (X = ClO4, BF4 were tested as potential pre-catalysts for the Kumada cross-coupling reaction. While the Ni(II complexes also afford the coupling products in comparable yields, mechanistic investigations by UV/Vis and electron paramagnetic resonance (EPR spectroscopy indicate a Ni(I intermediate as the catalytically active species in the Kumada cross-coupling reaction. Based on experimental findings and density functional theory (DFT calculations, a plausible Ni(I-catalyzed reaction mechanism for the Kumada cross-coupling reaction is presented.

  2. Aqueous-phase Suzuki-Miyaura cross-coupling reactions of free halopurine bases

    Czech Academy of Sciences Publication Activity Database

    Čapek, Petr; Vrábel, Milan; Hasník, Zbyněk; Pohl, Radek; Hocek, Michal

    -, č. 20 (2006), s. 3515-3526 ISSN 0039-7881 R&D Projects: GA ČR(CZ) GA203/05/0043 Institutional research plan: CEZ:AV0Z40550506 Keywords : purines * cross-coupling * reactions Subject RIV: CC - Organic Chemistry Impact factor: 2.333, year: 2006

  3. Palladium-Catalyzed Cross-Coupling Reactions of Perfluoro Organic Compounds

    Directory of Open Access Journals (Sweden)

    Masato Ohashi

    2014-09-01

    Full Text Available In this review, we summarize our recent development of palladium(0-catalyzed cross-coupling reactions of perfluoro organic compounds with organometallic reagents. The oxidative addition of a C–F bond of tetrafluoroethylene (TFE to palladium(0 was promoted by the addition of lithium iodide, affording a trifluorovinyl palladium(II iodide. Based on this finding, the first palladium-catalyzed cross-coupling reaction of TFE with diarylzinc was developed in the presence of lithium iodide, affording α,β,β-trifluorostyrene derivatives in excellent yield. This coupling reaction was expanded to the novel Pd(0/PR3-catalyzed cross-coupling reaction of TFE with arylboronates. In this reaction, the trifluorovinyl palladium(II fluoride was a key reaction intermediate that required neither an extraneous base to enhance the reactivity of organoboronates nor a Lewis acid additive to promote the oxidative addition of a C–F bond. In addition, our strategy utilizing the synergetic effect of Pd(0 and lithium iodide could be applied to the C–F bond cleavage of unreactive hexafluorobenzene (C6F6, leading to the first Pd(0-catalyzed cross-coupling reaction of C6F6 with diarylzinc compounds.

  4. Palladium-Catalysed Direct Cross-Coupling of Organolithium Reagents with Aryl and Vinyl Triflates

    NARCIS (Netherlands)

    Vila, Carlos; Hornillos, Valentin; Giannerini, Massimo; Fananas-Mastral, Martin; Feringa, Bernard L.

    2014-01-01

    Carbon-Carbon Bond Formation Carbon-carbon bond formation by the cross-coupling of highly reactive organolithium reagents is a major challenge. Recently, it was demonstrated that palladium catalysts are able to couple organic halides with various organolithium species under mild conditions in a

  5. Ruphus-mediated Suzuki cross-coupling of secondary alkyl trifluoroborates

    NARCIS (Netherlands)

    Hoogenband, van den A.; Lange, J.H.M.; Terpstra, J.W.; Koch, M.; Visser, G.M.; Visser, de M.; Korstanje, T.J.; Jastrzebski, J.T.B.H.

    2008-01-01

    A Ruphos-mediated Suzuki cross-coupling between (hetero)aryl bromides and secondary alkyltrifluoroborates is described using palladium catalysis. The Ruphos ligand showed superior properties as compared to S-Phos in this type of reaction. This method constitutes a valuable extension to current

  6. AM to PM noise conversion in a cross-coupled quadrature harmonic oscillator

    DEFF Research Database (Denmark)

    Djurhuus, Torsten; Krozer, Viktor; Vidkjær, Jens

    2006-01-01

    We derive the dynamic equations governing the cross-coupled quadrature oscillator, perturbed by noise, leading to an expression for the close-in phase noise. The theory shows that a nonlinear coupling transconductance results in AM-PM noise conversion close to the carrier, which increases...

  7. Palladium-catalysed direct cross-coupling of secondary alkyllithium reagents

    NARCIS (Netherlands)

    Vila, Carlos; Giannerini, Massimo; Hornillos, Valentin; Fananas-Mastral, Martin; Feringa, Ben L.

    2014-01-01

    Palladium-catalysed cross-coupling of secondary C(sp(3)) organometallic reagents has been a long-standing challenge in organic synthesis, due to the problems associated with undesired isomerisation or the formation of reduction products. Based on our recently developed catalytic C-C bond formation

  8. Frequency Splitting Elimination and Cross-Coupling Rejection of Wireless Power Transfer to Multiple Dynamic Receivers

    Directory of Open Access Journals (Sweden)

    Narayanamoorthi R.

    2018-01-01

    Full Text Available Simultaneous power transfer to multiple receiver (Rx system is one of the key advantages of wireless power transfer (WPT system using magnetic resonance. However, determining the optimal condition to uniformly transfer the power to a selected Rx at high efficiency is the challenging task under the dynamic environment. The cross-coupling and frequency splitting are the dominant issues present in the multiple Rx dynamic WPT system. The existing analysis is performed by considering any one issue present in the system; on the other hand, the cross coupling and frequency splitting issues are interrelated in dynamic Rx’s, which requires a comprehensive design strategy by considering both the problems. This paper proposes an optimal design of multiple Rx WPT system, which can eliminate cross coupling, frequency splitting issues and increase the power transfer efficiency (PTE of selected Rx. The cross-coupling rejection, uniform power transfer is performed by adding an additional relay coil and independent resonance frequency tuning with capacitive compensation to each Rx unit. The frequency splitting phenomena are eliminated using non-identical transmitter (Tx and Rx coil structure which can maintain the coupling between the coil under the critical coupling limit. The mathematical analysis of the compensation capacitance calculation and optimal Tx coil size identification is performed for the four Rx WPT system. Finite element analysis and experimental investigation are carried out for the proposed design in static and dynamic conditions.

  9. Higher dimensional models of cross-coupled oscillators and application to design

    KAUST Repository

    Elwakil, Ahmed S.

    2010-06-01

    We present four-dimensional and five-dimensional models for classical cross-coupled LC oscillators. Using these models, sinusoidal oscillation condition, frequency and amplitude can be found. Further, undesired behaviors such as relaxation-mode oscillations and latchup can be explained and detected. A simple graphical design procedure is also described. © 2010 World Scientific Publishing Company.

  10. Pd-Catalyzed Cross-Coupling Reactions of Amides and Aryl Mesylates

    Science.gov (United States)

    Dooleweerdt, Karin; Fors, Brett P.; Buchwald, Stephen L.

    2010-01-01

    A catalyst, based on a biarylphosphine ligand, for the Pd-catalyzed cross-coupling reactions of amides and aryl mesylates is described. This system allows an array of aryl and heteroaryl mesylates to be transformed into the corresponding N-arylamides in moderate to excellent yields. PMID:20420379

  11. Synthesis, cross-coupling, and anionic cyclization of ortho-substituted naphthaleneboronic esters

    DEFF Research Database (Denmark)

    Lysén, M.; Madden, M.; Kristensen, Jesper Langgaard

    2006-01-01

    1-Fluoro-, 1-chloro- and 1-cyanonaphthalene were lithiated and then borylated at the 2-position. The 1-substituted naphthaleneboronic esters were cross-coupled with aryl halides to give 2-aryl-1-fluoro-, 2-aryl-1-chloro- and 2-aryl-1-cyanonaphthalenes. The 2-aryl-1-cyano- and 2-aryl-1-fluoronapht...

  12. Introducing Undergraduates to Research Using a Suzuki-Miyaura Cross-Coupling Organic Chemistry Miniproject

    Science.gov (United States)

    Oliveira, Deyvid G. M.; Rosa, Clarissa H.; Vargas, Bruna P.; Rosa, Diego S.; Silveira, Ma´rcia V.; de Moura, Neusa F.; Rosa, Gilber R.

    2015-01-01

    A five-week miniproject is described for an upper-division experimental organic chemistry course. The activities include synthesis of a phenylboronic acid via a Grignard reaction and its use in a Suzuki-Miyaura cross-coupling reaction. Technical skills and concepts normally presented in practical organic chemistry courses are covered, including…

  13. tBuLi-Mediated One-Pot Direct Highly Selective Cross-Coupling of Two Distinct Aryl Bromides

    NARCIS (Netherlands)

    Vila, Carlos; Cembellin, Sara; Hornillos, Valentin; Giannerini, Massimo; Fananas-Mastral, Martin; Feringa, Ben L.

    2015-01-01

    A Pd-catalyzed direct cross-coupling of two distinct aryl bromides mediated by tBuLi is described. The use of [Pd-PEPPSI-IPr] or [Pd-PEPPSI-IPent] as catalyst allows for the efficient one-pot synthesis of unsymmetrical biaryls at room temperature. The key for this selective cross-coupling is the use

  14. Polystyrene-Supported Acyclic Diaminocarbene Palladium Complexes in Sonogashira Cross-Coupling: Stability vs. Catalytic Activity

    Directory of Open Access Journals (Sweden)

    Vladimir N. Mikhaylov

    2018-04-01

    Full Text Available Two types of immobilized on the amino-functionalized polystyrene-supported acyclic diaminocarbene palladium complexes (ADC-PdII are investigated under Sonogashira cross-coupling conditions. Depending on substituents in the diaminocarbene fragment immobilized ADC-PdII, systems are found to have different catalytic activity and stability regarding Pd-leaching. PdII-diaminocarbenes possessing protons at both nitrogen atoms smoothly decompose into Pd0-containing species providing a catalytic “cocktail system” with high activity and ability to reuse within nine runs. Polymer-supported palladium (II complex bearing NBn–Ccarbene–NH-moiety exhibits greater stability while noticeably lower activity under Sonogashira cross-coupling. Four molecular ADC-PdII complexes are also synthesized and investigated with the aim of confirming proposed base-promoted pathway of ADC-PdII conversion through carbodiimide into an active Pd0 forms.

  15. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing

    2010-12-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  16. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions.

    Science.gov (United States)

    Ruiz-Castillo, Paula; Buchwald, Stephen L

    2016-10-12

    Pd-catalyzed cross-coupling reactions that form C-N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C-N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts.

  17. Nonlinear Analysis of Ring Oscillator and Cross-Coupled Oscillator Circuits

    KAUST Repository

    Ge, Xiaoqing; Arcak, Murat; Salama, Khaled N.

    2010-01-01

    Hassan Khalil’s research results and beautifully written textbook on nonlinear systems have influenced generations of researchers, including the authors of this paper. Using nonlinear systems techniques, this paper analyzes ring oscillator and cross-coupled oscillator circuits, which are essential building blocks in digital systems. The paper first investigates local and global stability properties of an n-stage ring oscillator by making use of its cyclic structure. It next studies global stability properties of a class of cross-coupled oscillators which admit the representation of a dynamic system in feedback with a static nonlinearity, and presents su cient conditions for almost global convergence of the solutions to a limit cycle when the feedback gain is in the vicinity of a bifurcation point. The result are also extended to the synchronization of interconnected identical oscillator circuits.

  18. Photoinduced C-C Cross-Coupling of Aryl Chlorides and Inert Arenes

    Directory of Open Access Journals (Sweden)

    Lele Wang

    2016-01-01

    Full Text Available Here we report a facile, efficient, and catalyst-free method to realize C-C cross-coupling of aryl chlorides and inert arenes under UV light irradiation. The aryl radical upon homolytic cleavage of C-Cl bond initiated the nucleophilic substitution reaction with inert arenes to give biaryl products. This mild reaction mode can also be applied to other synthetic reactions, such as the construction of C-N bonds and trifluoromethylated compounds.

  19. Cyclopropenes in Metallacycle-Mediated Cross-Coupling with Alkynes: Convergent Synthesis of Highly Substituted Vinylcyclopropanes.

    Science.gov (United States)

    O'Rourke, Natasha F; Micalizio, Glenn C

    2016-03-18

    Stereodivergent metallacycle-mediated cross-coupling reactions are described for the synthesis of densely functionalized vinylcyclopropanes from the union of alkynes with cyclopropenes. Strategies explored include hydroxyl-directed and nondirected processes, with the latter of these delivering vinylcyclopropanes with exquisite levels of regio- and stereoselectivity. Challenges inherent to these coupling reactions include diastereoselectivity (with respect to the cyclopropene) and regioselectivity (with respect to both coupling partners).

  20. Palladium-Catalyzed Carbenylative Cross-Coupling and Carbenylative Amination Utilizing Vinylcarbenes

    OpenAIRE

    Agee, Christopher

    2017-01-01

    This work focuses on the use of N-tosylhydrazones derived from α,β-unsaturated aldehydes – precursors to vinylcarbene ligands – in palladium-catalyzed carbenylative cross-coupling and carbenylative amination reactions. These carbenylative reactions were used to form η3-allylpalladium intermediates that generate stereogenic centers at the carbene center. An initial acyclic model system was used to intercept a well-known prochiral 1,3-diphenylallyl intermediate to probe the feasibility of enant...

  1. Pd2+ and Cu2+ catalyzed oxidative cross-coupling of mercaptoacetylenes and arylboronic acids

    Czech Academy of Sciences Publication Activity Database

    Henke, Adam; Šrogl, Jiří

    2011-01-01

    Roč. 47, č. 14 (2011), s. 4282-4284 ISSN 1359-7345 R&D Projects: GA ČR GA203/08/1318 Grant - others:AV ČR(CZ) M200550908 Institutional research plan: CEZ:AV0Z40550506 Keywords : mercaptoacetylenes * oxidative cross - coupling * Cu/Pd catalysis Subject RIV: CC - Organic Chemistry Impact factor: 6.169, year: 2011

  2. Rhodium-catalyzed triarylphosphine synthesis via cross-coupling of aryl iodides and acylphosphines

    Directory of Open Access Journals (Sweden)

    Jiefang Yang

    2018-01-01

    Full Text Available Rhodium(I-catalyzed C–P cross-coupling reaction with aryl iodides and acylphosphines was disclosed for a straight forward synthesis of triarylphosphines. The acylphosphines were successfully employed as both the phosphorus source and the ligand to the Rh(I catalyst. The triarylphosphines could be afforded in a yield up to 98% with good toleration of wide functional groups.

  3. Ni-Catalyzed Dehydrogenative Cross-Coupling: Direct Transformation of Aldehydes to Esters and Amides

    Science.gov (United States)

    Whittaker, Aaron M.; Dong, Vy M.

    2015-01-01

    By exploring a new mode of Ni-catalyzed cross-coupling, we have developed a protocol to transform both aromatic and aliphatic aldehydes into either esters or amides directly. The success of this oxidative coupling depends on the appropriate choice of catalyst and organic oxidant, including the use of either α,α,α-trifluoroacetophenone or excess aldehyde. We present mechanistic data that supports a catalytic cycle involving oxidative addition into the aldehyde C–H bond. PMID:25424967

  4. Preferential cross-coupling of naphthol derivatives mediated by copper(II)

    Czech Academy of Sciences Publication Activity Database

    Koščová, Simona; Roithová, J.; Hodačová, J.

    2013-01-01

    Roč. 26, č. 9 (2013), s. 715-723 ISSN 0894-3230 Grant - others:GA ČR(CZ) GAP108/12/1356; GA ČR(CZ) GAP207/11/0338 Institutional support: RVO:61388963 Keywords : BINOL * copper * cross-coupling * DFT calculations * mass spectrometry * reaction mechanisms Subject RIV: CC - Organic Chemistry Impact factor: 1.229, year: 2013

  5. The Suzuki–Miyaura Cross-Coupling as a Versatile Tool for Peptide Diversification and Cyclization

    Directory of Open Access Journals (Sweden)

    Tom Willemse

    2017-02-01

    Full Text Available The (site-selective derivatization of amino acids and peptides represents an attractive field with potential applications in the establishment of structure–activity relationships and labeling of bioactive compounds. In this respect, bioorthogonal cross-coupling reactions provide valuable means for ready access to peptide analogues with diversified structure and function. Due to the complex and chiral nature of peptides, mild reaction conditions are preferred; hence, a suitable cross-coupling reaction is required for the chemical modification of these challenging substrates. The Suzuki reaction, involving organoboron species, is appropriate given the stability and environmentally benign nature of these reactants and their amenability to be applied in (partial aqueous reaction conditions, an expected requirement upon the derivatization of peptides. Concerning the halogenated reaction partner, residues bearing halogen moieties can either be introduced directly as halogenated amino acids during solid-phase peptide synthesis (SPPS or genetically encoded into larger proteins. A reversed approach building in boron in the peptidic backbone is also possible. Furthermore, based on this complementarity, cyclic peptides can be prepared by halogenation, and borylation of two amino acid side chains present within the same peptidic substrate. Here, the Suzuki–Miyaura reaction is a tool to induce the desired cyclization. In this review, we discuss diverse amino acid and peptide-based applications explored by means of this extremely versatile cross-coupling reaction. With the advent of peptide-based drugs, versatile bioorthogonal conversions on these substrates have become highly valuable.

  6. Carbon-13 fractionation observed in thermal decarboxylation of pure phenylpropiolic acid (PPA) dissolved in phenylacetylene

    International Nuclear Information System (INIS)

    Zielinska, A.; Zielinski, M.; Papiernik-Zielinska, H.

    2003-01-01

    The determinations of the 13 C fractionation in the decarboxylation of pure phenylpropiolic acid (PPA) above its melting point has been extended to higher degrees of decomposition of PPA by carrying out two-step decarboxylations to establish the maximum possible yield of carbon dioxide in the temperature interval of 423-475 K (58%). The result was compared with the yields of CO 2 for decarboxylation of PPA in phenylacetylene solvent (PA) (much smaller, temperature dependent, and equal to 11% at 406 K). The ratios of carbon isotope ratios, R so /R pf , all smaller than 1.009 in the temperature interval 405-475 K, have been analyzed formally within the branched decomposition scheme of PPA, providing carbon dioxide and a decarboxylation resistant solid chemical compound enriched in 13 C with respect to CO 2 . A general discussion of the 13 C fractionation in the decarboxylation of pure PPA and PPA dissolved in PA is supplemented by the model calculation of the maximized skeletal 13 C KIEs, in the linear chain propagation of the acetylene polymerization process. Further studies of the 13 C fractionation in condensed phases and in different hydrogen deficient and hydrogen rich media have been suggested. (author)

  7. A convenient catalyst system for microwave accelerated cross-coupling of a range of aryl boronic acids with aryl chlorides

    Directory of Open Access Journals (Sweden)

    Milton Edward J

    2007-05-01

    Full Text Available Abstract A convenient microwave accelerated cross-coupling procedure between aryl chlorides with a range of boronic acids has been developed. An explanation for the low reactivity of highly fluorinated boronic acids in Suzuki coupling is provided.

  8. Predicting transmission of structure-borne sound power from machines by including terminal cross-coupling

    DEFF Research Database (Denmark)

    Ohlrich, Mogens

    2011-01-01

    of translational terminals in a global plane. This paired or bi-coupled power transmission represents the simplest case of cross-coupling. The procedure and quality of the predicted transmission using this improved technique is demonstrated experimentally for an electrical motor unit with an integrated radial fan......Structure-borne sound generated by audible vibration of machines in vehicles, equipment and house-hold appliances is often a major cause of noise. Such vibration of complex machines is mostly determined and quantified by measurements. It has been found that characterization of the vibratory source...

  9. Suzuki-Miyaura cross-coupling reactions in aqueous media: Green and sustainable syntheses of biaryls

    KAUST Repository

    Polshettiwar, Vivek

    2010-02-28

    Carbon-carbon cross-coupling reactions are among the most important processes in organic chemistry, and Suzuki-Miyaura reactions are among the most widely used protocols for the formation of carbon-carbon bonds. These reactions are generally catalyzed by soluble palladium complexes with various ligands. However, the use of toxic organic solvents remains a scientific challenge and an aspect of economical and ecological relevance. This Review will summarize various recently developed significant methods by which the Suzuki-Miyaura coupling was conducted in aqueous media, and analyzes if they are "real green" protocols. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Copper(I) mediated cross-coupling of amino acid derived organozinc reagents with acid chlorides

    DEFF Research Database (Denmark)

    Hjelmgaard, Thomas; Tanner, David Ackland

    2006-01-01

    This paper describes the development of a straightforward experimental protocol for copper-mediated cross-coupling of amino acid derived beta-amido-alkylzinc iodides 1 and 3 with a range of acid chlorides. The present method uses CuCN center dot 2LiCl as the copper source and for organozinc reagent...... 1 the methodology appears to be limited to reaction with more stable acid chlorides, providing the desired products in moderate yields. When applied to organozinc reagent 3, however, the protocol is more general and provides the products in good yields in all but one of the cases tested....

  11. Substrate Integrated Waveguide Cross-Coupling Filter with Multilayer Hexagonal Cavity

    Directory of Open Access Journals (Sweden)

    B. Wu

    2013-01-01

    Full Text Available Hexagonal cavities and their applications to multilayer substrate integrated waveguide (SIW filters are presented. The hexagonal SIW cavity which can combine flexibility of rectangular one and performance of circular one is convenient for bandpass filter’s design. Three types of experimental configuration with the same central frequency of 10 GHz and bandwidth of 6%, including three-order and four-order cross-coupling topologies, are constructed and fabricated based on low temperature cofired ceramic (LTCC technology. Both theoretical and experimental results are presented.

  12. Suzuki-Miyaura cross-coupling reactions in aqueous media: green and sustainable syntheses of biaryls.

    Science.gov (United States)

    Polshettiwar, Vivek; Decottignies, Audrey; Len, Christophe; Fihri, Aziz

    2010-05-25

    Carbon-carbon cross-coupling reactions are among the most important processes in organic chemistry, and Suzuki-Miyaura reactions are among the most widely used protocols for the formation of carbon-carbon bonds. These reactions are generally catalyzed by soluble palladium complexes with various ligands. However, the use of toxic organic solvents remains a scientific challenge and an aspect of economical and ecological relevance. This Review will summarize various recently developed significant methods by which the Suzuki-Miyaura coupling was conducted in aqueous media, and analyzes if they are "real green" protocols.

  13. Zinc-Catalyzed Synthesis of Conjugated Dienoates through Unusual Cross-Couplings of Zinc Carbenes with Diazo Compounds.

    Science.gov (United States)

    Mata, Sergio; González, María J; González, Jesús; López, Luis A; Vicente, Rubén

    2017-01-23

    Zinc-catalyzed selective cross-coupling of two carbene sources, such as vinyl diazo compounds and enynones, enabled the synthesis of conjugated dienoate derivatives. This reaction involved the unprecedented coupling of a zinc furyl carbene with vinyl diazo compounds through the γ-carbon. Alternatively, dienoates were also prepared by a commutative cross-coupling of zinc vinyl carbenes generated from cyclopropenes and simple diazo compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A Class of Effective of Decarboxylative Perfluoroalkylating Reagents: [(phen)2Cu](O2CRF)

    KAUST Repository

    Huang, Yangjie

    2016-04-13

    This article describes the invention of a class of effective reagents [(phen)2Cu](O2CRF) (1) for the decarboxylative perfluoroalkylation of aryl and heteroaryl halides. Treatment of the copper tert-butyloxide with phenanthroline ligands, with subsequent addition of perfluorocarboxylic acids afforded the air-stable copper(I) perfluorocarboxylato complexes 1. These complexes reacted with a variety of aryl and heteroaryl halides to form perfluoroalkyl(hetero)arenes in moderate to high yields. Computational studies suggested that the coordination of the second phen ligand may reduce the energy barrier for the decarboxylation of perfluorocarboxylate to facilitate the perfluoroalkylation.

  15. A Class of Effective of Decarboxylative Perfluoroalkylating Reagents: [(phen)2Cu](O2CRF)

    KAUST Repository

    Huang, Yangjie; Ajitha, Manjaly John; Huang, Kuo-Wei; Zhang, Zhongxing; Weng, Zhiqiang

    2016-01-01

    This article describes the invention of a class of effective reagents [(phen)2Cu](O2CRF) (1) for the decarboxylative perfluoroalkylation of aryl and heteroaryl halides. Treatment of the copper tert-butyloxide with phenanthroline ligands, with subsequent addition of perfluorocarboxylic acids afforded the air-stable copper(I) perfluorocarboxylato complexes 1. These complexes reacted with a variety of aryl and heteroaryl halides to form perfluoroalkyl(hetero)arenes in moderate to high yields. Computational studies suggested that the coordination of the second phen ligand may reduce the energy barrier for the decarboxylation of perfluorocarboxylate to facilitate the perfluoroalkylation.

  16. Citrus Peel Additives for One-Pot Triazole Formation by Decarboxylation, Nucleophilic Substitution, and Azide-Alkyne Cycloaddition Reactions

    Science.gov (United States)

    Mendes, Desiree E.; Schoffstall, Allen M.

    2011-01-01

    This undergraduate organic laboratory experiment consists of three different reactions occurring in the same flask: a cycloaddition reaction, preceded by decarboxylation and nucleophilic substitution reactions. The decarboxylation and cycloaddition reactions occur using identical Cu(I) catalyst and conditions. Orange, lemon, and other citrus fruit…

  17. Scalable production of Cu@C composites for cross-coupling catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Lijuan [Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 (China); Ming, Hai, E-mail: lunaticmh@163.com [College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 (China)

    2015-10-15

    Highlights: • Cu@C core–shell composite was prepared by reduction of [Cu(NH{sub 3}){sub 4}]{sup 2+} with glucose. • The carbon shell in Cu@C can be tuned to the different degree of carbonization. • The Cu@C composites were utilized to catalyze the C−N cross coupling reaction. • The catalytic ability of Cu@C depends on the degree of shell-carbonization. - Abstract: A novel Cu@C core–shell microstructure was prepared by reduction of [Cu(NH{sub 3}){sub 4}]{sup 2+} with glucose using a mild hydrothermal process. The carbon shell of such Cu@C composite can be tuned to different carbonization degrees just through varying the calcination conditions. The structural properties of as-prepared Cu@C were investigated in detail by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron micrographs (TEM) and Raman spectra. In addition, these Cu@C composites were firstly used to catalyze the C−N cross coupling of amines with iodobenzene. Among them, the catalytic ability of Cu@C composites increased as their surface carbon’s carburization degree improved.

  18. Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing.

    Science.gov (United States)

    Schiesser, Stefan; Hackner, Benjamin; Pfaffeneder, Toni; Müller, Markus; Hagemeier, Christian; Truss, Matthias; Carell, Thomas

    2012-06-25

    Eraserhead: Stem cells seem to erase epigenetic information by decarboxylation of the newly discovered epigenetic base 5-carboxycytosine (caC; see picture). This reaction is likely to involve a nucleophilic attack of the C5-C6 double bond. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Weissella halotolerans W22 combines arginine deiminase and ornithine decarboxylation pathways and converts arginine to putrescine

    NARCIS (Netherlands)

    Pereira, C. I.; San Romao, M. V.; Lolkema, J. S.; Barreto Crespo, M. T.; Baretto Crespo, M.

    2009-01-01

    Aims: To demonstrate that the meat food strain Weissella halotolerans combines an ornithine decarboxylation pathway and an arginine deiminase (ADI) pathway and is able to produce putrescine, a biogenic amine. Evidence is shown that these two pathways produce a proton motive force (PMF). Methods and

  20. Unusual differences in the reactivity of glutamic and aspartic acid in oxidative decarboxylation reactions

    NARCIS (Netherlands)

    But, Andrada; Wijst, van der Evie; Notre, le Jerome; Wever, Ron; Sanders, Johan P.M.; Bitter, Johannes H.; Scott, Elinor L.

    2017-01-01

    Amino acids are potential substrates to replace fossil feedstocks for the synthesis of nitriles via oxidative decarboxylation using vanadium chloroperoxidase (VCPO), H2O2 and bromide. Here the conversion of glutamic acid (Glu) and aspartic acid (Asp) was investigated. It was

  1. Hydrocarbon fuels from gas phase decarboxylation of hydrolyzed free fatty acid

    KAUST Repository

    Wang, Weicheng; Roberts, William L.; Stikeleather, Larry F.

    2012-01-01

    Gas phase decarboxylation of hydrolyzed free fatty acid (FFA) from canola oil has beeninvestigated in two fix-bed reactors by changing reaction parameters such as temperatures,FFA feed rates, and H 2-to-FFA molar ratios. FFA, which contains mostly C

  2. Optimization of an Efficient and Sustainable Sonogashira Cross-Coupling Protocol

    KAUST Repository

    Walter, Philipp E.

    2012-12-01

    Cross coupling reactions are a well-established tool in modern organic synthesis and play a crucial role in the synthesis of a high number of organic compounds. Their importance is highlighted by the Nobel Prize in chemistry to Suzuki, Heck and Negishi in 2010. The increasing importance of sustainability requirements in chemical production has furthermore promoted the development of cross-coupling protocols that comply with the principles of “Green Chemistry”1. The Sonogashira reaction is today the most versatile and powerful way to generate aryl alkynes, a moiety recurring in many pharmaceutical and natural products. Despite many improvements to the original reaction, reports on generally applicable protocols that work under sustainable conditions are scarce. Our group recently reported an efficient protocol for a copperfree Sonogashira cross-coupling at low temperature, in aqueous medium and with no addition of organic solvents or additives2. The goal of this work was to further investigate the effects of different reaction parameters on the catalytic activity in order to optimize the protocol. Limitations of the protocol were tested in respect to reaction temperature, heating method, atmosphere, base type and amount, catalyst loading, reaction time and work up procedure. The reaction worked successfully under air and results were not affected by the presence of oxygen in the water phase. Among a variety of bases tested, triethylamine was confirmed to give the best results and its required excess could be reduced from nine to four equivalents. Catalyst loading could also be reduced by up to 90%: Good to near quantitative yields for a broad range of substrates were achieved using a catalyst concentration of 0.25mol% and 5 eq of Et3N at 50°C while more reactive substrates could be coupled with a catalyst concentration as low as 0.025mol%. Filtration experiments showed the possibility of a simplified work up procedure and a protocol completely free of organic

  3. Controlling site selectivity in Pd-catalyzed oxidative cross-coupling reactions.

    Science.gov (United States)

    Lyons, Thomas W; Hull, Kami L; Sanford, Melanie S

    2011-03-30

    This paper presents a detailed investigation of the factors controlling site selectivity in the Pd-mediated oxidative coupling of 1,3-disubstituted and 1,2,3-trisubstituted arenes (aryl-H) with cyclometalating substrates (L~C-H). The influence of both the concentration and the steric/electronic properties of the quinone promoter are studied in detail. In addition, the effect of steric/electronic modulation of the carboxylate ligand is discussed. Finally, we demonstrate that substitution of the carboxylate for a carbonate X-type ligand leads to a complete reversal in site selectivity for many arene substrates. The origins of these trends in site selectivity are discussed in the context of the mechanism of Pd-catalyzed oxidative cross-coupling.

  4. An efficient protocol for the palladium-catalysed Suzuki-Miyaura cross-coupling

    KAUST Repository

    Marziale, Alexander N.; Jantke, Dominik; Faul, Stefan Holger; Reiner, Thomas; Herdtweck, Eberhardt; Eppinger, Jö rg

    2011-01-01

    The palladacyclic catalyst precursor received by ortho-palladation of ([1,1′-biphenyl]-2-yloxy)diisopropyl-phosphine represents a highly active system for Suzuki-Miyaura cross-coupling reactions when used in neat water. An efficient, broadly applicable and sustainable aqueous protocol was developed using 2.5 eq. of Na2CO3 as base, allowing the reaction to be performed under air and at ambient temperature with Pd loadings of 0.04 mol%. Coupling products are obtained in high yields and excellent purity by simple filtration with no organic solvents needed throughout the whole reaction. A broad variety of functional groups are tolerated and a large number of substrates can be applied with this protocol. The crystal structure of the palladacyclic catalyst precursor is presented as well as investigations targeting the nature of catalyst activation and the active catalytic species. © 2011 The Royal Society of Chemistry.

  5. Multimetallic catalysed cross-coupling of aryl bromides with aryl triflates

    Science.gov (United States)

    Ackerman, Laura K. G.; Lovell, Matthew M.; Weix, Daniel J.

    2015-08-01

    The advent of transition-metal catalysed strategies for forming new carbon-carbon bonds has revolutionized the field of organic chemistry, enabling the efficient synthesis of ligands, materials, and biologically active molecules. In cases where a single metal fails to promote a selective or efficient transformation, the synergistic cooperation of two distinct catalysts--multimetallic catalysis--can be used instead. Many important reactions rely on multimetallic catalysis, such as the Wacker oxidation of olefins and the Sonogashira coupling of alkynes with aryl halides, but this approach has largely been limited to the use of metals with distinct reactivities, with only one metal catalyst undergoing oxidative addition. Here, we demonstrate that cooperativity between two group 10 metal catalysts--(bipyridine)nickel and (1,3-bis(diphenylphosphino)propane)palladium--enables a general cross-Ullmann reaction (the cross-coupling of two different aryl electrophiles). Our method couples aryl bromides with aryl triflates directly, eliminating the use of arylmetal reagents and avoiding the challenge of differentiating between multiple carbon-hydrogen bonds that is required for direct arylation methods. Selectivity can be achieved without an excess of either substrate and originates from the orthogonal reactivity of the two catalysts and the relative stability of the two arylmetal intermediates. While (1,3-bis(diphenylphosphino)propane)palladium reacts preferentially with aryl triflates to afford a persistent intermediate, (bipyridine)nickel reacts preferentially with aryl bromides to form a transient, reactive intermediate. Although each catalyst forms less than 5 per cent cross-coupled product in isolation, together they are able to achieve a yield of up to 94 per cent. Our results reveal a new method for the synthesis of biaryls, heteroaryls, and dienes, as well as a general mechanism for the selective transfer of ligands between two metal catalysts. We anticipate that this

  6. Visible-Light-Induced Nickel-Catalyzed Negishi Cross-Couplings by Exogenous-Photosensitizer-Free Photocatalysis.

    Science.gov (United States)

    Abdiaj, Irini; Fontana, Alberto; Gomez, M Victoria; de la Hoz, Antonio; Alcázar, Jesús

    2018-03-22

    The merging of photoredox and transition-metal catalysis has become one of the most attractive approaches for carbon-carbon bond formation. Such reactions require the use of two organo-transition-metal species, one of which acts as a photosensitizer and the other one as a cross-coupling catalyst. We report herein an exogenous-photosensitizer-free photocatalytic process for the formation of carbon-carbon bonds by direct acceleration of the well-known nickel-catalyzed Negishi cross-coupling that is based on the use of two naturally abundant metals. This finding will open new avenues in cross-coupling chemistry that involve the direct visible-light absorption of organometallic catalytic complexes. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Diazo compounds and N-tosylhydrazones: novel cross-coupling partners in transition-metal-catalyzed reactions.

    Science.gov (United States)

    Xiao, Qing; Zhang, Yan; Wang, Jianbo

    2013-02-19

    Transition-metal-catalyzed carbene transformations and cross-couplings represent two major reaction types in organometallic chemistry and organic synthesis. However, for a long period of time, these two important areas have evolved separately, with essentially no overlap or integration. Thus, an intriguing question has emerged: can cross-coupling and metal carbene transformations be merged into a single reaction cycle? Such a combination could facilitate the development of novel carbon-carbon bond-forming methodologies. Although this concept was first explored about 10 years ago, rapid developments inthis area have been achieved recently. Palladium catalysts can be used to couple diazo compounds with a wide variety of organic halides. Under oxidative coupling conditions, diazo compounds can also react with arylboronic acids and terminal alkynes. Both of these coupling reactions form carbon-carbon double bonds. As the key step in these catalytic processes, Pd carbene migratory insertion plays a vital role in merging the elementary steps of Pd intermediates, leading to novel carbon-carbon bond formations. Because the diazo substrates can be generated in situ from N-tosylhydrazones in the presence of base, the N-tosylhydrazones can be used as reaction partners, making this type of cross-coupling reaction practical in organic synthesis. N-Tosylhydrazones are easily derived from the corresponding aldehydes or ketones. The Pd-catalyzed cross-coupling of N-tosylhydrazones is considered a complementary reaction to the classic Shapiro reaction for converting carbonyl functionalities into carbon-carbon double bonds. It can also serve as an alternative approach for the Pd-catalyzed cross-coupling of carbonyl compounds, which is usually achieved via triflates. The combination of carbene formation and cross-coupling in a single catalytic cycle is not limited to Pd-catalyzed reactions. Recent studies of Cu-, Rh-, Ni-, and Co-catalyzed cross-coupling reactions with diazo

  8. Silica supported palladium nanoparticles for the decarboxylation of high-acid feedstocks: Design, deactivation and regeneration

    Science.gov (United States)

    Ping, Eric Wayne

    2011-12-01

    The major goals of this thesis were to (1) design and synthesize a supported catalyst with well-defined monodisperse palladium nanoparticles evenly distributed throughout an inorganic oxide substrate with tunable porosity characteristics, (2) demonstrate the catalytic activity of this material in the decarboxylation of long chain fatty acids and their derivatives to make diesel-length hydrocarbons, (3) elucidate the deactivation mechanism of supported palladium catalysts under decarboxylation conditions via post mortem catalyst characterization and develop a regeneration methodology thereupon, and (4) apply this catalytic system to a real low-value biofeedstock. Initial catalyst designs were based on the SBA-15 silica support, but in an effort to maximize loading and minimize mass transfer limitations, silica MCF was synthesized as catalyst support. Functionalization with various silane ligands yielded a surface that facilitated even distribution of palladium precursor salts throughout the catalyst particle, and, after reduction, monodisperse palladium nanoparticles approximately 2 nm in diameter. Complete characterization was performed on this Pd-MCF catalyst. The Pd-MCF catalyst showed high one-time activity in the decarboxylation of fatty acids to hydrocarbons in dodecane at 300°C. Hydrogen was found to be an unnecessary reactant in the absence of unsaturations, but was required in their presence---full hydrogenation of the double bonds occurs before any decarboxylation can take place. The Pd-MCF also exhibited good activity for alkyl esters and glycerol, providing a nice hypothetical description of a stepwise reaction pathway for catalytic decarboxylation of acids and their derivatives. As expected, the Pd-MCF catalyst experienced severe deactivation after only one use. Substantial effort was put into elucidating the nature of this deactivation via post mortem catalyst characterization. H2 chemisorption confirmed a loss of active surface area, but TEM and

  9. Inhibition of mammalian nitric oxide synthases by agmatine, an endogenous polyamine formed by decarboxylation of arginine.

    OpenAIRE

    Galea, E; Regunathan, S; Eliopoulos, V; Feinstein, D L; Reis, D J

    1996-01-01

    Agmatine, decarboxylated arginine, is a metabolic product of mammalian cells. Considering the close structural similarity between L-arginine and agmatine, we investigated the interaction of agmatine and nitric oxide synthases (NOSs), which use L-arginine to generate nitric oxide (NO) and citrulline. Brain, macrophages and endothelial cells were respectively used as sources for NOS isoforms I, II and III. Enzyme activity was measured by the production of nitrites or L-citrulline. Agmatine was ...

  10. Mechanism of the Suzuki–Miyaura Cross-Coupling Reaction Mediated by [Pd(NHC)(allyl)Cl] Precatalysts

    KAUST Repository

    Meconi, Giulia Magi; Vummaleti, Sai V. C.; Luque-Urrutia, Jesú s Antonio; Belanzoni, Paola; Nolan, Steven P.; Jacobsen, Heiko; Cavallo, Luigi; Solà , Miquel; Poater, Albert

    2017-01-01

    (IPr); R = H (1), Me (2), gem-Me2 (3), Ph (4), X = Cl, Br). Next, we have investigated the Suzuki–Miyaura cross-coupling reaction for the active catalyst species IPr-Pd(0) using 4-chlorotoluene and phenylboronic acid as substrates and isopropyl alcohol as a

  11. Stereoselective Synthesis of Tetrasubstituted Furylalkenes via Gold-Catalyzed Cross-Coupling of Enynones with Diazo Compounds.

    Science.gov (United States)

    Liu, Pei; Sun, Jiangtao

    2017-07-07

    A stereoselective, gold-catalyzed, cross-coupling reaction of enynones with diazo compounds has been developed, affording 2-alkenylfurans in moderate to good yields with excellent E-stereoselectivity. Upon using diazo compounds as nucleophiles to trap the in situ formed gold furyl carbene, this protocol provides a novel path toward the formation of unsymmetrical tetrasubstituted alkenes.

  12. Compensation of Cross-Coupling Stiffness and Increase of Direct Damping in Multirecess Journal Bearings using Active Hybrid Lubrication

    DEFF Research Database (Denmark)

    Santos, Ilmar; Watanabe, F.Y.

    2004-01-01

    journal bearings (HJB). When part of hydrostatic pressure is also dynamically modified by means of hydraulic control systems, one refers to the active lubrication. The main contribution of the present theoretical work is to show that it is possible to reduce cross-coupling stiffness and increase...

  13. Hexacationic Dendriphos ligands in the Pd-catalyzed Suzuki-Miyaura cross-coupling reaction: scope and mechanistic studies

    NARCIS (Netherlands)

    Snelders, D.J.M.; van Koten, G.; Klein Gebbink, R.J.M.

    2009-01-01

    The combination of Pd2dba3·CHCl3and hexacationic triarylphosphine-based Dendriphos ligands (1-3) leads to a highly active catalytic system in the Suzuki-Miyaura cross-coupling reaction. Under relatively mild reaction conditions, nonactivated aryl bromides and activated aryl chlorides can be coupled

  14. Sonogashira cross-coupling under non-basic conditions. Flow chemistry as a new paradigm in reaction control

    Czech Academy of Sciences Publication Activity Database

    Voltrová, Svatava; Šrogl, Jiří

    2014-01-01

    Roč. 1, č. 9 (2014), s. 1067-1071 ISSN 2052-4129 R&D Projects: GA MŠk LH12013 Institutional support: RVO:61388963 Keywords : Sonogashira * cross-coupling * flow chemistry Subject RIV: CC - Organic Chemistry

  15. Bite angle effects of diphosphines in C-C and C-X bond forming cross coupling reactions

    NARCIS (Netherlands)

    Birkholz, M.N.; Freixa, Z.; van Leeuwen, P.W.N.M.

    2009-01-01

    Catalytic reactions of C-C and C-X bond formation are discussed in this critical review with particular emphasis on cross coupling reactions catalyzed by palladium and wide bite angle bidentate diphosphine ligands. Especially those studies have been collected that allow comparison of the ligand bite

  16. The efficient synthesis of 2-arylpyrimidine acyclic nucleoside phosphonates using Liebeskind-Srogl cross-coupling reaction

    Czech Academy of Sciences Publication Activity Database

    Břehová, Petra; Česnek, Michal; Dračínský, Martin; Holý, Antonín; Janeba, Zlatko

    2011-01-01

    Roč. 67, č. 38 (2011), s. 7379-7385 ISSN 0040-4020 R&D Projects: GA MŠk 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : Liebeskind-Srogl cross - coupling * acyclic nucleoside phosphonates * pyrimidines * arylboronic acids * microwave Subject RIV: CC - Organic Chemistry Impact factor: 3.025, year: 2011

  17. A General Regioselective Synthesis of 2,4-Diarylpyrimidines from 2-Thiouracil through Two Orthogonal Cross-Coupling Reactions

    Czech Academy of Sciences Publication Activity Database

    Čerňová, Miroslava; Pohl, Radek; Klepetářová, Blanka; Hocek, Michal

    2012-01-01

    Roč. 23, č. 9 (2012), s. 1305-1308 ISSN 0936-5214 Grant - others:GA ČR(CZ) GAP207/12/0205 Institutional support: RVO:61388963 Keywords : pyrimidines * uracil * cross - coupling * palladium Subject RIV: CC - Organic Chemistry Impact factor: 2.655, year: 2012

  18. An efficient protocol for copper-free palladium-catalyzed Sonogashira cross-coupling in aqueous media at low temperatures

    KAUST Repository

    Marziale, Alexander N.; Schlü ter, Johannes; Eppinger, Jö rg

    2011-01-01

    A thorough study on copper-free Sonogashira cross-couplings in water was carried out using the palla-dacycle, [{Pd(μ-Cl){K2-P,C-P(iPr) 2(OC6H3-2-Ph)}}2] as pre-catalyst with different bases and palladium concentrations. The highly active pre

  19. One-pot sequential 1,2-addition, Pd-catalysed cross-coupling of organolithium reagents with Weinreb amides

    NARCIS (Netherlands)

    Giannerini, M.; Vila, C.; Hornillos, V.; Feringa, B. L.

    2016-01-01

    An efficient sequential 1,2-addition/cross-coupling of Weinreb amides with two organolithium reagents is reported. This synthetic approach allows access to a wide variety of functionalized ketones in a modular way. The one-pot procedure presented here takes advantage of a kinetically stable

  20. Selective sp3 C-H alkylation via polarity-match-based cross-coupling.

    Science.gov (United States)

    Le, Chip; Liang, Yufan; Evans, Ryan W; Li, Ximing; MacMillan, David W C

    2017-07-06

    The functionalization of carbon-hydrogen (C-H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence. Although many C-H functionalization reactions involve C(sp 3 )-C(sp 2 ) coupling, there is a growing demand for C-H alkylation reactions, wherein sp 3 C-H bonds are replaced with sp 3 C-alkyl groups. Here we describe a polarity-match-based selective sp 3 C-H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C-H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl-alkyl fragment coupling. The sp 3 C-H alkylation is highly selective for the α-C-H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry.

  1. Upgrading Lignocellulosic Products to Drop-In Biofuels via Dehydrogenative Cross-Coupling and Hydrodeoxygenation Sequence.

    Science.gov (United States)

    Sreekumar, Sanil; Balakrishnan, Madhesan; Goulas, Konstantinos; Gunbas, Gorkem; Gokhale, Amit A; Louie, Lin; Grippo, Adam; Scown, Corinne D; Bell, Alexis T; Toste, F Dean

    2015-08-24

    Life-cycle analysis (LCA) allows the scientific community to identify the sources of greenhouse gas (GHG) emissions of novel routes to produce renewable fuels. Herein, we integrate LCA into our investigations of a new route to produce drop-in diesel/jet fuel by combining furfural, obtained from the catalytic dehydration of lignocellulosic pentose sugars, with alcohols that can be derived from a variety of bio- or petroleum-based feedstocks. As a key innovation, we developed recyclable transition-metal-free hydrotalcite catalysts to promote the dehydrogenative cross-coupling reaction of furfural and alcohols to give high molecular weight adducts via a transfer hydrogenation-aldol condensation pathway. Subsequent hydrodeoxygenation of adducts over Pt/NbOPO4 yields alkanes. Implemented in a Brazilian sugarcane biorefinery such a process could result in a 53-79% reduction in life-cycle GHG emissions relative to conventional petroleum fuels and provide a sustainable source of low carbon diesel/jet fuel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Selective sp3 C–H alkylation via polarity-match-based cross-coupling

    Science.gov (United States)

    Le, Chip; Liang, Yufan; Evans, Ryan W.; Li, Ximing; MacMillan, David W. C.

    2017-01-01

    The functionalization of carbon–hydrogen (C–H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence1. Although many C–H functionalization reactions involve C(sp3)–C(sp2) coupling, there is a growing demand for C–H alkylation reactions, wherein sp3 C–H bonds are replaced with sp3 C–alkyl groups. Here we describe a polarity-match-based selective sp3 C–H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C–H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl–alkyl fragment coupling. The sp3 C–H alkylation is highly selective for the α-C–H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry. PMID:28636596

  3. Selective sp3 C-H alkylation via polarity-match-based cross-coupling

    Science.gov (United States)

    Le, Chip; Liang, Yufan; Evans, Ryan W.; Li, Ximing; MacMillan, David W. C.

    2017-07-01

    The functionalization of carbon-hydrogen (C-H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence. Although many C-H functionalization reactions involve C(sp3)-C(sp2) coupling, there is a growing demand for C-H alkylation reactions, wherein sp3 C-H bonds are replaced with sp3 C-alkyl groups. Here we describe a polarity-match-based selective sp3 C-H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C-H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl-alkyl fragment coupling. The sp3 C-H alkylation is highly selective for the α-C-H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry.

  4. Cross-coupling effects in chemically non-equilibrium viscous compressible flows

    International Nuclear Information System (INIS)

    Kustova, E.V.; Giordano, D.

    2011-01-01

    Graphical abstract: Self-cosistent kinetic-theory description of chemical-reaction rates and mean normal stress in one-temperature viscous compressible gas flows. Reaearch highlights: → In chemically non-equilibrium viscous compressible flows, the rate of each reaction depends on the velocity divergence and rates of all other reactions. → Cross effects between the rates of chemical reactions and normal mean stress can be found in the symmetric form and expressed in terms of the reaction affinities. → In the case of small affinities, the entropy production is unconditionally non-negative; in the case of finite affinities, the entropy production related to the scalar forces has no definite sign. - Abstract: A closed self-consistent description of a one-temperature non-equilibrium reacting flow is presented on the basis of the kinetic theory methods. A general case including internal degrees of freedom, dissociation-recombination and exchange reactions, and arbitrary values of affinities of chemical reactions is considered. Chemical-reaction rates and mean normal stress in viscous compressible flows are studied and a symmetric cross coupling between these terms is found. It is shown that the rate of each chemical reaction and the mean normal stress depend on velocity divergence and affinities of all chemical reactions; the law of mass action is violated in viscous flows. The results obtained in the frame of linear irreversible thermodynamics can be deduced from the proposed model for the particular case of small affinities. The reciprocal Onsager-Casimir relations are verified, the symmetry of kinetic coefficients is demonstrated, and the entropy production in a viscous flow is studied.

  5. Flow chemistry as a discovery tool to access sp2-sp3 cross-coupling reactions via diazo compounds.

    Science.gov (United States)

    Tran, Duc N; Battilocchio, Claudio; Lou, Shing-Bong; Hawkins, Joel M; Ley, Steven V

    2015-02-01

    The work takes advantage of an important feature of flow chemistry, whereby the generation of a transient species (or reactive intermediate) can be followed by a transfer step into another chemical environment, before the intermediate is reacted with a coupling partner. This concept is successfully applied to achieve a room temperature sp 2 -sp 3 cross coupling of boronic acids with diazo compounds, these latter species being generated from hydrazones under flow conditions using MnO 2 as the oxidant.

  6. The frequency content of Double-Mode Cepheids light curves and the importance of the cross-coupling terms

    OpenAIRE

    Poretti, Ennio

    1997-01-01

    The recent results (Pardo & Poretti 1997, A&A 324, 121; Poretti & Pardo 1997, A&A 324, 133) obtained on the frequency content of Double-Mode Cepheids light curves and the properties of their Fourier parameters are reviewed. Some points briefly discussed in previous papers (no third periodicity, methodological aspects on the true peaks detection, the action of the cross coupling terms and the impact on theoretical models) are described.

  7. High-Throughput Screening of the Asymmetric Decarboxylative Alkylation Reaction of Enolate-Stabilized Enol Carbonates

    KAUST Repository

    Stoltz, Brian

    2010-06-14

    The use of high-throughput screening allowed for the optimization of reaction conditions for the palladium-catalyzed asymmetric decarboxylative alkylation reaction of enolate-stabilized enol carbonates. Changing to a non-polar reaction solvent and to an electron-deficient PHOX derivative as ligand from our standard reaction conditions improved the enantioselectivity for the alkylation of a ketal-protected,1,3-diketone-derived enol carbonate from 28% ee to 84% ee. Similar improvements in enantioselectivity were seen for a β-keto-ester derived- and an α-phenyl cyclohexanone-derived enol carbonate.

  8. High-Throughput Screening of the Asymmetric Decarboxylative Alkylation Reaction of Enolate-Stabilized Enol Carbonates

    KAUST Repository

    Stoltz, Brian; McDougal, Nolan; Virgil, Scott

    2010-01-01

    The use of high-throughput screening allowed for the optimization of reaction conditions for the palladium-catalyzed asymmetric decarboxylative alkylation reaction of enolate-stabilized enol carbonates. Changing to a non-polar reaction solvent and to an electron-deficient PHOX derivative as ligand from our standard reaction conditions improved the enantioselectivity for the alkylation of a ketal-protected,1,3-diketone-derived enol carbonate from 28% ee to 84% ee. Similar improvements in enantioselectivity were seen for a β-keto-ester derived- and an α-phenyl cyclohexanone-derived enol carbonate.

  9. Technoeconomic analysis of jet fuel production from hydrolysis, decarboxylation, and reforming of camelina oil

    KAUST Repository

    Natelson, Robert H.; Wang, Weicheng; Roberts, William L.; Zering, Kelly D.

    2015-01-01

    The commercial production of jet fuel from camelina oil via hydrolysis, decarboxylation, and reforming was simulated. The refinery was modeled as being close to the farms for reduced camelina transport cost. A refinery with annual nameplate capacity of 76,000 cubic meters hydrocarbons was modeled. Assuming average camelina production conditions and oil extraction modeling from the literature, the cost of oil was 0.31$kg-1. To accommodate one harvest per year, a refinery with 1 year oil storage capacity was designed, with the total refinery costing 283 million dollars in 2014 USD. Assuming co-products are sold at predicted values, the jet fuel break-even selling price was 0.80$kg-1. The model presents baseline technoeconomic data that can be used for more comprehensive financial and risk modeling of camelina jet fuel production. Decarboxylation was compared to the commercially proven hydrotreating process. The model illustrated the importance of refinery location relative to farms and hydrogen production site.

  10. Technoeconomic analysis of jet fuel production from hydrolysis, decarboxylation, and reforming of camelina oil

    KAUST Repository

    Natelson, Robert H.

    2015-04-01

    The commercial production of jet fuel from camelina oil via hydrolysis, decarboxylation, and reforming was simulated. The refinery was modeled as being close to the farms for reduced camelina transport cost. A refinery with annual nameplate capacity of 76,000 cubic meters hydrocarbons was modeled. Assuming average camelina production conditions and oil extraction modeling from the literature, the cost of oil was 0.31$kg-1. To accommodate one harvest per year, a refinery with 1 year oil storage capacity was designed, with the total refinery costing 283 million dollars in 2014 USD. Assuming co-products are sold at predicted values, the jet fuel break-even selling price was 0.80$kg-1. The model presents baseline technoeconomic data that can be used for more comprehensive financial and risk modeling of camelina jet fuel production. Decarboxylation was compared to the commercially proven hydrotreating process. The model illustrated the importance of refinery location relative to farms and hydrogen production site.

  11. Decarboxylation of oxalacetate to pyruvate by purified avian liver phosphoenolpyruvate carboxykinase

    Energy Technology Data Exchange (ETDEWEB)

    Noce, P S; Utter, M F

    1975-01-01

    Phosphoenolpyruvate carboxykinase, which has been isolated from chicken liver mitochondria in essentially homogenous form, carries out the irreversible decarboxylation of oxalacetate to pyruvate in the presence of catalytic amounts of GDP or IDP, as well as the reversible decarboxylation of oxalacetate to phosphoenolpyruvate in the presence of substrate amounts of GTP or ITP. The pyruvate- and phosphoenolpyruvate-forming reactions are similar in their nucleoside specificity and appear to be carried out by the same protein. However, the two activities vary markedly in their response to added metal ions and sulfhydryl reagents. Phosphoenolpyruvate formation is completely dependent on the presence of a divalent metal ion, with Mn/sup 2 +/ the most effective species. This reaction is also stimulated by sulfhydryl reagents such as 2-mercaptoethanol. In contrast, the pyruvate-forming reaction is strongly inhibited by divalent metal ions, including Mn/sup 2 +/, and also by moderate concentrations of sulfhydryl reagents. These observations and the demonstration that pyruvate kinase-like activity is very low or absent make it unlikely that pyruvate formation proceeds via phosphoenolpyruvate as an intermediate. Although the pyruvate-forming reaction is inhibited by added metal ions, the reaction is also inhibited by metal-chelating agents such as 8-hydroxyquinoline and o-phenanthroline, suggesting that the reaction is dependent on the presence of a metal ion. It has not been possible, however, to demonstrate that the enzyme is a metalloprotein.

  12. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.

    Science.gov (United States)

    Bedford, Robin B

    2015-05-19

    The catalytic cross-coupling reactions of organic halides or related substrates with organometallic nucleophiles form the cornerstone of many carbon-carbon bond-forming processes. While palladium-based catalysts typically mediate such reactions, there are increasing concerns about the long-term sustainability of palladium in synthesis. This is due to the high cost of palladium, coupled with its low natural abundance, environmentally deleterious extraction (∼6 g of metal are produced per ton of ore), toxicity, and competition for its use from the automotive and consumer electronics sectors. Therefore, there is a growing interest in replacing palladium-based catalysts with those incorporating more earth-abundant elements. With its low cost, high natural abundance, and low toxicity, iron makes a particularly appealing alternative, and accordingly, the development of iron-catalyzed cross-coupling is undergoing explosive growth. However, our understanding of the mechanisms that underpin the iron-based catalytic cycles is still very much in its infancy. Mechanistic insight into catalytic reactions is not only academically important but also allows us to maximize the efficiency of processes or even to develop entirely new transformations. Key to the development of robust mechanistic models for cross-coupling is knowing the lowest oxidation state in the cycle. Once this is established, we can explore subsequent redox processes and build the catalytic manifold. Until we know with confidence what the lowest oxidation state is, any cycles proposed are largely just guesswork. To date, Fe(-II), Fe(-I), Fe(0), Fe(I), and Fe(II) have been proposed as contenders for the lowest-oxidation-state species in the cycle in iron-catalyzed cross-coupling; the aim of this Account is to pull together the various pieces of evidence in support, or otherwise, of each of these suggestions in turn. There currently exists no direct evidence that oxidation states below Fe(0) are active in the

  13. Cross-coupling between accommodation and convergence is optimized for a broad range of directions and distances of gaze.

    Science.gov (United States)

    Nguyen, Dorothy; Vedamurthy, Indu; Schor, Clifton

    2008-03-01

    Accommodation and convergence systems are cross-coupled so that stimulation of one system produces responses by both systems. Ideally, the cross-coupled responses of accommodation and convergence match their respective stimuli. When expressed in diopters and meter angles, respectively, stimuli for accommodation and convergence are equal in the mid-sagittal plane when viewed with symmetrical convergence, where historically, the gains of the cross coupling (AC/A and CA/C ratios) have been quantified. However, targets at non-zero azimuth angles, when viewed with asymmetric convergence, present unequal stimuli for accommodation and convergence. Are the cross-links between the two systems calibrated to compensate for stimulus mismatches that increase with gaze-azimuth? We measured the response AC/A and stimulus CA/C ratios at zero azimuth, 17.5 and 30 deg of rightward gaze eccentricities with a Badal Optometer and Wheatstone-mirror haploscope. AC/A ratios were measured under open-loop convergence conditions along the iso-accommodation circle (locus of points that stimulate approximately equal amounts of accommodation to the two eyes at all azimuth angles). CA/C ratios were measured under open-loop accommodation conditions along the iso-vergence circle (locus of points that stimulate constant convergence at all azimuth angles). Our results show that the gain of accommodative-convergence (AC/A ratio) decreased and the bias of convergence-accommodation increased at the 30 deg gaze eccentricity. These changes are in directions that compensate for stimulus mismatches caused by spatial-viewing geometry during asymmetric convergence.

  14. Gold(I)-catalyzed diazo cross-coupling: a selective and ligand-controlled denitrogenation/cyclization cascade.

    Science.gov (United States)

    Xu, Guangyang; Zhu, Chenghao; Gu, Weijin; Li, Jian; Sun, Jiangtao

    2015-01-12

    An unprecedented gold-catalyzed ligand-controlled cross-coupling of diazo compounds by sequential selective denitrogenation and cyclization affords N-substituted pyrazoles in a position-switchable mode. This novel transformation features selective decomposition of one diazo moiety and simultaneous preservation of the other one from two substrates. Notably, the choice of the ancillary ligand to the gold complex plays a pivotal role on the chemo- and regioselectivity of the reactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The Suzuki-Miyaura Cross-Coupling Reaction of Halogenated Aminopyrazoles: Method Development, Scope, and Mechanism of Dehalogenation Side Reaction.

    Science.gov (United States)

    Jedinák, Lukáš; Zátopková, Renáta; Zemánková, Hana; Šustková, Alena; Cankař, Petr

    2017-01-06

    The efficient Suzuki-Miyaura cross-coupling reaction of halogenated aminopyrazoles and their amides or ureas with a range of aryl, heteroaryl, and styryl boronic acids or esters has been developed. The method allowed incorporation of problematic substrates: aminopyrazoles bearing protected or unprotected pyrazole NH, as well as the free amino or N-amide group. Direct comparison of the chloro, bromo, and iodopyrazoles in the Suzuki-Miyaura reaction revealed that Br and Cl derivatives were superior to iodopyrazoles, as a result of reduced propensity to dehalogenation. Moreover, the mechanism and factors affecting the undesired dehalogenation side reaction were revealed.

  16. Kerr-effect analysis in a three-level negative index material under magneto cross-coupling

    Science.gov (United States)

    Boutabba, N.

    2018-02-01

    We discuss the feasibility of the Kerr effect in negative refractive index materials under magneto cross-coupling and reservoir interaction. The considered medium is a typical three-level atomic system where we derive both the refractive and the gain spectrum. The profiles are analyzed for a weak probe field, and for varying strengths of the strong control field. The considered scheme shows an enhancement of the Kerr nonlinearity which we attribute to the contribution of the electromagnetic components of the fields. For more realistic experimental conditions, we discuss the dependence of the Kerr effect on different thermal bath coupling constants.

  17. Glycosyl Cross-Coupling of Anomeric Nucleophiles: Scope, Mechanism, and Applications in the Synthesis of Aryl C-Glycosides.

    Science.gov (United States)

    Zhu, Feng; Rodriguez, Jacob; Yang, Tianyi; Kevlishvili, Ilia; Miller, Eric; Yi, Duk; O'Neill, Sloane; Rourke, Michael J; Liu, Peng; Walczak, Maciej A

    2017-12-13

    Stereoselective manipulations at the C1 anomeric position of saccharides are one of the central goals of preparative carbohydrate chemistry. Historically, the majority of reactions forming a bond with anomeric carbon has focused on reactions of nucleophiles with saccharide donors equipped with a leaving group. Here, we describe a novel approach to stereoselective synthesis of C-aryl glycosides capitalizing on the highly stereospecific reaction of anomeric nucleophiles. First, methods for the preparation of anomeric stannanes have been developed and optimized to afford both anomers of common saccharides in high anomeric selectivities. We established that oligosaccharide stannanes could be prepared from monosaccharide stannanes via O-glycosylation with Schmidt-type donors, glycal epoxides, or under dehydrative conditions with C1 alcohols. Second, we identified a general set of catalytic conditions with Pd 2 (dba) 3 (2.5 mol%) and a bulky ligand (JackiePhos, 10 mol%) controlling the β-elimination pathway. We demonstrated that the glycosyl cross-coupling resulted in consistently high anomeric selectivities for both anomers with mono- and oligosaccharides, deoxysugars, saccharides with free hydroxyl groups, pyranose, and furanose substrates. The versatility of the glycosyl cross-coupling reaction was probed in the total synthesis of salmochelins (siderophores) and commercial anti-diabetic drugs (gliflozins). Combined experimental and computational studies revealed that the β-elimination pathway is suppressed for biphenyl-type ligands due to the shielding of Pd(II) by sterically demanding JackiePhos, whereas smaller ligands, which allow for the formation of a Pd-F complex, predominantly result in a glycal product. Similar steric effects account for the diminished rates of cross-couplings of 1,2-cis C1-stannanes with aryl halides. DFT calculations also revealed that the transmetalation occurs via a cyclic transition state with retention of configuration at the anomeric

  18. Effect of δ meson and ρ-ω cross couplings in effective field theory motivated Lagrangian approach

    International Nuclear Information System (INIS)

    Jagota, R.K.; Dhiman, S.K.; Sharma, B.K.; Arumugam, P.; Patra, S.K.

    2005-01-01

    It is shown that the self and cross couplings of ω meson plays an important role to make the nuclear equation of state (EOS) softer. The parameter set G2, obtained from the effective field theory motivated Lagrangian (E-RMF) approach, is very successful to reproduce the nuclear matter properties including the structure of neutron star as well as of finite nuclei. The motivation of the present report is to see the effects of these terms in the E-RMF Lagrangian on infinite nuclear matter as well as finite nuclei

  19. An efficient protocol for copper-free palladium-catalyzed Sonogashira cross-coupling in aqueous media at low temperatures

    KAUST Repository

    Marziale, Alexander N.

    2011-11-01

    A thorough study on copper-free Sonogashira cross-couplings in water was carried out using the palla-dacycle, [{Pd(μ-Cl){K2-P,C-P(iPr) 2(OC6H3-2-Ph)}}2] as pre-catalyst with different bases and palladium concentrations. The highly active pre-catalyst imparts good to near quantitative yields using a concentration of 0.25 mol % at 40 °C. This broadly applicable protocol exhibits high tolerance of functional groups and substitution patterns. © 2011 Elsevier Ltd. All rights reserved.

  20. A convergent approach to the total synthesis of telmisartan via a Suzuki cross-coupling reaction between two functionalized benzimidazoles.

    Science.gov (United States)

    Martin, Alex D; Siamaki, Ali R; Belecki, Katherine; Gupton, B Frank

    2015-02-06

    A direct and efficient total synthesis has been developed for telmisartan, a widely prescribed treatment for hypertension. This approach brings together two functionalized benzimidazoles using a high-yielding Suzuki reaction that can be catalyzed by either a homogeneous palladium source or graphene-supported palladium nanoparticles. The ability to perform the cross-coupling reaction was facilitated by the regio-controlled preparation of the 2-bromo-1-methylbenzimidazole precursor. This convergent approach provides telmisartan in an overall yield of 72% while circumventing many issues associated with previously reported processes.

  1. Solvent effects and secondary isotope effects for probing diradical character in the thermal decarboxylation of β-peroxylactones

    International Nuclear Information System (INIS)

    Adam, W.; Cueto, O.; Guedes, L.N.; Rodriguez, L.O.

    1978-01-01

    The lack of solvent effects in the activation parameters and product distribution and the lack of secondary deuterium isotope effects at the α-carbon and β-alkyl migrant substantiates that the thermal decarboxylation of β-peroxy lactones proceeds via a 1,5-diradical

  2. The mechanism of the tyrosine transporter TyrP supports a proton motive tyrosine decarboxylation pathway in Lactobacillus brevis

    NARCIS (Netherlands)

    Wolken, WAM; Lucas, PM; Lonvaud-Funel, A; Lolkema, JS; Wolken, Wout A.M.; Lucas, Patrick M.

    The tyrosine decarboxylase operon of Lactobacillus brevis IOEB9809 contains, adjacent to the tyrosine decarboxylase gene, a gene for TyrP, a putative tyrosine transporter. The two genes potentially form a proton motive tyrosine decarboxylation pathway. The putative tyrosine transporter gene of L.

  3. Decarboxylation of furfural on Pd(111): Ab initio molecular dynamics simulations

    Science.gov (United States)

    Xue, Wenhua; Dang, Hongli; Shields, Darwin; Liu, Yingdi; Jentoft, Friederike; Resasco, Daniel; Wang, Sanwu

    2013-03-01

    Furfural conversion over metal catalysts plays an important role in the studies of biomass-derived feedstocks. We report ab initio molecular dynamics simulations for the decarboxylation process of furfural on the palladium surface at finite temperatures. We observed and analyzed the atomic-scale dynamics of furfural on the Pd(111) surface and the fluctuations of the bondlengths between the atoms in furfural. We found that the dominant bonding structure is the parallel structure in which the furfural plane, while slightly distorted, is parallel to the Pd surface. Analysis of the bondlength fluctuations indicates that the C-H bond is the aldehyde group of a furfural molecule is likely to be broken first, while the C =O bond has a tendency to be isolated as CO. Our results show that the reaction of decarbonylation dominates, consistent with the experimental measurements. Supported by DOE (DE-SC0004600). Simulations and calculations were performed on XSEDE's and NERSC's supercomputers.

  4. Enantioselective construction of quaternary N-heterocycles by palladium-catalysed decarboxylative allylic alkylation of lactams

    KAUST Repository

    Behenna, Douglas C.

    2011-12-18

    The enantioselective synthesis of nitrogen-containing heterocycles (N-heterocycles) represents a substantial chemical research effort and resonates across numerous disciplines, including the total synthesis of natural products and medicinal chemistry. In this Article, we describe the highly enantioselective palladium-catalysed decarboxylative allylic alkylation of readily available lactams to form 3,3-disubstituted pyrrolidinones, piperidinones, caprolactams and structurally related lactams. Given the prevalence of quaternary N-heterocycles in biologically active alkaloids and pharmaceutical agents, we envisage that our method will provide a synthetic entry into the de novo asymmetric synthesis of such structures. As an entry for these investigations we demonstrate how the described catalysis affords enantiopure quaternary lactams that intercept synthetic intermediates previously used in the synthesis of the Aspidosperma alkaloids quebrachamine and rhazinilam, but that were previously only available by chiral auxiliary approaches or as racemic mixtures. © 2012 Macmillan Publishers Limited. All rights reserved.

  5. Nano-catalysts for upgrading bio-oil: Catalytic decarboxylation and hydrodeoxygenation

    Science.gov (United States)

    Uemura, Yoshimitsu; Tran, Nga T. T.; Naqvi, Salman Raza; Nishiyama, Norikazu

    2017-09-01

    Bio-oil is a mixture of oxygenated chemicals produced by fast pyrolysis of lignocellulose, and has attracted much attention recently because the raw material is renewable. Primarily, bio-oil can be used as a replacement of heavy oil. But it is not highly recommended due to bio-oil's inferior properties: high acidity and short shelf life. Upgrading of bio-oil is therefore one of the important technologies nowadays, and is categorized into the two: (A) decrarboxylation/decarbonylation by solid acid catalysts and (B) hydrodeoxygenation (HDO) by metallic catalysts. In our research group, decarboxylation of bio-oil by zeolites and HDO of guaiacol (a model compound of bio-oil) have been investigated. In this paper, recent developments of these upgrading reactions in our research group will be introduced.

  6. Decarbonylative Phosphorylation of Amides by Palladium and Nickel Catalysis: The Hirao Cross-Coupling of Amide Derivatives.

    Science.gov (United States)

    Liu, Chengwei; Szostak, Michal

    2017-10-02

    Considering the ubiquity of organophosphorus compounds in organic synthesis, pharmaceutical discovery agrochemical crop protection and materials chemistry, new methods for their construction hold particular significance. A conventional method for the synthesis of C-P bonds involves cross-coupling of aryl halides and dialkyl phosphites (the Hirao reaction). We report a catalytic deamidative phosphorylation of a wide range of amides using a palladium or nickel catalyst giving aryl phosphonates in good to excellent yields. The present method tolerates a wide range of functional groups. The reaction constitutes the first example of a transition-metal-catalyzed generation of C-P bonds from amides. This redox-neutral protocol can be combined with site-selective conventional cross-coupling for the regioselective synthesis of potential pharmacophores. Mechanistic studies suggest an oxidative addition/transmetallation pathway. In light of the importance of amides and phosphonates as synthetic intermediates, we envision that this Pd and Ni-catalyzed C-P bond forming method will find broad application. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Method for Measurement of Multi-Degrees-of-Freedom Motion Parameters Based on Polydimethylsiloxane Cross-Coupling Diffraction Gratings

    Science.gov (United States)

    Duan, Junping; Zhu, Qiang; Qian, Kun; Guo, Hao; Zhang, Binzhen

    2017-08-01

    This work presents a multi-degrees-of-freedom motion parameter measurement method based on the use of cross-coupling diffraction gratings that were prepared on the two sides of a polydimethylsiloxane (PDMS) substrate using oxygen plasma processing technology. The laser beam that travels pass the cross-coupling optical grating would be diffracted into a two-dimensional spot array. The displacement and the gap size of the spot-array were functions of the movement of the laser source, as explained by the Fraunhofer diffraction effect. A 480 × 640 pixel charge-coupled device (CCD) was used to acquire images of the two-dimensional spot-array in real time. A proposed algorithm was then used to obtain the motion parameters. Using this method and the CCD described above, the resolutions of the displacement and the deflection angle were 0.18 μm and 0.0075 rad, respectively. Additionally, a CCD with a higher pixel count could improve the resolutions of the displacement and the deflection angle to sub-nanometer and micro-radian scales, respectively. Finally, the dynamic positions of hovering rotorcraft have been tracked and checked using the proposed method, which can be used to correct the craft's position and provide a method for aircraft stabilization in the sky.

  8. Hydrocarbon fuels from gas phase decarboxylation of hydrolyzed free fatty acid

    KAUST Repository

    Wang, Weicheng

    2012-01-01

    Gas phase decarboxylation of hydrolyzed free fatty acid (FFA) from canola oil has beeninvestigated in two fix-bed reactors by changing reaction parameters such as temperatures,FFA feed rates, and H 2-to-FFA molar ratios. FFA, which contains mostly C 18 aswell as a few C 16, C 20, C 22, and C 24 FFA, was fed into the boiling zone, evaporated, carriedby hydrogen flow at the rate of 0.5-20 ml/min, and reacted with the 5% Pd/C catalystin the reactor. Reactions were conducted atmospherically at 380-450 °C and the products,qualified and quantified through gas chromatography-flame ionization detector(GC-FID), showed mostly n-heptadecane and a few portion of n-C 15, n-C 19, n-C 21, n-C 23 as well as some cracking species. Results showed that FFA conversion increased withincreasing reaction temperatures but decreased with increasing FFA feed rates and H 2-to-FFA molar ratios. The reaction rates were found to decrease with higher temperatureand increase with higher H 2 flow rates. Highly selective heptadecane was achieved byapplying higher temperatures and higher H 2-to-FFA molar ratios. From the results, ascatalyst loading and FFA feed rate were fixed, an optimal reaction temperature of 415 °C as well as H 2-to-FFA molar ratio of 4.16 were presented. These results provided goodbasis for studying the kinetics of decarboxylation process. © 2012 American Society of Mechanical Engineers.

  9. Terminal Alkene Formation by the Thioesterase of Curacin A Biosynthesis: Structure of a Decarboxylating Thioesterase

    Energy Technology Data Exchange (ETDEWEB)

    Gehret, Jennifer J.; Gu, Liangcai; Gerwick, William H.; Wipf, Peter; Sherman, David H.; Smith, Janet L. (Pitt); (Michigan); (UCSD)

    2011-11-07

    Curacin A is a polyketide synthase (PKS)-non-ribosomal peptide synthetase-derived natural product with potent anticancer properties generated by the marine cyanobacterium Lyngbya majuscula. Type I modular PKS assembly lines typically employ a thioesterase (TE) domain to off-load carboxylic acid or macrolactone products from an adjacent acyl carrier protein (ACP) domain. In a striking departure from this scheme the curacin A PKS employs tandem sulfotransferase and TE domains to form a terminal alkene moiety. Sulfotransferase sulfonation of {beta}-hydroxy-acyl-ACP is followed by TE hydrolysis, decarboxylation, and sulfate elimination (Gu, L., Wang, B., Kulkarni, A., Gehret, J. J., Lloyd, K. R., Gerwick, L., Gerwick, W. H., Wipf, P., Hakansson, K., Smith, J. L., and Sherman, D. H. (2009) J. Am. Chem. Soc. 131, 16033-16035). With low sequence identity to other PKS TEs (<15%), the curacin TE represents a new thioesterase subfamily. The 1.7-{angstrom} curacin TE crystal structure reveals how the familiar {alpha}/{beta}-hydrolase architecture is adapted to specificity for {beta}-sulfated substrates. A Ser-His-Glu catalytic triad is centered in an open active site cleft between the core domain and a lid subdomain. Unlike TEs from other PKSs, the lid is fixed in an open conformation on one side by dimer contacts of a protruding helix and on the other side by an arginine anchor from the lid into the core. Adjacent to the catalytic triad, another arginine residue is positioned to recognize the substrate {beta}-sulfate group. The essential features of the curacin TE are conserved in sequences of five other putative bacterial ACP-ST-TE tridomains. Formation of a sulfate leaving group as a biosynthetic strategy to facilitate acyl chain decarboxylation is of potential value as a route to hydrocarbon biofuels.

  10. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules

    KAUST Repository

    Guo, Lin

    2018-04-13

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel

  11. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules.

    Science.gov (United States)

    Guo, Lin; Rueping, Magnus

    2018-05-15

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel

  12. Decarbonylative Cross-Couplings: Nickel Catalyzed Functional Group Interconversion Strategies for the Construction of Complex Organic Molecules

    KAUST Repository

    Guo, Lin; Rueping, Magnus

    2018-01-01

    The utilization of carboxylic acid esters as electrophiles in metal-catalyzed cross-coupling reactions is increasingly popular, as environmentally friendly and readily available ester derivatives can be powerful alternatives to the commonly used organohalides. However, key challenges associated with the use of these chemicals remain to be addressed, including the stability of ester substrates and the high energy barrier associated with their oxidative addition to low-valent metal species. Due to recent developments in nickel catalysis that make it easier to perform oxidative additions, chemists have become interested in applying less reactive electrophiles as coupling counterparts in nickel-catalyzed transformations. Hence, our group and others have independently investigated various ester group substitutions and functionalizations enabled by nickel catalysis. Such methods are of great interest as they enable the exchange of ester groups, which can be used as directing groups in metal-catalyzed C-H functionalizations prior to their replacement. Here, we summarize our recent efforts toward the development of nickel-catalyzed decarbonylative cross-coupling reactions of carboxylic esters. Achievements accomplished by other groups in this area are also included. To this day, a number of new transformations have been successfully developed, including decarbonylative arylations, alkylations, cyanations, silylations, borylations, aminations, thioetherifications, stannylations, and hydrogenolysis reactions. These transformations proceed via a nickel-catalyzed decarbonylative pathway and have shown a high degree of reactivity and chemoselectivity, as well as several other unique advantages in terms of substrate availability, due to the use of esters as coupling partners. Although the mechanisms of these reactions have not yet been fully understood, chemists have already provided some important insights. For example, Yamamoto explored the stoichiometric nickel

  13. Decarboxylation Study of Acidic Cannabinoids: A Novel Approach Using Ultra-High-Performance Supercritical Fluid Chromatography/Photodiode Array-Mass Spectrometry

    Science.gov (United States)

    Wang, Mei; Wang, Yan-Hong; Avula, Bharathi; Radwan, Mohamed M.; Wanas, Amira S.; van Antwerp, John; Parcher, Jon F.; ElSohly, Mahmoud A.; Khan, Ikhlas A.

    2016-01-01

    Abstract Introduction: Decarboxylation is an important step for efficient production of the major active components in cannabis, for example, Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabigerol (CBG). These cannabinoids do not occur in significant concentrations in cannabis but can be formed by decarboxylation of their corresponding acids, the predominant cannabinoids in the plant. Study of the kinetics of decarboxylation is of importance for phytocannabinoid isolation and dosage formulation for medical use. Efficient analytical methods are essential for simultaneous detection of both neutral and acidic cannabinoids. Methods: C. sativa extracts were used for the studies. Decarboxylation conditions were examined at 80°C, 95°C, 110°C, 130°C, and 145°C for different times up to 60 min in a vacuum oven. An ultra-high performance supercritical fluid chromatography/photodiode array-mass spectrometry (UHPSFC/PDA-MS) method was used for the analysis of acidic and neutral cannabinoids before and after decarboxylation. Results: Decarboxylation at different temperatures displayed an exponential relationship between concentration and time indicating a first-order or pseudo-first-order reaction. The rate constants for Δ9-tetrahydrocannabinolic acid-A (THCA-A) were twice those of the cannabidiolic acid (CBDA) and cannabigerolic acid (CBGA). Decarboxylation of THCA-A was forthright with no side reactions or by-products. Decarboxylation of CBDA and CBGA was not as straightforward due to the unexplained loss of reactants or products. Conclusion: The reported UHPSFC/PDA-MS method provided consistent and sensitive analysis of phytocannabinoids and their decarboxylation products and degradants. The rate of change of acidic cannabinoid concentrations over time allowed for determination of rate constants. Variations of rate constants with temperature yielded values for reaction energy. PMID:28861498

  14. A Versatile Route to Unstable Diazo Compounds via Oxadiazolines and their Use in Aryl-Alkyl Cross-Coupling Reactions.

    Science.gov (United States)

    Greb, Andreas; Poh, Jian-Siang; Greed, Stephanie; Battilocchio, Claudio; Pasau, Patrick; Blakemore, David C; Ley, Steven V

    2017-12-22

    Coupling of readily available boronic acids and diazo compounds has emerged recently as a powerful metal-free carbon-carbon bond forming method. However, the difficulty in forming the unstable diazo compound partner in a mild fashion has hitherto limited their general use and the scope of the transformation. Here, we report the application of oxadiazolines as precursors for the generation of an unstable family of diazo compounds using flow UV photolysis and their first use in divergent protodeboronative and oxidative C(sp 2 )-C(sp 3 ) cross-coupling processes, with excellent functional-group tolerance. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters.

    Science.gov (United States)

    Thomas, Bryce N; Moon, Patrick J; Yin, Shengkang; Brown, Alex; Lundgren, Rylan J

    2018-01-07

    A well-defined Ir-allyl complex catalyzes the Z -selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E -products typically observed in metal-mediated coupling reactions to enable the synthesis of Z , E -dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir-carbene and Ir-allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E-H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt 3 .

  16. QuadraPure-Supported Palladium Nanocatalysts for Microwave-Promoted Suzuki Cross-Coupling Reaction under Aerobic Condition

    Directory of Open Access Journals (Sweden)

    Kin Hong Liew

    2014-01-01

    Full Text Available Cross-linked resin-captured palladium (XL-QPPd was readily prepared by simple physical adsorption onto the high loading QuadraPure macroporous resin and a subsequent reduction process. To enhance the mechanical stability, entrapped palladium nanocatalysts were cross-linked with succinyl chloride. Both transmission electron microscopy images and X-ray diffraction analysis revealed that the palladium nanoparticles were well dispersed with diameters ranging in 4–10 nm. The catalyst performed good catalytic activity in microwave-promoted Suzuki cross-coupling reactions in water under aerobic condition with mild condition by using various aryl halides and phenylboronic acid. In addition, the catalyst showed an excellent recyclability without significant loss of catalytic activity.

  17. Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition

    International Nuclear Information System (INIS)

    Zielinski, M.; Zielinska, A.; Papiernik-Zielinska, H.; McKenzie, J.A.; Bernasconi, S.; Paul, H.

    1998-01-01

    Carbon-13 and oxygen-18 isotope effects in the decarboxylation of nicotinic acid of natural isotopic composition above and below its melting temperature have been studied and compared with the primary (PKIE) and secondary kinetic isotope effects (SKIE) of 13 C and 18 O, respectively, in the decarboxylation of other heterocyclic acids. The temperature dependence of the secondary oxygen-18 isotope effects is negative in the total 221-255 deg C temperature interval investigated initially. The 13 C KIE measured above melting point of N.A. (temperature interval 235-270 deg C) are located in the range 1.007-1.009. Below melting point of nicotinic acid the 13 C KIE are larger and reveal the negative temperature dependence ( 13 C KIE decreases with decreasing the reaction temperature from 1.013/at 230 deg C to 1.0114/at 221 deg C). A discussion of the above isotopic results is presented. (author)

  18. Formation of Ketenimines via the Palladium-Catalyzed Decarboxylative π-Allylic Rearrangement of N-Alloc Ynamides.

    Science.gov (United States)

    Alexander, Juliana R; Cook, Matthew J

    2017-11-03

    A new approach for the formation of ketenimines via a decarboxylative allylic rearrangement pathway that does not require strong stabilizing or protecting groups has been developed. The products can be readily hydrolyzed into their corresponding secondary amides or reacted with sulfur ylides to perform an additional [2,3]-Wittig process. Mechanistic studies suggest an outer-sphere process in which reductive alkylation is rate-limiting.

  19. Generation of a Proton Motive Force by Histidine Decarboxylation and Electrogenic Histidine/Histamine Antiport in Lactobacillus buchneri

    OpenAIRE

    Molenaar, Douwe; Bosscher, Jaap S.; Brink, Bart ten; Driessen, Arnold J.M.; Konings, Wil N.

    1993-01-01

    Lactobacillus buchneri ST2A vigorously decarboxylates histidine to the biogenic amine histamine, which is excreted into the medium. Cells grown in the presence of histidine generate both a transmembrane pH gradient, inside alkaline, and an electrical potential (delta psi), inside negative, upon addition of histidine. Studies of the mechanism of histidine uptake and histamine excretion in membrane vesicles and proteoliposomes devoid of cytosolic histidine decarboxylase activity demonstrate tha...

  20. Oxidative decarboxylation of glycolic and phenylacetic acids with cerium(4) catalyzed by silver ions in the sulfuric acid media

    International Nuclear Information System (INIS)

    Venkatesvar Rao, G.; Nagardzhun Rao, Ch.; Sajprakash, P.K.

    1981-01-01

    Oxidative decarboxylation of glycolic and phenylacetic acids by cerium (4) in the presence of Ag + ions is studied. The Ce(4) order equals 1, glycolic acid order in the absence of a catalyst also equals 1 and is fractional (0.5) for a catalytic reaction. The phenylacetic acid order is fractional (0.75). The Ag + ion reaction order is fractional and constitutes 0.32 for glycolic and 0.36 for phenylacetic acids. The reaction mechanism is proposed [ru

  1. Palladium-Catalyzed Decarboxylative γ-Olefination of 2,5-Cyclohexadiene-1-carboxylic Acid Derivatives with Vinyl Halides.

    Science.gov (United States)

    Chang, Chi-Hao; Chou, Chih-Ming

    2018-04-06

    This study explores a Pd-catalyzed decarboxylative Heck-type Csp 3 -Csp 2 coupling reaction of 2,5-cyclohexadiene-1-carboxylic acid derivatives with vinyl halides to provide γ-olefination products. The olefinated 1,3-cyclohexadienes can be further oxidized to produce meta-alkylated stilbene derivatives. Additionally, the conjugated diene products can also undergo a Diels-Alder reaction to produce a bicyclo[2.2.2]octadiene framework.

  2. Cyclic aldimines as superior electrophiles for Cu-catalyzed decarboxylative Mannich reaction of β-ketoacids with a broad scope and high enantioselectivity.

    Science.gov (United States)

    Zhang, Heng-Xia; Nie, Jing; Cai, Hua; Ma, Jun-An

    2014-05-02

    A novel Cu-catalyzed enantioselective decarboxylative Mannich reaction of cyclic aldimines with β-ketoacids is described. The cyclic structure of these aldimines, in which the C═N bond is constrained in the Z geometry, appears to be important, allowing Mannich condensation to proceed in high yields with excellent enantioselectivities. A chiral chroman-4-amine was synthesized from the decarboxylative Mannich product in several steps without loss of enantioselectivity.

  3. Green diesel production via catalytic hydrogenation/decarboxylation of triglycerides and fatty acids of vegetable oil and brown grease

    Science.gov (United States)

    Sari, Elvan

    Increase in the petroleum prices, projected increases in the world's energy demand and environmental awareness have shifted the research interest to the alternative fuel technologies. In particular, green diesel, vegetable oil/animal fat/waste oil and grease derived hydrocarbons in diesel boiling range, has become an attractive alternative to biodiesel---a mixture of fatty acid methyl esters, particularly due to its superior fuel properties that are similar to petroleum diesel. Hence, green diesel can be used as a drop-in fuel in the current diesel engines. The current technology for production of green diesel-hydrodeoxygenation of triglycerides and fatty acids over conventional hydrotreating catalysts suffers from fast catalyst deactivation in the absence of hydrogen combined with high temperatures and high fatty acid content in the feedstock. Additionally, excess hydrogen requirement for hydrodeoxygenation technique leads to high production costs. This thesis proposes a new technology-selective decarboxylation of brown grease, which is a mixture of fats and oils collected from waste water trap and rich in fatty acids, over a supported noble metal catalyst that overcomes the green diesel production challenges. In contrast to other feedstocks used for liquid biofuel production, brown grease is inexpensive and non-food competing feedstock, therefore the process finds solution to waste management issues, reduces the renewable fuel production cost and does not add to the global food shortage problems. Special catalyst formulations were developed to have a high activity and stability in the absence of hydrogen in the fatty acid decarboxylation process. The study shows how catalyst innovations can lead to a new technology that overcomes the process challenges. First, the effect of reaction parameters on the activity and the selectivity of brown grease decarboxylation with minimum hydrogen consumption over an activated carbon supported palladium catalyst were

  4. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri.

    Science.gov (United States)

    Molenaar, D; Bosscher, J S; ten Brink, B; Driessen, A J; Konings, W N

    1993-05-01

    Lactobacillus buchneri ST2A vigorously decarboxylates histidine to the biogenic amine histamine, which is excreted into the medium. Cells grown in the presence of histidine generate both a transmembrane pH gradient, inside alkaline, and an electrical potential (delta psi), inside negative, upon addition of histidine. Studies of the mechanism of histidine uptake and histamine excretion in membrane vesicles and proteoliposomes devoid of cytosolic histidine decarboxylase activity demonstrate that histidine uptake, histamine efflux, and histidine/histamine exchange are electrogenic processes. Histidine/histamine exchange is much faster than the unidirectional fluxes of these substrates, is inhibited by an inside-negative delta psi and is stimulated by an inside positive delta psi. These data suggest that the generation of metabolic energy from histidine decarboxylation results from an electrogenic histidine/histamine exchange and indirect proton extrusion due to the combined action of the decarboxylase and carrier-mediated exchange. The abundance of amino acid decarboxylation reactions among bacteria suggests that this mechanism of metabolic energy generation and/or pH regulation is widespread.

  5. Catalytic effect of different reactor materials under subcritical water conditions: decarboxylation of cysteic acid into taurine

    Science.gov (United States)

    Faisal, M.

    2018-03-01

    In order to understand the influence of reactor materials on the catalytic effect for a particular reaction, the decomposition of cysteic acid from Ni/Fe-based alloy reactors under subcritical water conditions was examined. Experiments were carried out in three batch reactors made of Inconel 625, Hastelloy C-22 and SUS 316 over temperatures of 200 to 300 °C. The highest amount of eluted metals was found for SUS 316. The results demonstrated that reactor materials contribute to the resulting product. Under the tested conditions, cysteic acid decomposes readily with SUS 316. However, the Ni-based materials (Inconel 625 and Hastelloy C-22) show better resistance to metal elution. It was found that among the materials used in this work, SUS 316 gave the highest reaction rate constant of 0.1934 s‑1. The same results were obtained at temperatures of 260 and 300 °C. Investigation of the Arrhenius activation energy revealed that the highest activation energy was for Hastelloy C-22 (109 kJ/mol), followed by Inconel 625 (90 kJ/mol) and SUS 316 (70 kJ/mol). The decomposition rate of cysteic acid was found to follow the results for the trend of the eluted metals. Therefore, it can be concluded that the decomposition of cysteic acid was catalyzed by the elution of heavy metals from the surface of the reactor. The highest amount of taurine from the decarboxylation of cysteic acid was obtained from SUS 316.

  6. Analysis of cannabinoids in commercial hemp seed oil and decarboxylation kinetics studies of cannabidiolic acid (CBDA).

    Science.gov (United States)

    Citti, Cinzia; Pacchetti, Barbara; Vandelli, Maria Angela; Forni, Flavio; Cannazza, Giuseppe

    2018-02-05

    Hemp seed oil from Cannabis sativa L. is a very rich natural source of important nutrients, not only polyunsaturated fatty acids and proteins, but also terpenes and cannabinoids, which contribute to the overall beneficial effects of the oil. Hence, it is important to have an analytical method for the determination of these components in commercial samples. At the same time, it is also important to assess the safety of the product in terms of amount of any psychoactive cannabinoid present therein. This work presents the development and validation of a highly sensitive, selective and rapid HPLC-UV method for the qualitative and quantitative determination of the main cannabinoids, namely cannabidiolic acid (CBDA), tetrahydrocannabinolic acid (THCA), cannabidiol (CBD), tetrahydrocannabinol (THC), cannabinol (CBN), cannabigerol (CBG) and cannabidivarin (CBDV), present in 13 commercial hemp seed oils. Moreover, since decomposition of cannabinoid acids generally occurs with light, air and heat, decarboxylation studies of the most abundant acid (CBDA) were carried out in both open and closed reactor and the kinetics parameters were evaluated at different temperatures in order to evaluate the stability of hemp seed oil in different storage conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Spectral and Mechanistic Investigation of Oxidative Decarboxylation of Phenylsulfinylacetic Acid by Cr(VI)

    International Nuclear Information System (INIS)

    Subramaniam, Perumal; Selvi, Natesan Thamil; Devi, Soundarapandian Sugirtha

    2014-01-01

    The oxidative decarboxylation of phenylsulfinylacetic acid (PSAA) by Cr(VI) in 20% acetonitrile . 80% water (v/v) medium follows overall second order kinetics, first order each with respect to [PSAA] and [Cr(VI)] at constant [H + ] and ionic strength. The reaction is acid catalysed, the order with respect to [H + ] is unity and the active oxidizing species is found to be HCrO 3 + . The reaction mechanism involves the rate determining nucleophilic attack of sulfur atom of PSAA on chromium of HCrO 3 + forming a sulfonium ion intermediate. The intermediate then undergoes α,β-cleavage leading to the liberation of CO 2 . The product of the reaction is found to be methyl phenyl sulfone. The operation of substituent effect shows that PSAA containing electron-releasing groups in the meta- and para-positions accelerate the reaction rate while electron withdrawing groups retard the rate. An excellent correlation is found to exist between log k 2 and Hammett σ constants with a negative value of reaction constant. The ρ value decreases with increase in temperature evidencing the high reactivity and low selectivity in the case of substituted PSAAs

  8. Enantioselective Copper-Catalyzed Oxy-Alkynylation of Diazo Compounds.

    Science.gov (United States)

    Hari, Durga Prasad; Waser, Jerome

    2017-06-28

    Enantioselective catalytic methods allowing the addition of both a nucleophile and an electrophile onto diazo compounds give a fast access into important building blocks. Herein, we report the highly enantioselective oxyalkynylation of diazo compounds using ethynylbenziodoxol-(on)e reagents and a simple copper bisoxazoline catalyst. The obtained α-benzoyloxy propargylic esters are useful building blocks, which are difficult to synthesize in enantiopure form using other methods. The obtained products could be efficiently transformed into vicinal diols and α-hydroxy propargylic esters without loss in enantiopurity.

  9. Dimethylglyoxime as an efficient ligand for copper-catalyzed ...

    Indian Academy of Sciences (India)

    SURESH S SHENDAGE

    2018-02-07

    Feb 7, 2018 ... Phenols play key role in production of natural products, pharmaceutical and ... than 90% of the world's phenol requirement is satisfied by the Hock process, ... thesis the development of a mild, general and highly efficient method for .... will attract much attention in research because of their wide applications ...

  10. Copper-catalyzed selective hydroamination reactions of alkynes

    Science.gov (United States)

    Shi, Shi-Liang; Buchwald, Stephen L.

    2014-01-01

    The development of selective reactions that utilize easily available and abundant precursors for the efficient synthesis of amines is a longstanding goal of chemical research. Despite the centrality of amines in a number of important research areas, including medicinal chemistry, total synthesis and materials science, a general, selective, and step-efficient synthesis of amines is still needed. In this work we describe a set of mild catalytic conditions utilizing a single copper-based catalyst that enables the direct preparation of three distinct and important amine classes (enamines, α-chiral branched alkylamines, and linear alkylamines) from readily available alkyne starting materials with high levels of chemo-, regio-, and stereoselectivity. This methodology was applied to the asymmetric synthesis of rivastigmine and the formal synthesis of several other pharmaceutical agents, including duloxetine, atomoxetine, fluoxetine, and tolterodine. PMID:25515888

  11. Copper-Catalyzed Synthesis of Mixed Alkyl Aryl Phosphonates

    NARCIS (Netherlands)

    Fañanás-Mastral, Martín; Feringa, Ben L

    2014-01-01

    Copper-catalysis allows the direct oxygenarylation of dialkyl phosphonates with diaryliodonium salts. This novel methodology proceeds with a wide range of phosphonates and phosphoramidates under mild conditions and gives straightforward access to valuable mixed alkyl aryl phosphonates in very good

  12. Synthesis of (purin-6-yl)acetates and 6-(2-hydroxyethyl)purines via cross-couplings of 6-chloropurines with the Reformatsky reagent

    Czech Academy of Sciences Publication Activity Database

    Hasník, Zbyněk; Šilhár, Peter; Hocek, Michal

    2007-01-01

    Roč. 48, č. 32 (2007), s. 5589-5592 ISSN 0040-4039 R&D Projects: GA MŠk 1M0508; GA AV ČR 1QS400550501 Institutional research plan: CEZ:AV0Z40550506 Keywords : purines * nucleosides * cross-coupling reactions Subject RIV: CC - Organic Chemistry Impact factor: 2.615, year: 2007

  13. Pyrazine-functionalized calix[4]arenes: synthesis by palladium-catalyzed cross-coupling with phosphorus pronucleophiles and metal ion extraction properties

    NARCIS (Netherlands)

    Nikishkin, N.; Huskens, Jurriaan; Ansari, S.A.; Mohapatra, P.K.; Verboom, Willem

    2013-01-01

    A series of pyrazine-based calix[4]arene extractants was prepared by a stepwise functionalization, comprising palladium-catalyzed exhaustive cross-coupling of di- and tetrasubstituted calix[4]arenes bearing chloropyrazine moieties. The extraction behavior of the synthesized ligands was studied on

  14. Synthesis of 2'-deoxyadenosine nucleosides bearing bipyridine-type ligands and their Ru-complexes in position 8 through cross-coupling reactions

    Czech Academy of Sciences Publication Activity Database

    Vrábel, Milan; Pohl, Radek; Klepetářová, Blanka; Votruba, Ivan; Hocek, Michal

    2007-01-01

    Roč. 5, č. 17 (2007), s. 2849-2857 ISSN 1477-0520 R&D Projects: GA MŠk LC512; GA ČR GA203/05/0043 Institutional research plan: CEZ:AV0Z40550506 Keywords : nucleosides * purines * cross-coupling * ruthenium Subject RIV: CC - Organic Chemistry Impact factor: 3.167, year: 2007

  15. Synthesis of hexahydropyrrolo[2,1-a]isoquinoline compound libraries through a Pictet–Spengler cyclization/metal-catalyzed cross coupling/amidation sequence

    DEFF Research Database (Denmark)

    Petersen, Rico; Cohrt, A. Emil; Petersen, Michael Åxman

    2015-01-01

    incorporating two handles for diversification, were synthesized through an oxidative cleavage/Pictet–Spengler reaction sequence in high overall yields. A subsequent metal-catalyzed cross coupling/amidation protocol was developed and its utility in library synthesis was validated by construction of a 20-membered...

  16. Oxidative Photoredox-Catalytic Activation of Aliphatic Nucleophiles for C(sp3)-C(sp2) Cross-Coupling Reactions

    Czech Academy of Sciences Publication Activity Database

    Jahn, Emanuela; Jahn, Ullrich

    2014-01-01

    Roč. 53, č. 49 (2014), s. 13326-13328 ISSN 1433-7851 Institutional support: RVO:61388963 Keywords : amino acids * cross - coupling * nickel * persistent radical effect * photoredox catalysis Subject RIV: CC - Organic Chemistry Impact factor: 11.261, year: 2014

  17. Preparation of 5-acyl- and 5-aryl-substituted 1-(benzyloxy)pyrazoles via directed ortho-lithiation/transmetalation and palladium catalyzed cross- coupling

    DEFF Research Database (Denmark)

    Kristensen, Jesper Langgaard; Begtrup, M.; Vedsø, P.

    1998-01-01

    Palladium(0) catalyzed cross-coupling of 1-(benzyloxy)pyrazol-5-ylzinc halides 3a,b, prepared by transmetalation of 1-(benzyloxy)-5-lithiopyrazole (2), with acyl chlorides produced 5 acyl-1-(benzyloxy)pyrazoles 4a-d in high yields. Similar coupling of the pyrazol-5-ylzinc halide with amino-, hydr...

  18. Cationic Pd(II-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies

    Directory of Open Access Journals (Sweden)

    Takashi Nishikata

    2016-05-01

    Full Text Available Cationic palladium(II complexes have been found to be highly reactive towards aromatic C–H activation of arylureas at room temperature. A commercially available catalyst [Pd(MeCN4](BF42 or a nitrile-free cationic palladium(II complex generated in situ from the reaction of Pd(OAc2 and HBF4, effectively catalyzes C–H activation/cross-coupling reactions between aryl iodides, arylboronic acids and acrylates under milder conditions than those previously reported. The nature of the directing group was found to be critical for achieving room temperature conditions, with the urea moiety the most effective in promoting facile coupling reactions at an ortho C–H position. This methodology has been utilized in a streamlined and efficient synthesis of boscalid, an agent produced on the kiloton scale annually and used to control a range of plant pathogens in broadacre and horticultural crops. Mechanistic investigations led to a proposed catalytic cycle involving three steps: (1 C–H activation to generate a cationic palladacycle; (2 reaction of the cationic palladacycle with an aryl iodide, arylboronic acid or acrylate, and (3 regeneration of the active cationic palladium catalyst. The reaction between a cationic palladium(II complex and arylurea allowed the formation and isolation of the corresponding palladacycle intermediate, characterized by X-ray analysis. Roles of various additives in the stepwise process have also been studied.

  19. Guidelines on the Switch Transistors Sizing Using the Symbolic Description for the Cross-Coupled Charge Pump

    Directory of Open Access Journals (Sweden)

    J. Marek

    2017-09-01

    Full Text Available This paper presents a symbolic description of the design process of the switch transistors for the cross- coupled charge pump applications. Discrete-time analog circuits are usually designed by the numerical algorithms in the professional simulator software which can be an extremely time-consuming process in contrast to described analytical procedure. The significant part of the pumping losses is caused by the reverse current through the switch transistors due to continuous-time voltage change on the main capacitors. Design process is based on the analytical expression of the time response characteristics of the pump stage as an analog system with using BSIM model equations. The main benefit of the article is the analytical transistors sizing formula, so that the maximum voltage gain is achieved. The diode transistor is dimensioned for the pump requirements, as the maximal pump output ripple voltage, current, etc. The characteristics of the proposed circuit has been verified by simulation in ELDO Spice. Results are valid for N-stage charge pump and also applicable for other model equations as PSP, EKV.

  20. A green-LED driven source of hydrated electrons characterized from microseconds to hours and applied to cross couplings.

    Science.gov (United States)

    Naumann, Robert; Goez, Martin

    2018-03-12

    We present a novel photoredox catalytic system that delivers synthetically useable concentrations of hydrated electrons when illuminated with a green light-emitting diode (LED). The catalyst is a ruthenium complex protected by an anionic micelle, and the urate dianion serves as sacrificial donor confined to the aqueous bulk. Through its chemical properties, that donor not only suppresses charge recombination that would limit the electron yield but also enables this system to perform cross couplings via hydrated electrons, for which we report the first examples. We have investigated the kinetics of all the steps involving the electron and its direct precursor in a comparative study by using laser flash photolysis and by monitoring product formation during LED photolysis. Despite the differences in timescales, each approach on its own already gives a complete picture of the reaction over a temporal range ten orders of magnitude wide. Noticeable discrepancies between the kinetic parameters obtained with the two complementary techniques can be rationalized with the slow secondary chemistry of the system; they reveal that the product-based method provides a more accurate description because it responds also to the changes of the system composition during a synthesis; hence, they demonstrate that in complex systems the timescale of the experimental observation should be matched to that of the actual application. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A Colorimetric Chemodosimeter for Pd(II): A Method for Detecting Residual Palladium in Cross-Coupling Reactions

    Science.gov (United States)

    Houk, Ronald J. T.; Wallace, Karl J.; Hewage, Himali S.; Anslyn, Eric V.

    2008-01-01

    A colorimetric chemodosimeter (SQ1) for the detection of trace palladium salts in cross-coupling reactions mediated by palladium is described. Decolorization of SQ1 is affected by nucleophilic attack of ethanethiol in basic DMSO solutions. Thiol addition is determined to have an equilibrium constant (Keq) of 2.9 × 106 M-1, with a large entropic and modest enthalpic driving force. This unusual result is attributed to solvent effects arising from a strong coordinative interaction between DMSO and the parent squaraine. Palladium detection is achieved through thiol scavenging from the SQ1-ethanethiol complex leading to a color “turn-on” of the parent squaraine. It was found that untreated samples obtained directly from Suzuki couplings showed no response to the assay. However, treatment of the samples with aqueous nitric acid generates a uniform Pd(NO3)2 species, which gives an appropriate response. “Naked-eye” detection of Pd(NO3)2 was estimated to be as low as 0.5 ppm in solution, and instrument-based detection was tested as low as 100 ppb. The average error over the working range of the assay was determined to be 7%. PMID:19122841

  2. Further studies on beam breakup growth reduction by cavity cross-couplings in recirculating accelerators: Effects of long pulse length and multiturn recirculation

    International Nuclear Information System (INIS)

    Colombant, D.; Lau, Y.Y.

    1992-01-01

    Cavity cross-coupling was recently found to reduce beam breakup (BBU) growth in a recirculating accelerator known as the Spiral Line Induction Accelerator (SLIA). Here, we extend the analysis in two prespects: ong beam pulse lengths and a SLIA upgrade geometry which accelerates a 10 kA, 35 ns beam to 25 MeV via a 70 cavity, 7 turn recirculation. We found that when the beam pulse length τ exceeds the beam's transit time τ' between cross-coupled cavities, BBU growth may be worsened as a result of the cross-coupling among cavities. This situation is not unlike other long pulse recirculating accelerators where beam recirculation leads to beam breakup of a regenerative type. Thus, the advantage of BBU reduction by cavity cross-coupling is restricted primarily to beams with τ<τ', a condition envisioned for all SLIA geometries. For the 70 gap, 7 turn SLIA upgrade, we found that cavity cross-coupling may reduce BBU growth up to factors of a thousand when the quality factor Q of the deflecting modes are relatively high (like 100). In these high Q cases, the amount of growth reduction depends on the arrangement and sequence of beam recirculation. For Q < or approx. 20, BBU growth reduction by factors of hundreds is observed, but this reduction is insensitive to the sequence of beam recirculation. The above conclusions were based on simple models of cavity coupling that have been used in conventional microwave literature. Not addressed is the detail design consideration that leads to the desired degree of cavity coupling. (orig.)

  3. A control approach to cross-coupling compensation of piezotube scanners in tapping-mode atomic force microscope imaging.

    Science.gov (United States)

    Wu, Ying; Shi, Jian; Su, Chanmin; Zou, Qingze

    2009-04-01

    In this article, an approach based on the recently developed inversion-based iterative control (IIC) to cancel the cross-axis coupling effect of piezoelectric tube scanners (piezoscanners) in tapping-mode atomic force microscope (AFM) imaging is proposed. Cross-axis coupling effect generally exists in piezoscanners used for three-dimensional (x-y-z axes) nanopositioning in applications such as AFM, where the vertical z-axis movement can be generated by the lateral x-y axes scanning. Such x/y-to-z cross-coupling becomes pronounced when the scanning is at large range and/or at high speed. In AFM applications, the coupling-caused position errors, when large, can generate various adverse effects, including large imaging and topography distortions, and damage of the cantilever probe and/or the sample. This paper utilizes the IIC technique to obtain the control input to precisely track the coupling-caused x/y-to-z displacement (with sign-flipped). Then the obtained input is augmented as a feedforward control to the existing feedback control in tapping-mode imaging, resulting in the cancellation of the coupling effect. The proposed approach is illustrated through two exemplary applications in industry, the pole-tip recession examination, and the nanoasperity measurement on hard-disk drive. Experimental results show that the x/y-to-z coupling effect in large-range (20 and 45 microm) tapping-mode imaging at both low to high scan rates (2, 12.2 to 24.4 Hz) can be effectively removed.

  4. Straightforward Synthesis of N-Methyl-4-(pinB-2(3H-benzothiazol-2-one: A Promising Cross-Coupling Reagent

    Directory of Open Access Journals (Sweden)

    Shotaro Izawa

    2018-01-01

    Full Text Available Cyclo-condensation of N-methyl-2-bromoaniline with chlorocarbonylsulfenyl chloride (CCSC promoted by PhNMe2 and AlCl3, afforded N-methyl-2-bromo-2(3H-benzothiazol-2-one in good yield. Miyaura–Ishiyama cross-coupling of this brominated 2(3H-benzothiazol-2-one with bis(pinacolatodiborone [(pin2B2] produced a novel N-methyl-4-(pinB-2(3H-benzothiazol-2-one (3 using (pin2B2 in the presence of the PdCl2(PPh32 catalyst. The obtained 4-(pinB compound is regarded as a new entry for the library of Suzuki–Miyaura cross-coupling reactions.

  5. Synthesis of stilbene derivatives via visible-light-induced cross-coupling of aryl diazonium salts with nitroalkenes using -NO2 as a leaving group.

    Science.gov (United States)

    Zhang, Na; Quan, Zheng-Jun; Zhang, Zhang; Da, Yu-Xia; Wang, Xi-Cun

    2016-12-06

    The straightforward visible-light-induced synthesis of stilbene compounds via the cross-coupling of nitroalkenes and diazonium tetrafluoroborates under transition-metal-free conditions is described. The protocol uses green LEDs as light sources and eosin Y as an organophotoredox catalyst. Broad substrate scope and exclusive selectivity for the (E)-configuration of stilbenes are observed. This protocol proceeds via a radical pathway, with nitroalkenes serving as the radical acceptor, and the nitro group is cleaved during the process.

  6. Decarboxylation of indole-3-acetic acid and inhibition of growth in Avena sativa seedlings by plant-derived photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, T.M. [Dickinson Coll., Carlisle, PA (United States). Dept. of Biology

    1996-12-01

    A number of plant phototoxins, when supplemented with UVA (320-400 nm) radiation, are capable of sensitizing the decomposition of indole-3-acetic acid (IAA), as measured by release of {sup 14}CO{sub 2} from carboxyl-labeled IAA. Alpha-terthienyl ({alpha}T) and harmine caused significant rates of IAA decarboxylation at concentrations as low as 1 nM and were approximately 80% as effective as riboflavin and flavin mononucleotide. Partial inhibition by sodium azide indicates that the {alpha}T-induced decarboxylation of IAA is predominately, but not entirely, a type II reaction mediated by singlet oxygen. Based on changes in UV absorption spectra, it appears that the hormones gibberellic acid, abscisic acid and 6-benzylaminopurine (a cytokinin) are less susceptible to photosensitized decomposition than is IAA. Alpha-terthienyl plus UVA also inhibited elongation growth and reduced endogenous IAA levels in Avena sativa L. coleoptile sections and promoted senescence in intact Avena seedlings. These results confirm the alelopathic potential of plant photosensitizers such as {alpha}T and indicate that the phytohormone IAA may represent an additional target for the action of photosensitizers. (Author).

  7. Decarboxylation of Malate in the Crassulacean Acid Metabolism Plant Bryophyllum (Kalanchoe) fedtschenkoi (Role of NAD-Malic Enzyme).

    Science.gov (United States)

    Cook, R. M.; Lindsay, J. G.; Wilkins, M. B.; Nimmo, H. G.

    1995-01-01

    The role of NAD-malic enzyme (NAD-ME) in the Crassulacean acid metabolism plant Bryophyllum (Kalanchoe) fedtschenkoi was investigated using preparations of intact and solubilized mitochondria from fully expanded leaves. Intact, coupled mitochondria isolated during the day or night did not differ in their ability to take up [14C]malic acid from the surrounding medium or to respire using malate or succinate as substrate. However, intact mitochondria isolated from plants during the day decarboxylated added malate to pyruvate significantly faster than mitochondria isolated from plants at night. NAD-ME activity in solubilized mitochondrial extracts showed hysteretic kinetics and was stimulated by a number of activators, including acetyl-coenzyme A, fructose-1,6-bisphosphate, and sulfate ions. In the absence of these effectors, reaction progress curves were nonlinear, with a pronounced acceleration phase. The lag period before a steady-state rate was reached in assays of mitochondrial extracts decreased during the photoperiod and increased slowly during the period of darkness. However, these changes in the kinetic properties of the enzyme could not account for the changes in the rate of decarboxylation of malate by intact mitochondria. Gel-filtration experiments showed that mitochondrial extracts contained three forms of NAD-ME with different molecular weights. The relative proportions of the three forms varied somewhat throughout the light/dark cycle, but this did not account for the changes in the kinetics behavior of the enzyme during the diurnal cycle. PMID:12228671

  8. A metalloenzyme-like catalytic system for the chemoselective oxidative cross-coupling of primary amines to imines under ambient conditions.

    Science.gov (United States)

    Largeron, Martine; Fleury, Maurice-Bernard

    2015-02-23

    The direct oxidative cross-coupling of primary amines is a challenging transformation as homocoupling is usually preferred. We report herein the chemoselective preparation of cross-coupled imines through the synergistic combination of low loadings of Cu(II) metal-catalyst and o-iminoquinone organocatalyst under ambient conditions. This homogeneous cooperative catalytic system has been inspired by the reaction of copper amine oxidases, a family of metalloenzymes with quinone organic cofactors that mediate the selective oxidation of primary amines to aldehydes. After optimization, the desired cross-coupled imines are obtained in high yields with broad substrate scope through a transamination process that leads to the homocoupled imine intermediate, followed by dynamic transimination. The ability to carry out the reactions at room temperature and with ambient air, rather than molecular oxygen as the oxidant, and equimolar amounts of each coupling partner is particularly attractive from an environmentally viewpoint. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Analysis of double stub tuner control stability in a phased array antenna with strong cross-coupling

    Energy Technology Data Exchange (ETDEWEB)

    Wallace, G.M., E-mail: wallaceg@mit.edu [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States); Hillairet, J. [CEA-IRFM, Saint-Paul-lez-Durance (France); Koert, P.; Lin, Y.; Shiraiwa, S.; Wukitch, S.J. [MIT Plasma Science and Fusion Center, Cambridge, MA 02139 (United States)

    2014-11-15

    Highlights: • A novel method for reducing reflection coefficients for LHCD launchers is proposed and evaluated. • Numerical models of antenna behavior with stub tuning are analyzed. • The system is found to be stable under most realistic operating conditions. - Abstract: Active stub tuning with a fast ferrite tuner (FFT) has greatly increased the effectiveness of fusion ion cyclotron range of frequency (ICRF) systems (50–100 MHz) by allowing for the antenna system to respond dynamically to changes in the plasma load impedance such as during the L–H transition or edge localized modes (ELMs). A high power waveguide double-stub tuner is under development for use with the Alcator C-Mod lower hybrid current drive (LHCD) system at 4.6 GHz. The amplitude and relative phase shift between adjacent columns of an LHCD antenna are critical for control of the launched n{sub ||} spectrum. Adding a double-stub tuning network will perturb the phase and amplitude of the forward wave particularly if the unmatched reflection coefficient is high. This effect can be compensated by adjusting the phase of the low power microwave drive for each klystron amplifier. Cross-coupling of the reflected power between columns of the launcher must also be considered. The problem is simulated by cascading a scattering matrix for the plasma provided by a linear coupling model with the measured launcher scattering matrix and that of the FFTs. The solution is advanced in an iterative manner similar to the time-dependent behavior of the real system. System performance is presented under a range of edge density conditions from under-dense to over-dense and a range of launched n{sub ||}. Simulations predict power reflection coefficients (Γ{sup 2}) of less than 1% with no contamination of the n{sub ||} spectrum. Instability of the FFT tuning network can be problematic for certain plasma conditions and relative phasings, but reducing the control gain of the FFT network stabilizes the system.

  10. Mechanism of the Suzuki–Miyaura Cross-Coupling Reaction Mediated by [Pd(NHC)(allyl)Cl] Precatalysts

    KAUST Repository

    Meconi, Giulia Magi

    2017-05-24

    Density functional theory calculations have been used to investigate the activation mechanism for the precatalyst series [Pd]-X-1–4 derived from [Pd(IPr)(R-allyl)X] species by substitutions at the terminal position of the allyl moiety ([Pd] = Pd(IPr); R = H (1), Me (2), gem-Me2 (3), Ph (4), X = Cl, Br). Next, we have investigated the Suzuki–Miyaura cross-coupling reaction for the active catalyst species IPr-Pd(0) using 4-chlorotoluene and phenylboronic acid as substrates and isopropyl alcohol as a solvent. Our theoretical findings predict an upper barrier trend, corresponding to the activation mechanism for the [Pd]-Cl-1–4 series, in good agreement with the experiments. They indeed provide a quantitative explanation of the low yield (12%) displayed by [Pd]-Cl-1 species (ΔG⧧ ≈ 30.0 kcal/mol) and of the high yields (≈90%) observed in the case of [Pd]-Cl-2–4 complexes (ΔG⧧ ≈ 20.0 kcal/mol). Additionally, the studied Suzuki–Miyaura reaction involving the IPr-Pd(0) species is calculated to be thermodynamically favorable and kinetically facile. Similar investigations for the [Pd]-Br-1–4 series, derived from [Pd(IPr)(R-allyl)Br], indicate that the oxidative addition step for IPr-Pd(0)-mediated catalysis with 4-bromotoluene is kinetically more favored than that with 4-chlorotoluene. Finally, we have explored the potential of Ni-based complexes [Ni((IPr)(R-allyl)X] (X = Cl, Br) as Suzuki–Miyaura reaction catalysts. Apart from a less endergonic reaction energy profile for both precatalyst activation and catalytic cycle, a steep increase in the predicted upper energy barriers (by 2.0–15.0 kcal/mol) is calculated in the activation mechanism for the [Ni]-X-1–4 series compared to the [Pd]-X-1–4 series. Overall, these results suggest that Ni-based precatalysts are expected to be less active than the Pd-based precatalysts for the studied Suzuki–Miyaura reaction.

  11. PhI(OAc)2-mediated one-pot oxidative decarboxylation and aromatization of tetrahydro-β-carbolines: synthesis of norharmane, harmane, eudistomin U and eudistomin I.

    Science.gov (United States)

    Kamal, Ahmed; Tangella, Yellaiah; Manasa, Kesari Lakshmi; Sathish, Manda; Srinivasulu, Vunnam; Chetna, Jadala; Alarifi, Abdullah

    2015-08-28

    Iodobenzene diacetate was employed as a mild and efficient reagent for one-pot oxidative decarboxylation of tetrahydro-β-carboline acids and dehydrogenation of tetrahydro-β-carbolines to access the corresponding aromatic β-carbolines. To the best of our knowledge this is the first synthesis of β-carbolines via a one-pot oxidative decarboxylation at ambient temperature. The utility of this protocol has been demonstrated in the synthesis of β-carboline alkaloids norharmane (2o), harmane (2p), eudistomin U (9) and eudistomin I (12).

  12. Rapid Access to Ortho-Alkylated Vinylarenes from Aromatic Acids by Dearomatization and Tandem Decarboxylative C-H Olefination/Rearomatization.

    Science.gov (United States)

    Tsai, Hung-Chang; Huang, Yen-Hsiang; Chou, Chih-Ming

    2018-03-02

    A two-step straightforward method for the preparation of ortho-alkylated vinylarenes from readily available benzoic acids is described. The synthetic route involves the dearomatization of benzoic acids by Birch reduction providing alkylated cyclohexa-2,5-dienyl-1-carboxylic acids. The diene subsequently undergoes a decarboxylative C-H olefination followed by rearomatization to deliver ortho-alkylated vinylarene. Mechanistic studies suggest that a Pd/Ag bimetallic catalytic system is important in the tandem decarboxylative C-H olefination/rearomatization step.

  13. Ground-State Distortion in N-Acyl-tert-butyl-carbamates (Boc) and N-Acyl-tosylamides (Ts): Twisted Amides of Relevance to Amide N-C Cross-Coupling.

    Science.gov (United States)

    Szostak, Roman; Shi, Shicheng; Meng, Guangrong; Lalancette, Roger; Szostak, Michal

    2016-09-02

    Amide N-C(O) bonds are generally unreactive in cross-coupling reactions employing low-valent transition metals due to nN → π*C═O resonance. Herein we demonstrate that N-acyl-tert-butyl-carbamates (Boc) and N-acyl-tosylamides (Ts), two classes of acyclic amides that have recently enabled the development of elusive amide bond N-C cross-coupling reactions with organometallic reagents, are intrinsically twisted around the N-C(O) axis. The data have important implications for the design of new amide cross-coupling reactions with the N-C(O) amide bond cleavage as a key step.

  14. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts

    NARCIS (Netherlands)

    Notre, le J.E.L.; Witte-van Dijk, S.C.M.; Haveren, van J.; Scott, E.L.; Sanders, J.P.M.

    2014-01-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200–2508C without any external added pressure, conditions

  15. One-pot synthesis of 4′-alkyl-4-cyanobiaryls on the basis of the terephthalonitrile dianion and neutral aromatic nitrile cross-coupling

    Directory of Open Access Journals (Sweden)

    Roman Yu. Peshkov

    2016-07-01

    Full Text Available A convenient one-pot approach to alkylcyanobiaryls is described. The method is based on biaryl cross-coupling between the sodium salt of the terephthalonitrile dianion and a neutral aromatic nitrile in liquid ammonia, and successive alkylation of the long-lived anionic intermediate with alkyl bromides. The reaction is compatible with benzonitriles that contain methyl, methoxy and phenyl groups, fluorine atoms, and a 1-cyanonaphthalene residue. The variety of ω-substituted alkyl bromides, including an extra bromine atom, a double bond, cyano and ester groups, as well as a 1,3-dioxane fragment are suitable as alkylation reagents.

  16. Application of Chan-Lam cross coupling for the synthesis of N-heterocyclic carbene precursors bearing strong electron donating or withdrawing groups

    Science.gov (United States)

    Huang, Liliang; He, Chengxiang; Sun, Zhihua

    2015-07-01

    Chan-Lam cross coupling allowed efficient synthesis of N,N’-disubstituted ortho-phenylene diamines bearing strong electron donating or withdrawing groups, such as nitro or methoxy groups, with moderate to high yields. These diamines can then be turned into N-heterocyclic carbene precursors after condensation with trimethyl orthoformate. The same strategy can also be utilized for the synthesis of N-monosubstituted aniline derivatives containing a functionalized ortho-aminomethyl group as intermediates for chiral 6-membered ring carbene precursors.

  17. Magnetic Pd-Fe{sub 3}O{sub 4} heterodimer nanocrystals as recoverable catalysts for ligand-free hiyama cross-coupling reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Woong Sup; Byun, Sang Moon; Kwon, Jung Min; Kim, B. Moon [Dept. of Chemistry, College of Natural Sciences, Seoul National University, Seoul (Korea, Republic of)

    2016-12-15

    Ligand-free Hiyama cross-coupling reaction was achieved through the use of Pd-Fe{sub 3}O{sub 4} heterodimeric nanocrystals (1 mol% in Pd) as recyclable catalysts. The nanocrystal catalysts exhibited good activities accommodating a variety of substrates including aryl bromides and iodides with substituents of varying electronic and steric properties. Furthermore, the nanocrystal catalyst could be conveniently recovered with the aid of an external magnet and recycled five times without the loss of catalytic activity to a considerable degree.

  18. Iron-catalyzed oxidative biaryl cross-couplings via mixed diaryl titanates: significant influence of the order of combining aryl Grignard reagents with titanate.

    Science.gov (United States)

    Liu, Kun Ming; Wei, Juan; Duan, Xin Fang

    2015-03-18

    The mixed diaryl titanates were used for the first time to modify the reactivity of two aryl Grignard reagents. Two titanate intermediates, Ar[Ar'Ti(OR)3]MgX and Ar'[ArTi(OR)3]MgX, formed via alternating the sequence of combining Grignard reagents with ClTi(OR)3 showed a significant reactivity difference. Taking advantage of such different reactivity, two highly structurally similar aryl groups could be facilely assembled through iron-catalyzed oxidative cross-couplings using oxygen as the oxidant.

  19. [PdA (IPr*) (cinnamyl)Cl]: An efficient pre-catalyst for the preparation of tetra-ortho-substituted biaryls by Suzuki-Miyaura cross-coupling

    KAUST Repository

    Chartoire, Anthony

    2012-03-13

    The bigger the better: The new well-defined [Pd(IPr*)(cin)Cl] pre-catalyst is described (see scheme). This complex proves to be highly active in the Suzuki-Miyaura cross-coupling for the synthesis of tetra-ortho- substituted biaryls under mild conditions. IPr* is reported as the largest N-heterocyclic carbene (NHC) to date for [Pd(NHC)(cin)Cl] complexes, explaining the high reactivity observed for this complex in this challenging transformation. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [PdA (IPr*) (cinnamyl)Cl]: An efficient pre-catalyst for the preparation of tetra-ortho-substituted biaryls by Suzuki-Miyaura cross-coupling

    KAUST Repository

    Chartoire, Anthony; Lesieur, Mathieu; Falivene, Laura; Slawin, Alexandra M. Z.; Cavallo, Luigi; Cazin, Catherine S J; Nolan, Steven P.

    2012-01-01

    The bigger the better: The new well-defined [Pd(IPr*)(cin)Cl] pre-catalyst is described (see scheme). This complex proves to be highly active in the Suzuki-Miyaura cross-coupling for the synthesis of tetra-ortho- substituted biaryls under mild conditions. IPr* is reported as the largest N-heterocyclic carbene (NHC) to date for [Pd(NHC)(cin)Cl] complexes, explaining the high reactivity observed for this complex in this challenging transformation. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minjae [Kunsan National Univ., Gunsan (Korea, Republic of); Kim, Bohyun; Lee, Yuna; Kim, Beomtae; Park, Joon B. [Chonbuk National Univ., Jeonju (Korea, Republic of)

    2014-07-15

    We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in H{sub 2} and O{sub 2} gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance.

  2. Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

    International Nuclear Information System (INIS)

    Lee, Minjae; Kim, Bohyun; Lee, Yuna; Kim, Beomtae; Park, Joon B.

    2014-01-01

    We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in H 2 and O 2 gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance

  3. Research on sintering behavior and microwave dielectric property of (Mg0.95Ca0.05)TiO3 ceramics for cross coupling filter

    Science.gov (United States)

    Luo, Chunya; Ma, Zhichao; Hu, Laisheng; Hu, Mingzhe; Huang, Xiaomin

    2015-12-01

    The microwave dielectric properties of 0.95%MgTiO3-0.05%CaTiO3 (abbreviated as 95MCT hereafter) ceramics have been studied for application in dielectric cross coupling filters. ZnO and Nb2O5 were selected as liquid sintering aids to lower the sintering temperature and enhance the Qf value of 95MCT and simultaneously we varied the mole ratio of ZnO : Nb2O5 to tune the microwave dielectric properties of 95MCT. When the ZnO : Nb2O5 mole ratio was 1.5 and the co-doping content was 0.25 wt.%, the optimal sintering temperature of 95MCT ceramic could be lowered from 1400∘C to 1320∘C and the Qf value could be improved by about 7.7%. The optimal microwave dielectric properties obtained under this condition were Qf = 72730 GHz (6.8 GHz), ɛr = 20.29 and τf = -6.84ppm/∘C, which demonstrated great potential usage in ceramic industry. High values of Qf ceramic were used to design the dielectric cross coupling filter. The dielectric filter measured at 2.35 GHz exhibited a 6.7% bandwidth (insert loss > -3 dB) of center frequency.

  4. Visible-Light Photocatalytic Decarboxylation of α,β-Unsaturated Carboxylic Acids: Facile Access to Stereoselective Difluoromethylated Styrenes in Batch and Flow

    Science.gov (United States)

    2017-01-01

    The development of synthetic methodologies which provide access to both stereoisomers of α,β-disubstituted olefins is a challenging undertaking. Herein, we describe the development of an operationally simple and stereoselective synthesis of difluoromethylated styrenes via a visible-light photocatalytic decarboxylation strategy using fac-Ir(ppy)3 as the photocatalyst. Meta- and para-substituted cinnamic acids provide the expected E-isomer. In contrast, ortho-substituted cinnamic acids yield selectively the less stable Z-product, whereas the E-isomer can be obtained via continuous-flow processing through accurate control of the reaction time. Furthermore, our protocol is amenable to the decarboxylative difluoromethylation of aryl propiolic acids. PMID:29109904

  5. Synthesis of bio-based methacrylic acid by decarboxylation of itaconic acid and citric acid catalyzed by solid transition-metal catalysts.

    Science.gov (United States)

    Le Nôtre, Jérôme; Witte-van Dijk, Susan C M; van Haveren, Jacco; Scott, Elinor L; Sanders, Johan P M

    2014-09-01

    Methacrylic acid, an important monomer for the plastics industry, was obtained in high selectivity (up to 84%) by the decarboxylation of itaconic acid using heterogeneous catalysts based on Pd, Pt and Ru. The reaction takes place in water at 200-250 °C without any external added pressure, conditions significantly milder than those described previously for the same conversion with better yield and selectivity. A comprehensive study of the reaction parameters has been performed, and the isolation of methacrylic acid was achieved in 50% yield. The decarboxylation procedure is also applicable to citric acid, a more widely available bio-based feedstock, and leads to the production of methacrylic acid in one pot in 41% selectivity. Aconitic acid, the intermediate compound in the pathway from citric acid to itaconic acid was also used successfully as a substrate. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Clarification on the decarboxylation mechanism in KasA based on the protonation state of key residues in the acyl-enzyme state.

    Science.gov (United States)

    Lee, Wook; Engels, Bernd

    2013-07-11

    The β-ketoacyl ACP synthase I (KasA) is a promising drug target because it is essential for the survival of Mycobacterium tuberculosis , a causative agent of tuberculosis. It catalyzes a condensation reaction that comprises three steps. The resulting elongated acyl chains are subsequently needed for the cell wall construction. While the mechanism of the first step (acylation of Cys171 in the active site) is straightforward already, the second step (decarboxylation of malonyl substrate) has been controversial due to the difficulty in determining the correct protonation states of the involved residues (His311, His345, Lys340, Glu354). Available experimental data suggest three possible mechanisms which differ considerably. They are not consistent with each other because these studies could not be performed for KasA at the beginning of decarboxylation step (acyl-enzyme state of KasA). Instead, different mutants had to be used which are expected to resemble this situation. In this first computational study about this topic, we use the free energy perturbation (FEP) method to compute the relevant pKa values in the acyl-enzyme state of KasA and use molecular dynamics (MD) simulations to rationalize the results. Subsequent density functional theory (DFT)-based quantum mechanical/molecular mechanical (QM/MM) MD simulations and umbrella samplings have been used to disentangle the close relationships between the protonation states of the involved residues. By these simulations, we can address the preferred protonation states and roles of the residues involved in decarboxylation reaction, thereby suggesting the possible mechanism for the decarboxylation step.

  7. De Novo Biosynthesis of Glutarate via α-Keto Acid Carbon Chain Extension and Decarboxylation Pathway in Escherichia coli.

    Science.gov (United States)

    Wang, Jian; Wu, Yifei; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2017-10-20

    Microbial based bioplastics are promising alternatives to petroleum based synthetic plastics due to their renewability and economic feasibility. Glutarate is one of the most potential building blocks for bioplastics. The recent biosynthetic routes for glutarate were mostly based on the l-lysine degradation pathway from Pseudomonas putida that required lysine either by feeding or lysine overproduction via genetic manipulations. Herein, we established a novel glutarate biosynthetic pathway by incorporation of a "+1" carbon chain extension pathway from α-ketoglutarate (α-KG) in combination with α-keto acid decarboxylation pathway in Escherichia coli. Introduction of homocitrate synthase (HCS), homoaconitase (HA) and homoisocitrate dehydrogenase (HICDH) from Saccharomyces cerevisiae into E. coli enabled "+1" carbon extension from α-KG to α-ketoadipate (α-KA), which was subsequently converted into glutarate by a promiscuous α-keto acid decarboxylase (KivD) and a succinate semialdehyde dehydrogenase (GabD). The recombinant E. coli coexpressing all five genes produced 0.3 g/L glutarate from glucose. To further improve the titers, α-KG was rechanneled into carbon chain extension pathway via the clustered regularly interspersed palindromic repeats system mediated interference (CRISPRi) of essential genes sucA and sucB in tricarboxylic acid (TCA) cycle. The final strain could produce 0.42 g/L glutarate, which was increased by 40% compared with the parental strain.

  8. The differences between NAD-ME and NADP-ME subtypes of C4 photosynthesis: more than decarboxylating enzymes

    Directory of Open Access Journals (Sweden)

    Xiaolan Rao

    2016-10-01

    Full Text Available As an adaptation to changing climatic conditions that caused high rates of photorespiration, C4 plants have evolved to display higher photosynthetic efficiency than C3 plants under elevated temperature, high light intensities and drought. The C4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C4 mechanisms to concentrate CO2 around the carboxylating enzyme Rubisco. C4 photosynthesis is divided into at least two basic biochemical subtypes based on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME and NADP-dependent malic enzyme (NADP-ME. The multiple polygenetic origins of these subtypes raise questions about the association of C4 variation between biochemical subtypes and diverse lineages. This review addresses the differences in evolutionary scenario, leaf anatomy, and especially C4 metabolic flow, C4 transporters and cell-specific function deduced from recently reported cell-specific transcriptomic, proteomic and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic analysis has revealed the extent to which component abundances differ between the two biochemical subtypes, leading to a better understanding of C4 photosynthetic mechanisms in NAD-ME and NADP-ME subtypes.

  9. Palladium Nanoparticles Immobilized on Poly(vinyl chloride-Supported Pyridinium as an Efficient and Recyclable Catalyst for Suzuki-Miyaura Cross-Coupling Reaction

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    2011-01-01

    Full Text Available The palladium nanoparticles immobilized on the polymeric surface of poly(vinyl chloride-supported pyridinium (PVC-Py-Pd0 were achieved by a simple procedure by applying the corresponding functionalized polymer and palladium chloride in ethanol solution. The as-prepared catalyst (PVC-Py-Pd0 was found to be air and moisture stable and exhibits significant catalytic activity for Suzuki-Miyaura cross-coupling reaction of various aryl halides and phenylboronic acid under milder operating conditions. The procedure presented here showed several merits such as short reaction time, simple experimental and isolated procedure and excellent yields of products. Furthermore, the catalyst can be easily recovered and reused for at least six times with consistent activities.

  10. Aerobic Asymmetric Dehydrogenative Cross-Coupling between Two C(sp3)-H Groups Catalyzed by a Chiral-at-Metal Rhodium Complex.

    Science.gov (United States)

    Tan, Yuqi; Yuan, Wei; Gong, Lei; Meggers, Eric

    2015-10-26

    A sustainable C-C bond formation is merged with the catalytic asymmetric generation of one or two stereocenters. The introduced catalytic asymmetric cross-coupling of two C(sp3)-H groups with molecular oxygen as the oxidant profits from the oxidative robustness of a chiral-at-metal rhodium(III) catalyst and exploits an autoxidation mechanism or visible-light photosensitized oxidation. In the latter case, the catalyst serves a dual function, namely as a chiral Lewis acid for catalyzing enantioselective enolate chemistry and at the same time as a visible-light-driven photoredox catalyst. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. An oxidative cross-coupling reaction of 4-hydroxydithiocoumarin and amines/thiols using a combination of I2 and TBHP: access to lead molecules for biomedical applications.

    Science.gov (United States)

    Mahato, Karuna; Arora, Neha; Ray Bagdi, Prasanta; Gattu, Radhakrishna; Ghosh, Siddhartha Sankar; Khan, Abu T

    2018-02-06

    A metal-free I 2 /TBHP induced highly atom economic and operationally simple oxidative cross-coupling reaction has been developed for the direct synthesis of sulfenamides/sulfanes/disulfides from the reaction of 4-hydroxydithiocoumarin and amines/thiols. The novelties of the present protocol are unprecedented S-C bond formation in addition to S-N and S-S bonds, shorter reaction time, mild and environmentally benign reaction conditions, functional group tolerance and moderate to excellent yields. Moreover, the four newly synthesized compounds namely 4q, 6d, 6e and 7a exhibit anti-proliferative activity against the breast cancer cell line MCF7, and may be lead molecules for future drug development.

  12. Chemoselective Synthesis of 4,5-Diarylpyrrolo[2,3-d]pyrimidines (6,7-Diaryl-7-deazapurines) by Consecutive Suzuki and Liebeskind-Srogl Cross-Couplings

    Czech Academy of Sciences Publication Activity Database

    Krömer, M.; Klečka, Martin; Slavětínská, Lenka; Klepetářová, Blanka; Hocek, Michal

    2014-01-01

    Roč. 2014, č. 32 (2014), s. 7203-7210 ISSN 1434-193X Grant - others:GA ČR(CZ) GAP207/12/0205 Institutional support: RVO:61388963 Keywords : synthetic methods * chemoselectivity * cross - coupling * palladium * nitrogen heterocycles Subject RIV: CC - Organic Chemistry Impact factor: 3.065, year: 2014

  13. Modification of Pyrrolo[2,3-d]pyrimidines by C-H Borylation Followed by Cross-Coupling or Other Transformations: Synthesis of 6,8-Disubstituted 7-Deazapurine Bases

    Czech Academy of Sciences Publication Activity Database

    Klečka, Martin; Poštová Slavětínská, Lenka; Hocek, Michal

    2015-01-01

    Roč. 2015, č. 36 (2015), s. 7943-7961 ISSN 1434-193X Institutional support: RVO:61388963 Keywords : synthetic methods * cross - coupling * C-H activation * nitrogen heterocycles * nucleobases * deazapurines Subject RIV: CC - Organic Chemistry Impact factor: 3.068, year: 2015

  14. Synthesis of Fluorescent 2-Substituted 6-(Het)aryl-7-deazapurine Bases {4-(Het)aryl-pyrrolo[2,3-d]pyrimidines} by Aqueous Suzuki-Miyaura Cross-Coupling Reactions

    Czech Academy of Sciences Publication Activity Database

    Sabat, Nazarii; Nauš, Petr; Matyašovský, Ján; Dziuba, Dmytro; Poštová Slavětínská, Lenka; Hocek, Michal

    2016-01-01

    Roč. 48, č. 7 (2016), s. 1029-1045 ISSN 0039-7881 R&D Projects: GA ČR GAP207/11/0344 Institutional support: RVO:61388963 Keywords : nucleobases * deazapurines * pyrrolo[2,3-d]pyrimidines * Suzuki cross - coupling * arylation Subject RIV: CC - Organic Chemistry Impact factor: 2.650, year: 2016

  15. gem-Difluoroolefination of Diazo Compounds with TMSCF3 or TMSCF2Br: Transition-Metal-Free Cross-Coupling of Two Carbene Precursors.

    Science.gov (United States)

    Hu, Mingyou; Ni, Chuanfa; Li, Lingchun; Han, Yongxin; Hu, Jinbo

    2015-11-18

    A new olefination protocol for transition-metal-free cross-coupling of two carbene fragments arising from two different sources, namely, a nonfluorinated carbene fragment resulting from a diazo compound and a difluorocarbene fragment derived from Ruppert-Prakash reagent (TMSCF3) or TMSCF2Br, has been developed. This gem-difluoroolefination proceeds through the direct nucleophilic addition of diazo compounds to difluorocarbene followed by elimination of N2. Compared to previously reported Cu-catalyzed gem-difluoroolefination of diazo compounds with TMSCF3, which possesses a narrow substrate scope due to a demanding requirement on the reactivity of diazo compounds and in-situ-generated CuCF3, this transition-metal-free protocol affords a general and efficient approach to various disubstituted 1,1-difluoroalkenes, including difluoroacrylates, diaryldifluoroolefins, as well as arylalkyldifluoroolefins. In view of the ready availability of diazo compounds and difluorocarbene reagents and versatile transformations of 1,1-difluoroalkenes, this new gem-difluoroolefination method is expected to find wide applications in organic synthesis.

  16. A modified abstraction of Sierpiński fractals towards enhanced sensitivity of a cross-coupled bow-tie nanostructure

    Science.gov (United States)

    Hasan, Dihan; Lee, Chengkuo

    2018-06-01

    We experimentally demonstrate a modified abstraction of a fractal geometry (up to order M = 2), namely the Sierpiński fractal, with intrinsic self-similarity for a multitude of infrared sensing applications. The modification particularly strengthens the dipolar resonance and enables optical magnetism at longer wavelengths on a relatively miniaturized footprint. In contrast to the conventional resonant sensing, we harness the broadband electric field enhancement of the modified fractal patterns originating from the lightning rod effect in the non-resonant regime. We demonstrate strong enhancement of molecular absorption at mid-IR by the fractal patterns in the non-resonant regime even under extreme thermal broadening. Finally, we extend the work towards the functional study of the molecular fingerprint of ultra-thin film (∼5 nm) on a non-complementary metamaterial platform in the non-resonant regime. With the help of the solid state chemical dewetting of the monolayer, we also successfully demonstrate a new type of cross-coupling mediated sensitivity of the multispectral and mutually coupled fractal patterns. The research clearly indicates the usefulness of broadband electric field enhancement by the second order fractal pattern for on chip, complete profiling of mid-IR fingerprints of biological elements, i.e. cell, and protein monolayer on a limited footprint and under versatile morphological states.

  17. Highly functionalized biaryls via Suzuki-Miyaura cross-coupling catalyzed by Pd@MOF under batch and continuous flow regimes.

    Science.gov (United States)

    Pascanu, Vlad; Hansen, Peter R; Bermejo Gómez, Antonio; Ayats, Carles; Platero-Prats, Ana E; Johansson, Magnus J; Pericàs, Miquel À; Martín-Matute, Belén

    2015-01-01

    A diverse set of more than 40 highly functionalized biaryls was synthesized successfully through the Suzuki-Miyaura cross-coupling reaction catalyzed by Pd nanoparticles supported in a functionalized mesoporous MOF (8 wt % Pd@MIL-101(Cr)-NH2 ). This could be achieved under some of the mildest conditions reported to date and a strong control over the leaching of metallic species could be maintained, despite the presence of diverse functional groups and/or several heteroatoms. Some of the targeted molecules are important intermediates in the synthesis of pharmaceuticals and we clearly exemplify the versatility of this catalytic system, which affords better yields than currently existing commercial procedures. Most importantly, Pd@MIL-101-NH2 was packed in a micro-flow reactor, which represents the first report of metallic nanoparticles supported on MOFs employed in flow chemistry for catalytic applications. A small library of 11 isolated compounds was created in a continuous experiment without replacing the catalyst, demonstrating the potential of the catalyst for large-scale applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Atypical McMurry Cross-Coupling Reactions Leading to a New Series of Potent Antiproliferative Compounds Bearing the Key [Ferrocenyl-Ene-Phenol] Motif

    Directory of Open Access Journals (Sweden)

    Pascal Pigeon

    2014-07-01

    Full Text Available In the course of the preparation of a series of ferrocenyl derivatives of diethylstilbestrol (DES, in which one of the 4-hydroxyphenyl moieties was replaced by a ferrocenyl group, the McMurry reaction of chloropropionylferrocene with a number of mono-aryl ketones unexpectedly yielded the hydroxylated ferrocenyl DES derivatives, 5a–c, in poor yields (10%–16%. These compounds showed high activity on the hormone-independent breast cancer cell line MDA-MB-231 with IC50 values ranging from 0.14 to 0.36 µM. Surprisingly, non-hydroxylated ferrocenyl DES, 4, showed only an IC50 value of 1.14 µM, illustrating the importance of the hydroxyethyl function in this promising new series. For comparison, McMurry reactions of the shorter chain analogue chloroacetylferrocene were carried out to see the difference in behaviour with mono-aryl ketones versus a diaryl ketone. The effect of changing the length of the alkyl chain adjacent to the phenolic substituent of the hydroxylated ferrocenyl DES was studied, a mechanistic rationale to account for the unexpected products is proposed, and the antiproliferative activities of all of these compounds on MDA-MB-231 cells lines were measured and compared. X-ray crystal structures of cross-coupled products and of pinacol-pinacolone rearrangements are reported.

  19. Structures of Highly Twisted Amides Relevant to Amide N-C Cross-Coupling: Evidence for Ground-State Amide Destabilization.

    Science.gov (United States)

    Pace, Vittorio; Holzer, Wolfgang; Meng, Guangrong; Shi, Shicheng; Lalancette, Roger; Szostak, Roman; Szostak, Michal

    2016-10-04

    Herein, we show that acyclic amides that have recently enabled a series of elusive transition-metal-catalyzed N-C activation/cross-coupling reactions are highly twisted around the N-C(O) axis by a new destabilization mechanism of the amide bond. A unique effect of the N-glutarimide substituent, leading to uniformly high twist (ca. 90°) irrespective of the steric effect at the carbon side of the amide bond has been found. This represents the first example of a twisted amide that does not bear significant steric hindrance at the α-carbon atom. The (15) N NMR data show linear correlations between electron density at nitrogen and amide bond twist. This study strongly supports the concept of amide bond ground-state twist as a blueprint for activation of amides toward N-C bond cleavage. The new mechanism offers considerable opportunities for organic synthesis and biological processes involving non-planar amide bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Palladium-Catalyzed Formal Cross-Coupling of Diaryl Ethers with Amines: Slicing the 4-O-5 Linkage in Lignin Models.

    Science.gov (United States)

    Zeng, Huiying; Cao, Dawei; Qiu, Zihang; Li, Chao-Jun

    2018-03-26

    Lignin is the second most abundant organic matter on Earth, and is an underutilized renewable source for valuable aromatic chemicals. For future sustainable production of aromatic compounds, it is highly desirable to convert lignin into value-added platform chemicals instead of using fossil-based resources. Lignins are aromatic polymers linked by three types of ether bonds (α-O-4, β-O-4, and 4-O-5 linkages) and other C-C bonds. Among the ether bonds, the bond dissociation energy of the 4-O-5 linkage is the highest and the most challenging to cleave. To date, 4-O-5 ether linkage model compounds have been cleaved to obtain phenol, cyclohexane, cyclohexanone, and cyclohexanol. The first example of direct formal cross-coupling of diaryl ether 4-O-5 linkage models with amines is reported, in which dual C(Ar)-O bond cleavages form valuable nitrogen-containing derivatives. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Decarboxylative Hydroalkylation of Alkynes.

    Science.gov (United States)

    Till, Nicholas A; Smith, Russell T; MacMillan, David W C

    2018-05-02

    The merger of open- and closed-shell elementary organometallic steps has enabled the selective intermolecular addition of nucleophilic radicals to unactivated alkynes. A range of carboxylic acids can be subjected to a CO 2 extrusion, nickel capture, migratory insertion sequence with terminal and internal alkynes to generate stereodefined functionalized olefins. This platform has been further extended, via hydrogen atom transfer, to the direct vinylation of unactivated C-H bonds. Preliminary studies indicate that a Ni-alkyl migratory insertion is operative.

  2. Crystal structures of three 4-substituted-2,2′-bipyridines synthesized by Sonogashira and Suzuki–Miyaura cross-coupling reactions

    Directory of Open Access Journals (Sweden)

    Thuy Luong Thi Thu

    2017-04-01

    Full Text Available Facile synthetic routes for three 4-substituted 2,2′-bipyridine derivatives, 4-[2-(4-methylphenylethynyl]-2,2′-bipyridine, C19H14N2, (I, 4-[2-(pyridin-3-ylethynyl]-2,2′-bipyridine, C17H11N3, (II, and 4-(indol-4-yl-2,2′-bipyridine, C18H13N3, (III, via Sonogashira and Suzuki–Miyaura cross-coupling reactions, respectively, are described. As indicated by X-ray analysis, the 2,2′-bipyridine core, the ethylene linkage and the substituents of (I and (II are almost planar [dihedral angles between the two ring systems: 8.98 (5 and 9.90 (6° for the two molecules of (I in the asymmetric unit and 2.66 (14° for (II], allowing π-conjugation. On the contrary, in (III, the indole substituent ring is rotated significantly out of the bipyridine plane [dihedral angle = 55.82 (3°], due to steric hindrance. The crystal packings of (I and (II are dominated by π–π interactions, resulting in layers of molecules parallel to (30-2 in (I and columns of molecules along the a axis in (II. The packing of (III exhibits zigzag chains of molecules along the c axis interacting through N—H...N hydrogen bonds and π–π interactions. The contributions of unknown disordered solvent molecules to the diffraction intensities in (II were removed with the SQUEEZE [Spek (2015. Acta Cryst. C71, 9–18] algorithm of PLATON. The given chemical formula and other crystal data do not take into account these solvent molecules.

  3. Kinetic and mechanistic studies of reactive intermediates in photochemical and transition metal-assisted oxidation, decarboxylation and alkyl transfer reactions

    Science.gov (United States)

    Carraher, Jack McCaslin

    leads to the dissociation of H2O2 from Cr(III), while in the H+-independent reaction, CraqOOH2+ is transformed to Cr(V). Both scavengers rapidly remove Cr(V) and simplify both the kinetics and products by impeding formation of Cr(IV, V, VI). Syntheses, Reactivity, and Thermodynamic Considerations LRhR2+. Macrocyclic rhodium(II) complexes LRh(H 2O)2+ (L = L1= cyclam and L2 = meso-Me6-cyclam) react with alkyl hydroperoxides R(CH3)2COOH to generate the corresponding rhodium(III) alkyls LRh(H2O)R2+ (R = CH3, C2 H5, PhCH2). Methyl and benzyl complexes can also be prepared by bimolecular group transfer from alkyl cobaloximes (dmgX) 2(H2O)CoR (where R = CH3, CH2Ph and dmgX is either dimethylglyoxime or a BF2-capped derivative of dmg) to LRh(H2O)2+. When R = C2H5, C3H7 or C4H9, the mechanism changes from group transfer to hydrogen atom abstraction from the coordinated alkyl and produces LRh(H2O)H2+ and an a-olefin. The new LRh(H2O)R2+ complexes were characterized by solution NMR and by crystal structure analysis. They exhibit great stability in aqueous solution at room temperature, but undergo efficient Rh-C bond cleavage upon photolysis. 'Green' Model for Decarboxylation of Biomass Derived Acids via Photolysis of in situ formed Metal-Carboxylate Complexes. Photolysis of aqueous solutions containing propionic acid and Fe 3+ aq in the absence of oxygen generates a mixture of hydrocarbons (ethane, ethylene and butane), carbon dioxide, and Fe2+. Photolysis in the presence of O2 yields catalytic amounts of hydrocarbon products. When halide ions are present during photolysis; nearly quantitative yields of ethyl halides are produced via extraction of a halide atom from FeX2+ by ethyl radical. The rate constants for ethyl radical reactions with FeCl2+ (k = 4.0 (+/- 0.5) x 106 M-1s-1) and with FeBr 2+ (k = 3.0 (+/- 0.5) x 107 M-1s -1) were determined via competition reactions. Irradiation of solutions containing aqueous Cu2+ salts and linear carboxylic acids yield alpha

  4. Cross-coupling reactions of unprotected halopurine bases, nucleosides, nucleotides and nucleoside triphosphates with 4-boronophenylalanine in water. Synthesis of (purin-8-yl)- and (purin-6-yl)phenylalanines

    Czech Academy of Sciences Publication Activity Database

    Čapek, Petr; Pohl, Radek; Hocek, Michal

    2006-01-01

    Roč. 4, č. 11 (2006), s. 2278-2284 ISSN 1477-0520 R&D Projects: GA AV ČR(CZ) 1QS400550501; GA MŠk(CZ) 1M0508 Institutional research plan: CEZ:AV0Z40550506 Keywords : amino acids * purines * nucleosides * cross-coupling reactions Subject RIV: CC - Organic Chemistry Impact factor: 2.874, year: 2006

  5. Effects of adrenergic agents on intracellular ca(2+) homeostasis and metabolism of glucose in astrocytes with an emphasis on pyruvate carboxylation, oxidative decarboxylation and recycling

    DEFF Research Database (Denmark)

    Obel, Linea Lykke Frimodt; Andersen, Karen M H; Bak, Lasse Kristoffer

    2012-01-01

    and oxidative decarboxylation in astrocytic glucose metabolism. Importantly, pyruvate carboxylation was best visualized at 10 min of incubation. The abundance and pattern of labeling in lactate and alanine indicated not only an extensive activity of malic enzyme (initial step for pyruvate recycling) but also...... a high degree of compartmentalization of the pyruvate pool. Stimulating with 1 µM NE had no effect on labeling patterns and glycogen metabolism, whereas 100 µM NE increased glutamate labeling and decreased labeling in alanine, the latter supposedly due to dilution from degradation of non-labeled glycogen....... It is suggested that further experiments uncovering the correlation between adrenergic and glutamatergic pathways should be performed in order to gain further insight into the role of astrocytes in brain function and dysfunction, the latter including excitotoxicity....

  6. Mild copper-catalyzed trifluoromethylation of terminal alkynes using an electrophilic trifluoromethylating reagent

    KAUST Repository

    Weng, Zhiqiang

    2012-03-01

    A catalytic process for trifluoromethylation of terminal alkynes with Togni\\'s reagent has been developed, affording trifluoromethylated acetylenes in good to excellent yields. The reaction is conducted at room temperature and exhibits tolerance to a range of functional groups. © 2012 Elsevier Ltd. All rights reserved.

  7. Copper-catalyzed asymmetric ring opening of oxabicyclic alkenes with organolithium reagents

    NARCIS (Netherlands)

    Bos, Pieter H.; Rudolph, Alena; Pérez, Manuel; Fañanás-Mastral, Martín; Harutyunyan, Syuzanna R.; Feringa, Bernard

    2012-01-01

    A highly efficient method is reported for the asymmetric ring opening of oxabicyclic alkenes with organolithium reagents. Using a copper/chiral phosphoramidite complex together with a Lewis acid (BF3·OEt2), full selectivity for the anti isomer and excellent enantioselectivities were obtained for the

  8. Copper-Catalyzed Heteroarylboration of 1,3-Dienes with 3-Bromopyridines: A cine Substitution.

    Science.gov (United States)

    Smith, Kevin B; Huang, Yuan; Brown, M Kevin

    2018-04-26

    A method for the heteroarylboration of 1,3-dienes is presented. The process involves an unusual cine substitution of 3-bromopyridine derivatives to deliver highly functionalized heterocyclic products. Mechanistic studies are included that clarify the details of this unusual process. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Copper-catalyzed oxidative Heck reactions between alkyltrifluoroborates and vinyl arenes.

    Science.gov (United States)

    Liwosz, Timothy W; Chemler, Sherry R

    2013-06-21

    We report herein that potassium alkyltrifluoroborates can be utilized in oxidative Heck-type reactions with vinyl arenes. The reaction is catalyzed by a Cu(OTf)2/1,10-phenanthroline with MnO2 as the stoichiometric oxidant. In addition to the alkyl Heck, amination, esterification, and dimerization reactions of alkyltrifluoroborates are demonstrated under analogous reaction conditions. Evidence for an alkyl radical intermediate is presented.

  10. Diversification of indoles via microwave-assisted ligand-free copper-catalyzed N-arylation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jae Kwan; Lee, Jin Hee; Kim, Tae Sung; Yum, Eul Kgun [Dept. of Chemistry, Chu ngnam National University, Daejon (Korea, Republic of); Park, Jee Jung [Western Seoul Center Korea Basic Science Institute, Seoul (Korea, Republic of)

    2016-12-15

    A simple, efficient Cu{sub 2}O catalyst system under microwave irradiation was developed for N-arylation of various indoles without ligands and additives. Diverse N-heteroarylated indoles were prepared by coupling indoles with various heteroaryl halides within 1 h. The selective reactivity of bromoindole with aryl iodide provided N-aryl bromoindoles, which could be useful intermediates for palladium-catalyzed Heck and Suzuki coupling reactions.

  11. Copper-catalyzed recycling of halogen activating groups via 1,3-halogen migration.

    Science.gov (United States)

    Grigg, R David; Van Hoveln, Ryan; Schomaker, Jennifer M

    2012-10-03

    A Cu(I)-catalyzed 1,3-halogen migration reaction effectively recycles an activating group by transferring bromine or iodine from a sp(2) to a benzylic carbon with concomitant borylation of the Ar-X bond. The resulting benzyl halide can be reacted in the same vessel under a variety of conditions to form an additional carbon-heteroatom bond. Cross-over experiments using an isotopically enriched bromide source support intramolecular transfer of Br. The reaction is postulated to proceed via a Markovnikov hydrocupration of the o-halostyrene, oxidative addition of the resulting Cu(I) complex into the Ar-X bond, reductive elimination of the new sp(3) C-X bond, and final borylation of an Ar-Cu(I) species to turn over the catalytic cycle.

  12. Copper-catalyzed 1,2-addition of α-carbonyl iodides to alkynes.

    Science.gov (United States)

    Xu, Tao; Hu, Xile

    2015-01-19

    β,γ-Unsaturated ketones are an important class of organic molecules. Herein, copper catalysis has been developed for the synthesis of β-γ-unsaturated ketones through 1,2-addition of α-carbonyl iodides to alkynes. The reactions exhibit wide substrate scope and high functional group tolerance. The reaction products are versatile synthetic intermediates to complex small molecules. The method was applied for the formal synthesis of (±)-trichostatin A, a histone deacetylase inhibitor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Facile synthesis of benzofurans via copper-catalyzed aerobic oxidative cyclization of phenols and alkynes.

    Science.gov (United States)

    Zeng, Wei; Wu, Wanqing; Jiang, Huanfeng; Huang, Liangbin; Sun, Yadong; Chen, Zhengwang; Li, Xianwei

    2013-07-28

    Regioselective synthesis of polysubstituted benzofurans using a copper catalyst and molecular oxygen from phenols and alkynes in a one-pot procedure has been reported. The transformation consists of a sequential nucleophilic addition of phenols to alkynes and oxidative cyclization. A wide variety of phenols and alkynes can be used in the same manner.

  14. Copper-Catalyzed Eglinton Oxidative Homocoupling of Terminal Alkynes: A Computational Study

    Directory of Open Access Journals (Sweden)

    Jesús Jover

    2015-01-01

    Full Text Available The copper(II acetate mediated oxidative homocoupling of terminal alkynes, namely, the Eglinton coupling, has been studied with DFT methods. The mechanism of the whole reaction has been modeled using phenylacetylene as substrate. The obtained results indicate that, in contrast to some classical proposals, the reaction does not involve the formation of free alkynyl radicals and proceeds by the dimerization of copper(II alkynyl complexes followed by a bimetallic reductive elimination. The calculations demonstrate that the rate limiting-step of the reaction is the alkyne deprotonation and that more acidic substrates provide faster reactions, in agreement with the experimental observations.

  15. Copper-Catalyzed Asymmetric Allylic Alkylation of Halocrotonates : Efficient Synthesis of Versatile Chiral Multifunctional Building Blocks

    NARCIS (Netherlands)

    Hartog, Tim den; Maciá, Beatriz; Minnaard, Adriaan J.; Feringa, Bernard

    2010-01-01

    The highly enantioselective synthesis of α-methyl-substituted esters is reported in up to 90% yield and up to 99% ee using copper-TaniaPhos as chiral catalyst. The transformation proved scalable to at least 6.6 mmol (1.7 g scale). The products of this transformation have been further elaborated to

  16. The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Frank, Otakar; Kavan, Ladislav

    2012-01-01

    Roč. 50, č. 10 (2012), s. 3682-3687 ISSN 0008-6223 R&D Projects: GA ČR(CZ) GAP208/12/1062 Institutional support: RVO:61388955 Keywords : graphene * electrochemistry * spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 5.868, year: 2012

  17. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels

    DEFF Research Database (Denmark)

    Peterson, Andrew; Abild-Pedersen, Frank; Studt, Felix

    2010-01-01

    Density functional theory calculations explain copper's unique ability to convert CO2 into hydrocarbons, which may open up (photo-)electrochemical routes to fuels.......Density functional theory calculations explain copper's unique ability to convert CO2 into hydrocarbons, which may open up (photo-)electrochemical routes to fuels....

  18. Concise copper-catalyzed synthesis of tricyclic biaryl ether-linked aza-heterocyclic ring systems.

    Science.gov (United States)

    Mestichelli, Paola; Scott, Matthew J; Galloway, Warren R J D; Selwyn, Jamie; Parker, Jeremy S; Spring, David R

    2013-11-01

    A new method for the synthesis of tricyclic biaryl ether-linked ring systems incorporating seven-, eight-, and nine-membered ring amines is presented. In the presence of catalytic quantities of copper(I), readily accessible acyclic precursors undergo an intramolecular carbon-oxygen bond-forming reaction facilitated by a "templating" chelating nitrogen atom. The methodology displays a broad substrate scope, is practical, and generates rare and biologically interesting tricyclic heteroaromatic products that are difficult to access by other means.

  19. Indirect photopatterning of functionalized organic monolayers via copper-catalyzed "click chemistry"

    Science.gov (United States)

    Williams, Mackenzie G.; Teplyakov, Andrew V.

    2018-07-01

    Solution-based lithographic surface modification of an organic monolayer on a solid substrate is attained based on selective area photo-reduction of copper (II) to copper (I) to catalyze the azide-alkyne dipolar cycloaddition "click" reaction. X-ray photoelectron spectroscopy is used to confirm patterning, and spectroscopic results are analyzed and supplemented with computational models to confirm the surface chemistry. It is determined that this surface modification approach requires irradiation of the solid substrate with all necessary components present in solution. This method requires only minutes of irradiation to result in spatial and temporal control of the covalent surface functionalization of a monolayer and offers the potential for wavelength tunability that may be desirable in many applications utilizing organic monolayers.

  20. Copper-catalyzed activation of disulfides as a key step in the synthesis of benzothiazole moieties

    Czech Academy of Sciences Publication Activity Database

    Hývl, Jakub; Šrogl, Jiří

    -, č. 15 (2010), s. 2849-2851 ISSN 1434-193X R&D Projects: GA ČR GA203/08/1318 Institutional research plan: CEZ:AV0Z40550506 Keywords : oxidation * copper * benzothiazole synthesis Subject RIV: CC - Organic Chemistry Impact factor: 3.206, year: 2010

  1. On the mechanism of activation of copper-catalyzed atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Isse, Abdirisak Ahmed; Bortolamei, Nicola; De Paoli, Patrizia; Gennaro, Armando

    2013-01-01

    The mechanism of activation of atom transfer radical polymerization (ATRP) has been analyzed by investigating the kinetics of dissociative electron transfer (ET) to alkyl halides (RX) in acetonitrile. Using a series of alkyl halides, including both bromides and chlorides, the rate constants of ET (k ET ) to RX by electrogenerated aromatic radical anions (A· − ) acting as outer-sphere donors have been measured and analyzed according to the current theories of dissociative ET. This has shown that the kinetic data fit very well the “sticky” dissociative ET model with the formation of a weak adduct held together by electrostatic interactions. The rate constants of activation, k act , of some alkyl halides, namely chloroacetonitrile, methyl 2-bromopropionate and ethyl chloroacetate, by [Cu I L] + (L = tris(2-dimethylaminoethyl)amine, tris(2-pyridylmethyl)amine, 1,1,4,7,7-pentamethyldiethylenetriamine) have also been measured in the same experimental conditions. Comparisons of the measured k act values with those predicted assuming an outer-sphere ET for the complexes have shown that activation by Cu(I) is 7–10 orders of magnitude faster than required by outer-sphere ET. Therefore, the mechanism of RX activation by Cu(I) complexes used as catalysts in ATRP occurs by an inner-sphere ET or more appropriately by a halogen atom abstraction

  2. Copper-Catalyzed Chan-Lam Cyclopropylation of Phenols and Azaheterocycles.

    Science.gov (United States)

    Derosa, Joseph; O'Duill, Miriam L; Holcomb, Matthew; Boulous, Mark N; Patman, Ryan L; Wang, Fen; Tran-Dubé, Michelle; McAlpine, Indrawan; Engle, Keary M

    2018-04-06

    Small molecules containing cyclopropane-heteroatom linkages are commonly needed in medicinal chemistry campaigns yet are problematic to prepare using existing methods. To address this issue, a scalable Chan-Lam cyclopropylation reaction using potassium cyclopropyl trifluoroborate has been developed. With phenol nucleophiles, the reaction effects O-cyclopropylation, whereas with 2-pyridones, 2-hydroxybenzimidazoles, and 2-aminopyridines the reaction brings about N-cyclopropylation. The transformation is catalyzed by Cu(OAc) 2 and 1,10-phenanthroline and employs 1 atm of O 2 as the terminal oxidant. This method is operationally convenient to perform and provides a simple, strategic disconnection toward the synthesis of cyclopropyl aryl ethers and cyclopropyl amine derivatives bearing an array of functional groups.

  3. Oxidative C-H/C-H Cross-Coupling Reactions between N-Acylanilines and Benzamides Enabled by a Cp*-Free RhCl3/TFA Catalytic System.

    Science.gov (United States)

    You, Jingsong; Shi, Yang; Zhang, Luoqiang; Lan, Jingbo; Zhang, Min; Zhou, Fulin; Wei, Wenlong

    2018-06-03

    Using the dual chelation-assisted strategy, a completely regiocontrolled oxidative C-H/C-H cross-coupling reaction between an N-acylaniline and a benzamide has been accomplished for the first time, which enables a step-economical and highly efficient pathway to 2-amino-2'-carboxybiaryl scaffolds from readily available substrates. A Cp*-free RhCl3/TFA catalytic system has been developed to replace the generally used [Cp*RhCl2]2/AgSbF6 (Cp* = pentamethyl cyclopentadienyl) in oxidative C-H/C-H cross-coupling reactions between two (hetero)arenes. The RhCl3/TFA system avoids the use of expensive Cp* ligand and AgSbF6. As an illustrative example, the protocol developed herein greatly streamlines access to naturally occurring benzo[c]phenanthridine alkaloid oxynitidine in an excellent overall yield. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Process simulation and techno economic analysis of renewable diesel production via catalytic decarboxylation of rubber seed oil - A case study in Malaysia.

    Science.gov (United States)

    Cheah, Kin Wai; Yusup, Suzana; Gurdeep Singh, Haswin Kaur; Uemura, Yoshimitsu; Lam, Hon Loong

    2017-12-01

    This work describes the economic feasibility of hydroprocessed diesel fuel production via catalytic decarboxylation of rubber seed oil in Malaysia. A comprehensive techno-economic assessment is developed using Aspen HYSYS V8.0 software for process modelling and economic cost estimates. The profitability profile and minimum fuels selling price of this synthetic fuels production using rubber seed oil as biomass feedstock are assessed under a set of assumptions for what can be plausibly be achieved in 10-years framework. In this study, renewable diesel processing facility is modelled to be capable of processing 65,000 L of inedible oil per day and producing a total of 20 million litre of renewable diesel product per annual with assumed annual operational days of 347. With the forecasted renewable diesel retail price of 3.64 RM per kg, the pioneering renewable diesel project investment offers an assuring return of investment of 12.1% and net return as high as 1.35 million RM. Sensitivity analysis conducted showed that renewable diesel production cost is most sensitive to rubber seed oil price and hydrogen gas price, reflecting on the relative importance of feedstock prices in the overall profitability profile. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Practical synthesis of aryl-2-methyl-3-butyn-2-ols from aryl bromides via conventional and decarboxylative copper-free Sonogashira coupling reactions

    Directory of Open Access Journals (Sweden)

    Andrea Caporale

    2014-02-01

    Full Text Available Two efficient protocols for the palladium-catalyzed synthesis of aryl-2-methyl-3-butyn-2-ols from aryl bromides in the absence of copper were developed. A simple catalytic system consisting of Pd(OAc2 and P(p-tol3 using DBU as the base and THF as the solvent was found to be highly effective for the coupling reaction of 2-methyl-3-butyn-2-ol (4 with a wide range of aryl bromides in good to excellent yields. Analogously, the synthesis of aryl-2-methyl-3-butyn-2-ols was performed also through the decarboxylative coupling reaction of 4-hydroxy-4-methyl-2-pentynoic acid with aryl bromides, using a catalyst containing Pd(OAc2 in combination with SPhos or XPhos in the presence of tetra-n-butylammonium fluoride (TBAF as the base and THF as the solvent. Therefore, new efficient approaches to the synthesis of terminal acetylenes from widely available aryl bromides rather than expensive iodides and using 4 or propiolic acid rather than TMS-acetylene as inexpensive alkyne sources are described.

  6. Biosynthesis of firefly luciferin in adult lantern: decarboxylation of L-cysteine is a key step for benzothiazole ring formation in firefly luciferin synthesis.

    Science.gov (United States)

    Oba, Yuichi; Yoshida, Naoki; Kanie, Shusei; Ojika, Makoto; Inouye, Satoshi

    2013-01-01

    Bioluminescence in fireflies and click beetles is produced by a luciferase-luciferin reaction. The luminescence property and protein structure of firefly luciferase have been investigated, and its cDNA has been used for various assay systems. The chemical structure of firefly luciferin was identified as the D-form in 1963 and studies on the biosynthesis of firefly luciferin began early in the 1970's. Incorporation experiments using (14)C-labeled compounds were performed, and cysteine and benzoquinone/hydroquinone were proposed to be biosynthetic component for firefly luciferin. However, there have been no clear conclusions regarding the biosynthetic components of firefly luciferin over 30 years. Incorporation studies were performed by injecting stable isotope-labeled compounds, including L-[U-(13)C3]-cysteine, L-[1-(13)C]-cysteine, L-[3-(13)C]-cysteine, 1,4-[D6]-hydroquinone, and p-[2,3,5,6-D]-benzoquinone, into the adult lantern of the living Japanese firefly Luciola lateralis. After extracting firefly luciferin from the lantern, the incorporation of stable isotope-labeled compounds into firefly luciferin was identified by LC/ESI-TOF-MS. The positions of the stable isotope atoms in firefly luciferin were determined by the mass fragmentation of firefly luciferin. We demonstrated for the first time that D- and L-firefly luciferins are biosynthesized in the lantern of the adult firefly from two L-cysteine molecules with p-benzoquinone/1,4-hydroquinone, accompanied by the decarboxylation of L-cysteine.

  7. Crystal Structures of Apo and Liganded 4-Oxalocrotonate Decarboxylase Uncover a Structural Basis for the Metal-Assisted Decarboxylation of a Vinylogous β-Keto Acid.

    Science.gov (United States)

    Guimarães, Samuel L; Coitinho, Juliana B; Costa, Débora M A; Araújo, Simara S; Whitman, Christian P; Nagem, Ronaldo A P

    2016-05-10

    The enzymes in the catechol meta-fission pathway have been studied for more than 50 years in several species of bacteria capable of degrading a number of aromatic compounds. In a related pathway, naphthalene, a toxic polycyclic aromatic hydrocarbon, is fully degraded to intermediates of the tricarboxylic acid cycle by the soil bacteria Pseudomonas putida G7. In this organism, the 83 kb NAH7 plasmid carries several genes involved in this biotransformation process. One enzyme in this route, NahK, a 4-oxalocrotonate decarboxylase (4-OD), converts 2-oxo-3-hexenedioate to 2-hydroxy-2,4-pentadienoate using Mg(2+) as a cofactor. Efforts to study how 4-OD catalyzes this decarboxylation have been hampered because 4-OD is present in a complex with vinylpyruvate hydratase (VPH), which is the next enzyme in the same pathway. For the first time, a monomeric, stable, and active 4-OD has been expressed and purified in the absence of VPH. Crystal structures for NahK in the apo form and bonded with five substrate analogues were obtained using two distinct crystallization conditions. Analysis of the crystal structures implicates a lid domain in substrate binding and suggests roles for specific residues in a proposed reaction mechanism. In addition, we assign a possible function for the NahK N-terminal domain, which differs from most of the other members of the fumarylacetoacetate hydrolase superfamily. Although the structural basis for metal-dependent β-keto acid decarboxylases has been reported, this is the first structural report for that of a vinylogous β-keto acid decarboxylase and the first crystal structure of a 4-OD.

  8. Rhodium(III)-Catalyzed ortho-Alkylation of Phenoxy Substrates with Diazo Compounds via C-H Activation: A Case of Decarboxylative Pyrimidine/Pyridine Migratory Cyclization Rather than Removal of Pyrimidine/Pyridine Directing Group.

    Science.gov (United States)

    Ravi, Manjula; Allu, Srinivasarao; Swamy, K C Kumara

    2017-03-03

    An efficient Rh(III)-catalyzed ortho-alkylation of phenoxy substrates with diazo compounds has been achieved for the first time using pyrimidine or pyridine as the directing group. Furthermore, bis-alkylation has also been achieved using para-substituted phenoxypyrimidine and 3 mol equiv of the diazo ester. The ortho-alkylated derivatives of phenoxy products possessing the ester functionality undergo decarboxylative pyrimidine/pyridine migratory cyclization (rather than deprotection of pyrimidine/pyridine group) using 20% NaOEt in EtOH affording a novel class of 3-(pyrimidin-2(1H)-ylidene)benzofuran-2(3H)-ones and 6-methyl-3-(pyridin-2(1H)-ylidene)benzofuran-2(3H)-one. The ortho-alkylated phenoxypyridine possessing ester functionality also undergoes decarboxylative pyridine migratory cyclization using MeOTf/NaOMe in toluene providing 6-methyl-3-(1-methylpyridin-2(1H)-ylidene)benzofuran-2(3H)-one.

  9. Ligand-Controlled Chemoselective C(acyl)–O Bond vs C(aryl)–C Bond Activation of Aromatic Esters in Nickel Catalyzed C(sp2)–C(sp3) Cross-Couplings

    KAUST Repository

    Chatupheeraphat, Adisak

    2018-02-20

    A ligand-controlled and site-selective nickel catalyzed Suzuki-Miyaura cross-coupling reaction with aromatic esters and alkyl organoboron reagents as coupling partners was developed. This methodology provides a facile route for C(sp2)-C(sp3) bond formation in a straightforward fashion by successful suppression of the undesired β-hydride elimination process. By simply switching the phosphorus ligand, the ester substrates are converted into the alkylated arenes and ketone products, respectively. The utility of this newly developed protocol was demonstrated by its wide substrate scope, broad functional group tolerance and application in the synthesis of key intermediates for the synthesis of bioactive compounds. DFT studies on the oxidative addition step helped rationalizing this intriguing reaction chemoselectivity: whereas nickel complexes with bidentate ligands favor the C(aryl)-C bond cleavage in the oxidative addition step leading to the alkylated product via a decarbonylative process, nickel complexes with monodentate phosphorus ligands favor activation of the C(acyl)-O bond, which later generates the ketone product.

  10. A facile synthesis of new 5-aryl-thiophenes bearing sulfonamide moiety via Pd(0-catalyzed Suzuki–Miyaura cross coupling reactions and 5-bromothiophene-2-acetamide: As potent urease inhibitor, antibacterial agent and hemolytically active compounds

    Directory of Open Access Journals (Sweden)

    Mnaza Noreen

    2017-01-01

    Full Text Available The present study reports a convenient approach for the synthesis of thiophene sulfonamide derivatives (3a–3k via Suzuki cross coupling reaction. This method of synthesis involved the reactions of various aryl boronic acids and esters with 5-bromthiophene-2-sulfonamide (2 under mild and suitable temperature conditions. The compounds synthesized in the present study were subjected to urease inhibition and hemolytic activities. The substitution pattern and the electronic effects of different functional groups (i.e., Cl, CH3, OCH3, F etc. available on the aromatic ring are found to have significant effect on the overall results. The compound 5-Phenylthiophene-2-sulfonamide 3a showed the highest urease inhibition activity with IC50 value ∼ 30.8 μg/mL compared with the thiourea (used as standard having IC50 value ∼ 43 μg/mL. Moreover, almost all of the compounds were examined for the hemolytic activity against triton X-100 with positive results obtained in most of the cases. In addition, the antibacterial activities of the derivatives of 5-arylthiophene-2-sulfonamide and 5-bromothiophene-2-acetamide were also investigated during the course of the study.

  11. Nanocatalysts for Suzuki cross-coupling reactions

    KAUST Repository

    Fihri, Aziz; Bouhrara, Mohamed; Nekoueishahraki, Bijan; Basset, Jean-Marie; Polshettiwar, Vivek

    2011-01-01

    This critical review deals with the applications of nanocatalysts in Suzuki coupling reactions, a field that has attracted immense interest in the chemical, materials and industrial communities. We intend to present a broad overview of nanocatalysts

  12. Reductive decarboxylation of bicyclic prolinic systems: a new approach to the enantioselective synthesis of the Geissman-Waiss lactone. X-ray structure determination of a key lactone intermediate

    Directory of Open Access Journals (Sweden)

    Ambrósio João Carlos L.

    2003-01-01

    Full Text Available Two concise and enantioselective syntheses of the necine base precursors (1R,5R-N-Cbz and N-Boc-2-oxa-6-azabicyclo[3.3.0]octan-3-ones (Geissman-Waiss lactones were carried out from two enantiomerically pure endocyclic five-membered enecarbamates with overall yields of 23% and 26%, respectively. The synthetic strategy made use of a highly effective and stereoselective [2+2]cycloaddition of enantiomerically pure endocyclic enecarbamates with dichloroketene, as well as an efficient decarboxylation step of a bicyclic alpha-amino acid employing Boger's acyl selenide protocol employing tributyltin hydride. Interesting aspects concerning the regiochemical outcome of Baeyer-Villiger oxidations of bicyclic cyclobutanones are also reported, in which the usual stereoelectronic bias of Baeyer-Villiger oxidation seems to be counterbalanced by steric effects on the putative Criegee intermediate.

  13. A thiamin-bound, pre-decarboxylation reaction intermediate analogue in the pyruvate dehydrogenase E1 subunit induces large scale disorder-to-order transformations in the enzyme and reveals novel structural features in the covalently bound adduct.

    Science.gov (United States)

    Arjunan, Palaniappa; Sax, Martin; Brunskill, Andrew; Chandrasekhar, Krishnamoorthy; Nemeria, Natalia; Zhang, Sheng; Jordan, Frank; Furey, William

    2006-06-02

    The crystal structure of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc) has been determined with phosphonolactylthiamin diphosphate (PLThDP) in its active site. PLThDP serves as a structural and electrostatic analogue of the natural intermediate alpha-lactylthiamin diphosphate (LThDP), in which the carboxylate from the natural substrate pyruvate is replaced by a phosphonate group. This represents the first example of an experimentally determined, three-dimensional structure of a thiamin diphosphate (ThDP)-dependent enzyme containing a covalently bound, pre-decarboxylation reaction intermediate analogue and should serve as a model for the corresponding intermediates in other ThDP-dependent decarboxylases. Regarding the PDHc-specific reaction, the presence of PLThDP induces large scale conformational changes in the enzyme. In conjunction with the E1-PLThDP and E1-ThDP structures, analysis of a H407A E1-PLThDP variant structure shows that an interaction between His-407 and PLThDP is essential for stabilization of two loop regions in the active site that are otherwise disordered in the absence of intermediate analogue. This ordering completes formation of the active site and creates a new ordered surface likely involved in interactions with the lipoyl domains of E2s within the PDHc complex. The tetrahedral intermediate analogue is tightly held in the active site through direct hydrogen bonds to residues His-407, Tyr-599, and His-640 and reveals a new, enzyme-induced, strain-related feature that appears to aid in the decarboxylation process. This feature is almost certainly present in all ThDP-dependent decarboxylases; thus its inclusion in our understanding of general thiamin catalysis is important.

  14. Recent Advances in Recoverable Systems for the Copper-Catalyzed Azide-Alkyne Cycloaddition Reaction (CuAAC

    Directory of Open Access Journals (Sweden)

    Alessandro Mandoli

    2016-09-01

    Full Text Available The explosively-growing applications of the Cu-catalyzed Huisgen 1,3-dipolar cycloaddition reaction between organic azides and alkynes (CuAAC have stimulated an impressive number of reports, in the last years, focusing on recoverable variants of the homogeneous or quasi-homogeneous catalysts. Recent advances in the field are reviewed, with particular emphasis on systems immobilized onto polymeric organic or inorganic supports.

  15. Development of Copper-Catalyzed Electrophilic Trifluoromethylation and Exploiting Cu/Cu2O Nanowires with Novel Catalytic Reactivity

    KAUST Repository

    Li, Huaifeng

    2014-01-01

    pharmaceuticals and agrochemicals contain fluorine substituents (-F) or trifluoromethyl groups (-CF3) because these moieties often result in profound changes of their physical, chemical, and biological properties, such as metabolic stability and lipophilicity

  16. Cooperative effect of silver in copper-catalyzed trifluoromethylation of aryl iodides using Me3SiCF3

    KAUST Repository

    Weng, Zhiqiang

    2011-06-13

    An effective model of cooperative effect of silver for the coppercatalyzed trifluoromethylation of activated and unactivated aryl iodides to trifluoromethylated arenes using Me3SiCF3 was achieved with a broad substrate scope. © 2011 American Chemical Society.

  17. Complementation of biotransformations with chemical C-H oxidation: copper-catalyzed oxidation of tertiary amines in complex pharmaceuticals.

    Science.gov (United States)

    Genovino, Julien; Lütz, Stephan; Sames, Dalibor; Touré, B Barry

    2013-08-21

    The isolation, quantitation, and characterization of drug metabolites in biological fluids remain challenging. Rapid access to oxidized drugs could facilitate metabolite identification and enable early pharmacology and toxicity studies. Herein, we compared biotransformations to classical and new chemical C-H oxidation methods using oxcarbazepine, naproxen, and an early compound hit (phthalazine 1). These studies illustrated the low preparative efficacy of biotransformations and the inability of chemical methods to oxidize complex pharmaceuticals. We also disclose an aerobic catalytic protocole (CuI/air) to oxidize tertiary amines and benzylic CH's in drugs. The reaction tolerates a broad range of functionalities and displays a high level of chemoselectivity, which is not generally explained by the strength of the C-H bonds but by the individual structural chemotype. This study represents a first step toward establishing a chemical toolkit (chemotransformations) that can selectively oxidize C-H bonds in complex pharmaceuticals and rapidly deliver drug metabolites.

  18. Copper-Catalyzed Domino Three-Component Approach for the Assembly of 2-Aminated Benzimidazoles and Quinazolines.

    Science.gov (United States)

    Tran, Lam Quang; Li, Jihui; Neuville, Luc

    2015-06-19

    A copper-promoted three-component synthesis of 2-aminobenzimidazoles (1) or of 2-aminoquinazolines (2) involving cyanamides, arylboronic acids, and amines has been developed. The operationally simple oxidative process, performed in the presence of K2CO3, a catalytic amount of CuCl2·2H2O, 2,2'-bipyridine, and an O2 atmosphere (1 atm), allows the rapid assembly of either benzimidazoles or quinazolines starting from aryl- or benzyl-substituted cyanamides, respectively. In this process, the copper promotes the formation of three bonds, two C-N bonds, and an additional bond resulting from C-H functionalization event.

  19. Continuous metal scavenging and coupling to one-pot copper-catalyzed azide-alkyne cycloaddition click reaction in flow

    NARCIS (Netherlands)

    Vural - Gursel, Dr. Iris; Aldiansyah, Ferry; Wang, Qi; Noël, Timothy; Hessel, Volker

    2015-01-01

    Increasing usage of catalytic chemistry calls for efficient removal of metal traces. This paper describes the development and optimization of a scavenger-based extraction in flow to remove metal catalysts. It enables liquid-liquid extraction with slug flow and phase separation with a porous

  20. Kinetics and mechanism of aquation and formation reactions of carbonato complexes. XII. Deuterium solvent isotope effect on the rate of acid-catalyzed decarboxylation of the carbonatobis (ethylenediamine) cobalt(III) complex ion. A mechanistic reappraisal

    International Nuclear Information System (INIS)

    Harris, G.M.; Hyde, K.E.

    1978-01-01

    A recent study of the acid-catalyzed decarboxylation of the carbonatotetrakis(pyridine)cobalt(III) complex ion showed there to be rate acceleration in D 2 O solvent, consistent with a proton-preequilibration mechanism. This observation directly contradicts the results of a similar study made some years ago of the analogous ion, carbonatobis(ethylenediamine)cobalt(III), for which there appeared to be deceleration in D 2 O solvent. A reinvestigation of the latter reaction over a much wider acidity range has now shown the earlier work to be in error. The previously proposed generalized mechanism for aquation of chelated carbonato complex ions of the form CoN 4 CO 3 + (N 4 identical with various tetramine ligand groupings of uni-, bi-, or quadridentate type) has thus been revised to include a proton equilibration step. An unexpected complication arises in the interpretation of the data for the bis(ethylenediamine) complex ion in the acidity range 0.1 + ] + ] term, overtakes and exceeds the true first-order rate constant for CO 2 release. The interesting implications of this unusual first-order successive reaction system are fully explored in the context of the present study

  1. Flow chemistry as a discovery tool to access sp2–sp3 cross-coupling reactions via diazo compounds† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03072a Click here for additional data file.

    Science.gov (United States)

    Tran, Duc N.; Battilocchio, Claudio; Lou, Shing-Bong; Hawkins, Joel M.

    2015-01-01

    The work takes advantage of an important feature of flow chemistry, whereby the generation of a transient species (or reactive intermediate) can be followed by a transfer step into another chemical environment, before the intermediate is reacted with a coupling partner. This concept is successfully applied to achieve a room temperature sp2–sp3 cross coupling of boronic acids with diazo compounds, these latter species being generated from hydrazones under flow conditions using MnO2 as the oxidant. PMID:29560199

  2. Catalysis in the Service of Green Chemistry: Nobel Prize-Winning Palladium-Catalysed Cross-Couplings, Run in Water at Room Temperature: Heck, Suzuki-Miyaura and Negishi reactions carried out in the absence of organic solvents, enabled by micellar catalysis.

    Science.gov (United States)

    Lipshutz, Bruce H; Taft, Benjamin R; Abela, Alexander R; Ghorai, Subir; Krasovskiy, Arkady; Duplais, Christophe

    2012-04-01

    Palladium-catalysed cross-couplings, in particular Heck, Suzuki-Miyaura and Negishi reactions developed over three decades ago, are routinely carried out in organic solvents. However, alternative media are currently of considerable interest given an increasing emphasis on making organic processes 'greener'; for example, by minimising organic waste in the form of organic solvents. Water is the obvious leading candidate in this regard. Hence, this review focuses on the application of micellar catalysis, in which a 'designer' surfactant enables these award-winning coupling reactions to be run in water at room temperature.

  3. Nickel-catalyzed coupling reaction of alkyl halides with aryl Grignard reagents in the presence of 1,3-butadiene: mechanistic studies of four-component coupling and competing cross-coupling reactions† †Electronic supplementary information (ESI) available: Detailed experimental and computational results, procedures, characterization data, copies of NMR charts, and crystallographic data. CCDC 1572238. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c7sc04675h

    Science.gov (United States)

    Fukuoka, Asuka; Yokoyama, Wataru; Min, Xin; Hisaki, Ichiro; Kuniyasu, Hitoshi

    2018-01-01

    We describe the mechanism, substituent effects, and origins of the selectivity of the nickel-catalyzed four-component coupling reactions of alkyl fluorides, aryl Grignard reagents, and two molecules of 1,3-butadiene that affords a 1,6-octadiene carbon framework bearing alkyl and aryl groups at the 3- and 8-positions, respectively, and the competing cross-coupling reaction. Both the four-component coupling reaction and the cross-coupling reaction are triggered by the formation of anionic nickel complexes, which are generated by the oxidative dimerization of two molecules of 1,3-butadiene on Ni(0) and the subsequent complexation with the aryl Grignard reagents. The C–C bond formation of the alkyl fluorides with the γ-carbon of the anionic nickel complexes leads to the four-component coupling product, whereas the cross-coupling product is yielded via nucleophilic attack of the Ni center toward the alkyl fluorides. These steps are found to be the rate-determining and selectivity-determining steps of the whole catalytic cycle, in which the C–F bond of the alkyl fluorides is activated by the Mg cation rather than a Li or Zn cation. ortho-Substituents of the aryl Grignard reagents suppressed the cross-coupling reaction leading to the selective formation of the four-component products. Such steric effects of the ortho-substituents were clearly demonstrated by crystal structure characterizations of ate complexes and DFT calculations. The electronic effects of the para-substituent of the aryl Grignard reagents on both the selectivity and reaction rates are thoroughly discussed. The present mechanistic study offers new insight into anionic complexes, which are proposed as the key intermediates in catalytic transformations even though detailed mechanisms are not established in many cases, and demonstrates their synthetic utility as promising intermediates for C–C bond forming reactions, providing useful information for developing efficient and straightforward

  4. Z-Selective iridium-catalyzed cross-coupling of allylic carbonates and α-diazo esters† †Electronic supplementary information (ESI) available: Full procedures, computational details and characterization data. See DOI: 10.1039/c7sc04283c

    Science.gov (United States)

    Thomas, Bryce N.; Moon, Patrick J.; Yin, Shengkang; Brown, Alex

    2017-01-01

    A well-defined Ir–allyl complex catalyzes the Z-selective cross-coupling of allyl carbonates with α-aryl diazo esters. The process overrides the large thermodynamic preference for E-products typically observed in metal-mediated coupling reactions to enable the synthesis of Z,E-dieneoates in good yield with selectivities consistently approaching or greater than 90 : 10. This transformation represents the first productive merger of Ir–carbene and Ir–allyl species, which are commonly encountered intermediates in allylation and cyclopropanation/E–H insertion catalysis. Potentially reactive functional groups (aryl halides, ketones, nitriles, olefins, amines) are tolerated owing to the mildness of reaction conditions. Kinetic analysis of the reaction suggests oxidative addition of the allyl carbonate to an Ir-species is rate-determining. Mechanistic studies uncovered a pathway for catalyst activation mediated by NEt3. PMID:29629093

  5. Decarboxylative Trifluoromethylation of Aliphatic Carboxylic Acids.

    Science.gov (United States)

    Kautzky, Jacob A; Wang, Tao; Evans, Ryan W; MacMillan, David W C

    2018-05-14

    Herein we disclose an efficient method for the conversion of carboxylic acids to trifluoromethyl groups via the combination of photoredox and copper catalysis. This transformation tolerates a wide range of functionality including heterocycles, olefins, alcohols, and strained ring systems. To demonstrate the broad potential of this new methodology for late-stage functionalization, we successfully converted a diverse array of carboxylic acid-bearing natural products and medicinal agents to the corresponding trifluoromethyl analogues.

  6. PICOLINIC ACID PROMOTED OXIDATIVE DECARBOXYLATION OF ...

    African Journals Online (AJOL)

    enthalpy of activation, ∆H≠ calculated for the PA promoted Cr(VI) reaction of PSAA are. -112.38 ± 6.6 J K-1 mol-1 and 53.17 ± 1.9 KJ mol-1 respectively .... neutralization of positive charge on sulfur atom as a result of ligand coupling with oxygen atom. Such a ligand coupling pathway has already been suggested by the ...

  7. Picolinic acid promoted oxidative decarboxylation of ...

    African Journals Online (AJOL)

    The kinetics and mechanism of picolinic acid promoted reaction of phenylsulfinylacetic acid (PSAA) with Cr(VI) was carried out in aqueous acetonitrile medium under pseudo first order conditions. The reaction follows Michaelis-Menten type of kinetics with respect to PSAA. The catalytic activity by picolinic acid can be ...

  8. Mode cross coupling observations with a rotation sensor

    Science.gov (United States)

    Nader-Nieto, M. F.; Igel, H.; Ferreira, A. M.; Al-Attar, D.

    2013-12-01

    The Earth's free oscillations induced by large earthquakes have been one of the most important ways to measure the Earth's internal structure and processes. They provide important large scale constraints on a variety of elastic parameters, attenuation and density of the Earth's deep interior. The potential of rotational seismic records for long period seismology was proven useful as a complement to traditional measurements in the study of the Earth's free oscillations. Thanks to the high resolution of the G-ring laser located at Geodetic Observatory Wettzell, Germany, we are now able to study the spectral energy generated by rotations in the low frequency range. On a SNREI Earth, a vertical component rotational sensor is primarily excited by horizontally polarised shear motions (SH waves, Love waves) with theoretically no sensitivity to compressional waves and conversions (P-SV) and Rayleigh waves. Consequently, in the context of the Earth's normal modes, this instrument detects mostly toroidal modes. Here, we present observations of spectral energy of both toroidal and spheroidal normal modes in the G-ring Laser records of one of the largest magnitude events recently recorded: Tohoku-Oki, Japan, 2011. In an attempt to determine the mechanisms responsible for spheroidal energy in the vertical axes rotational spectra, we first rule out instrumental effects as well as the effect of local heterogeneity. Second, we carry out a simulation of an ideal rotational sensor taking into account the effects of the Earth's daily rotation, its hydrostatic ellipticity and structural heterogeneity, finding a good fit to the data. Simulations considering each effect separately are performed in order to evaluate the sensitivity of rotational motions to global effects with respect to traditional translation measurements.

  9. Synthesis of Imidazopyridines via Copper-Catalyzed, Formal Aza-[3 + 2] Cycloaddition Reaction of Pyridine Derivatives with α-Diazo Oxime Ethers.

    Science.gov (United States)

    Park, Sangjune; Kim, Hyunseok; Son, Jeong-Yu; Um, Kyusik; Lee, Sooho; Baek, Yonghyeon; Seo, Boram; Lee, Phil Ho

    2017-10-06

    The Cu-catalyzed, formal aza-[3 + 2] cycloaddition reaction of pyridine derivatives with α-diazo oxime ethers in trifluoroethanol was used to synthesize imidazopyridines via the release of molecular nitrogen and elimination of alcohol. These methods enabled modular synthesis of a wide range of N-heterobicyclic compounds such as imidazopyridazines, imidazopyrimidines, and imidazopyrazines with an α-imino Cu-carbenoid generated from the α-diazo oxime ethers and copper.

  10. Mechanism and the origins of stereospecificity in copper-catalyzed ring expansion of vinyl oxiranes: a traceless dual transition-metal-mediated process.

    Science.gov (United States)

    Mustard, Thomas J L; Mack, Daniel J; Njardarson, Jon T; Cheong, Paul Ha-Yeon

    2013-01-30

    Density functional theory computations of the Cu-catalyzed ring expansion of vinyloxiranes is mediated by a traceless dual Cu(I)-catalyst mechanism. Overall, the reaction involves a monomeric Cu(I)-catalyst, but a single key step, the Cu migration, requires two Cu(I)-catalysts for the transformation. This dual-Cu step is found to be a true double Cu(I) transition state rather than a single Cu(I) transition state in the presence of an adventitious, spectator Cu(I). Both Cu(I) catalysts are involved in the bond forming and breaking process. The single Cu(I) transition state is not a stationary point on the potential energy surface. Interestingly, the reductive elimination is rate-determining for the major diastereomeric product, while the Cu(I) migration step is rate-determining for the minor. Thus, while the reaction requires dual Cu(I) activation to proceed, kinetically, the presence of the dual-Cu(I) step is untraceable. The diastereospecificity of this reaction is controlled by the Cu migration step. Suprafacial migration is favored over antarafacial migration due to the distorted Cu π-allyl in the latter.

  11. Selective and Orthogonal Post-Polymerization Modification using Sulfur(VI) Fluoride Exchange (SuFEx) and Copper-Catalyzed Azide–Alkyne Cycloaddition (CuAAC) Reactions

    International Nuclear Information System (INIS)

    Oakdale, James S.; Kwisnek, Luke; Fokin, Valery V.

    2016-01-01

    Functional polystyrenes and polyacrylamides, containing combinations of fluorosulfate, aromatic silyl ether, and azide side chains, were used as scaffolds to demonstrate the postpolymerization modification capabilities of sulfur(VI) fluoride exchange (SuFEx) and CuAAC chemistries. Fluorescent dyes bearing appropriate functional groups were sequentially attached to the backbone of the copolymers, quantitatively and selectively addressing their reactive partners. Furthermore, this combined SuFEx and CuAAC approach proved to be robust and versatile, allowing for a rare accomplishment: triple orthogonal functionalization of a copolymer under essentially ambient conditions without protecting groups.

  12. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    Science.gov (United States)

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Ready synthesis of free N-H 2-arylindoles via the copper-catalyzed amination of 2-bromo-arylacetylenes with aqueous ammonia and sequential intramolecular cyclization.

    Science.gov (United States)

    Wang, Huifeng; Li, Yaming; Jiang, Linlin; Zhang, Rong; Jin, Kun; Zhao, Defeng; Duan, Chunying

    2011-07-07

    A wide range of free N-H 2-arylindoles were synthesised via the copper(II)-catalyzed amination of 2-bromo-arylacetylenes with aqueous ammonia and sequential intramolecular cyclization. The convenience and atom economy of aqueous ammonia, and the low cost of the copper catalytic system make this protocol readily superior in practical application.

  14. Use of Elemental Sulfur or Selenium in a Novel One-Pot Copper-Catalyzed Tandem Cyclization of Functionalized Ynamides Leading to Benzosultams.

    Science.gov (United States)

    Siva Reddy, Alla; Kumara Swamy, K C

    2015-06-19

    A novel and efficient [Cu]-catalyzed one-pot regio- and stereospecific synthesis of benzo[1,4,2]dithiazine 1,1-dioxides and benzo[1,4,2]thiaselenazine 1,1-dioxides by cyclization of functionalized ynamides with elemental sulfur/selenium has been developed. Its generality is elegantly illustrated by extension to benzodithiazepines and benzothiaselenazepines. Involvement of water in the reaction is demonstrated by the incorporation of (2)D at the olefinic site by using D2O in place of water. Selective oxidation at sulfur in benzo[1,4,2]dithiazine 1,1-dioxide by using mCPBA as the oxidizing agent is also described.

  15. Trifluoromethylselenolation of Aryldiazonium Salts: A Mild and Convenient Copper-Catalyzed Procedure for the Introduction of the SeCF3Group

    KAUST Repository

    Nikolaienko, Pavlo

    2016-01-21

    The straightforward introduction of the trifluoromethylseleno group into aromatic and heteroaromatic compounds is accomplished by the utilization of readily available aryldiazonium tetrafluoroborates, potassium selenocyanate, and Ruppert-Prakash reagent. The reaction tolerates a wide range of aromatic and heteroaromatic diazonium salts and is also amenable to the synthesis of pentafluoroethyl selenoethers. Furthermore, the methodology can be applied directly starting from anilines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis of New Chiral 2,2'-bipyridine ligands and their application in copper-catalyzed asymmetric allylic oxidation and cyclopropanation

    Czech Academy of Sciences Publication Activity Database

    Malkov, A. V.; Pernazza, D.; Bell, M.; Bella, M.; Massa, A.; Teplý, Filip; Meghani, P.; Kočovský, P.

    2003-01-01

    Roč. 68, č. 12 (2003), s. 4727-4742 ISSN 0022-3263 Institutional research plan: CEZ:AV0Z4055905 Keywords : optically-active bipyridine * enantioselective cyclopropanation * allylic oxidation Subject RIV: CC - Organic Chemistry Impact factor: 3.297, year: 2003

  17. Trifluoromethylselenolation of Aryldiazonium Salts: A Mild and Convenient Copper-Catalyzed Procedure for the Introduction of the SeCF3Group

    KAUST Repository

    Nikolaienko, Pavlo; Rueping, Magnus

    2016-01-01

    The straightforward introduction of the trifluoromethylseleno group into aromatic and heteroaromatic compounds is accomplished by the utilization of readily available aryldiazonium tetrafluoroborates, potassium selenocyanate, and Ruppert-Prakash reagent. The reaction tolerates a wide range of aromatic and heteroaromatic diazonium salts and is also amenable to the synthesis of pentafluoroethyl selenoethers. Furthermore, the methodology can be applied directly starting from anilines. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Decarboxylation Of Palm And Groundnut Oils In Medium Uv ...

    African Journals Online (AJOL)

    denise

    INTRODUCTION. Vegetable oils undergo appreciable deterioration during processing and storage. The residual free fatty acid (FFA) concentration of vegetable oils is a function of the processing and storage conditions. Vegetable oils spoilage, usually defined as rancidity, is the result of fatty acid moity has been recognized ...

  19. Cross-Coupling of Amides with Alkylboranes via Nickel-Catalyzed C–N Bond Cleavage

    KAUST Repository

    Liu, Xiangqian; Hsiao, Chien-Chi; Guo, Lin; Rueping, Magnus

    2018-01-01

    A protocol for the nickel-catalyzed alkylation of amides was established. The use of alkylboranes as nucleophilic partners allowed the use of mild reaction conditions and compatibility of various functional groups with respect to both coupling partners. The catalytic alkylation proceeded selectively at the amides in the presence of other functional groups as well as other carboxylic acid derived moieties.

  20. A capacitor cross-coupled common-gate low-noise amplifier

    NARCIS (Netherlands)

    Zhuo, W.; Li, X.; Shekhar, S.; Embabi, S.H.K.; Pineda de Gyvez, J.; Allstot, D.J.; Sanchez-Sinencio, E.

    2005-01-01

    The conventional common-gate low-noise amplifier (CGLNA) exhibits a relatively high noise figure (NF) at low operating frequencies relative to the MOSFET fT, which has limited its adoption notwithstanding its superior linearity, input matching, and stability compared to the inductively degenerated

  1. Sensitivity Analyses for Cross-Coupled Parameters in Automotive Powertrain Optimization

    Directory of Open Access Journals (Sweden)

    Pongpun Othaganont

    2014-06-01

    Full Text Available When vehicle manufacturers are developing new hybrid and electric vehicles, modeling and simulation are frequently used to predict the performance of the new vehicles from an early stage in the product lifecycle. Typically, models are used to predict the range, performance and energy consumption of their future planned production vehicle; they also allow the designer to optimize a vehicle’s configuration. Another use for the models is in performing sensitivity analysis, which helps us understand which parameters have the most influence on model predictions and real-world behaviors. There are various techniques for sensitivity analysis, some are numerical, but the greatest insights are obtained analytically with sensitivity defined in terms of partial derivatives. Existing methods in the literature give us a useful, quantified measure of parameter sensitivity, a first-order effect, but they do not consider second-order effects. Second-order effects could give us additional insights: for example, a first order analysis might tell us that a limiting factor is the efficiency of the vehicle’s prime-mover; our new second order analysis will tell us how quickly the efficiency of the powertrain will become of greater significance. In this paper, we develop a method based on formal optimization mathematics for rapid second-order sensitivity analyses and illustrate these through a case study on a C-segment electric vehicle.

  2. Clean and fast cross-coupling of aryl halides in one-pot

    Directory of Open Access Journals (Sweden)

    Valerica Pandarus

    2014-04-01

    Full Text Available Unsymmetrically coupled biaryls are synthesized in high yield starting from different aryl bromides and bis(pinacolatodiboron by carrying out the Miyaura borylation reaction followed by the Suzuki–Miyaura reaction in the same reaction pot over 1–2 mol % SiliaCat DPP-Pd. The SiliaCat DPP-Pd catalyst is air-stable and the method does not require the use of inert conditions. The use of non-toxic isopropanol or 2-butanol as reaction solvent further adds to the environmental benefits of this new green synthetic methodology.

  3. Pd(II)/PhI(OAc)2 promoted direct cross coupling of glucals with aromatic acids.

    Science.gov (United States)

    Begum, Zubeda; Shankar, G; Sirisha, K; Reddy, B V Subba

    2018-05-22

    A highly efficient oxidative C2-aroyloxylation of D-glucal with aromatic carboxylic acids has been achieved for the first time using 5 mol% Pd(OAc) 2 and 1 equiv of PhI(OAc) 2 to produce C2-aroyloxyglycals in good yields. The use of excess of PhI(OAc) 2 (2 equiv) provides C2-acyloxyglycal exclusively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Stereospecific nickel-catalyzed cross-coupling reactions of alkyl ethers: enantioselective synthesis of diarylethanes.

    Science.gov (United States)

    Taylor, Buck L H; Swift, Elizabeth C; Waetzig, Joshua D; Jarvo, Elizabeth R

    2011-01-26

    Secondary benzylic ethers undergo stereospecific substitution reactions with Grignard reagents in the presence of nickel catalysts. Reactions proceed with inversion of configuration and high stereochemical fidelity. This reaction allows for facile enantioselective synthesis of biologically active diarylethanes from readily available optically enriched carbinols.

  5. pincer complex in Suzuki–Miyaura cross-coupling reaction under

    Indian Academy of Sciences (India)

    The recent focus of interest on pincer complexes is due to their extended utility in the field of homogeneous catalysis.1 Pincer complexes offer interesting possibili- ties both in terms of mechanistic understanding and cat- alytic performance.1b The high catalytic efficiency is attributed to the stable and compact geometry of the.

  6. Insights into Sonogashira cross-coupling by high-throughput kinetics and descriptor modeling

    NARCIS (Netherlands)

    an der Heiden, M.R.; Plenio, H.; Immel, S.; Burello, E.; Rothenberg, G.; Hoefsloot, H.C.J.

    2008-01-01

    A method is presented for the high-throughput monitoring of reaction kinetics in homogeneous catalysis, running up to 25 coupling reactions in a single reaction vessel. This method is demonstrated and validated on the Sonogashira reaction, analyzing the kinetics for almost 500 coupling reactions.

  7. Cross-Coupling of Amides with Alkylboranes via Nickel-Catalyzed C–N Bond Cleavage

    KAUST Repository

    Liu, Xiangqian

    2018-05-09

    A protocol for the nickel-catalyzed alkylation of amides was established. The use of alkylboranes as nucleophilic partners allowed the use of mild reaction conditions and compatibility of various functional groups with respect to both coupling partners. The catalytic alkylation proceeded selectively at the amides in the presence of other functional groups as well as other carboxylic acid derived moieties.

  8. Palladium-catalyzed aerobic oxidative cross-coupling of arylhydrazines with terminal alkynes.

    Science.gov (United States)

    Zhao, Yingwei; Song, Qiuling

    2015-09-04

    The palladium-catalyzed Sonogashira-type aerobic oxidative coupling of arylhydrazines with terminal alkynes via C-N bond cleavage has been developed; internal alkynes were afforded with a broad substrate scope. This reaction proceeds under copper- and base-free conditions with molecular oxygen as the sole oxidant and nitrogen and water as the only by-products.

  9. Cu(OAc)2 catalyzed Sonogashira cross-coupling reaction in amines

    Institute of Scientific and Technical Information of China (English)

    Sheng Mei Guo; Chen Liang Deng; Jin Heng Li

    2007-01-01

    A simple Cu(OAc)2 catalyzed Sonogashira coupling protocol is presented. It was found that the couplings of a variety of aryl halides with terminal alkynes were conducted smoothly to afford the corresponding desired products in moderate to excellent yields, using Cu(OAc)2 as the catalyst and Et3N as the solvent.

  10. Microwave-Enhanced Cross-Coupling Reactions Involving Alkynyltrifluoroborates with Aryl Bromides

    Directory of Open Access Journals (Sweden)

    George W. Kabalka

    2013-01-01

    Full Text Available Palladium-catalyzed alkynylation has emerged as one of the most reliable methods for the synthesis of alkynes which are often used in natural product syntheses and material science. An efficient method for coupling alkynyltrifluoroborates with various aryl bromides in the presence of a palladium catalyst has been developed using microwave irradiation. The microwave reactions are rapid and efficient.

  11. Charged Porous Polymers using a Solid C-O Cross-Coupling Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Jiang, Xueguang; Wan, Shun; Dai, Sheng

    2015-07-15

    Here in this paper, we report a green, fast, efficient mechanochemical strategy for charged porous polymers (CPPs). A cationic CPP with basic anions and an anionic CPP with Li+ cations were fabricated by solid grinding under solvent-free conditions. Compared with solution-based synthesis, mechanochemical grinding can shorten the reaction time from dozens of hours to several minutes (60–90 min) to form polymers possessing a high molecular mass and low polydispersity. During the construction of CPPs, a Pd-catalyzed solid polycondensation based on unactivated organic linkers was introduced. In particular, CPPs with basic phenolic or proline anions showed good activity and stability in SO2 capture, and Li+-functionalized CPPs can be post-modified to CPPs with other metal ions by ion exchange, highlighting the tailorable feature of ionic-modified CPPs.

  12. Finite element modeling of the 1-D piezoceramic ultrasound array inter-element cross-coupling

    NARCIS (Netherlands)

    State, M.; Ledoux, L.; Vosse, van de F.N.

    2008-01-01

    sponsible for undesired behavior in radiation field patterns and electroacoustic response of the ultrasound transducers for medical imaging. This undesired behavior is ultimately impairing the end echographic image quality [1,2]. The aim of our research is to study the influence of the dicing depth,

  13. Charged Porous Polymers using a Solid C-O Cross-Coupling Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Jiang, Xueguang; Wan, Shun; Dai, Sheng

    2015-07-15

    Herein, we report a green, fast, efficient mechanochemical strategy for charged porous polymers (CPPs). A cationic CPP with basic anions and an anionic CPP with Li+ cations were fabricated by solid grinding under solvent-free conditions. Compared with solution-based synthesis, mechanochemical grinding can shorten the reaction time from dozens of hours to several minutes (60–90 min) to form polymers possessing a high molecular mass and low polydispersity. During the construction of CPPs, a Pd-catalyzed solid polycondensation based on unactivated organic linkers was introduced. In particular, CPPs with basic phenolic or proline anions showed good activity and stability in SO2 capture, and Li+-functionalized CPPs can be post-modified to CPPs with other metal ions by ion exchange, highlighting the tailorable feature of ionic-modified CPPs.

  14. Modular Approach to Heterogenous Catalysis. Manipulation of Cross-Coupling Catalyst Activity

    Czech Academy of Sciences Publication Activity Database

    Štibingerová, Iva; Voltrová, Svatava; Kočová, Šárka; Lindale, M.; Šrogl, Jiří

    2016-01-01

    Roč. 18, č. 2 (2016), s. 312-315 ISSN 1523-7060 R&D Projects: GA MŠk LH12012 Institutional support: RVO:61388963 Keywords : polysiloxane gels * Suzuki coupling * palladium nanoparticles Subject RIV: CC - Organic Chemistry Impact factor: 6.579, year: 2016

  15. Catalytic Ester to Stannane Functional Group Interconversion via Decarbonylative Cross-Coupling of Methyl Esters

    KAUST Repository

    Yue, Huifeng

    2018-01-03

    An unprecedented conversion of methyl esters to stannanes was realized, providing access to a series of arylstannanes via nickel catalysis. Various common esters including ethyl, cyclohexyl, benzyl, and phenyl esters can undergo the newly developed decarbonylative stannylation reaction. The reaction shows broad substrate scope, can differentiate between different types of esters, and if applied in consecutive fashion, allows the transformation of methyl esters into aryl fluorides or biaryls via fluororination or arylation.

  16. Photocatalytic Hydrogen-Evolution Cross-Couplings: Benzene C-H Amination and Hydroxylation.

    Science.gov (United States)

    Zheng, Yi-Wen; Chen, Bin; Ye, Pan; Feng, Ke; Wang, Wenguang; Meng, Qing-Yuan; Wu, Li-Zhu; Tung, Chen-Ho

    2016-08-17

    We present a blueprint for aromatic C-H functionalization via a combination of photocatalysis and cobalt catalysis and describe the utility of this strategy for benzene amination and hydroxylation. Without any sacrificial oxidant, we could use the dual catalyst system to produce aniline directly from benzene and ammonia, and phenol from benzene and water, both with evolution of hydrogen gas under unusually mild conditions in excellent yields and selectivities.

  17. Catalytic Ester to Stannane Functional Group Interconversion via Decarbonylative Cross-Coupling of Methyl Esters

    KAUST Repository

    Yue, Huifeng; Zhu, Chen; Rueping, Magnus

    2018-01-01

    An unprecedented conversion of methyl esters to stannanes was realized, providing access to a series of arylstannanes via nickel catalysis. Various common esters including ethyl, cyclohexyl, benzyl, and phenyl esters can undergo the newly developed decarbonylative stannylation reaction. The reaction shows broad substrate scope, can differentiate between different types of esters, and if applied in consecutive fashion, allows the transformation of methyl esters into aryl fluorides or biaryls via fluororination or arylation.

  18. Ru(II)-Catalyzed Cross-Coupling of Cyclopropenes with Diazo Compounds: Formation of Olefins from Two Different Carbene Precursors.

    Science.gov (United States)

    Wang, Bo; Yi, Heng; Zhang, Hang; Sun, Tong; Zhang, Yan; Wang, Jianbo

    2018-01-19

    Formal carbene dimerization is a convergent method for the synthesis of alkenes. Herein, we report a Ru(II)-catalyzed carbene dimerization of cyclopropenes and diazo compounds. The yields are up to 97% and the stereoselectivity are up to >20:1. Mechanistically, it has been experimentally demonstrated that the catalyst reacts with cyclopropene first to generate a Ru(II)-carbene species, which is attacked by nucleophilic diazo substrate, followed by dinitrogen extrusion to form the double bond.

  19. Cross-Coupling of Sodium Sulfinates with Aryl, Heteroaryl and Vinyl Halides by Nickel/photoredox dual catalysis

    KAUST Repository

    Yue, Huifeng

    2017-12-06

    An efficient photoredox/nickel dual catalyzed sulfonylation reaction of aryl, heteroaryl, and vinyl halides has been achieved for the first time. This newly developed sulfonylation protocol provides a versatile method for the synthesis of diverse aromatic sulfones at room temperature and shows excellent functional group tolerance. The electrophilic coupling partners are not limited to aryl, heteroaryl and vinyl bromides but also less reactive aryl chlorides are suitable substrates for this transformation.

  20. Nickel-Catalyzed C sp2 –C sp3 Cross-Coupling via C–O Bond Activation

    KAUST Repository

    Guo, Lin

    2016-06-13

    A new and efficient nickel-catalyzed alkylation of CAr-O electrophiles with B-alkyl-9-BBNs is described. The transformation is characterized by its functional group tolerance and provides a practical and versatile access to various Csp2-Csp3 bonds through Csp2-O substitution, without the restriction of β-hydride elimination. Moreover, the advantage of the newly developed method was demonstrated in a selective and sequential C-O bond activation process. © 2016 American Chemical Society.

  1. SYNTHESIS OF NAPHTHALENE DERIVATIVES VIA A NOVEL GALLIUM TRICHLORIDE CATALYZED CROSS-COUPLING OF EPOXIDES WITH ALKYNES. (R828129)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Recent Advances in the Synthesis of N-Containing Heteroaromatics via Heterogeneously Transition Metal Catalysed Cross-Coupling Reactions

    Directory of Open Access Journals (Sweden)

    Laurent Djakovitch

    2011-06-01

    Full Text Available N-containing heteroaromatics are important substructures found in numerous natural or synthetic alkaloids. The diversity of the structures encountered, as well as their biological and pharmaceutical relevance, have motivated research aimed at the development of new economical, efficient and selective synthetic strategies to access these compounds. Over more than 100 years of research, this hot topic has resulted in numerous so-called “classical synthetic methods” that have really contributed to this important area. However, when the selective synthesis of highly functional heteroaromatics like indoles, quinolones, indoxyls, etc. is considered these methods remain limited. Recently transition metal-catalysed (TM-catalysed procedures for the synthesis of such compounds and further transformations, have been developed providing increased tolerance toward functional groups and leading generally to higher reaction yields. Many of these methods have proven to be the most powerful and are currently applied in target- or diversity-oriented syntheses. This review article aims at reporting the recent developments devoted to this important area, focusing on the use of heterogeneous catalysed procedures that include either the formation of the heterocyclic ring towards the nuclei or their transformations to highly substituted compounds.

  3. Synthesis and Suzuki Cross-Coupling Reactions of 2,6-Bis(trifluoromethyl)pyridine-4-boronic Acid Pinacol Ester

    KAUST Repository

    Batool, Farhat

    2016-11-18

    Iridium-catalyzed aromatic borylation provides quick one-step access to 2,6-bis(trifluoromethyl)pyridine-4-boronic acid pinacol ester. Suzuki couplings of this highly electron-deficient pyridine-4-boronic ester with various (hetero)aryl bromides was successfully carried out and the coupled products were obtained in 46–95% isolated yields. Double and triple Suzuki couplings, with dibromo- and tribromoarenes, respectively, were also achieved. Thus demonstrating that this pyridine-4-boronic ester can be a useful source for the installation of one of the strongest electron-withdrawing aromatic group in organic compounds. Copyright © 2016, Georg Thieme Verlag. All rights reserved.

  4. Cross-Coupling of Sodium Sulfinates with Aryl, Heteroaryl and Vinyl Halides by Nickel/photoredox dual catalysis

    KAUST Repository

    Yue, Huifeng; Zhu, Chen; Rueping, Magnus

    2017-01-01

    An efficient photoredox/nickel dual catalyzed sulfonylation reaction of aryl, heteroaryl, and vinyl halides has been achieved for the first time. This newly developed sulfonylation protocol provides a versatile method for the synthesis of diverse aromatic sulfones at room temperature and shows excellent functional group tolerance. The electrophilic coupling partners are not limited to aryl, heteroaryl and vinyl bromides but also less reactive aryl chlorides are suitable substrates for this transformation.

  5. Copper-mediated C-H activation/C-S cross-coupling of heterocycles with thiols

    KAUST Repository

    Ranjit, Sadananda

    2011-11-04

    We report the synthesis of a series of aryl- or alkyl-substituted 2-mercaptobenzothiazoles by direct thiolation of benzothiazoles with aryl or alkyl thiols via copper-mediated aerobic C-H bond activation in the presence of stoichiometric CuI, 2,2′-bipyridine and Na 2CO 3. We also show that the approach can be extended to thiazole, benzimidazole, and indole substrates. In addition, we present detailed mechanistic investigations on the Cu(I)-mediated direct thiolation reactions. Both computational studies and experimental results reveal that the copper-thiolate complex [(L)Cu(SR)] (L: nitrogen-based bidentate ligand such as 2,2′-bipyridine; R: aryl or alkyl group) is the first reactive intermediate responsible for the observed organic transformation. Furthermore, our computational studies suggest a stepwise reaction mechanism based on a hydrogen atom abstraction pathway, which is more energetically feasible than many other possible pathways including β-hydride elimination, single electron transfer, hydrogen atom transfer, oxidative addition/reductive elimination, and σ-bond metathesis. © 2011 American Chemical Society.

  6. Non-linear mixing in coupled photonic crystal nanobeam cavities due to cross-coupling opto-mechanical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Daniel, E-mail: daniel.ramos@csic.es; Frank, Ian W.; Deotare, Parag B.; Bulu, Irfan; Lončar, Marko [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2014-11-03

    We investigate the coupling between mechanical and optical modes supported by coupled, freestanding, photonic crystal nanobeam cavities. We show that localized cavity modes for a given gap between the nanobeams provide weak optomechanical coupling with out-of-plane mechanical modes. However, we show that the coupling can be significantly increased, more than an order of magnitude for the symmetric mechanical mode, due to optical resonances that arise from the interaction of the localized cavity modes with standing waves formed by the reflection from thesubstrate. Finally, amplification of motion for the symmetric mode has been observed and attributed to the strong optomechanical interaction of our hybrid system. The amplitude of these self-sustained oscillations is large enough to put the system into a non-linear oscillation regime where a mixing between the mechanical modes is experimentally observed and theoretically explained.

  7. Diamond functionalization with light-harvesting molecular wires: improved surface coverage by optimized Suzuki cross-coupling conditions

    Czech Academy of Sciences Publication Activity Database

    Yeap, W. S.; Bevk, D.; Liu, X.; Krýsová, Hana; Pasquarelli, A.; Vanderzande, D.; Lutsen, L.; Kavan, Ladislav; Fahlman, M.; Maes, W.; Haenen, K.

    2014-01-01

    Roč. 4, AUG 2014 (2014), s. 42044-42053 ISSN 2046-2069 R&D Projects: GA ČR GA13-31783S Institutional support: RVO:61388955 Keywords : Functionalizations * Light-harvesting * Molecular wires Subject RIV: CG - Electrochemistry Impact factor: 3.840, year: 2014

  8. Cross-Coupling Reaction of Saccharide-Based Alkenyl Boronic Acids with Aryl Halides: The Synthesis of Bergenin

    Czech Academy of Sciences Publication Activity Database

    Parkan, K.; Pohl, Radek; Kotora, M.

    2014-01-01

    Roč. 20, č. 15 (2014), s. 4414-4419 ISSN 0947-6539 Grant - others:GA ČR(CZ) GPP207/12/P713; GA ČR(CZ) GA13-15915S Institutional support: RVO:61388963 Keywords : CC coupling * glycosides * natural products * protecting groups * synthetic methods Subject RIV: CC - Organic Chemistry Impact factor: 5.731, year: 2014

  9. Planar geometry of 4-substituted-2,2'-bipyridines synthesized by Sonogashira and Suzuki cross-coupling reactions

    Energy Technology Data Exchange (ETDEWEB)

    Luong Thi, T. T., E-mail: thuyltt@hnue.edu.vn; Nguyen Bich, N.; Nguyen, H. [Hanoi National University of Education, Chemistry Department (Viet Nam); Van Meervelt, L., E-mail: luc.vanmeervelt@chem.kuleuven.be [KU Leuven, Chemistry Department (Belgium)

    2015-12-15

    Two 4-substituted 2,2'-bipyridines, namely 4-(ferrocenylethynyl)-2,2'-bipyridine (I) and 4-ferrocenyl-2,2'-bipyridine (II) have been synthesized and fully characterized via single-crystal X-ray diffraction and {sup 1}H and {sup 13}C NMR analyses. The π-conjugated system designed from 2,2'-bipyridine modified with the ferrocenylethynyl and ferrocenyl groups shows the desired planarity. In the crystal packing of I and II, the molecules arrange themselves in head-to-tail and head-to-head motifs, respectively, resulting in consecutive layers of ferrocene and pyridine moieties.

  10. Copper-mediated C-H activation/C-S cross-coupling of heterocycles with thiols

    KAUST Repository

    Ranjit, Sadananda; Lee, Richmond; Heryadi, Dodi; Shen, Chao; Wu, Jien; Zhang, Pengfei; Huang, Kuo-Wei; Liu, Xiaogang

    2011-01-01

    studies and experimental results reveal that the copper-thiolate complex [(L)Cu(SR)] (L: nitrogen-based bidentate ligand such as 2,2′-bipyridine; R: aryl or alkyl group) is the first reactive intermediate responsible for the observed organic transformation

  11. Suzuki-Miyaura cross-coupling coupling reactions with low catalyst loading: a green and sustainable protocol in pure water.

    Science.gov (United States)

    Fihri, Aziz; Luart, Denis; Len, Christophe; Solhy, Abderrahim; Chevrin, Carole; Polshettiwar, Vivek

    2011-04-07

    The Suzuki-Miyaura coupling reaction represents one of the most important synthetic transformations developed in the 20th century. However, the use of toxic organic solvents remains a scientific challenge and an aspect of economical and ecological relevance, and benign water as a reaction medium was found to be highly effective to overcome some of these issues. In the present manuscript, we described Suzuki-Miyaura coupling reactions in neat water, without using any phase transfer reagent. Notably, this protocol also works with ultra-low loading of catalyst with high turnover numbers and also able to couple challenging substrates like aryl chlorides. © The Royal Society of Chemistry 2011

  12. Highly selective synthesis of conjugated dienoic and trienoic esters via alkyne elementometalation–Pd-catalyzed cross-coupling

    Science.gov (United States)

    Wang, Guangwei; Mohan, Swathi; Negishi, Ei-ichi

    2011-01-01

    All four stereoisomers (7–10) of ethyl undeca-2,4-dienoate were prepared in ≥98% isomeric purity by Pd-catalyzed alkenylation (Negishi coupling) using ethyl (E)- and (Z)-β-bromoacrylates. Although the stereoisomeric purity of the 2Z,4E-isomer (8) prepared by Suzuki coupling using conventional alkoxide and carbonate bases was ≤ 95%, as reported earlier, the use of CsF or nBu4NF as a promoter base has now been found to give all of 7–10 in ≥98% selectivity. Other widely known methods reveal considerable limitations. Heck alkenylation was satisfactory for the syntheses of the 2E,4E and 2E,4Z isomers of ≥98% purity, but the purity of the 2Z,4E isomer was ≤ 95%. Mutually complementary Horner–Wadsworth–Emmons and Still–Gennari (SG) olefinations are also of considerably limited scopes. Neither 2E,4Z nor 2Z,4Z isomer is readily prepared in ≥90% selectivity. In addition to (2Z,4E)-dienoic esters, some (2Z,4E,6E)- and (2Z,4E,6Z)-trienoic esters have been prepared in ≥98% selectivity by a newly devised Pd-catalyzed alkenylation–SG olefination tandem process. As models for conjugated higher oligoenoic esters, all eight stereoisomers for ethyl trideca-2,4,6-trienoate (23–30) have been prepared in ≥98% overall selectivity. PMID:21709262

  13. New air-stable planar chiral ferrocenyl monophosphine ligands: Suzuki cross-coupling of aryl chlorides and bromides

    DEFF Research Database (Denmark)

    Jensen, Jakob Feldthusen; Johannsen, Mogens

    2003-01-01

    GraphicA novel class of planar chiral electron-rich monophosphine ligands has been developed. The modular design allows a short and efficient synthesis of an array of aryl-ferrocenyl derivatives carrying the donating bis(dicyclohexyl)phosphino moiety. These new ligands have successfully been...

  14. Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling in a Green Alcohol Solvent for an Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Hie, Liana; Chang, Jonah J.; Garg, Neil K.

    2015-01-01

    A modern undergraduate organic chemistry laboratory experiment involving the Suzuki-Miyaura coupling is reported. Although Suzuki-Miyaura couplings typically employ palladium catalysts in environmentally harmful solvents, this experiment features the use of inexpensive nickel catalysis, in addition to a "green" alcohol solvent. The…

  15. Nickel-Catalyzed C sp2 –C sp3 Cross-Coupling via C–O Bond Activation

    KAUST Repository

    Guo, Lin; Hsiao, Chien-Chi; Yue, Huifeng; Liu, Xiangqian; Rueping, Magnus

    2016-01-01

    through Csp2-O substitution, without the restriction of β-hydride elimination. Moreover, the advantage of the newly developed method was demonstrated in a selective and sequential C-O bond activation process. © 2016 American Chemical Society.

  16. Synthesis and Suzuki Cross-Coupling Reactions of 2,6-Bis(trifluoromethyl)pyridine-4-boronic Acid Pinacol Ester

    KAUST Repository

    Batool, Farhat; Emwas, Abdul-Hamid M.; Gao, Xin; Munawar, Munawar A.; Chotana, Ghayoor A.

    2016-01-01

    Iridium-catalyzed aromatic borylation provides quick one-step access to 2,6-bis(trifluoromethyl)pyridine-4-boronic acid pinacol ester. Suzuki couplings of this highly electron-deficient pyridine-4-boronic ester with various (hetero)aryl bromides was successfully carried out and the coupled products were obtained in 46–95% isolated yields. Double and triple Suzuki couplings, with dibromo- and tribromoarenes, respectively, were also achieved. Thus demonstrating that this pyridine-4-boronic ester can be a useful source for the installation of one of the strongest electron-withdrawing aromatic group in organic compounds. Copyright © 2016, Georg Thieme Verlag. All rights reserved.

  17. Suzuki-Miyaura cross-coupling coupling reactions with low catalyst loading: A green and sustainable protocol in pure water

    KAUST Repository

    Fihri, Aziz; Luart, Denis; Len, Christophe; Solhy, Abderrahim; Chevrin, Carole; Polshettiwar, Vivek

    2011-01-01

    The Suzuki-Miyaura coupling reaction represents one of the most important synthetic transformations developed in the 20th century. However, the use of toxic organic solvents remains a scientific challenge and an aspect of economical and ecological relevance, and benign water as a reaction medium was found to be highly effective to overcome some of these issues. In the present manuscript, we described Suzuki-Miyaura coupling reactions in neat water, without using any phase transfer reagent. Notably, this protocol also works with ultra-low loading of catalyst with high turnover numbers and also able to couple challenging substrates like aryl chlorides. © 2011 The Royal Society of Chemistry.

  18. Step changes and deactivation behaviour in the continuous decarboxylation of stearic acid

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Rozmyslowicz, B.; Simakova, I.

    2011-01-01

    % conversion of pure stearic acid. Deactivation took place in H-2-deficient gas atmosphere, probably as a result of the formation of unsaturated products and coking in the pore system. Transient experiments with step changes were performed: 1 h was required for the step change to be visible in liquid sampling...

  19. Bio-based methacrylic acid via catalytic decarboxylation of itaconic and citric acids

    Science.gov (United States)

    Methacrylic acid is an important commodity monomer for the plastics industry that is produced industrially from acetone, hydrogen cyanide and concentrated sulfuric acid via the acetone cyanohydrin (ACH) process. Disadvantages to the ACH process include nonrenewable starting materials, stoichiometric...

  20. Step Changes and Deactivation Behavior in the Continuous Decarboxylation of Stearic Acid

    DEFF Research Database (Denmark)

    Madsen, Anders Theilgaard; Rozmysłowicz, Bartosz; Simakova, Irina L.

    2011-01-01

    Deoxygenation of dilute and concentrated stearic acid over 2% Pd/C beads was performed in a continuous reactor at 300 °C and 20 bar pressure of Ar or 5% H2/Ar. Stable operation was obtained in 5% H2 atmosphere, with 95% conversion of 10 mol % dilute stearic acid in dodecane and 12% conversion...... of pure stearic acid. Deactivation took place in H2-deficient gas atmosphere, probably as a result of the formation of unsaturated products and coking in the pore system. Transient experiments with step changes were performed: 1 h was required for the step change to be visible in liquid sampling, whereas...

  1. Protein and peptide alkoxyl radicals can give rise to C-terminal decarboxylation and backbone cleavage

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    1996-01-01

    Previous studies have demonstrated that gamma-irradiation of some free amino acids in the presence of oxygen gives high yields of side-chain hydroperoxides. It is shown in the present study that N-acetyl amino acids and peptides also give high levels of hydroperoxides on gamma-irradiation, even...

  2. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials.

    Science.gov (United States)

    Bloom, Steven; Liu, Chun; Kölmel, Dominik K; Qiao, Jennifer X; Zhang, Yong; Poss, Michael A; Ewing, William R; MacMillan, David W C

    2018-02-01

    The advent of antibody-drug conjugates as pharmaceuticals has fuelled a need for reliable methods of site-selective protein modification that furnish homogeneous adducts. Although bioorthogonal methods that use engineered amino acids often provide an elegant solution to the question of selective functionalization, achieving homogeneity using native amino acids remains a challenge. Here, we explore visible-light-mediated single-electron transfer as a mechanism towards enabling site- and chemoselective bioconjugation. Specifically, we demonstrate the use of photoredox catalysis as a platform to selectivity wherein the discrepancy in oxidation potentials between internal versus C-terminal carboxylates can be exploited towards obtaining C-terminal functionalization exclusively. This oxidation potential-gated technology is amenable to endogenous peptides and has been successfully demonstrated on the protein insulin. As a fundamentally new approach to bioconjugation this methodology provides a blueprint toward the development of photoredox catalysis as a generic platform to target other redox-active side chains for native conjugation.

  3. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Nová k, Zoltá n; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2011-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  4. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    Science.gov (United States)

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Novák, Zoltán; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2012-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursors: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center. PMID:22083969

  5. Decarboxylative alkylation for site-selective bioconjugation of native proteins via oxidation potentials

    Science.gov (United States)

    Bloom, Steven; Liu, Chun; Kölmel, Dominik K.; Qiao, Jennifer X.; Zhang, Yong; Poss, Michael A.; Ewing, William R.; MacMillan, David W. C.

    2018-02-01

    The advent of antibody-drug conjugates as pharmaceuticals has fuelled a need for reliable methods of site-selective protein modification that furnish homogeneous adducts. Although bioorthogonal methods that use engineered amino acids often provide an elegant solution to the question of selective functionalization, achieving homogeneity using native amino acids remains a challenge. Here, we explore visible-light-mediated single-electron transfer as a mechanism towards enabling site- and chemoselective bioconjugation. Specifically, we demonstrate the use of photoredox catalysis as a platform to selectivity wherein the discrepancy in oxidation potentials between internal versus C-terminal carboxylates can be exploited towards obtaining C-terminal functionalization exclusively. This oxidation potential-gated technology is amenable to endogenous peptides and has been successfully demonstrated on the protein insulin. As a fundamentally new approach to bioconjugation this methodology provides a blueprint toward the development of photoredox catalysis as a generic platform to target other redox-active side chains for native conjugation.

  6. Rhodium-catalyzed chemo- and regioselective decarboxylative addition of β-ketoacids to alkynes.

    Science.gov (United States)

    Li, Changkun; Grugel, Christian P; Breit, Bernhard

    2016-04-30

    A highly efficient rhodium-catalyzed chemo- and regioselective addition of β-ketoacids to alkynes is reported. Applying a Rh(i)/(S,S)-DIOP catalyst system, γ,δ-unsaturated ketones were prepared with exclusively branched selectivity under mild conditions. This demonstrates that readily available alkynes can be an alternative entry to allyl electrophiles in transition-metal catalyzed allylic alkylation reactions.

  7. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    KAUST Repository

    Behenna, Douglas C.

    2011-11-14

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursor: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center.

  8. Low-temperature side-chain cleavage and decarboxylation of polythiophene esters by acid catalysis

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Norrman, Kion; Krebs, Frederik C

    2012-01-01

    Solubility switching of polymers is very useful in thin layer processing of conjugated polymers, as it allows for multilayer processing and increases the stability of the polymer. Acid catalyzed thermocleavage of ester groups from thiophene polymers carrying primary, secondary, and tertiary subst...

  9. Alpha-amino acid derivatives and alpha-fluoro ketones by enantioselective decarboxylation

    OpenAIRE

    Baur, Markus A.

    2003-01-01

    Die Methode der enantioselektiven Decarboxylierung wurde angewendet, um Enantiomeren-angereicherte alpha-Aminosäurederivate und alpha-Fluorketone zu erhalten. Als Substrate wurden 2-N-Acetylamino-2-alkylmalonsäuremonoethylester beziehungsweise beta-Keto-benzylester verwendet. China-Alkaloide und Derivate davon wurden als Katalysatoren eingesetzt. Die besten erhaltenen Ergebnisse waren N-Acetyl-L-phenylalaninethylester mit 70% Enantiomerenüberschuß unter Verwendung der katalytisch aktiven Base...

  10. Direct Functionalization of an Acid-Terminated Nanodiamond with Azide: Enabling Access to 4-Substituted-1,2,3-Triazole-Functionalized Particles

    International Nuclear Information System (INIS)

    Kennedy, Zachary C.; Barrett, Christopher A.; Warner, Marvin G.

    2017-01-01

    Azides on the periphery of nanodiamond materials (ND) are of great utility because they have been shown to undergo Cu-catalyzed and Cu-free cycloaddition reactions with structurally diverse alkynes, affording particles tailored for applications in biology and materials science. However, current methods employed to access ND featuring azide groups typically require either harsh pretreatment procedures or multiple synthesis steps and use surface linking groups that may be susceptible to undesirable cleavage. Here in this paper we demonstrate an alternative single-step approach to producing linker-free, azide-functionalized ND. Our method was applied to low-cost, detonation-derived ND powders where surface carbonyl groups undergo silver-mediated decarboxylation and radical substitution with azide. ND with directly grafted azide groups were then treated with a variety of aliphatic, aromatic, and fluorescent alkynes to afford 1-(ND)-4-substituted-1,2,3-triazole materials under standard copper-catalyzed cycloaddition conditions. Surface modification steps were verified by characteristic infrared absorptions and elemental analyses. High loadings of triazole surface groups (up to 0.85 mmol g –1 ) were obtained as determined from thermogravimetric analysis. The azidation procedure disclosed is envisioned to become a valuable initial transformation in numerous future applications of ND.

  11. Direct Functionalization of an Acid-Terminated Nanodiamond with Azide: Enabling Access to 4-Substituted-1,2,3-Triazole-Functionalized Particles.

    Science.gov (United States)

    Kennedy, Zachary C; Barrett, Christopher A; Warner, Marvin G

    2017-03-21

    Azides on the periphery of nanodiamond materials (ND) are of great utility because they have been shown to undergo Cu-catalyzed and Cu-free cycloaddition reactions with structurally diverse alkynes, affording particles tailored for applications in biology and materials science. However, current methods employed to access ND featuring azide groups typically require either harsh pretreatment procedures or multiple synthesis steps and use surface linking groups that may be susceptible to undesirable cleavage. Here we demonstrate an alternative single-step approach to producing linker-free, azide-functionalized ND. Our method was applied to low-cost, detonation-derived ND powders where surface carbonyl groups undergo silver-mediated decarboxylation and radical substitution with azide. ND with directly grafted azide groups were then treated with a variety of aliphatic, aromatic, and fluorescent alkynes to afford 1-(ND)-4-substituted-1,2,3-triazole materials under standard copper-catalyzed cycloaddition conditions. Surface modification steps were verified by characteristic infrared absorptions and elemental analyses. High loadings of triazole surface groups (up to 0.85 mmol g -1 ) were obtained as determined from thermogravimetric analysis. The azidation procedure disclosed is envisioned to become a valuable initial transformation in numerous future applications of ND.

  12. Agmatine deiminase pathway genes in Lactobacillus brevis are linked to the tyrosine decarboxylation operon in a putative acid resistance locus

    NARCIS (Netherlands)

    Lucas, Patrick M.; Blancato, Victor S.; Claisse, Olivier; Magni, Christian; Lolkema, Juke S.; Lonvaud-Funel, Aline

    In lactic acid bacteria (LAB), amino acids and their derivatives may be converted into amine-containing compounds designated biogenic amines, in pathways providing metabolic energy and/ or acid resistance to the bacteria. In a previous study, a pathway converting tyrosine to tyramine was detected in

  13. Phytanic acid alpha-oxidation: decarboxylation of 2-hydroxyphytanoyl-CoA to pristanic acid in human liver

    NARCIS (Netherlands)

    Verhoeven, N. M.; Wanders, R. J.; Schor, D. S.; Jansen, G. A.; Jakobs, C.

    1997-01-01

    The degradation of the first intermediate in the alpha-oxidation of phytanic acid, 2-hydroxyphytanoyl-CoA, was investigated. Human liver homogenates were incubated with 2-hydroxyphytanoyl-CoA or 2-hydroxyphytanic acid, after which formation of 2-ketophytanic acid and pristanic acid were studied.

  14. Kinetic and mechanistic studies of reactive intermediates in photochemical and transition metal-assisted oxidation, decarboxylation and alkyl transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Carraher, Jack McCaslin [Iowa State Univ., Ames, IA (United States)

    2014-01-01

    Reactive species like high-valent metal-oxo complexes and carbon and oxygen centered radicals are important intermediates in enzymatic systems, atmospheric chemistry, and industrial processes. Understanding the pathways by which these intermediates form, their relative reactivity, and their fate after reactions is of the utmost importance. Herein are described the mechanistic detail for the generation of several reactive intermediates, synthesis of precursors, characterization of precursors, and methods to direct the chemistry to more desirable outcomes yielding ‘greener’ sources of commodity chemicals and fuels.

  15. Lewis Acid Assisted Nickel-Catalyzed Cross-Coupling of Aryl Methyl Ethers by C−O Bond-Cleaving Alkylation: Prevention of Undesired β-Hydride Elimination

    KAUST Repository

    Liu, Xiangqian; Hsiao, Chien-Chi; Kalvet, Indrek; Leiendecker, Matthias; Guo, Lin; Schoenebeck, Franziska; Rueping, Magnus

    2016-01-01

    In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C-O bond-cleaving alkylation, for the first time without the limiting β-hydride elimination. This new nickel

  16. Synthesis and conformational analysis of new arylated-diphenylurea derivatives related to sorafenib drug via Suzuki-Miyaura cross-coupling reaction

    Science.gov (United States)

    Al-Masoudi, Najim A.; Essa, Ali Hashem; Alwaaly, Ahmed A. S.; Saeed, Bahjat A.; Langer, Peter

    2017-10-01

    Sorafenib, is a relatively new cytostatic drug approved for the treatment of renal cell and hepatocellular carcinoma. The development of new sorafenib analogues offers the possibility of generating structures of increased potency. To this end, a series of arylated-diphenylurea analogues 17-31 were synthesized via Suzuki-Miyaura coupling reaction, related to sorafenib by treatment of three diarylureas 2-4 having 3-bromo, 4-chloro and 2-iodo groups with various arylboronic acids. Conformational analysis of the new arylated urea analogues has been investigated using MOPAC 2016 of semi empirical PM7 Hamiltonian computational method. Our results showed that all compounds preferred the trans-trans conformations. Compound 17 has been selected to calculate the torsional energy profiles for rotation around the urea bonds and found to be existed predominantly in the trans-trans conformation with only very minimal fluctuation in conformation.

  17. Synthesis and cytostatic activity of substituted 6-phenylpurine bases and nucleosides: application of the Suzuki-Miyaura cross-coupling reactions of 6-chloropurine derivatives with phenylboronic acids

    Czech Academy of Sciences Publication Activity Database

    Hocek, Michal; Holý, Antonín; Votruba, Ivan; Dvořáková, H.

    2000-01-01

    Roč. 43, č. 9 (2000), s. 1817-1825 ISSN 0022-2623 R&D Projects: GA ČR GA203/98/P027; GA ČR GV203/96/K001 Institutional research plan: CEZ:AV0Z4055905 Subject RIV: CC - Organic Chemistry Impact factor: 4.134, year: 2000

  18. Lewis Acid Assisted Nickel-Catalyzed Cross-Coupling of Aryl Methyl Ethers by C−O Bond-Cleaving Alkylation: Prevention of Undesired β-Hydride Elimination

    KAUST Repository

    Liu, Xiangqian

    2016-04-10

    In the presence of trialkylaluminum reagents, diverse aryl methyl ethers can be transformed into valuable products by C-O bond-cleaving alkylation, for the first time without the limiting β-hydride elimination. This new nickel-catalyzed dealkoxylative alkylation method enables powerful orthogonal synthetic strategies for the transformation of a variety of naturally occurring and easily accessible anisole derivatives. The directing and/or activating properties of aromatic methoxy groups are utilized first, before they are replaced by alkyl chains in a subsequent coupling process.

  19. Structuring Pd Nanoparticles on 2H-WS2 Nanosheets Induces Excellent Photocatalytic Activity for Cross-Coupling Reactions under Visible Light.

    Science.gov (United States)

    Raza, Faizan; Yim, DaBin; Park, Jung Hyun; Kim, Hye-In; Jeon, Su-Ji; Kim, Jong-Ho

    2017-10-18

    Effective photocatalysts and their surface engineering are essential for the efficient conversion of solar energy into chemical energy in photocatalyzed organic transformations. Herein, we report an effective approach for structuring Pd nanoparticles (NPs) on exfoliated 2H-WS 2 nanosheets (WS 2 /PdNPs), resulting in hybrids with extraordinary photocatalytic activity in Suzuki reactions under visible light. Pd NPs of different sizes and densities, which can modulate the photocatalytic activity of the as-prepared WS 2 /PdNPs, were effectively structured on the basal plane of 2H-WS 2 nanosheets via a sonic wave-assisted nucleation method without any reductants at room temperature. As the size of Pd NPs on WS 2 /PdNPs increased, their photocatalytic activity in Suzuki reactions at room temperature increased substantially. In addition, it was found that protic organic solvents play a crucial role in activating WS 2 /PdNPs catalysts in photocatalyzed Suzuki reactions, although these solvents are generally considered much less effective than polar aprotic ones in the conventional Suzuki reactions promoted by heterogeneous Pd catalysts. A mechanistic investigation suggested that photogenerated holes are transferred to protic organic solvents, whereas photogenerated electrons are transferred to Pd NPs. This transfer makes the Pd NPs electron-rich and accelerates the rate-determining step, i.e., the oxidative addition of aryl halides under visible light. WS 2 /PdNPs showed the highest turnover frequency (1244 h -1 ) for photocatalyzed Suzuki reactions among previously reported photocatalysts.

  20. Efficient C-O and C-N bond forming cross-coupling reactions catalyzed by core-shell structured Cu/Cu2O nanowires

    KAUST Repository

    Elshewy, Ahmed M.

    2013-01-01

    linkages in organic molecules. Despite significant advancements in this field, the construction of C-O and C–N bonds is still a major challenge for organic chemists, due to the involvement of harsh reaction conditions or the use of expensive catalysts

  1. Efficient C-O and C-N bond forming cross-coupling reactions catalyzed by core-shell structured Cu/Cu2O nanowires

    KAUST Repository

    Elshewy, Ahmed M.

    2013-12-01

    Oxygen and Nitrogen containing compounds are of utmost importance due to their interesting and diverse biological activities. The construction of the C-O and C–N bonds is of significance as it opens avenues for the introduction of ether and amine linkages in organic molecules. Despite significant advancements in this field, the construction of C-O and C–N bonds is still a major challenge for organic chemists, due to the involvement of harsh reaction conditions or the use of expensive catalysts or ligands in many cases. Thus, it is a challenge to develop alternative, milder, cheaper and more reproducible methodologies for the construction of these types of bonds. Herein, we introduce a new efficient ligand free catalytic system for C-O and C-N bond formation reactions.

  2. An intramolecular C–N cross-coupling of β-enaminones: a simple and efficient way to precursors of some alkaloids of Galipea officinalis

    Directory of Open Access Journals (Sweden)

    Hana Doušová

    2015-05-01

    Full Text Available 2-Aroylmethylidene-1,2,3,4-tetrahydroquinolines with the appropriate substituents can be suitable precursors for the synthesis of alkaloids from Galipea officinalis (cuspareine, galipeine, galipinine, angustureine. However, only two, rather low-yielding procedures for their synthesis are described in the literature. We have developed a simple and efficient protocol for an intramolecular, palladium or copper-catalysed amination of both chloro- and bromo-substituted 3-amino-1,5-diphenylpent-2-en-1-ones leading to the above-mentioned tetrahydroquinoline moiety. The methodology is superior to the methods published to date.

  3. Aqueous Heck Cross-Coupling Preparation of Acrylate-Modified Nucleotides and Nucleoside Triphosphates for Polymerase Synthesis of Acrylate-Labeled DNA

    Czech Academy of Sciences Publication Activity Database

    Daďová, Jitka; Vidláková, Pavlína; Pohl, Radek; Havran, Luděk; Fojta, Miroslav; Hocek, Michal

    2013-01-01

    Roč. 78, č. 19 (2013), s. 9627-9637 ISSN 0022-3263 R&D Projects: GA AV ČR(CZ) IAA400040901 Institutional support: RVO:61388963 ; RVO:68081707 Keywords : nucleic-acids * enzymatic incorporation * protein interactions * functionalized DNA Subject RIV: CC - Organic Chemistry Impact factor: 4.638, year: 2013

  4. Observation of Binuclear Palladium Clusters Upon ESI-MS Monitoring of the Suzuki-Miyaura Cross-Coupling Catalyzed by a Dichloro-bis(aminophosphine) Complex of Palladium

    Czech Academy of Sciences Publication Activity Database

    Agrawal, Divya; Schröder, Detlef; Frech, C. M.

    2011-01-01

    Roč. 30, č. 13 (2011), s. 3579-3587 ISSN 0276-7333 Institutional research plan: CEZ:AV0Z40550506 Keywords : catalysis * C-C coupling * electrospray ionization * palladium * Suzuki-Miyaura coupling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.963, year: 2011

  5. A study into Stille cross-coupling reaction mediated by palladium catalysts deposited over siliceous supports bearing N-donor groups at the surface

    Czech Academy of Sciences Publication Activity Database

    Semler, M.; Čejka, Jiří; Štěpnička, P.

    2013-01-01

    Roč. 27, č. 6 (2013), s. 353-360 ISSN 0268-2605 R&D Projects: GA ČR GA104/09/0561 Institutional support: RVO:61388955 Keywords : palladium * suppoerted catalysts * Stille reaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.017, year: 2013

  6. Pd-isatin Schiff base complex immobilized onγ-Fe2O3 as a magnetically recyclable catalyst for the Heck and Suzuki cross-coupling reactions

    Institute of Scientific and Technical Information of China (English)

    Sara Sobhani; Farzaneh Zarifi

    2015-01-01

    A Pd‐isatin Schiff base complex immobilized onγ‐Fe2O3 (Pd‐isatin Schiff base‐γ‐Fe2O3) was synthe‐sized and characterized by Fourier transform infrared, scanning electron microscopy, high resolu‐tion transmission electron microscopy, X‐ray diffraction, thermogravimetric gravimetric analysis, inductively‐coupled plasma, X‐ray photoelectron spectroscopy, and elemental analysis. It was used as a magnetically reusable Pd catalyst for the Heck and Suzuki cross‐coupling reactions.

  7. Palladium-catalyzed aerobic regio- and stereo-selective olefination reactions of phenols and acrylates via direct dehydrogenative C(sp2)-O cross-coupling.

    Science.gov (United States)

    Wu, Yun-Bin; Xie, Dan; Zang, Zhong-Lin; Zhou, Cheng-He; Cai, Gui-Xin

    2018-04-26

    An efficient olefination protocol for the oxidative dehydrogenation of phenols and acrylates has been achieved using a palladium catalyst and O2 as the sole oxidant. This reaction exhibits high regio- and stereo-selectivity (E-isomers) with moderate to excellent isolated yields and a wide substrate scope (32 examples) including ethyl vinyl ketone and endofolliculina.

  8. A Versatile Room-Temperature Route to Di- and Trisubstituted Allenes Using Flow-Generated Diazo Compounds**

    Science.gov (United States)

    Poh, Jian-Siang; Tran, Duc N; Battilocchio, Claudio; Hawkins, Joel M; Ley, Steven V

    2015-01-01

    A copper-catalyzed coupling reaction between flow-generated unstabilized diazo compounds and terminal alkynes provides di- and trisubstituted allenes. This extremely mild and rapid transformation is highly tolerant of several functional groups. PMID:26013774

  9. Decarbonylative Silylation of Esters by Combined Nickel and Copper Catalysis for the Synthesis of Arylsilanes and Heteroarylsilanes

    KAUST Repository

    Guo, Lin

    2016-08-25

    An efficient nickel/copper-catalyzed decarbonylative silylation reaction of carboxylic acid esters with silylboranes is described. This reaction provides access to structurally diverse silanes with high efficiency and excellent functional-group tolerance starting from readily available esters.

  10. Decarbonylative Silylation of Esters by Combined Nickel and Copper Catalysis for the Synthesis of Arylsilanes and Heteroarylsilanes

    KAUST Repository

    Guo, Lin; Chatupheeraphat, Adisak; Rueping, Magnus

    2016-01-01

    An efficient nickel/copper-catalyzed decarbonylative silylation reaction of carboxylic acid esters with silylboranes is described. This reaction provides access to structurally diverse silanes with high efficiency and excellent functional-group tolerance starting from readily available esters.

  11. Heat-induced formation of mepiquat by decarboxylation of pipecolic acid and its betaine derivative. Part 2: Natural formation in cooked vegetables and selected food products.

    Science.gov (United States)

    Yuan, Yuan; Tarres, Adrienne; Bessaire, Thomas; Rademacher, Wilhelm; Stadler, Richard H; Delatour, Thierry

    2017-08-01

    Mepiquat (N,N-dimethylpiperidinium) is a plant growth regulator registered for use as its chloride salt in many countries on cereals and other crops. Recent model system studies have shown that natural chemicals present in crop plants, such as pipecolic acid and pipecolic acid betaine, may furnish mepiquat through different chemical pathways, when subjected to temperatures in the range of 200°C. In this study, we cooked raw vegetables that did not contain mepiquat to a palatable state using different traditional cooking methods, and detected mepiquat in 9 out of 11 oven-cooked vegetables, reaching up to 189μg/kg dry wt in oven-cooked broccoli. Commercial oven potato fries generated mepiquat during cooking, typically in the range of 20-60μg/kg. Only traces of mepiquat (cooked vegetables, including potatoes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Kinetics and Mechanistic Study of the Ruthenium(III Catalysed Oxidative Decarboxylation of L-Proline by Alkaline Heptavalent Manganese (Stopped flow technique

    Directory of Open Access Journals (Sweden)

    R. S. Shettar

    2005-01-01

    Full Text Available The kinetics of ruthenium(III catalysed oxidation of L-Proline by permanganate in alkaline medium at a constant ionic strength has been studied spectrophotometrically using a rapid kinetic accessory. The reaction between permanganate and L-Proline in alkaline medium exhibits 2:1 stoichiometry (KMnO4: L-Proline. The reaction shows first order dependence on [permanganate] and [ruthenium(III] and apparent less than unit order dependence each in L-Proline and alkali concentrations. Reaction rate increases with increase in ionic strength and decrease in solvent polarity of the medium. Initial addition of reaction products did not affect the rate significantly. A mechanism involving the formation of a complex between catalyst and substrate has been proposed. The activation parameters were computed with respect to the slow step of the mechanism and discussed

  13. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins

    KAUST Repository

    Millet, Anthony; Lefebvre, Quentin; Rueping, Magnus

    2016-01-01

    A tin- and halide-free, visible-light photoredox-catalyzed Giese reaction was developed. Primary and secondary α-amino radicals were generated readily from amino acids in the presence of catalytic amounts of an iridium photocatalyst. The reactivity of the α-amino radicals has been evaluated for the functionalization of a variety of activated olefins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  14. Visible-Light Photoredox-Catalyzed Giese Reaction: Decarboxylative Addition of Amino Acid Derived α-Amino Radicals to Electron-Deficient Olefins

    KAUST Repository

    Millet, Anthony

    2016-06-20

    A tin- and halide-free, visible-light photoredox-catalyzed Giese reaction was developed. Primary and secondary α-amino radicals were generated readily from amino acids in the presence of catalytic amounts of an iridium photocatalyst. The reactivity of the α-amino radicals has been evaluated for the functionalization of a variety of activated olefins. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  15. Synthesis of E-Alkyl Alkenes from Terminal Alkynes via Ni-Catalyzed Cross-Coupling of Alkyl Halides with B-Alkenyl-9-borabicyclo[3.3.1]nonanes.

    Science.gov (United States)

    Di Franco, Thomas; Epenoy, Alexandre; Hu, Xile

    2015-10-02

    The first Ni-catalyzed Suzuki-Miyaura coupling of alkyl halides with alkenyl-(9-BBN) reagents is reported. Both primary and secondary alkyl halides including alkyl chlorides can be coupled. The coupling method can be combined with hydroboration of terminal alkynes, allowing the expedited synthesis of functionalized alkyl alkenes from readily available alkynes with complete (E)-selectivity in one pot. The method was applied to the total synthesis of (±)-Recifeiolide, a natural macrolide.

  16. Ligand-Controlled Chemoselective C(acyl)–O Bond vs C(aryl)–C Bond Activation of Aromatic Esters in Nickel Catalyzed C(sp2)–C(sp3) Cross-Couplings

    KAUST Repository

    Chatupheeraphat, Adisak; Liao, Hsuan-Hung; Srimontree, Watchara; Guo, Lin; Minenkov, Yury; Poater, Albert; Cavallo, Luigi; Rueping, Magnus

    2018-01-01

    step helped rationalizing this intriguing reaction chemoselectivity: whereas nickel complexes with bidentate ligands favor the C(aryl)-C bond cleavage in the oxidative addition step leading to the alkylated product via a decarbonylative process, nickel

  17. Aminoarenethiolato-copper(I) as (pre-)catalyst for the synthesis of diaryl ethers from aryl bromides and sequential C-O/C-S and C-N/C-S cross coupling reactions

    NARCIS (Netherlands)

    Sperotto, Elena; Klink, Gerard P.M. van; Vries, Johannes G. de; Koten, Gerard van

    2010-01-01

    A small library of 2-aminoarenethiolato-copper(I) (CuSAr) complexes was tested as (pre-)catalysts in the arylation reaction of phenols with aryl bromides. These copper(I) (pre-)catalysts are thermally stable, soluble in common organic solvents, and allow reactions of 6 h at 160 °C with low catalyst

  18. Application of Pd-Catalyzed Cross-Coupling Reactions in the Synthesis of 5,5-Dimethy1-5,6-dihydro-4H-pyrrolo[1,2-b]pyrazoles that Inhibit ALK5 Kinase

    Czech Academy of Sciences Publication Activity Database

    Tenora, L.; Galeta, J.; Řezníčková, Eva; Kryštof, Vladimír; Potáček, M.

    2016-01-01

    Roč. 81, č. 23 (2016), s. 11841-11856 ISSN 0022-3263 R&D Projects: GA ČR(CZ) GA15-15264S Institutional support: RVO:61389030 Keywords : c-h functionalization * pyridine n-oxides * receptor-type-i * direct arylation * tgf-beta * galunisertib ly2157299 * domain inhibitors * bond activation * growth * withasomnine Subject RIV: FR - Pharmacology ; Medidal Chemistry Impact factor: 4.849, year: 2016

  19. Artificial Metalloenzymes through Chemical Modification of Engineered Host Proteins

    KAUST Repository

    Zernickel, Anna

    2014-10-01

    With a few exceptions, all organisms are restricted to the 20 canonical amino acids for ribosomal protein biosynthesis. Addition of new amino acids to the genetic code can introduce novel functionalities to proteins, broadening the diversity of biochemical as well as chemical reactions and providing new tools to study protein structure, reactivity, dynamics and protein-protein-interactions. The site directed in vivo incorporation developed by P. G. SCHULTZ and coworkers, using an archeal orthogonal tRNA/aaRS (aminoacyl-tRNA synthase) pair, allows site-specifically insertion of a synthetic unnatural amino acid (UAA) by reprogramming the amber TAG stop codon. A variety of over 80 different UAAs can be introduced by this technique. However by now a very limited number can form kinetically stable bonds to late transition metals. This thesis aims to develop new catalytically active unnatural amino acids or strategies for a posttranslational modification of site-specific amino acids in order to achieve highly enantioselective metallorganic enzyme hybrids (MOEH). As a requirement a stable protein host has to be established, surviving the conditions for incorporation, posttranslational modification and the final catalytic reactions. mTFP* a fluorescent protein was genetically modified by excluding any exposed Cys, His and Met forming a variant mTFP*, which fulfills the required specifications. Posttranslational chemical modification of mTFP* allow the introduction of single site metal chelating moieties. For modification on exposed cysteines different maleiimid containing ligand structures were synthesized. In order to perform copper catalyzed click reactions, suitable unnatural amino acids (para-azido-(L)-phenylalanine, para-ethynyl-(L)-phenylalanine) were synthesized and a non-cytotoxic protocol was established. The triazole ring formed during this reaction may contribute as a moderate σ-donor/π-acceptor ligand to the metal binding site. Since the cell limits the

  20. Selective copper catalysed aromatic N-arylation in water

    DEFF Research Database (Denmark)

    Engel-Andreasen, Jens; Shimpukade, Bharat; Ulven, Trond.

    2013-01-01

    4,7-Dipyrrolidinyl-1,10-phenanthroline (DPPhen) was identified as an efficient ligand for copper catalyzed selective arom. N-arylation in water. N-Arylation of indoles, imidazoles and purines proceeds with moderate to excellent yields and complete selectivity over aliph. amines. Aq. medium...

  1. Cu-catalyzed aerobic oxidative esterification of acetophenones with alcohols to α-ketoesters.

    Science.gov (United States)

    Xu, Xuezhao; Ding, Wen; Lin, Yuanguang; Song, Qiuling

    2015-02-06

    Copper-catalyzed aerobic oxidative esterification of acetophenones with alcohols using molecular oxygen has been developed to form a broad range of α-ketoesters in good yields. In addition to reporting scope and limitations of our new method, mechanism studies are reported that reveal that the carbonyl oxygen in the ester mainly originated from dioxygen.

  2. Cu-Catalyzed Asymmetric Allylic Alkylation of Phosphonates and Phosphine Oxides with Grignard Reagents

    NARCIS (Netherlands)

    Hornillos, Valentin; Perez, Manuel; Fananas-Mastral, Martin; Feringa, Ben L.

    An efficient and highly enantioselective copper-catalyzed allylic alkylation of phosphonates and phosphine oxides with Grignard reagents and Taniaphos or phosphoramidites as chiral ligands is reported. Transformation of these products leads to a variety of new phosphorus-containing chiral

  3. A photolabile linker for the solid-phase synthesis of 4-substituted NH-1,2,3-triazoles

    DEFF Research Database (Denmark)

    Qvortrup, Katrine; Nielsen, Thomas Eiland

    2011-01-01

    A novel photolabile linker for solid-phase synthesis is presented. The linker displays an azido handle for copper-catalyzed azide–alkyne cycloaddition reactions with a variety of alkynes, remains intact under typical solid-phase reaction conditions, and enables a mild photolytic release of 4...

  4. research article

    African Journals Online (AJOL)

    NICO

    sized by well-defined copper-catalyzed azide-alkyne cyclization. (CuAAC) methods.8,9 Of relevance to this paper is that in recent years, the use of CuAAC and the incorporation of triazole into drug-like molecules with potential antimalarial activity have seen increasing popularity.10–14 In this publication, we have designed ...

  5. Total Synthesis of (R, R, R)-gamma-Tocopherol through Cu-Catalyzed Asymmetric 1,2-Addition

    NARCIS (Netherlands)

    Wu, Zhongtao; Harutyunyan, Syuzanna R.; Minnaard, Adriaan J.

    2014-01-01

    Based on the asymmetric copper-catalyzed 1,2-addition of Grignard reagents to ketones, (R,R,R)--tocopherol has been synthesized in 36% yield over 12 steps (longest linear sequence). The chiral center in the chroman ring was constructed with 73% ee by the 1,2-addition of a phytol-derived Grignard

  6. Update: An efficient synthesis of poly(ethylene glycol)-supported iron(II) porphyrin using a click reaction and its application for the catalytic olefination of aldehydes

    KAUST Repository

    Chinnusamy, Tamilselvi R.; Rodionov, Valentin; Kü hn, Fritz; Reiser, Oliver

    2012-01-01

    The facile synthesis of polyethylene glycol (PEG)-immobilized iron(II) porphyrin using a copper-catalyzed azide-alkyne [3+2] cycloaddition "click" reaction is reported. The prepared complex 5 (PEG-C 51H 39FeN 7O) was found to be an efficient

  7. Catalytic Asymmetric Alkylation of Aryl Heteroaryl Ketones

    NARCIS (Netherlands)

    Ortiz, Pablo; Harutyunyan, Syuzanna; del Hoyo, Ana

    Tertiary diarylmethanols are highly bioactive structural motifs. A new strategy to access chiral tertiary diarylmethanols through copper-catalyzed direct alkylation of (di)(hetero)aryl ketones by using Grignard reagents was developed. The low reactivity and the similarity of the enantiotopic faces

  8. SUPPLEMENTARY INFORMATION Dimethylglyoxime as an ...

    Indian Academy of Sciences (India)

    lenovo

    1. SUPPLEMENTARY INFORMATION. Dimethylglyoxime as an Efficient Ligand for Copper-Catalyzed Hydroxylation of Aryl. Halides. SURESH S SHENDAGE*. Department of Chemistry, KET'S Vinayak Ganesh Vaze College of Arts, Science and. Commerce, Mithagar Road, Mulund (E) Mumbai, Maharashtra 400 081, India.

  9. Organocopper Compounds: From Elusive to Isolable Species, from Early Supramolecular Chemistry with RCuI Building Blocks to Mononuclear R2–nCuII and R3–mCuIII Compounds. A Personal View

    NARCIS (Netherlands)

    van Koten, G.

    2012-01-01

    The first reports on copper-mediated organic reactions and speculations about the role of presumed organocopper compounds as intermediates or transient species date back to the early 20th century. Since that time, copper salt mediated and much later, copper-catalyzed C–X bond forming reactions (X =

  10. Oxidative versus Non-oxidative Decarboxylation of Amino Acids: Conditions for the Preferential Formation of Either Strecker Aldehydes or Amines in Amino Acid/Lipid-Derived Reactive Carbonyl Model Systems.

    Science.gov (United States)

    Zamora, Rosario; León, M Mercedes; Hidalgo, Francisco J

    2015-09-16

    Comparative formation of both 2-phenylethylamine and phenylacetaldehyde as a consequence of phenylalanine degradation by carbonyl compounds was studied in an attempt to understand if the amine/aldehyde ratio can be changed as a function of reaction conditions. The assayed carbonyl compounds were selected because of the presence in the chain of both electron-donating and electron-withdrawing groups and included alkenals, alkadienals, epoxyalkenals, oxoalkenals, and hydroxyalkenals as well as lipid hydroperoxides. The obtained results showed that the 2-phenylethylamine/phenylacetaldehyde ratio depended upon both the carbonyls and the reaction conditions. Thus, it can be increased using electron-donating groups in the chain of the carbonyl compound, small amounts of carbonyl compound, low oxygen content, increasing the pH, or increasing the temperature at pH 6. Opposed conditions (use of electron-withdrawing groups in the chain of the carbonyl compound, large amounts of carbonyl compound, high oxygen contents, low pH values, and increasing temperatures at low pH values) would decrease the 2-phenylethylamine/phenylacetaldehyde ratio, and the formation of aldehydes over amines in amino acid degradations would be favored.

  11. A Versatile Room-Temperature Route to Di- and Trisubstituted Allenes Using Flow-Generated Diazo Compounds.

    Science.gov (United States)

    Poh, Jian-Siang; Tran, Duc N; Battilocchio, Claudio; Hawkins, Joel M; Ley, Steven V

    2015-06-26

    A copper-catalyzed coupling reaction between flow-generated unstabilized diazo compounds and terminal alkynes provides di- and trisubstituted allenes. This extremely mild and rapid transformation is highly tolerant of several functional groups. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  12. Nouveaux développements dans la chimie des sels de diazonium en catalyse organométallique : catalyse hétérogène en milieux aqueux

    OpenAIRE

    Le Callonnec , Francois

    2014-01-01

    Diazonium salts are reactive and versatile when used as electrophiles. Unfortunately, their reputation as instable compounds strongly limited their use in chemical synthesis. This work lead to the discovery of new procedure for a safer and more environmentally friendly use of diazonium salts in organometallic coupling reactions. We studied palladium catalised carbon-carbon coupling reactions and copper catalyzed C-H arylatons. A major part of this work is also focalized in the development of ...

  13. From BACE1 Inhibitor to Multifunctionality of Tryptoline and Tryptamine Triazole Derivatives for Alzheimer’s Disease

    OpenAIRE

    Jiaranaikulwanitch, Jutamas; Govitrapong, Piyarat; Fokin, Valery V.; Vajragupta, Opa

    2012-01-01

    Efforts to discover new drugs for Alzheimer’s disease emphasizing multiple targets was conducted seeking to inhibit amyloid oligomer formation and to prevent radical formation. The tryptoline and tryptamine cores of BACE1 inhibitors previously identified by virtual screening were modified in silico for additional modes of action. These core structures were readily linked to different side chains using 1,2,3-triazole rings as bridges by copper catalyzed azide-alkyne cycloa...

  14. Tandem Cu-catalyzed ketenimine formation and intramolecular nucleophile capture: Synthesis of 1,2-dihydro-2-iminoquinolines from 1-(o-acetamidophenyl)propargyl alcohols

    Science.gov (United States)

    Kant, Ruchir

    2014-01-01

    Summary The copper-catalyzed ketenimine formation reaction of 1-(o-acetamidophenyl)propargyl alcohols with various sulfonyl azides is found to undergo a concomitant intramolecular nucleophile attack to generate 1,2-dihydro-2-iminoquinolines after aromatization (via elimination of acetyl and hydroxy groups) and tautomerization. The reaction produces 4-substituted and 3,4-unsubstituted title compounds in moderate to good yields under mild reaction conditions. PMID:24991276

  15. 1-(2-Chlorobenzyloxy-3-[1,2,3]triazol-1-yl-propan-2-ol Derivatives: Synthesis, Characterization, and DFT-Based Descriptors Analysis

    Directory of Open Access Journals (Sweden)

    Eloisa Román-Maldonado

    2017-01-01

    Full Text Available A novel series of 1-(2-chlorobenzyloxy-3-[1,2,3]triazol-1-yl-propan-2-ol derivatives was designed and synthesized using copper catalyzed alkyne-azide cycloaddition in the key step. Theoretical investigation of molecular and electronic properties by means of global and local reactivity indexes of the synthetized compounds was carried out, using DFT (Density Functional Theory at PBEPBE/6-31++G⁎⁎ level.

  16. Biofunctionalization on Alkylated Silicon Substrate Surfaces via “Click” Chemistry

    OpenAIRE

    Qin, Guoting; Santos, Catherine; Zhang, Wen; Li, Yan; Kumar, Amit; Erasquin, Uriel J.; Liu, Kai; Muradov, Pavel; Trautner, Barbara Wells; Cai, Chengzhi

    2010-01-01

    Biofunctionalization of silicon substrates is important to the development of silicon-based biosensors and devices. Compared to conventional organosiloxane films on silicon oxide intermediate layers, organic monolayers directly bound to the non-oxidized silicon substrates via Si-C bonds enhance the sensitivity of detection and the stability against hydrolytic cleavage. Such monolayers presenting a high density of terminal alkynyl groups for bioconjugation via copper-catalyzed azide-alkyne 1,3...

  17. CuO-Nanoparticles Catalyzed Synthesis of 1,4-Disubstituted-1,2,3 ...

    Indian Academy of Sciences (India)

    John Paul Raj

    2018-04-13

    Apr 13, 2018 ... has been developed for the synthesis of 1,2,3-triazoles. A library of 1 ... Kuang et al., described Cu-catalyzed synthesis of 1H-. 1,2,3-triazoles from 1 ..... Tornøe C W, Christensen C and Meldal M 2002 Peptido- triazoles on solid ... 2015 Copper-catalyzed [3+2] cycloaddition/oxidation reactions between ...

  18. No-carrier-added labeling of the neuroprotective Ebselen with selenium-73 and selenium-75.

    Science.gov (United States)

    Helfer, Andreas; Ermert, Johannes; Humpert, Sven; Coenen, Heinz H

    2015-03-01

    Selenium-73 is a positron emitting non-standard radionuclide, which is suitable for positron emission tomography. A copper-catalyzed reaction allowed no-carrier-added labeling of the anti-inflammatory seleno-organic compound Ebselen with (73) Se and (75) Se under addition of sulfur carrier in a one-step reaction. The new authentically labeled radioselenium molecule is thus available for preclinical evaluation and positron emission tomography studies. Copyright © 2015 John Wiley & Sons, Ltd.

  19. The enantioselective total synthesis of (+)-clusianone.

    Science.gov (United States)

    Horeischi, Fiene; Guttroff, Claudia; Plietker, Bernd

    2015-02-11

    (+)-Clusianone, an exo-type B PPAP with reported anti-HIV and chemoprotective activities, was synthesized in eleven steps with 97% ee starting from acetylacetone. An enantioselective decarboxylative Tsuji-Trost-allylation and a Ru-catalyzed ring-closing metathesis-decarboxylative allylation were used to control both diastereo- and enantioselectivity.

  20. Radiation damage to polypeptides and proteins in the solid state. Pt. 2

    International Nuclear Information System (INIS)

    Soeylemez, T.; Baumeister, W.; Herbertz, L.M.

    1981-01-01

    For the transformation of glutamic acid into α-aminobutyric acid upon irradiation a decarboxylation mechanism involving the formation of CO 2 has been proposed previously. Here we present further experimental evidence in favour of this mechanism. Additionally the formation of CO as a decarboxylation product has been detected; a radical anion mechanism for its formation is proposed. (orig.)

  1. Thermal decomposition of dilute aqueous formic acid solutions

    DEFF Research Database (Denmark)

    Bjerre, A.B.; Sørensen, E.

    1992-01-01

    or a decarboxylation. In particular the second one is dependent on the reactor vessel used. It is shown to be catalyzed by a mixture of oxides of stainless steel components. The presence of CH3COOH or CH3CHO promotes the decomposition of HCOOH by way of both decarboxylation and oxidation. In any case formic acid...

  2. Development of four-component synthesis of tetra- and pentasubstituted polyfunctional dihydropyrroles: free permutation and combination of aromatic and aliphatic amines.

    Science.gov (United States)

    Lv, Longyun; Zheng, Sichao; Cai, Xiaotie; Chen, Zhipeng; Zhu, Qiuhua; Liu, Shuwen

    2013-04-08

    We previously reported the novel efficient proton/heat-promoted four-component reactions (4CRs) of but-2-ynedioates, two same/different primary amines, and aldehydes for the synthesis of tetra- and pentasubstituted polyfunctional dihydropyrroles. If aromatic and aliphatic amines were used as reagents, four different series of products should be obtained via the permutation and combination of aromatic and aliphatic primary amines. However, only three/two rather four different series of tetra-/pentasubstisuted dihydropyrroles could be prepared via the proton/heat-promoted 4CRs. Herein, Cu(OAc)2·H2O, a Lewis acid being stable in air and water, was found to be an efficient catalyst for the 4CR synthesis of all the four different series of tetra-/pentasubstisuted dihydropyrroles. The copper-catalyzed 4CR could produce target products at room temperature in good to excellent yields. Interestingly, benzaldehyde, in addition to being used as a useful reactant for the synthesis of pentasubstituted dihydropyrroles, was found to be an excellent additive for preventing the oxidation of aromatic amines with copper(II) and ensuring the sooth conduct of the 4CRs for the synthesis of tetrasubstituted dihydropyrroles with aryl R(3). In addition, salicylic acid was found to be needed to increase the activities and yields of the copper-catalyzed 4CRs for the synthesis of petasubstituted diyhydropyrroles. On the basis of experimental results, the enamination/amidation/intramolecular cyclization mechanism was proposed and amidation is expected to be the rate-limited step in the copper-catalyzed 4CRs.

  3. Stereodivergent Synthesis of N-Heterocycles by Catalyst-Controlled, Activity-Directed Tandem Annulation of Diazo Compounds with Amino Alkynes.

    Science.gov (United States)

    Liu, Kai; Zhu, Chenghao; Min, Junxiang; Peng, Shiyong; Xu, Guangyang; Sun, Jiangtao

    2015-10-26

    A stereodivergent synthesis of five-membered N-heterocycles, such as 2,3-dihydropyrroles, and 2-methylene and 3-methylene pyrrolidines, has been developed through a tandem annulation of amino alkynes with diazo compounds and involves the trapping of in situ formed intermediates. Mechanistic investigations indicate that the copper-catalyzed tandem annulations proceed by allenoate formation and subsequent intramolecular hydroamination. In contrast, the rhodium-catalyzed protocol features a carbenoid insertion into the NH bond and subsequent Conia-ene cyclization. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Copper(II)-catalyzed enantioselective hydrosilylation of halo-substituted alkyl aryl and heteroaryl ketones: asymmetric synthesis of (R)-fluoxetine and (S)-duloxetine.

    Science.gov (United States)

    Zhou, Ji-Ning; Fang, Qiang; Hu, Yi-Hu; Yang, Li-Yao; Wu, Fei-Fei; Xie, Lin-Jie; Wu, Jing; Li, Shijun

    2014-02-14

    A set of reaction conditions has been established to facilitate the non-precious copper-catalyzed enantioselective hydrosilylation of a number of structurally diverse β-, γ- or ε-halo-substituted alkyl aryl ketones and α-, β- or γ-halo-substituted alkyl heteroaryl ketones under air to afford a broad spectrum of halo alcohols in high yields and good to excellent enantioselectivities (up to 99% ee). The developed procedure has been successfully applied to the asymmetric synthesis of antidepressant drugs (R)-fluoxetine and (S)-duloxetine, which highlighted its synthetic utility.

  5. Update: An efficient synthesis of poly(ethylene glycol)-supported iron(II) porphyrin using a click reaction and its application for the catalytic olefination of aldehydes

    KAUST Repository

    Chinnusamy, Tamilselvi R.

    2012-05-09

    The facile synthesis of polyethylene glycol (PEG)-immobilized iron(II) porphyrin using a copper-catalyzed azide-alkyne [3+2] cycloaddition "click" reaction is reported. The prepared complex 5 (PEG-C 51H 39FeN 7O) was found to be an efficient catalyst for the selective olefination of aldehydes with ethyl diazoacetate in the presence of triphenylphosphine, and afforded excellent olefin yields with high (E) selectivities. The PEG-supported catalyst 5 was readily recovered by precipitation and filtration, and was recycled through ten runs without significant activity loss. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Convergent synthetic methodology for the construction of self-adjuvanting lipopeptide vaccines using a novel carbohydrate scaffold

    Directory of Open Access Journals (Sweden)

    Vincent Fagan

    2014-07-01

    Full Text Available A novel convergent synthetic strategy for the construction of multicomponent self-adjuvanting lipopeptide vaccines was developed. A tetraalkyne-functionalized glucose derivative and lipidated Fmoc-lysine were prepared by novel efficient and convenient syntheses. The carbohydrate building block was coupled to the self-adjuvanting lipidic moiety (three lipidated Fmoc-lysines on solid support. Four copies of a group A streptococcal B cell epitope (J8 were then conjugated to the glyco-lipopeptide using a copper-catalyzed cycloaddition reaction. The approach was elaborated by the preparation of a second vaccine candidate which incorporated an additional promiscuous T-helper epitope.

  7. Cu-Click Compatible Triazabutadienes To Expand the Scope of Aryl Diazonium Ion Chemistry.

    Science.gov (United States)

    Cornali, Brandon M; Kimani, Flora W; Jewett, John C

    2016-10-07

    Triazabutadienes can be used to readily generate reactive aryl diazonium ions under mild, physiologically relevant conditions. These conditions are compatible with a range of functionalities that do not tolerate traditional aryl diazonium ion generation. To increase the utility of this aryl diazonium ion releasing chemistry an alkyne-containing triazabutadiene was synthesized. The copper-catalyzed azide-alkyne cycloaddition ("Cu-click") reaction was utilized to modify the alkyne-containing triazabutadiene and shown to be compatible with the nitrogen-rich triazabutadiene. One of the triazole products was tethered to a fluorophore, thus enabling the direct fluorescent labeling of a model protein.

  8. Intramolecular cascade rearrangements of enynamine derived ketenimines: access to acyclic and cyclic amidines.

    Science.gov (United States)

    Chauhan, Dinesh Pratapsinh; Varma, Sreejith J; Gudem, Mahesh; Panigrahi, Nihar; Singh, Khushboo; Hazra, Anirban; Talukdar, Pinaki

    2017-06-07

    Copper-catalyzed reaction of enynamines with sulfonylazides provides acyclic and cyclic amidines. Nucleophilic addition of the tethered amino group on the in situ generated ketenimine forms a six-membered cyclic zwitterionic intermediate which facilitates migration of the tethered amino group to the C 5 -center giving the acyclic amidine. On the other hand, migration of a substituent on the amino group to C 2 - and C 4 -centers results in the formation of cyclic amidines. Computational studies were carried out to validate the mechanism which indicates that the product distribution of the process depends on the substitutions on the enynamine backbone.

  9. Asymmetric synthesis of all-carbon benzylic quaternary stereocenters via Cu-catalyzed conjugate addition of dialkylzinc reagents to 5-(1-arylalkylidene) Meldrum's acids.

    Science.gov (United States)

    Fillion, Eric; Wilsily, Ashraf

    2006-03-08

    The asymmetric synthesis of all-carbon benzylic quaternary stereocenters has been successfully achieved through copper-catalyzed addition of dialkylzinc reagents to 5-(1-arylalkylidene) and 5-(dihydroindenylidene) Meldrum's acids in the presence of phosphoramidite ligand. The resulting benzyl-substituted Meldrum's acids and 1,1-disubstituted indanes were obtained in good yields and up to 99% ee. The significance of substituting the position para, meta, and ortho to the electrophilic benzylic center was highlighted. A benzyl Meldrum's acid product was further transformed to a 3,3-disubstituted 1-indanone and a beta,beta-disubstituted pentanoic acid.

  10. Synthesis of a Nanostructured Composite: Octakis(1-propyl-1H-1,2,3-triazole-4-yl(methyl 2-chlorobenzoate))octasilsesquioxane via Click Reaction.

    Science.gov (United States)

    Ghodsi, Mohammadi Ziarani; Shakiba Nahad, Monireh; Lashgari, Negar; Alireza, Badiei

    2015-01-01

    Octakis(1-propyl-1H-1,2,3-triazole-4-yl(methyl 2-chlorobenzoate))octasilsesquioxanes as functionalized silsesquioxanes were synthesized via click reaction (copper-catalyzed Huisgen 1,3-dipolar cycloaddition reaction) between azidemoiety functionalized silsesquioxane and prop-2-ynyl 2-chlorobenzoate. The latter one was synthesized via the condensation reaction of propargyl alcohol and 2-chlorobenzoyl chloride in the presence of SBA-Pr-NH(2) (Santa Barbara Amorphous type material) as a nano basic catalyst. This approach provides a simple and convenient route to efficiently functionalize a wide range of new structures on the surface of silsesquioxanes.

  11. One-pot synthesis of 2,5-dihydropyrroles from terminal alkynes, azides, and propargylic alcohols by relay actions of copper, rhodium, and gold.

    Science.gov (United States)

    Miura, Tomoya; Tanaka, Takamasa; Matsumoto, Kohei; Murakami, Masahiro

    2014-12-01

    Relay actions of copper, rhodium, and gold formulate a one-pot multistep pathway, which directly gives 2,5-dihydropyrroles starting from terminal alkynes, sulfonyl azides, and propargylic alcohols. Initially, copper-catalyzed 1,3-dipolar cycloaddition of terminal alkynes with sulfonyl azides affords 1-sulfonyl-1,2,3-triazoles, which then react with propargylic alcohols under the catalysis of rhodium. The resulting alkenyl propargyl ethers subsequently undergo the thermal Claisen rearrangement to give α-allenyl-α-amino ketones. Finally, a gold catalyst prompts 5-endo cyclization to produce 2,5-dihydropyrroles. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Novel Poly(vinylidene fluoride)-Based 4-Miktoarm Star Terpolymer: Synthesis and Self-Assembly

    KAUST Repository

    Patil, Yogesh Raghunath; Bilalis, Panagiotis; Polymeropoulos, George; Almahdali, Sarah; Hadjichristidis, Nikolaos; Rodionov, Valentin

    2018-01-01

    A well-defined amphiphilic miktoarm polymer incorporating poly(vinylidene fluoride) (PVDF), polystyrene (PS), and poly(ethylene glycol) (PEG) blocks was synthesized via a combination of atom-transfer radical polymerization (ATRP), iodine transfer radical polymerization (ITP), and copper-catalyzed azide-alkyne cycloaddition (CuAAC). Morphology and self-assembly of this star polymer were examined in organic solvents and in water. The aggregates formed in water were found to possess unusual frustrated topology due to immiscibility of PS and PVDF. The polymer was evaluated for transport of small hydrophobic molecules in water.

  13. One-pot synthesis of Au@SiO2 catalysts: A click chemistry approach

    KAUST Repository

    Solovyeva, Vera A.

    2014-10-13

    Using the copper-catalyzed azide-alkyne cycloaddition "click" reaction, a library of triazole amphiphiles with a variety of functional polar "heads" and hydrophobic or superhydrophobic "tails" was synthesized. The amphiphiles were evaluated for their ability to stabilize small Au nanoparticles, and, at the same time, serve as templates for nanocasting porous SiO2. One of the Au@SiO2 materials thus prepared was found to be a highly active catalyst for the Au nanoparticle-catalyzed regioselective hydroamination of alkynes.

  14. A Novel Poly(vinylidene fluoride)-Based 4-Miktoarm Star Terpolymer: Synthesis and Self-Assembly

    KAUST Repository

    Patil, Yogesh Raghunath

    2018-03-15

    A well-defined amphiphilic miktoarm polymer incorporating poly(vinylidene fluoride) (PVDF), polystyrene (PS), and poly(ethylene glycol) (PEG) blocks was synthesized via a combination of atom-transfer radical polymerization (ATRP), iodine transfer radical polymerization (ITP), and copper-catalyzed azide-alkyne cycloaddition (CuAAC). Morphology and self-assembly of this star polymer were examined in organic solvents and in water. The aggregates formed in water were found to possess unusual frustrated topology due to immiscibility of PS and PVDF. The polymer was evaluated for transport of small hydrophobic molecules in water.

  15. One-pot synthesis of Au@SiO2 catalysts: A click chemistry approach

    KAUST Repository

    Solovyeva, Vera A.; Vu, Khanh B.; Merican, Zulkifli; Sougrat, Rachid; Rodionov, Valentin O.

    2014-01-01

    Using the copper-catalyzed azide-alkyne cycloaddition "click" reaction, a library of triazole amphiphiles with a variety of functional polar "heads" and hydrophobic or superhydrophobic "tails" was synthesized. The amphiphiles were evaluated for their ability to stabilize small Au nanoparticles, and, at the same time, serve as templates for nanocasting porous SiO2. One of the Au@SiO2 materials thus prepared was found to be a highly active catalyst for the Au nanoparticle-catalyzed regioselective hydroamination of alkynes.

  16. A Naturally Encoded Dipeptide Handle for Bioorthogonal Chan-Lam Coupling.

    Science.gov (United States)

    Ohata, Jun; Zeng, Yimeng; Segatori, Laura; Ball, Zachary T

    2018-04-03

    Manipulation of biomacromolecules is ideally achieved through unique and bioorthogonal chemical reactions of genetically encoded, naturally occurring functional groups. The toolkit of methods for site-specific conjugation is limited by selectivity concerns and a dearth of naturally occurring functional groups with orthogonal reactivity. We report that pyroglutamate amide N-H bonds exhibit bioorthogonal copper-catalyzed Chan-Lam coupling at pyroglutamate-histidine dipeptide sequences. The pyroglutamate residue is readily incorporated into proteins of interest by natural enzymatic pathways, allowing specific bioconjugation at a minimalist dipeptide tag. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Selective LPCVD growth of graphene on patterned copper and its growth mechanism

    Science.gov (United States)

    Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.

    2016-12-01

    Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.

  18. Image-Guided Surgery of Primary Breast Cancer Using Ultrasound Phased Arrays

    National Research Council Canada - National Science Library

    Ebbini, Emad S

    2004-01-01

    .... Piezocomposite transducer technology, especially for phased arrays, is providing high-quality HIFU applicators with increased bandwidth and reduced parasitic cross coupling between the array elements...

  19. Prebiotic chemistry: Ribozyme takes its vitamins

    Science.gov (United States)

    Burrows, Cynthia J.

    2013-11-01

    Selection of an RNA catalyst that can use the vitamin thiamin to catalyse a key metabolic decarboxylation reaction has broad implications for understanding the role of RNA in the early stages of chemical evolution.

  20. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  1. Biological roles of crop NADP-malic enzymes and molecular ...

    African Journals Online (AJOL)

    刘增辉

    2011-06-08

    Jun 8, 2011 ... catalyze the oxidative decarboxylation of malate to produce pyruvate, CO2 and .... causes dryness of soil and atmosphere, which can limit the plant ... closing through regulate the degradation of malic in day. In addition, there ...

  2. Biobased synthesis of acrylonitrile from glutamic acid

    NARCIS (Netherlands)

    Notre, le J.E.L.; Scott, E.L.; Franssen, M.C.R.; Sanders, J.P.M.

    2011-01-01

    Glutamic acid was transformed into acrylonitrile in a two step procedure involving an oxidative decarboxylation in water to 3-cyanopropanoic acid followed by a decarbonylation-elimination reaction using a palladium catalyst

  3. Sub- T g Cross-Linking of a Polyimide Membrane for Enhanced CO 2 Plasticization Resistance for Natural Gas Separation

    KAUST Repository

    Qiu, Wulin; Chen, Chien-Chiang; Xu, Liren; Cui, Lili; Paul, Donald R.; Koros, William J.

    2011-01-01

    Decarboxylation-induced thermal cross-linking occurs at elevated temperatures (∼15 °C above glass transition temperature) for 6FDA-DAM:DABA polyimides, which can stabilize membranes against swelling and plasticization in aggressive feed streams

  4. Involvement of the agmatinergic system in the depressive-like phenotype of the Crtc1 knockout mouse model of depression

    KAUST Repository

    Meylan, E M; Breuillaud, L; Seredenina, T; Magistretti, Pierre J.; Halfon, O; Luthi-Carter, R; Cardinaux, J-R

    2016-01-01

    Recent studies implicate the arginine-decarboxylation product agmatine in mood regulation. Agmatine has antidepressant properties in rodent models of depression, and agmatinase (Agmat), the agmatine-degrading enzyme, is upregulated in the brains

  5. Establishment of callus from Opuntia robusta Wendl., a wild and ...

    African Journals Online (AJOL)

    coco santos

    2013-04-22

    Apr 22, 2013 ... plants produce tender cladodes, consumed as vegetable and fruits (prickly pear) .... The highest callus amount was obtained in media supplemented ... CO2 during carboxylation and decarboxylation reactions, improves the ...

  6. Thermal analysis and its application in evaluation of fluorinated polyimide membranes for gas separation

    KAUST Repository

    Qiu, Wulin; Chen, Chien-Chiang; Kincer, Matthew R.; Koros, William J.

    2011-01-01

    by reaction with acetic anhydride to produce polyimide (PI). The resulting polymers were characterized using thermal analysis techniques including TGA, derivative weight analysis, TGA-MS, and DSC. The decarboxylation-induced thermal cross-linking, ester cross

  7. Synthesis and reactivity of aliphatic sulfur pentafluorides from substituted (pentafluorosulfanyl)benzenes

    Czech Academy of Sciences Publication Activity Database

    Vida, N.; Václavík, Jiří; Beier, P.

    2016-01-01

    Roč. 12, JAN 20 2016 (2016), s. 110-116 ISSN 1860-5397 Institutional support: RVO:67985840 Keywords : dearomatization * decarboxylation * Diels-Alder reaction Subject RIV: EE - Microbiology, Virology Impact factor: 2.337, year: 2016

  8. Preparation of 9-vinylanthracene

    International Nuclear Information System (INIS)

    Dhane, D.L.; Noras, K.A.; Gaiki, G.M.

    1975-01-01

    Two convenient methods for synthesising 9-vinylanthracene (I) which can be used a solute in liquid scintillation counting are described. One involves the decarboxylation of β-(9-anthracene) - acrylic acid (II) and the other a coupling reaction between 9-anthraldehyde and methylene iodide to presence of magnesium amalgam. The effect of temperature, acids and bases on the decarboxylation has been studied and the theoretical explanation provided for the behaviour of the reaction. NMR and fluorescence data have been recorded (author)

  9. Formation of sulphite, cysteic acid and taurine from sulphate by the egg embryo

    International Nuclear Information System (INIS)

    Chapeville, F.; Fromageot, P.

    1959-01-01

    It is shown that the formation of taurine from sulphate by the chicken embryo involves the reduction of sulphate to sulphite (I), the synthesis of cysteic acid (II) and its decarboxylation (Ill). The reaction (I) takes place in the vitellin sac. The reaction (II) results from the condensation of the sulphite with a-amino-acrylic acid and is carried out by the yolk. The enzymes responsible for the decarboxylation (III) are distributed both in the embryo and in its appendages. (author) [fr

  10. Separation of chlorinated diastereomers of decarboxy-betacyanins in myeloperoxidase catalyzed chlorinated Beta vulgaris L. extract.

    Science.gov (United States)

    Wybraniec, Sławomir; Starzak, Karolina; Szneler, Edward; Pietrzkowski, Zbigniew

    2016-11-15

    A comparative chromatographic evaluation of chlorinated decarboxylated betanins and betanidins generated under activity of hypochlorous acid exerted upon these highly antioxidative potent decarboxylated pigments derived from natural sources was performed by LC-DAD-ESI-MS/MS. Comparison of the chromatographic profiles of the chlorinated pigments revealed two different directions of retention changes in relation to the corresponding substrates. Chlorination of all betacyanins that are decarboxylated at carbon C-17 results in an increase of their retention times. In contrast, all other pigments (the non-decarboxylated betacyanins as well as 2-decarboxy- and 15-decarboxy-derivatives) exhibit lower retention after chlorination. During further chromatographic experiments based upon chemical transformation of the related pigments (decarboxylation and deglucosylation), the compounds' structures were confirmed. The elaborated method for determination of chlorinated pigments enabled analysis of a chlorinated red beet root extract that was submitted to the MPO/H 2 O 2 /Cl - system acting under inflammation-like conditions (pH 5). This indicates a promising possibility for measurement of these chlorinated pigments as indicators of specific inflammatory states wherein betacyanins and decarboxylated betacyanins act as hypochlorite scavengers. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Base free aryl coupling of diazonium compounds and boronic esters: self-activation allowing an overall highly practical process.

    Science.gov (United States)

    Bonin, Hélène; Delbrayelle, Dominique; Demonchaux, Patrice; Gras, Emmanuel

    2010-04-21

    Boronic esters have long been considered as poor partners in cross-coupling reactions with arene diazoniums. Here is reported an unprecedented application of self-activated boronic esters in a base-free cross-coupling reaction with diazonium salts under mild and user friendly conditions.

  12. Study of the fusion point between PM-PCF and panda fiber and its influence to Interferometric fiber-optical gyroscope

    Science.gov (United States)

    Sun, Zuoming; Wang, Shuhua; Li, Junwei

    2017-02-01

    Microhole collapse property of polarization maintaining photonic crystal fibers (PM-PCF) and its effect on the splice loss and polarization cross-coupling during fusion splicing were investigated. The relationship between the microhole collapse and polarization cross-coupling are analyzed through simulation and experiment. Finally their influence to the phase error of the FOG is calculated and tested.

  13. Non-volatile MOS RAM cell with capacitor-isolated nodes that are radiation accessible for rendering a non-permanent programmed information in the cell of a non-volatile one

    NARCIS (Netherlands)

    Widdershoven, Franciscus P.; Annema, Anne J.; Storms, Maurits M.N.; Pelgrom, Marcellinus J.M.; Pelgrom, Marcel J M

    2001-01-01

    A non-volatile, random access memory cell comprises first and second inverters each having an output node cross-coupled by cross-coupling means to an input node of the other inverter for forming a MOS RAM cell. The output node of each inverter is selectively connected via the conductor paths of

  14. Modelling of the Optical Detector System in a Compact Disc Player

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Andersen, Palle

    2003-01-01

    The cross-couplings between focus and radial tracking servos in compact disc players are important, but the optical cross couplings are not well described in the literature. In this paper an optical model of a compact disc player based on the three beam single foucault detector principle is found...

  15. Studies of a Diazo Cyclopropanation Strategy for the Total Synthesis of (-)-Lundurine A.

    Science.gov (United States)

    Huang, Hong-Xiu; Jin, Shuai-Jiang; Gong, Jin; Zhang, Dan; Song, Hao; Qin, Yong

    2015-09-14

    The bioactive Kopsia alkaloids lundurines A-D are the only natural products known to contain indolylcyclopropane. Achieving their syntheses can provide important insights into their biogenesis, as well as novel synthetic routes for complex natural products. Asymmetric total synthesis of (-)-lundurine A has previously been achieved through a Simmons-Smith cyclopropanation strategy. Here, the total synthesis of (-)-lundurine A was carried out using a metal-catalyzed diazo cyclopropanation strategy. In order to avoid a carbene CH insertion side reaction during cyclopropanation of α-diazo- carboxylates or cyanides, a one-pot, copper-catalyzed Bamford-Stevens diazotization/diazo decomposition/cyclopropanation cascade was developed, involving hydrazone. This approach simultaneously generates the C/D/E ring system and the two chiral quaternary centers at C2 and C7. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Correlating defect density with growth time in continuous graphene films.

    Science.gov (United States)

    Kang, Cheong; Jung, Da Hee; Nam, Ji Eun; Lee, Jin Seok

    2014-12-01

    We report that graphene flakes and films which were synthesized by copper-catalyzed atmospheric pressure chemical vapor deposition (APCVD) method using a mixture of Ar, H2, and CH4 gases. It was found that variations in the reaction parameters, such as reaction temperature, annealing time, and growth time, influenced the domain size of as-grown graphene. Besides, the reaction parameters influenced the number of layers, degree of defects and uniformity of the graphene films. The increase in growth temperature and annealing time tends to accelerate the graphene growth rate and increase the diffusion length, respectively, thereby increasing the average size of graphene domains. In addition, we confirmed that the number of pinholes reduced with increase in the growth time. Micro-Raman analysis of the as-grown graphene films confirmed that the continuous graphene monolayer film with low defects and high uniformity could be obtained with prolonged reaction time, under the appropriate annealing time and growth temperature.

  17. Interaction of copper metallization with rare-earth metals and silicides

    International Nuclear Information System (INIS)

    Molnar, G. L.; Peto, G.; Zsoldos, E.; Horvath, Z. E.

    2001-01-01

    Solid-phase reactions of copper films with underlying gadolinium, erbium, and erbium - silicide layers on Si(100) substrates were investigated. For the phase analysis, x-ray diffraction and cross-sectional transmission electron microscopy were used. In the case of Cu/Gd/Si(100), an orthorhombic GdSi 2 formed, and, at higher temperatures, copper aggregated into islands. Annealed Cu/Er/Si(100) samples resulted in a hexagonal Er 5 Si 3 phase. In the Cu/ErSi 2-x /Si system, the copper catalyzes the transformation of the highly oriented hexagonal ErSi 2-x phase into hexagonal Er 5 Si 3 . Diverse phase developments of the samples with Gd and Er are based on reactivity differences of the two rare-earth metals. [copyright] 2001 American Institute of Physics

  18. Synthesis of Cross-Linked Polymeric Micelle pH Nanosensors

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar; Jølck, Rasmus Irming; Andresen, Thomas Lars

    2015-01-01

    The design flexibility that polymeric micelles offer in the fabrication of optical nanosensors for ratiometric pH measurements is investigated. pH nanosensors based on polymeric micelles are synthesized either by a mixed-micellization approach or by a postmicelle modification strategy. In the mixed......-micellization approach, self-assembly of functionalized unimers followed by shell cross-linking by copper-catalyzed azide-alkyne cycloaddition (CuAAC) results in stabilized cRGD-functionalized micelle pH nanosensors. In the postmicelle modification strategy, simultaneous cross-linking and fluorophore conjugation...... at the micelle shell using CuAAC results in a stabilized micelle pH nanosensor. Compared to the postmicelle modification strategy, the mixed-micellization approach increases the control of the overall composition of the nanosensors.Both approaches provide stable nanosensors with similar pKa profiles and thereby...

  19. Antioxidant effects of phenolic rye (Secale cereale L.) extracts, monomeric hydroxycinnamates, and ferulic acid dehydrodimers on human low-density lipoproteins

    DEFF Research Database (Denmark)

    Andreasen, Mette Findal; Landbo, A K; Christensen, L P

    2001-01-01

    Dietary antioxidants that protect low-density lipoprotein (LDL) from oxidation may help to prevent atherosclerosis and coronary heart disease. The antioxidant activities of purified monomeric and dimeric hydroxycinnamates and of phenolic extracts from rye (whole grain, bran, and flour) were...... investigated using an in vitro copper-catalyzed human LDL oxidation assay. The most abundant ferulic acid dehydrodimer (diFA) found in rye, 8-O-4-diFA, was a slightly better antioxidant than ferulic acid and p-coumaric acid. The antioxidant activity of the 8-5-diFA was comparable to that of ferulic acid......, but neither 5-5-diFA nor 8-5-benzofuran-diFA inhibited LDL oxidation when added at 10-40 microM. The antioxidant activity of the monomeric hydroxycinnamates decreased in the following order: caffeic acid > sinapic acid > ferulic acid > p-coumaric acid. The antioxidant activity of rye extracts...

  20. Trifluoromethylation of graphene

    Directory of Open Access Journals (Sweden)

    Lin Zhou

    2014-09-01

    Full Text Available We demonstrate trifluoromethylation of graphene by copper-catalyzed free radical reaction. The covalent addition of CF3 to graphene, which changes the carbon atom hybridization from sp2 to sp3, and modifies graphene in a homogeneous and nondestructive manner, was verified with Raman spectroscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. X-ray photoelectron spectroscopy reveals that CF3 groups are grafted to the basal plane of graphene, with about 4 at. % CF3 coverage. After trifluoromethylation, the average resistance increases by nearly one order of magnitude, and an energy gap of about 98 meV appears. The noninvasive and mild reaction to synthesize trifluoromethylated graphene paves the way for graphene's applications in electronics and biomedical areas.

  1. Trifluoromethylation of graphene

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lin; Zhou, Lushan; Wang, Xi; Yu, Jingwen; Yang, Mingmei; Wang, Jianbo; Peng, Hailin, E-mail: zfliu@pku.edu.cn, E-mail: hlpeng@pku.edu.cn; Liu, Zhongfan, E-mail: zfliu@pku.edu.cn, E-mail: hlpeng@pku.edu.cn [Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2014-09-01

    We demonstrate trifluoromethylation of graphene by copper-catalyzed free radical reaction. The covalent addition of CF{sub 3} to graphene, which changes the carbon atom hybridization from sp{sup 2} to sp{sup 3}, and modifies graphene in a homogeneous and nondestructive manner, was verified with Raman spectroscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. X-ray photoelectron spectroscopy reveals that CF{sub 3} groups are grafted to the basal plane of graphene, with about 4 at. % CF{sub 3} coverage. After trifluoromethylation, the average resistance increases by nearly one order of magnitude, and an energy gap of about 98 meV appears. The noninvasive and mild reaction to synthesize trifluoromethylated graphene paves the way for graphene's applications in electronics and biomedical areas.

  2. Vitamin B12 Phosphate Conjugation and Its Effect on Binding to the Human B12 -Binding Proteins Intrinsic Factor and Haptocorrin

    DEFF Research Database (Denmark)

    Ó Proinsias, Keith; Ociepa, Michał; Pluta, Katarzyna

    2016-01-01

    The binding of vitamin B12 derivatives to human B12 transporter proteins is strongly influenced by the type and site of modification of the cobalamin original structure. We have prepared the first cobalamin derivative modified at the phosphate moiety. The reaction conditions were fully optimized...... and its limitations examined. The resulting derivatives, particularly those bearing terminal alkyne and azide groups, were isolated and used in copper-catalyzed alkyne-azide cycloaddition reactions (CuAAC). Their sensitivity towards light revealed their potential as photocleavable molecules. The binding...... abilities of selected derivatives were examined and compared with cyanocobalamin. The interaction of the alkylated derivatives with haptocorrin was less affected than the interaction with intrinsic factor. Furthermore, the configuration of the phosphate moiety was irrelevant to the binding process....

  3. Enhanced osteogenic activity of poly(ester urea) scaffolds using facile post-3D printing peptide functionalization strategies.

    Science.gov (United States)

    Li, Shan; Xu, Yanyi; Yu, Jiayi; Becker, Matthew L

    2017-10-01

    Additive manufacturing has the potential to revolutionize regenerative medicine, but the harsh thermal or photochemical conditions during the 3D printing process limit the inclusion of drugs, growth factors and other biologics within the resulting scaffolds. Functionalization strategies that enable specific placement of bioactive species on the surface of 3D printed structures following the printing process afford a promising approach to sidestep the harsh conditions and incorporate these valuable bioactive molecules with precise control over concentration. Herein, resorbable polymer scaffolds were prepared from propargyl functionalized L-phenylalanine-based poly(ester urea)s (PEUs). Osteogenic growth peptide (OGP) or bone morphogenic protein-2 (BMP-2) peptides were immobilized on PEU scaffolds through surface available propargyl groups via copper-catalyzed azide alkyne cycloaddition (CuAAC) post 3D printing. The presence of either OGP or BMP-2 significantly enhanced hMSCs osteogenic differentiation compared to unfunctionalized scaffolds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mechanistic studies of copper(I)-catalyzed 1,3-halogen migration.

    Science.gov (United States)

    Van Hoveln, Ryan; Hudson, Brandi M; Wedler, Henry B; Bates, Desiree M; Le Gros, Gabriel; Tantillo, Dean J; Schomaker, Jennifer M

    2015-04-29

    An ongoing challenge in modern catalysis is to identify and understand new modes of reactivity promoted by earth-abundant and inexpensive first-row transition metals. Herein, we report a mechanistic study of an unusual copper(I)-catalyzed 1,3-migration of 2-bromostyrenes that reincorporates the bromine activating group into the final product with concomitant borylation of the aryl halide bond. A combination of experimental and computational studies indicated this reaction does not involve any oxidation state changes at copper; rather, migration occurs through a series of formal sigmatropic shifts. Insight provided from these studies will be used to expand the utility of aryl copper species in synthesis and develop new ligands for enantioselective copper-catalyzed halogenation.

  5. Current understanding of the effects of enviromental and irradiation variables on RPV embrittlement

    International Nuclear Information System (INIS)

    Odette, G.R.; Lucas, G.E.; Wirth, B.; Liu, C.L.

    1997-01-01

    Radiation enhanced diffusion at RPV operating temperatures around 290 degrees C leads to the formation of various ultrafine scale hardening phases, including copper-rich and copper-catalyzed manganese-nickel rich precipitates. In addition, defect cluster or cluster-solute complexes, manifesting a range of thermal stability, develop under irradiation. These features contribute directly to hardening which in turn is related to embrittlement, manifested as shifts in Charpy V-notch transition temperature. Models based on the thermodynamics, kinetics and micromechanics of the embrittlement processes have been developed; these are broadly consistent with experiment and rationalize the highly synergistic effects of most important irradiation (temperature, flux, fluence) and metallurgical (copper, nickel, manganese, phosphorous and heat treatment) variables on both irradiation hardening and recovery during post-irradiation annealing. A number of open questions remain which can be addressed with a hierarchy of new theoretical and experimental tools

  6. Disassembly Control of Saccharide-Based Amphiphiles Driven by Electrostatic Repulsion.

    Science.gov (United States)

    Yamada, Taihei; Kokado, Kenta; Sada, Kazuki

    2017-03-14

    According to the design of disassembly using electrostatic repulsion, novel amphiphiles consisting of a lipophilic ion part and a hydrophilic saccharide part were synthesized via the facile copper-catalyzed click reaction, and their molecular assemblies in water and chloroform were studied. The amphiphiles exhibited a molecular orientation opposite to that of the conventional amphiphiles in each case. ζ Potential measurements indicated that the lipophilic ion part is exposed outside in chloroform. The size of a solvophobic part in the amphiphiles dominates the size of an assembling structure; that is, in water, these amphiphiles tethering different lengths of the saccharide part exhibited almost identical assembling size, whereas in chloroform, the size depends on the length of the saccharide part in the amphiphiles.

  7. 7-Chloroquinolinotriazoles: synthesis by the azide-alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies.

    Science.gov (United States)

    Pereira, Guilherme R; Brandão, Geraldo Célio; Arantes, Lucas M; de Oliveira, Háliton A; de Paula, Renata Cristina; do Nascimento, Maria Fernanda A; dos Santos, Fábio M; da Rocha, Ramon K; Lopes, Júlio César D; de Oliveira, Alaíde Braga

    2014-02-12

    Twenty-seven 7-chloroquinolinotriazole derivatives with different substituents in the triazole moiety were synthesized via copper-catalyzed cycloaddition (CuAAC) click chemistry between 4-azido-7-chloroquinoline and several alkynes. All the synthetic compounds were evaluated for their in vitro activity against Plasmodium falciparum (W2) and cytotoxicity to Hep G2A16 cells. All the products disclosed low cytotoxicity (CC50 > 100 μM) and five of them have shown moderate antimalarial activity (IC50 from 9.6 to 40.9 μM). As chloroquine analogs it was expected that these compounds might inhibit the heme polymerization and SAR studies were performed aiming to explain their antimalarial profile. New structural variations can be designed on the basis of the results obtained. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  8. Orthogonal dual-modification of proteins for the engineering of multivalent protein scaffolds

    Directory of Open Access Journals (Sweden)

    Michaela Mühlberg

    2015-05-01

    Full Text Available To add new tools to the repertoire of protein-based multivalent scaffold design, we have developed a novel dual-labeling strategy for proteins that combines residue-specific incorporation of unnatural amino acids with chemical oxidative aldehyde formation at the N-terminus of a protein. Our approach relies on the selective introduction of two different functional moieties in a protein by mutually orthogonal copper-catalyzed azide–alkyne cycloaddition (CuAAC and oxime ligation. This method was applied to the conjugation of biotin and β-linked galactose residues to yield an enzymatically active thermophilic lipase, which revealed specific binding to Erythrina cristagalli lectin by SPR binding studies.

  9. A Mixed-Ligand Chiral Rhodium(II) Catalyst Enables the Enantioselective Total Synthesis of Piperarborenine B.

    Science.gov (United States)

    Panish, Robert A; Chintala, Srinivasa R; Fox, Joseph M

    2016-04-11

    A novel, mixed-ligand chiral rhodium(II) catalyst, Rh2(S-NTTL)3(dCPA), has enabled the first enantioselective total synthesis of the natural product piperarborenine B. A crystal structure of Rh2(S-NTTL)3(dCPA) reveals a "chiral crown" conformation with a bulky dicyclohexylphenyl acetate ligand and three N-naphthalimido groups oriented on the same face of the catalyst. The natural product was prepared on large scale using rhodium-catalyzed bicyclobutanation/ copper-catalyzed homoconjugate addition chemistry in the key step. The route proceeds in ten steps with an 8% overall yield and 92% ee. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.

    Science.gov (United States)

    Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu

    2015-04-01

    The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. In-vitro cytotoxic activities of poly(2-ethyl-2-oxazoline-based amphiphilic block copolymers prepared by CuAAC click chemistry

    Directory of Open Access Journals (Sweden)

    S. Gulyuz

    2018-02-01

    Full Text Available Synthesis and characterization of well-defined amphiphilic block copolymers containing poly(2-ethyl-2-oxazoline as hydrophilic block and poly(ε-caprolactone or poly(L-lactide as hydrophobic block is achieved by copper-catalyzed azide-alkyne cycloaddition (CuAAC click chemistry. The clickable precursors, α-alkyne-functionalized poly(ε-caprolactone and poly(L-lactide and ω-azido-functionalized poly(2-ethyl-2-oxazoline are simply prepared and joined using copper sulfate/ascorbic acid catalyst system at room temperature. The structures of precursors and amphiphilic block copolymers are characterized by spectroscopic, chromatographic and thermal analyses. The cytotoxic activities of resulting amphiphilic block copolymers and their precursors are investigated in the prostate epithelial and cancer cells under in-vitro conditions. The treatment of the healthy prostate epithelial cell line PNT1A reveals that no significant cytotoxicity, whereas some significant toxic effects on the prostate cancer cell lines are observed.

  12. Synthesis of Polystyrene-Based Random Copolymers with Balanced Number of Basic or Acidic Functional Groups

    DEFF Research Database (Denmark)

    Dimitrov, Ivaylo; Jankova Atanasova, Katja; Hvilsted, Søren

    2010-01-01

    for the functionalization were applied. The first one involved direct functionalization of the template backbone through alkylation of the phenolic groups with suitable reagents. The second modification approach was based on "click" chemistry, where the introduction of alkyne groups onto the template backbone was followed......Pairs of polystyrene-based random copolymers with balanced number of pendant basic or acidic groups were synthesized utilizing the template strategy. The same poly[(4-hydroxystyrene)-ran-styrene] was used as a template backbone for modification. Two different synthetic approaches...... by copper-catalyzed 1,3 cycloaddition of aliphatic sulfonate- or amine-contaning azides. Both synthetic approaches proved to be highly efficient as evidenced by H-1-NMR analyses. The thermal properties were evaluated by differential scanning calorimetry and thermal gravimetric analyses and were influenced...

  13. Soluble organic nanotubes for catalytic systems

    Science.gov (United States)

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-01

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core-shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the ‘confined effect’ and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  14. Soluble organic nanotubes for catalytic systems.

    Science.gov (United States)

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-18

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core–shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the 'confined effect' and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  15. Deoxygenation of Palmitic and Lauric Acids over Pt/ZIF-67 Membrane/Zeolite 5A Bead Catalysts.

    Science.gov (United States)

    Yang, Liqiu; Carreon, Moises A

    2017-09-20

    The deoxygenation of palmitic and lauric acids over 0.5 wt % Pt/ZIF-67 membrane/zeolite 5A bead catalysts is demonstrated. Almost complete conversion (% deoxygenation of ≥95%) of these two fatty acids was observed over both fresh and recycled catalyst after a 2 h reaction time. The catalysts displayed high selectivity to pentadecane and undecane via decarboxylation reaction pathway even at low 0.5 wt % Pt loading. Selectivity to pentadecane and undecane as high as ∼92% and ∼94% was observed under CO 2 atmosphere when palmitic and lauric acids were used respectively as reactants. Depending on the reaction gas atmosphere, two distinctive reaction pathways were observed: decarboxylation and hydrodeoxygenation. Specifically, it was found that decarboxylation reaction pathway was more favorable in the presence of helium and CO 2 , while hydrodeoxygenation pathway strongly competed against the decarboxylation pathway when hydrogen was employed during the deoxygenation reactions. Esters were identified as the key reaction intermediates leading to decarboxylation and hydrodeoxygenation pathways.

  16. Uptake and fate of IAA in apple callus tissue using IAA-1-14C

    International Nuclear Information System (INIS)

    Epstein, E.; Lavee, S.

    1975-01-01

    Incubation of young growing and older non-growing apple callus tissues in a medium containing IAA-1- 14 C resulted in rapid disappearance of the IAA. In old calluses (3 months), the major portion of IAA was lost by decarboxylation (90% after 4 hr) and very little (1.4%) was maintained by the tissue. In young calluses, after 4 hr in light, decarboxylation reached 20% and absorption 35% of the labelled IAA. Some decomposition of IAA was caused by photolysis and autoclaving (19% and 3%, respectively) but the final distribution of radioactivity was not affected. Factors such as sucrose concentration in the incubation medium, distilled water as incubation medium, and cutting of the callus did not affect tissue behavior. Special precautions were taken to eliminate non-biological decomposition of IAA. Therefore, we believe that the rapid CO 2 evolution is of enzymatic nature. This theory is supported by the drop in decarboxylation after killing of the callus, and the increase of decarboxylation with age. No enzyme was secreted by the callus into the medium after 24 hr of incubation, and IAA decomposition in old tissues is done probably on the surface. Absorption of IAA increased with increasing callus size and decarboxylation decreased. (auth.)

  17. Search for new ways of production of diesel fuels from fats and oils on the basis of renewable raw materials; Suche nach neuen Wegen zur Gewinnung von Dieselkraftstoffen aus Fetten und Oelen auf der Basis von nachwachsenden Rohstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, Eckhard [Leibniz-Institut fuer Katalyse an der Universitaet Rostock e.V., Rostock (Germany); Schuemann, Ulrike [Rostock Univ. (Germany). Lehrstuhl fuer Kolbenmaschinen und Verbrennungsmotoren; Kragl, Udo [Leibniz-Institut fuer Katalyse an der Universitaet Rostock e.V., Rostock (Germany); Rostock Univ. (Germany). Inst. fuer Chemie

    2012-07-01

    Fats and oils are one of the oldest classes of chemical compounds used by humans. Natural fats consist of a hydrocarbon chain with double bonds and carboxylic/ester functions. They can be converted by hydrogenation and decarboxylation using heterogeneous catalysts at high temperature (450 C) and high hydrogen pressure (150 bar). Conversion of fats and oils by hydrogenation and decarboxylation with homogeneous noble metal catalysts at essential milder conditions for different applications as hydrotreated vegetable oil is possible as well. The reactions were studied by model compounds for the hydrogenation of double bonds e.g. linolenic acid and the decarboxylation of stearic acid. It was found that palladium nanoparticles can be used as catalyst in a two phase reaction. (orig.)

  18. Isotope effect studies of chicken liver NADP malic enzyme: role of the metal ion and viscosity dependence

    International Nuclear Information System (INIS)

    Grissom, C.B.; Cleland, W.W.

    1988-01-01

    The role of the metal ion in the oxidative decarboxylation of malate by chicken liver NADP malic enzyme and details of the reaction mechanism have been investigated by 13 C isotope effects. With saturating NADP and the indicated metal ion at a total concentration 10-fold higher than its K/sub m/, the following primary 13 C kinetic isotope effects at C 4 of malate [ 13 (VK/sub mal/)] were observed at pH 8.0: Mg 2+ , 1.0336; Mn 2+ , 1.0365; Cd 2+ , 1.0366; Zn 2+ , 1.0337; Co 2+ , 1.0283; Ni 2+ , 1.025. Knowing the partitioning of the intermediate oxalacetate between decarboxylation to pyuvate and reduction to malate allows calculation of the intrinsic carbon isotope effect for decarboxylation to pyuvate and reduction to malate allows calculation of the intrinsic carbon isotope effect for decarboxylation. For Mg 2+ as activator, this was 1.049 with NADP and 1.046 with 3-acetylpyridine adenine dinucleotide phosphate, although the intrinsic primary deuterium isotope effects on dehydrogenation were 5.6 and 4.2, and the partition ratios of the oxalacetate intermediate for decarboxylation as opposed to hydride transfer were 0.11 and 3.96. It was not possible to calculate reasonable intrinsic carbon isotope effects with the other metal ions by use of the partitioning ratio of oxalacetate because of decarboxylation by another mechanism. The variation of 13 (VK/sub mal/) with pH was used to dissect the total forward and external components. When the authors attempted to use the variation of 13 (VK/sub mal/) with solution viscosity to determine the internal and external commitments, incorrect values were obtained because of a specific effect of the viscosogen in decreasing the K/sub m/ for malate, so that VK/sub mal/ actually increased with viscosity instead of decreasing, as theory predicts

  19. Low band gap polymers for organic solar cells

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Krebs, Frederik C

    2008-01-01

    The synthesis of copolymers based on thiophene, benzothiadiazole and benzo-bis-thiadiazole are described. The polymers were obtained by employing Stille cross coupling polymerization. The polymers were characterized by NMR, size exclusion chromatography, UV-vis and ultraviolet photoelectron...

  20. A Variational approach to thin film hydrodynamics of binary mixtures

    KAUST Repository

    Xu, Xinpeng; Thiele, Uwe; Qian, Tiezheng

    2015-01-01

    In order to model the dynamics of thin films of mixtures, solutions, and suspensions, a thermodynamically consistent formulation is needed such that various coexisting dissipative processes with cross couplings can be correctly described

  1. Robust Command Augmentation System Design Using Genetic Methods

    National Research Council Canada - National Science Library

    Sweriduk, G

    1998-01-01

    .... The integral of absolute value of error between the actual response and that of an ideal model is used as the fitness criterion, along with additional terms to penalize for cross-coupling between Ps and ny...

  2. Fabrication of LD-3 Polymer Directional Couplers

    National Research Council Canada - National Science Library

    Chen, Ray T

    1998-01-01

    .... LD-3 polymer directional couplers arc designed and fabricated to operate at 1.3 microns. Waveguide propagation losses, device characterization, demonstration of cross coupling and packaged device pictures are presented in this final report.

  3. Rhodium-Catalyzed Dehydrogenative Borylation of Cyclic Alkenes

    Science.gov (United States)

    Kondoh, Azusa; Jamison, Timothy F.

    2010-01-01

    A rhodium-catalyzed dehydrogenative borylation of cyclic alkenes is described. This reaction provides direct access to cyclic 1-alkenylboronic acid pinacol esters, useful intermediates in organic synthesis. Suzuki-Miyaura cross-coupling applications are also presented. PMID:20107646

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    (sp2) cross coupling reaction catalyzed by a palladacycle phosphine complex: A simple and sustainable protocol in aqueous media. Seyyed Javad Sabounchei Marjan Hosseinzadeh. Articles Volume 127 Issue 11 November 2015 pp 1919- ...

  5. A general enantioselective route to the chamigrene natural product family

    KAUST Repository

    White, David E.

    2010-06-01

    Described in this report is an enantioselective route toward the chamigrene natural product family. The key disconnections in our synthetic approach include sequential enantioselective decarboxylative allylation and ring-closing olefin metathesis to form the all-carbon quaternary stereocenter and spirocyclic core present in all members of this class of compounds. The generality of this strategy is demonstrated by the first total syntheses of elatol and the proposed structure of laurencenone B, as well as the first enantioselective total syntheses of laurencenone C and α-chamigrene. A brief exploration of the substrate scope of the enantioselective decarboxylative allylation/ring-closing metathesis sequence with fully substituted vinyl chlorides is also presented.

  6. Biocatalytic Synthesis of Vanillin

    Science.gov (United States)

    Li, Tao; Rosazza, John P. N.

    2000-01-01

    The conversions of vanillic acid and O-benzylvanillic acid to vanillin were examined by using whole cells and enzyme preparations of Nocardia sp. strain NRRL 5646. With growing cultures, vanillic acid was decarboxylated (69% yield) to guaiacol and reduced (11% yield) to vanillyl alcohol. In resting Nocardia cells in buffer, 4-O-benzylvanillic acid was converted to the corresponding alcohol product without decarboxylation. Purified Nocardia carboxylic acid reductase, an ATP and NADPH-dependent enzyme, quantitatively reduced vanillic acid to vanillin. Structures of metabolites were established by 1H nuclear magnetic resonance and mass spectral analyses. PMID:10653736

  7. Simple purification for E. coli putrescine aminopropyl-transferase

    International Nuclear Information System (INIS)

    Gavagan, J.E.; Anton, D.L.

    1986-01-01

    Putrescine aminopropyltransferase transfers an aminopropyl group from decarboxylated S-adenosylmethionine to putrescine forming spermidine. They have recently developed a rapid assay based on the separation of the spermidine product from the unreacted [ 14 C-met] labeled decarboxylated S-adenosylmethionine substrate by charcoal adsorption. Using this assay they have developed a simple protocol for the purification of putrescine aminopropyltransferase from E. coli HT 527. The procedure involves ammonium sulfate fractionation, phenyl Sepharose chromatography, and FPLC. The enzyme is greater than 80% pure as judged by SDS-PAGE and has an apparent subunit molecular weight of 35,000. The kinetics of this enzyme are being reinvestigated

  8. A general enantioselective route to the chamigrene natural product family

    KAUST Repository

    White, David E.; Stewart, Ian C.; Seashore-Ludlow, Brinton A.; Grubbs, Robert H.; Stoltz, Brian M.

    2010-01-01

    Described in this report is an enantioselective route toward the chamigrene natural product family. The key disconnections in our synthetic approach include sequential enantioselective decarboxylative allylation and ring-closing olefin metathesis to form the all-carbon quaternary stereocenter and spirocyclic core present in all members of this class of compounds. The generality of this strategy is demonstrated by the first total syntheses of elatol and the proposed structure of laurencenone B, as well as the first enantioselective total syntheses of laurencenone C and α-chamigrene. A brief exploration of the substrate scope of the enantioselective decarboxylative allylation/ring-closing metathesis sequence with fully substituted vinyl chlorides is also presented.

  9. Rhodium-catalyzed regioselective olefination directed by a carboxylic group.

    Science.gov (United States)

    Mochida, Satoshi; Hirano, Koji; Satoh, Tetsuya; Miura, Masahiro

    2011-05-06

    The ortho-olefination of benzoic acids can be achieved effectively through rhodium-catalyzed oxidative coupling with alkenes. The carboxylic group is readily removable to allow ortho-olefination/decarboxylation in one pot. α,β-Unsaturated carboxylic acids such as methacrylic acid also undergo the olefination at the β-position. Under the rhodium catalysis, the cine-olefination of heteroarene carboxylic acids such as thiophene-2-carboxylic acid proceeds smoothly accompanied by decarboxylation to selectively produce the corresponding vinylheteroarene derivatives. © 2011 American Chemical Society

  10. Catalytic activity of some oxime-based Pd(II-complexes in Suzuki coupling of aryl and heteroaryl bromides in water

    Directory of Open Access Journals (Sweden)

    Kamal M. Dawood

    2017-05-01

    Full Text Available The catalytic activity of four Pd(II-complexes of benzoazole-oximes was extensively studied in Suzuki–Miyaura C–C cross coupling reactions in water, as an eco-friendly green solvent, under both thermal heating as well as microwave irradiation conditions. The cross-coupling reactions included different activated and deactivated aryl- or heteroaryl-bromides with several arylboronic acids. The protected oxime-complexes were found to be more efficient than the free ones.

  11. A four-axis hand controller for helicopter flight control

    Science.gov (United States)

    Demaio, Joe

    1993-01-01

    A proof-of-concept hand controller for controlling lateral and longitudinal cyclic pitch, collective pitch and tail rotor thrust was developed. The purpose of the work was to address problems of operator fatigue, poor proprioceptive feedback and cross-coupling of axes associated with many four-axis controller designs. The present design is an attempt to reduce cross-coupling to a level that can be controlled with breakout force, rather than to eliminate it entirely. The cascaded design placed lateral and longitudinal cyclic in their normal configuration. Tail rotor thrust was placed atop the cyclic controller. A left/right twisting motion with the wrist made the control input. The axis of rotation was canted outboard (clockwise) to minimize cross-coupling with the cyclic pitch axis. The collective control was a twist grip, like a motorcycle throttle. Measurement of the amount of cross-coupling involved in pure, single-axis inputs showed cross coupling under 10 percent of full deflection for all axes. This small amount of cross-coupling could be further reduced with better damping and force gradient control. Fatigue was not found to be a problem, and proprioceptive feedback was adequate for all flight tasks executed.

  12. Self-assembly in mixtures of sodium alkyl sulfates and alkyltrimethylammonium bromides : Aggregation behavior and catalytic properties

    NARCIS (Netherlands)

    Talhout, Reinskje; Engberts, BFN

    1997-01-01

    Two aqueous mixtures of cationic and anionic surfactants have been studied by means of conductometry, transmission electron microscopy, and microcalorimetry. Their catalytic effects on the decarboxylation of the kinetic probe 6-nitrobenzisoxazole-3-carboxylate (6-NBIC) were also examined in some

  13. Conditions allowing the formation of biogenic amines in cheese

    NARCIS (Netherlands)

    Joosten, H.M.L.J.

    1988-01-01

    A study was undertaken to reveal the conditions that allow the formation of biogenic amines in cheese.

    The starters most commonly used in the Dutch cheese industry do not have decarboxylative properties. Only if the milk or curd is contaminated with non-starter bacteria, amine

  14. Rapid synthesis of polyprenylated acylphloroglucinol analogs via dearomative conjunctive allylic annulation.

    Science.gov (United States)

    Grenning, Alexander J; Boyce, Jonathan H; Porco, John A

    2014-08-20

    Polyprenylated acylphloroglucinols (PPAPs) are structurally complex natural products with promising biological activities. Herein, we present a biosynthesis-inspired, diversity-oriented synthesis approach for rapid construction of PPAP analogs via double decarboxylative allylation (DcA) of acylphloroglucinol scaffolds to access allyl-desoxyhumulones followed by dearomative conjunctive allylic alkylation (DCAA).

  15. Behavior of ellagitannins, gallic acid, and ellagic acid under alkaline conditions

    Science.gov (United States)

    Richard W. Hemingway; W.E. Hillis

    1971-01-01

    Examination of the rates of hydrolysis of different ellagitannins under conditions comparable with cold soda and alkaline-groundwood pulping processes showed that some ellagitannins are notably resistant to hydrolysis. The rate of hydrolysis was dependent upon the pH and tempemture of the solution and particularly upon the structure of the compound. Decarboxylation of...

  16. Improved Processes to Remove Naphthenic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Aihua Zhang; Qisheng Ma; Kangshi Wang; Yongchun Tang; William A. Goddard

    2005-12-09

    In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorption experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.

  17. PDH regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Kiilerich, Kristian

    Pyruvate dehydrogenase (PDH) decarboxylates pyruvate into acetyl-CoA and links glycolysis with the Krebs cycle. Because PDH is the only step where carbohydrate-derived substrate can enter the mitochondria and become completely oxidized, PDH activity can potentially determine if glycogen / glucose...

  18. Medicinal Cannabis: In Vitro Validation of Vaporizers for the Smoke-Free Inhalation of Cannabis.

    Directory of Open Access Journals (Sweden)

    Christian Lanz

    Full Text Available Inhalation by vaporization is a promising application mode for cannabis in medicine. An in vitro validation of 5 commercial vaporizers was performed with THC-type and CBD-type cannabis. Gas chromatography/mass spectrometry was used to determine recoveries of total THC (THCtot and total CBD (CBDtot in the vapor. High-performance liquid chromatography with photodiode array detection was used for the quantitation of acidic cannabinoids in the residue and to calculate decarboxylation efficiencies. Recoveries of THCtot and CBDtot in the vapor of 4 electrically-driven vaporizers were 58.4 and 51.4%, 66.8 and 56.1%, 82.7 and 70.0% and 54.6 and 56.7% for Volcano Medic®, Plenty Vaporizer®, Arizer Solo® and DaVinci Vaporizer®, respectively. Decarboxylation efficiency was excellent for THC (≥ 97.3% and CBD (≥ 94.6%. The gas-powered Vape-or-Smoke™ showed recoveries of THCtot and CBDtot in the vapor of 55.9 and 45.9%, respectively, and a decarboxylation efficiency of ≥ 87.7 for both cannabinoids. However, combustion of cannabis was observed with this device. Temperature-controlled, electrically-driven vaporizers efficiently decarboxylate inactive acidic cannabinoids and reliably release their corresponding neutral, active cannabinoids. Thus, they offer a promising application mode for the safe and efficient administration of medicinal cannabis.

  19. Extensive Literature Search on the “Effects of Copper intake levels in the gut microbiota profile of target animals, in particular piglets"

    DEFF Research Database (Denmark)

    Jensen, Bent Borg

    74%, the urease activity in the colon, and decarboxylation and deamination of amino acidsin the small intestine. No effect of Cu as CuSO4 on the population of streptococci and on ureaseactivity is seen in piglets. Supplementing piglet diets with 100 to 250 mg/kg Cu as CuSO4 significantlychange...

  20. [Research of imidazo[1,2-a]benzimidazole derivatives. XXX. Synthesis and properties of (imidazo[1,2-a]benzimidazolyl-2)acetic acid derivatives].

    Science.gov (United States)

    Anisimova, V A; Tolpygin, I E; Spasov, A A; Serdiuk, T S; Sukhov, A G

    2011-01-01

    Ethyl esters of (9-subtituted-imidazo[1,2-a]benzimidazolyl-2)acetic acids were synthesized. The chemical properties of these esters (hydrolysis, decarboxylation, hydrazinolysis) and biological activity (fungicidal, antimicrobial, antiarrhythmic activity, and also affects on the brain rhythmogenesis) of the prepared compounds were studied.