WorldWideScience

Sample records for copper x-ray absorption

  1. In-situ x-ray absorption study of copper films in ground water solutions

    International Nuclear Information System (INIS)

    Kvashnina, K.O.; Butorin, S.M.; Modin, A.; Soroka, I.; Marcellini, M.; Nordgren, J.; Guo, J.-H.; Werme, L.

    2007-01-01

    This study illustrates how the damage from copper corrosion can be reduced by modifying the chemistry of the copper surface environment. The surface modification of oxidized copper films induced by chemical reaction with Cl - and HCO 3 - in aqueous solutions was monitored by in situ X-ray absorption spectroscopy. The results show that corrosion of copper can be significantly reduced by adding even a small amount of sodium bicarbonate. The studied copper films corroded quickly in chloride solutions, whereas the same solution containing 1.1 mM HCO 3 - prevented or slowed down the corrosion processes

  2. X-ray absorption near edge structure (XANES) study of some hydroxamic mixed ligand copper complexes

    International Nuclear Information System (INIS)

    Mishra, A; Parsai, N; Shrivastava, B D; Soni, N

    2012-01-01

    With the advent of modern bright synchrotron radiation sources, X-ray absorption spectra has emerged as a powerful technique for local structure determination, which can be applied to any type of material. The X-ray absorption measurements of four hydroxamic mixed ligand copper complexes have been performed at the recently developed BL-8 Dispersive EXAFS beamline at 2.5 GeV Indus-2 synchrotron at RRCAT, Indore, India. The X-ray absorption near edge structure (XANES) data obtained has been processed using data analysis program Athena. The energies of the K absorption edge, chemical shifts, edge-widths, shifts of the principal absorption maximum in the complexes have been determined. The values of the chemical shift suggest that copper is in oxidation state +2 in all of the complexes. The chemical shift data has been utilized to estimate effective nuclear charge on copper atom. The order of the chemical shifts has been correlated to the relative ionic character of the bonding in these complexes.

  3. Molecular characterization of copper in soils using X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Strawn, Daniel G.; Baker, Leslie L.

    2009-01-01

    Bioavailability of Cu in the soil is a function of its speciation. In this paper we investigated Cu speciation in six soils using X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and synchrotron-based micro X-ray fluorescence (μ-XRF). The XANES and EXAFS spectra in all of the soils were the same. μ-XRF results indicated that the majority of the Cu particles in the soils were not associated with calcium carbonates, Fe oxides, or Cu sulfates. Principal component analysis and target transform of the XANES and EXAFS spectra suggested that Cu adsorbed on humic acid (HA) was an acceptable match. Thus it appears that Cu in all of the soils is primarily associated with soil organic matter (SOM). Theoretical fitting of the molecular structure in the soil EXAFS spectra revealed that the Cu in the soils existed as Cu atoms bound in a bidentate complex to O or N functional groups. - Copper speciation in six soils was investigated using XANES, EXAFS, and μ-XRF.

  4. Finite difference method calculations of X-ray absorption fine structure for copper

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia); Chantler, C.T. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)]. E-mail: chantler@physics.unimelb.edu.au; Witte, C. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)

    2007-01-15

    The finite difference method is extended to calculate X-ray absorption fine structure (XAFS) for solid state copper. These extensions include the incorporation of a Monte Carlo frozen phonon technique to simulate the effect of thermal vibrations under a correlated Debye-Waller model, and the inclusion of broadening effects from inelastic processes. Spectra are obtained over an energy range in excess of 300 eV above the K absorption edge-more than twice the greatest energy range previously reported for a solid state calculation using this method. We find this method is highly sensitive to values of the photoelectron inelastic mean free path, allowing us to probe the accuracy of current models of this parameter, particularly at low energies. We therefore find that experimental data for the photoelectron inelastic mean free path can be obtained by this method. Our results compare favourably with high precision measurements of the X-ray mass attenuation coefficient for copper, reaching agreement to within 3%, and improving previous results using the finite difference method by an order of magnitude.

  5. X-ray diffraction and X-ray K absorption near edge studies of copper (II) complexes with amino acids

    Science.gov (United States)

    Sharma, P. K.; Mishra, Ashutosh; Malviya, Varsha; Kame, Rashmi; Malviya, P. K.

    2017-05-01

    Synthesis of copper (II) complexes [CuL1L2X].nH2O, where n=1, 2,3 (X=Cl,Br,NO3) (L1is 2,2’-bipyridine and L2 is L-tyrosine) by the chemical root method. The XRD data for the samples have been recorded. EXAFS spectra have also been recorded at the K-edge of Cu using the dispersive beam line BL-8 at 2.5 Gev Indus-2 Synchrotron radiation source at RRCAT, Indore, India. XRD and EXAFS data have been analysed using the computer software. X-ray diffraction studies of all complexes indicate their crystalline nature. Lattice parameter, bond length, particle size have been determined from XRD data.

  6. X-ray absorption spectroscopy and high-energy XRD study of the local environment of copper in antibacterial copper-releasing degradable phosphate glasses

    OpenAIRE

    Pickup, David M.; Ahmed, Ifty; Fitzgerald, Victoria; Moss, Rob M.; Wetherall, Karen; Knowles, Jonathan C.; Smith, Mark E.; Newport, Robert J.

    2006-01-01

    Phosphate-based glasses of the general formula Na2O-CaO-P2O5 are degradable in an aqueous environment, and therefore can act as antibacterial materials through the inclusion of ions such as copper. In this study, CuO and Cu2O were added to Na2O-CaO-P2O5 glasses (1-20 mol% Cu) and X-ray absorption spectroscopy (XAS) and high-energy X-ray diffraction (HEXRD) used to probe the local environment of the copper ions. Copper K-edge X-ray absorption near-edge structure (XANES) spectra confirm the oxi...

  7. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  8. Optically detected X-ray absorption spectroscopy measurements as a means of monitoring corrosion layers on copper.

    Science.gov (United States)

    Dowsett, Mark G; Adriaens, Annemie; Jones, Gareth K C; Poolton, Nigel; Fiddy, Steven; Nikitenko, Sergé

    2008-11-15

    XANES and EXAFS information is conventionally measured in transmission through the energy-dependent absorption of X-rays or by observing X-ray fluorescence, but secondary fluorescence processes, such as the emission of electrons and optical photons (e.g., 200-1000 nm), can also be used as a carrier of the XAS signatures, providing complementary information such as improved surface specificity. Where the near-visible photons have a shorter range in a material, the data will be more surface specific. Moreover, optical radiation may escape more readily than X-rays through liquid in an environmental cell. Here, we describe a first test of optically detected X-ray absorption spectroscopy (ODXAS) for monitoring electrochemical treatments on copper-based alloys, for example, heritage metals. Artificially made corrosion products deposited on a copper substrate were analyzed in air and in a 1% (w/v) sodium sesquicarbonate solution to simulate typical conservation methods for copper-based objects recovered from marine environments. The measurements were made on stations 7.1 and 9.2 MF (SRS Daresbury, UK) using the mobile luminescence end station (MoLES), supplemented by XAS measurements taken on DUBBLE (BM26 A) at the ESRF. The ODXAS spectra usually contain fine structure similar to that of XAS spectra measured in X-ray fluorescence. Importantly, for the compounds examined, the ODXAS is significantly more surface specific, and >98% characteristic of thin surface layers of 0.5-1.5-microm thickness in cases where X-ray measurements are dominated by the substrate. However, EXAFS and XANES from broadband optical measurements are superimposed on a high background due to other optical emission modes. This produces statistical fluctuations up to double what would be expected from normal counting statistics because the data retain the absolute statistical fluctuation in the original raw count, while losing up to 70% of their magnitude when background is removed. The problem may be

  9. Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy

    NARCIS (Netherlands)

    Mesu, J. Gerbrand; Beale, Andrew M.; de Groot, Frank M. F.; Weckhuysen, Bert M.

    2006-01-01

    Time-resolved in situ video monitoring and ultraviolet-visible spectroscopy in combination with X-ray absorption near-edge spectroscopy (XANES) have been used for the first time in a combined manner to study the effect of synchrotron radiation on a series of homogeneous aqueous copper solutions in a

  10. X-ray absorption spectroscopic studies on novel microporous copper containing catalytic systems

    International Nuclear Information System (INIS)

    Bhargava, Suresh K.; Akolekar, Deepak B.; Foran, Garry

    2006-01-01

    Novel copper metal modified microporous aluminosilicate and aluminophosphate catalysts with the high phase purity were synthesized and characterized. CuK-edge XAS measurements were carried out over a series of copper containing SAPO-34 and ZSM-5 catalysts. EXAFS technique was used to obtain specific climacteric information related to the copper atomic distances, coordination and near neighbour environments. EXAFS studies indicated the presence of different of Cu species on ZSM-5/SAPO34 catalysts

  11. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy.

    Science.gov (United States)

    Chen, XinCai; Shi, JiYan; Chen, YingXu; Xu, XiangHua; Chen, LiTao; Wang, Hui; Hu, TianDou

    2007-03-01

    Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1.

  12. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    International Nuclear Information System (INIS)

    Tan, G.O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here

  13. The interaction of copper ions with Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli: an X-ray absorption near-edge structure (XANES) spectroscopy study.

    Science.gov (United States)

    Zanzen, Ulrike; Bovenkamp-Langlois, Lisa; Klysubun, Wantana; Hormes, Josef; Prange, Alexander

    2018-04-01

    The antimicrobial properties of copper ions have been known for a long time. However, the exact mechanism of action of the transition metal on microorganisms has long been unclear. X-ray absorption near-edge structure (XANES) spectroscopy at the Cu K edge allows the determination of copper speciation in Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa that have been treated with Cu(II) and Cu(I) solutions. The death/inactivation of the bacteria was observed using plate counting and light microscopy. The Cu K-XANES spectra of the two Gram-negative bacteria are different than those of the Gram-positive strain. The results clearly show that the Cu + -S bond contributes to the antibacterial activity of copper, as in the case of silver. The detailed evaluation of the differentiated absorption spectra shows that Cu + (not Cu 2+ ) is the dominant ion that binds to the bacteria. Because Cu + is not the most common copper ion, copper is not as effective an antibacterial agent as silver, whose common valency is actually + 1. Any reaction of copper with phosphorus from the bacteria can be excluded after the evaluation of the absorption spectra.

  14. X-ray absorption holography

    Czech Academy of Sciences Publication Activity Database

    Kopecký, Miloš; Lausi, A.; Bussetto, E.; Kub, Jiří; Savoia, A.

    2002-01-01

    Roč. 88, č. 18 (2002), s. 185503-1 - 185503-3 ISSN 0031-9007 R&D Projects: GA MŠk LN00A100 Institutional research plan: CEZ:AV0Z1010921 Keywords : x-ray holography Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.323, year: 2002

  15. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  16. (EXAFS) X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1983-01-01

    The technique EXAFS (Extended X-Ray Absorption Fine Structure) is presented and its applications using the synchrotron radiation as an incidente beam in Science of Materials and Biophysics are shown. (L.C.) [pt

  17. Finite difference method calculations of long-range X-ray absorption fine structure for copper over k{approx}20A{sup -1}

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia); Chantler, C.T., E-mail: chantler@physics.unimelb.edu.a [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)

    2010-07-21

    X-ray Absorption Fine Structure (XAFS) is calculated for copper using the cluster based Finite Difference Method for Near-Edge Structure (FDMNES). This approach is conventionally used to produce high accuracy XAFS theory in the near edge region, however, we demonstrate that it can be readily extended to encompass an energy range of more than 1.5 keV (k{approx}20A{sup -1}) from the K absorption edge. Such calculations require extensions to FDMNES to account for thermal effects, in addition to broadening effects due to inelastic processes. Extended calculations beyond the range of near-edge structure also require consideration of technical constraints such as cluster sizes and densities. We find that with our approach, we are able to produce accurate theory ranging from the absorption edge to the smooth atom-like region at high energies, with a single consistent model that is free from any fitting parameters.

  18. Finite difference method calculations of long-range X-ray absorption fine structure for copper over k∼20A-1

    International Nuclear Information System (INIS)

    Bourke, J.D.; Chantler, C.T.

    2010-01-01

    X-ray Absorption Fine Structure (XAFS) is calculated for copper using the cluster based Finite Difference Method for Near-Edge Structure (FDMNES). This approach is conventionally used to produce high accuracy XAFS theory in the near edge region, however, we demonstrate that it can be readily extended to encompass an energy range of more than 1.5 keV (k∼20A -1 ) from the K absorption edge. Such calculations require extensions to FDMNES to account for thermal effects, in addition to broadening effects due to inelastic processes. Extended calculations beyond the range of near-edge structure also require consideration of technical constraints such as cluster sizes and densities. We find that with our approach, we are able to produce accurate theory ranging from the absorption edge to the smooth atom-like region at high energies, with a single consistent model that is free from any fitting parameters.

  19. Copper doped TiO2 nanoparticles characterized by X-ray absorption spectroscopy, total scattering, and powder diffraction--a benchmark structure-property study.

    Science.gov (United States)

    Lock, Nina; Jensen, Ellen M L; Mi, Jianli; Mamakhel, Aref; Norén, Katarina; Qingbo, Meng; Iversen, Bo B

    2013-07-14

    Metal functionalized nanoparticles potentially have improved properties e.g. in catalytic applications, but their precise structures are often very challenging to determine. Here we report a structural benchmark study based on tetragonal anatase TiO2 nanoparticles containing 0-2 wt% copper. The particles were synthesized by continuous flow synthesis under supercritical water-isopropanol conditions. Size determination using synchrotron PXRD, TEM, and X-ray total scattering reveals 5-7 nm monodisperse particles. The precise dopant structure and thermal stability of the highly crystalline powders were characterized by X-ray absorption spectroscopy and multi-temperature synchrotron PXRD (300-1000 K). The combined evidence reveals that copper is present as a dopant on the particle surfaces, most likely in an amorphous oxide or hydroxide shell. UV-VIS spectroscopy shows that copper presence at concentrations higher than 0.3 wt% lowers the band gap energy. The particles are unaffected by heating to 600 K, while growth and partial transformation to rutile TiO2 occur at higher temperatures. Anisotropic unit cell behavior of anatase is observed as a consequence of the particle growth (a decreases and c increases).

  20. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  1. X-ray absorption in atomic potassium

    International Nuclear Information System (INIS)

    Gomilsek, Jana Padeznik; Kodre, Alojz; Arcon, Iztok; Nemanic, Vincenc

    2008-01-01

    A new high-temperature absorption cell for potassium vapor is described. X-ray absorption coefficient of atomic potassium is determined in the energy interval of 600 eV above the K edge where thresholds for simultaneous excitations of 1s and outer electrons, down to [1s2p] excitation, appear. The result represents also the atomic absorption background for XAFS (X-ray absorption fine structure) structure analysis. The K ionization energy in the potassium vapor is determined and compared with theoretical data and with the value for the metal

  2. X-ray absorption spectroscopy (EXAFS)

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1983-01-01

    The experimental technics of Extended X-ray Absorption Fine Structure (EXAFS) is presented and several uses of it in atomic, molecular and bio physics are shown. The recent progresses of this technics, both theoretical and experimental, are discussed and the future perspectives on this subject are commented. (L.C.) [pt

  3. Speciation of copper and zinc in size-fractionated atmospheric particulate matter using total reflection mode X-ray absorption near-edge structure spectrometry

    International Nuclear Information System (INIS)

    Osan, Janos; Meirer, Florian; Groma, Veronika; Toeroek, Szabina; Ingerle, Dieter; Streli, Christina; Pepponi, Giancarlo

    2010-01-01

    The health effects of aerosol depend on the size distribution and the chemical composition of the particles. Heavy metals of anthropogenic origin are bound to the fine aerosol fraction (PM 2.5 ). The composition and speciation of aerosol particles can be variable in time, due to the time-dependence of anthropogenic sources as well as meteorological conditions. Synchrotron-radiation total reflection X-ray fluorescence (SR-TXRF) provides very high sensitivity for characterization of atmospheric particulate matter. X-ray absorption near-edge structure (XANES) spectrometry in conjunction with TXRF detection can deliver speciation information on heavy metals in aerosol particles collected directly on the reflector surface. The suitability of TXRF-XANES for copper and zinc speciation in size-fractionated atmospheric particulate matter from a short sampling period is presented. For high size resolution analysis, atmospheric aerosol particles were collected at different urban and rural locations using a 7-stage May cascade impactor having adapted for sampling on Si wafers. The thin stripe geometry formed by the particulate matter deposited on the May-impactor plates is ideally suited to SR-TXRF. Capabilities of the combination of the May-impactor sampling and TXRF-XANES measurements at HASYLAB Beamline L to Cu and Zn speciation in size-fractionated atmospheric particulate matter are demonstrated. Information on Cu and Zn speciation could be performed for elemental concentrations as low as 140 pg/m 3 . The Cu and Zn speciation in the different size fraction was found to be very distinctive for samples of different origin. Zn and Cu chemical state typical for soils was detected only in the largest particles studied (2-4 μm fraction). The fine particles, however, contained the metals of interest in the sulfate and nitrate forms.

  4. Ultrafast dynamics of two copper bis-phenanthroline complexes measured by x-ray transient absorption spectroscopy

    DEFF Research Database (Denmark)

    Kelley, Matthew S.; Shelby, Megan L.; Mara, Michael W.

    2017-01-01

    have the general formula [Cu(I)(R)2]+, where R = 2,9-dimethyl-1,10-phenanthroline (dmp) and 2,9-diphenyl-1,10-phenanthroline disulfonic acid disodium salt (dpps). [Cu(I)(dmp)2]+ has methyl groups at the 2,9 positions of phenanthroline (phen) and adopts a pseudo-tetrahedral geometry. In contrast, [Cu......(I)(dpps)2]+ possesses two bulky phenyl-sulfonate groups attached to each phen ligand that force the molecule to adopt a flattened tetrahedral geometry in the ground state. Previously, optical transient absorption (OTA) and synchrotron based XTA experiments with 100 ps time resolution have been employed...

  5. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser

    DEFF Research Database (Denmark)

    Lemke, Henrik T.; Bressler, Christian; Chen, Lin X.

    2013-01-01

    X-ray free electron lasers (XFELs) deliver short (current (SASE based) XFELs, they can be used for measuring high......-quality X-ray absorption data and we report femtosecond time-resolved X-ray absorption near-edge spectroscopy (XANES) measurements of a spin-crossover system, iron(II) tris(2,2'-bipyridine) in water. The data indicate that the low-spin to high-spin transition can be modeled by single-exponential kinetics...

  6. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  7. X-ray absorption spectroscopy of semiconductors

    CERN Document Server

    Ridgway, Mark

    2015-01-01

    X-ray Absorption Spectroscopy (XAS) is a powerful technique with which to probe the properties of matter, equally applicable to the solid, liquid and gas phases. Semiconductors are arguably our most technologically-relevant group of materials given they form the basis of the electronic and photonic devices that now so widely permeate almost every aspect of our society. The most effective utilisation of these materials today and tomorrow necessitates a detailed knowledge of their structural and vibrational properties. Through a series of comprehensive reviews, this book demonstrates the versatility of XAS for semiconductor materials analysis and presents important research activities in this ever growing field. A short introduction of the technique, aimed primarily at XAS newcomers, is followed by twenty independent chapters dedicated to distinct groups of materials. Topics span dopants in crystalline semiconductors and disorder in amorphous semiconductors to alloys and nanometric material as well as in-sit...

  8. Theoretical interpretation for 2p − nd absorption spectra of iron, nickel, and copper in X-ray range measured at the LULI2000 facility

    Directory of Open Access Journals (Sweden)

    Poirier M.

    2013-11-01

    Full Text Available The 2p − nd absorption structures in medium Z elements present a valuable benchmark for atomic models since they exhibit a complex dependence on temperature and density. For these transitions lying in the X-ray range, one observes a competition between the spin-orbit splitting and the broadening associated to the excitation of complex structures. Detailed opacity codes based on the HULLAC or FAC suites agree with the statistical code SCO; but in iron computations predict higher peak absorption than measured. An addition procedure on opacities calculated with detailed codes is proposed and successfully tested.

  9. Theory of X-ray absorption and emission spectra

    International Nuclear Information System (INIS)

    Mukoyama, Takeshi

    2004-01-01

    Theoretical studies on X-ray absorption and emission spectroscopy are discussed. Simple expressions for X-ray emission rate and X-ray absorption cross section are presented in the dipole approximation. Various atomic models to obtain realistic wave functions and theoretical calculations for X-ray absorption cross sections and X-ray emission rates are described. In the case of molecules and solids, molecular orbital methods for electronic structures and molecular wave functions are discussed. The emphasis is on the procedures to obtain the excited-state and continuum wave functions for molecules and to calculate the multi-center dipole matrix elements. The examples of the calculated X-ray absorption and emission spectra are shown and compared with the experimental results

  10. Wavelength dispersive X-ray absorption fine structure imaging by parametric X-ray radiation

    International Nuclear Information System (INIS)

    Inagaki, Manabu; Sakai, Takeshi; Sato, Isamu; Hayakawa, Yasushi; Nogami, Kyoko; Tanaka, Toshinari; Hayakawa, Ken; Nakao, Keisuke

    2008-01-01

    The parametric X-ray radiation (PXR) generator system at Laboratory for Electron Beam Research and Application (LEBRA) in Nihon University is a monochromatic and coherent X-ray source with horizontal wavelength dispersion. The energy definition of the X-rays, which depends on the horizontal size of the incident electron beam on the generator target crystal, has been investigated experimentally by measuring the X-ray absorption near edge structure (XANES) spectra on Cu and CuO associated with conventional X-ray absorption imaging technique. The result demonstrated the controllability of the spectrum resolution of XANES by adjusting of the horizontal electron beam size on the target crystal. The XANES spectra were obtained with energy resolution of several eV at the narrowest case, which is in qualitative agreement with the energy definition of the PXR X-rays evaluated from geometrical consideration. The result also suggested that the wavelength dispersive X-ray absorption fine structure measurement associated with imaging technique is one of the promising applications of PXR. (author)

  11. Characterization of Metalloproteins and Biomaterials by X-ray Absorption Spectroscopy and X-ray Diffraction

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl

    This thesis presents thework on combining complementary X-rays techniques for studying the structures of proteins and other biomaterials, and consists of three different projects: (i) Characterization of protein powders with X-ray powder diffraction (XRPD). (ii) The combination of X-ray...... crystallography and X-ray absorption spectroscopy (XAS) applied to studying different hexameric insulin conformations. (iii) The structures of polymorphs of strontium ranelate and the distribution of strontium in bone tissue. A procedure for fast identification and verification of protein powders using XRPD...... was correction for disordered bulk-solvent, but also correction for background and optimization of unit cell parameters have to be taken into account. A sample holder was designed for collecting powder diffraction data on a standard laboratory X-ray powder diffractometer. The background was reduced by use...

  12. Charge collection and absorption-limited x-ray sensitivity of pixellated x-ray detectors

    International Nuclear Information System (INIS)

    Kabir, M. Zahangir; Kasap, S.O.

    2004-01-01

    The charge collection and absorption-limited x-ray sensitivity of a direct conversion pixellated x-ray detector operating in the presence of deep trapping of charge carriers is calculated using the Shockley-Ramo theorem and the weighting potential of the individual pixel. The sensitivity of a pixellated x-ray detector is analyzed in terms of normalized parameters; (a) the normalized x-ray absorption depth (absorption depth/photoconductor thickness), (b) normalized pixel width (pixel size/thickness), and (c) normalized carrier schubwegs (schubweg/thickness). The charge collection and absorption-limited sensitivity of pixellated x-ray detectors mainly depends on the transport properties (mobility and lifetime) of the charges that move towards the pixel electrodes and the extent of dependence increases with decreasing normalized pixel width. The x-ray sensitivity of smaller pixels may be higher or lower than that of larger pixels depending on the rate of electron and hole trapping and the bias polarity. The sensitivity of pixellated detectors can be improved by ensuring that the carrier with the higher mobility-lifetime product is drifted towards the pixel electrodes

  13. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures

  14. F K-edge soft X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Sugimura, Tetsuro; Kawai, Jun; Maeda, Kuniko; Fukushima, Akiko; Shin, S.; Motoyama, Muneyuki; Nakajima Tsuyoshi

    2001-01-01

    We measured F X-ray absorption spectra of various fluorine compounds using a synchrotron radiation at KEK-PF. The absorption spectra were measured using X-ray fluorescence yield (XFY) and total electron yield (TEY) methods. Change of the spectral shape has a relation to the metal-fluorine bond distance. By comparing with the experimental spectrum and calculated spectrum, F 2p state density is divined into up and down states. (author)

  15. Multiple scattering approach to X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Benfatto, M.; Wu Ziyu

    2003-01-01

    In this paper authors present the state of the art of the theoretical background needed for analyzing X-ray absorption spectra in the whole energy range. The multiple-scattering (MS) theory is presented in detail with some applications on real systems. Authors also describe recent progress in performing geometrical fitting of the XANES (X-ray absorption near-edge structure) energy region and beyond using a full multiple-scattering approach

  16. Cone-beam x-ray luminescence computed tomography based on x-ray absorption dosage

    Science.gov (United States)

    Liu, Tianshuai; Rong, Junyan; Gao, Peng; Zhang, Wenli; Liu, Wenlei; Zhang, Yuanke; Lu, Hongbing

    2018-02-01

    With the advances of x-ray excitable nanophosphors, x-ray luminescence computed tomography (XLCT) has become a promising hybrid imaging modality. In particular, a cone-beam XLCT (CB-XLCT) system has demonstrated its potential in in vivo imaging with the advantage of fast imaging speed over other XLCT systems. Currently, the imaging models of most XLCT systems assume that nanophosphors emit light based on the intensity distribution of x-ray within the object, not completely reflecting the nature of the x-ray excitation process. To improve the imaging quality of CB-XLCT, an imaging model that adopts an excitation model of nanophosphors based on x-ray absorption dosage is proposed in this study. To solve the ill-posed inverse problem, a reconstruction algorithm that combines the adaptive Tikhonov regularization method with the imaging model is implemented for CB-XLCT reconstruction. Numerical simulations and phantom experiments indicate that compared with the traditional forward model based on x-ray intensity, the proposed dose-based model could improve the image quality of CB-XLCT significantly in terms of target shape, localization accuracy, and image contrast. In addition, the proposed model behaves better in distinguishing closer targets, demonstrating its advantage in improving spatial resolution.

  17. X-ray absorption intensity at high-energy region

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Kaneko, Katsumi

    2012-01-01

    We theoretically discuss X-ray absorption intensity in high-energy region far from the deepest core threshold to explain the morphology-dependent mass attenuation coefficient of some carbon systems, carbon nanotubes (CNTs), highly oriented pyrolytic graphite (HOPG) and fullerenes (C 60 ). The present theoretical approach is based on the many-body X-ray absorption theory including the intrinsic losses (shake-up losses). In the high-energy region the absorption coefficient has correction term dependent on the solid state effects given in terms of the polarization part of the screened Coulomb interaction W p . We also discuss the tail of the valence band X-ray absorption intensity. In the carbon systems C 2s contribution has some influence on the attenuation coefficient even in the high energy region at 20 keV.

  18. Astrophysical extended X-ray absorption fine-structure analysis

    International Nuclear Information System (INIS)

    Woo, J.W.; Forrey, R.C.; Cho, K.; Department of Physics and Division of Applied Sciences, Harvard University)

    1997-01-01

    We present an astrophysical extended X-ray absorption fine-structure (EXAFS) analysis (AEA) tool. The AEA tool is designed to generate a numerical model of the modification to the X-ray absorption coefficient due to the EXAFS phenomenon. We have constructed a complete database (elements up to the atomic number 92) of EXAFS parameters: central atom phase shift (2δ 1 ), backscattering phase shift (φ b ), and backscattering amplitude (F). Using the EXAFS parameter data base, the AEA tool can generate a numerical model of any compound when the atomic numbers of neighboring atoms and their distances to the central X-ray-absorbing atom are given. copyright 1997 The American Astronomical Society

  19. Opacity of iron, nickel, and copper plasmas in the x-ray wavelength range: Theoretical interpretation of 2p-3d absorption spectra

    International Nuclear Information System (INIS)

    Blenski, T.; Loisel, G.; Poirier, M.; Thais, F.; Arnault, P.; Caillaud, T.; Fariaut, J.; Gilleron, F.; Pain, J.-C.; Porcherot, Q.; Reverdin, C.; Silvert, V.; Villette, B.; Bastiani-Ceccotti, S.; Turck-Chieze, S.; Foelsner, W.; Gaufridy de Dortan, F. de

    2011-01-01

    This paper deals with theoretical studies on the 2p-3d absorption in iron, nickel, and copper plasmas related to LULI2000 (Laboratoire pour l'Utilisation des Lasers Intenses, 2000J facility) measurements in which target temperatures were of the order of 20 eV and plasma densities were in the range 0.004-0.01 g/cm 3 . The radiatively heated targets were close to local thermodynamic equilibrium (LTE). The structure of 2p-3d transitions has been studied with the help of the statistical superconfiguration opacity code sco and with the fine-structure atomic physics codes hullac and fac. A new mixed version of the sco code allowing one to treat part of the configurations by detailed calculation based on the Cowan's code rcg has been also used in these comparisons. Special attention was paid to comparisons between theory and experiment concerning the term features which cannot be reproduced by sco. The differences in the spin-orbit splitting and the statistical (thermal) broadening of the 2p-3d transitions have been investigated as a function of the atomic number Z. It appears that at the conditions of the experiment the role of the term and configuration broadening was different in the three analyzed elements, this broadening being sensitive to the atomic number. Some effects of the temperature gradients and possible non-LTE effects have been studied with the help of the radiative-collisional code scric. The sensitivity of the 2p-3d structures with respect to temperature and density in medium-Z plasmas may be helpful for diagnostics of LTE plasmas especially in future experiments on the Δn=0 absorption in medium-Z plasmas for astrophysical applications.

  20. The nature of ancient Egyptian copper-containing carbon inks is revealed by synchrotron radiation based X-ray microscopy

    OpenAIRE

    Christiansen , Thomas; Cotte , Marine; Loredo-Portales , René; Lindelof , Poul ,; Mortensen , Kell; Ryholt , Kim; Larsen , Sine

    2017-01-01

    International audience; For the first time it is shown that carbon black inks on ancient Egyptian papyri from different time periods and geographical regions contain copper. The inks have been investigated using synchrotron-based micro X-ray fluorescence (XRF) and micro X-ray absorption near-edge structure spectroscopy (XANES) at the European Synchrotron Radiation Facility (ESRF). The composition of the copper-containing carbon inks showed no significant differences that could be related to t...

  1. X-ray absorption spectroscopic studies of the blue copper site: Metal and ligand K-edge studies to probe the origin of the EPR hyperfine splitting in plastocyanin

    International Nuclear Information System (INIS)

    Shadle, S.E.; Penner-Hahn, J.E.; Schugar, H.J.; Hedman, B.; Hodgson, K.O.; Solomon, E.I.

    1993-01-01

    X-ray absorption spectra for the oxidized blue copper protein plastocyanin and several Cu(II) model complexes have been measured at both the Cu K-edge and the ligand K-edges (Cl and S) in order to elucidate the source of the small parallel hyperfine splitting in the EPR spectra of blue copper centers. Assignment and analysis of a feature in the Cu K-edge X-ray absorption spectrum at ∼8,987 eV as the Cu 1s → 4p + ligand-to-metal charge-transfer shakedown transition has allowed for quantitation of 4p mixing into the ground-state wave function as reflected in the 1s →3d (+4p) intensity at ∼8,979 eV. The results show that distorted tetrahedral (D 2d )CuCl 4 2- is characterized by z mixing, while plastocyanin has only Cu 4p xy mixing. Thus, the small parallel hyperfine splitting in the EPR spectra of D 2d CuCl 4 2- and of oxidized plastocyanin cannot be explained by 12% 4p z mixing into the 3d x 2 -y 2 orbital as had been previously postulated. Data collected at the Cl K-edge for CuCl 4 2- show that the intensity of the ligand pre-edge feature at ∼2,820 eV reflects the degree of covalency between the metal half-occupied orbital and the ligands. The data show that D 2d CuCl 4 2- is not unusually covalent. The source of the small parallel splitting in the EPR of D 2d CuCl 4 2- is discussed. Experiments at the S K-edge (∼2,470 eV) show that plastocyanin is characterized by a highly covalent Cu-S(cysteine) bond relative to the cupric-thiolate model complex [Cu(tet b)(o-SC 6 H 4 CO 2 )]·H 2 O. The XAS results demonstrate that the small parallel hyperfine splitting in the EPR spectra of blue copper sites reflects the high degree of covalency of the copper-thiolate bond. 34 refs., 12 figs., 3 tabs

  2. Ultrafast absorption of intense x rays by nitrogen molecules

    Energy Technology Data Exchange (ETDEWEB)

    Buth, Christian [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); PULSE Institute for Ultrafast Energy Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States); Argonne National Laboratory, Argonne, Illinois 60439 (United States); Liu Jicai [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Department of Mathematics and Physics, North China Electric Power University, 102206 Beijing (China); Chen, Mau Hsiung [Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Cryan, James P. [PULSE Institute for Ultrafast Energy Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); Fang Li; Hoener, Matthias; Berrah, Nora [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008 (United States); Glownia, James M. [PULSE Institute for Ultrafast Energy Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Coffee, Ryan N. [PULSE Institute for Ultrafast Energy Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2012-06-07

    We devise a theoretical description for the response of nitrogen molecules (N{sub 2}) to ultrashort and intense x rays from the free electron laser Linac Coherent Light Source (LCLS). We set out from a rate-equation description for the x-ray absorption by a nitrogen atom. The equations are formulated using all one-x-ray-photon absorption cross sections and the Auger and radiative decay widths of multiply-ionized nitrogen atoms. Cross sections are obtained with a one-electron theory and decay widths are determined from ab initio computations using the Dirac-Hartree-Slater (DHS) method. We also calculate all binding and transition energies of nitrogen atoms in all charge states with the DHS method as the difference of two self-consistent field (SCF) calculations ({Delta}SCF method). To describe the interaction with N{sub 2}, a detailed investigation of intense x-ray-induced ionization and molecular fragmentation are carried out. As a figure of merit, we calculate ion yields and the average charge state measured in recent experiments at the LCLS. We use a series of phenomenological models of increasing sophistication to unravel the mechanisms of the interaction of x rays with N{sub 2}: a single atom, a symmetric-sharing model, and a fragmentation-matrix model are developed. The role of the formation and decay of single and double core holes, the metastable states of N{sub 2}{sup 2+}, and molecular fragmentation are explained.

  3. An X-ray absorption spectroelectrochemical cell for radioactive solutions

    International Nuclear Information System (INIS)

    Rettig, D.; Herrmann, S.; Mitschke, F.; Vonau, W.; Brendler, V.; Geipel, G.; Reich, T.; Bernhard, G.

    2002-01-01

    A spectroelectrochemical cell was designed and constructed for measurement of X-ray absorption spectra under electrochemical control of the redox potential of actinide-containing solutions. A first inactive test demonstrated the feasibility of an Ag anode as a non-gassing auxiliary electrode in chloride solutions. (orig.)

  4. Characterization of cryogenic materials by x-ray absorption methods

    International Nuclear Information System (INIS)

    Heald, S.M.; Tranquada, J.M.

    1985-01-01

    X-ray absorption techniques have in recent years been developed into powerful probes of the electronic and structural properties of materials difficult to study by other techniques. In particular, the extended x-ray absorption fine structure (EXAFS) technique can be applied to a variety of cryogenic materials. Three examples are used to demonstrate the power of the technique. The first is the determination of the lattice location of dilute alloying additions such as Ta and Zr in Nb 3 Sn. The Ta additions are shown to reside predominately in Nb lattice sites, while Zr is not uniquely located at either Nb or Sn sites. In addition to structural information, temperature dependent EXAFS studies can be used to determine the rms deviations of atomic bond lengths, providing information about the temperature dependence of interatomic force constants. For Nb 3 Sn deviations are found from simple harmonic behavior at low temperatures which indicate a softening of the Nb-Sn bond strength. The final example is the study of interfacial properties in thin film systems. This is accomplished by making x-ray absorption measurements under conditions of total external reflection of the incident x-rays. As some examples show, this technique has great potential for studying interfacial reactions, a process used in the fabrication of many superconducting materials

  5. Theoretical approaches to x-ray absorption fine structure

    International Nuclear Information System (INIS)

    Rehr, J. J.; Albers, R. C.

    2000-01-01

    Dramatic advances in the understanding of x-ray absorption fine structure (XAFS) have been made over the past few decades, which have led ultimately to a highly quantitative theory. This review covers these developments from a unified multiple-scattering viewpoint. The authors focus on extended x-ray absorption fine structure (EXAFS) well above an x-ray edge, and, to a lesser extent, on x-ray absorption near-edge structure (XANES) closer to an edge. The discussion includes both formal considerations, derived from a many-electron formulation, and practical computational methods based on independent-electron models, with many-body effects lumped into various inelastic losses and energy shifts. The main conceptual issues in XAFS theory are identified and their relative importance is assessed; these include the convergence of the multiple-scattering expansion, curved-wave effects, the scattering potential, inelastic losses, self-energy shifts, and vibrations and structural disorder. The advantages and limitations of current computational approaches are addressed, with particular regard to quantitative experimental comparisons. (c) 2000 The American Physical Society

  6. X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation

    International Nuclear Information System (INIS)

    Seres, Enikoe; Seres, Jozsef; Spielmann, Christian

    2006-01-01

    By irradiating He and Ne atoms with 3 mJ, 12 fs, near infrared laser pulses from a tabletop laser system, the authors generated spatially and temporally coherent x rays up to a photon energy of 3.5 keV. With this source it is possible to use high-harmonic radiation for x-ray absorption spectroscopy in the keV range. They were able to clearly resolve the L absorption edges of titanium and copper and the K edges of aluminum and silicon. From the fine structure of the x-ray absorption they estimated the interatomic distances

  7. Determination of copper in geological materials by X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1981-01-01

    X-ray fluorescence has been applied to the determination of copper content of geological materials in the concentration range of 0.01 to % CuO. A molybdenum target tube Is used, samples being presented in finely-ground powder form. Various methods for the correction for background and Instrumental copper interferences have been considered. To correct for matrix effects different tube scattered primary radiations have been tested as references or internal standards. MoK(41 - (C) provides the most suitable results. The use of influence empirical coefficients for the effect of iron on copper and of mass absorption coefficients has also been considered. For samples with a high content of lead, several procedures to correct for I t s influence have been investigated. Comparison between data obtained by X-ray fluorescence and wet-chemical techniques indicated good agreement. (Author) 6 refs

  8. Absorption correction factor in X-ray fluorescent quantitative analysis

    International Nuclear Information System (INIS)

    Pimjun, S.

    1994-01-01

    An experiment on absorption correction factor in X-ray fluorescent quantitative analysis were carried out. Standard samples were prepared from the mixture of Fe 2 O 3 and tapioca flour at various concentration of Fe 2 O 3 ranging from 5% to 25%. Unknown samples were kaolin containing 3.5% to-50% of Fe 2 O 3 Kaolin samples were diluted with tapioca flour in order to reduce the absorption of FeK α and make them easy to prepare. Pressed samples with 0.150 /cm 2 and 2.76 cm in diameter, were used in the experiment. Absorption correction factor is related to total mass absorption coefficient (χ) which varied with sample composition. In known sample, χ can be calculated by conveniently the formula. However in unknown sample, χ can be determined by Emission-Transmission method. It was found that the relationship between corrected FeK α intensity and contents of Fe 2 O 3 in these samples was linear. This result indicate that this correction factor can be used to adjust the accuracy of X-ray intensity. Therefore, this correction factor is essential in quantitative analysis of elements comprising in any sample by X-ray fluorescent technique

  9. Soft x-ray absorption spectra of ilmenite family.

    Science.gov (United States)

    Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E

    2001-03-01

    We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.

  10. Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon

    International Nuclear Information System (INIS)

    Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

    1999-01-01

    Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors

  11. Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon.

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

    1999-07-21

    Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors.

  12. Multiple scattering theory of X-ray absorption. A review

    International Nuclear Information System (INIS)

    Fonda, L.

    1991-11-01

    We review the basic elements of the theory of X-ray absorption using the tools provided by the theory of multiple scattering. A momentum space approach of clear physical insight is used where the final formulas expressing EXAFS and XANES, i.e. the structures appearing in the absorption coefficient above the edge of a deep core level threshold, are given in terms of eigenstates of the photoelectron momentum. A simple graphic representation is given for the multiple scattering function. (author). 38 refs, 4 figs, 1 tab

  13. X-ray Absorption Spectroscopy in Mineralogy: A Review

    International Nuclear Information System (INIS)

    Mottana, Annibale

    2003-01-01

    The number of mineral species known to date rapidly approaches 4000, and yet they represent but a small fraction of all the known inorganic and organic compounds. Nevertheless, minerals represent an ideal field of activity for X-ray absorption spectroscopy (XAS), because the investigation of their crystal-chemical peculiarities takes an enormous advantage of the property of this method of being atom-selective, even in the presence of a wide range of competing atoms located in similar structural environments. As a matter of fact, XAS on minerals proved to be a useful probing method as early as for W. Kossel's pioneer studies of in the 1930's, just after the fine structures occurring at and near the absorption edge had been first detected. However, XAS did not really become consolidated in mineral studies until the 1980's, when synchrotron sources became available to users. A concise, but complete review of the historical and recent applications of XAS to minerals and to their analogues synthesized for geological/geophysical purposes i.e., to better understand the mechanisms by which the Earth evolves, is here given. Special reference will be made to transition metals (Ca, Ti, Cr, Mn, Fe, Ni) which absorb in the hard X-ray spectral region (> 4 KeV) and to the geologically-significant elements (O, Na, Mg, Al, Si, S and K) which absorb in the soft X-ray region (500-4000 eV)

  14. Valence-to-core-detected X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Hall, Eleanor R.; Pollock, Christopher J.; Bendix, Jesper

    2014-01-01

    X-ray absorption spectroscopy (XAS) can provide detailed insight into the electronic and geometric structures of transition-metal active sites in metalloproteins and chemical catalysts. However, standard XAS spectra inherently represent an average contribution from the entire coordination...... environment with limited ligand selectivity. To address this limitation, we have investigated the enhancement of XAS features using valence-to-core (VtC)-detected XAS, whereby XAS spectra are measured by monitoring fluorescence from valence-to-core X-ray emission (VtC XES) events. VtC emission corresponds...... to transitions from filled ligand orbitals to the metal 1s core hole, with distinct energetic shifts for ligands of differing ionization potentials. VtC-detected XAS data were obtained from multiple valence emission features for a series of well-characterized Mn model compounds; taken together, these data...

  15. Arsenic speciation in solids using X-ray absorption spectroscopy

    Science.gov (United States)

    Foster, Andrea L.; Kim, Chris S.

    2014-01-01

    Synchrotron-based X-ray absorption spectroscopy (XAS) is an in situ, minimally-destructive, element-specific, molecular-scale structural probe that has been employed to study the chemical forms (species) of arsenic (As) in solid and aqueous phases (including rocks, soils, sediment, synthetic compounds, and numerous types of biota including humans) for more than 20 years. Although several excellent reviews of As geochemistry and As speciation in the environment have been published previously (including recent contributions in this volume), the explosion of As-XAS studies over the past decade (especially studies employing microfocused X-ray beams) warrants this new review of the literature and of data analysis methods.

  16. X-ray optical analyses with X-Ray Absorption Package (XRAP)

    International Nuclear Information System (INIS)

    Wang, Zhibi; Kuzay, T.M.; Dejus, R.; Grace, T.

    1994-01-01

    This paper presents an X-Ray Absorption Package (XRAP) and the theoretical background for this program. XRAP is a computer code developed for analysis of optical elements in synchrotron radiation facilities. Two main issues are to be addressed: (1) generating BM (bending magnet) and ID (insertion device) spectrum and calculating their absorption in media, especially in such structural forms as variable thickness windows/filters and crystals; and (2) providing a finite difference engine for fast but sophisticated thermal and stress analyses for optical elements, such as windows and filters. Radiation cooling, temperature-dependent material properties (such as thermal conductivity and thermal expansion coefficient) etc. are taken into account in the analyses. For very complex geometry, an interface is provided directly to finite element codes such as ANSYS. Some of the present features built into XRAP include: (1) generation of BM and ID spectra; (2) photon absorption analysis of optical elements including filters, windows and mirrors, etc.; (3) heat transfer and thermal stress analyses of windows and filters and their buckling check; (4) user-friendly graphical-interface that is based on the state-of-the-art technology of GUI and X-window systems, which can be easily ported to other computer platforms; (5) postscript file output of either black/white or colored graphics for total/absorbed power, temperature, stress, spectra, etc

  17. A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Seidler, G. T., E-mail: seidler@uw.edu; Mortensen, D. R.; Remesnik, A. J.; Pacold, J. I.; Ball, N. A.; Barry, N.; Styczinski, M.; Hoidn, O. R. [Physics Department, University of Washington, Seattle, Washington 98195-1560 (United States)

    2014-11-15

    We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low power x-ray (bremsstrahlung) tube source, a spherically bent crystal analyzer, and an energy-resolving solid-state detector. This relatively inexpensive, introductory level instrument achieves 1-eV energy resolution for photon energies of ∼5 keV to ∼10 keV while also demonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy comparable to those achieved at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure, the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-power line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10{sup 6}–10{sup 7} photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based hard x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.

  18. Utilization of synchrotron radiation in analytical chemistry. Soft X-ray emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Muramatsu, Yasuji

    2015-01-01

    Synchrotron soft X-ray spectroscopy includes three major types of spectroscopy such as X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES), and X-ray photoelectron spectroscopy (XPS). This paper takes up XAS and XES of soft X-rays, and briefly describes the principle. XAS is roughly classified into XANES (X-ray absorption near-edge structure) and EXAFS (extended X-ray absorption fine structure), and XANES is mainly used in the analysis based on XAS of soft X-rays. As the examples of the latest soft X-ray analyses, the following are introduced: (1) bandgap of boron implantation diamond and the local structure of boron, (2) catalytic sites in solid fuel cell carbon electrode, and (3) soft X-ray analysis under atmospheric pressure. (A.O.)

  19. Experimental setup for x-ray absorption spectroscopy at the DESY

    International Nuclear Information System (INIS)

    Rabe, P.; Tolkiehn, G.; Werner, A.

    1979-10-01

    In this paper we describe an apparatus used at the Deutsches Elektronen-Synchrotron (DESY) for the measurement of x-ray absorption spectra, specially designed for the investigation of the extended x-ray absorption fine structure (EXAFS). Performance of the setup is discussed and compared with an apparatus using the bremsstrahlung of a conventional x-ray source. (orig.)

  20. The atomic structure of Fe100-xCux nanoalloys: X-ray absorption analysis

    International Nuclear Information System (INIS)

    Kravtsova, A.N.; Yalovega, G.E.; Soldatov, A.V.; Yan, W.S.; Wei, S.Q.

    2009-01-01

    The local atomic structure of Fe 100-x Cu x nanoalloys (x = 0, 10, 20, 40, 60, 70, 80 and 100%) has been investigated by X-ray absorption near edge structure (XANES) analysis. Local environment around copper and iron atoms in Fe 100-x Cu x has been studied by comparing the experimental XANES with corresponding theoretical spectra calculated for several structural models. It has been established that the most probable structure of the Fe 100-x Cu x nanoalloys for a low concentration of copper (x = 10-20%) is a homogenous bcc structure, for a high copper concentration (x = 60-80%)-a homogenous fcc structure, while at an intermediate copper concentration (about 40%) the nanoalloys have an inhomogeneous structure consisting of clusters of fcc solid solution (90%) and of clusters of bcc solid solution (10%)

  1. Soft X-ray Absorption Spectroscopy of Liquids and Solutions.

    Science.gov (United States)

    Smith, Jacob W; Saykally, Richard J

    2017-12-13

    X-ray absorption spectroscopy (XAS) is an electronic absorption technique for which the initial state is a deeply buried core level. The photon energies corresponding to such transitions are governed primarily by the binding energies of the initial state. Because the binding energies of core electrons vary significantly among atomic species, this makes XAS an element-selective spectroscopy. Proper interpretation of XA spectra can provide detailed information on the local chemical and geometric environment of the target atom. The introduction of liquid microjet and flow cell technologies into XAS experiments has enabled the general study of liquid samples. Liquids studied to date include water, alcohols, and solutions with relevance to biology and energy technology. This Review summarizes the experimental techniques employed in XAS studies of liquid samples and computational methods used for interpretation of the resulting spectra and summarizes salient experiments and results obtained in the XAS investigations of liquids.

  2. Distortion of absorption-line velocity curves due to x-ray heating in x-ray binaries

    International Nuclear Information System (INIS)

    Milgrom, M.

    1976-01-01

    The effects of X-ray heating on the measured absorption line velocities, in X-ray binaries with low X-rays to optical luminosities ratio are considered. These effects may be appreciable even for such binaries where the effect of X-ray heating on the light-curve is negligible. The effects are studied qualitatively and suggest possible ways to partially eliminate the systematic errors introduced by them. The individual systems Cyg x-1 and SMC x-1 are treated and the results of numerical calculations are presented for them. For Cyg x-1 it is found that the effect is detectable during the X-ray 'high' state in all regions of the spectrum. During the 'low' state it may be important in the red region of the spectrum. The results for the case in which soft X-ray fluxes (E < or approximately .4 keV, suggested by theoretical models) are present are also given. For SMC x-1 a strong effect for Hα, Hβ, Hγ had been found. This effect may be responsible for the observed variable velocity curve. We also find for SMC x-1 that the average X-ray intensity falling on the primary must be considerably smaller than what is derived from the detected flux, or else the effect is too large. (author)

  3. Auger electron and X-ray photoelectron spectroscopic study of the biocorrosion of copper by alginic acid polysaccharide

    Science.gov (United States)

    Jolley, John G.; Geesey, Gill G.; Hankins, Michael R.; Wright, Randy B.; Wichlacz, Paul L.

    1989-08-01

    Thin films (3.4 nm) of copper on germanium substrates were exposed to 2% alginic acid polysaccharide aqueous solution. Pre- and post-exposure characterization were done by Auger electron spectroscopy and X-ray photoelectron spectroscopy. Ancillary graphite furnace atomic absorption spectroscopy was used to monitor the removal process of the copper thin film from the germanium substrate. Results indicate that some of the copper was oxidized by the alginic acid solution. Some of the copper was removed from the Cu/Ge interface and incorporated into the polymer matrix. Thus, biocorrosion of copper was exhibited by the alginic acid polysaccharide.

  4. X-ray absorption in characterization of laser fusion targets

    International Nuclear Information System (INIS)

    Clement, X.; Coudeville, A.; Eyharts, P.; Perrine, J.P.; Rouillard, R.

    1982-11-01

    Many plastic or metal coated targets are opaque, so their thickness and thickness uniformity cannot be obtained by optical means. Therefore, we have built and tested a new system using monochromatic X-ray absorption measurements. This system is also able to perform non-destructive measurements of argon fill pressure in glass microballoons. The X-ray source is a diffraction tube with a chromium target and fine focus (0.4 x 0.8 mm 2 ). Since monochromatic calculations are involved in this method, we use electronic discrimination to isolate the chromium Kα line (5.4 keV) from the bremsstrahlung spectrum. The detectors are xenon-filled proportional counters. The system is composed of two beams (10 μm in diameter), one used as a reference and the other as the measurement arm. A PET desk computer is coupled ot the experiment. We achieved a precision better than 10% for gold layers in the range of 0.1 to 1 μm, and better than 20% for argon pressures in the range of 5 - 13 bars

  5. X-ray absorption and emission studies of diamond nanoparticles

    International Nuclear Information System (INIS)

    Van Buuren, T.; Willey, T.; Raty, J.Y.; Galli, G.; Terminello, L.J.; Bostedt, C.

    2004-01-01

    Full text: A new family of carbon nanopaticles produced in detonations, are found to have a core of diamond with a coating fullerene- like carbon. X-ray diffraction and TEM show that the nanodiamond powder is crystalline and approximately 4 nm in diameter. These nano-sized diamonds do not display the characteristic property of other group IV nanoparticles: a strong widening of the energy gap between the conduction and valence bands owing to quantum-confinement effects. For nano-sized diamond with a size distribution of 4 nm, there is no shift of the band energies relative to bulk diamond. Although the C1s core exciton feature clearly observed in the K-edge absorption edge of bulk diamond is shifted and broadening due to increased overlap of the excited electron with the core holein the small particle. Also the depth of the second gap in the nanodiamond spectra is shallower than that of bulk diamond. A feature at lower energy in the X-ray absorption spectra that is not present in the bulk samples is consistent with a fullerene like surface reconstruction. By exposing the diamond nanoparticles to an Argon /Oxygen plasma then annealing in a UHV environment we have obtained a hydrogen free surface. The nanodiamonds processed in this manner show an increase fullerene type contribution in the carbon x-ray absorption pre-edge. High spatial resolution EELS measurements of the empty states of a single nanodiamond particle acquired with a ld emission TEM also show the core of the particle is bulk diamond like where as the surface has a fullerene like structure. Standard density-functional calculations on clusters in which the diamond surface bonds are terminated with hydrogen atoms, show that the bandgap begins to increase above the bulk value only for clusters smaller than 1 nm. Surface hydrogen atoms are found to be about as close as they do in molecular hydrogen and can escape as H 2 , forcing the respective carbon atoms to rearrange. A series of such rearrangements can

  6. Anomalous x-ray attenuation coefficients around the absorption edges using Mn Ksub(α) and Cu Ksub(α) x-rays

    International Nuclear Information System (INIS)

    Kerur, B.R.; Thontadarya, S.R.; Hanumaiah, B.

    1994-01-01

    The x-ray attenuation coefficients for three elements and for eight compounds are determined, adopting the method developed by employing a proportional counter, with a view to study the effect of fine structure on the mass attenuation coefficient values using Mn K α and Cu K α x-rays derived from K x-ray emitters, 55 Fe and 65 Zn radioactive sources, by a differential absorption technique. It is experimentally established that a small difference in energy between K α1 and K α2 (11 eV in the case of Mn K α and 24 eV in the case of the Cu K α x-ray) is inconsequential by comparing the measured and theoretical values of μ/ρ for standard elements, aluminium, copper and tantalum. The effect of fine structure on μ/ρ values is studied using the compounds containing one element with its absorption edge close to the incident photon energy. Results obtained in the present investigation show the nonvalidity of the mixture rule above the edge and also below the edge, ranging from about 600 eV below the edge to about 1500 eV about the edge. The contribution of resonance Raman scattering to the attenuation coefficient and indications to the presence of pre-edge structure similar to EXAFS are discussed. (author)

  7. X-ray absorption anisotropy for polychromatic illumination-Crystal views from inside

    International Nuclear Information System (INIS)

    Korecki, P.; Tolkiehn, M.; Novikov, D.V.

    2009-01-01

    We review an atomic resolution imaging method based on the analysis of the fine structure in X-ray absorption anisotropy, which results from incident beam diffraction. For a polychromatic X-ray beam, due to the suppression of higher order diffraction fringes, X-ray absorption anisotropy patterns can be interpreted as distorted real-space projections of the atomic structure around absorbing atoms. A qualitative method for analysis of X-ray absorption anisotropy patterns is presented, based on modeling of X-ray patterns with ray-traced images calculated for clusters around absorbing atoms.

  8. X-ray Absorption Spectroscopy of the Rare Earth orthophosphates

    International Nuclear Information System (INIS)

    Shuh, D.K.; Terminello, L.J.; Boatner, L.A.; Abraham, M.M.

    1993-06-01

    X-ray Absorption Spectroscopy (XAS) of the Rare Earth (RE) 3d levels yields sharp peaks near the edges as a result of strong, quasi-atomic 3d 10 4f n → 3d- 9 4f n+1 transitions and these transitions exhibit a wealth of spectroscopic features. The XAS measurements of single crystal REPO 4 (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er) at the 3d edge were performed in the total yield mode at beam line 8-2 at the Stanford Synchrotron Radiation Laboratory (SSRL). The XAS spectra of the RE ions in the orthophosphate matrix generally resemble the XAS of the corresponding RE metal. This is not unexpected and emphasizes the major contribution of the trivalent state to the electronic transitions at the RE 3d edges. These spectra unequivocally identify the transitions originating from well-characterized RE cores and correlate well with previous theoretical investigations

  9. Exciplex formation of copper(II) octaethylporphyrin revealed by pulsed x-rays

    International Nuclear Information System (INIS)

    Chen, L.X.; Shaw, G.B.; Liu, T.; Jennings, G.; Attenkofer, K.

    2004-01-01

    The triplet excited structures of Cu(II) octaethylporphyrin (CuOEP) in toluene and in 1:1 mixture of toluene and tetrahydrofuran (THF) were investigated by time-domain laser pulse pump, X-ray pulse probe X-ray absorption spectroscopy (pump-probe XAS) at room temperature using X-rays from a third generation synchrotron source with 100-ps time resolution. The transient optical absorption measurements indicate a strong solvent dependency of the triplet excited state lifetime due to the presence of oxygen-containing solvent molecules. While the ground state CuOEP molecules remain square-planar in both solvents, the attenuation of a peak attributed to the 1s → 4p z transition at the Cu K-edge for the laser excited CuOEP in the THF/toluene mixture revealed the penta-coordinated exciplex formation which is responsible for the shortening of the triplet excited state lifetime. Meanwhile, the average Cu-N distance in the triplet excited state is lengthened by 0.03 (angstrom) due to ligation with a THF solvent molecule, which agrees with a domed coordination structure for copper in the penta-coordinated exciplex.

  10. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    International Nuclear Information System (INIS)

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ eff ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  11. Structural studies using X-ray absorption and scattering techniques

    International Nuclear Information System (INIS)

    Ericson, Agneta.

    1989-01-01

    The thesis presents extended X-ray absorption fine structure, EXAFS, and large angle X-ray scattering, LAXS, techniques; instrumentation, data collection and reduction, and applications. These techniques have been used to determine the structures of magnesium halides and organomagnesium halides in diethyl ether and tetrahydrofuran solution. The iodides were used for the LAXS measurements and Br K edge EXAFS data were collected for the corresponding bromides. Two different complexes are present in the diethyl ether solution of magnesium iodide; a polymeric chain-type structure where magnesium is tetrahedrally coordinated, as well as dimeric complex with octahedrally coordinated magnesium. Solvated MgI + is the dominating species in tetrahydrofuran solution. The organomagnesium halides are present in diethyl ether solution as both solvated monomeric and dimeric complexes. Magnesium coordinates a halide ion, an alkyl or aryl group and four solvent molecules octahedrally in the monomeric complex. In the dimeric complex magnesium is octahedrally coordinated by two bridging halide ions, an alkyl or aryl group and three solvent molecules. The distribution of monomeric and dimeric complexes in various solutions are given by a dimerisation constant, K dl . The results indicate that the Schlenk equilibrium is present in these solutions, however, in an extended form. In diethyl ether solution, where MgX 2 does not dissociate, no MgX 2 complex and thereby no Schlenk equilibrium has been observed. In tetrahydrofuran solution MgI 2 has dissociated into mainly MgI + and I - . This indicates that the concentration of MgI 2 is low and that the Schlenk equilibrium should be expanded even further to include the dissociation equilibrium of the magnesium halide. In the thesis Fe K edge EXAFS data collected for the semireduced form of protein A of methane monooxygenase from Methylococcus capsulatus, are also presented. (139 refs.)

  12. Structure and dynamics in liquid water from x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Wernet, Philippe

    2009-01-01

    Oxygen K-edge x-ray absorption spectra of water are discussed. The spectra of gas-phase water, liquid water and ice illustrate the sensitivity of oxygen K-edge x-ray absorption spectroscopy to hydrogen bonding in water. Transmission mode spectra of amorphous and crystalline ice are compared to x-ray Raman spectra of ice. The good agreement consolidates the experimental spectrum of crystalline ice and represents an incentive for theoretical calculations of the oxygen K-edge absorption spectrum of crystalline ice. Time-resolved infrared-pump and x-ray absorption probe results are finally discussed in the light of this structural interpretation.

  13. High energy X-ray phase and dark-field imaging using a random absorption mask.

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Cai, Biao; Sawhney, Kawal

    2016-07-28

    High energy X-ray imaging has unique advantage over conventional X-ray imaging, since it enables higher penetration into materials with significantly reduced radiation damage. However, the absorption contrast in high energy region is considerably low due to the reduced X-ray absorption cross section for most materials. Even though the X-ray phase and dark-field imaging techniques can provide substantially increased contrast and complementary information, fabricating dedicated optics for high energies still remain a challenge. To address this issue, we present an alternative X-ray imaging approach to produce transmission, phase and scattering signals at high X-ray energies by using a random absorption mask. Importantly, in addition to the synchrotron radiation source, this approach has been demonstrated for practical imaging application with a laboratory-based microfocus X-ray source. This new imaging method could be potentially useful for studying thick samples or heavy materials for advanced research in materials science.

  14. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    Science.gov (United States)

    Gorczyca, T. W.; Bautista, M. A.; Hasoglu, M. F.; Garcia, J.; Gatuzz, E.; Kaastra, J. S.; Kallman, T. R.; Manson, S. T.; Mendoza, C.; Raassen, A. J. J.; hide

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of atomic Oxygen for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects, that accurately predict the absorption oscillator strengths below threshold and merge consistently and continuously to the above-threshold cross section. Further, minor adjustments are made to the threshold energies in order to reliably align the atomic Rydberg resonances after consideration of both experimental and observed line positions. At energies far below or above the K-edge region, the formulation is based on both outer- and inner-shell direct photoionization, including significant shake-up and shake-off processes that result in photoionization-excitation and double-photoionization contributions to the total cross section. The ultimate purpose for developing a definitive model for oxygen absorption is to resolve standing discrepancies between the astronomically observed and laboratory-measured line positions, and between the inferred atomic and molecular oxygen abundances in the interstellar medium from XSTAR and SPEX spectral models.

  15. Directional fine structure in absorption of white x rays: A tomographic interpretation

    International Nuclear Information System (INIS)

    Korecki, P.; Szymonski, M.; Tolkiehn, M.; Novikov, D. V.; Materlik, G.

    2006-01-01

    We discuss directional fine structure in absorption of white x rays for tomographic imaging of crystal structure at the atomic level. The interference between a direct x-ray beam and the secondary waves coherently scattered inside a specimen modifies the total wave field at the position of the absorbing atoms. For a white x-ray beam, the wave field variations cancel out by energy integration for all directions, except for the near forward scattering components, coinciding with the incident beam. Therefore, two-dimensional patterns of the angular-dependent fine structure in absorption of white x rays can be interpreted as real-space projections of atomic structure. In this work, we present a theory describing the directional fine structure in white x-ray absorption and a tomographic approach for crystal structure retrieval developed on its basis. The tomographic algorithm is applied to the experimental x-ray absorption data recorded for GaP crystals

  16. X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Thomas; Kern, Jan; Kubin, Markus; Ratner, Daniel; Gul, Sheraz; Fuller, Franklin D.; Löchel, Heike; Krzywinski, Jacek; Lutman, Alberto; Ding, Yuantao; Dakovski, Georgi L.; Moeller, Stefan; Turner, Joshua J.; Alonso-Mori, Roberto; Nordlund, Dennis L.; Rehanek, Jens; Weniger, Christian; Firsov, Alexander; Brzhezinskaya, Maria; Chatterjee, Ruchira; Lassalle-Kaiser, Benedikt; Sierra, Raymond G.; Laksmono, Hartawan; Hill, Ethan; Borovik, Andrew; Erko, Alexei; Föhlisch, Alexander; Mitzner, Rolf; Yachandra, Vittal K.; Yano, Junko; Wernet, Philippe; Bergmann, Uwe

    2016-01-01

    © 2016 Optical Society of America. X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.

  17. Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301.

    Science.gov (United States)

    Mathur; Green; Arav; Brotherton; Crenshaw; deKool; Elvis; Goodrich; Hamann; Hines; Kashyap; Korista; Peterson; Shields; Shlosman; van Breugel W; Voit

    2000-04-20

    We present a deep ASCA observation of a broad absorption line quasar (BALQSO) PG 0946+301. The source was clearly detected in one of the gas imaging spectrometers, but not in any other detector. If BALQSOs have intrinsic X-ray spectra similar to normal radio-quiet quasars, our observations imply that there is Thomson thick X-ray absorption (NH greater, similar1024 cm-2) toward PG 0946+301. This is the largest column density estimated so far toward a BALQSO. The absorber must be at least partially ionized and may be responsible for attenuation in the optical and UV. If the Thomson optical depth toward BALQSOs is close to 1, as inferred here, then spectroscopy in hard X-rays with large telescopes like XMM would be feasible.

  18. Electronic structure of nanoscale Cu/Pt alloys: A combined X-ray diffraction and X-ray absorption investigations

    International Nuclear Information System (INIS)

    Chen Xing; Chu Wangsheng; Cai Quan; Xia Dingguo; Wu Zhonghua; Wu Ziyu

    2006-01-01

    PVP-protected Cu/Pt clusters were prepared by glycol/water reduction method and characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD) and absorption spectra. TEM and XRD analysis show that the Cu/Pt clusters with different molar ratio have fcc structure with particle size of about 4 nm, while the lattice parameters in these clusters reduce with increasing Cu concentration. From the X-ray absorption near edge structure (XANES) at Cu-K edge and Pt-L 2,3 edge, we demonstrate that the d-electronic states of Cu and Pt are affected by the local environment as a function of Cu/Pt molar ratio. With increasing Cu concentration, Pt loses a fraction of 5d electrons and the hybridization between p- and d-states at Cu sites is enhanced

  19. Electronic structure of nanoscale Cu/Pt alloys: A combined X-ray diffraction and X-ray absorption investigations

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xing [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Chu Wangsheng [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); University of Science and Technology of China, Hefei, 230036 (China); Cai Quan [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Graduate School of the Chinese Academy of Sciences, 100864 Beijing (China); Xia Dingguo [College of Environmental and Energy Engineering, Beijing University of Technology, 100022 Beijing (China); Wu Zhonghua [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China); Wu Ziyu [Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, CAS, Beijing (China) and National Center for Nanoscience and Technology (China)]. E-mail: wuzy@ihep.ac.cn

    2006-11-15

    PVP-protected Cu/Pt clusters were prepared by glycol/water reduction method and characterized with transmission electron microscopy (TEM), X-ray diffraction (XRD) and absorption spectra. TEM and XRD analysis show that the Cu/Pt clusters with different molar ratio have fcc structure with particle size of about 4 nm, while the lattice parameters in these clusters reduce with increasing Cu concentration. From the X-ray absorption near edge structure (XANES) at Cu-K edge and Pt-L{sub 2,3} edge, we demonstrate that the d-electronic states of Cu and Pt are affected by the local environment as a function of Cu/Pt molar ratio. With increasing Cu concentration, Pt loses a fraction of 5d electrons and the hybridization between p- and d-states at Cu sites is enhanced.

  20. Measurement of X-ray attenuation coefficients around K-absorption edges using Fe Kα X-rays

    International Nuclear Information System (INIS)

    Kerur, B.R.; Thontadarya, S.R.; Hanumaiah, B.

    1993-01-01

    The x-ray mass attenuation coefficients were measured around the K-absorption edges of elements in the range 16 ≤ Z ≤ 30 using Fe Kα x-rays of energy 6.400 keV, which is the weighted average energy of Kα 1 and Kα 2 x-ray components from the 57 Co radioactive source. Kβ x-rays were almost eliminated by the differential absorption technique. The small difference in energy between Kα 1 and Kα 2 , 13 eV, was shown to be inconsequential by comparing the measured and theoretical values of μ/ρ for standard materials such as Al, Cu, Mo and Ta. The effect of fine structure of the K-absorption edge on μ/ρ was elucidated by using the compounds of elements in the range 16 ≤ X ≤ 30, containing one element with its K-absorption edge energy (E k ) close to the incident photon energy (E x ). The results clearly indicate the validity of the theoretical mixture rule for all those compounds whose K edge is far away from the incident energy but show deviations of as much as 10% for the manganese compound whose K edge is 140 eV above E x and about 12% for the chromium compound whose K edge is 410 eV below E x . These deviations are attributed to the possible influence of resonance Raman scattering when the incident photon energy E x is less than the edge and to the influence of EXAFS when E x is more than the edge energy. (Author)

  1. Thin film soft X-ray absorption filters

    International Nuclear Information System (INIS)

    Stattin, H.

    1992-11-01

    This report discusses the composition, reparation and performance of soft x-ray transmission filters for a water window soft x-ray microscope. Unbacked thin films of aluminum, silver and vanadium/aluminum were made by evaporation on a substrate from which they were released. Measured transmittances agree reasonably well with calculations. The report also includes some related theory and discussions about film preparation methods, film contamination and evaluation methods. 33 refs

  2. Absorption of X-rays in the interstellar medium

    International Nuclear Information System (INIS)

    Ride, S.K.; Stanford Univ., Calif.; Walker, A.B.C. Jr.; Stanford Univ., Calif.

    1977-01-01

    In order to interpret soft X-ray spectra of cosmic X-ray sources, it is necessary to know the photoabsorption cross-section of the intervening interstellar material. Current models suggest that the interstellar medium contains two phases which make a substantial contribution to the X-ray opacity: cool, relatively dense clouds that exist in pressure equilibrium with hot, tenuous intercloud regions. We have computed the soft X-ray photoabsorption cross-section (per hydrogen atom) of each of these two phases. The calculation are based on a model of the interstellar medium which includes chemical evolution of the galaxy, the formation of molecules and grains, and the ionization structure of each of each phase. These cross-sections of clouds and of intercloud regions can be combined to yield the total soft X-ray photoabsorption cross-section of the interstellar medium. By choosing the appropriate linear combination of cloud and intercloud cross-sections, we can tailor the total cross-section to a particular line-of-sight. This approach, coupled with our interstellar model, enables us to better describe a wide range of interstellar features such as H II regions, dense (molecular) clouds, or the ionized clouds which may surround binary X-ray sources. (orig.) [de

  3. SU-F-I-76: Fluoroscopic X-Ray Beam Profiles for Spectra Incorporating Copper Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Wunderle, K [Cleveland Clinic Foundation, Cleveland, OH (United States); Wayne State University School of Medicine, Detroit, MI (United States); Godley, A; Shen, Z; Dong, F [Cleveland Clinic Foundation, Cleveland, OH (United States); Rakowski, J [Wayne State University School of Medicine, Detroit, MI (United States)

    2016-06-15

    Purpose: The purpose of this investigation is to characterize and quantify X-ray beam profiles for fluoroscopic x-ray beam spectra incorporating spectral (copper) filtration. Methods: A PTW (Freiburg, Germany) type 60016 silicon diode detector and PTW MP3 water tank were used to measure X-ray beam profiles for 60, 80, 100 and 120 kVp x-ray beams at five different copper filtration thicknesses ranging from 0–0.9 mm at 22 and 42 cm fields of view and depths of 1, 5, and 10 cm in both the anode-cathode axis (inplane) and cross-plane directions. All measurements were acquired on a Siemens (Erlangen, Germany) Artis ZeeGo fluoroscope inverted from the typical orientation providing an x-ray beam originating from above the water surface with the water level set at 60 cm from the focal spot. Results: X-ray beam profiles for beam spectra without copper filtration compared well to previously published data by Fetterly et al. [Med Phys, 28, 205 (2001)]. Our data collection benefited from the geometric orientation of the fluoroscope, providing a beam perpendicular to the tank water surface, rather than through a thin side wall as did the previously mentioned study. Profiles for beams with copper filtration were obtained which have not been previously investigated and published. Beam profiles in the anode-cathode axis near the surface and at lower x-ray energy exhibited substantial heel effect, which became less pronounced at greater depth. At higher energy with copper filtration in the beam, the dose falloff out-of-field became less pronounced, as would be anticipated given higher scatter photon energy. Conclusion: The x-ray beam profile data for the fluoroscopic x-ray beams incorporating copper filtration are intended for use as reference data for estimating doses to organs or soft tissue, including fetal dose, involving similar beam qualities or for comparison with mathematical models.

  4. Microanalysis of iron oxidation state in iron oxides using X Ray Absorption Near Edge Structure (XANES)

    Science.gov (United States)

    Sutton, S. R.; Delaney, J.; Bajt, S.; Rivers, M. L.; Smith, J. V.

    1993-01-01

    An exploratory application of x ray absorption near edge structure (XANES) analysis using the synchrotron x ray microprobe was undertaken to obtain Fe XANES spectra on individual sub-millimeter grains in conventional polished sections. The experiments concentrated on determinations of Fe valence in a suite of iron oxide minerals for which independent estimates of the iron speciation could be made by electron microprobe analysis and x ray diffraction.

  5. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vitova, Tonya

    2008-02-15

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu{sup 1+} and Cu{sup 2+}) and Fe (Fe{sup 2+} and Fe{sup 3+}) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn{sup 2+} and Mn{sup 3+} in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu{sup 1+}) and sixfold (Cu{sup 2+}) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with {sup 3}He{sup 2+} ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  6. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    International Nuclear Information System (INIS)

    Vitova, Tonya

    2008-02-01

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu 1+ and Cu 2+ ) and Fe (Fe 2+ and Fe 3+ ) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn 2+ and Mn 3+ in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu 1+ ) and sixfold (Cu 2+ ) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with 3 He 2+ ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  7. Determination of X-ray photoelectric absorption of Ge and Si avoiding solid-state effects

    International Nuclear Information System (INIS)

    Baltazar-Rodrigues, J.; Cusatis, C.

    2001-01-01

    X-ray linear attenuation coefficients of germanium and silicon were measured with precision between 0.1% and 0.3% for six characteristic wavelengths: copper, molybdenum and silver K lines. The linear photoelectric absorption coefficients were determined from the values of the measured attenuation coefficients by subtracting the calculated Compton and thermal diffuse scattering involved. It is shown that in order to compare calculated values of X-ray absorption coefficients based on the isolated atom assumption with experimental results obtained from solid samples it is necessary to take into consideration the solid-state effects. Before the measurements the sample's angular positions were scanned to search for Bragg scattering and the measurements of the transmitted intensities were done far from these angular positions. The measurements were performed in three samples of each element with different thickness and in different angular positions for each sample in order to check the consistency of the measured attenuation coefficients. Several instrumental and experimental details were considered in order to achieve the final asserted precision

  8. UV-Visible Absorption Spectroscopy Enhanced X-ray Crystallography at Synchrotron and X-ray Free Electron Laser Sources.

    Science.gov (United States)

    Cohen, Aina E; Doukov, Tzanko; Soltis, Michael S

    2016-01-01

    This review describes the use of single crystal UV-Visible Absorption micro-Spectrophotometry (UV-Vis AS) to enhance the design and execution of X-ray crystallography experiments for structural investigations of reaction intermediates of redox active and photosensitive proteins. Considerations for UV-Vis AS measurements at the synchrotron and associated instrumentation are described. UV-Vis AS is useful to verify the intermediate state of an enzyme and to monitor the progression of reactions within crystals. Radiation induced redox changes within protein crystals may be monitored to devise effective diffraction data collection strategies. An overview of the specific effects of radiation damage on macromolecular crystals is presented along with data collection strategies that minimize these effects by combining data from multiple crystals used at the synchrotron and with the X-ray free electron laser.

  9. Theory of inelastic scattering and absorption of X-rays

    CERN Document Server

    Veenendaal, Michel van

    2015-01-01

    This comprehensive, self-contained guide to X-ray spectroscopy will equip you with everything you need to begin extracting the maximum amount of information available from X-ray spectra. Key topics such as the interaction between X-rays and matter, the basic theory of spectroscopy, and selection and sum rules, are introduced from the ground up, providing a solid theoretical grounding. The book also introduces core underlying concepts such as atomic structure, solid-state effects, the fundamentals of tensor algebra and group theory, many-body interactions, scattering theory, and response functions, placing spectroscopy within a broader conceptual framework, and encouraging a deep understanding of this essential theoretical background. Suitable for graduate students, researchers, materials scientists and optical engineers, this is the definitive guide to the theory behind this powerful and widely used technique.

  10. X-Ray diffraction Investigation of Electrochemically Deposited Copper

    DEFF Research Database (Denmark)

    Pantleon, Karen; Jensen, Jens Dahl; Somers, Marcel A.J.

    2004-01-01

    by the determination of X-ray diffraction (XRD) pole figures and the calculation of the orientation distribution functions. XRD results are discussed in relation to the morphologies of the electrodeposits as investigated with light optical microscopy and correlated with the process parameters during electrodeposition....

  11. A Comprehensive X-Ray Absorption Model for Atomic Oxygen

    NARCIS (Netherlands)

    Gorzyca, T.W.; Bautista, M.A.; Hasoglu, M.F.; García, J.; Gatuzz, E.; Kaastra, J.S.; Kallman, T.R.; Manson, S.T.; Mendoza, C.; Raassen, A.J.J.; de Vries, C.P.; Zatsarinny, O.

    2013-01-01

    An analytical formula is developed to accurately represent the photoabsorption cross section of O I for all energies of interest in X-ray spectral modeling. In the vicinity of the K edge, a Rydberg series expression is used to fit R-matrix results, including important orbital relaxation effects,

  12. Ultrafast X-ray absorption study of longitudinal-transverse phonon coupling in electrolyte aqueous solution

    DEFF Research Database (Denmark)

    Jiao, Yishuo; Adams, Bernhard W.; Dohn, Asmus Ougaard

    2017-01-01

    Ultrafast X-ray absorption spectroscopy is applied to study the conversion of longitudinal to transverse phonons in aqueous solution. Permanganate solutes serve as X-ray probe molecules that permit the measurement of the conversion of 13.5 GHz, longitudinal phonons to 27 GHz, transverse phonons...

  13. A structural study of ceramic oxides by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    1995-01-01

    A detailed structural study of ceramic oxides is presented by employing X-ray Absorption Spectroscopy (XAS). In the present work X-ray Absorption Near Edge Structure (XANES) is used for the investigation of valence state of metal cations; whereas, Extended X-ray Absorption Fine Structure EXAFS) is employed for the determination for bond lengths, coordination numbers and nature of the elements present in the near neighbour shells surrounding the absorbing atom. These results show that local environment of dopant and host cations are different; and this variation in local structure depends on the nature and concentration of the dopant ions. (author)

  14. Weak Hard X-Ray Emission from Broad Absorption Line Quasars: Evidence for Intrinsic X-Ray Weakness

    DEFF Research Database (Denmark)

    Luo, B.; Brandt, W. N.; Alexander, D. M.

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z 330 times weaker than...... expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL...... quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three...

  15. Parameter study of self-absorption effects in Total Reflection X-ray Fluorescence-X-ray Absorption Near Edge Structure analysis of arsenic

    International Nuclear Information System (INIS)

    Meirer, F.; Pepponi, G.; Streli, C.; Wobrauschek, P.; Kregsamer, P.; Zoeger, N.; Falkenberg, G.

    2008-01-01

    Total reflection X-ray Fluorescence (TXRF) analysis in combination with X-ray Absorption Near Edge Structure (XANES) analysis is a powerful method to perform chemical speciation studies at trace element levels. However, when measuring samples with higher concentrations and in particular standards, damping of the oscillations is observed. In this study the influence of self-absorption effects on TXRF-XANES measurements was investigated by comparing measurements with theoretical calculations. As(V) standard solutions were prepared at various concentrations and dried on flat substrates. The measurements showed a correlation between the damping of the oscillations and the As mass deposited. A Monte-Carlo simulation was developed using data of the samples shapes obtained from confocal white light microscopy. The results showed good agreement with the measurements; they confirmed that the key parameters are the density of the investigated atom in the dried residues and the shape of the residue, parameters that combined define the total mass crossed by a certain portion of the incident beam. The study presents a simple approach for an a priori evaluation of the self-absorption in TXRF X-ray absorption studies. The consequences for Extended X-ray Absorption Fine Structure (EXAFS) and XANES measurements under grazing incidence conditions are discussed, leading to the conclusion that the damping of the oscillations seems to make EXAFS of concentrated samples non feasible. For XANES 'fingerprint' analysis samples should be prepared with a deposited mass and sample shape leading to an acceptable absorption for the actual investigation

  16. X-ray absorption and X-ray emission spectroscopy theory and applications

    CERN Document Server

    Lamberti, Carlo

    2016-01-01

    During the last two decades, remarkable and often spectacular progress has been made in the methodological and instrumental aspects of x–ray absorption and emission spectroscopy. This progress includes considerable technological improvements in the design and production of detectors especially with the development and expansion of large-scale synchrotron reactors All this has resulted in improved analytical performance and new applications, as well as in the perspective of a dramatic enhancement in the potential of x–ray based analysis techniques for the near future. This comprehensive two-volume treatise features articles that explain the phenomena and describe examples of X–ray absorption and emission applications in several fields, including chemistry, biochemistry, catalysis, amorphous and liquid systems, synchrotron radiation, and surface phenomena. Contributors explain the underlying theory, how to set up X–ray absorption experiments, and how to analyze the details of the resulting spectra. X-R...

  17. Discovery of an X-ray Violently Variable Broad Absorption Line Quasar

    Science.gov (United States)

    Ghosh, Kajal K.; Gutierrez, Carlos M.; Punsly, Brian; Chevallier, Loic; Goncalves, Anabela C.

    2006-01-01

    In this letter, we report on a quasar that is violently variable in the X-rays, XVV. It is also a broad absorption line quasar (BALQSO) that exhibits both high ionization and low ionization UV absorption lines (LoBALQSO). It is very luminous in the X-rays (approximately 10(exp 46) ergs s(sup -l) over the entire X-ray band). Surprisingly, this does not over ionize the LoBAL outflow. The X-rays vary by a factor of two within minutes in the quasar rest frame, which is shorter than 1/30 of the light travel time across a scale length equal to the black hole radius. We concluded that the X-rays are produced in a relativistic jet beamed toward earth in which variations in the Doppler enhancement produce the XVV behavior.

  18. Target characterization by PIXE, alpha spectrometry and X-ray absorption

    International Nuclear Information System (INIS)

    Kheswa, N.Y.; Papka, P.; Pineda-Vargas, C.A.; Newman, R.T.

    2011-01-01

    We report on the thickness and homogeneity characterization of thin metallic targets of Zr-96 by means of alpha absorption spectrometry, Particle Induced X-ray Emission (PIXE) and X-ray absorption. The target thicknesses determined by means of the above mentioned methods are critically compared. The thicknesses were determined before and after irradiation with a 70 MeV beam of 14 N ions.

  19. Weak Hard X-Ray Emission from Two Broad Absorption Line Quasars Observed with NuStar: Compton-Thick Absorption or Intrinsic X-Ray Weakness?

    Science.gov (United States)

    Luo, B.; Brandt, W. N.; Alexander, D. M.; Harrison, F. A.; Stern, D.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W..; hide

    2013-01-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain approx. or equal to 400-600 hard X-ray (is greater than or equal to 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed N(sub H) is less than or equal to 10(exp24) cm(exp-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N(sub H) 7 × 10(exp 24) cm(exp-2) if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe Ka line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  20. WEAK HARD X-RAY EMISSION FROM TWO BROAD ABSORPTION LINE QUASARS OBSERVED WITH NuSTAR: COMPTON-THICK ABSORPTION OR INTRINSIC X-RAY WEAKNESS?

    Energy Technology Data Exchange (ETDEWEB)

    Luo, B.; Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802 (United States); Alexander, D. M.; Hickox, R. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Harrison, F. A.; Fuerst, F.; Grefenstette, B. W.; Madsen, K. K. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, D. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Bauer, F. E. [Departamento de Astronomia y Astrofisica, Pontificia Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Comastri, A. [INAF-Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Fabian, A. C. [Institute of Astronomy, Madingley Road, Cambridge CB3 0HA (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fiore, F. [Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monteporzio Catone (Italy); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Matt, G. [Dipartimento di Matematica e Fisica, Universita degli Studi Roma Tre, via della Vasca Navale 84, I-00146 Roma (Italy); Ogle, P. [IPAC, California Institute of Technology, Mail Code 220-6, Pasadena, CA 91125 (United States); and others

    2013-08-01

    We present Nuclear Spectroscopic Telescope Array (NuSTAR) hard X-ray observations of two X-ray weak broad absorption line (BAL) quasars, PG 1004+130 (radio loud) and PG 1700+518 (radio quiet). Many BAL quasars appear X-ray weak, probably due to absorption by the shielding gas between the nucleus and the accretion-disk wind. The two targets are among the optically brightest BAL quasars, yet they are known to be significantly X-ray weak at rest-frame 2-10 keV (16-120 times fainter than typical quasars). We would expect to obtain Almost-Equal-To 400-600 hard X-ray ({approx}> 10 keV) photons with NuSTAR, provided that these photons are not significantly absorbed (N{sub H} {approx}< 10{sup 24} cm{sup -2}). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain the column densities for both to be N{sub H} Almost-Equal-To 7 Multiplication-Sign 10{sup 24} cm{sup -2} if the weak hard X-ray emission is caused by obscuration from the shielding gas. We discuss a few possibilities for how PG 1004+130 could have Compton-thick shielding gas without strong Fe K{alpha} line emission; dilution from jet-linked X-ray emission is one likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place statistical constraints upon the fraction of intrinsically X-ray weak BAL quasars; this fraction is likely 17%-40%.

  1. Phase-dependent absorption features in X-ray spectra of X-ray Dim Isolated Neutron Stars

    Science.gov (United States)

    Borghese, A.; Rea, N.; Coti Zelati, F.; Turolla, R.; Tiengo, A.; Zane, S.

    2017-12-01

    A detailed phase-resolved spectroscopy of archival XMM-Newton observations of X-ray Dim Isolated Neutron Stars (XDINSs) led to the discovery of narrow and strongly phase-dependent absorption features in two of these sources. The first was discovered in the X-ray spectrum of RX J0720.4-3125, followed by a new possible candidate in RX J1308.6+2127. Both spectral lines have similar properties: they are detected for only ˜ 20% of the rotational cycle and appear to be stable over the timespan covered by the observations. We performed Monte Carlo simulations to test the significance of these phase-variable features and in both cases the outcome has confirmed the detection with a confidence level > 4.6σ. Because of the narrow width and the strong dependence on the pulsar rotational phase, the most likely interpretation for these spectral features is in terms of resonant proton cyclotron absorption scattering in a confined high-B structure close to the stellar surface. Within the framework of this interpretation, our results provide evidence for deviations from a pure dipole magnetic field on small scales for highly magnetized neutron stars and support the proposed scenario of XDINSs being aged magnetars, with a strong non-dipolar crustal B-field component.

  2. Kaon mass by critical absorption of kaonic atom x rays

    International Nuclear Information System (INIS)

    Lum, G.K.

    1979-10-01

    The energy of the kaonic 6h → 5g transition has been determined using the calculated μ/rho curve. Because the detectors used could not resolve the noncircular transitions, the predictions from a calculated cascade program were used. According to the cascade results for potassium, the number of noncircular x-rays was about 10% of all the transitions between n = 6 to n = 5. Based on the available information, the mass of the kaon was measured to be 493.576/sub -0.069//sup +0.044/ MeV

  3. X-Ray Absorption Spectroscopy of Uranium Dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J G

    2010-12-10

    After the CMMD Seminar by Sung Woo Yu on the subject of the x-ray spectroscopy of UO2, there arose some questions concerning the XAS of UO2. These questions can be distilled down to these three issues: (1) The validity of the data; (2) The monchromator energy calibration; and (3) The validity of XAS component of the figure shown. The following will be shown: (1) The data is valid; (2) It is possible to calibrate the monchromator; and (3) The XAS component of the above picture is correct. The remainder of this document is in three sections, corresponding to these three issues.

  4. Structure of bimetallic clusters. Extended x-ray absorption fine structure (EXAFS) studies of Rh--Cu clusters

    International Nuclear Information System (INIS)

    Meitzner, G.; Via, G.H.; Lytle, F.W.; Sinfelt, J.H.

    1983-01-01

    An investigation of the structure of the bimetallic clusters present in rhodium--copper catalysts was conducted with the use of extended x-ray absorption fine structure (EXAFS) measurements. Two catalysts were studied, both employing silica as a support for the clusters and both containing 1 wt. % rhodium. In one catalyst the Cu:Rh atomic ratio was 1:2 and in the other 1:1. Studies were made of the EXAFS associated with the K absorption edges of the rhodium and copper. The results of the EXAFS studies indicate that copper concentrates at the surface of the rhodium--copper clusters. In this regard the results are similar to our earlier reported results on ruthenium--copper clusters. However, the extent of surface segregation of the copper appears to be less pronounced for rhodium--copper clusters. This result is reasonable on the basis that rhodium and copper, unlike ruthenium and copper, exhibit at least some miscibility in the bulk

  5. ON NEUTRAL ABSORPTION AND SPECTRAL EVOLUTION IN X-RAY BINARIES

    International Nuclear Information System (INIS)

    Miller, J. M.; Cackett, E. M.; Reis, R. C.

    2009-01-01

    Current X-ray observatories make it possible to follow the evolution of transient and variable X-ray binaries across a broad range in luminosity and source behavior. In such studies, it can be unclear whether evolution in the low-energy portion of the spectrum should be attributed to evolution in the source, or instead to evolution in neutral photoelectric absorption. Dispersive spectrometers make it possible to address this problem. We have analyzed a small but diverse set of X-ray binaries observed with the Chandra High Energy Transmission Grating Spectrometer across a range in luminosity and different spectral states. The column density in individual photoelectric absorption edges remains constant with luminosity, both within and across source spectral states. This finding suggests that absorption in the interstellar medium strongly dominates the neutral column density observed in spectra of X-ray binaries. Consequently, evolution in the low-energy spectrum of X-ray binaries should properly be attributed to evolution in the source spectrum. We discuss our results in the context of X-ray binary spectroscopy with current and future X-ray missions.

  6. Use of x-ray scattering in absorption corrections for x-ray fluorescence analysis of aerosol loaded filters

    International Nuclear Information System (INIS)

    Nielson, K.K.; Garcia, S.R.

    1976-09-01

    Two methods are described for computing multielement x-ray absorption corrections for aerosol samples collected in IPC-1478 and Whatman 41 filters. The first relies on scatter peak intensities and scattering cross sections to estimate the mass of light elements (Z less than 14) in the sample. This mass is used with the measured heavy element (Z greater than or equal to 14) masses to iteratively compute sample absorption corrections. The second method utilizes a linear function of ln(μ) vs ln(E) determined from the scatter peak ratios and estimates sample mass from the scatter peak intensities. Both methods assume a homogeneous depth distribution of aerosol in a fraction of the front of the filters, and the assumption is evaluated with respect to an exponential aerosol depth distribution. Penetration depths for various real, synthethic and liquid aerosols were measured. Aerosol penetration appeared constant over a 1.1 mg/cm 2 range of sample loading for IPC filters, while absorption corrections for Si and S varied by a factor of two over the same loading range. Corrections computed by the two methods were compared with measured absorption corrections and with atomic absorption analyses of the same samples

  7. X-ray photoemission spectroscopy (XPS) and extended x-ray absorption fine structure (EXAFS) studies of silicate based glasses

    International Nuclear Information System (INIS)

    Karim, D.; Lam, D.J.

    1979-01-01

    The application of the x-ray photoemission spectroscopy (XPS) technique to study the electronic structure and bonding of heavy metal oxides in alkali- and alkali-earth-silicate glasses had been demonstrated. The bonding characteristics of the iron oxide and uranium oxide in sodium silicate glasses were deduced from the changes in the oxygen 1s levels and the heavy metal core levels. It is reasonable to expect that the effect of leaching on the heavy metal ions can be monitored using the appropriate core levels of these ions. To study the effect of leaching on the glass forming network, the valence band structure of the bridging and nonbridging oxygens in sodium silicate glasses were investigated. The measurement of extended x-ray absorption fine-structure (EXAFS) is a relatively new analytical technique for obtaining short range (<5 A) structural information around atoms of a selected species in both solid and fluid systems. Experiments have recently begun to establish the feasibility of using EXAFS to study the bonding of actinides in silicate glasses. Because of the ability of EXAFS to yield specific structural data even in complex multicomponent systems, it could prove to be an invaluable tool in understanding glass structure

  8. Micro-beam X-ray fluorescence and absorption imaging techniques at the IAEA Laboratories

    International Nuclear Information System (INIS)

    Wegrzynek, Dariusz; Markowicz, A.; Bamford, S.; Chinea-Cano, E.; Bogovac, M.

    2005-01-01

    X-ray tube based, micro-beam X-ray fluorescence scanning spectrometer has been equipped with two energy dispersive X-ray detectors. The two-detector configuration allows for simultaneous collection of X-ray fluorescence (XRF) and transmitted X-ray beam signals with a spatial resolution in the range of 10-50 μm, depending on the X-ray focussing element in use. The XRF signal is collected with a standard, liquid nitrogen cooled Si(Li) detector. The X-ray beam transmitted through the sample is acquired with a thermoelectrically cooled, silicon drift (SD) detector. The data acquisition is carried out in a fully automatic way under control of the SPECTOR-LOCATOR software. The software controls the scanning procedure and X-ray spectra acquisition during the scan. The energy dispersive X-ray spectra collected at every 'pixel' are stored for off-line processing. For selected regions of interest (ROI's), the element maps are constructed and displayed on-line. The spectrometer has been used for mapping elemental distributions and for performing 2D- and 3D-tomograpic imaging of minute objects in X-ray absorption and in X-ray fluorescence mode. A unique feature of the described system is simultaneous utilization of the two detectors, Si(Li) and SD, which adds new options for quantitative analysis and data interpretation. Examples of elemental mapping and 3D tomographic imaging as well as the advanced features of the SPECTOR-LOCATOR measurement control and data acquisition software are presented in this work

  9. Analysis of the direct x-ray absorption noise in phosphor-coupled CMOS detectors

    International Nuclear Information System (INIS)

    Han, Jong Chul; Yun, Seung Man; Kim, Ho Kyung; Cunningham, Ian; Achterkirchen, Thorsten

    2009-01-01

    It is known that the indirect conversion detectors have an NPS (noise power spectrum), which decreases with the spatial frequency, and the direct conversion detector have a nearly constant NPS with the spatial frequency (or white NPS). This explains that when a significant amount of x rays are not absorbed in the phosphor layer, then the additional absorption of x-rays in the semiconductor layers (or the photodiodes) with their white noise contributions degrades the total NPS performance. From the fact, we investigated how the direct x-ray affects CMOS detectors in terms of NPS and DQE (detective quantum efficiency)

  10. Measurement of mass attenuation coefficients around the K absorption edge by parametric X-rays

    International Nuclear Information System (INIS)

    Tamura, Masaya; Akimoto, Tadashi; Aoki, Yohei; Ikeda, Jiro; Sato, Koichi; Fujita, Fumiyuki; Homma, Akira; Sawamura, Teruko; Narita, Masakuni

    2002-01-01

    When electrons at relativistic velocities pass through a crystal plate, such as silicon, photons are emitted around the Bragg angle for X-ray diffraction. This phenomenon is called parametric X-ray radiation (PXR). The monochromaticity and directivity of PXR are adequate and the energy can be changed continuously by rotating the crystal. This study measured the mass attenuation coefficient around the K-shell absorption edge of Nb, Zr and Mo as a PXR application of monochromatic hard X-ray radiation sources

  11. Measurement of mass attenuation coefficients around the K absorption edge by parametric X-rays

    CERN Document Server

    Tamura, M; Aoki, Y; Ikeda, J; Sato, K; Fujita, F; Homma, A; Sawamura, T; Narita, M

    2002-01-01

    When electrons at relativistic velocities pass through a crystal plate, such as silicon, photons are emitted around the Bragg angle for X-ray diffraction. This phenomenon is called parametric X-ray radiation (PXR). The monochromaticity and directivity of PXR are adequate and the energy can be changed continuously by rotating the crystal. This study measured the mass attenuation coefficient around the K-shell absorption edge of Nb, Zr and Mo as a PXR application of monochromatic hard X-ray radiation sources.

  12. Femtosecond X-ray magnetic circular dichroism absorption spectroscopy at an X-ray free electron laser

    Energy Technology Data Exchange (ETDEWEB)

    Higley, Daniel J., E-mail: dhigley@stanford.edu; Yuan, Edwin [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Hirsch, Konstantin; Dakovski, Georgi L.; Jal, Emmanuelle; Lutman, Alberto A.; Coslovich, Giacomo; Hart, Philip; Hoffmann, Matthias C.; Mitra, Ankush; Moeller, Stefan; Ohldag, Hendrik; Seaberg, Matthew; Stöhr, Joachim; Nuhn, Heinz-Dieter; Reid, Alex H.; Dürr, Hermann A.; Schlotter, William F. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Liu, Tianmin; MacArthur, James P. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Department of Physics, Stanford University, Stanford, California 94305 (United States); and others

    2016-03-15

    X-ray magnetic circular dichroism spectroscopy using an X-ray free electron laser is demonstrated with spectra over the Fe L{sub 3,2}-edges. The high brightness of the X-ray free electron laser combined with high accuracy detection of incident and transmitted X-rays enables ultrafast X-ray magnetic circular dichroism studies of unprecedented sensitivity. This new capability is applied to a study of all-optical magnetic switching dynamics of Fe and Gd magnetic sublattices in a GdFeCo thin film above its magnetization compensation temperature.

  13. The 16th International Conference on X-ray Absorption Fine Structure (XAFS16)

    Science.gov (United States)

    Grunwaldt, J.-D.; Hagelstein, M.; Rothe, J.

    2016-05-01

    This preface of the proceedings volume of the 16th International Conference on X- ray Absorption Fine Structure (XAFS16) gives a glance on the five days of cutting-edge X-ray science which were held in Karlsruhe, Germany, August 23 - 28, 2015. In addition, several satellite meetings took place in Hamburg, Berlin and Stuttgart, a Sino-German workshop, three data analysis tutorials as well as special symposia on industrial catalysis and XFELs were held at the conference venue.

  14. Note: Application of a pixel-array area detector to simultaneous single crystal x-ray diffraction and x-ray absorption spectroscopy measurements

    International Nuclear Information System (INIS)

    Sun, Cheng-Jun; Brewe, Dale L.; Heald, Steve M.; Zhang, Bangmin; Chen, Jing-Sheng; Chow, G. M.; Venkatesan, T.

    2014-01-01

    X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr 0.67 Sr 0.33 MnO 3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam

  15. The method of quantitative X-ray microanalysis of fine inclusions in copper

    International Nuclear Information System (INIS)

    Morawiec, H.; Kubica, L.; Piszczek, J.

    1978-01-01

    The method of correction for the matrix effect in quantitative x-ray microanalysis was presented. The application of the method was discussed on the example of quantitative analysis of fine inclusions of Cu 2 S and Cu 2 O in copper. (author)

  16. Resonant Inelastic X-ray Scattering of Rare-Earth and Copper Systems

    International Nuclear Information System (INIS)

    Kvashnina, Kristina

    2007-01-01

    Rare earths and copper systems were studied using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The use of monochromased synchotron radiation and improved energy resolution for RIXS made possible to obtain valuable information on the electronic structure in 4f, 5f and 3d systems. Experimental results for rare-earths (Ho, Gd, Cm, U, Np, Pu) were analyzed by atomic multiplet theory based on the Hartree-Fock calculations. The inelastic scattering structures in RIXS spectra at 5d edge of actinides found to be sensitive to actinide oxidation states in different systems. Comparison of experimental and calculated Cm 5d RIXS spectra gave direct information about valency of the 248-curium isotope in oxide. Scientific understanding of processes that control chemical changes of radioactive species from spent fuel is improved by studying interactions of actinide ions (U, Np, Pu) with corroded iron surfaces. RIXS measurements at the actinide 5d edge found to be sensitive to actinide oxidation states in different systems. Comparison of experimental and calculated Cm 5d RIXS spectra gave direct information about valency of the 248 curium isotope in oxide. Scientific understanding of processes that control chemical changes of radioactive species from spent fuel is improved by studying interactions of actinide ions (U, Np, Pu) with corroded iron surfaces. RIXS measurements at the actinide 5d edge indicate the reduction of U(VI), NP(V) and Pu(VI) to U(IV), Np(IV) and Pu(IV) by presence of iron ions. This thesis is also addressed to the study of changes in the electronic structure of copper films during interaction with synthetic groundwater solutions. The surface modifications induced by chemical reactions of oxidized 100 Angstrom Cu films with CL - , SO 4 2- and HCO 3 - ions in aqueous solutions with various concentrations were studied in-situ using XAS. It was shown that the pH value, the concentration of Cl - ion and presence of HC 3 - ion in

  17. Resonant Inelastic X-ray Scattering of Rare-Earth and CopperSystems

    Energy Technology Data Exchange (ETDEWEB)

    Kvashnina, Kristina [Uppsala Univ. (Sweden)

    2007-07-11

    Rare earths and copper systems were studied using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). The use of monochromased synchotron radiation and improved energy resolution for RIXS made possible to obtain valuable information on the electronic structure in 4f, 5f and 3d systems. Experimental results for rare-earths (Ho, Gd, Cm, U, Np, Pu) were analyzed by atomic multiplet theory based on the Hartree-Fock calculations. The inelastic scattering structures in RIXS spectra at 5d edge of actinides found to be sensitive to actinide oxidation states in different systems. Comparison of experimental and calculated Cm 5d RIXS spectra gave direct information about valency of the 248-curium isotope in oxide. Scientific understanding of processes that control chemical changes of radioactive species from spent fuel is improved by studying interactions of actinide ions (U, Np, Pu) with corroded iron surfaces. RIXS measurements at the actinide 5d edge found to be sensitive to actinide oxidation states in different systems. Comparison of experimental and calculated Cm 5d RIXS spectra gave direct information about valency of the 248 curium isotope in oxide. Scientific understanding of processes that control chemical changes of radioactive species from spent fuel is improved by studying interactions of actinide ions (U, Np, Pu) with corroded iron surfaces. RIXS measurements at the actinide 5d edge indicate the reduction of U(VI), NP(V) and Pu(VI) to U(IV), Np(IV) and Pu(IV) by presence of iron ions. This thesis is also addressed to the study of changes in the electronic structure of copper films during interaction with synthetic groundwater solutions. The surface modifications induced by chemical reactions of oxidized 100 Angstrom Cu films with CL-, SO42- and HCO3- ions in aqueous solutions with various concentrations were studied in-situ using XAS. It was shown that the pH value, the

  18. X-ray absorption spectra and emission spectra of plasmas

    International Nuclear Information System (INIS)

    Peng Yonglun; Yang Li; Wang Minsheng; Li Jiaming

    2002-01-01

    The author reports a theoretical method to calculate the resolved absorption spectra and emission spectra (optically thin) of hot dense plasmas. Due to its fully relativistic treatment incorporated with the quantum defect theory, it calculates the absorption spectra and emission spectra for single element or multi-element plasmas with little computational efforts. The calculated absorption spectra of LTE gold plasmas agree well with the experimental ones. It also calculates the optical thin emission spectra of LTE gold plasmas, which is helpful to diagnose the plasmas of relevant ICF plasmas. It can also provide the relevant parameters such as population density of various ionic stages, precise radiative properties for ICF studies

  19. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    International Nuclear Information System (INIS)

    Günther, Karoline; Giebing, Christina; Askani, Antonia; Leisegang, Tilmann; Krieg, Marcus; Kyosev, Yordan; Weide, Thomas; Mahltig, Boris

    2015-01-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  20. Cellulose/inorganic-composite fibers for producing textile fabrics of high X-ray absorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Günther, Karoline; Giebing, Christina; Askani, Antonia [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Leisegang, Tilmann [Saxray GmbH, Maria-Reiche-Str. 1, 01109 Dresden (Germany); Krieg, Marcus [TITK, Thüringisches Institut für Textil- und Kunststoff-Forschung e.V., Breitscheidstraße 97, 07407 Rudolstadt (Germany); Kyosev, Yordan; Weide, Thomas [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany); Mahltig, Boris, E-mail: Boris.Mahltig@hs-niederrhein.de [FTB, Hochschule Niederrhein – University of Applied Science, Faculty of Textile and Clothing Technology, Webschulstr. 31, 41065 Mönchengladbach (Germany)

    2015-11-01

    Common textile materials as cotton or polyester do not possess reliable X-ray absorption properties. This is due to their morphology and chemical composition in particular. Common fibers are built up from organic polymers containing mainly the elements carbon, hydrogen, oxygen and nitrogen. These “light” elements only have low X-ray absorption coefficients. In contrast, inorganic materials composed of “heavy” elements with high atomic numbers, e.g. barium or bismuth, exhibit X-ray absorption coefficients higher by up to two orders of magnitude. To obtain a flexible yarn with high X-ray absorption properties both these materials, the organic polymer and the inorganic X-ray absorber, are combined to an inorganic/organic composite fiber material. Hence, as the organic component cellulose from modified Lyocell-process is used as carrier fiber and blended with inorganic absorber particles of low toxicity and high absorption coefficients, as bariumsulphate, bariumtitanate or bismuthoxide. A content of inorganic absorber particles equally distributed in the whole fiber of up to 20% is achieved. The composite fibers are produced as staple or filament fibers and processed to multifilament or staple fiber yarns. The staple fiber yarns are rotor-spinned to increase the comfort of the subsequent textile material. Several woven fabrics, considering multilayer structure and different warp/weft density, are developed. The energy dependent X-ray shielding properties are determined in dependence on the different yarn compositions, yarn types and structural parameters of the woven fabrics. As a result, a production process of textile materials with comfortable and dedicated X-ray absorption properties is established. It offers a promising opportunity for manufacturing of specialized textiles, working clothes or uniforms applicable for medicine, air craft and security personal, mining as well as for innovative composite materials. - Highlights: • Preparation of cellulosic

  1. X-ray absorption spectroscopy of U (VI) sorbed onto alumina

    International Nuclear Information System (INIS)

    Kumar, Sumit; Jain, Aishwarya; Tomar, B.S.; Manchanda, V.K.; Poswal, A.K.; Jha, S.N.; Sabharwal, S.C.

    2009-01-01

    Sorption of U (VI) by alumina varying pH has been studied by X-ray absorption Spectroscopy. The experiments were carried out using the EXAFS beamline (BL-8) of INDUS-2 at Raja Ramanna Centre for Advanced Technology, Indore. The absorption intensity was found to increase with the increasing pH of the suspension. (author)

  2. Absorption of aluminium X-ray lines in a laser created gold plasma

    International Nuclear Information System (INIS)

    Combis, P.; Busquet, M.; Louis-Jacquet, M.

    1986-04-01

    We have studied the absorption of aluminium X-ray lines through a gold plasma by focusing a high intensity laser-beam onto a specific target. Absorption in the wavelength range of 5 to 7 A has been evidenced and measured for Aluminium resonance lines

  3. X-ray absorption spectroscopy of PbMoO 4 single crystals

    Indian Academy of Sciences (India)

    X-ray absorption spectra of PbMoO4 (LMO) crystals have been investigated for the first time in literature. The measurements have been carried out at Mo absorption edge at the dispersive EXAFS beamline (BL-8) of INDUS-2 Synchrotron facility at Indore, India. The optics of the beamline was set to obtain a band of 2000 eV ...

  4. Applications of X-ray absorption spectroscopy and low temperature XMCD to metalloproteins

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, J.H. [Univ. of California, Davis, CA (United States). Dept. of Applied Science]|[Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

    1996-01-01

    The author has used the extended X-ray absorption fine structure (EXAFS) and ultra-low temperature X-ray magnetic circular dichroism (XMCD) to study the environments of the metal sites in metalloproteins. EXAFS has been used to study the Zn site in spinach carbonic anhydrase. The EXAFS, in parallel with site directed mutagenesis studies, indicate that the active site Zn is in a cys-cys-his-H{sub 2}O environment, very different from the mammalian carbonic anhydrase active site. Nitrogenase, the primary enzyme in biological nitrogen fixation, contains two complex metal clusters of unique structure. EXAFS studies at the Fe and Mo K-edges of nitrogenase solutions and crystals yielded information about the various metal-metal distances in these two clusters. The author assigned 4 Fe and 3 Mo interactions >4 {angstrom}. Single crystal Mo K-edge EXAFS then found a very long Fe-Fe distance of {approximately}5.1 {angstrom}. These distances were then used to further refine the proposed crystallographic models to their highest accuracy yet. Studies were carried further by examining nitrogenas in oxidized and reduced forms--states for which there is no crystallographic information. Small structural changes were observed and an EXAFS model was put forth that attempts to deconvolute the EXAFS distances of the two metal clusters. Nitrogenase Apo I, a genetic mutant of nitrogenase which is though to contain only one of the two different metal clusters, was also examined using EXAFS. These studies showed results consistent with current models, yet the metal clusters were very disordered. Finally, ultra-low temperature methods were used to further the development of XMCD as a technique for studying biological systems. Experiments were performed on the copper in plastocyanin. Data was collected that definitively proves that the sample surface was at 0.55 {+-} 0.05 K. This result opens the door to further study of more complex biological metal clusters.

  5. Fabrication of 200 nanometer period centimeter area hard x-ray absorption gratings by multilayer deposition

    Science.gov (United States)

    Lynch, S K; Liu, C; Morgan, N Y; Xiao, X; Gomella, A A; Mazilu, D; Bennett, E E; Assoufid, L; de Carlo, F; Wen, H

    2012-01-01

    We describe the design and fabrication trials of x-ray absorption gratings of 200 nm period and up to 100:1 depth-to-period ratios for full-field hard x-ray imaging applications. Hard x-ray phase-contrast imaging relies on gratings of ultra-small periods and sufficient depth to achieve high sensitivity. Current grating designs utilize lithographic processes to produce periodic vertical structures, where grating periods below 2.0 μm are difficult due to the extreme aspect ratios of the structures. In our design, multiple bilayers of x-ray transparent and opaque materials are deposited on a staircase substrate, and mostly on the floor surfaces of the steps only. When illuminated by an x-ray beam horizontally, the multilayer stack on each step functions as a micro-grating whose grating period is the thickness of a bilayer. The array of micro-gratings over the length of the staircase works as a single grating over a large area when continuity conditions are met. Since the layers can be nanometers thick and many microns wide, this design allows sub-micron grating periods and sufficient grating depth to modulate hard x-rays. We present the details of the fabrication process and diffraction profiles and contact radiography images showing successful intensity modulation of a 25 keV x-ray beam. PMID:23066175

  6. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    International Nuclear Information System (INIS)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M.

    1998-01-01

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L 2,3 - and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi 2 sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi 2 . Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed

  7. X-ray speckle contrast variation at a sample-specific absorption edges

    International Nuclear Information System (INIS)

    Retsch, C. C.; Wang, Y.; Frigo, S. P.; Stephenson, G. B.; McNulty, I.

    2000-01-01

    The authors measured static x-ray speckle contrast variation with the incident photon energy across sample-specific absorption edges. They propose that the variation depends strongly on the spectral response function of the monochromator. Speckle techniques have been introduced to the x-ray regime during recent years. Most of these experiments, however, were done at photon energies above 5 keV. They are working on this technique in the 1 to 4 keV range, an energy range that includes many important x-ray absorption edges, e.g., in Al, Si, P, S, the rare-earths, and others. To their knowledge, the effect of absorption edges on speckle contrast has not yet been studied. In this paper, they present their initial measurements and understanding of the observed phenomena

  8. Solution spectroelectrochemical cell for in situ X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Antonio, M.R.; Soderholm, L.

    1995-01-01

    A purpose-built spectroelectrochemical cell for in situ fluorescence XAFS (X-ray Absorption Fine Structure) measurements of bulk solution species during constant-potential electrolysis is described. The cell performance was demonstrated by the collection of europium L 3 -edge XANES (X-ray Absorption Near Edge Structure) throughout the course of electrolysis of an aqueous solution of EuCl 3 ·6H 2 O in 1 M H 2 SO 4 . The europium L 3 -edge resonances reported here for the Eu III and Eu II ions demonstrate that their 2p 3/2 → 5d electronic transition probabilities are not the same

  9. Orientation of One-Dimensional Silicon Polymer Films Studied by X-Ray Absorption Spectroscopy

    Directory of Open Access Journals (Sweden)

    Md. Abdul Mannan

    2012-01-01

    Full Text Available Molecular orientations for thin films of one-dimensional silicon polymers grown by vacuum evaporation have been assigned by near-edge X-ray absorption fine structure (NEXAFS using linearly polarized synchrotron radiation. The polymer investigated was polydimethylsilane (PDMS which is the simplest stable silicon polymer, and one of the candidate materials for one-dimensional molecular wire. For PDMS films deposited on highly oriented pyrolytic graphite (HOPG, four resonance peaks have been identified in the Si K-edge NEXAFS spectra. Among these peaks, the intensities of the two peaks lower-energy at 1842.0 eV and 1843.2 eV were found to be strongly polarization dependent. The peaks are assigned to the resonance excitations from the Si 1s to σ∗ pyz and σ∗ px orbitals localized at the Si–C and Si–Si bonds, respectively. Quantitative evaluation of the polarization dependence of the NEXAFS spectra revealed that the molecules are self-assembled on HOPG surface, and the backbones of the PDMS are oriented nearly parallel to the surface. The observed orientation is opposite to the previously observed results for PDMS on the other surfaces such as oxide (indium tin oxide and metal (polycrystalline copper. The flat-lying feature of PDMS observed only on HOPG surface is attributed to the interaction between CH bonds in PDMS and π orbitals in HOPG surface.

  10. Oxygen, Neon, and Iron X-Ray Absorption in the Local Interstellar Medium

    Science.gov (United States)

    Gatuzz, Efrain; Garcia, Javier; Kallman, Timothy R.; Mendoza, Claudio

    2016-01-01

    We present a detailed study of X-ray absorption in the local interstellar medium by analyzing the X-ray spectra of 24 galactic sources obtained with the Chandra High Energy Transmission Grating Spectrometer and the XMM-Newton Reflection Grating Spectrometer. Methods. By modeling the continuum with a simple broken power-law and by implementing the new ISMabs X-ray absorption model, we have estimated the total H, O, Ne, and Fe column densities towards the observed sources. Results. We have determined the absorbing material distribution as a function of source distance and galactic latitude longitude. Conclusions. Direct estimates of the fractions of neutrally, singly, and doubly ionized species of O, Ne, and Fe reveal the dominance of the cold component, thus indicating an overall low degree of ionization. Our results are expected to be sensitive to the model used to describe the continuum in all sources.

  11. Inspection method of optical fiber preforms by x-ray absorption measurements

    International Nuclear Information System (INIS)

    Takahashi, H.; Nakamura, K.; Shibuya, S.; Kuroha, T.

    1980-01-01

    A method for measuring the refractive index distribution of optical fiber preforms has been developed by application of the theory of X-ray radiography. The composition of quartz optical fiber materials is, in most cases, limited to the group of five elements - Ge, P, Si, O and B. Of them, Ge is an essential element to determine the structure of refractive index of an optical fiber and the distribution of its density can be regarded approximately as the distribution of refractive index. On the other hand, the coefficient of low-energy X-ray absorption by the elements depends markedly on their atomic numbers, and Ge has a far larger absorption coefficient than the other four elements. Therefore, analysis of the intensity of X-ray absorbed by optical fiber preforms makes it possible to determine the distribution of Ge density and consequently the distribution of refractive index. (author)

  12. X-ray diffraction investigation of self-annealing in nanocrystalline copper electrodeposits

    DEFF Research Database (Denmark)

    Pantleon, Karen; Somers, Marcel A. J.

    2006-01-01

    X-ray diffraction analysis and electrical resistivity measurements were conducted simultaneously for in-situ examination of self-annealing in copper electrodeposits. Considerable growth of the as-deposited nano-sized crystallites occurs with time and the crystallographic texture changes by multip...... twinning during self-annealing. The kinetics of self-annealing depends on the layer thickness as well as on the orientation and/or the size of the as-deposited crystallites. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.......X-ray diffraction analysis and electrical resistivity measurements were conducted simultaneously for in-situ examination of self-annealing in copper electrodeposits. Considerable growth of the as-deposited nano-sized crystallites occurs with time and the crystallographic texture changes by multiple...

  13. Femtosecond Near Edge X-ray Absorption Measurement of the VO2 Phase Transition

    International Nuclear Information System (INIS)

    Cavalleri, A.; Chong, H.H.W.; Fourmaux, S.; Glover, T.E.; Heimann, P.A; Kieffer, J.C.; Padmore, H.A.; Schoenlein, R.W.

    2004-01-01

    The authors measure the insulator-to-metal transition in VO 2 using femtosecond Near-Edge X-ray Absorption. Sliced pulses of synchrotron radiation are used to detect the photo-induced dynamics at the 516-eV Vanadium L 3 edge

  14. X-ray absorption spectroscopy of CuO.sub.2./sub. chains

    Czech Academy of Sciences Publication Activity Database

    Drechsler, S.L.; Hu, Z.; Málek, Jiří; Rosner, H.; Neudert, R.; Knupfer, M.; Golden, M. S.; Fink, J.

    2003-01-01

    Roč. 131, 3/4 (2003), s. 369-373 ISSN 0022-2291 Institutional research plan: CEZ:AV0Z1010914 Keywords : X-ray absorption spectroscopy * exact diagonalization techniques Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.171, year: 2003

  15. Chemical shift of Mn and Cr K-edges in X-ray absorption

    Indian Academy of Sciences (India)

    ... Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 36; Issue 6. Chemical shift of Mn and Cr K-edges in X-ray absorption spectroscopy with synchrotron radiation. D Joseph A K Yadav S N Jha D Bhattacharyya. Volume 36 Issue 6 November 2013 pp ...

  16. Invisible structures in the X-ray absorption spectra of actinides

    NARCIS (Netherlands)

    Kvashnina, Kristina O.; De Groot, Frank M F

    The X-ray absorption spectra of actinides are discussed with an emphasis on the fundamental effects that influence their spectral shape, including atomic multiplet theory, charge transfer theory and crystal field theory. Many actinide spectra consist of a single peak and it is shown that the use of

  17. Extended X-ray absorption fine structure investigation of nitrogen stabilized expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2010-01-01

    As-delivered austenitic stainless steel and nitrogen stabilized expanded austenite, both fully nitrided and denitrided (in H2), were investigated with Cr, Fe and Ni extended X-ray absorption fine structure. The data shows pronounced short-range ordering of Cr and N. For the denitrided specimen...

  18. Core-hole effects in the x-ray-absorption spectra of transition-metal silicides

    NARCIS (Netherlands)

    WEIJS, PJW; CZYZYK, MT; VANACKER, JF; SPEIER, W; GOEDKOOP, JB; VANLEUKEN, H; HENDRIX, HJM; DEGROOT, RA; VANDERLAAN, G; BUSCHOW, KHJ; WIECH, G; FUGGLE, JC

    1990-01-01

    We report systematic differences between the shape of the Si K x-ray-absorption spectra of transition-metal silicides and broadened partial densities of Si p states. We use a variety of calculations to show that the origin of these discrepancies is the core-hole potential appropriate to the final

  19. Moisture movement in cement-based repair systems monitored by X-ray absorption

    NARCIS (Netherlands)

    Lukovic, M.; Ye, G.; Schlangen, H.E.J.G.; van Breugel, K.

    2017-01-01

    In concrete repair systems, material properties in the repair material and interface are greatly influenced by the initial moisture content of the concrete (or mortar) substrate. In order to quantify moisture profiles inside the repair system, X-ray absorption was used. Preliminary studies are

  20. NSLS [National Synchrotron Light Source] X-19A beamline performance for x-ray absorption measurements

    International Nuclear Information System (INIS)

    Yang, C.Y.; Penner-Hahn, J.E.; Stefan, P.M.

    1989-01-01

    Characterization of the X-19A beamline at the National Synchrotron Light Source (NSLS) is described. The beamline is designed for high resolution x-ray absorption spectroscopy over a wide energy range. All of the beamline optical components are compatible with ultrahigh vacuum (UHV) operation. This permits measurements to be made in a window-less mode, thereby facilitating lower energy (<4 KeV) studies. To upgrade the beamline performance, several possible improvements in instrumentation and practice are discussed to increase photon statistics with an optimum energy resolution, while decreasing the harmonic contamination and noise level. A special effort has been made to improve the stability and UHV compatibility of the monochromator system. Initial x-ray absorption results demonstrate the capabilities of this beamline for x-ray absorption studies of low Z elements (e.g. S) in highly dilute systems. The future use of this beamline for carrying out various x-ray absorption experiments is presented. 10 refs., 4 figs

  1. Deexcitation Dynamics of Superhydrogenated Polycyclic Aromatic Hydrocarbon Cations after Soft-x-Ray Absorption

    NARCIS (Netherlands)

    Reitsma, Geert; Boschman, Leon; Deuzeman, Mart Johan; Gonzalez Magana, Olmo; Hoekstra, Steven; Cazaux, Stéphanie; Hoekstra, Ronnie; Schlathölter, Thomas

    We have investigated the response of superhydrogenated gas-phase coronene cations upon soft x-ray absorption. Carbon (1s)⟶π⋆ transitions were resonantly excited at hν =285 eV. The resulting core hole is then filled in an Auger decay process, with the excess energy being released in the form of an

  2. The 1s x-ray absorption pre-edge structures in transition metal oxides

    NARCIS (Netherlands)

    de Groot, Frank|info:eu-repo/dai/nl/08747610X; Vanko, Gyoergy; Glatzel, Pieter

    2009-01-01

    We develop a general procedure to analyse the pre-edges in 1s x-ray absorption near edge structure (XANES) of transition metal oxides and coordination complexes. Transition metal coordination complexes can be described from a local model with one metal ion. The 1s 3d quadrupole transitions are

  3. High Pressure X-ray Absorption Studies on Correlated-Electron Systems

    International Nuclear Information System (INIS)

    Cornelius, Andrew L.

    2016-01-01

    This project used high pressure to alter the electron-electron and electron-lattice interactions in rare earth and actinide compounds. Knowledge of these properties is the starting points for a first-principles understanding of electronic and electronically related macroscopic properties. The research focused on a systematic study of x-ray absorption measurements on rare earth and actinide compounds.

  4. Determination of copper, iron and zinc in spirituous beverages by total reflection X-ray fluorescence spectrometry

    Science.gov (United States)

    Capote, T.; Marcó, L. M.; Alvarado, J.; Greaves, E. D.

    1999-10-01

    The concentration of copper in traditional homemade alcoholic distillates produced in Venezuela (Cocuy de Penca) were determined by total reflection X-ray fluorescence (TXRF) using vanadium as internal standard. The results were compared to those obtained by flame atomic absorption spectrometry (FAAS). Three preparative methods of addition of vanadium were compared: classical internal standard addition, 'layer on layer' internal standard addition and in situ addition of internal standard. The TXRF procedures were accurate and the precision was comparable to that obtained by the FAAS technique. Copper levels were above the maximum allowed limits for similar beverages. Zinc and iron in commercial and homemade distilled beverages were also analyzed by TXRF with in situ addition of internal standard demonstrating the usefulness of this technique for trace metal determination in distillates.

  5. The dispersion surface of X-rays very near the absorption edge

    International Nuclear Information System (INIS)

    Fukamachi, T.; Negishi, R.; Kawamura, T.

    1995-01-01

    To discuss the X-ray dynamical diffraction when the imaginary part of the X-ray polarizability is larger than the real part, the dispersion surface is studied as a function of the ratio between the real and the imaginary parts of the polarizability. The dispersion surface in the Laue case when the real part is zero has a similar form to that in the Bragg case when the imaginary part is zero. The relations between the dispersion surface and the diffracted intensity are studied in some special cases. The abnormal absorption and the abnormal transmission effect are related to the features of the dispersion surface. (orig.)

  6. X-ray absorption in GaGdN: A study of local structure

    Science.gov (United States)

    Martínez-Criado, G.; Sancho-Juan, O.; Garro, N.; Sans, J. A.; Cantarero, A.; Susini, J.; Roever, M.; Mai, D.-D.; Bedoya-Pinto, A.; Malindretos, J.; Rizzi, A.

    2008-07-01

    In this study, we report on the incorporation of dilute Gd amounts into GaN films grown by molecular beam epitaxy. A combination of x-ray fluorescence with x-ray absorption spectroscopic techniques enabled us to examine not only the distribution of rare earth atoms in the GaN matrix but also the short-range structural order. Our results show Gd atoms in a trivalent state with tetrahedral coordination, thus substituting Ga in the wurtzite GaN structure.

  7. X-ray absorption in GaGdN: A study of local structure

    International Nuclear Information System (INIS)

    Martinez-Criado, G.; Sans, J. A.; Susini, J.; Sancho-Juan, O.; Cantarero, A.; Garro, N.; Roever, M.; Mai, D.-D.; Bedoya-Pinto, A.; Malindretos, J.; Rizzi, A.

    2008-01-01

    In this study, we report on the incorporation of dilute Gd amounts into GaN films grown by molecular beam epitaxy. A combination of x-ray fluorescence with x-ray absorption spectroscopic techniques enabled us to examine not only the distribution of rare earth atoms in the GaN matrix but also the short-range structural order. Our results show Gd atoms in a trivalent state with tetrahedral coordination, thus substituting Ga in the wurtzite GaN structure

  8. Surface extended x-ray absorption fine structure of low-Z absorbates using fluorescence detection

    International Nuclear Information System (INIS)

    Stoehr, J.; Kollin, E.B.; Fischer, D.A.; Hastings, J.B.; Zaera, F.; Sette, F.

    1985-05-01

    Comparison of x-ray fluorescence yield (FY) and electron yield surface extended x-ray absorption fine structure spectra above the S K-edge for c(2 x 2) S on Ni(100) reveals an order of magnitude higher sensitivity of the FY technique. Using FY detection, thiophene (C 4 H 4 S) chemisorption on Ni(100) is studied with S coverages down to 0.08 monolayer. The molecule dissociates at temperatures as low as 100K by interaction with fourfold hollow Ni sites. Blocking of these sites by oxygen leaves the molecule intact

  9. X-ray K-absorption edge of zirconium in some perovskite type zirconates

    Energy Technology Data Exchange (ETDEWEB)

    Chougule, B K; Patil, R N [Shivaji Univ., Kolhapur (India). Dept. of Physics

    1979-01-01

    The chemical shifts in the X-ray K-absorption edges of zirconium in the zirconates of calcium, strontium, barium and lead and zirconium oxide have been investigated employing a 400 mm bent crystal X-ray spectrograph. It has been found that the discontinuity shifts towards the high energy side with respect to that in the pure metal and that the chemical shift depends upon the size of the next nearest cation. The larger the size of the cation, smaller is the chemical shift. Dependence of the shift on the crystal structure and the packing factor of the perovskite is also reported.

  10. Molecular environment of iodine in naturally iodinated humic substances: Insight from X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Schlegel, Michel L.; Mercier-Bion, Florence; Barre, Nicole; Reiller, Pascal; Moulin, Valerie

    2006-01-01

    The molecular environment of iodine in reference inorganic and organic compounds, and in dry humic and fulvic acids (HAs and FAs) extracted from subsurface and deep aquifers was probed by iodine L-3-edge X-ray absorption spectroscopy. The X-ray absorption near-edge structure (XANES) of iodine spectra from HAs and FAs resembled those of organic references and displayed structural features consistent with iodine forming covalent bonds with organic molecules. Simulation of XANES spectra by linear combination of reference spectra suggested the predominance of iodine forming covalent bonds to aromatic rings (aromatic-bound iodine). Comparison of extended X-ray absorption fine structure (EXAFS) spectra of reference and samples further showed that iodine was surrounded by carbon shells at distances comparable to those for references containing aromatic-bound iodine. Quantitative analysis of EXAFS spectra indicated that iodine was bound to about one carbon at a distance d(I-C) of 2.01(4)-2.04(9) angstrom, which was comparable to the distances observed for aromatic-bound iodine in references (1.99(1)-2.07(6) angstrom), and significantly shorter than that observed for aliphatic-bound iodine (2.15(2)-2.16(2) angstrom). These results are in agreement with previous conclusions from X-ray photoelectron spectroscopy and from electro-spray ionization mass spectrometry. These results collectively suggest that the aromatic-bound iodine is stable in the various aquifers of this study. (authors)

  11. Absorption spectra response of XRQA radiochromic film to x-ray radiation

    International Nuclear Information System (INIS)

    Alnawaf, Hani; Cheung, Tsang; Butson, Martin J.; Yu, Peter K.N.

    2010-01-01

    Gafchromic XRQA, radiochromic film is a high sensitivity auto developing x-ray analysis films designed and available for kilovoltage x-ray, dose and QA assessment applications. The film is designed for reflective analysis with a yellow transparent top filter and white opaque backing materials. This allows the film to be visually inspected for colour changes with a higher level of contrast than clear coated radiochromic films such as Gafchromic EBT version 1. The spectral absorption properties in the visible wavelengths have been investigated and results show two main peaks in absorption located at 636 nm and 585 nm. These peaks are located in the same position as EBT Gafchromic film highlighting a similar chemical monomer/polymer for radiation sensitivity. A much higher sensitivity however is found at kilovoltage energies with an average 1.55 OD units per 20 cGy irradiation variation measured at 636 nm using 150 kVp x-rays. This is compared to approximately 0.12 OD units per 20 cGy measured at 636 nm for EBT film at 6 MV x-ray energy. That is, the XRQA film is more than 10 times more sensitive than EBT1 film. The visual colour change is enhanced by the yellow polyester coating. However this does not affect the absorption spectra properties in the red region of analysis which is the main area for use using desktop scanners in reflection mode.

  12. The Frequency of Intrinsic X-Ray Weakness among Broad Absorption Line Quasars

    Science.gov (United States)

    Liu, Hezhen; Luo, B.; Brandt, W. N.; Gallagher, S. C.; Garmire, G. P.

    2018-06-01

    We present combined ≈14–37 ks Chandra observations of seven z = 1.6–2.7 broad absorption line (BAL) quasars selected from the Large Bright Quasar Survey (LBQS). These seven objects are high-ionization BAL (HiBAL) quasars, and they were undetected in the Chandra hard band (2–8 keV) in previous observations. The stacking analyses of previous Chandra observations suggested that these seven objects likely contain some candidates for intrinsically X-ray weak BAL quasars. With the new Chandra observations, six targets are detected. We calculate their effective power-law photon indices and hard-band flux weakness, and find that two objects, LBQS 1203+1530 and LBQS 1442–0011, show soft/steep spectral shapes ({{{Γ }}}eff}={2.2}-0.9+0.9 and {1.9}-0.8+0.9) and significant X-ray weakness in the hard band (by factors of ≈15 and 12). We conclude that the two HiBAL quasars are good candidates for intrinsically X-ray weak BAL quasars. The mid-infrared-to-ultraviolet spectral energy distributions of the two candidates are consistent with those of typical quasars. We constrain the fraction of intrinsically X-ray weak active galactic nuclei (AGNs) among HiBAL quasars to be ≈7%–10% (2/29–3/29), and we estimate it is ≈6%–23% (2/35–8/35) among the general BAL quasar population. Such a fraction is considerably larger than that among non-BAL quasars, and we suggest that intrinsically X-ray weak quasars are preferentially observed as BAL quasars. Intrinsically X-ray weak AGNs likely comprise a small minority of the luminous type 1 AGN population, and they should not affect significantly the completeness of these AGNs found in deep X-ray surveys.

  13. K-edge x-ray-absorption spectroscopy of laser-generated Kr+ and Kr2+

    International Nuclear Information System (INIS)

    Southworth, S. H.; Arms, D. A.; Dufresne, E. M.; Dunford, R. W.; Ederer, D. L.; Hoehr, C.; Kanter, E. P.; Kraessig, B.; Landahl, E. C.; Peterson, E. R.; Rudati, J.; Santra, R.; Walko, D. A.; Young, L.

    2007-01-01

    Tunable, polarized, microfocused x-ray pulses were used to record x-ray absorption spectra across the K edges of Kr + and Kr 2+ produced by laser ionization of Kr. Prominent 1s→4p and 5p excitations are observed below the 1s ionization thresholds in accord with calculated transition energies and probabilities. Due to alignment of 4p hole states in the laser-ionization process, the Kr + 1s→4p cross section varies with respect to the angle between the laser and x-ray polarization vectors. This effect is used to determine the Kr + 4p 3/2 and 4p 1/2 quantum state populations, and these are compared with results of an adiabatic strong-field ionization theory that includes spin-orbit coupling

  14. I20; the Versatile X-ray Absorption spectroscopy beamline at Diamond Light Source

    International Nuclear Information System (INIS)

    Diaz-Moreno, S; Hayama, S; Amboage, M; Freeman, A; Sutter, J; Duller, G

    2009-01-01

    The Versatile Spectroscopy beamline at Diamond Light Source, I20, is currently under construction and aims to begin operation in late 2009 and early 2010. The beamline aims to cover applications from physics, chemistry and biology through materials, environmental and geological science. Three very distinctive modes of operation will be offered at the beamline: scanning X-ray Absorption spectroscopy (XAS), XAS in dispersive mode, and X-ray emission spectroscopy (XES). To achieve this, the beamline has been designed around two independent experimental end-stations operating from a pair of canted wigglers located in a 5m diamond straight section. One branch of the beamline will deliver monochromatic x-ray radiation of high spectral purity to one of the experimental hutches, whilst the other branch will constitute an energy dispersive spectrometer. The novel design of the beamline allows both branches to operate simultaneously.

  15. Microscale X-ray Absorption Spectroscopy on the GSECARS Sector 13 at the APS

    CERN Document Server

    Stephen-Sutto

    2000-01-01

    GeoSoilEnviroCARS (GSECARS) is a national user facility for frontier research in the earth sciences using synchrotrons radiation at the Advanced Photon Source, Argonne National Laboratory. GSECARS provides earth scientists with access to the high-brilliance hard x-rays from this third-generation synchrotrons light source. The research conducted at this facility will advance our knowledge of the composition, structure and properties of earth materials, the processes they control and the processes that produce them. All principal synchrotron-based analytical techniques in demand by earth scientists are being brought to bear on earth science problems: (1) high-pressure/high-temperature crystallography and spectroscopy using the diamond anvil cell; (2) high-pressure/high-temperature crystallography using the large-volume press; (3) powder, single crystal and interface diffraction; (4) x-ray absorption fine structure (XAFS) spectroscopy; (5) x-ray fluorescence microprobe analysis and microspectroscopy; and (6) mic...

  16. ISMabs: A COMPREHENSIVE X-RAY ABSORPTION MODEL FOR THE INTERSTELLAR MEDIUM

    Energy Technology Data Exchange (ETDEWEB)

    Gatuzz, E.; Mendoza, C. [Centro de Física, Instituto Venezolano de Investigaciones Científicas (IVIC), P.O. Box 20632, Caracas 1020A (Venezuela, Bolivarian Republic of); García, J. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, 02138 (United States); Kallman, T. R. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Gorczyca, T. W., E-mail: egatuzz@ivic.gob.ve, E-mail: claudio@ivic.gob.ve, E-mail: javier@head.cfa.harvard.edu, E-mail: timothy.r.kallman@nasa.gov, E-mail: thomas.gorczyca@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008 (United States)

    2015-02-10

    We present an X-ray absorption model for the interstellar medium, to be referred to as ISMabs, that takes into account both neutral and ionized species of cosmically abundant elements, and includes the most accurate atomic data available. Using high-resolution spectra from eight X-ray binaries obtained with the Chandra High Energy Transmission Grating Spectrometer, we proceed to benchmark the atomic data in the model particularly in the neon K-edge region. Compared with previous photoabsorption models, which solely rely on neutral species, the inclusion of ions leads to improved spectral fits. Fit parameters comprise the column densities of abundant contributors that allow direct estimates of the ionization states. ISMabs is provided in the appropriate format to be implemented in widely used X-ray spectral fitting packages such as XSPEC, ISIS, and SHERPA.

  17. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; Kimmerle, B.; Baiker, A.

    2009-01-01

    available techniques, X-ray absorption spectroscopy (XAS) is a well-suited tool for this purpose as the different selected examples highlight. Two different techniques, scanning and full-field X-ray microscopy/tomography, are described and compared. At first, the tomographic structure of impregnated alumina...... pellets is presented using full-field transmission microtomography and compared to the results obtained with a scanning X-ray microbeam technique to analyse the catalyst bed inside a catalytic quartz glass reactor. On the other hand, by using XAS in scanning microtomography, the structure...... metal-based catalysts. In order to obtain spectroscopic information on the spatial variation of the oxidation state of the catalyst inside the reactor XAS spectra were recorded by scanning with a micro-focussed beam along the catalyst bed. Alternatively, full-field transmission imaging was used...

  18. A reaction cell for ambient pressure soft x-ray absorption spectroscopy

    Science.gov (United States)

    Castán-Guerrero, C.; Krizmancic, D.; Bonanni, V.; Edla, R.; Deluisa, A.; Salvador, F.; Rossi, G.; Panaccione, G.; Torelli, P.

    2018-05-01

    We present a new experimental setup for performing X-ray Absorption Spectroscopy (XAS) in the soft X-ray range at ambient pressure. The ambient pressure XAS setup is fully compatible with the ultra high vacuum environment of a synchrotron radiation spectroscopy beamline end station by means of ultrathin Si3N4 membranes acting as windows for the X-ray beam and seal of the atmospheric sample environment. The XAS detection is performed in total electron yield (TEY) mode by probing the drain current from the sample with a picoammeter. The high signal/noise ratio achievable in the TEY mode, combined with a continuous scanning of the X-ray energies, makes it possible recording XAS spectra in a few seconds. The first results show the performance of this setup to record fast XAS spectra from sample surfaces exposed at atmospheric pressure, even in the case of highly insulating samples. The use of a permanent magnet inside the reaction cell enables the measurement of X-ray magnetic circular dichroism at ambient pressure.

  19. Annealing induced atomic rearrangements on (Ga,In) (N,As) probed by hard X-ray photoelectron spectroscopy and X-ray absorption fine structure.

    Science.gov (United States)

    Ishikawa, Fumitaro; Higashi, Kotaro; Fuyuno, Satoshi; Morifuji, Masato; Kondow, Masahiko; Trampert, Achim

    2018-04-13

    We study the effects of annealing on (Ga 0.64 ,In 0.36 ) (N 0.045 ,As 0.955 ) using hard X-ray photoelectron spectroscopy and X-ray absorption fine structure measurements. We observed surface oxidation and termination of the N-As bond defects caused by the annealing process. Specifically, we observed a characteristic chemical shift towards lower binding energies in the photoelectron spectra related to In. This phenomenon appears to be caused by the atomic arrangement, which produces increased In-N bond configurations within the matrix, as indicated by the X-ray absorption fine structure measurements. The reduction in the binding energies of group-III In, which occurs concomitantly with the atomic rearrangements of the matrix, causes the differences in the electronic properties of the system before and after annealing.

  20. X-ray absorption study of the electronic structure of Mn-doped amorphous Si

    Energy Technology Data Exchange (ETDEWEB)

    Arenholz, Elke; Zeng, Li; Huegel, A.; Helgren, E.; Hellman, F.; Piamonteze, C.; Arenholz, E.

    2008-03-08

    The electronic structure of Mn in amorphous Si (a-Mn{sub x}Si{sub 1?x}) is studied by X-ray absorption spectroscopy at the Mn L{sub 3,2} edges for x = 0.005-0.18. Except the x = 0.005 sample, which shows a slight signature of Mn{sup 2+} atomic multiplets associated with a local Mn moment, all samples have broad and featureless L{sub 3,2} absorption peaks, corresponding to an itinerant state for all 3d electrons. The broad X-ray absorption spectra exclude the possibility of a localized 3d moment and explain the unexpectedly quenched Mn moment in this magnetically-doped amorphous semiconductor. Such a fully delocalized d state of Mn dopant in Si has not been previously suggested.

  1. Extended X-ray absorption fine structure and X-ray diffraction studies on supported Ni catalysts

    International Nuclear Information System (INIS)

    Aldea, N.; Marginean, P.; Yaning, Xie; Tiandou, Hu; Tao, Liu; Wu, Zhongua; ZhenYa, Dai

    1999-01-01

    In the first part of this paper, we present a study based on EXAFS spectroscopy. This method can yield structural information about the local environment around a specific atomic constituent in the amorphous materials, the location and chemical state of any catalytic atom on any support or point defect structures, in alloys and composites. EXAFS is a specific technique of the scattering of X-ray on materials. The present study is aimed toward elucidation of the local structure of Ni atoms and their interaction with oxide support. The second goal of the paper consists in X-ray diffraction on the same samples. X-ray diffraction method that is capable to determine average particle size, microstrains, probability of faults as well as particle size distribution function of supported Ni catalysts is presented. The method is based on the Fourier analysis of a single X-Ray diffraction profile. The results obtained on supported nickel catalysts, which are used in H/D isotopic exchange reactions are reported. The global structure is obtained with a new fitting method based on the Generalised Fermi Function facilities for approximation and Fourier transform of the experimental X-Ray line profiles. Both types of measurements were performed on Beijing Synchrotron Radiation Facilities (BSRF). (authors)

  2. Determination of copper in geological materials by X-ray fluorescence; Determinacion de cobre en materiales geologicos mediante fluorescencia de rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M; Bayon, A

    1981-07-01

    X-ray fluorescence has been applied to the determination of copper content of geological materials in the concentration range of 0.01 to % CuO. A molybdenum target tube Is used, samples being presented in finely-ground powder form. Various methods for the correction for background and Instrumental copper interferences have been considered. To correct for matrix effects different tube scattered primary radiations have been tested as references or internal standards. MoK(41 - (C) provides the most suitable results. The use of influence empirical coefficients for the effect of iron on copper and of mass absorption coefficients has also been considered. For samples with a high content of lead, several procedures to correct for I t s influence have been investigated. Comparison between data obtained by X-ray fluorescence and wet-chemical techniques indicated good agreement. (Author) 6 refs.

  3. Time-resolved x-ray laser induced photoelectron spectroscopy of isochoric heated copper

    International Nuclear Information System (INIS)

    Nelson, A.J.; Dunn, J.; Hunter, J.; Widmann, K.

    2005-01-01

    Time-resolved x-ray photoelectron spectroscopy is used to probe the nonsteady-state evolution of the valence band electronic structure of laser heated ultrathin (50 nm) copper. A metastable phase is studied using a 527 nm wavelength 400 fs laser pulse containing 0.1-2.5 mJ laser energy focused in a large 500x700 μm 2 spot to create heated conditions of 0.07-1.8x10 12 W cm -2 intensity. Valence band photoemission spectra are presented showing the changing occupancy of the Cu 3d level with heating are presented. These picosecond x-ray laser induced time-resolved photoemission spectra of laser-heated ultrathin Cu foil show dynamic changes in the electronic structure. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials

  4. Characterization of metallic nanoparticles by high-resolution X-ray absorption and X-ray emission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kuehn, Timna-Josua

    2012-03-15

    In almost all areas of technology, metallic nanoparticles are of interest due to their special thermal, electronic, magnetic and optical properties. Their special properties are mainly due to their small size which implies the relevance of quantum effects as well as the significance of the surface: For 2 nm nanoparticles, the surface-to-volume ratio is already 1:1. However, the identification of surface-to-volume interactions - that are responsible for the new properties - is a difficult task due to the small size that inhibits a lot of 'standard' techniques to be applicable. Here X-ray absorption/emission spectroscopy (XAS/XES) is a favorable tool for the characterization of nanoparticles, independent on size, degree of crystallinity and shape/condition of the surface. Using XAS, a tempered nanosized Co{sub 3}Pt/C catalyst have been investigated. Its outstanding oxygen-reduction reaction (ORR) properties in a fuel cell could be related to a lowered Pt 5d-band center connected to a tightened Pt-Pt bonding distance, leading to a weakening of the oxygen adsorption strength so that the ORR may proceed faster. One drawback remains, however, as the properties found by (standard) XAS are summed up for different chemical environments of the chosen element. Thus, no distinction can be made between, e.g., the pure metal in a nanoparticles' interior and the ligated metal in the outer shells or surface. Here, high-resolution fluorescence-detected XAS (HRFD-XAS) provides additional opportunities as, due to its chemical sensitivity, it leads to site-selective XAS. For a system of 6 nm sized Co nanoparticles, build up of a metallic core surrounded by a protecting shell, that resulted from the 'smooth oxidation' process, this technique of site-selective XAS was proven to be applicable. For the first time, the interior and outer shell of a metallic nanoparticle could be characterized separately. In particular, the Co-hcp phase could be determined for the

  5. Investigation of radiation absorption and X-ray fluorescence properties of medical imaging scintillators by Monte Carlo methods

    International Nuclear Information System (INIS)

    Nikolopoulos, D.; Kandarakis, I.; Cavouras, D.; Valais, I.; Linardatos, D.; Michail, C.; David, S.; Gaitanis, A.; Nomicos, C.; Louizi, A.

    2006-01-01

    X-ray absorption and X-ray fluorescence properties of medical imaging scintillating screens were studied by Monte Carlo methods as a function of the incident photon energy and screen-coating thickness. The scintillating materials examined were Gd 2 O 2 S (GOS) Gd 2 SiO 5 (GSO) YAlO 3 (YAP), Y 3 Al 5 O 12 (YAG), LuSiO 5 (LSO), LuAlO 3 (LuAP) and ZnS. Monoenergetic photon exposures were modeled in the range from 10 to 100 keV. The corresponding ranges of coating thicknesses of the investigated scintillating screens ranged up to 200 mg cm -2 . Results indicated that X-ray absorption and X-ray fluorescence are affected by the incident photon energy and the screen's coating thickness. Regarding incident photon energy, this X-ray absorption and fluorescence was found to exhibit very intense changes near the corresponding K edge of the heaviest element in the screen's scintillating material. Regarding coating thickness, thicker screens exhibited higher X-ray absorption and X-ray fluorescence. Results also indicated that a significant fraction of the generated X-ray fluorescent quanta escape from the scintillating screen. This fraction was found to increase with screen's coating thickness. At the energy range studied, most of the incident photons were found to be absorbed via one-hit photoelectric effect. As a result, the reabsorption of scattered radiation was found to be of rather minor importance; nevertheless this was found to increase with the screen's coating thickness. Differences in X-ray absorption and X-ray fluorescence were found among the various scintillators studied. LSO scintillator was found to be the most attractive material for use in many X-ray imaging applications, exhibiting the best absorption properties in the largest part of the energy range studied. Y-based scintillators were also found to be of significant absorption performance within the low energy ranges

  6. X-ray diffraction and X-ray absorption of strained CoO and MnO thin films

    NARCIS (Netherlands)

    Csiszár, Szilárd Istvan; Tjeng, L.H

    2005-01-01

    The aim of this project was to study the influence of epitaxial strain on the electronic and magnetic structure of transition metal oxide layers. In the first part of the thesis the discovery of characteristic diffuse X-ray scattering patterns is reported. They are caused by the misfit dislocations,

  7. Structural study on Ni nanowires in an anodic alumina membrane by using in situ heating extended x-ray absorption fine structure and x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Cai Quan; Chen Xing; Chen Zhongjun; Wang Wei; Mo Guang; Wu Zhonghua; Zhang Junxi; Zhang Lide; Pan Wei

    2008-01-01

    Polycrystalline Ni nanowires have been prepared by electrochemical deposition in an anodic alumina membrane template with a nanopore size of about 60 nm. In situ heating extended x-ray absorption fine structure and x-ray diffraction techniques are used to probe the atomic structures. The nanowires are identified as being mixtures of nanocrystallites and amorphous phase. The nanocrystallites have the same thermal expansion coefficient, of 1.7 x 10 -5 K -1 , as Ni bulk; however, the amorphous phase has a much larger thermal expansion coefficient of 3.5 x 10 -5 K -1 . Details of the Ni nanowire structures are discussed in this paper

  8. Effects of proton irradiation on structure of NdFeB permanent magnets studied by X-ray diffraction and X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Yang, L.; Zhen, L.; Xu, C.Y.; Sun, X.Y.; Shao, W.Z.

    2011-01-01

    The effects of proton irradiation on the structure of NdFeB permanent magnet were investigated by X-ray diffraction and X-ray absorption fine structure (XAFS). The results reveal that proton irradiation has no effect on the long-range structure, but significantly affects the atomic local structure of the NdFeB magnet. The alignment degree of the magnet decreases and the internal stress of the lattice increases after proton irradiation. XAFS results show that the coordination number of Fe-Nd in the first neighboring coordination shell of the Fe atoms decreases and the disorder degree increases.

  9. Effects of proton irradiation on structure of NdFeB permanent magnets studied by X-ray diffraction and X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, L., E-mail: lzhen@hit.edu.c [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xu, C.Y.; Sun, X.Y.; Shao, W.Z. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-01-15

    The effects of proton irradiation on the structure of NdFeB permanent magnet were investigated by X-ray diffraction and X-ray absorption fine structure (XAFS). The results reveal that proton irradiation has no effect on the long-range structure, but significantly affects the atomic local structure of the NdFeB magnet. The alignment degree of the magnet decreases and the internal stress of the lattice increases after proton irradiation. XAFS results show that the coordination number of Fe-Nd in the first neighboring coordination shell of the Fe atoms decreases and the disorder degree increases.

  10. Randic and Schultz molecular topological indices and their correlation with some X-ray absorption parameters

    International Nuclear Information System (INIS)

    Khatri, Sunil; Kekre, Pravin A; Mishra, Ashutosh

    2016-01-01

    The properties of a molecular system are affected by the topology of molecule. Therefore many studies have been made where the various physic-chemical properties are correlated with the topological indices. These studies have shown a very good correlation demonstrating the utility of the graph theoretical approach. It is, therefore, very natural to expect that the various physical properties obtained by the X-ray absorption spectra may also show correlation with the topological indices. Some complexes were used to establish correlation between topological indices and some X-ray absorption parameters like chemical shift. The chemical shift is on the higher energy side of the metal edge in these complexes. The result obtained in these studies shows that the topological indices of organic molecule acting as a legands can be used for estimating edge shift theoretically. (paper)

  11. Identifying anthropogenic uranium compounds using soft X-ray near-edge absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Jesse D.; Bowden, Mark; Tom Resch, C.; Eiden, Gregory C.; Pemmaraju, C. D.; Prendergast, David; Duffin, Andrew M.

    2017-01-01

    Uranium ores mined for industrial use are typically acid-leached to produce yellowcake and then converted into uranium halides for enrichment and purification. These anthropogenic chemical forms of uranium are distinct from their mineral counterparts. The purpose of this study is to use soft X-ray absorption spectroscopy to characterize several common anthropogenic uranium compounds important to the nuclear fuel cycle. Non-destructive chemical analyses of these compounds is important for process and environmental monitoring and X-ray absorption techniques have several advantages in this regard, including element-specificity, chemical sensitivity, and high spectral resolution. Oxygen K-edge spectra were collected for uranyl nitrate, uranyl fluoride, and uranyl chloride, and fluorine K-edge spectra were collected for uranyl fluoride and uranium tetrafluoride. Interpretation of the data is aided by comparisons to calculated spectra. These compounds have unique spectral signatures that can be used to identify unknown samples.

  12. X-ray absorption near-edge spectroscopic study of nickel catalysts

    International Nuclear Information System (INIS)

    Soldatov, Alexander V.; Smolentsev, Grigory; Kravtsova, Antonina; Yalovega, Galina; Feiters, Martin C.; Metselaar, Gerald A.; Joly, Yves

    2006-01-01

    Ni-isocyanide and Ni-acac complexes have been studied by X-ray absorption spectroscopy. Theoretical analysis has been done using self-consistent full multiple scattering (MS) approach within both muffin-tin (MT) model of the potential and non-MT finite deference method. For the isocyanide complex, it was shown that MS theoretical spectra reproduce all structural details of the X-ray absorption near-edge structure (XANES), but also that it is important to consider the non-MT effects in the potential for a correct simulation of the shape of the pre-edge structures. The contribution of a non-constant potential in the interstitial regions is extremely important for the interpretation of the XANES of Ni(acac) 2

  13. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Westre, Tami E. [Stanford Univ., CA (United States)

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  14. Measurement of X-ray mass attenuation coefficient of nickel around the K-edge using synchrotron radiation based X-ray absorption study

    International Nuclear Information System (INIS)

    Roy, Bunty Rani; Rajput, Parasmani; Jha, S.N.; Nageswara Rao, A.S.

    2015-01-01

    The work presents the X-ray absorption fine structure (XAFS) technique for measuring the X-ray mass attenuation coefficient of nickel metal foil in the X-ray energy range of 8271.2–8849.4 eV using scanning XAFS beam line (BL-09) at Indus-2 synchrotron radiation source facility, Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore, India. The result represents the X-ray mass attenuation coefficient data for 0.02 mm thick Ni metal foil in the XAFS region of Ni K-edge. However, the results are compared to theoretical values using X-COM. There is a maximum deviation which is found exactly near the K-edge jump and decreases as we move away from the absorption edge. Oscillatory structure appears just above the observed absorption edge i.e., 8348.7 eV and is confined to around 250 eV above the edge. - Highlights: • Mass attenuation coefficient measurements of nickel using synchrotron radiation. • The measurements were taken exactly near the Ni K-edge at an energy step of 1 eV. • A maximum deviation is found near the K-edge

  15. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    Science.gov (United States)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  16. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites

    OpenAIRE

    Gandhiraman, Ram P.; Nordlund, Dennis; Javier, Cristina; Koehne, Jessica E.; Chen, Bin; Meyyappan, M.

    2014-01-01

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties...

  17. Theoretical x-ray absorption investigation of high pressure ice and compressed graphite

    International Nuclear Information System (INIS)

    Shaw, Dawn M; Tse, John S

    2007-01-01

    The x-ray absorption spectra (XAS) of high pressure ices II, VIII, and IX have been computed with the Car-Parrinello plane wave pseudopotential method. XAS for the intermediate structures obtained from uniaxial compression of hexagonal graphite along the c-axis are also studied. Whenever possible, comparisons to available experimental results are made. The reliability of the computational methods for the XAS for these structures is discussed

  18. Preliminary observations of water movement in cement pastes during curing using X-ray absorption

    DEFF Research Database (Denmark)

    Bentz, D. P.; Hansen, Kurt Kielsgaard

    2000-01-01

    X-ray absorption and concurrent mass measurements are used in quantifying water movement in 4 to 5 mm thick cement paste specimens with their top surface exposed to drying. Experimental variables examined in this preliminary study include water-to-cement (wic) ratio and open vs. capped samples....... The implications of these experimental observations for curing of concrete and application of repair materials are discussed....

  19. Atomic structure of machined semiconducting chips: An x-ray absorption spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Paesler, M.; Sayers, D.

    1988-12-01

    X-ray absorption spectroscopy (XAS) has been used to examine the atomic structure of chips of germanium that were produced by single point diamond machining. It is demonstrated that although the local (nearest neighbor) atomic structure is experimentally quite similar to that of single crystal specimens information from more distant atoms indicates the presence of considerable stress. An outline of the technique is given and the strength of XAS in studying the machining process is demonstrated.

  20. Attempt at interpreting some optical absorption bands in X-ray irradiated fluorine

    International Nuclear Information System (INIS)

    Allain, Yves

    1959-01-01

    According to the results of one of our experiments, the 575 mμ absorption band of fluorine irradiated with X-Rays seams due to F - ion vacancies. Our goal has been to find a color centers model in fluorine colored in various conditions. Reprint of a paper published in Comptes rendus des seances de l'Academie des Sciences, t. 248, p. 2318-2320, sitting of Aril 20, 1959 [fr

  1. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Chu, W.S.; Yang, F.F.; Yu, M.J.; Chen, D.L.; Guo, X.Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhou, D.W.; Shi, N. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Marcelli, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy); Niu, L.W.; Teng, M.K. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Gong, W.M. [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Benfatto, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy); Wu, Z.Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy)], E-mail: wuzy@ihep.ac.cn

    2007-09-21

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase (LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  2. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    International Nuclear Information System (INIS)

    Zhao, W.; Chu, W.S.; Yang, F.F.; Yu, M.J.; Chen, D.L.; Guo, X.Y.; Zhou, D.W.; Shi, N.; Marcelli, A.; Niu, L.W.; Teng, M.K.; Gong, W.M.; Benfatto, M.; Wu, Z.Y.

    2007-01-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase (LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations

  3. Redox Chemisty of Tantalum Clusters on Silica Characterized by X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nemana,S.; Gates, B.

    2006-01-01

    SiO{sub 2}-supported clusters of tantalum were synthesized from adsorbed Ta(CH{sub 2}Ph){sub 5} by treatment in H{sub 2} at 523 K. The surface species were characterized by X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES)) and ultraviolet-visible spectroscopy. The EXAFS data show that SiOO{sub 2}-supported tantalum clusters were characterized by a Ta-Ta coordination number of approximately 2, consistent with the presence of tritantalum clusters, on average. When these were reduced in H{sub 2} and reoxidized in O{sub 2}, the cluster nuclearity remained essentially unchanged, although reduction and oxidation occurred, respectively, as shown by XANES and UV-vis spectra; in the reoxidation, the tantalum oxidation state change was approximately two electronic charges per tritantalum cluster. The data demonstrate an analogy between the chemistry of group 5 metals on the SiO{sub 2} support and their chemistry in solution, as determined by the group of Cotton.

  4. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    International Nuclear Information System (INIS)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mächler, Jean-Pierre; Jordan, Inga; Wörner, Hans Jakob; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto; Bokhoven, Jeroen A. van

    2013-01-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented

  5. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions.

    Science.gov (United States)

    Brown, Matthew A; Redondo, Amaia Beloqui; Jordan, Inga; Duyckaerts, Nicolas; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Müächler, Jean-Pierre; Birrer, Mario; Honegger, Juri; Wetter, Reto; Wörner, Hans Jakob; van Bokhoven, Jeroen A

    2013-07-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  6. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mächler, Jean-Pierre [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland); Jordan, Inga; Wörner, Hans Jakob [Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich (Switzerland); Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Bokhoven, Jeroen A. van [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland); Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2013-07-15

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  7. Copper L X-ray spectra measured by a high resolution ion-induced X-ray spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Ryohei; Hamaguchi, Dai; Kageyama, Hiroyoshi [Kyoto Inst. of Tech. (Japan); and others

    1997-03-01

    High resolution L X-ray emission spectra of Cu have been measured by 0.75 MeV/u H, He, and F, 0.73 MeV/u Ar, 0.64 MeV/u Si, and 0.073 MeV/u Si ion impacts with a crystal spectrometer. The X-ray transition energies in the Cu target for L{iota}, L{eta}, L{alpha}{sub 1,2}, L{beta}{sub 1}, and L{beta}{sub 3,4} diagram lines induced by light ion impacts are determined, which are in good agreement with those given in the reference. The difference in L X-ray emission spectra produced by H, He, F, Si, and Ar ions are considered and the L{alpha}{sub 1,2} and L{beta}{sub 1} emission spectra are compared with the calculated ones based on the multiconfiguration Dirac-Fock method. (author)

  8. Diagnosis of laser ablated carbon particles measured by time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Ohyanagi, T.; Murakami, K.

    1995-01-01

    The time and space resolved properties of laser ablated carbon particles were measured by X-ray absorption spectroscopy using LPX as an X-ray source. The energy density of the irradiation laser on the sample was in the range of 0.5-20J/cm 2 and the time delay was varied between 0 and 120ns. The absorption spectra exhibited several peaks originated from level to level transitions and an intense broad absorption in the energy range of C-K edge. At a delay time of 120ns, the absorption peak from 1s→2p transition of neutral carbon atom (C 0 ), C - , C + and C 2+ ions were observed. The absorption peak from C 0 was stronger as the probing position was closer to the sample surface and decreased rapidly with distance from the sample surface. The absorption peak C 2+ ion was observed only at comparatively distant positions from surface. The maximum speeds of highly charged ions were faster than that of neutral atoms and negative charged ions. The neutral atom and lower charged ions were emitted from the sample even after laser irradiation. The spatial distributions of the laser ablated carbon particles in the localized helium gas environment were measured. In the helium gas environment, the ablation plume was depressed by the helium cloud generated on the top of ablation plume. (author)

  9. Theory of pump–probe ultrafast photoemission and X-ray absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, Takashi, E-mail: tfujikawa@faculty.chiba-u.jp; Niki, Kaori

    2016-01-15

    Highlights: • Pump–probe ultrafast XAFS and XPS spectra are theoretically studied. • Keldysh Green's function theory is applied. • Important many-body effects are explicitly included. - Abstract: Keldysh Green's function approach is extensively used in order to derive practical formulas to analyze pump–probe ultrafast photoemission and X-ray absorption spectra. Here the pump pulse is strong enough whereas the probe X-ray pulse can be treated by use of a perturbation theory. We expand full Green's function in terms of renormalized Green's function without the interaction between electrons and probe pulse. The present theoretical formulas allow us to handle the intrinsic and extrinsic losses, and furthermore resonant effects in X-ray Absorption Fine Structures (XAFS). To understand the radiation field screening in XPS spectra, we have to use more sophisticated theoretical approach. In the ultrafast XPS and XAFS analyses the intrinsic and extrinsic loss effects can interfere as well. In the XAFS studies careful analyses are necessary to handle extrinsic losses in terms of damped photoelectron propagation. The nonequilibrium dynamics after the pump pulse irradiation is well described by use of the time-dependent Dyson orbitals. Well above the edge threshold, ultrafast photoelectron diffraction and extended X-ray absorption fine structure (EXAFS) provide us with transient structural change after the laser pump excitations. In addition to these slow processes, the rapid oscillation in time plays an important role related to pump electronic excitations. Near threshold detailed information could be obtained for the combined electronic and structural dynamics. In particular high-energy photoemission and EXAFS are not so influenced by the details of excited states by pump pulse. Random-Phase Approximation (RPA)-boson approach is introduced to derive some practical formulas for time-dependent intrinsic amplitudes.

  10. A double cell for X-ray absorption spectrometry of atomic Zn

    CERN Document Server

    Mihelic, A; Arcon, I; Padeznik-Gomilsek, J; Borowski, M

    2002-01-01

    A high-temperature cell with a double wall design has been constructed for X-ray absorption spectrometry of metal vapors. The inner cell, assembled from a corundum tube and thin plates without welding or reshaping, serves as a container of the vapor sample. It is not vacuum tight: instead, the outer tube provides inert atmosphere. Several spectra of K-edge atomic absorption of Zn were obtained in the stationary working regime below the Zn boiling point. The K-edge profile shows an extremely strong resonance and, above the continuum threshold, coexcitations of the outer electrons.

  11. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    Science.gov (United States)

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  12. A high resolution x-ray fluorescence spectrometer for near edge absorption studies

    International Nuclear Information System (INIS)

    Stojanoff, V.; Hamalainen, K.; Siddons, D.P.; Hastings, J.B.; Berman, L.E.; Cramer, S.; Smith, G.

    1991-01-01

    A high resolution fluorescence spectrometer using a Johann geometry in a back scattering arrangement was developed. The spectrometer, with a resolution of 0.3 eV at 6.5 keV, combined with an incident beam, with a resolution of 0.7 eV, form the basis of a high resolution instrument for measuring x-ray absorption spectra. The advantages of the instrument are illustrated with the near edge absorption spectrum of dysprosium nitrate. 10 refs., 4 figs

  13. Calculations of magnetic x-ray dichroism in the 3d absorption spectra of rare-earth compounds

    NARCIS (Netherlands)

    GOEDKOOP, JB; THOLE, BT; VANDERLAAN, G; SAWATZKY, GA; DEGROOT, FMF; FUGGLE, JC; de Groot, Frank|info:eu-repo/dai/nl/08747610X

    1988-01-01

    We present atomic calculations for the recently discovered magnetic x-ray dichroism (MXD) displayed by the 3d x-ray-absorption spectra of rare-earth compounds. The spectral shapes expected at T=0 K for linear polarization parallel and normal to the local magnetic field is given, together with the

  14. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites.

    Science.gov (United States)

    Gandhiraman, Ram P; Nordlund, Dennis; Javier, Cristina; Koehne, Jessica E; Chen, Bin; Meyyappan, M

    2014-08-14

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the σ and π bonds of the graphene oxide and graphene oxide-metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the π network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp 2 -derived unoccupied states π* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network.

  15. Absorption and Phase Contrast X-Ray Imaging in Paleontology Using Laboratory and Synchrotron Sources

    Energy Technology Data Exchange (ETDEWEB)

    Bidola, Pidassa; Stockmar, Marco; Achterhold, Klaus; Pfeiffer, Franz; Pacheco, Mirian L.A.F.; Soriano, Carmen; Beckmann, Felix; Herzen, Julia

    2015-10-01

    X-ray micro-computed tomography (CT) is commonly used for imaging of samples in biomedical or materials science research. Owing to the ability to visualize a sample in a nondestructive way, X-ray CT is perfectly suited to inspect fossilized specimens, which are mostly unique or rare. In certain regions of the world where important sedimentation events occurred in the Precambrian geological time, several fossilized animals are studied to understand questions related to their origin, environment, and life evolution. This article demonstrates the advantages of applying absorption and phase-contrast CT on the enigmatic fossil Corumbella werneri, one of the oldest known animals capable of building hard parts, originally discovered in Corumba (Brazil). Different tomographic setups were tested to visualize the fossilized inner structures: a commercial laboratory-based CT device, two synchrotron-based imaging setups using conventional absorption and propagation-based phase contrast, and a commercial X-ray microscope with a lens-coupled detector system, dedicated for radiography and tomography. Based on our results we discuss the strengths and weaknesses of the different imaging setups for paleontological studies.

  16. An X-ray absorption spectroscopy study of the interactions of Ni2+ with yeast enolase.

    Science.gov (United States)

    Wang, S; Scott, R A; Lebioda, L; Zhou, Z H; Brewer, J M

    1995-05-15

    An x-ray absorption spectroscopy (XAS) study was carried out at pH 7.6 on solutions of Ni2+ and yeast enolase depleted of its physiological cofactor (Mg2+) in the presence or absence of substrate/product, the very strongly bound competitive inhibitor 2-phosphonoacetohydroxamate and Mg2+. Both "conformational" and "catalytic" Ni2+ are distorted octahedral in coordination, in agreement with several spectroscopic studies but in contrast to the coordination in the crystal at pH 6.0. The data are consistent with direct coordination of what must be the catalytic Ni2+ to the phosphate of the substrate, in agreement with some previous data but in disagreement with recent interpretations by other workers. The ligands around the metal ions obtained from the x-ray structure give simulated XAS spectra in good agreement with the observed spectra.

  17. Instrument for x-ray absorption spectroscopy with in situ electrical control characterizations

    International Nuclear Information System (INIS)

    Huang, Chun-Chao; Chang, Shu-Jui; Yang, Chao-Yao; Tseng, Yuan-Chieh; Chou, Hsiung

    2013-01-01

    We report a synchrotron-based setup capable of performing x-ray absorption spectroscopy and x-ray magnetic circular dichroism with simultaneous electrical control characterizations. The setup can enable research concerning electrical transport, element- and orbital-selective magnetization with an in situ fashion. It is a unique approach to the real-time change of spin-polarized electronic state of a material/device exhibiting magneto-electric responses. The performance of the setup was tested by probing the spin-polarized states of cobalt and oxygen of Zn 1-x Co x O dilute magnetic semiconductor under applied voltages, both at low (∼20 K) and room temperatures, and signal variations upon the change of applied voltage were clearly detected

  18. Retracted-Enhanced X-Ray Absorption Property of Gold-Doped Single Wall Carbon Nanotube

    Directory of Open Access Journals (Sweden)

    Alimin Alimin

    2015-11-01

    Full Text Available Enhanced X-ray absorption property of single wall carbon nanotube (SWCNT through gold (Au doping (Au@SWCNT has been studied. Mass attenuation coefficient of SWCNT increased 5.2-fold after Au doping treatment. The use of ethanol in the liquid phase adsorption could produce Au nanoparticles as confirmed by the X-ray Diffraction (XRD patterns. The possibility of gold nanoparticles encapsulated in the internal tube space of SWCNT was observed by transmission electron microscope technique. A significant decrease of nitrogen uptakes and upshifts of Radial Breathing Mode (RBM of Au@SWCNT specimen suggest that the nanoparticles might be encapsulated in the internal tube spaces of the nanotube. In addition, a decrease intensity of XRD pattern of Au@SWCNT at around 2θ ≈ 2.6° supports the suggestion that Au nanoparticles are really encapsulated into SWCNT.

  19. X-ray extended-range technique for precision measurement of the x-ray mass attenuation coefficient and IM(F) for copper using synchrotron radiation

    International Nuclear Information System (INIS)

    Tran, C.Q.; Paterson, D.; Barnea, Z.; Cookson, D.J.; Chantler, C.T.

    2000-01-01

    Full text: Complex X-ray form factors are used in crystallography, material science, medical diagnosis refractive index studies and XAFS. We introduce the X-ray Extended-Range Technique for measurements of the imaginary component of the atomic form factor. We achieve accuracies of 0.27%-0.5% for copper from 8.84 keV to 20 keV. Discrepancies between measurements using earlier experimental techniques are 10%. We achieve reproducibility of 0.02%. New methods of computation are required to approach the accuracy of our data. Results probe the transform of atomic orbital wavefunctions and long-range order. Discrepancies of order 10% between current theory and experiments can be addressed

  20. X-RAY ABSORPTION, NUCLEAR INFRARED EMISSION, AND DUST COVERING FACTORS OF AGNs: TESTING UNIFICATION SCHEMES

    Energy Technology Data Exchange (ETDEWEB)

    Mateos, S.; Carrera, F. J.; Alonso-Herrero, A.; Hernán-Caballero, A.; Barcons, X. [Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), E-39005, Santander (Spain); Ramos, A. Asensio; Almeida, C. Ramos [Instituto de Astrofísica de Canarias, E-38205, La Laguna, Tenerife (Spain); Watson, M. G.; Blain, A. [Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Caccianiga, A.; Ballo, L. [INAF-Osservatorio Astronomico di Brera, via Brera 28, I-20121 Milano (Italy); Braito, V., E-mail: mateos@ifca.unican.es [INAF-Osservatorio Astronomico di Brera, Via Bianchi 46, I-23807 Merate (Italy)

    2016-03-10

    We present the distributions of the geometrical covering factors of the dusty tori (f{sub 2}) of active galactic nuclei (AGNs) using an X-ray selected complete sample of 227 AGNs drawn from the Bright Ultra-hard XMM-Newton Survey. The AGNs have z from 0.05 to 1.7, 2–10 keV luminosities between 10{sup 42} and 10{sup 46} erg s{sup −1}, and Compton-thin X-ray absorption. Employing data from UKIDSS, 2MASS, and the Wide-field Infrared Survey Explorer in a previous work, we determined the rest-frame 1–20 μm continuum emission from the torus, which we model here with the clumpy torus models of Nenkova et al. Optically classified type 1 and type 2 AGNs are intrinsically different, with type 2 AGNs having, on average, tori with higher f{sub 2} than type 1 AGNs. Nevertheless, ∼20% of type 1 AGNs have tori with large covering factors, while ∼23%–28% of type 2 AGNs have tori with small covering factors. Low f{sub 2} are preferred at high AGN luminosities, as postulated by simple receding torus models, although for type 2 AGNs the effect is certainly small. f{sub 2} increases with the X-ray column density, which implies that dust extinction and X-ray absorption take place in material that share an overall geometry and most likely belong to the same structure, the putative torus. Based on our results, the viewing angle, AGN luminosity, and also f{sub 2} determine the optical appearance of an AGN and control the shape of the rest-frame ∼1–20 μm nuclear continuum emission. Thus, the torus geometrical covering factor is a key ingredient of unification schemes.

  1. First combined total reflection X-ray fluorescence and grazing incidence X-ray absorption spectroscopy characterization of aeolian dust archived in Antarctica and Alpine deep ice cores

    Energy Technology Data Exchange (ETDEWEB)

    Cibin, G. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxon OX110DE (United Kingdom); IMONT/EIM, Ente Italiano della Montagna, P.za dei Caprettari 70, 00176 Roma (Italy); Universita' degli Studi di Roma Tre, Dipartimento di Scienze Geologiche, L.go S. Leonardo Murialdo 1, 00146 Roma (Italy)], E-mail: giannantonio.cibin@diamond.ac.uk; Marcelli, A. [INFN - Laboratori Nazionali di Frascati, P.O. Box 13, 00044 Frascati (Roma) (Italy); Maggi, V. [Universita degli Studi di Milano-Bicocca, Dipartimento di Scienze dell' Ambiente e del Territorio, Piazza della Scienza 1, 20126 Milano (Italy); Sala, M. [Universita degli Studi di Milano-Bicocca, Dipartimento di Scienze dell' Ambiente e del Territorio, Piazza della Scienza 1, 20126 Milano (Italy); Universita degli Studi di Milano, Dipartimento di Scienze della Terra ' A. Desio' , Sez. Mineralogia, Via Mangiagalli 34, 20133 Milano (Italy); Marino, F.; Delmonte, B. [Universita degli Studi di Milano-Bicocca, Dipartimento di Scienze dell' Ambiente e del Territorio, Piazza della Scienza 1, 20126 Milano (Italy); Albani, S. [Universita degli Studi di Milano-Bicocca, Dipartimento di Scienze dell' Ambiente e del Territorio, Piazza della Scienza 1, 20126 Milano (Italy); Universita degli Studi di Siena, Dottorato in Scienze Polari, via Laterina 8, 53100 Siena (Italy); Pignotti, S. [IMONT/EIM, Ente Italiano della Montagna, P.za dei Caprettari 70, 00176 Roma (Italy)

    2008-12-15

    Aeolian mineral dust archived in polar and mid latitude ice cores represents a precious proxy for assessing environmental and climatic variations at different timescales. In this respect, the identification of dust mineralogy plays a key role. In this work we performed the first preliminary X-ray absorption spectroscopy (XAS) experiments on mineral dust particles extracted from Antarctic and from Alpine firn cores using grazing incidence geometry at the Fe K-edge. A dedicated high vacuum experimental chamber was set up for normal-incidence and total-reflection X-Ray Fluorescence and Absorption Spectroscopy analyses on minor amounts of mineral materials at the Stanford Synchrotron Radiation Laboratory. Results show that this experimental technique and protocol allows recognizing iron inclusion mineral fraction on insoluble dust in the 1-10 {mu}g range.

  2. First combined total reflection X-ray fluorescence and grazing incidence X-ray absorption spectroscopy characterization of aeolian dust archived in Antarctica and Alpine deep ice cores

    International Nuclear Information System (INIS)

    Cibin, G.; Marcelli, A.; Maggi, V.; Sala, M.; Marino, F.; Delmonte, B.; Albani, S.; Pignotti, S.

    2008-01-01

    Aeolian mineral dust archived in polar and mid latitude ice cores represents a precious proxy for assessing environmental and climatic variations at different timescales. In this respect, the identification of dust mineralogy plays a key role. In this work we performed the first preliminary X-ray absorption spectroscopy (XAS) experiments on mineral dust particles extracted from Antarctic and from Alpine firn cores using grazing incidence geometry at the Fe K-edge. A dedicated high vacuum experimental chamber was set up for normal-incidence and total-reflection X-Ray Fluorescence and Absorption Spectroscopy analyses on minor amounts of mineral materials at the Stanford Synchrotron Radiation Laboratory. Results show that this experimental technique and protocol allows recognizing iron inclusion mineral fraction on insoluble dust in the 1-10 μg range

  3. Development of an x-ray beam line at the NSLS for studies in materials science using x-ray absorption spectroscopy: Annual progress report

    International Nuclear Information System (INIS)

    Sayers, D.E.

    1987-01-01

    The research programs reported span virtually the entire range of condensed matter studies involving the fields of solid state physics, chemistry, electrochemistry, materials science and biochemistry. Results are discussed for various groups. Topics reported include work on amorphous chalcogenide semiconductors, particularly photostructural changes, kinetics of structural changes and rapid quenching, bond strengths, force constants and phonons. Also reported are temperature dependent EXAFS studies of bonding in high temperature alloys, amorphous systems, disordered alloys and studies of resolve electronic structure, EXAFS and XANES studies of permanent magnet systems based on Nd 2 Fe 14 B, glancing angle EXAFS study of Nb/Al and Nb/Si interfacial systems, x-ray absorption of krypton-implanted solids and high dose implants into silicon, and x-ray absorption and EXAFS studies of superconducting oxide compounds of Cu and related magnetic systems. Work is also reported on XAFS measurements on the icosahedral phase

  4. Highly ionized copper contribution to the soft X-ray emission in a plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Zoita, V; Patran, A [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania); Larour, J [Ecole Polytechnique, Palaiseau (France). Lab. de Physique des Milieux Ionises

    1997-12-31

    In order to discriminate between the contributions of the gas plasma and of the anode (solid or plasma) to the soft X-ray emission in a plasma focus device, a series of experiments was carried out using the following combinations of experimental conditions: various gases, different absorption filters and viewing different regions in front of the centre electrode. The experiments were performed on the IPF-2/20 plasma focus device using the following working gases: helium, neon and helium-argon mixtures. The diagnostics used: magnetic probe for current derivative, PIN diode for the minimum pinch radius detection, PIN diodes for the soft X-ray emission, scintillator-photomultiplier detector for the hard X-ray emission. From the analysis of the various diagnostics data recorded with very good time correlation, it followed that the soft K-ray signals had a strong contribution from optical transitions of the highly ionised Cu (Cu XX to XXII) emitting in the range 0.8-1.3 nm. (author). 7 figs., 9 refs.

  5. Controlled agglomeration of Tb-doped Y2O3 nanocrystals studied by x-ray absorption fine structure, x-ray excited luminescence, and photoluminescence

    International Nuclear Information System (INIS)

    Soo, Y.L.; Huang, S.W.; Kao, Y.H.; Chhabra, V.; Kulkarni, B.; Veliadis, J.V.; Bhargava, R.N.

    1999-01-01

    Local environment surrounding Y atoms in Y 2 O 3 :Tb nanocrystals under various heat treatment conditions has been investigated by using the extended x-ray absorption fine structure (EXAFS) technique. X-ray excited luminescence (XEL) with the incident x-ray energy near Y K edge and Tb L edges has also been measured to investigate the mechanisms of x-ray-to-visible down conversion in these doped nanoparticles. The observed changes in EXAFS, XEL, and photoluminescent data can be explained on the basis of increased average size of the nanoparticles as confirmed by transmission electron microscopy studies. Our results thus demonstrate that the doped nanoparticles can agglomerate to a controllable degree by varying the heat treatment temperature. At higher temperatures, the local environment surrounding Y atoms in the nanoparticles is found to become similar to that in bulk Y 2 O 3 while the XEL output still shows the characteristics of nanocrystals. These results indicate that appropriate heat treatment can afford an effective means to control the intensity and signal-to-background ratio of green luminescence output of these doped nanocrystal phosphors, potentially useful for some device applications. copyright 1999 American Institute of Physics

  6. Quantitative x-ray absorption imaging with a broadband source: application to high-intensity discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)], E-mail: jjcurry@nist.gov

    2008-07-21

    The case of x-ray absorption imaging in which the x-ray source is broadband and the detector does not provide spectral resolution is analysed. The specific motivation is observation of the Hg vapour distribution in high-intensity discharge (HID) lamps. When absorption by the vapour is small, the problem can be couched accurately in terms of a mean absorption cross section averaged over the x-ray spectral distribution, weighted by the energy-dependent response of the detector. The method is tested against a Au foil standard and then applied to Hg. The mean absorption cross section for Hg is calculated for a Ag-anode x-ray tube at accelerating voltages of 25, 30 and 35 kV, and for HIDs in fused silica or polycrystalline alumina arc tubes.

  7. Study Of Soot Growth And Nucleation By A Time-Resolved Synchrotron Radiation Based X-Ray Absorption Method

    National Research Council Canada - National Science Library

    Mitchell, Judith I

    2001-01-01

    This report results from a contract tasking University of Rennes I as follows: The contractor will perform a study of soot growth and nucleation by a time-resolved synchrotron radiation based x-ray absorption method...

  8. X-ray Absorption Spectroscopy Unveils the Formation of Gold Nanoparticles in Corn X-ray Absorption Spectroscopy Unveils the Formation of Gold Nanoparticles in Corn

    Directory of Open Access Journals (Sweden)

    Gustavo Cruz-Jiménez

    2012-02-01

    Full Text Available En este estudio se determinó, mediante espectroscopía de absorción de rayos-X, la posible biotransformación de oro en maíz (variedad Golden que se germinó y creció en KAuCl4. Adicionalmente se investigó el efecto de la tiourea y el tiocianato de amonio en la absorción de oro por la planta de maíz. Los resultados indicaron que concentraciones menores a 160 mg Au/L, no afectaron la germinación o el crecimiento de las plántulas. Tanto la tiourea como el tiocianato de amonio incrementaron 6 veces el contenido de oro en las raíces, mientras que la tiourea provocó un incremento de 10 veces la concentración de oro en tallos con respecto a los tratamientos sin este compuesto. El 91% del oro en el maíz se encontró como Au(0 y el resto como Au(III. Los análisis de estructura fi na revelaron que el oro se encontraba con un número de coordinación de 9,5 aproximadamente a 2,86 Å, indicando una esfera de coordinación incompleta, lo cual implica la presencia de una nano-fase. Usando la ecuación de Borowski se determinó que las nanopartículas tenían un tamaño promedio de 10,36 nm.In this study, X-ray absorption spectroscopy was used to determine the possible gold biotransformation by Zea mays (corn var. Golden, germinated and grown in a medium spikedwith KAuCl4. In addition, the gold uptake capacity of corn assisted by thiourea and ammoniumthiocyanate was investigated. Results showed that up to 160 mg/L, gold did no treduce corn seed germination or plant growth. Both thiourea and ammonium thiocyanateresulted in a 6-fold increase of gold concentration in roots and thiourea promoted a 10-fold increase of gold concentration in shoots. X-ray absorption near edge structure studies demonstrated that approximately 91% of the gold present in plant samples was Au(0. Theremaining 9% was present as Au(III. In addition, extended X-ray absorption fi ne structureresults showed that in corn roots, the gold coordination number was around 9

  9. Plutonium-uranium mixed oxide characterization by coupling micro-X-ray diffraction and absorption investigations

    Science.gov (United States)

    Degueldre, C.; Martin, M.; Kuri, G.; Grolimund, D.; Borca, C.

    2011-09-01

    Plutonium-uranium mixed oxide (MOX) fuels are currently used in nuclear reactors. The potential differences of metal redox state and microstructural developments of the matrix before and after irradiation are commonly analysed by electron probe microanalysis. In this work the structure and next-neighbor atomic environments of Pu and U oxide features within unirradiated homogeneous MOX and irradiated (60 MW d kg -1) MOX samples was analysed by micro-X-ray fluorescence (μ-XRF), micro-X-ray diffraction (μ-XRD) and micro-X-ray absorption fine structure (μ-XAFS) spectroscopy. The grain properties, chemical bonding, valences and stoichiometry of Pu and U are determined from the experimental data gained for the unirradiated as well as for irradiated fuel material examined in the center of the fuel as well as in its peripheral zone (rim). The formation of sub-grains is observed as well as their development from the center to the rim (polygonization). In the irradiated sample Pu remains tetravalent (>95%) and no (oxidation in the rim zone. Any slight potential plutonium oxidation is buffered by the uranium dioxide matrix while locally fuel cladding interaction could also affect the redox of the fuel.

  10. Hydrothermal Diamond Anvil Cell (HDAC): From Visual Observation to X-ray Absorption Spectroscopy

    Science.gov (United States)

    Bassett, W. A.; Mibe, K.

    2006-05-01

    A fluid sample contained in a Re gasket between two diamond anvils can be subjected to pressures up to 2.5 GPa and temperatures up to 1200°C in a resistively heated hydrothermal diamond anvil cell (HDAC). Thermocouples are used to measure temperature. The constant-volume sample chamber permits isochoric measurements that can be used to determine pressure from the equation of state of H2O and to map phases and properties in P-T space. A movie of reactions between K-feldspar and water up to 2.5 GPa and 880°C illustrates the use of visual observations for mapping coexisting solution, melt, and solid phases. X-ray absorption spectroscopy of ZnBr2 in solution up to 500°C and 500 MPa shows hydrogen bond breaking in the hydration shells of the ZnBr42- and Br- ions with increasing temperature. In other studies the stability field of ikaite (CaCO3·6H2O) has been mapped by visual observation and Raman spectroscopy; the phases of montmorillonite have been mapped by X-ray diffraction; and the leaching of Pb from zircon has been measured by X-ray microprobe.

  11. Modern Progress and Modern Problems in High Resolution X-ray Absorption from the Cold Interstellar Medium

    Science.gov (United States)

    Corrales, Lia; Li, Haochuan; Heinz, Sebastian

    2018-01-01

    With accurate cross-sections and higher signal-to-noise, X-ray spectroscopy can directly measure Milky Way gas and dust-phase metal abundances with few underlying assumptions. The X-ray energy band is sensitive to absorption by all abundant interstellar metals — carbon, oxygen, neon, silicon, magnesium, and iron — whether they are in gas or dust form. High resolution X-ray spectra from Galactic X-ray point sources can be used to directly measure metal abundances from all phases of the interstellar medium (ISM) along singular sight lines. We show our progress for measuring the depth of photoelectric absorption edges from neutral ISM metals, using all the observations of bright Galactic X-ray binaries available in the Chandra HETG archive. The cross-sections we use take into account both the absorption and scattering effects by interstellar dust grains on the iron and silicate spectral features. However, there are many open problems for reconciling X-ray absorption spectroscopy with ISM observations in other wavelengths. We will review the state of the field, lab measurements needed, and ways in which the next generation of X-ray telescopes will contribute.

  12. A new flexible monochromator setup for quick scanning x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stoetzel, J.; Luetzenkirchen-Hecht, D.; Frahm, R. [Fachbereich C, Physik, Bergische Universitaet Wuppertal, Gaussstr. 20, 42097 Wuppertal (Germany)

    2010-07-15

    A new monochromator setup for quick scanning x-ray absorption spectroscopy in the subsecond time regime is presented. Novel driving mechanics allow changing the energy range of the acquired spectra by remote control during data acquisition for the first time, thus dramatically increasing the flexibility and convenience of this method. Completely new experiments are feasible due to the fact that time resolution, edge energy, and energy range of the acquired spectra can be changed continuously within seconds without breaking the vacuum of the monochromator vessel and even without interrupting the measurements. The advanced mechanics are explained in detail and the performance is characterized with x-ray absorption spectra of pure metal foils. The energy scale was determined by a fast and accurate angular encoder system measuring the Bragg angle of the monochromator crystal with subarcsecond resolution. The Bragg angle range covered by the oscillating crystal can currently be changed from 0 deg. to 3.0 deg. within 20 s, while the mechanics are capable to move with frequencies of up to ca. 35 Hz, leading to ca. 14 ms/spectrum time resolution. A new software package allows performing programmed scan sequences, which enable the user to measure stepwise with alternating parameters in predefined time segments. Thus, e.g., switching between edges scanned with the same energy range is possible within one in situ experiment, while also the time resolution can be varied simultaneously. This progress makes the new system extremely user friendly and efficient to use for time resolved x-ray absorption spectroscopy at synchrotron radiation beamlines.

  13. X-ray Absorption Spectroscopy Characterization of Electrochemical Processes in Renewable Energy Storage and Conversion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Farmand, Maryam [George Washington Univ., Washington, DC (United States)

    2013-05-19

    The development of better energy conversion and storage devices, such as fuel cells and batteries, is crucial for reduction of our global carbon footprint and improving the quality of the air we breathe. However, both of these technologies face important challenges. The development of lower cost and better electrode materials, which are more durable and allow more control over the electrochemical reactions occurring at the electrode/electrolyte interface, is perhaps most important for meeting these challenges. Hence, full characterization of the electrochemical processes that occur at the electrodes is vital for intelligent design of more energy efficient electrodes. X-ray absorption spectroscopy (XAS) is a short-range order, element specific technique that can be utilized to probe the processes occurring at operating electrode surfaces, as well for studying the amorphous materials and nano-particles making up the electrodes. It has been increasingly used in recent years to study fuel cell catalysts through application of the and #916; and mgr; XANES technique, in combination with the more traditional X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) techniques. The and #916; and mgr; XANES data analysis technique, previously developed and applied to heterogeneous catalysts and fuel cell electrocatalysts by the GWU group, was extended in this work to provide for the first time space resolved adsorbate coverages on both electrodes of a direct methanol fuel cell. Even more importantly, the and #916; and mgr; technique was applied for the first time to battery relevant materials, where bulk properties such as the oxidation state and local geometry of a cathode are followed.

  14. Automated generation and ensemble-learned matching of X-ray absorption spectra

    Science.gov (United States)

    Zheng, Chen; Mathew, Kiran; Chen, Chi; Chen, Yiming; Tang, Hanmei; Dozier, Alan; Kas, Joshua J.; Vila, Fernando D.; Rehr, John J.; Piper, Louis F. J.; Persson, Kristin A.; Ong, Shyue Ping

    2018-03-01

    X-ray absorption spectroscopy (XAS) is a widely used materials characterization technique to determine oxidation states, coordination environment, and other local atomic structure information. Analysis of XAS relies on comparison of measured spectra to reliable reference spectra. However, existing databases of XAS spectra are highly limited both in terms of the number of reference spectra available as well as the breadth of chemistry coverage. In this work, we report the development of XASdb, a large database of computed reference XAS, and an Ensemble-Learned Spectra IdEntification (ELSIE) algorithm for the matching of spectra. XASdb currently hosts more than 800,000 K-edge X-ray absorption near-edge spectra (XANES) for over 40,000 materials from the open-science Materials Project database. We discuss a high-throughput automation framework for FEFF calculations, built on robust, rigorously benchmarked parameters. FEFF is a computer program uses a real-space Green's function approach to calculate X-ray absorption spectra. We will demonstrate that the ELSIE algorithm, which combines 33 weak "learners" comprising a set of preprocessing steps and a similarity metric, can achieve up to 84.2% accuracy in identifying the correct oxidation state and coordination environment of a test set of 19 K-edge XANES spectra encompassing a diverse range of chemistries and crystal structures. The XASdb with the ELSIE algorithm has been integrated into a web application in the Materials Project, providing an important new public resource for the analysis of XAS to all materials researchers. Finally, the ELSIE algorithm itself has been made available as part of veidt, an open source machine-learning library for materials science.

  15. Operando Soft X-ray Absorption Spectroscopic Study on a Solid Oxide Fuel Cell Cathode during Electrochemical Oxygen Reduction.

    Science.gov (United States)

    Nakamura, Takashi; Oike, Ryo; Kimura, Yuta; Tamenori, Yusuke; Kawada, Tatsuya; Amezawa, Koji

    2017-05-09

    An operando soft X-ray absorption spectroscopic technique, which enabled the analysis of the electronic structures of the electrode materials at elevated temperature in a controlled atmosphere and electrochemical polarization, was established and its availability was demonstrated by investigating the electronic structural changes of an La 2 NiO 4+δ dense-film electrode during an electrochemical oxygen reduction reaction. Clear O K-edge and Ni L-edge X-ray absorption spectra could be obtained below 773 K under an atmospheric pressure of 100 ppm O 2 /He, 0.1 % O 2 /He, and 1 % O 2 /He gas mixtures. Considerable spectral changes were observed in the O K-edge X-ray absorption spectra upon changing the PO2 and application of electrical potential, whereas only small spectral changes were observed in Ni L-edge X-ray absorption spectra. A pre-edge peak of the O K-edge X-ray absorption spectra, which reflects the unoccupied partial density of states of Ni 3d-O 2p hybridization, increased or decreased with cathodic or anodic polarization, respectively. The electronic structural changes of the outermost orbital of the electrode material due to electrochemical polarization were successfully confirmed by the operando X-ray absorption spectroscopic technique developed in this study. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Investigation of periodically driven systems by x-ray absorption spectroscopy using asynchronous data collection mode

    Science.gov (United States)

    Singh, H.; Donetsky, D.; Liu, J.; Attenkofer, K.; Cheng, B.; Trelewicz, J. R.; Lubomirsky, I.; Stavitski, E.; Frenkel, A. I.

    2018-04-01

    We report the development, testing, and demonstration of a setup for modulation excitation spectroscopy experiments at the Inner Shell Spectroscopy beamline of National Synchrotron Light Source - II. A computer algorithm and dedicated software were developed for asynchronous data processing and analysis. We demonstrate the reconstruction of X-ray absorption spectra for different time points within the modulation pulse using a model system. This setup and the software are intended for a broad range of functional materials which exhibit structural and/or electronic responses to the external stimulation, such as catalysts, energy and battery materials, and electromechanical devices.

  17. HIGHER ORDER SPECIATION EFFECTS ON PLUTONIUM L3 X-RAY ABSORPTION NEAR EDGE SPECTRA.

    Energy Technology Data Exchange (ETDEWEB)

    Conradson, Steven D.; Abney, Kent D.; Begg, Bruce D.; Brady, Erik D.; Clark, David L.; den Auwer, Christophe; Ding, Mei; Dorhout, Peter K.; Espinosa-Faller, Francisco J.; Gordon, Pamela L.; Hess, Nancy J.; Hess, Ryan F.; Keogh, D. Webster; Lander, Gerard H.; Lupinetti, Anthony J.; Neu, Mary P.; Palmer, Phillip D.; Paviet-Hartmann, Patricia; Reilly, Sean D.; Runde, Wolfgang H.; Tait, C. Drew; Veirs, D. Kirk

    2003-06-09

    Pu L{sub 3} X-ray Near Edge Absorption Spectra for Pu(0-VII) are reported for more than 50 chalcogenides, chlorides, hydrates, hydroxides, nitrates, carbonates, oxy-hydroxides, and other compounds both as solids and in solution, and substituted in zirconlite, perovksite, and borosilicate glass. This large data base extends the known correlations between the energy and shape of these spectra from the usual association of the XANES with valence and site symmetry to higher order chemical effects. Because of the large number of compounds of these different types a number of novel and unexpected behaviors are observed.

  18. An x-ray absorption spectroscopy study of Cd binding onto a halophilic archaeon

    International Nuclear Information System (INIS)

    Showalter, Allison R; Bunker, Bruce A; Szymanowski, Jennifer E S; Fein, Jeremy B

    2016-01-01

    X-ray absorption spectroscopy (XAS) and cadmium (Cd) isotherm experiments determine how Cd adsorbs to the surface of halophilic archaeon Halobacterium noricense . This archaeon, isolated from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico could be involved with the transport of toxic metals stored in the transuranic waste in the salt mine. The isotherm experiments show that adsorption is relatively constant across the tolerable pH range for H. noricense . The XAS results indicate that Cd adsorption occurs predominately via a sulfur site, most likely sulfhydryl, with the same site dominating all measured pH values. (paper)

  19. An x-ray absorption spectroscopy study of Cd binding onto a halophilic archaeon

    Science.gov (United States)

    Showalter, Allison R.; Szymanowski, Jennifer E. S.; Fein, Jeremy B.; Bunker, Bruce A.

    2016-05-01

    X-ray absorption spectroscopy (XAS) and cadmium (Cd) isotherm experiments determine how Cd adsorbs to the surface of halophilic archaeon Halobacterium noricense. This archaeon, isolated from the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico could be involved with the transport of toxic metals stored in the transuranic waste in the salt mine. The isotherm experiments show that adsorption is relatively constant across the tolerable pH range for H. noricense. The XAS results indicate that Cd adsorption occurs predominately via a sulfur site, most likely sulfhydryl, with the same site dominating all measured pH values.

  20. A laser heating facility for energy-dispersive X-ray absorption spectroscopy

    DEFF Research Database (Denmark)

    Kantor, Innokenty; Marini, C.; Mathon, O.

    2018-01-01

    A double-sided laser heating setup for diamond anvil cells installed on the ID24 beamline of the ESRF is presented here. The setup geometry is specially adopted for the needs of energy-dispersive X-ray absorption spectroscopic (XAS) studies of materials under extreme pressure and temperature...... conditions. We illustrate the performance of the facility with a study on metallic nickel at 60 GPa. The XAS data provide the temperature of the melting onset and quantitative information on the structural parameters of the first coordination shell in the hot solid up to melting....

  1. X-Ray Absorption Spectra of Water from First Principles Calculations

    International Nuclear Information System (INIS)

    Prendergast, David; Galli, Giulia

    2006-01-01

    We present a series of ab initio calculations of the x-ray absorption cross section (XAS) of ice and liquid water at ambient conditions. Our results show that all available experimental data and theoretical results are consistent with the standard model of the liquid as comprising molecules with approximately four hydrogen bonds. Our simulations of ice XAS including the lowest lying excitonic state are in excellent agreement with experiment and those of a quasitetrahedral model of water are in reasonable agreement with recent measurements. Hence we propose that the standard, quasitetrahedral model of water, although approximate, represents a reasonably accurate description of the local structure of the liquid

  2. Extended X-ray absorption fine structure (EXAFS) studies of supported catalysts

    International Nuclear Information System (INIS)

    Joyner, R.W.

    1979-01-01

    Since the rebirth of interest in extended X-ray absorption fine structure there have been several studies of systems of catalytic interest. This note is a preliminary account of an investigation of supported platinum catalysts and NiO/Al 2 O 3 catalysts. Experiments were performed on pressed disc samples at the DESY synchrotron, Hamburg, using the EXAFS spectrometer. The synchrotron operated at 7 GeV energy with a circulating current of approximately 4 mA; spectrum accumulation time was typically 45 minutes. (author)

  3. Synchrotron radiation spectroscopy including X-ray absorption spectroscopy and industrial applications

    International Nuclear Information System (INIS)

    Oshima, Masaharu

    2016-01-01

    Recent trends of synchrotron radiation spectroscopy, especially X-ray absorption spectroscopy for industrial applications are introduced based on our latest results for energy efficient devices such as magnetic RAM, LSI and organic FET, power generation devices such as fuel cells, and energy storage devices such as Li ion batteries. Furthermore, future prospects of spectroscopy with higher energy resolution, higher spatial resolution, higher temporal resolution and operando spectroscopy taking advantage of much brighter synchrotron radiation beam at low emittance SR rings are discussed from the view point of practical applications. (author)

  4. Strontium Localization in Bone Tissue Studied by X-Ray Absorption Spectroscopy

    DEFF Research Database (Denmark)

    Frankær, Christian Grundahl; Raffalt, Anders Christer; Ståhl, Kenny

    2014-01-01

    Strontium has recently been introduced as a pharmacological agent for the treatment and prevention of osteoporosis. We determined the localization of strontium incorporated into bone matrix from dogs treated with Sr malonate by X-ray absorption spectroscopy. A new approach for analyzing the X...... highly ordered sites, and at least 30 % is located at less ordered sites where only the first solvation shell is resolved, suggesting that strontium is sur- rounded by only oxygen atoms similar to Sr2? in solution. Strontium was furthermore shown to be absorbed in collagen in which it obtains a higher...

  5. Extension to Low Energies (<7keV) of High Pressure X-Ray Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Itie, J.-P.; Flank, A.-M.; Lagarde, P.; Idir, M.; Polian, A.; Couzinet, B.

    2007-01-01

    High pressure x-ray absorption has been performed down to 3.6 keV, thanks to the new LUCIA beamline (SLS, PSI) and to the use of perforated diamonds or Be gasket. Various experimental geometries are proposed, depending on the energy of the edge and on the concentration of the studied element. A few examples will be presented: BaTiO3 at the titanium K edge, Zn0.95 Mn0.05O at the manganese K edge, KCl at the potassium K edge

  6. Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis: Advantages and Limitations

    International Nuclear Information System (INIS)

    Frenkel, A.I.; Hanson, J.; Wang, Q.; Marinkovic, N.; Chen, J.G.; Barrio, L.; Si, R.; Lopez Camara, A.; Estrella, A.M.; Rodriguez, J.A.

    2011-01-01

    Recent advances in catalysis instrumentations include synchrotron-based facilities where time-resolved X-ray scattering and absorption techniques are combined in the same in situ or operando experiment to study catalysts at work. To evaluate the advances and limitations of this method, we performed a series of experiments at the new XAFS/XRD instrument in the National Synchrotron Light Source. Nearly simultaneous X-ray diffraction (XRD) and X-ray absorption fine-structure (XAFS) measurements of structure and kinetics of several catalysts under reducing or oxidizing conditions have been performed and carefully analyzed. For CuFe 2 O 4 under reducing conditions, the combined use of the two techniques allowed us to obtain accurate data on kinetics of nucleation and growth of metallic Cu. For the inverse catalyst CuO/CeO 2 that underwent isothermal reduction (with CO) and oxidation (with O 2 ), the XAFS data measured in the same experiment with XRD revealed strongly disordered Cu species that went undetected by diffraction. These and other examples emphasize the unique sensitivity of these two complementary methods to follow catalytic processes in the broad ranges of length and time scales.

  7. Platform development of x-ray absorption-based temperature measurements above 100-eV on the OMEGA laser

    Science.gov (United States)

    Workman, Jonathan; Keiter, P.; Tierney, T.; Tierney, H.; Belle, K.; Magelssen, G.; Peterson, R.; Fryer, C.; Comley, A.; Taylor, M.

    2007-11-01

    Experiments were performed on the OMEGA laser system at the University of Rochester to measure radiation temperature in hohlraum-heated foams. Using x-ray absorption spectroscopy in the 3-6-keV x-ray range allows temperature determination in the range of 50-200-eV. Uranium, bismuth and gold M-shell x-ray emission were used as broadband backlighters. Backlighter absorption through heated chlorinated foam and scandium tracers were used to determine temperatures. The development of this technique in the temperature range of 100-200-eV will be used for platform development of future NIF experiments. We will present time-integrated and time-resolved measurements of x-ray emission from the backlighter materials as well as absorption measurements trough the heated tracer materials. We will also present future directions in the development of this platform.

  8. First-principles calculations of K-shell X-ray absorption spectra for warm dense nitrogen

    International Nuclear Information System (INIS)

    Li, Zi; Zhang, Shen; Kang, Wei; Wang, Cong; Zhang, Ping

    2016-01-01

    X-ray absorption spectrum is a powerful tool for atomic structure detection on warm dense matter. Here, we perform first-principles molecular dynamics and X-ray absorption spectrum calculations on warm dense nitrogen along a Hugoniot curve. From the molecular dynamics trajectory, the detailed atomic structures are examined for each thermodynamical condition. The K-shell X-ray absorption spectrum is calculated, and its changes with temperature and pressure along the Hugoniot curve are discussed. The warm dense nitrogen systems may contain isolated nitrogen atoms, N 2 molecules, and nitrogen clusters, which show quite different contributions to the total X-ray spectrum due to their different electron density of states. The changes of X-ray spectrum along the Hugoniot curve are caused by the different nitrogen structures induced by the temperature and the pressure. Some clear signatures on X-ray spectrum for different thermodynamical conditions are pointed out, which may provide useful data for future X-ray experiments.

  9. Thermal expansion behavior study of Co nanowire array with in situ x-ray diffraction and x-ray absorption fine structure techniques

    Science.gov (United States)

    Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua

    2008-10-01

    In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.

  10. Magnetic and structural properties of Fe/Pd multilayers studied by magnetic x-ray dichroism and x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Mini, S.M.; Fullerton, E.E.; Sowers, C.H.; Fontaine, A.; Pizzini, S.; Bommannavar, A.S.; Traverse, A.; Baudelet, F.

    1994-12-01

    The results of magnetic circular x-ray dichroism (MCXD) measurements and extended x-ray absorption fine structure measurements (EXAFS) of the Fe K-edges of textured Fe(110)/Pd(111) multilayers are reported. The EXAFS results indicates that the iron in the system goes from bcc to a more densely packed system as the thickness of the iron layer is decreased. The magnetic properties were measured by SQUID magnetometry from 5-350 K. For all the samples, the saturation magnetization was significantly enhanced over the bulk values indicating the interface Pd atoms are polarized by the Fe layer. The enhancement corresponds to a moment of ∼2.5μ B per interface Pd atom

  11. What is the correct Fe L{sub 23} X-ray absorption spectrum of magnetite?

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaohui; Kalirai, Samanbir S. [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1 (Canada); Hitchcock, Adam P., E-mail: aph@mcmaster.ca [Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1 (Canada); Bazylinski, Dennis A. [School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154-4004 (United States)

    2015-02-15

    Highlights: • Fe L{sub 3} X-ray absorption spectra of biological (MV-1 magnetotactic bacteria) and abiotic (Sigma–Aldrich) nano-magnetite are reported. • An inconsistency in the literature for this spectrum is documented. • Powder diffraction shows the abiotic sample is partly oxidized, toward maghemite. • H{sub 2} thermal reduction converts the Fe L{sub 3} spectrum of the abiotic sample to that of the biotic. • Strong oxidation (air, 600 °C) is needed to convert the spectrum of the biotic magnetite to that of maghemite; magnetosome chains are protected by an air-impervious membrane. - Abstract: Various groups have reported Fe L{sub 23} X-ray absorption spectra (XAS) of magnetite (Fe{sub 3}O{sub 4}), each claiming to be that of magnetite, but which contradict each other. Here we report an XAS study of two kinds of magnetite: one is biogenic magnetite nanocrystals extracted from the magnetotactic bacterium Magnetovibrio blakemorei strain MV-1; the other is synthetic, abiogenically produced nano-magnetite. We see significantly different XAS spectra of these two materials. Only when the abiogenic magnetite was reduced under H{sub 2} did it give the same spectrum as the biogenic sample. Extensive heating of the biogenic magnetite in air produced spectra similar to that of the abiogenic magnetite. These two spectra are typical of the range of published Fe L{sub 23} spectra of magnetite. X-ray diffraction confirmed that the biogenic material is stoichiometric Fe{sub 3}O{sub 4}, and showed that the as-received or partly reduced abiogenic material is a non-stoichiometric oxide, intermediate between magnetite and maghemite (γ-Fe{sub 2}O{sub 3}). When the membrane which surrounds magnetosome chains was intact, the biotic magnetite single crystals were surprisingly resistant to oxidation. This study clarifies a significant confusion existing in the literature as to the correct Fe L{sub 23} X-ray absorption spectra of magnetite and maghemite.

  12. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jian-Xin [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Wang, Yu-Jun, E-mail: yjwang@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Liu, Cun [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Wang, Li-Hua; Yang, Ke [Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of sciences, Shanghai 201204 (China); Zhou, Dong-Mei, E-mail: dmzhou@issas.ac.cn [Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Wei; Sparks, Donald L. [Environmental Soil Chemistry Group, Delaware Environmental Institute and Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19717-1303 United States (United States)

    2014-08-30

    Graphical abstract: - Highlights: • Immobility and transformation of As on different Eh soils were investigated. • μ-XRF, XANES, and XPS were used to gain As distribution and speciation in soil. • Sorption capacity of As on anaerobic soil was much higher than that on oxic soil. • Fe oxides reductive dissolution is a key factor for As sorption and transformation. - Abstract: The geochemical behavior and speciation of arsenic (As) in paddy soils is strongly controlled by soil redox conditions and the sequestration by soil iron oxyhydroxides. Hence, the effects of iron oxide reductive dissolution on the adsorption, transformation and precipitation of As(III) and As(V) in soils were investigated using batch experiments and synchrotron based techniques to gain a deeper understanding at both macroscopic and microscopic scales. The results of batch sorption experiments revealed that the sorption capacity of As(V) on anoxic soil was much higher than that on control soil. Synchrotron based X-ray fluorescence (μ-XRF) mapping studies indicated that As was heterogeneously distributed and was mainly associated with iron in the soil. X-ray absorption near edge structure (XANES), micro-X-ray absorption near edge structure (μ-XANES) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the primary speciation of As in the soil is As(V). These results further suggested that, when As(V) was introduced into the anoxic soil, the rapid coprecipitation of As(V) with ferric/ferrous ion prevented its reduction to As(III), and was the main mechanism controlling the immobilization of As. This research could improve the current understanding of soil As chemistry in paddy and wetland soils.

  13. Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: New insights from X-ray photoelectron and X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Fan, Jian-Xin; Wang, Yu-Jun; Liu, Cun; Wang, Li-Hua; Yang, Ke; Zhou, Dong-Mei; Li, Wei; Sparks, Donald L.

    2014-01-01

    Graphical abstract: - Highlights: • Immobility and transformation of As on different Eh soils were investigated. • μ-XRF, XANES, and XPS were used to gain As distribution and speciation in soil. • Sorption capacity of As on anaerobic soil was much higher than that on oxic soil. • Fe oxides reductive dissolution is a key factor for As sorption and transformation. - Abstract: The geochemical behavior and speciation of arsenic (As) in paddy soils is strongly controlled by soil redox conditions and the sequestration by soil iron oxyhydroxides. Hence, the effects of iron oxide reductive dissolution on the adsorption, transformation and precipitation of As(III) and As(V) in soils were investigated using batch experiments and synchrotron based techniques to gain a deeper understanding at both macroscopic and microscopic scales. The results of batch sorption experiments revealed that the sorption capacity of As(V) on anoxic soil was much higher than that on control soil. Synchrotron based X-ray fluorescence (μ-XRF) mapping studies indicated that As was heterogeneously distributed and was mainly associated with iron in the soil. X-ray absorption near edge structure (XANES), micro-X-ray absorption near edge structure (μ-XANES) and X-ray photoelectron spectroscopy (XPS) analyses revealed that the primary speciation of As in the soil is As(V). These results further suggested that, when As(V) was introduced into the anoxic soil, the rapid coprecipitation of As(V) with ferric/ferrous ion prevented its reduction to As(III), and was the main mechanism controlling the immobilization of As. This research could improve the current understanding of soil As chemistry in paddy and wetland soils

  14. Low-dose x-ray phase-contrast and absorption CT using equally sloped tomography

    International Nuclear Information System (INIS)

    Fahimian, Benjamin P; Miao Jianwei; Mao Yu; Cloetens, Peter

    2010-01-01

    Tomographic reconstruction from undersampled and noisy projections is often desirable in transmission CT modalities for purposes of low-dose tomography and fast acquisition imaging. However under such conditions, due to the violation of the Nyquist sampling criteria and the presence of noise, reconstructions with acceptable accuracy may not be possible. Recent experiments in transmission electron tomography and coherent diffraction microscopy have shown that the technique of equally sloped tomography (EST), an exact tomographic method utilizing an oversampling iterative Fourier-based reconstruction, provides more accurate image reconstructions when the number of projections is significantly undersampled relative to filtered back projection and algebraic iterative methods. Here we extend this technique by developing new reconstruction algorithms which allow for the incorporation of advanced mathematical regularization constraints, such as the nonlocal means total variational model, in a manner that is consistent with experimental projections. We then evaluate the resulting image quality of the developed algorithm through simulations and experiments at the European Synchrotron Radiation Facility on image quality phantoms using the x-ray absorption and phase contrast CT modalities. Both our simulation and experimental results have indicated that the method can reduce the number of projections by 60-75% in parallel beam modalities, while achieving comparable or better image quality than the conventional reconstructions. As large-scale and compact synchrotron radiation facilities are currently under rapid development worldwide, the implementation of low-dose x-ray absorption and phase-contrast CT can find broad applications in biology and medicine using these advanced x-ray sources.

  15. Site- and phase-selective x-ray absorption spectroscopy based on phase-retrieval calculation

    International Nuclear Information System (INIS)

    Kawaguchi, Tomoya; Fukuda, Katsutoshi; Matsubara, Eiichiro

    2017-01-01

    Understanding the chemical state of a particular element with multiple crystallographic sites and/or phases is essential to unlocking the origin of material properties. To this end, resonant x-ray diffraction spectroscopy (RXDS) achieved through a combination of x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques can allow for the measurement of diffraction anomalous fine structure (DAFS). This is expected to provide a peerless tool for electronic/local structural analyses of materials with complicated structures thanks to its capability to extract spectroscopic information about a given element at each crystallographic site and/or phase. At present, one of the major challenges for the practical application of RXDS is the rigorous determination of resonant terms from observed DAFS, as this requires somehow determining the phase change in the elastic scattering around the absorption edge from the scattering intensity. This is widely known in the field of XRD as the phase problem. The present review describes the basics of this problem, including the relevant background and theory for DAFS and a guide to a newly-developed phase-retrieval method based on the logarithmic dispersion relation that makes it possible to analyze DAFS without suffering from the intrinsic ambiguities of conventional iterative-fitting. Several matters relating to data collection and correction of RXDS are also covered, with a final emphasis on the great potential of powder-sample-based RXDS (P-RXDS) to be used in various applications relevant to practical materials, including antisite-defect-type electrode materials for lithium-ion batteries. (topical review)

  16. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    Energy Technology Data Exchange (ETDEWEB)

    Fittschen, U.E.A. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: ursula.fittschen@chemie.uni-hamburg.de; Meirer, F. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: fmeirer@ati.ac.at; Streli, C. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: streli@ati.ac.at; Wobrauschek, P. [Atominstitut, Vienna University of Technology, Stadionallee 2, 1020 Wien (Austria)], E-mail: wobi@ati.ac.at; Thiele, J. [Department of Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)], E-mail: Julian.Thiele@gmx.de; Falkenberg, G. [Hamburger Synchrotronstrahlungslabor at Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22603 Hamburg (Germany)], E-mail: falkenbe@mail.desy.de; Pepponi, G. [ITC-irst, Via Sommarive 18, 38050 Povo (Trento) (Italy)], E-mail: pepponi@itc.it

    2008-12-15

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 {mu}m, 8.0-2.0 {mu}m, 2.0-0.13 {mu}m 0.13-0.015 {mu}m (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 {mu}m, 1-2 {mu}m, 2-4 {mu}m, 4-8 {mu}m, 8-16 {mu}m. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in

  17. Characterization of atmospheric aerosols using Synchroton radiation total reflection X-ray fluorescence and Fe K-edge total reflection X-ray fluorescence-X-ray absorption near-edge structure

    International Nuclear Information System (INIS)

    Fittschen, U.E.A.; Meirer, F.; Streli, C.; Wobrauschek, P.; Thiele, J.; Falkenberg, G.; Pepponi, G.

    2008-01-01

    In this study a new procedure using Synchrotron total reflection X-ray fluorescence (SR-TXRF) to characterize elemental amounts in atmospheric aerosols down to particle sizes of 0.015 um is presented. The procedure was thoroughly evaluated regarding bounce off effects and blank values. Additionally the potential of total reflection X-ray fluorescence-X-ray absorption near edge structure (SR-TXRF-XANES) for speciation of FeII/III down to amounts of 34 pg in aerosols which were collected for 1 h is shown. The aerosols were collected in the city of Hamburg with a low pressure Berner impactor on Si carriers covered with silicone over time periods of 60 and 20 min each. The particles were collected in four and ten size fractions of 10.0-8.0 μm, 8.0-2.0 μm, 2.0-0.13 μm 0.13-0.015 μm (aerodynamic particle size) and 15-30 nm, 30-60 nm, 60-130 nm, 130-250 nm, 250-500 nm, 0.5-1 μm, 1-2 μm, 2-4 μm, 4-8 μm, 8-16 μm. Prior to the sampling 'bounce off' effects on Silicone and Vaseline coated Si carriers were studied with total reflection X-ray fluorescence. According to the results silicone coated carriers were chosen for the analysis. Additionally, blank levels originating from the sampling device and the calibration procedure were studied. Blank levels of Fe corresponded to 1-10% of Fe in the aerosol samples. Blank levels stemming from the internal standard were found to be negligible. The results from the Synchroton radiation total reflection X-ray fluorescence analysis of the aerosols showed that 20 min of sampling time gave still enough sample material for elemental determination of most elements. For the determination of the oxidation state of Fe in the aerosols different Fe salts were prepared as a reference from suspensions in isopropanol. The results from the Fe K-edge Synchroton radiation total reflection X-ray fluorescence-X-ray absorption near-edge structure analysis of the aerosol samples showed that mainly Fe(III) was present in all particle size fractions

  18. DETECTING THE WARM-HOT INTERGALACTIC MEDIUM THROUGH X-RAY ABSORPTION LINES

    Energy Technology Data Exchange (ETDEWEB)

    Yao Yangsen; Shull, J. Michael; Cash, Webster [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Sciences, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Wang, Q. Daniel, E-mail: yaoys@colorado.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States)

    2012-02-20

    The warm-hot intergalactic medium (WHIM) at temperatures 10{sup 5}-10{sup 7} K is believed to contain 30%-50% of the baryons in the local universe. However, all current X-ray detections of the WHIM at redshifts z > 0 are of low statistical significance ({approx}< 3{sigma}) and/or controversial. In this work, we aim to establish the detection limits of current X-ray observatories and explore requirements for next-generation X-ray telescopes for studying the WHIM through X-ray absorption lines. We analyze all available grating observations of Mrk 421 and obtain spectra with signal-to-noise ratios (S/Ns) of {approx}90 and 190 per 50 mA spectral bin from Chandra and XMM-Newton observations, respectively. Although these spectra are two of the best ever collected with Chandra and XMM-Newton, we cannot confirm the two WHIM systems reported by Nicastro et al. in 2005. Our bootstrap simulations indicate that spectra with such high S/N cannot constrain the WHIM with O VII column densities N{sub Ovii}{approx}10{sup 15} cm{sup -2} (corresponding to an equivalent width of 2.5 mA for a Doppler velocity of 50 km s{sup -1}) at {approx}> 3{sigma} significance level. The simulation results also suggest that it would take >60 Ms for Chandra and 140 Ms for XMM-Newton to measure the N{sub Ovii} at {>=}4{sigma} from a spectrum of a background QSO with flux of {approx}0.2 mCrab (1 Crab = 2 Multiplication-Sign 10{sup -8} erg s{sup -1} cm{sup -2} at 0.5-2 keV). Future X-ray spectrographs need to be equipped with spectral resolution R {approx} 4000 and effective area A {>=} 100 cm{sup 2} to accomplish the similar constraints with an exposure time of {approx}2 Ms and would require {approx}11 Ms to survey the 15 QSOs with flux {approx}> 0.2 mCrab along which clear intergalactic O VI absorbers have been detected.

  19. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Structural Biology Div.

    1995-08-01

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal II EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.

  20. Design and conception of an experiment setup for X-Ray absorption spectroscopy on radioactive material

    International Nuclear Information System (INIS)

    Chabane, A.

    1997-01-01

    In the field of the nuclear cycle waste management, the law of december 30, 1991(article 4) gives the frame of the research programs to be conducted. This should lead to o political decision concerning the end of the nuclear fuel cycle. To date, efforts are coordinated by three research groups: PRACTIS, GEDEON and FORPRO. This work, dealing with the development of a radioactive cell for X-ray Absorption Spectroscopy measurements (XAS) is part of PRACTIS goals. It devises into two parts that deal with the conception of the experiment setup (Chapter I) and with the first test that been carried out with X-ray Absorption measurements on radioactive materials (Chapter II), respectively. An introduction on the nuclear fuel cycle and the use of synchrotron radiation for XAS is also given. More precisely, in the first part of this work, we deal with the difficulties that are related to the development of such devises for radioactive samples on a synchrotron beam line. Two constrains have to be taken into account: the technical aspect and the safety aspect. In the second part, we consider the use of grabbing additional structural information on the actinide complexes, both in liquid and solid phases (as amorphous phases for instance). These data on the local order (EXAFS), as well as on the electronic information that can be obtained (XANES) are to be completed with results of the other probing techniques. (author)

  1. Probing the CZTS/CdS heterojunction utilizing photoelectrochemistry and x-ray absorption spectroscopy

    Science.gov (United States)

    Turnbull, Matthew J.; Vaccarello, Daniel; Wong, Jonathan; Yiu, Yun Mui; Sham, Tsun-Kong; Ding, Zhifeng

    2018-04-01

    The importance of renewable resources is becoming more and more influential on research due to the depletion of fossil fuels. Cost-effective ways of harvesting solar energy should also be at the forefront of these investigations. Cu2ZnSnS4 (CZTS) solar cells are well within the frame of these goals, and a thorough understanding of how they are made and processed synthetically is crucial. The CZTS/CdS heterojunction was examined using photoelectrochemistry and synchrotron radiation (SR) spectroscopy. These tools provided physical insights into this interface that was formed by the electrophoretic deposition of CZTS nanocrystals and chemical bath deposition (CBD) of CdS for the respective films. It was discovered that CBD induced a change in the local and long range environment of the Zn in the CZTS lattice, which was detrimental to the photoresponse. X-ray absorption near-edge structures and extended X-ray absorption fine structures (EXAFSs) of the junction showed that this change was at an atomic level and was associated with the coordination of oxygen to zinc. This was confirmed through FEFF fitting of the EXAFS and through IR spectroscopy. It was found that this change in both photoresponse and the Zn coordination can be reversed with the use of low temperature annealing. Investigating CZTS through SR techniques provides detailed structural information of minor changes from the zinc perspective.

  2. Wind-embedded shocks in FASTWIND: X-ray emission and K-shell absorption

    Science.gov (United States)

    Carneiro, L. P.; Puls, J.; Sundqvist, J. O.; Hoffmann, T. L.

    2017-11-01

    EUV and X-ray radiation emitted from wind-embedded shocks can affect the ionization balance in the outer atmospheres of massive stars, and can also be the mechanism responsible for producing highly ionized atoms detected in the wind UV spectra. To investigate these processes, we implemented the emission from wind-embedded shocks and related physics into our atmosphere/spectrum synthesis code FASTWIND. We also account for the high energy absorption of the cool wind, by adding important K-shell opacities. Various tests justfying our approach have been described by Carneiro+(2016, A&A 590, A88). In particular, we studied the impact of X-ray emission on the ionization balance of important elements. In almost all the cases, the lower ionization stages (O iv, N iv, P v) are depleted and the higher stages (N v, O v, O vi) become enhanced. Moreover, also He lines (in particular He ii 1640 and He ii 4686) can be affected as well. Finally, we carried out an extensive discussion of the high-energy mass absorption coefficient, κν, regarding its spatial variation and dependence on T eff. We found that (i) the approximation of a radially constant κν can be justified for r >= 1.2R * and λ <= 18 Å, and also for many models at longer wavelengths. (ii) In order to estimate the actual value of this quantity, however, the He ii background needs to be considered from detailed modeling.

  3. Investigation of annealed and metamict pyrochlore minerals by x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Greegor, R.B.; Lytle, F.W.; Ewing, R.C.; Chakoumakos, B.C.; Lumpkin, G.R.

    1984-01-01

    Materials of the pyrochlore structure type exhibit a variety of interesting properties including phases capable of acting as hosts for actinides in radioactive wastes. Studies of curium doped gadolinium titanate phases (Gd 2 Ti 2 O 7 ) have been made which showed that the radiation damage ingrowth followed an exponential relationship. For the study reported here a series of synthetic pyrochlores were produced having the titanate phase with the general formula (RE) 2 Ti 2 O 7 , RE = Er, Y 2 , Gd 2 , Dy, La. Additionally a set of metamict (radiation damaged) pyrochlores was examined in both a natural and post temperature annealed state. Experiments were conducted on these samples using the Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES) techniques. In summary, these studies show that in pyrochlore structure types the Ti-O cage undergoes changes due to radiation damage. The individual Ti-O bonds become more disordered which leads to a loss of short and long range order and, ultimately, to expansion of the bulk material. 2 refs., 2 figs

  4. Structural analysis of radiation damage in zircon and thorite: An X-ray absorption spectroscopic study

    International Nuclear Information System (INIS)

    Farges, F.; Calas, G.

    1991-01-01

    Metamictization effects have been investigated in zircon, thorite, uranothorite, and thorogummite using X-ray absorption spectroscopy at Zr-K, Th-L III edges. Extended X-ray absorption fine structure (EXAFS) spectra of metamict samples are characterized by a major contribution due to the O nearest neighbors with some contributions from next-nearest neighbors (Si and Zr in zircon, Si in thorite). In zircon, Zr-O distances decrease by ∼0.1 angstrom while the coordination number of Zr decreases from 8 to 7. In contrast, the eightfold coordination of Th in crystalline thorite is preserved in metamict thorite, Si second neighbors around Zr or Th are generally observed in metamict samples with distances close to those measured in crystalline phases. No other contribution to EXAFS is observed in thorite, but Zr-Zr distances are observed in zircon. They decrease by ca. 0.3 Angstrom as a function of zircon metamictization. Metamictization processes are characterized by a loss of medium range order. There is no evidence for decomposition into crystalline oxides. The structural interpretation of EXAFS data must take into account the creation of O vacancies arising from a displacement or tilting of the SiO 4 tetrahedra during metamictization of zircon-like structures. If the cation can take a lower coordination number (as in the case of Zr), a coordination change allows the local structure to be partly maintained during metamictization. If not, as for Th, the local structure is rapidly destroyed

  5. Corrections of residual fluorescence distortions for a glancing-emergence-angle x-ray-absorption technique

    International Nuclear Information System (INIS)

    Brewe, D.L.; Pease, D.M.; Budnick, J.I.

    1994-01-01

    Distortions appear in x-ray-absorption spectra obtained by monitoring the fluorescence from thick samples with concentrated absorbing species. The glancing-emergence-angle technique for obtaining spectra from this type of sample eliminates distortions from the measured spectra by monitoring the fluorescence leaving the sample at a small angle relative to the sample surface. This technique is limited by the small signal available from the inherently limited detector solid angle. In addition, no precise estimate of the required restriction on maximum emergent angle θ max has been available. We have calculated residual extended x-ray-absorption fine structure distortions as a function of θ max , and performed experimental tests of the calculations. These calculations provide a means to estimate the required detector geometry for negligible distortions, or alternatively, allow the use of a larger θ max , increasing the available signal, with the remaining residual distortions removed by application of the calculations. The calculations are also applicable to other detector geometries, and account for detectors subtending a large solid angle by an integration over the subtended angle. This represents an improvement over previous calculations. The application to more general detector configurations is also discussed

  6. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    Science.gov (United States)

    Milne, Chris J.; Pham, Van-Thai; Gawelda, Wojciech; van der Veen, Renske M.; El Nahhas, Amal; Johnson, Steven L.; Beaud, Paul; Ingold, Gerhard; Lima, Frederico; Vithanage, Dimali A.; Benfatto, Maurizio; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Hauser, Andreas; Abela, Rafael; Bressler, Christian; Chergui, Majed

    2009-11-01

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [FeII(bpy)3]2+, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 Å. In addition an analysis technique using the reduced χ2 goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  7. Phonon shake-up satellites in x-ray absorption: an operator approach

    International Nuclear Information System (INIS)

    Bryant, G.W.

    1980-01-01

    The phonon shake-up that occurs when the linear and quadratic phonon potentials both change during x-ray absorption is considered. Full account of all quadratic terms and the competition between linear and quadratic shake-up effects is made. Many previous studies of quadratic phonon shake-up have used a wavefunction approach. The phonon matrix elements have been determined by explicit evaluation of the overlap integrals. However, an equations of motion approach is used to transform the time evolution operator to a form that allows an exact evaluation of the phonon matrix elements needed to describe the spectra. This theory is used to determine the strengths of the phonon shake-up satellites in x-ray absorption spectra at zero temperature. An exact expression is obtained for the strength of each satellite. During quadratic shake-up, two phonon transitions and phonon frequency shifts occur. Both effects significantly change the strength of a a satellite from that predicted for linear shake-up alone. Inclusion of the two phonon transitions enhances the high-energy satellites. Inclusion of the frequency shifts can either broaden the spectra or increase the strength of the zero phonon lines depending on the sign of the frequency shift. (author)

  8. X-ray absorption spectroscopy: EXAFS and XANES - A versatile tool to study the atomic and electronic structure of materials

    International Nuclear Information System (INIS)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-01-01

    X-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-ray Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, they will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and sample limitations

  9. Simulating systematic errors in X-ray absorption spectroscopy experiments: Sample and beam effects

    Energy Technology Data Exchange (ETDEWEB)

    Curis, Emmanuel [Laboratoire de Biomathematiques, Faculte de Pharmacie, Universite Rene, Descartes (Paris V)-4, Avenue de l' Observatoire, 75006 Paris (France)]. E-mail: emmanuel.curis@univ-paris5.fr; Osan, Janos [KFKI Atomic Energy Research Institute (AEKI)-P.O. Box 49, H-1525 Budapest (Hungary); Falkenberg, Gerald [Hamburger Synchrotronstrahlungslabor (HASYLAB), Deutsches Elektronen-Synchrotron (DESY)-Notkestrasse 85, 22607 Hamburg (Germany); Benazeth, Simone [Laboratoire de Biomathematiques, Faculte de Pharmacie, Universite Rene, Descartes (Paris V)-4, Avenue de l' Observatoire, 75006 Paris (France); Laboratoire d' Utilisation du Rayonnement Electromagnetique (LURE)-Ba-hat timent 209D, Campus d' Orsay, 91406 Orsay (France); Toeroek, Szabina [KFKI Atomic Energy Research Institute (AEKI)-P.O. Box 49, H-1525 Budapest (Hungary)

    2005-07-15

    The article presents an analytical model to simulate experimental imperfections in the realization of an X-ray absorption spectroscopy experiment, performed in transmission or fluorescence mode. Distinction is made between sources of systematic errors on a time-scale basis, to select the more appropriate model for their handling. For short time-scale, statistical models are the most suited. For large time-scale, the model is developed for sample and beam imperfections: mainly sample inhomogeneity, sample self-absorption, beam achromaticity. The ability of this model to reproduce the effects of these imperfections is exemplified, and the model is validated on real samples. Various potential application fields of the model are then presented.

  10. Simulating systematic errors in X-ray absorption spectroscopy experiments: Sample and beam effects

    International Nuclear Information System (INIS)

    Curis, Emmanuel; Osan, Janos; Falkenberg, Gerald; Benazeth, Simone; Toeroek, Szabina

    2005-01-01

    The article presents an analytical model to simulate experimental imperfections in the realization of an X-ray absorption spectroscopy experiment, performed in transmission or fluorescence mode. Distinction is made between sources of systematic errors on a time-scale basis, to select the more appropriate model for their handling. For short time-scale, statistical models are the most suited. For large time-scale, the model is developed for sample and beam imperfections: mainly sample inhomogeneity, sample self-absorption, beam achromaticity. The ability of this model to reproduce the effects of these imperfections is exemplified, and the model is validated on real samples. Various potential application fields of the model are then presented

  11. Development of a methodology for low-energy X-ray absorption correction in biological samples using radiation scattering techniques

    International Nuclear Information System (INIS)

    Pereira, Marcelo O.; Anjos, Marcelino J.; Lopes, Ricardo T.

    2009-01-01

    Non-destructive techniques with X-ray, such as tomography, radiography and X-ray fluorescence are sensitive to the attenuation coefficient and have a large field of applications in medical as well as industrial area. In the case of X-ray fluorescence analysis the knowledge of photon X-ray attenuation coefficients provides important information to obtain the elemental concentration. On the other hand, the mass attenuation coefficient values are determined by transmission methods. So, the use of X-ray scattering can be considered as an alternative to transmission methods. This work proposes a new method for obtain the X-ray absorption curve through superposition peak Rayleigh and Compton scattering of the lines L a e L β of Tungsten (Tungsten L lines of an X-ray tube with W anode). The absorption curve was obtained using standard samples with effective atomic number in the range from 6 to 16. The method were applied in certified samples of bovine liver (NIST 1577B) , milk powder and V-10. The experimental measurements were obtained using the portable system EDXRF of the Nuclear Instrumentation Laboratory (LIN-COPPE/UFRJ) with Tungsten (W) anode. (author)

  12. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    Energy Technology Data Exchange (ETDEWEB)

    Kapilashrami, M.; Zegkinoglou, I. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706 (United States); Conti, G.; Nemšák, S.; Conlon, C. S.; Fadley, C. S. [Department of Physics, University of California, Davis, California 95616 (United States); Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Törndahl, T.; Fjällström, V. [Ångström Solar Center, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Lischner, J. [Department of Physics, University of California, Berkeley, California 94720 (United States); Louie, Steven G. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States); Hamers, R. J.; Zhang, L. [Department of Chemistry, University of Wisconsin Madison, Madison, Wisconsin 53706 (United States); Guo, J.-H. [Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Himpsel, F. J., E-mail: fhimpsel@wisc.edu [Department of Physics, University of Wisconsin Madison, Madison, Wisconsin 53706 (United States)

    2014-10-14

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se₂ (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO=VBM{sub CIGS} – VBM{sub diamond}=0.3 eV±0.1 eV at the CIGS/Diamond interface and 0.0 eV±0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  13. Medieval glass from the Cathedral in Paderborn: a comparative study using X-ray absorption spectroscopy, X-ray fluorescence, and inductively coupled laser ablation mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hormes, J. [University of Saskatchewan, Canadian Light Source Inc., Saskatoon, SK (Canada); Louisiana State University, CAMD, Baton Rouge, LA (United States); Roy, A.; Bovenkamp, G.L. [Louisiana State University, CAMD, Baton Rouge, LA (United States); Simon, K. [University of Goettingen, Geochemistry, Centre for Geosciences, Goettingen (Germany); Kim, C.Y. [University of Saskatchewan, Canadian Light Source Inc., Saskatoon, SK (Canada); Boerste, N. [Faculty for Theology Paderborn, Paderborn (Germany); Gai, S. [LWL - Archaeologie fuer Westfalen, Muenster (Germany)

    2013-04-15

    We have investigated four stained glass samples recovered from an archaeological excavation at the Cathedral in Paderborn (Germany) between 1978 and 1980. On two of the samples there are parts of paintings. Concentrations of major elements were determined using two independent techniques: LA-ICP-MS (a UV laser ablation microsampler combined with an inductively coupled plasma mass spectrometer) and synchrotron radiation X-ray excited X-ray fluorescence (SR-XRF). The SR-XRF data were quantified by using the program package PyMCA developed by the software group of the ESRF in Grenoble. Significant differences were found between the concentrations determined by the two techniques that can be explained by concentration gradients near the surface of the glasses caused, for example, by corrosion/leaching processes and the different surface sensitivities of the applied techniques. For several of the elements that were detected in the glass and in the colour pigments used for the paintings X-ray absorption near edge structure (XANES) spectra were recorded in order to determine the chemical speciation of the elements of interest. As was expected, most elements in the glass were found as oxides in their most stable form. Two notable exceptions were observed: titanium was not found as rutile - the most stable form of TiO{sub 2} - but in the form of anatase, and lead was not found in one defined chemical state but as a complex mixture of oxide, sulphate, and other compounds. (orig.)

  14. Boron Doped diamond films as electron donors in photovoltaics: An X-ray absorption and hard X-ray photoemission study

    International Nuclear Information System (INIS)

    Kapilashrami, M.; Zegkinoglou, I.; Conti, G.; Nemšák, S.; Conlon, C. S.; Fadley, C. S.; Törndahl, T.; Fjällström, V.; Lischner, J.; Louie, Steven G.; Hamers, R. J.; Zhang, L.; Guo, J.-H.; Himpsel, F. J.

    2014-01-01

    Highly boron-doped diamond films are investigated for their potential as transparent electron donors in solar cells. Specifically, the valence band offset between a diamond film (as electron donor) and Cu(In,Ga)Se 2 (CIGS) as light absorber is determined by a combination of soft X-ray absorption spectroscopy and hard X-ray photoelectron spectroscopy, which is more depth-penetrating than standard soft X-ray photoelectron spectroscopy. In addition, a theoretical analysis of the valence band is performed, based on GW quasiparticle band calculations. The valence band offset is found to be small: VBO = VBM CIGS – VBM diamond  = 0.3 eV ± 0.1 eV at the CIGS/Diamond interface and 0.0 eV ± 0.1 eV from CIGS to bulk diamond. These results provide a promising starting point for optimizing the band offset by choosing absorber materials with a slightly lower valence band maximum.

  15. Study of non-validity of mixture rule near K-absorption edges by X-ray spectrometric technique

    International Nuclear Information System (INIS)

    Sharanabasappa; Chitralekha, A.; Kerur, B.R.; Anilkumar, S.

    2012-01-01

    X-ray spectrometric technique has been described to determine the X-ray mass attenuation coefficient, μ/ρ, of X-rays employing HPGe X-ray detector and radioactive sources. The photon intensity is measured by gating the channel of the spectrometer at FWHM/photo peak. Using the technique the 'best value' values of μ/ρ were obtained for those thicknesses which lie in the transmission (T) range 0.5 ≥ T ≥ 0.02. Total attenuation cross sections for other elements and lead compounds were measured at photon energies from 17 to 88 keV to study the Bragg's additivity law near the absorption edge of the lead. The measured values of mass attenuation coefficient values are compared with theoretical values obtained using Winxcom (programme). This study suggests that measured mass attenuation coefficient values at and near absorption edges differ from the theoretical value by about 17-23%. (author)

  16. Correlated single-crystal electronic absorption spectroscopy and X-ray crystallography at NSLS beamline X26-C

    International Nuclear Information System (INIS)

    Orville, A.M.; Buono, R.; Cowan, M.; Heroux, A.; Shea-McCarthy, G.; Schneider, D.K.; Skinner, J.M.; Skinner, M.J.; Stoner-Ma, D.; Sweet, R.M.

    2011-01-01

    The research philosophy and new capabilities installed at NSLS beamline X26-C to support electronic absorption and Raman spectroscopies coupled with X-ray diffraction are reviewed. This beamline is dedicated full time to multidisciplinary studies with goals that include revealing the relationship between the electronic and atomic structures in macromolecules. The beamline instrumentation has been fully integrated such that optical absorption spectra and X-ray diffraction images are interlaced. Therefore, optical changes induced by X-ray exposure can be correlated with X-ray diffraction data collection. The installation of Raman spectroscopy into the beamline is also briefly reviewed. Data are now routinely generated almost simultaneously from three complementary types of experiments from the same sample. The beamline is available now to the NSLS general user population.

  17. Time-resolved pump-probe X-ray absorption fine structure spectroscopy of Gaq3

    International Nuclear Information System (INIS)

    Dicke, Benjamin

    2013-01-01

    Gallium(tris-8-hydroxyquinoline) (Gaq 3 ) belongs to a class of metal organic compounds, used as electron transport layer and emissive layer in organic light emitting diodes. Many research activities have concentrated on the optical and electronic properties, especially of the homologue molecule aluminum(tris-8-hydroxyquinoline) (Alq 3 ). Knowledge of the first excited state S 1 structure of these molecules could provide deeper insight into the processes involved into the operation of electronic devices, such as OLEDs and, hence, it could further improve their efficiency and optical properties. Until now the excited state structure could not be determined experimentally. Most of the information about this structure mainly arises from theoretical calculations. X-ray absorption fine structure (XAFS) spectroscopy is a well developed technique to determine both, the electronic and the geometric properties of a sample. The connection of ultrashort pulsed X-ray sources with a pulsed laser system offers the possibility to use XAFS as a tool for studying the transient changes of a sample induced by a laser pulse. In the framework of this thesis a new setup for time-resolved pump-probe X-ray absorption spectroscopy at PETRA III beamline P11 was developed for measuring samples in liquid form. In this setup the sample is pumped into its photo-excited state by a femtosecond laser pump pulse with 343 nm wavelength and after a certain time delay probed by an X-ray probe pulse. In this way the first excited singlet state S 1 of Gaq 3 dissolved in benzyl alcohol was analyzed. A structural model for the excited state structure of the Gaq 3 molecule based on the several times reproduced results of the XAFS experiments is proposed. According to this model it was found that the Ga-N A bond length is elongated, while the Ga-O A bond length is shortened upon photoexcitation. The dynamics of the structural changes were not the focus of this thesis. Nevertheless the excited state lifetime

  18. Combining selective sequential extractions, X-Ray Absorption Spectroscopy, and X-Ray Powder Diffraction for Cu (II speciation in soil and mineral phases

    Directory of Open Access Journals (Sweden)

    Tatiana Minkina

    2017-04-01

    Full Text Available Interaction of Cu (II ions with the matrix of soil and mineral phases of layered silicates was assessed by the Miller method of selective sequential fractionation and a set of synchrotron X-ray methods, including X-ray powder diffraction (XRD and X-ray absorption spectroscopy (XANES. It was shown that the input of Cu into Calcic Chernozem in the form of monoxide (CuO and salt (Cu(NO32 affected the transformation of Cu compounds and their affinity for metal-bearing phases. It was found that the contamination of soil with a soluble Cu(II salt increased the bioavailability of the metal and the role of organic matter and Fe oxides in the fixation and retention of Cu. During the incubation of soil with Cu monoxide, the content of the metal in the residual fractions increased, which was related to the possible entry of Cu in the form of isomorphic impurities into silicates, as well as to the incomplete dissolution of exogenic compounds at the high level of their input into the soil. A mechanism for the structural transformation of minerals was revealed, which showed that ion exchange processes result in the sorption of Cu (II ions from the saturated solution by active sites on the internal surface of the lattice of dioctahedral aluminosilicates. Surface hydroxyls at the octahedral aluminum atom play the main role. X-ray diagnostics revealed that excess Cu(II ions are removed from the system due to the formation and precipitation of coarsely crystalline Cu(NO3(OH3.

  19. Characterising legacy spent nuclear fuel pond materials using microfocus X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Bower, W.R. [Research Centre for Radwaste Disposal, School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); National Nuclear Laboratory, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE (United Kingdom); Centre for Radiochemistry Research, Chemistry Building, The University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom); Morris, K. [Research Centre for Radwaste Disposal, School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Mosselmans, J.F.W. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Thompson, O.R. [National Nuclear Laboratory, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE (United Kingdom); Banford, A.W. [National Nuclear Laboratory, Chadwick House, Warrington Road, Birchwood Park, Warrington, WA3 6AE (United Kingdom); School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Law, K. [Centre for Radiochemistry Research, Chemistry Building, The University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom); Pattrick, R.A.D., E-mail: richard.pattrick@manchester.ac.uk [Research Centre for Radwaste Disposal, School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2016-11-05

    Highlights: • A sample from a spent fuel pond wall has been analysed via X-ray spectroscopy. • Autoradiography shows a patchy distribution of radioactivity on the core face. • μXAS across a ‘hot spot’ showed Sr associates with the TiO{sub 2} pigment in the paint. • Original concrete coatings prove effective at limiting radionuclide migration. • Sorption studies show Sr immobilisation by the concrete and Cs by aggregate clasts. - Abstract: Analysis of a radioactive, coated concrete core from the decommissioned, spent nuclear fuel cooling pond at the Hunterston-A nuclear site (UK) has provided a unique opportunity to study radionuclides within a real-world system. The core, obtained from a dividing wall and sampled at the fill level of the pond, exhibited radioactivity (dominantly {sup 137}Cs and {sup 90}Sr) heterogeneously distributed across both painted faces. Chemical analysis of the core was undertaken using microfocus spectroscopy at Diamond Light Source, UK. Mapping of Sr across the surface coatings using microfocus X-ray fluorescence (μXRF) combined with X-ray absorption spectroscopy showed that Sr was bound to TiO{sub 2} particles in the paint layers, suggesting an association between TiO{sub 2} and radiostrontium. Stable Sr and Cs sorption experiments using concrete coupons were also undertaken to assess their interactions with the bulk concrete in case of a breach in the coating layers. μXRF and scanning electron microscopy showed that Sr was immobilized by the cement phases, whilst at the elevated experimental concentrations, Cs was associated with clay minerals in the aggregates. This study provides a crucial insight into poorly understood infrastructural contamination in complex systems and is directly applicable to the UK’s nuclear decommissioning efforts.

  20. X-Ray K Absorption Edge Structures of Ligand Chlorine Ion in Some Cobalt Coordination Compounds

    Science.gov (United States)

    Obashi, Masayoshi; Matsukawa, Tokuo

    1983-03-01

    The X-ray Cl K absorption spectra in [Co(NH3)6]Cl3, [Co(NH3)5Cl]Cl2, trans-[Co(NH3)4Cl2]Cl and Cs2[CoCl4] are measured with a high-resolution vacuum two-crystal spectrometer. The spectra, except that of [Co(NH3)6]Cl3, show an extremely narrow absorption line at the absorption threshold. The result is interpreted on the basis of molecular orbital theory and it is proposed that the intensity of these narrow absorption lines depends on the chemical state between the cobalt and ligand chlorine ions. The narrow absorption line may well be attributed to transitions of the Cl 1s electron into the eg* antibonding orbitals having partially the 3p character of chlorine in [Co(NH3)5Cl]Cl2 and trans-[Co(NH3)4Cl2]Cl. In Cs2[CoCl4] it may be ascribed to the Cl 1s-t2* transitions.

  1. 5 K extended X-ray absorption fine structure and 40 K 10-s resolved extended X-ray absorption fine structure studies of photolyzed carboxymyoglobin

    International Nuclear Information System (INIS)

    Teng, T.Y.; Huang, H.W.; Olah, G.A.

    1987-01-01

    A previous extended X-ray absorption fine structure (EXAFS) study of photolyzed carboxymyoglobin (MbCO) has provoked much discussion on the heme structure of the photoproduct (Mb*CO). The EXAFS interpretation that the Fe-Co distance increases by no more than 0.05 A following photodissociation has been regarded as inconsistent with optical, infrared, and magnetic susceptibility studies. The present experiment was performed with well-characterized dry film samples in which MbCO molecules were embedded in a poly(vinyl alcohol) matrix. The sample had a high protein concentration (12 mM) to yield adequate EXAFS signals but was very thin (40 μm) so that complete photolysis could be easily achieved by a single flash from a xenon lamp. Although the electronic state of Mb*CO resembles that of deoxymyoglobin (deoxy-Mb), direct comparison of EXAFS spectra indicates that structurally Mb*CO is much closer to MbCO than to deoxy-Mb. Our EXAFS analysis shows that photolysis of MbCO at 5 K leads to a stable intermediate state in which CO has moved away from iron by a distance of 0.27-0.45 A, but the 5-coordinate heme structure is strained in a form similar to that of MbCO; the resolution of the CO position depends on the structure parameters of MbCO which we use as a reference for the analysis of Mb*CO. At 40 K, from 1 to 10 s after photolysis, 42% of the photoproduct has relaxed to the ground state, and the EXAFS spectrum of the remaining photoproduct is indistinguishable from that of the 5 K photoproduct

  2. Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Oddershede, Jette; Schmidt, Søren; Poulsen, Henning Friis

    2011-01-01

    This X-ray diffraction study reports the grain-resolved elastic strains in about 1000 randomly oriented grains embedded in a polycrystalline copper sample. Diffraction data were collected in situ in the undeformed state and at a plastic strain of 1.5% while the sample was under tensile load...

  3. X-ray reflectivity of cobalt and titanium in the vicinity of the Lsub(2,3) absorption edges

    International Nuclear Information System (INIS)

    Bremer, J.; Kaihola, L.; Keski-Kuha, R.

    1980-01-01

    X-ray reflectivity across cobalt and titanium Lsub(2,3) absorption edges was measured as a function of energy by means of continuous radiation from a tungsten anode in a grating spectrometer. The real and imaginary parts of the refractive index were obtained from the absorption curves and an exact Kramers-Kronig analysis. A measured fine structure in the reflected intensities was interpreted as an effect of white lines in the absorption spectra. The x-ray intensity was calculated as a function of energy by means of the Fresnel formula. (author)

  4. X-ray CT Scanning Reveals Long-Term Copper Pollution Effects on Functional Soil Structure

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Møldrup, Per; Homstrup, Martin

    Soil structure plays the main role in the ability of the soil to fulfill essential soil functions such as the root growth, rate of water infiltration and retention, transport of gaseous and chemicals/pollutants through the soil. Soil structure is a dynamic soil property and affected by various...... factors such as soil type, land use, and soil contamination. In this study, we quantified the soil structure using X-ray CT scanning and revealed the effect of a long history of Copper (Cu) pollution on it. A fallow field at Hygum Denmark provides this opportunity as it had a long history of Copper...... sulphate contamination in a gradient with Cu content varies from 21 mg kg-1 to 3837 mg kg-1. Total 20 intact soil columns (diameter of 10 cm and height of 8 cm) were sampled at five locations along the Cu-gradient from a depth of 5 to 15 cm below surface level. The soil columns were scanned at a voxel...

  5. Characterising legacy spent nuclear fuel pond materials using microfocus X-ray absorption spectroscopy.

    Science.gov (United States)

    Bower, W R; Morris, K; Mosselmans, J F W; Thompson, O R; Banford, A W; Law, K; Pattrick, R A D

    2016-11-05

    Analysis of a radioactive, coated concrete core from the decommissioned, spent nuclear fuel cooling pond at the Hunterston-A nuclear site (UK) has provided a unique opportunity to study radionuclides within a real-world system. The core, obtained from a dividing wall and sampled at the fill level of the pond, exhibited radioactivity (dominantly (137)Cs and (90)Sr) heterogeneously distributed across both painted faces. Chemical analysis of the core was undertaken using microfocus spectroscopy at Diamond Light Source, UK. Mapping of Sr across the surface coatings using microfocus X-ray fluorescence (μXRF) combined with X-ray absorption spectroscopy showed that Sr was bound to TiO2 particles in the paint layers, suggesting an association between TiO2 and radiostrontium. Stable Sr and Cs sorption experiments using concrete coupons were also undertaken to assess their interactions with the bulk concrete in case of a breach in the coating layers. μXRF and scanning electron microscopy showed that Sr was immobilized by the cement phases, whilst at the elevated experimental concentrations, Cs was associated with clay minerals in the aggregates. This study provides a crucial insight into poorly understood infrastructural contamination in complex systems and is directly applicable to the UK's nuclear decommissioning efforts. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Finite temperature effects on the X-ray absorption spectra of energy related materials

    Science.gov (United States)

    Pascal, Tod; Prendergast, David

    2014-03-01

    We elucidate the role of room-temperature-induced instantaneous structural distortions in the Li K-edge X-ray absorption spectra (XAS) of crystalline LiF, Li2SO4, Li2O, Li3N and Li2CO3 using high resolution X-ray Raman spectroscopy (XRS) measurements and first-principles density functional theory calculations within the eXcited electron and Core Hole (XCH) approach. Based on thermodynamic sampling via ab-initio molecular dynamics (MD) simulations, we find calculated XAS in much better agreement with experiment than those computed using the rigid crystal structure alone. We show that local instantaneous distortion of the atomic lattice perturbs the symmetry of the Li 1 s core-excited-state electronic structure, broadening spectral line-shapes and, in some cases, producing additional spectral features. This work was conducted within the Batteries for Advanced Transportation Technologies (BATT) Program, supported by the U.S. Department of Energy Vehicle Technologies Program under Contract No. DE-AC02-05CH11231.

  7. Structure analysis of InN film using extended X-ray absorption fine structure method

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, T.; Kobayashi, T.; Hirata, S. [Core Technology Development Center, Core Technology and Network Company, Sony Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa 243-0014 (Japan); Kudo, Y.; Liu, K.L. [Technology Solutions Center, Sony Corporation, 4-16-1 Okata, Atsugi, Kanagawa 243-0021 (Japan); Uruga, T.; Honma, T. [Japan Synchrotron Radiation Research Institute, Mikazuki-cho, Hyogo 679-5198 (Japan); Saito, Y.; Hori, M.; Nanishi, Y. [Department of Photonics, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577 (Japan)

    2002-12-01

    We investigated the local atomic structure around In atoms of MBE-grown InN which has a direct bandgap energy of 0.8 eV, using extended X-ray absorption fine structure (EXAFS) oscillation of In K-edge. The signals from the first-nearest neighbor atoms (N) and second-nearest atoms (In) from In atoms were clearly observed and the atomic bond length of In-N and In-In was estimated to be d{sub In-N}=0.215 nm and d{sub In-In}=0.353 nm, respectively. The In-N bond length of d{sub In-In}=0.353 nm was closed to the a-axis lattice constant of a=0.3536 nm, which was determined using X-ray diffraction measurements. The obtained local atomic structure agreed with the calculated ideal structure. We conclude, therefore, that the InN film with a bandgap energy of 0.8 eV has a high structural symmetry in the range of a few A around In atoms. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  8. Structure analysis of InN film using extended X-ray absorption fine structure method

    International Nuclear Information System (INIS)

    Miyajima, T.; Kobayashi, T.; Hirata, S.; Kudo, Y.; Liu, K.L.; Uruga, T.; Honma, T.; Saito, Y.; Hori, M.; Nanishi, Y.

    2002-01-01

    We investigated the local atomic structure around In atoms of MBE-grown InN which has a direct bandgap energy of 0.8 eV, using extended X-ray absorption fine structure (EXAFS) oscillation of In K-edge. The signals from the first-nearest neighbor atoms (N) and second-nearest atoms (In) from In atoms were clearly observed and the atomic bond length of In-N and In-In was estimated to be d In-N =0.215 nm and d In-In =0.353 nm, respectively. The In-N bond length of d In-In =0.353 nm was closed to the a-axis lattice constant of a=0.3536 nm, which was determined using X-ray diffraction measurements. The obtained local atomic structure agreed with the calculated ideal structure. We conclude, therefore, that the InN film with a bandgap energy of 0.8 eV has a high structural symmetry in the range of a few A around In atoms. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  9. Tables of X-ray absorption corrections and dispersion corrections: The new versus the old

    International Nuclear Information System (INIS)

    Creagh, D.

    1990-01-01

    This paper compared the data on X-ray absorption coefficients calculated by Creagh and Hubbell and tabulated in International Tables for Crystallography, vol. C, ed. A.J.C. Wilson (1990) section 4.2.4 with empirical (Saloman, Hubbell and Scofield, At. Data and Nucl. Data Tables 38 (1988) 1, and semi-empirical (Hubbell, McMaster, Kerr Del Grande and Mallett, in: International Tables for Crystallography, vol. IV, eds. Ibers and Hamilton (Kynoch, Birmingham, 1974)) tabulations as well as the renormalized relativistic Dirac-Hartree-Fock calculations of Scofield. It also makes comparisons of the real part of the dispersion correction f'(ω,0), with theoretical data sets (Cromer and Liberman, J. Chem. Phys. 53 (1970) 1891, and Acta Crystallogr. A37 (1981)267; Wang, Phys. Rev. A34 (1986) 636; Kissel, in: Workshop Report on New Dimensions in X-ray Scattering, CONF-870459 (Livermore, 1987) p. 9) and data collected using a variety of experimental techniques. In both cases the data is shown to give improved self-consistency and agreement with experimental. (orig./HSI)

  10. Tables of X-ray absorption corrections and dispersion corrections: the new versus the old

    Science.gov (United States)

    Creagh, Dudley

    1990-11-01

    This paper compares the data on X-ray absorption coefficients calculated by Creagh and Hubbell and tabulated in International Tables for Crystallography, vol. C, ed. A.J.C. Wilson (1990) section 4.2.4 [1] with empirical (Saloman, Hubbell and Scofield, At. Data and Nucl. Data Tables 38 (1988) 1, [6]) and semi-empirical (Hubbell, McMaster, Kerr Del Grande and Mallett, in: International Tables for Crystallography, vol. IV, eds. Ibers and Hamilton (Kynoch, Birmingham, 1974) [2]) tabulations as well as the renormalized relativistic Dirac-Hartree-Fock calculations of Scofield [6]. It also makes comparisons of the real part of the dispersion correction ƒ‧(ω, 0) and tabulated in ref. [1], with theoretical data sets (Cromer and Liberman, J. Chem. Phys. 53 (1970) 1891, and Acta Crystallogr. A37 (1981) 267 [4,5]; Wang, Phys. Rev. A34 (1986) 636 [85]; Kissel, in: Workshop Report on New Dimensions in X-ray Scattering, CONF-870459 (Livermore, 1987) p. 9 [86]) and data collected using a variety of experimental techniques. In both cases the data tabulated in ref. [1] is shown to give improved self-consistency and agreement with experiment.

  11. A parameterization scheme for the x-ray linear attenuation coefficient and energy absorption coefficient.

    Science.gov (United States)

    Midgley, S M

    2004-01-21

    A novel parameterization of x-ray interaction cross-sections is developed, and employed to describe the x-ray linear attenuation coefficient and mass energy absorption coefficient for both elements and mixtures. The new parameterization scheme addresses the Z-dependence of elemental cross-sections (per electron) using a simple function of atomic number, Z. This obviates the need for a complicated mathematical formalism. Energy dependent coefficients describe the Z-direction curvature of the cross-sections. The composition dependent quantities are the electron density and statistical moments describing the elemental distribution. We show that it is possible to describe elemental cross-sections for the entire periodic table and at energies above the K-edge (from 6 keV to 125 MeV), with an accuracy of better than 2% using a parameterization containing not more than five coefficients. For the biologically important elements 1 coefficients. At higher energies, the parameterization uses fewer coefficients with only two coefficients needed at megavoltage energies.

  12. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  13. A flexible gas flow reaction cell for in situ x-ray absorption spectroscopy studies

    Energy Technology Data Exchange (ETDEWEB)

    Kroner, Anna B., E-mail: anna.kroner@diamond.ac.uk; Gilbert, Martin; Duller, Graham; Cahill, Leo; Leicester, Peter; Woolliscroft, Richard; Shotton, Elizabeth J. [Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Chilton, Oxfordshire, OX110DE (United Kingdom); Mohammed, Khaled M. H. [UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX110FA (United Kingdom); School of Chemistry, University of Southampton, Southampton, SO17 1BJ (United Kingdom)

    2016-07-27

    A capillary-based sample environment with hot air blower and integrated gas system was developed at Diamond to conduct X-ray absorption spectroscopy (XAS) studies of materials under time-resolved, in situ conditions. The use of a hot air blower, operating in the temperature range of 298-1173 K, allows introduction of other techniques e.g. X-ray diffraction (XRD), Raman spectroscopy for combined techniques studies. The flexibility to use either quartz or Kapton capillaries allows users to perform XAS measurement at energies as low as 5600 eV. To demonstrate performance, time-resolved, in situ XAS results of Rh catalysts during the process of activation (Rh K-edge, Ce L{sub 3}-edge and Cr K-edge) and the study of mixed oxide membrane (La{sub 0.6}Sr{sub 0.4}Co{sub 0.2}Fe{sub 0.8}O{sub 3−δ}) under various partial oxygen pressure conditions are described.

  14. Characterization of the Electronic Structure of Silicon Nanoparticles Using X-ray Absorption and Emission

    Energy Technology Data Exchange (ETDEWEB)

    Vaverka, April Susan Montoya [Univ.of California, Davis, CA (United States)

    2008-01-01

    Resolving open questions regarding transport in nanostructures can have a huge impact on a broad range of future technologies such as light harvesting for energy. Silicon has potential to be used in many of these applications. Understanding how the band edges of nanostructures move as a function of size, surface termination and assembly is of fundamental importance in understanding the transport properties of these materials. In this thesis work I have investigated the change in the electronic structure of silicon nanoparticle assemblies as the surface termination is changed. Nanoparticles are synthesized using a thermal evaporation technique and sizes are determined using atomic force microscopy (AFM). By passivating the particles with molecules containing alcohol groups we are able to modify the size dependent band edge shifts. Both the valence and conduction bands are measured using synchrotron based x-ray absorption spectroscopy (XAS) and soft x-ray fluorescence (SXF) techniques. Particles synthesized via recrystallization of amorphous silicon/SiO2 multilayers of thicknesses below 10 nm are also investigated using the synchrotron techniques. These samples also show quantum confinement effects but the electronic structure is different from those synthesized via evaporation methods. The total bandgap is determined for all samples measured. The origins of these differences in the electronic structures are discussed.

  15. Revisiting the total ion yield x-ray absorption spectra of liquid water microjets

    International Nuclear Information System (INIS)

    Saykally, Richard J; Cappa, Chris D.; Smith, Jared D.; Wilson, Kevin R.; Saykally, Richard J.

    2008-01-01

    Measurements of the total ion yield (TIY) x-ray absorption spectrum (XAS) of liquid water by Wilson et al. (2002 J. Phys.: Condens. Matter 14 L221 and 2001 J. Phys. Chem. B 105 3346) have been revisited in light of new experimental and theoretical efforts by our group. Previously, the TIY spectrum was interpreted as a distinct measure of the electronic structure of the liquid water surface. However, our new results indicate that the previously obtained spectrum may have suffered from as yet unidentified experimental artifacts. Although computational results indicate that the liquid water surface should exhibit a TIY-XAS that is fundamentally distinguishable from the bulk liquid XAS, the new experimental results suggest that the observable TIY-XAS is actually nearly identical in appearance to the total electron yield (TEY-)XAS, which is a bulk probe. This surprising similarity between the observed TIY-XAS and TEY-XAS likely results from large contributions from x-ray induced electron stimulated desorption of ions, and does not necessarily indicate that the electronic structure of the bulk liquid and liquid surface are identical

  16. Synthesis and characterization of Bi2S3 composite nanoparticles with high X-ray absorption

    International Nuclear Information System (INIS)

    Huang, Huan-Huan; Chen, Jun; Meng, Yuan-Zheng; Yang, Xiao-Quan; Zhang, Ming-Zhen; Yu, Yong; Ma, Zhi-Ya; Zhao, Yuan-Di

    2013-01-01

    Graphical abstract: - Highlights: • Uniform Bi 2 S 3 nanorods were prepared via a hot injection method. • Bi 2 S 3 nanorods were coated with TEOS and PEG for surface modification. • CT images of Bi 2 S 3 @SiO 2 -PEG are much higher than clinical iobitridol when they have the same concentration. • Cellular toxicity of Bi 2 S 3 @SiO 2 -PEG is low when the probes were directly in contact with tissue fluid. - Abstract: Owing to the high X-ray absorption, Bi 2 S 3 nanocrystals are widely used as CT contrast agents. Here, we prepared uniform Bi 2 S 3 nanorods via a hot injection method using bismuth (III) chloride, sulfur and oleyl amine. The resulting nanocrystals were coated with tetraethylorthosilicate (TEOS) and 2-[methoxy(polyethyleneoxy)propyl]yrimethoxysilane (PEG-silane) for the biological utility. X-ray diffraction (XRD) and transmission electron microscopy (TEM) results showed that the Bi 2 S 3 nanorods had an orthorhombic structure with the length of 14 nm and the diameter of 7 nm, respectively. Composite nanoparticles (0.0226 M) gave a CT number at 550 (HU), which was higher than that of the commercial available iobitridol CT contrast agent. Furthermore, cell experiments revealed that Bi 2 S 3 composite nanoparticles had a low cytotoxicity with a concentration up to 0.01 M of Bi for 24 h

  17. Segmented Monolithic Germanium Detector Arrays for X-ray Absorption Spectroscopy. Final Report

    International Nuclear Information System (INIS)

    Hull, Ethan L.

    2011-01-01

    The experimental results from the Phase I effort were extremely encouraging. During Phase I PHDs Co. made the first strides toward a new detector technology that could have great impact on synchrotron x-ray absorption (XAS) measurements, and x-ray detector technology in general. Detector hardware that allowed critical demonstration measurements of our technology was designed and fabricated. This new technology allows good charge collection from many pixels on a single side of a multi-element monolithic germanium planar detector. The detector technology provides 'dot-like' collection electrodes having very low capacitance. The detector technology appears to perform as anticipated in the Phase I proposal. In particular, the 7-pixel detector studied showed remarkable properties; making it an interesting example of detector physics. The technology is enabled by the use of amorphous germanium contact technology on germanium planar detectors. Because of the scalability associated with the fabrication of these technologies at PHDs Co., we anticipate being able to supply larger detector systems at significantly lower cost than systems made in the conventional manner.

  18. X-ray absorption studies of chlorine valence and local environments in borosilicate waste glasses

    International Nuclear Information System (INIS)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.; Stolte, W.C.; Demchenko, I.N.

    2011-01-01

    Chlorine (Cl) is a constituent of certain types of nuclear wastes and its presence can affect the physical and chemical properties of silicate melts and glasses developed for the immobilization of such wastes. Cl K-edge X-ray absorption spectra (XAS) were collected and analyzed to characterize the unknown Cl environments in borosilicate waste glass formulations, ranging in Cl-content from 0.23 to 0.94 wt.%. Both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) data for the glasses show trends dependent on calcium (Ca) content. Near-edge data for the Ca-rich glasses are most similar to the Cl XANES of CaCl 2 , where Cl - is coordinated to three Ca atoms, while the XANES for the Ca-poor glasses are more similar to the mineral davyne, where Cl is most commonly coordinated to two Ca in one site, as well as Cl and oxygen nearest-neighbors in other sites. With increasing Ca content in the glass, Cl XANES for the glasses approach that for CaCl 2 , indicating more Ca nearest-neighbors around Cl. Reliable structural information obtained from the EXAFS data for the glasses is limited, however, to Cl-Cl, Cl-O, and Cl-Na distances; Cl-Ca contributions could not be fit to the glass data, due to the narrow k-space range available for analysis. Structural models that best fit the glass EXAFS data include Cl-Cl, Cl-O, and Cl-Na correlations, where Cl-O and Cl-Na distances decrease by approximately 0.16 A as glass Ca content increases. XAS for the glasses indicates Cl - is found in multiple sites where most Cl-sites have Ca neighbors, with oxygen, and possibly, Na second-nearest neighbors. EXAFS analyses suggest that Cl-Cl environments may also exist in the glasses in minor amounts. These results are generally consistent with earlier findings for silicate glasses, where Cl - was associated with Ca 2+ and Na + in network modifier sites.

  19. X-Ray Absorption in Carbon Ions Near the K-Edge

    Science.gov (United States)

    Hasoglu, M. F.; Abdel-Naby, Sh. A.; Nikolic, D.; Gorczyca, T. W.; McLaughlin, B. M.

    2007-06-01

    K-shell photoabsorption calculations are important for determining the elemental abundances of the interstellar medium (ISM) from observed X-ray absorption spectra. Previously, we performed reliable K-shell photoabsorption calculations for oxygen [1-3] and neon [4,5] ions. We have executed detailed R-matrix calculations for carbon ions, including Auger broadening, by using an optical potential, and relaxation effects, by using pseudoorbitals with the necessary pseudoresonance elimination. This work was funded by NASA's Astronomy Physics Research and Analysis (APRA) and Solar and Heliospheric Physics (SHP) Supporting Research and Technology (SR&T) programs. References: [1] T. W. Gorczyca and B. M. McLaughlin. J Phys. B. 33 L859 (2000) [2] A. M. Juett, et al., Astrophys. J. 612, 308 (2004) [3] J. Garcia et al., Astrophys. J. Supp. S. 158, 68 (2005) [4] T. W. Gorczyca., Phys. Rev. A. 61, 024702 (2000) [5] A. M. Juett, et al., Astrophys. J. 648, 1066 (2006)

  20. Extended x-ray absorption fine structure: Studies of zinc-neutralized sulfonated polystyrene ionomers

    International Nuclear Information System (INIS)

    Ding, Y.S.; Yarusso, D.J.; Pan, H.K.D.; Cooper, S.L.

    1984-01-01

    Extended x-ray absorption fine structure (EXAFS) measurements were performed on a series of zinc-neutralized sulfonated polystyrene ionomers and the local structure around the zinc atom was determined. An interference effect in the EXAFS signal between sulfur and oxygen atoms was found to be significant in these materials. A model for the local structure in the zinc-neutralized sulfonated polystyrene ionomers is proposed which suggests a highly ordered tetrahedral coordination of oxygen around the zinc atoms at a distance of 1.97 +- 0.02 A. In addition there are four sulfur atoms and four oxygen atoms at a distance of 3.15 +- 0.05 A. No zinc-zinc coordination within 5 A was detected in this study

  1. A new X-ray absorption experimental set-up dedicated to DeNOx catalysis

    International Nuclear Information System (INIS)

    Revel, R.; Bazin, D.; Seigneurin, A.; Barthe, P.; Dubuisson, J.M.; Decamps, T.; Sonneville, H.; Poher, J.J.; Maire, F.; Lefrancois, P.

    1999-01-01

    In this paper, we present a complete in situ X-ray absorption reaction cell that simulates DeNO x experimental conditions. In this device, the sample is placed at high temperature under the flow of a complex mixture of reactive gases (NO, C 3 H 6 , O 2 , N 2 ). Particular attention has been paid to the material and design of the sample holders in order to avoid preferential gas circulation and thus ensure a true diffusion of the reactive gases on the catalyst. Moreover, precise control of the gas flow is maintained by means of mass flow controllers, and the safety of the set-up is assured by CO, CO 2 and NO detectors directly relayed to an electronic device, which is itself linked to the various mass flow controllers. Finally, the possibilities of this device are illustrated through the in situ XANES study of a Cu-ZSM-5 catalytic system

  2. Identification of minority compounds in natural ilmenites by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Klepka, M.T.; Lawniczak-Jablonska, K.; Wolska, A.; Jablonski, M.

    2010-01-01

    Research highlights: → White pigment TiO 2 production process. → The principal component analysis using XANES. → Ilmenite accompanying chemical compounds identification. → Chemical binding of Mg in ilmenite depends on the climatic and geological conditions. -- Abstract: Natural ilmenites are used all over the world as raw materials in white pigment (TiO 2 ) production. Besides the FeTiO 3 in the raw material many other compounds are present. The chemical compounds based on the minority elements influence quality of the final product and are difficult to identify. The knowledge about chemical bonding of the minor elements enables to properly adjust chemical reactions during production processes and to improve quality of the final product. In this paper the X-ray absorption spectroscopy (XAS) identification of the chemical compounds formed by Mg, Mn and Cr in natural ilmenites originating from different places is presented.

  3. Structure-activity relationships of heterogeneous catalysts from time-resolved X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Ressler, T.; Jentoft, R.E.; Wienold, J.; Girgsdies, F.; Neisius, T.; Timpe, O.

    2003-01-01

    Knowing the composition and the evolution of the bulk structure of a heterogeneous catalyst under working conditions (in situ) is a pre-requisite for understanding structure-activity relationships. X-ray absorption spectroscopy can be employed to study a catalytically active material in situ. In addition to steady-state investigations, the technique permits experiments with a time-resolution in the sub-second range to elucidate the solid-state kinetics of the reactions involved. Combined with mass spectrometry, the evolution of the short-range order structure of a heterogeneous catalyst, the average valence of the constituent metals, and the phase composition can be obtained. Here we present results obtained from time-resolved studies on the reduction of MoO 3 in propene and in propene and oxygen

  4. Studies of the X-ray absorption spectra of some methylcyano esters

    International Nuclear Information System (INIS)

    Takahashi, Osamu; Saito, Ko; Mitani, Masaki; Yoshida, Hiroaki; Tahara, Fumitaka; Sunami, Tetsuji; Waki, Keiichiro; Senba, Yasunori; Hiraya, Atsunari; Pettersson, Lars G.M.

    2005-01-01

    Density functional theory (DFT) has been applied to simulate core-excited photoabsorption spectra for some methylcyano esters within a transition potential (TP) framework. Our calculations for methylcyano formate at the N and O K-edges are consistent with previous experimental spectra. For methylcyano acetate the photoabsorption spectra at the N and O K-edges were reinvestigated experimentally. Contrary to the previous experiment, only one main peak was observed at the N K-edge and this peak was assigned to N(1s) ->π* excitation. This result was supported by our theoretical calculations. The general trends in the X-ray absorption spectra and the site-specific bond scission of methylcyano esters at the N and O K-edges are also discussed

  5. Deexcitation Dynamics of Superhydrogenated Polycyclic Aromatic Hydrocarbon Cations after Soft-x-Ray Absorption

    Science.gov (United States)

    Reitsma, G.; Boschman, L.; Deuzeman, M. J.; González-Magaña, O.; Hoekstra, S.; Cazaux, S.; Hoekstra, R.; Schlathölter, T.

    2014-08-01

    We have investigated the response of superhydrogenated gas-phase coronene cations upon soft x-ray absorption. Carbon (1s)⟶π⋆ transitions were resonantly excited at hν =285 eV. The resulting core hole is then filled in an Auger decay process, with the excess energy being released in the form of an Auger electron. Predominantly highly excited dications are thus formed, which cool down by hydrogen emission. In superhydrogenated systems, the additional H atoms act as a buffer, quenching loss of native H atoms and molecular fragmentation. Dissociation and transition state energies for several H loss channels were computed by means of density functional theory. Using these energies as input into an Arrhenius-type cascade model, very good agreement with the experimental data is found. The results have important implications for the survival of polyaromatic hydrocarbons in the interstellar medium and reflect key aspects of graphene hydrogenation.

  6. X-ray absorption radiography for high pressure shock wave studies

    Science.gov (United States)

    Antonelli, L.; Atzeni, S.; Batani, D.; Baton, S. D.; Brambrink, E.; Forestier-Colleoni, P.; Koenig, M.; Le Bel, E.; Maheut, Y.; Nguyen-Bui, T.; Richetta, M.; Rousseaux, C.; Ribeyre, X.; Schiavi, A.; Trela, J.

    2018-01-01

    The study of laser compressed matter, both warm dense matter (WDM) and hot dense matter (HDM), is relevant to several research areas, including materials science, astrophysics, inertial confinement fusion. X-ray absorption radiography is a unique tool to diagnose compressed WDM and HDM. The application of radiography to shock-wave studies is presented and discussed. In addition to the standard Abel inversion to recover a density map from a transmission map, a procedure has been developed to generate synthetic radiographs using density maps produced by the hydrodynamics code DUED. This procedure takes into account both source-target geometry and source size (which plays a non negligible role in the interpretation of the data), and allows to reproduce transmission data with a good degree of accuracy.

  7. X-ray magnetic absorption in Fe-Tb amorphous thin films

    CERN Document Server

    Kim, Chan Wook; Watanabe, Yasuhiro

    1999-01-01

    In order to investigate the magnetic structure of Fe-Tb amorphous thin films, we have performed magnetic circular dichroism (MCD) measurements by using the circularly polarized X-ray at the Fe K- and the Tb L2,3-edges in Fe sub 8 sub 8 Tb sub 1 sub 2 , Fe sub 8 sub 0 Tb sub 2 sub 0 , and Fe sub 6 sub 2 Tb sub 3 sub 8. In all samples, the spin-dependent absorption effects, DELTA mu t, were observed. Also, elementary information was obtained on the spin polarizations of the p- and the d-projected electrons lying in the unoccupied states near the Fermi levels in the samples.

  8. Electronic topological transition in zinc under pressure: An x-ray absorption spectroscopy study

    International Nuclear Information System (INIS)

    Aquilanti, G.; Trapananti, A.; Pascarelli, S.; Minicucci, M.; Principi, E.; Liscio, F.; Twarog, A.

    2007-01-01

    Zinc metal has been studied at high pressure using x-ray absorption spectroscopy. In order to investigate the role of the different degrees of hydrostaticity on the occurrence of structural anomalies following the electronic topological transition, two pressure transmitting media have been used. Results show that the electronic topological transition, if it exists, does not induce an anomaly in the local environment of compressed Zn as a function of hydrostatic pressure and any anomaly must be related to a loss of hydrostaticity of the pressure transmitting medium. The near-edge structures of the spectra, sensitive to variations in the electronic density of states above the Fermi level, do not show any evidence of electronic transition whatever pressure transmitting medium is used

  9. Structural anisotropy in amorphous SnO2 film probed by X-ray absorption spectroscopy

    Science.gov (United States)

    Zhu, Q.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2013-07-01

    Polarization-dependent X-ray absorption measurements reveal the existence of structural anisotropy in amorphous (a-) SnO2 film. The anisotropy is readily seen for the second neighbor interaction whose magnitude differs along three measured directions. The differences can be well accounted for by 10%-20% variation in the Debye-Waller factor. Instead of a single Gaussian distribution found in crystalline SnO2, the Sn-O bond distribution is bimodal in a-SnO2 whose separation shows a weak angular dependence. The oxygen vacancies, existing in the a-SnO2 film in the order of 1021 cm-3, distribute preferentially along the film surface direction.

  10. Grazing incidence X-ray absorption characterization of amorphous Zn-Sn-O thin film

    Science.gov (United States)

    Moffitt, S. L.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2016-05-01

    We report a surface structure study of an amorphous Zn-Sn-O (a-ZTO) transparent conducting film using the grazing incidence X-ray absorption spectroscopy technique. By setting the measuring angles far below the critical angle at which the total external reflection occurs, the details of the surface structure of a film or bulk can be successfully accessed. The results show that unlike in the film where Zn is severely under coordinated (N < 4), it is fully coordinated (N = 4) near the surface while the coordination number around Sn is slightly smaller near the surface than in the film. Despite a 30% Zn doping, the local structure in the film is rutile-like.

  11. Tin Valence and Local Environments in Silicate Glasses as Determined From X-ray Absorption Spectroscopy

    International Nuclear Information System (INIS)

    McKeown, D.; Buechele, A.; Gan, H.; Pegg, I.

    2008-01-01

    X-ray absorption spectroscopy (XAS) was used to characterize the tin (Sn) environments in four borosilicate glass nuclear waste formulations, two silicate float glasses, and three potassium aluminosilicate glasses. Sn K-edge XAS data of most glasses investigated indicate Sn4+O6 units with average Sn-O distances near 2.03 Angstroms. XAS data for a float glass fabricated under reducing conditions show a mixture of Sn4+O6 and Sn2+O4 sites. XAS data for three glasses indicate Sn-Sn distances ranging from 3.43 to 3.53 Angstroms, that suggest Sn4+O6 units linking with each other, while the 4.96 Angstroms Sn-Sn distance for one waste glass suggests clustering of unlinked Sn4+O6 units.

  12. X-ray absorption spectroscopy in biological systems. Opportunities and limitations

    Energy Technology Data Exchange (ETDEWEB)

    Bovenkamp, Gudrun Lisa

    2013-05-15

    X-ray absorption spectroscopy has become more important for applications in the material sciences, geology, environmental science and biology, specifically in the field of molecular biology. The scope of this thesis is to add more experimental evidence in order to show how applicable X-ray absorption near edge structure (XANES) is to biology. Two biological systems were investigated, at the molecular level, lead uptake in plants and the effect of silver on bacteria. This investigation also included an analysis of the sensitivity of Pb L{sub 3}- and Ag L{sub 3}-XANES spectra with regard to their chemical environment. It was shown that Pb L{sub 3}- and Ag L{sub 3}-XANES spectra are sensitive to an environment with at least differences in the second coordination shell. The non-destructive and element specific properties of XANES are the key advantages that were very important for this investigation. However, in both projects the adequate selection of reference compounds, which required in some cases a chemical synthesis, was the critical factor to determine the chemical speciation and, finally, possible uptake and storage mechanisms for plants and antibacterial mechanisms of silver. The chemical environment of Pb in roots and leaves of plants from four different plant families and a lichen from a former lead mining site in the Eifel mountains in Germany was determined using both solid compounds and aqueous solutions of different ionic strength, which simulate the plant environment. The results can be interpreted in such a way that lead is sorbed on the surface of cell walls. Silver bonding as reaction with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli bacteria was determined using inorganic silver compounds and synthesized silver amino acids. Silver binds to sulfur, amine and carboxyl groups in amino acids.

  13. X-ray absorption spectroscopy in biological systems. Opportunities and limitations

    International Nuclear Information System (INIS)

    Bovenkamp, Gudrun Lisa

    2013-05-01

    X-ray absorption spectroscopy has become more important for applications in the material sciences, geology, environmental science and biology, specifically in the field of molecular biology. The scope of this thesis is to add more experimental evidence in order to show how applicable X-ray absorption near edge structure (XANES) is to biology. Two biological systems were investigated, at the molecular level, lead uptake in plants and the effect of silver on bacteria. This investigation also included an analysis of the sensitivity of Pb L 3 - and Ag L 3 -XANES spectra with regard to their chemical environment. It was shown that Pb L 3 - and Ag L 3 -XANES spectra are sensitive to an environment with at least differences in the second coordination shell. The non-destructive and element specific properties of XANES are the key advantages that were very important for this investigation. However, in both projects the adequate selection of reference compounds, which required in some cases a chemical synthesis, was the critical factor to determine the chemical speciation and, finally, possible uptake and storage mechanisms for plants and antibacterial mechanisms of silver. The chemical environment of Pb in roots and leaves of plants from four different plant families and a lichen from a former lead mining site in the Eifel mountains in Germany was determined using both solid compounds and aqueous solutions of different ionic strength, which simulate the plant environment. The results can be interpreted in such a way that lead is sorbed on the surface of cell walls. Silver bonding as reaction with Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli bacteria was determined using inorganic silver compounds and synthesized silver amino acids. Silver binds to sulfur, amine and carboxyl groups in amino acids.

  14. Polarized-x-ray-absorption studies of graphite intercalated-bromine compounds

    International Nuclear Information System (INIS)

    Feldman, J.L.; Elam, W.T.; Ehrlich, A.C.; Skelton, E.F.; Dominguez, D.D.; Chung, D.D.L.; Lytle, F.W.

    1986-01-01

    Details of both results and data analysis are given in the case of our polarized-x-ray-absorption experiments, using synchrotron radiation, on highly oriented pyrolytic graphite (HOPG)--based and graphite-fiber-based residual-bromine intercalation compounds. The effective angle which nearest-neighbor Br pairs make with crystallite graphite planes in some of these compounds, which was stated to be approx.20 0 in an earlier article, is shown to be 16X(de +- 4X(de: both Br-Br extended x-ray-absorption fine structure (EXAFS) and white-line features of the data are the basis of this result. We have also found that, whereas spherical averages of the areas under white-line spectra are independent of the choice of the material among all samples studied (including Br 2 vapor), differences in similarly spherically averaged Br-Br EXAFS amplitudes are evident, especially between Br 2 vapor and Br-graphite samples. We show that the latter differences which correspond to a coordination number less than one in Br-graphite are not due to either Gaussian or non-Gaussian (up to k 4 terms) Debye-Waller effects. In addition, we discuss the extraction of Br-C EXAFS and present results of model calculations of Br-C EXAFS, where several different structural models for the Br sites are considered. We also discuss thermal effects and their relation to known Br sublattice phase-transition behavior, based on our measurements at room temperature, 360 K, and 400 K

  15. Density of alkaline magmas at crustal and upper mantle conditions by X-ray absorption

    Science.gov (United States)

    Seifert, R.; Malfait, W.; Petitgirard, S.; Sanchez-Valle, C.

    2011-12-01

    Silicate melts are essential components of igneous processes and are directly involved in differentiation processes and heat transfer within the Earth. Studies of the physical properties of magmas (e.g., density, viscosity, conductivity, etc) are however challenging and experimental data at geologically relevant pressure and temperature conditions remain scarce. For example, there is virtually no data on the density at high pressure of alkaline magmas (e.g., phonolites) typically found in continental rift zone settings. We present in situ density measurements of alkaline magmas at crustal and upper mantle conditions using synchrotron X-ray absorption. Measurements were conducted on ID27 beamline at ESRF using a panoramic Paris-Edinburgh Press (PE Press). The starting material is a synthetic haplo-phonolite glass similar in composition to the Plateau flood phonolites from the Kenya rift [1]. The glass was synthesized at 1673 K and 2.0 GPa in a piston-cylinder apparatus at ETH Zurich and characterized using EPMA, FTIR and density measurements. The sample contains less than 200 ppm water and is free of CO2. Single-crystal diamond cylinders (Øin = 0.5 mm, height = 1 mm) were used as sample containers and placed in an assembly formed by hBN spacers, a graphite heater and a boron epoxy gasket [2]. The density was determined as a function of pressure (1.0 to 3.1 GPa) and temperature (1630-1860 K) from the X-ray absorption contrast at 20 keV between the sample and the diamond capsule. The molten state of the sample during the data collection was confirmed by X-ray diffraction measurements. Pressure and temperature were determined simultaneously from the equation of state of hBN and platinum using the the double isochor method [3].The results are combined with available density data at room conditions to derive the first experimental equation of state (EOS) of phonolitic liquids at crustal and upper mantle conditions. We will compare our results with recent reports of the

  16. Mammographic x-ray unit kilovoltage test tool based on k-edge absorption effect.

    Science.gov (United States)

    Napolitano, Mary E; Trueblood, Jon H; Hertel, Nolan E; David, George

    2002-09-01

    A simple tool to determine the peak kilovoltage (kVp) of a mammographic x-ray unit has been designed. Tool design is based on comparing the effect of k-edge discontinuity of the attenuation coefficient for a series of element filters. Compatibility with the mammography accreditation phantom (MAP) to obtain a single quality control film is a second design objective. When the attenuation of a series of sequential elements is studied simultaneously, differences in the absorption characteristics due to the k-edge discontinuities are more evident. Specifically, when the incident photon energy is higher than the k-edge energy of a number of the elements and lower than the remainder, an inflection may be seen in the resulting attenuation data. The maximum energy of the incident photon spectra may be determined based on this inflection point for a series of element filters. Monte Carlo photon transport analysis was used to estimate the photon transmission probabilities for each of the sequential k-edge filter elements. The photon transmission corresponds directly to optical density recorded on mammographic x-ray film. To observe the inflection, the element filters chosen must have k-edge energies that span a range greater than the expected range of the end point energies to be determined. For the design, incident x-ray spectra ranging from 25 to 40 kVp were assumed to be from a molybdenum target. Over this range, the k-edge energy changes by approximately 1.5 keV between sequential elements. For this design 21 elements spanning an energy range from 20 to 50 keV were chosen. Optimum filter element thicknesses were calculated to maximize attenuation differences at the k-edge while maintaining optical densities between 0.10 and 3.00. Calculated relative transmission data show that the kVp could be determined to within +/-1 kV. To obtain experimental data, a phantom was constructed containing 21 different elements placed in an acrylic holder. MAP images were used to determine

  17. Mammographic x-ray unit kilovoltage test tool based on k-edge absorption effect

    International Nuclear Information System (INIS)

    Napolitano, Mary E.; Trueblood, Jon H.; Hertel, Nolan E.; David, George

    2002-01-01

    A simple tool to determine the peak kilovoltage (kVp) of a mammographic x-ray unit has been designed. Tool design is based on comparing the effect of k-edge discontinuity of the attenuation coefficient for a series of element filters. Compatibility with the mammography accreditation phantom (MAP) to obtain a single quality control film is a second design objective. When the attenuation of a series of sequential elements is studied simultaneously, differences in the absorption characteristics due to the k-edge discontinuities are more evident. Specifically, when the incident photon energy is higher than the k-edge energy of a number of the elements and lower than the remainder, an inflection may be seen in the resulting attenuation data. The maximum energy of the incident photon spectra may be determined based on this inflection point for a series of element filters. Monte Carlo photon transport analysis was used to estimate the photon transmission probabilities for each of the sequential k-edge filter elements. The photon transmission corresponds directly to optical density recorded on mammographic x-ray film. To observe the inflection, the element filters chosen must have k-edge energies that span a range greater than the expected range of the end point energies to be determined. For the design, incident x-ray spectra ranging from 25 to 40 kVp were assumed to be from a molybdenum target. Over this range, the k-edge energy changes by approximately 1.5 keV between sequential elements. For this design 21 elements spanning an energy range from 20 to 50 keV were chosen. Optimum filter element thicknesses were calculated to maximize attenuation differences at the k-edge while maintaining optical densities between 0.10 and 3.00. Calculated relative transmission data show that the kVp could be determined to within ±1 kV. To obtain experimental data, a phantom was constructed containing 21 different elements placed in an acrylic holder. MAP images were used to determine

  18. Transport Measurements and Synchrotron-Based X-Ray Absorption Spectroscopy of Iron Silicon Germanide Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Elmarhoumi, Nader; Cottier, Ryan; Merchan, Greg; Roy, Amitava; Lohn, Chris; Geisler, Heike; Ventrice, Carl, Jr.; Golding, Terry

    2009-03-01

    Some of the iron-based metal silicide and germanide phases have been predicted to be direct band gap semiconductors. Therefore, they show promise for use as optoelectronic materials. We have used synchrotron-based x-ray absorption spectroscopy to study the structure of iron silicon germanide films grown by molecular beam epitaxy. A series of Fe(Si1-xGex)2 thin films (2000 -- 8000å) with a nominal Ge concentration of up to x = 0.04 have been grown. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements have been performed on the films. The nearest neighbor co-ordination corresponding to the β-FeSi2 phase of iron silicide provides the best fit with the EXAFS data. Temperature dependent (20 coefficient was calculated. Results suggest semiconducting behavior of the films which is consistent with the EXAFS results.

  19. Excited state electron and energy relays in supramolecular dinuclear complexes revealed by ultrafast optical and X-ray transient absorption spectroscopy.

    Science.gov (United States)

    Hayes, Dugan; Kohler, Lars; Hadt, Ryan G; Zhang, Xiaoyi; Liu, Cunming; Mulfort, Karen L; Chen, Lin X

    2018-01-28

    The kinetics of photoinduced electron and energy transfer in a family of tetrapyridophenazine-bridged heteroleptic homo- and heterodinuclear copper(i) bis(phenanthroline)/ruthenium(ii) polypyridyl complexes were studied using ultrafast optical and multi-edge X-ray transient absorption spectroscopies. This work combines the synthesis of heterodinuclear Cu(i)-Ru(ii) analogs of the homodinuclear Cu(i)-Cu(i) targets with spectroscopic analysis and electronic structure calculations to first disentangle the dynamics at individual metal sites by taking advantage of the element and site specificity of X-ray absorption and theoretical methods. The excited state dynamical models developed for the heterodinuclear complexes are then applied to model the more challenging homodinuclear complexes. These results suggest that both intermetallic charge and energy transfer can be observed in an asymmetric dinuclear copper complex in which the ground state redox potentials of the copper sites are offset by only 310 meV. We also demonstrate the ability of several of these complexes to effectively and unidirectionally shuttle energy between different metal centers, a property that could be of great use in the design of broadly absorbing and multifunctional multimetallic photocatalysts. This work provides an important step toward developing both a fundamental conceptual picture and a practical experimental handle with which synthetic chemists, spectroscopists, and theoreticians may collaborate to engineer cheap and efficient photocatalytic materials capable of performing coulombically demanding chemical transformations.

  20. Stability of dislocation structures in copper towards stress relaxation investigated by high angular resolution 3D X-ray diffraction

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, Ulrich

    2009-01-01

    A 300 µm thick tensile specimen of OFHC copper is subjected to a tensile loading sequence and deformed to a maximal strain of 3.11%. Using the novel three-dimensional X-ray diffraction method High angular resolution 3DXRD', the evolution of the microstructure within a deeply embedded grain....... In contrast to the deformation stages, during each stress relaxation stage, number, size and orientation of subgrains are found to be constant, while a minor amount of clean-up of the microstructure is observed as narrowing of the radial X-ray diffraction line profile. The associated decrease in the width...

  1. A study of the reactivity of elemental Cr/Se/Te thin multilayers using X-ray reflectometry, in situ X-ray diffraction and X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Behrens, Malte; Tomforde, Jan; May, Enno; Kiebach, Ragnar; Bensch, Wolfgang; Haeussler, Dietrich; Jaeger, Wolfgang

    2006-01-01

    The reactivity of [Cr/Se/Te] multilayers under annealing was investigated using X-ray reflectometry, in situ X-ray diffraction, X-ray absorption fine structure (XAFS) measurements and transmission electron microscopy. For all samples, interdiffusion was complete at temperatures between 100 and 300 deg. C, depending on the repeating tri-layer thickness. A crystalline phase nucleated approximately 20 deg. C above the temperature where interdiffusion was finished. The first crystalline phase in a binary Cr/Te sample was layered CrTe 3 nucleating at 230 deg. C. In ternary samples (Se:Te=0.6-1.2), the low-temperature nucleation of such a layered CrQ 3 (Q=Se, Te) phase is suppressed and instead the phase Cr 2 Q 3 nucleates first. Interestingly, this phase decomposes around 500 deg. C into layered CrQ 3 . In contrast, binary Cr/Se samples form stable amorphous alloys after interdiffusion and Cr 3 Se 4 nucleates around 500 deg. C as the only crystalline phase. Evaluation of the XAFS data of annealed samples yield Se-Cr distances of 2.568(1) and 2.552(1) A for Cr 2 Q 3 and CrQ 3 , respectively. In the latter sample, higher coordination shells around Se are seen accounting for the Se-Te contacts in the structure. - Graphical abstract: The first step of the reaction of elemental Cr/Te/Se-multilayers is the interdiffusion of the elements as evidenced by the decay of the modulation peaks in the low-angle region of the X-ray diffraction patterns. The subsequent growth of Bragg peaks at higher scattering angles indicates crystallization of chromium chalcogenide Cr 2 Te 3- x Se x

  2. Gauge invariance and relativistic effects in X-ray absorption and scattering by solids

    International Nuclear Information System (INIS)

    Bouldi, N.; Brouder, C.

    2017-01-01

    There is an incompatibility between gauge invariance and the semi-classical time-dependent perturbation theory commonly used to calculate light absorption and scattering cross-sections. There is an additional incompatibility between perturbation theory and the description of the electron dynamics by a semi-relativistic Hamiltonian. In this paper, the gauge-dependence problem of exact perturbation theory is described, the proposed solutions are reviewed and it is concluded that none of them seems fully satisfactory. The problem is finally solved by using the fully relativistic absorption and scattering cross-sections given by quantum electrodynamics. Then, a new general Foldy-Wouthuysen transformation is presented. It is applied to the many-body case to obtain correct semi-relativistic transition operators. This transformation considerably simplifies the calculation of relativistic corrections. In the process, a new light-matter interaction term emerges, called the spin-position interaction, that contributes significantly to the magnetic X-ray circular dichroism of transition metals. We compare our result with the ones obtained by using several semi-relativistic time-dependent Hamiltonians. In the case of absorption, the final formula agrees with the result obtained from one of them. However, the correct scattering cross-section is not given by any of the semi-relativistic Hamiltonians. (authors)

  3. A liquid-He cryostat for structural and thermal disorder studies by X-ray absorption.

    Science.gov (United States)

    Bouamrane, F; Ribbens, M; Fonda, E; Adjouri, C; Traverse, A

    2003-07-01

    A new device operating from 4.2 to 300 K is now installed on the hard X-ray station of the DCI ring in LURE in order to measure absorption coefficients. This liquid-He bath device has three optical windows. One allows the incident beam to impinge on the sample, one located at 180 degrees with respect to the sample allows transmitted beams to be detected, and another located at 90 degrees is used to detect emitted photons. Total electron yield detection mode is also possible thanks to a specific sample holder equipped with an electrode that collects the charges created by the emitted electrons in the He gas brought from the He bath around the sample. The performance of the cryostat is described by measurements of the absorption coefficients versus the temperature for Cu and Co foils. For comparison, the absorption coefficient is also measured for Cu clusters. As expected from dimension effects, the Debye temperature obtained for the clusters is lower than that of bulk Cu.

  4. SU-D-209-02: Percent Depth Dose Curves for Fluoroscopic X-Ray Beam Qualities Incorporating Copper Filtration

    Energy Technology Data Exchange (ETDEWEB)

    Wunderle, K [Cleveland Clinic Foundation, Cleveland, OH (United States); Wayne State University School of Medicine, Detroit, MI (United States); Godley, A; Shen, Z; Dong, F [Cleveland Clinic Foundation, Cleveland, OH (United States); Rakowski, J [Wayne State University School of Medicine, Detroit, MI (United States)

    2016-06-15

    Purpose: The purpose of this investigation was to quantify percent depth dose (PDD) curves for fluoroscopic x-ray beam qualities incorporating added copper filtration. Methods: A PTW (Freiburg, Germany) MP3 water tank was used with a Standard Imaging (Middleton, WI) Exradin Model 11 Spokas Chamber to measure PDD curves for 60, 80, 100 and 120 kVp x-ray beams with copper filtration ranging from 0.0–0.9 mm at 22cm and 42cm fields of view from 0 to 150 mm of water. A free-in-air monitor chamber was used to normalize the water tank data to fluctuations in output from the fluoroscope. The measurements were acquired on a Siemens (Erlangen, Germany) Artis ZeeGo fluoroscope. The fluoroscope was inverted from the typical orientation providing an x-ray beam originating from above the water tank. The water tank was positioned so that the water level was located at 60cm from the focal spot; which also represents the focal spot to interventional reference plane distance for that fluoroscope. Results: PDDs for 60, 80, 100, and 120 kVp with 0 mm of copper filtration compared well to previously published data by Fetterly et al. [Med Phys, 28, 205 (2001)] for those beam qualities given differences in fluoroscopes, geometric orientation, type of ionization chamber, and the water tank used for data collection. PDDs for 60, 80, 100, and 120 kVp with copper filtration were obtained and are presented, which have not been previously investigated and published. Conclusion: The equipment and processes used to acquire the reported data were sound and compared well with previously published data for PDDs without copper filtration. PDD data for the fluoroscopic x-ray beams incorporating copper filtration can be used as reference data for estimating organ or soft tissue dose at depth involving similar beam qualities or for comparison with mathematical models.

  5. Modelling the effect of absorption from the interstellar medium on transient black hole X-ray binaries

    Science.gov (United States)

    Eckersall, A. J.; Vaughan, S.; Wynn, G. A.

    2017-10-01

    All observations of Galactic X-ray binaries are affected by absorption from gas and dust in the interstellar medium (ISM) which imprints narrow (line) and broad (photoelectric edges) features on the continuum emission spectrum of the binary. Any spectral model used to fit data from a Galactic X-ray binary must therefore take account of these features; when the absorption is strong (as for most Galactic sources) it becomes important to accurately model the ISM absorption in order to obtain unbiased estimates of the parameters of the (emission) spectrum of the binary system. In this paper, we present analysis of some of the best spectroscopic data from the XMM-Newton RGS instrument using the most up-to-date photoabsorption model of the gaseous ISM ISMabs. We calculate column densities for H, O, Ne and Fe for seven transient black hole X-ray binary systems. We find that the hydrogen column densities in particular can vary greatly from those presented elsewhere in the literature. We assess the impact of using inaccurate column densities and older X-ray absorption models on spectral analysis using simulated data. We find that poor treatment of absorption can lead to large biases in inferred disc properties and that an independent analysis of absorption parameters can be used to alleviate such issues.

  6. Comparison of conventional and total reflection excitation geometry for fluorescence X-ray absorption spectroscopy on droplet samples

    International Nuclear Information System (INIS)

    Falkenberg, G.; Pepponi, G.; Streli, C.; Wobrauschek, P.

    2003-01-01

    X-ray absorption fine structure (XAFS) experiments in fluorescence mode have been performed in total reflection excitation geometry and conventional 45 deg. /45 deg. excitation/detection geometry for comparison. The experimental results have shown that XAFS measurements are feasible under normal total reflection X-ray fluorescence (TXRF) conditions, i.e. on droplet samples, with excitation in grazing incidence and using a TXRF experimental chamber. The application of the total reflection excitation geometry for XAFS measurements increases the sensitivity compared to the conventional geometry leading to lower accessible concentration ranges. However, XAFS under total reflection excitation condition fails for highly concentrated samples because of the self-absorption effect

  7. Soft x-ray absorption spectroscopy on Co doped ZnO: structural distortions and electronic structure

    International Nuclear Information System (INIS)

    Kowalik, I A; Guziewicz, E; Godlewski, M; Arvanitis, D

    2016-01-01

    We present soft x-ray absorption spectra from a series of Co doped ZnO films. We discuss systematic variations of the Co L-edge white line intensity and multiplet features for this series of samples. We document sizeable differences in the electronic state of the Co ionic cores, as well as in the local environment of the host lattice atoms, characterised by means of x-ray absorption spectra at the O K-edge and Zn L-edges. Model calculations allow to correlate the observed effects to small structural distortions of the ZnO lattice. (paper)

  8. On the determination of the energy of antiprotonic X-rays by critical absorption and the theoretical discussion of results

    International Nuclear Information System (INIS)

    Joedicke, B.

    1985-06-01

    This work examines the possibility of measuring the energies of antiprotonic X-rays by critical absorption. Scanning the periodic table many isotopes are found where the energy of an antiprotonic X-ray coincides with a K-absorption-edge of a chemical element. Those candidates where the energy can be measured with high accuracy are discussed here. Also a computer program which calculates transition energies of antiprotonic atoms is examined. Necessary additions are listed and the corrections are shown. In combination with this program the candidates are the basis for a precise determination of the mass of the antiproton. (orig.) [de

  9. Coupled-cluster response theory for near-edge x-ray-absorption fine structure of atoms and molecules

    DEFF Research Database (Denmark)

    Coriani, Sonia; Christiansen, Ove; Fransson, Thomas

    2012-01-01

    triple corrected excitation energies CCSDR(3). This work is a first step toward the extension of these theoretical electronic structure methods of well-established high accuracy in UV-vis absorption spectroscopies to applications concerned with x-ray radiation. From the imaginary part of the linear...... response function, the near K-edge x-ray absorption spectra of neon, water, and carbon monoxide are determined and compared with experiment. Results at the CCSD level show relative peak intensities in good agreement with experiment with discrepancies in transition energies due to incomplete treatment...

  10. Chemical analysis of copper and gold ores from Papua New Guinea (PNG) by means of X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Sugiyama, Kazumasa; Waseda, Yoshio; Pangum, L.S.; Witney, J.Y.

    1995-01-01

    X-ray fluorescence analysis (XRF) has been made for determining the contents of copper and gold in ores from PNG mines. An internal standard method of Cu Kα/Er Lβ 1 was used for the analysis of the common copper porphyry samples. The results clearly indicate that this technique is quite effective for analyzing any copper ores with complicated matrix elements. On the other hand, an addition method of the diluted Au solution was applied to gold ores. The results of the present XRF analysis were found to reasonably agree with those obtained by the inductively coupled plasma (ICP) technique. (author)

  11. X-ray quantitative analysis on spallation response in high purity copper under sweeping detonation

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang, E-mail: yangyanggroup@163.com [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); National Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081 (China); Key Laboratory of Nonferrous Metals Material Science and Engineering of Ministry of Education, Central South University, Changsha 410083 (China); Chen, Jixiong; Peng, Zhiqiang [School of Material Science and Engineering, Central South University, Changsha 410083 (China); Guo, Zhaoliang; Tang, Tiegang; Hu, Haibo [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900 (China); Hu, Yanan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-06-14

    The 3-D quantitative investigation of spall behavior in high purity copper plants with different heat treatment histories was characterized using X-ray computer tomography (XRCT). The effect of shock stress and grain size on the spatial distribution and morphology of incipient spall samples were discussed. The results revealed that, in samples with similar microstructure, the ranges of void distribution decrease with the increasing of shock stress. The characteristic parameters (such as mean elongation, mean flatness and mean sphericity of voids) determined using XRCT herein as a function of shock stress and grain size. The quantitative analyses of spallation datasets render functional relationships between the microscopic parameters (like volume, frequency) of spallation voids and the microstructure. The XRCT observations show that voids are prone to coalescence in thermo-mechanical treatments (TMT) sample, while the final maximum and mean volume of void were smaller than that of annealed sample. This is due to the smaller grain size of TMT sample, which means more nucleation sites of voids, this made the voids get closer and easier to coalescence, and flat voids formed ultimately.

  12. Structural investigations of LiFePO4 electrodes and in situ studies by Fe X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Deb, Aniruddha; Bergmann, Uwe; Cramer, S.P.; Cairns, Elton J.

    2005-01-01

    Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on electrodes containing LiFePO 4 to determine the local atomic and electronic structure and their stability with electrochemical cycling. A versatile electrochemical in situ cell has been constructed for long-term soft and hard X-ray experiments for the structural investigation on battery electrodes during the lithium-insertion/extraction processes. The device is used here for an X-ray absorption spectroscopic study of lithium insertion/extraction in a LiFePO 4 electrode, where the electrode contained about 7.7 mg of LiFePO 4 on a 20 μm thick Al-foil. Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on this electrode to determine the local atomic and electronic structure and their stability with electrochemical cycling. The initial state (LiFePO 4 ) showed iron to be in the Fe 2+ state corresponding to the initial state (0.0 mAh) of the cell, whereas in the delithiated state (FePO 4 ) iron was found to be in the Fe 3+ state corresponding to the final charged state (3 mAh). XANES region of the XAS spectra revealed a high spin configuration for the two states (Fe (II), d 6 and Fe (III), d 5 ). The results confirm that the olivine structure of the LiFePO 4 and FePO 4 is retained by the electrodes in agreement with the XRD observations reported previously. These results confirm that LiFePO 4 cathode material retains good structural short-range order leading to superior cycling capability

  13. The determination of copper and nickel in iron- and chromium-bearing materials by a pressed-powder technique and x-ray-fluorescence spectrometry

    International Nuclear Information System (INIS)

    Balaes, A.M.E.; Dixon, K.

    1984-01-01

    A method was developed that is suitable for the determination of copper and nickel in ores such as those from the Merensky and UG-2 Reefs. The sample was ground finely and diluted with river sand so that matrix variations were avoided as much as possible. After the addition of a wax-polystyrene binder, the material was pelletized. The matrix effects of iron and chromium, and the effects of their mutual interferences on the determination of copper and nickel, were then investigated. Equations were derived for the corrected copper and nickel Kα intensities, and were applied to the analyses of head, concentrate, middling, and tailing samples. Comparative values obtained by atomic-absorption spectrophotometry were found to be in reasonable agreement with the X-ray values; the average deviation was +0,3 per cent for copper and -1,6 per cent for nickel relative to the AAS values. The limits of detection of the method for copper and nickel are 31 and 40μg/g respectively; the limit of determination for copper is 92μg/g and for nickel is 119μg/g. The relative standard deviation at 900 and 2400μg of copper and nickel per gram is 0,02

  14. The aquatic hyphomycete Heliscus lugdunensis protects its hyphae tip cells from cadmium: A micro X-ray fluorescence and X-ray absorption near edge structure spectroscopy study

    Science.gov (United States)

    Isaure, Marie-Pierre; Leyh, Benjamin; Salomé, Murielle; Krauss, Gerd-Joachim; Schaumlöffel, Dirk; Dobritzsch, Dirk

    2017-11-01

    Aquatic fungi can be used to evaluate the functioning of natural ecosystems. Heliscus lugdunensis is an early colonizer of allochthone leafs. Since this aquatic hyphomycete is able to develop in metal contaminated habitats and tolerates cadmium, it appears to be a good candidate to investigate adaptation to metal pollution. This study aimed at examining the sequestration of Cd in the hyphae of H. lugdunensis, and particularly the role of the tip cells. For that, H. lugdunensis growth was evaluated under various Cd concentrations, and a combination of synchrotron micro X-ray fluorescence and X-ray absorption near edge structure spectroscopy was carried out to determine the compartments of Cd accumulation and the Cd chemical species, respectively. Results showed that the hyphal tip cells were depleted in Cd, and that the metal was stored in older cells. Cd was mainly associated with sulfur ligands and to a lesser extent bound to phosphates and carboxyl/hydroxyl groups from cell wall and/or organic acids. Finally, the aquatic fungus was able to maintain the tip cell as a functional system, thus allowing the colonization of contaminated environments.

  15. Time-resolved soft x-ray absorption setup using multi-bunch operation modes at synchrotrons

    International Nuclear Information System (INIS)

    Stebel, L.; Sigalotti, P.; Ressel, B.; Cautero, G.; Malvestuto, M.; Capogrosso, V.; Bondino, F.; Magnano, E.; Parmigiani, F.

    2011-01-01

    Here, we report on a novel experimental apparatus for performing time-resolved soft x-ray absorption spectroscopy in the sub-ns time scale using non-hybrid multi-bunch mode synchrotron radiation. The present setup is based on a variable repetition rate Ti:sapphire laser (pump pulse) synchronized with the ∼500 MHz x-ray synchrotron radiation bunches and on a detection system that discriminates and singles out the significant x-ray photon pulses by means of a custom made photon counting unit. The whole setup has been validated by measuring the time evolution of the L 3 absorption edge during the melting and the solidification of a Ge single crystal irradiated by an intense ultrafast laser pulse. These results pave the way for performing synchrotron time-resolved experiments in the sub-ns time domain with variable repetition rate exploiting the full flux of the synchrotron radiation.

  16. HELIUM IN NATAL H II REGIONS: THE ORIGIN OF THE X-RAY ABSORPTION IN GAMMA-RAY BURST AFTERGLOWS

    International Nuclear Information System (INIS)

    Watson, Darach; Andersen, Anja C.; Fynbo, Johan P. U.; Hjorth, Jens; Krühler, Thomas; Laursen, Peter; Leloudas, Giorgos; Malesani, Daniele; Zafar, Tayyaba; Gorosabel, Javier; Jakobsson, Páll

    2013-01-01

    Soft X-ray absorption in excess of Galactic is observed in the afterglows of most gamma-ray bursts (GRBs), but the correct solution to its origin has not been arrived at after more than a decade of work, preventing its use as a powerful diagnostic tool. We resolve this long-standing problem and find that absorption by He in the GRB's host H II region is responsible for most of the absorption. We show that the X-ray absorbing column density (N H X ) is correlated with both the neutral gas column density and with the optical afterglow's dust extinction (A V ). This correlation explains the connection between dark bursts and bursts with high N H X values. From these correlations, we exclude an origin of the X-ray absorption which is not related to the host galaxy, i.e., the intergalactic medium or intervening absorbers are not responsible. We find that the correlation with the dust column has a strong redshift evolution, whereas the correlation with the neutral gas does not. From this, we conclude that the column density of the X-ray absorption is correlated with the total gas column density in the host galaxy rather than the metal column density, in spite of the fact that X-ray absorption is typically dominated by metals. The strong redshift evolution of N H X /A V is thus a reflection of the cosmic metallicity evolution of star-forming galaxies and we find it to be consistent with measurements of the redshift evolution of metallicities for GRB host galaxies. We conclude that the absorption of X-rays in GRB afterglows is caused by He in the H II region hosting the GRB. While dust is destroyed and metals are stripped of all of their electrons by the GRB to great distances, the abundance of He saturates the He-ionizing UV continuum much closer to the GRB, allowing it to remain in the neutral or singly-ionized state. Helium X-ray absorption explains the correlation with total gas, the lack of strong evolution with redshift, as well as the absence of dust, metal or

  17. X-ray absorption studies of graphite intercalates and metal-ammonia solutions

    International Nuclear Information System (INIS)

    Robertson, A.S.

    1979-09-01

    X-ray absorption spectroscopy (XAS) was used to study the arsenic fluorocomplexes, including the AsF 5 and AsF 6 - intercalates of graphite, and rubidium metal-ammonia solutions. The As-F distances obtained for AsF 3 and AsF 5 gas are both in excellent agreement with electron diffraction data (within 0.004 A). A superior measurement which is significantly shorter than the accepted value of the bond distance in an undistorted AsF 6 - octahedra is reported. Both the XAES and EXAFS data presented support the hypothesis that the AsF 5 oxidizes graphite upon intercalation to produce AsF 6 - and AsF 3 intercalant species. Changes in the Rb K-edge features which are consistent with the known properties of Rb-NH 3 are correlated with conductivity and delocalization of the solvated electrons. In the XAES region, intensity and position changes of absorption transitions are explained. In the EXAFS region, the Rb-N bond distance and the relative number of nitrogen atoms in the first shell are measured. XAS has been shown to provide unique information about the nature of the metal-ammonia phase separation, phase transition, and density fluctuations

  18. Optical and X-ray absorption spectroscopy in lead doped lithium fluoride crystals

    Energy Technology Data Exchange (ETDEWEB)

    Somma, F; Aloe, P; D' Acapito, F; Montereali, R M; Polosan, S; Secu, M; Vincenti, M A, E-mail: somma@fis.uniroma3.it

    2010-11-15

    LiF:Pb doped crystals were successfully grown by Kyropoulos method, starting with drying powders. The presence of Pb{sup 2+} ions in the LiF crystals were evidenced by the absorption band at 278 nm and by 375 nm photoluminescence. The presence of some other Pb structures with oxygen compounds in the as made samples was evidenced, decreasing after some annealing procedures. The local environment and valence state of Pb in LiF were studied by X-ray Absorption Spectroscopy at the Pb L{sub III} and L{sub I} edges. XANES data reveal that Pb is present as Pb{sup 2+} whereas EXAFS data show that it is incorporated in the crystal and not forming PbF{sub 2} precipitates. Identical spectra are obtained for samples as prepared and after thermal annealing up to 650 deg. C demonstrating the stability of the incorporation site. Also the concentration of Pb in the crystal has no effect on the location site of the metal as the same spectrum is obtained for specimens with different dopant concentrations.

  19. X-ray absorption study of silicon carbide thin film deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Monaco, G.; Suman, M.; Garoli, D.; Pelizzo, M.G.; Nicolosi, P.

    2011-01-01

    Silicon carbide (SiC) is an important material for several applications ranging from electronics to Extreme UltraViolet (EUV) space optics. Crystalline cubic SiC (3C-SiC) has a wide band gap (near 2.4 eV) and it is a promising material to be used in high frequency and high energetic electronic devices. We have deposited, by means of pulsed laser deposition (PLD), different SiC films on sapphire and silicon substrates both at mild (650 o C) and at room temperature. The resulted films have different structures such as: highly oriented polycrystalline, polycrystalline and amorphous which have been studied by means of X-ray absorption spectroscopy (XAS) near the Si L 2,3 edge and the C K edge using PES (photoemission spectroscopy) for the analysis of the valence bands structure and film composition. The samples obtained by PLD have shown different spectra among the grown films, some of them showing typical 3C-SiC absorption structure, but also the presence of some Si-Si and graphitic bonds.

  20. Electronic structure analysis of UO2 by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Ozkendir, O.M.

    2009-01-01

    Full text: Due to the essential role of Actinides in nuclear science and technology, electronic and structural investigations of actinide compounds attract major interest in science. Electronic structure of actinide compounds have important properties due to narrow 5f states which play key role in bonding with anions. The properties of Uranium has been a subject of enduring interest due to its being a major importance as a nuclear fuel and is the highest numbered element which can be found naturally on earth. UO 2 forms as a secondary uranyl group occurred during metamictization of uranium oxide compounds [1].Uranium oxide thin films have been investigated by X-ray Absorption Fine Structure spectroscopy (XAFS) [2]. The full multiple scattering approach has been applied to the calculation of U L3 edge spectra of UO 2 . The calculations are based on different choices of one electron potentials according to Uranium coordinations by using the real space multiple scattering method FEFF 8.2 code [3,4]. U L3-edge absorption spectrum in UO 2 is compared with U L3-edges in USiO 4 and UTe which are chosen due to their different electronic and chemical structures.We have found prominent changes in the XANES spectra of Uranium oxide thin films due to valency properties. Such observed changes are explained by considering the structural, electronic and spectroscopic properties. (author)

  1. Redox chemistry of a binary transition metal oxide (AB2O4): a study of the Cu(2+)/Cu(0) and Fe(3+)/Fe(0) interconversions observed upon lithiation in a CuFe2O4 battery using X-ray absorption spectroscopy.

    Science.gov (United States)

    Cama, Christina A; Pelliccione, Christopher J; Brady, Alexander B; Li, Jing; Stach, Eric A; Wang, Jiajun; Wang, Jun; Takeuchi, Esther S; Takeuchi, Kenneth J; Marschilok, Amy C

    2016-06-22

    Copper ferrite, CuFe2O4, is a promising candidate for application as a high energy electrode material in lithium based batteries. Mechanistic insight on the electrochemical reduction and oxidation processes was gained through the first X-ray absorption spectroscopic study of lithiation and delithiation of CuFe2O4. A phase pure tetragonal CuFe2O4 material was prepared and characterized using laboratory and synchrotron X-ray diffraction, Raman spectroscopy, and transmission electron microscopy. Ex situ X-ray absorption spectroscopy (XAS) measurements were used to study the battery redox processes at the Fe and Cu K-edges, using X-ray absorption near-edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and transmission X-ray microscopy (TXM) spectroscopies. EXAFS analysis showed upon discharge, an initial conversion of 50% of the copper(ii) to copper metal positioned outside of the spinel structure, followed by a migration of tetrahedral iron(iii) cations to octahedral positions previously occupied by copper(ii). Upon charging to 3.5 V, the copper metal remained in the metallic state, while iron metal oxidation to iron(iii) was achieved. The results provide new mechanistic insight regarding the evolution of the local coordination environments at the iron and copper centers upon discharging and charging.

  2. Weak hard X-ray emission from two broad absorption line quasars observed with NuSTAR: Compton-thick absorption or intrinsic X-ray weakness?

    DEFF Research Database (Denmark)

    Luo, B.; Brandt, W. N.; Alexander, D. M.

    2013-01-01

    are not significantly absorbed (NH ≲ 1024 cm-2). However, both BAL quasars are only detected in the softer NuSTAR bands (e.g., 4-20 keV) but not in its harder bands (e.g., 20-30 keV), suggesting that either the shielding gas is highly Compton-thick or the two targets are intrinsically X-ray weak. We constrain...... likely explanation. We also discuss the intrinsic X-ray weakness scenario based on a coronal-quenching model relevant to the shielding gas and disk wind of BAL quasars. Motivated by our NuSTAR results, we perform a Chandra stacking analysis with the Large Bright Quasar Survey BAL quasar sample and place...

  3. Dose and absorption spectra response of EBT2 Gafchromic film to high energy X-rays

    International Nuclear Information System (INIS)

    Butson, M.J.; Cheung, T.; Yu, P.K.N.; Alnawaf, H.

    2009-01-01

    Full text: With new advancements in radiochromic film designs and sensitivity to suit different niche applications, EBT2 is the latest offering for the megavoltage radiotherapy market. New construction specifications including different physical construction and the use of a yellow coloured dye has provided the next generation radiochromic film for therapy applications. The film utilises the same active chemical for radiation measurement as its predecessor, EBT Gafchromic. Measurements have been performed using photo spectrometers to analyse the absorption spectra properties of this new EBT2 Gafchromic, radiochromic film. Results have shown that whilst the physical coloration or absorption spectra of the film, which turns yellow to green as compared to EBT film, (clear to blue) is significantly different due to the added yellow dye, the net change in absorption spectra properties for EBT2 are similar to the original EBT film. Absorption peaks are still located at 636 n m and 585 n m positions. A net optical density change of 0.590 ± 0.020 (2SD) for a 1 Gy radiation absorbed dose using 6 MV x-rays when measured at the 636 n m absorption peak was found. This is compared to 0.602 ± 0.025 (2SD) for the original EBT film (2005 Batch) and 0.557 ± 0.027 (2009 Batch) at the same absorption peak. The yellow dye and the new coating material produce a significantly different visible absorption spectra results for the EBT2 film compared to EBT at wavelengths especially below approximately 550 n m. At wavelengths above 550 n m differences in absolute OD are seen however, when dose analysis is performed at wavelengths above 550 n m using net optical density changes, no significant variations are seen. If comparing results of the late production EBT to new production EBT2 film, net optical density variations of approximately 10 % to 15 % are seen. As all new film batches should be calibrated for sensitivity upon arrival this should not be of concern.

  4. Laboratory-based recording of holographic fine structure in X-ray absorption anisotropy using polycapillary optics

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowski, K.M. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Korecki, P., E-mail: pawel.korecki@uj.edu.pl [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Holographic fine structures in X-ray absorption recorded using a tabletop setup. Black-Right-Pointing-Pointer Setup based on polycapillary collimating optics and an HOPG crystal. Black-Right-Pointing-Pointer Demonstration of element sensitivity by detection of X-ray fluorescence. Black-Right-Pointing-Pointer Potential of laboratory-based experiments for heavily doped crystals and thin films. - Abstract: A tabletop setup composed of a collimating polycapillary optics and a highly oriented pyrolytic graphite monochromator (HOPG) was characterized and used for recording two-dimensional maps of X-ray absorption anisotropy (XAA). XAA originates from interference of X-rays directly inside the sample. Depending on experimental conditions, fine structures in XAA can be interpreted in terms of X-ray holograms or X-ray standing waves and can be used for an element selective atomic-resolved structural analysis. The implementation of polycapillary optics resulted in a two-order of magnitude gain in the radiant intensity (photons/s/solid angle) as compared to a system without optics and enabled efficient recording of XAA with a resolution of 0.15 Degree-Sign for Mo K{alpha} radiation. Element sensitivity was demonstrated by acquisition of distinct XAA signals for Ga and As atoms in a GaAs (1 1 1) wafer by using X-ray fluorescence as a secondary signal. These results indicate the possibility of performing laboratory-based XAA experiments for heavily doped single crystals or thin films. So far, because of the weak holographic modulation of XAA, such experiments could be only performed using synchrotron radiation.

  5. LONG-TERM X-RAY STABILITY AND ULTRAVIOLET VARIABILITY OF THE IONIZED ABSORPTION IN NGC 3783

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A. E.; Brandt, W. N. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Behar, E.; Kaspi, S. [Department of Physics, Technion, Haifa 32000 (Israel); Crenshaw, D. M. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Gabel, J. R. [Physics Department, Creighton University, Omaha, NE 68178 (United States); Gibson, R. R. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Kraemer, S. B. [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Turner, T. J., E-mail: amyscott@psu.edu [Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250 (United States)

    2014-12-20

    We present the results of recent Chandra High-Energy Transmission Grating Spectrometer and Hubble Space Telescope Cosmic Origins Spectrograph observations of the nearby Seyfert 1 galaxy NGC 3783, which show a strong, nonvarying X-ray warm absorber and physically related and kinematically varying UV absorption. We compare our new observations to high-resolution, high signal-to-noise archival data from 2001, allowing a unique investigation into the long-term variations of the absorption over a 12 yr period. We find no statistically significant changes in the physical properties of the X-ray absorber, but there is a significant drop of ∼40% in the UV and X-ray flux and a significant flattening of the underlying X-ray power-law slope. Large kinematic changes are seen in the UV absorbers, possibly due to radial deceleration of the material. Similar behavior is not observed in the X-ray data, likely due to its lower-velocity resolution, which shows an outflow velocity of v {sub out} ∼ –655 km s{sup –1} in both epochs. The narrow iron Kα emission line at 6.4 keV shows no variation between epochs, and its measured width places the material producing the line at a radial distance of ∼0.03 pc from the central black hole.

  6. Rapid Analysis of Copper Ore in Pre-Smelter Head Flow Slurry by Portable X-ray Fluorescence.

    Science.gov (United States)

    Burnett, Brandon J; Lawrence, Neil J; Abourahma, Jehad N; Walker, Edward B

    2016-05-01

    Copper laden ore is often concentrated using flotation. Before the head flow slurry can be smelted, it is important to know the concentration of copper and contaminants. The concentration of copper and other elements fluctuate significantly in the head flow, often requiring modification of the concentrations in the slurry prior to smelting. A rapid, real-time analytical method is needed to support on-site optimization of the smelter feedstock. A portable, handheld X-ray fluorescence spectrometer was utilized to determine the copper concentration in a head flow suspension at the slurry origin. The method requires only seconds and is reliable for copper concentrations of 2.0-25%, typically encountered in such slurries. © The Author(s) 2016.

  7. On the multiphoton emission during U.V. and X-ray absorption by atoms in intense laser fields

    International Nuclear Information System (INIS)

    Miranda, L.C.M.

    1981-09-01

    A discussion of the u.v. and x-ray absorption cross section by a hydrogen atom in the presence of an intense i.r. laser field is presented, taking into account the influence of laser field on the electronic states. (Author) [pt

  8. Nature of the metal-support interface in supported metal catalysts: results from x-ray absorption spectroscopy

    NARCIS (Netherlands)

    Koningsberger, D.C.; Gates, B.C.

    1992-01-01

    X-ray absorption spectra characterizing the metal-support interface in supported metal complexes and supported metal catalysts are summarized and evaluated with 29 refs. Mononuclear transition metal complexes on non-reducible metal oxide supports are bonded with metal-oxygen bonds of .apprx.2.15

  9. Challenges for energy dispersive X-ray absorption spectroscopy at the ESRF: microsecond time resolution and Mega-bar pressures

    International Nuclear Information System (INIS)

    Aquilanti, G.

    2002-01-01

    This Thesis concerns the development of two different applications of energy-dispersive X-ray absorption spectroscopy at the ESRF: time-resolved studies pushed to the microsecond time resolution and high-pressure studies at the limit of the Mega-bar pressures. The work has been developed in two distinct parts, and the underlying theme has been the exploitation of the capabilities of an X-ray absorption spectrometer in dispersive geometry on a third generation synchrotron source. For time-resolved studies, the study of the triplet excited state following a laser excitation of Pt 2 (P 2 O 5 H 2 ) 4 4- has been chosen to push the technique to the microsecond time resolution. In the high-pressure part, the suitability of the energy dispersive X-ray absorption spectrometer for high-pressure studies using diamond anvils cell is stressed. Some technical developments carried out on beamline ID24 are discussed. Finally, the most extensive scientific part concerns a combined X-ray absorption and diffraction study of InAs under pressure. (author)

  10. Phase transition in LiVO2 studied by near-edge x-ray-absorption spectroscopy

    NARCIS (Netherlands)

    Pen, HF; Tjeng, LH; Pellegrin, E; deGroot, FMF; Sawatzky, GA; vanVeenendaal, MA; Chen, CT

    1997-01-01

    We present temperature-dependent V-2p and O-1s x-ray-absorption spectra of LiVO2. The aim of this study is to monitor changes in electronic structure on going through the phase transition. The spectral changes turn out to be very small: the V-3d-O-2p hybridization does not change considerably, and

  11. On stream radioisotope X-ray fluorescence analyser and a method for the determination of copper in slurry

    International Nuclear Information System (INIS)

    Holynska, B.; Lankosz, M.; Lacki, E.; Ostachowicz, J.; Baran, W.; Owsiak, T.

    1975-01-01

    The paper presents an ''on stream'' analyser and a radioisotope X-ray fluorescence method for the continuous determination of copper content in feed 0.5-2.5% Cu, concentrates 15-25% Cu and tailings 0.01-0.03% Cu. The analyser consists essentially of a radioisotope X-ray fluorescence measuring head, γ-density gauge, electronic unit, analog processor and recorders. The method is based on the measurement of the characteristic radiation of Cu series, selected by nickel-cobalt filters. The total relative error (1s) of the determination of copper in feed is 6-8%, in concentrates 5-7% and in tailings about 18%. The ''on stream'' analyser has been succesfully operated in a pilot plant. (author)

  12. A cell for extended x-ray absorption fine structure studies of oxygen sensitive products of redox reactions

    International Nuclear Information System (INIS)

    Furenlid, L.R.; Renner, M.W.; Fajer, J.

    1990-01-01

    We describe a cell suitable for extended x-ray absorption fine structure (EXAFS) studies of oxygen and/or water sensitive products of redox reactions. The cell utilizes aluminized Mylar windows that are transparent to x rays, provide low gas permeability, and allow vacuum to be maintained in the cell. The windows are attached to the glassware with an epoxy that resists attack by common organic solvents. Additional side arms allow multiple spectroscopic probes of the same sample under anaerobic and anhydrous conditions

  13. A reaction cell with sample laser heating for in situ soft X-ray absorption spectroscopy studies under environmental conditions.

    Science.gov (United States)

    Escudero, Carlos; Jiang, Peng; Pach, Elzbieta; Borondics, Ferenc; West, Mark W; Tuxen, Anders; Chintapalli, Mahati; Carenco, Sophie; Guo, Jinghua; Salmeron, Miquel

    2013-05-01

    A miniature (1 ml volume) reaction cell with transparent X-ray windows and laser heating of the sample has been designed to conduct X-ray absorption spectroscopy studies of materials in the presence of gases at atmospheric pressures. Heating by laser solves the problems associated with the presence of reactive gases interacting with hot filaments used in resistive heating methods. It also facilitates collection of a small total electron yield signal by eliminating interference with heating current leakage and ground loops. The excellent operation of the cell is demonstrated with examples of CO and H2 Fischer-Tropsch reactions on Co nanoparticles.

  14. X-ray absorption and reflection as probes of the GaN conduction bands: Theory and experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lambrecht, W.R.L.; Rashkeev, S.N.; Segall, B. [Case Western Reserve Univ., Cleveland, OH (United States)] [and others

    1997-04-01

    X-ray absorption measurements are a well-known probe of the unoccupied states in a material. The same information can be obtained by using glancing angle X-ray reflectivity. In spite of several existing band structure calculations of the group III nitrides and previous optical studies in UV range, a direct probe of their conduction band densities of states is of interest. The authors performed a joint experimental and theoretical investigation using both of these experimental techniques for wurtzite GaN.

  15. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. W. [DESY (Deutsches Elektronen-Synchrotron), FS-PEX, Notkestrasse 85, 22607 Hamburg (Germany); Yiu, Y. M., E-mail: yyiu@uwo.ca; Sham, T. K. [Department of Chemistry, University of Western Ontario, London, ON N6A5B7 (Canada); Ward, M. J. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Liu, L. [Institute of Functional Nano and Soft Materials (FUNSOM) and Soochow University-Western University Center for Synchrotron Radiation Research, Soochow University, Suzhou, Jiangsu, 215123 (China); Hu, Y. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N2V3 (Canada); Zapien, J. A. [Center Of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Liu, Yingkai [Institute of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan, 650500 (China)

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  16. A study of the Nb3Ge system by Ge K-edge extended x-ray absorption fine structure and x-ray absorption near-edge structure spectroscopy

    International Nuclear Information System (INIS)

    Saini, N L; Filippi, M; Wu Ziyu; Oyanagi, H; Ihara, H; Iyo, A; Agrestini, S; Bianconi, A

    2002-01-01

    The local structure of Nb 3 Ge intermetallic superconductor has been studied by Ge K-edge absorption spectroscopy. Extended x-ray absorption fine structure (EXAFS) experiments show two Ge-Nb distances. In addition to the crystallographic distance of ∼2.87 A, there exists a second Ge-Nb distance, shorter than the first by ∼0.2 A, assigned to a phase with short-range symmetry related to local displacements in the Nb-Nb chains. The x-ray absorption near-edge structure (XANES) spectrum has been simulated by full multiple-scattering calculations considering the local displacements determined by the EXAFS analysis. The XANES spectrum has been well reproduced by considering a cluster of 99 atoms within a radius of about 7 A from the central Ge atom and introducing determined local displacements

  17. X-ray absorption spectroscopy study on the thermal and hydrazine reduction of graphene oxide

    International Nuclear Information System (INIS)

    Liang, Xianqing; Wang, Yu; Zheng, Huiyuan; Wu, Ziyu

    2014-01-01

    Highlights: • XAS study of GO and reduced GO was performed. • Detailed evolution of the electronic structures and chemical bonding of GO was revealed. • A new efficient route for the reduction of GO is proposed. - Abstract: X-ray absorption spectroscopy (XAS) was applied to systemically investigate the deoxygenation of graphene oxide (GO) via annealing and hydrazine treatment. Detailed evolution of the electronic structures and chemical bonding of GO was presented. The enhanced intensity of π * resonance and the appearance of splitting σ * resonance in C K-edge XAS spectra suggest high extents of recoveries of π-conjugation upon reduction using thermal annealing or hydrazine. Experimental results revealed that the carboxyl as well as epoxide and hydroxyl groups on the surface of GO were thermally reduced first, followed by the more difficult removal of carbonyl and cyclic ether groups at higher temperatures. The hydrazine reduction could remove epoxide, hydroxyl and carboxyl groups effectively, whereas the carbonyl groups were partially reduced with the incorporation of nitrogen species simultaneously. The residual oxygen functional groups on hydrazine-reduced GO could be further removed after modest thermal annealing. It was proposed that a combination of both types of reductions would give the best deoxygenation efficiency for the production of graphene

  18. Speciation of Selenium in Stream Insects Using X-Ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Andrahennadi, R.; Wayland, M.; Pickering, I.J.

    2009-05-28

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  19. X-ray Absorption Fine Structure (XAFS) Studies of Oxide Glasses—A 45-Year Overview

    Science.gov (United States)

    Zanotto, Edgar Dutra

    2018-01-01

    X-ray Absorption Fine Structure (XAFS) spectroscopy has been widely used to characterize the short-range order of glassy materials since the theoretical basis was established 45 years ago. Soon after the technique became accessible, mainly due to the existence of Synchrotron laboratories, a wide range of glassy materials was characterized. Silicate glasses have been the most studied because they are easy to prepare, they have commercial value and are similar to natural glasses, but borate, germanate, phosphate, tellurite and other less frequent oxide glasses have also been studied. In this manuscript, we review reported advances in the structural characterization of oxide-based glasses using this technique. A focus is on structural characterization of transition metal ions, especially Ti, Fe, and Ni, and their role in different properties of synthetic oxide-based glasses, as well as their important function in the formation of natural glasses and magmas, and in nucleation and crystallization. We also give some examples of XAFS applications for structural characterization of glasses submitted to high pressure, glasses used to store radioactive waste and medieval glasses. This updated, comprehensive review will likely serve as a useful guide to clarify the details of the short-range structure of oxide glasses. PMID:29382102

  20. Speciation of selenium in stream insects using X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruwandi Andrahennadi; Mark Wayland; Ingrid J. Pickering [University of Saskatchewan, Saskatoon, SK (Canada). Department of Geological Sciences

    2007-11-15

    Selenium contamination in the environment is a widespread problem affecting insects and other wildlife. Insects occupy a critical middle link and aid in trophic transfer of selenium in many terrestrial and freshwater food chains, but the mechanisms of selenium uptake through the food chain are poorly understood. In particular, biotransformation of selenium by insects into different chemical forms will greatly influence how toxic or benign the selenium is to that organism or to its predators. We have used X-ray absorption spectroscopy (XAS) to identify the chemical form of selenium in insects inhabiting selenium contaminated streams near Hinton, Alberta (Canada). Selenium K near-edge spectra indicate a variability of selenium speciation among the insects that included mayflies (Ephemeroptera), stoneflies (Plecoptera), caddisflies (Trichoptera), and craneflies (Diptera). Higher percentages of inorganic selenium were observed in primary consumers, detritivores, and filter feeders than in predatory insects. Among the organic forms of selenium, organic selenides constituted a major fraction in most organisms. A species modeled as trimethylselenonium was observed during the pupal stage of caddisflies. These results provide insights into how the insects cope with their toxic cargo, including how the selenium is biotransformed into less toxic forms and how it can be eliminated from the insects. More broadly, this study demonstrates the strengths of XAS to probe the effects of heavy elements at trace levels in insects from the field.

  1. X-ray absorption and Raman spectroscopy studies of molybdenum environments in borosilicate waste glasses

    Science.gov (United States)

    McKeown, David A.; Gan, Hao; Pegg, Ian L.

    2017-05-01

    Mo-containing high-level nuclear waste borosilicate glasses were investigated as part of an effort to improve Mo loading while avoiding yellow phase crystallization. Previous work showed that additions of vanadium decrease yellow phase formation and increases Mo solubility. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to characterize Mo environments in HLW borosilicate glasses and to investigate possible structural relationships between Mo and V. Mo XAS spectra for the glasses indicate isolated tetrahedral Mo6+O4 with Mo-O distances near 1.75 Å. V XANES indicate tetrahedral V5+O4 as the dominant species. Raman spectra show composition dependent trends, where Mo-O symmetrical stretch mode frequencies (ν1) are sensitive to the mix of alkali and alkaline earth cations, decreasing by up to 10 cm-1 for glasses that change from Li+ to Na+ as the dominant network-modifying species. This indicates that MoO4 tetrahedra are isolated from the borosilicate network and are surrounded, at least partly, by Na+ and Li+. Secondary ν1 frequency effects, with changes up to 7 cm-1, were also observed with increasing V2O5 and MoO3 content. These secondary trends may indicate MoO4-MoO4 and MoO4-VO4 clustering, suggesting that V additions may stabilize Mo in the matrix with respect to yellow phase formation.

  2. Surface modification study of borate materials from B K-edge X-ray absorption spectroscopy

    Science.gov (United States)

    Kasrai, Masoud; Fleet, Michael E.; Muthupari, Swaminathan; Li, D.; Bancroft, G. M.

    The B K-edge X-ray absorption near-edge structure (XANES) spectra of two borates with tetrahedrally-coordinated B [[4]B; natural danburite (CaB2Si2O8) and synthetic boron phosphate (BPO4)] have been recorded in total electron yield (TEY) and fluorescence yield (FY) modes to investigate the surface and bulk structure of these materials. The TEY XANES measurement shows that danburite is susceptible to surface damage involving conversion of [4]B sites to [3]B sites by reaction with moisture and/or mechanical abrasion (grinding, polishing, etc.). The bulk of the mineral is essentially unaffected. Commercial boron phosphate powder exhibits more extensive surface and bulk damage, which increases with air exposure but is recovered on heating at 650°C. In contrast to ELNES, the XANES technique is not affected by beam damage and when collected in the FY mode is capable of yielding meaningful information on the coordination and intermediate-range structure of B in borate and borosilicate materials.

  3. Properties of aqueous nitrate and nitrite from x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jacob W.; Lam, Royce K.; Saykally, Richard J., E-mail: saykally@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Shih, Orion [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Rizzuto, Anthony M. [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Prendergast, David [The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2015-08-28

    Nitrate and nitrite ions are of considerable interest, both for their widespread use in commercial and research contexts and because of their central role in the global nitrogen cycle. The chemistry of atmospheric aerosols, wherein nitrate is abundant, has been found to depend on the interfacial behavior of ionic species. The interfacial behavior of ions is determined largely by their hydration properties; consequently, the study of the hydration and interfacial behavior of nitrate and nitrite comprises a significant field of study. In this work, we describe the study of aqueous solutions of sodium nitrate and nitrite via X-ray absorption spectroscopy (XAS), interpreted in light of first-principles density functional theory electronic structure calculations. Experimental and calculated spectra of the nitrogen K-edge XA spectra of bulk solutions exhibit a large 3.7 eV shift between the XA spectra of nitrate and nitrite resulting from greater stabilization of the nitrogen 1s energy level in nitrate. A similar shift is not observed in the oxygen K-edge XA spectra of NO{sub 3}{sup −} and NO{sub 2}{sup −}. The hydration properties of nitrate and nitrite are found to be similar, with both anions exhibiting a similar propensity towards ion pairing.

  4. Depth-selective X-ray absorption spectroscopy by detection of energy-loss Auger electrons

    Energy Technology Data Exchange (ETDEWEB)

    Isomura, Noritake, E-mail: isomura@mosk.tytlabs.co.jp [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Soejima, Narumasa; Iwasaki, Shiro [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan); Nomoto, Toyokazu; Murai, Takaaki [Aichi Synchrotron Radiation Center (AichiSR), 250-3 Minamiyamaguchi-cho, Seto, Aichi 489-0965 (Japan); Kimoto, Yasuji [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • A unique XAS method is proposed for depth profiling of chemical states. • PEY mode detecting energy-loss electrons enables a variation in the probe depth. • Si K-edge XAS spectra of the Si{sub 3}N{sub 4}/SiO{sub 2}/Si multilayer films have been investigated. • Deeper information was obtained in the spectra measured at larger energy loss. • Probe depth could be changed by the selection of the energy of detected electrons. - Abstract: A unique X-ray absorption spectroscopy (XAS) method is proposed for depth profiling of chemical states in material surfaces. Partial electron yield mode detecting energy-loss Auger electrons, called the inelastic electron yield (IEY) mode, enables a variation in the probe depth. As an example, Si K-edge XAS spectra for a well-defined multilayer sample (Si{sub 3}N{sub 4}/SiO{sub 2}/Si) have been investigated using this method at various kinetic energies. We found that the peaks assigned to the layers from the top layer to the substrate appeared in the spectra in the order of increasing energy loss relative to the Auger electrons. Thus, the probe depth can be changed by the selection of the kinetic energy of the energy loss electrons in IEY-XAS.

  5. Depth-selective X-ray absorption spectroscopy by detection of energy-loss Auger electrons

    International Nuclear Information System (INIS)

    Isomura, Noritake; Soejima, Narumasa; Iwasaki, Shiro; Nomoto, Toyokazu; Murai, Takaaki; Kimoto, Yasuji

    2015-01-01

    Graphical abstract: - Highlights: • A unique XAS method is proposed for depth profiling of chemical states. • PEY mode detecting energy-loss electrons enables a variation in the probe depth. • Si K-edge XAS spectra of the Si_3N_4/SiO_2/Si multilayer films have been investigated. • Deeper information was obtained in the spectra measured at larger energy loss. • Probe depth could be changed by the selection of the energy of detected electrons. - Abstract: A unique X-ray absorption spectroscopy (XAS) method is proposed for depth profiling of chemical states in material surfaces. Partial electron yield mode detecting energy-loss Auger electrons, called the inelastic electron yield (IEY) mode, enables a variation in the probe depth. As an example, Si K-edge XAS spectra for a well-defined multilayer sample (Si_3N_4/SiO_2/Si) have been investigated using this method at various kinetic energies. We found that the peaks assigned to the layers from the top layer to the substrate appeared in the spectra in the order of increasing energy loss relative to the Auger electrons. Thus, the probe depth can be changed by the selection of the kinetic energy of the energy loss electrons in IEY-XAS.

  6. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J., E-mail: saykally@berkeley.edu [Department of Chemistry, University of California, Berkeley, California 94720, USA and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2016-05-21

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.

  7. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy

    Science.gov (United States)

    Lam, Royce K.; Smith, Jacob W.; Saykally, Richard J.

    2016-05-01

    While methanol and ethanol are macroscopically miscible with water, their mixtures exhibit negative excess entropies of mixing. Despite considerable effort in both experiment and theory, there remains significant disagreement regarding the origin of this effect. Different models for the liquid mixture structure have been proposed to address this behavior, including the enhancement of the water hydrogen bonding network around the alcohol hydrophobic groups and microscopic immiscibility or clustering. We have investigated mixtures of methanol, ethanol, and isopropanol with water by liquid microjet X-ray absorption spectroscopy on the oxygen K-edge, an atom-specific probe providing details of both inter- and intra-molecular structure. The measured spectra evidence a significant enhancement of hydrogen bonding originating from the methanol and ethanol hydroxyl groups upon the addition of water. These additional hydrogen bonding interactions would strengthen the liquid-liquid interactions, resulting in additional ordering in the liquid structures and leading to a reduction in entropy and a negative enthalpy of mixing, consistent with existing thermodynamic data. In contrast, the spectra of the isopropanol-water mixtures exhibit an increase in the number of broken alcohol hydrogen bonds for mixtures containing up to 0.5 water mole fraction, an observation consistent with existing enthalpy of mixing data, suggesting that the measured negative excess entropy is a result of clustering or micro-immiscibility.

  8. Synchrotron X-ray Absorption and In Vitro Bioactivity of Magnetic Macro/Mesoporous Bioactive Glasses

    Directory of Open Access Journals (Sweden)

    Thanida Charoensuk

    2015-12-01

    Full Text Available Iron oxides in macro/mesoporous bioactive glasses were characterized by synchrotron X-ray absorption near edge structure (XANES spectroscopy. This magnetic phase was introduced by adding Fe(NO33 9H2O during the sol-gel synthesis. The obtained bioactive glass scaffolds exhibited superparamagnetism, in which the magnetization was increased with the increase in the Fe molar ratio from 10 to 20%. The linear combination fits of the XANES spectra indicated that the increase in the Fe molar ratio to 20% enhanced the γ-Fe2O3 formation at the expense of the α- Fe2O3 phase. This variation also promoted the formation of fine-grained bone-like apatites on the surface of the scaffolds in the in vitro test. The apatite growth between three and seven days was confirmed by the changing elemental compositions. However, the highest magnetic proportion led to the distortion of the skeleton walls and the collapse of the porous networks.

  9. Insight into the biological effects of acupuncture points by X-ray absorption fine structure.

    Science.gov (United States)

    Liu, Chenglin; Liu, Qinghua; Zhang, Dongming; Liu, Wei; Yan, Xiaohui; Zhang, Xinyi; Oyanagi, Hiroyuki; Pan, Zhiyun; Hu, Fengchun; Wei, Shiqiang

    2018-06-02

    Exploration of the biological effects of transition metal ions in acupuncture points is essential to clarify the functional mechanism of acupuncture treatment. Here we show that in the SP6 acupuncture point (Sanyinjiao) the Fe ions are in a high-spin state of approximately t 2g 4.5 e g 1.5 in an Fe-N(O) octahedral crystal field. The Fe K-edge synchrotron radiation X-ray absorption fine structure results reveal that the Fe-N and Fe-O bond lengths in the SP6 acupuncture point are 2.05 and 2.13 Å, respectively, and are 0.05-0.10 Å longer than those in the surrounding tissue. The distorted atomic structure reduces the octahedral symmetry and weakens the crystal field around the Fe ions by approximately 0.3 eV, leading to the high-spin configuration of the Fe ions, which is favorable for strengthening the magnetotransport and oxygen transportation properties in the acupuncture point by the enhanced spin coherence. This finding might provide some insight into the microscopic effect of the atomic and electronic interactions of transition metal ions in the acupuncture point. Graphical Abstract ᅟ.

  10. X-ray absorption experiments on rare earth and uranium compounds under high pressure

    International Nuclear Information System (INIS)

    Schmiester, G.

    1987-01-01

    After an introduction into the phenomenon of the mixed valency and the method of measuring the microstructures by X-ray absorption spectroscopy in the area of the L edges under pressure, the results of investigations at selected substitutes of the chalcogenides and puictides of the rare earths and the uranium were given. Thus, pressure-induced valency transitions in YbS and YbTe, instabilities in valency and structural phase transitions in EUS and SmTe as well as the change in the electron structure in USb under pressure were investigated in order to answer questions of solid state physics (e.g. semiconductor-metal transitions, correlation between valency and structural phase transitions). Hybridization effects in L III spectra of formally tetravalent Ca are analyzed at CeF 4 and CeO 2 (insulators) and the role of final state effects in the L III spectra are analyzed at EuP 2 P 2 and TmSe-TmTe (semiconductor systems). (RB) [de

  11. Electronic structure of titania aerogels: Soft x-ray absorption study

    International Nuclear Information System (INIS)

    Kucheyev, S.O.; Van Buuren, T.V.; Baumann, T.F.; Satcher, J.H.; Willey, T.M.; Muelenberg, R.W.; Felter, T.E.; Poco, J.E.; Gammon, S.A.; Terminello, L.J.

    2004-01-01

    Full text: Titania aerogels - a somewhat extreme form of nanoporous TiO 2 - are open-cell solid foams derived from highly crosslinked gels by drying them under supercritical conditions. In this presentation, the unoccupied electronic states of TiO 2 aerogels are studied by soft x-ray absorption near-edge structure (XANES) spectroscopy. High-resolution O K-edge and Ti L 2,3 -edge XANES spectra of aerogels are compared with those of rutile, anatase, and unrelaxed amorphous phases of full- density TiO 2 . Results show that all the main spectroscopic features of aerogels, reflecting the element-specific partial density of empty electronic states and correlation effects, can be attributed to the absence of long-range order in stoichiometric amorphous TiO 2 . Based on these results, we discuss the effects of short- and long-range order on the electronic structure of TiO 2 . This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48

  12. X-Ray Absorption Spectra of Amorphous Ices from GW Quasiparticle Calculation

    Science.gov (United States)

    Kong, Lingzhu; Car, Roberto

    2013-03-01

    We use a GW approach[2] to compute the x-ray absorption spectra of model low- and high-density amorphous ice structures(LDA and HDA)[3]. We include the structural effects of quantum zero point motion using colored-noise Langevin molecular dynamics[4]. The calculated spectra differences in the main and post edge region between LDA and HDA agree well with experimental observations. We attribute these differences to the presence of interstitial molecules within the first coordination shell range in HDA. This assignment is further supported by a calculation of the spectrum of ice VIII, a high-pressure structure that maximizes the number of interstitial molecules and, accordingly, shows a much weaker post-edge feature. We further rationalize the spectral similarity between HDA and liquid water, and between LDA and ice Ih in terms of the respective similarities in the H-bond network topology and bond angle distributions. Supported by grants DOE-DE-SC0005180, DOE DE-SC0008626 and NSF-CHE-0956500.

  13. Simulation of X-ray absorption spectra with orthogonality constrained density functional theory.

    Science.gov (United States)

    Derricotte, Wallace D; Evangelista, Francesco A

    2015-06-14

    Orthogonality constrained density functional theory (OCDFT) [F. A. Evangelista, P. Shushkov and J. C. Tully, J. Phys. Chem. A, 2013, 117, 7378] is a variational time-independent approach for the computation of electronic excited states. In this work we extend OCDFT to compute core-excited states and generalize the original formalism to determine multiple excited states. Benchmark computations on a set of 13 small molecules and 40 excited states show that unshifted OCDFT/B3LYP excitation energies have a mean absolute error of 1.0 eV. Contrary to time-dependent DFT, OCDFT excitation energies for first- and second-row elements are computed with near-uniform accuracy. OCDFT core excitation energies are insensitive to the choice of the functional and the amount of Hartree-Fock exchange. We show that OCDFT is a powerful tool for the assignment of X-ray absorption spectra of large molecules by simulating the gas-phase near-edge spectrum of adenine and thymine.

  14. Three-dimensional imaging of a complex concaved cuboctahedron copper sulfide crystal by x-ray nanotomography

    International Nuclear Information System (INIS)

    Chen Jie; Tian Jinping; Li Wenjie; Tian Yangchao; Wu Chunyan; Yu Shuhong

    2008-01-01

    By combining Fresnel zone-plate based transmission x-ray microscopy with computed tomography, the nanoscale features in materials with complex shapes can be imaged using synchrotron radiation. The tomographic data sets of a complex copper sulfide crystal were acquired in the angle range ±70 deg. at photon energy of 8.0 keV and then were reconstructed by a standard filtered-back-projection algorithm. This experiment shows the quantifiable three-dimensional information of the copper sulfide crystal, which offers a complete understanding of the concaved cuboctahedron structure with 14 faces comprising of six squares and eight triangles

  15. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Göries, D., E-mail: dennis.goeries@desy.de; Roedig, P.; Stübe, N.; Meyer, J.; Warmer, M.; Weckert, E.; Meents, A., E-mail: alke.meents@desy.de [DESY Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg (Germany); Dicke, B.; Naumova, M.; Rübhausen, M. [Center for Free-Electron Laser Science (CFEL), Luruper Chaussee 149, 22761 Hamburg (Germany); Galler, A.; Gawelda, W.; Geßler, P.; Sotoudi Namin, H.; Beckmann, A. [European XFEL, Albert-Einstein Ring 19, 22761 Hamburg (Germany); Britz, A.; Bressler, C. [European XFEL, Albert-Einstein Ring 19, 22761 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany); Schlie, M. [Institut für Experimentalphysik, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2016-05-15

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy){sub 3}. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM).

  16. X-ray absorption spectroscopy of diluted system by undulator photon source and multi-element solid-state detector

    CERN Document Server

    Tanida, H

    2001-01-01

    In order to measure the extended X-ray absorption fine structure (EXAFS) spectrum of an ultra-diluted system, an optics and detector control system for a synchrotron radiation beamline is developed. The undulator gap width is continuously tuned to obtain the maximum X-ray photon flux during the energy scan for the EXAFS measurement. A piezoelectric translator optimizes the parallelism of the double crystal in a monochromator at each measurement point to compensate for mechanical errors of the monochromator, resulting in a smooth and intense X-ray photon flux during the measurement. For a detection of a weak fluorescence signal from diluted samples, a 19-element solid-state detector and digital signal processor are used. A K-edge EXAFS spectrum of iron in a myoglobin aqueous solution with a concentration of 5.58 parts per million was obtained by this system.

  17. Lattice distortions in TlInSe{sub 2} thermoelectric material studied by X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Shinya; Stellhorn, Jens Ruediger [Department of Physics, Kumamoto University, Kumamoto (Japan); Ikemoto, Hiroyuki [Department of Physics, University of Toyama, Toyama (Japan); Mimura, Kojiro [Department of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai (Japan); Wakita, Kazuki [Faculty of Engineering, Chiba Institute of Technology, Narashino (Japan); Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2018-01-15

    Tl L{sub II} and In K X-ray absorption fine structure (XAFS) measurements were performed on a TlInSe{sub 2} thermoelectric material in the temperature range of 25-300 K including the incommensurate-commensurate phase transition temperature of about 135 K. Most of the bond lengths obtained from the present XAFS measurements are in good agreement with existing X-ray diffraction data at room temperature, while only the Tl-Tl correlation shows inconsistent values indicating the commensurate properties of the Tl chains expected from the thermodynamic properties. The present XAFS data clearly support positional fluctuations of the Tl atoms found in three-dimensional atomic images reconstructed from X-ray fluorescence holography. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. RefleX: X-ray absorption and reflection in active galactic nuclei for arbitrary geometries

    Science.gov (United States)

    Paltani, S.; Ricci, C.

    2017-11-01

    Reprocessed X-ray radiation carries important information about the structure and physical characteristics of the material surrounding the supermassive black hole (SMBH) in active galactic nuclei (AGN). We report here on a newly developed simulation platform, RefleX, which allows to reproduce absorption and reflection by quasi-arbitrary geometries. We show here the reliability of our approach by comparing the results of our simulations with existing spectral models such as pexrav, MYTorus and BNTorus. RefleX implements both Compton scattering on free electrons and Rayleigh scattering and Compton scattering on bound electrons. We show the effect of bound-electron corrections on a torus geometry simulated like in MYTorus. We release with this paper the RefleX executable, as well as RXTorus, a model that assumes absorption and reflection from a torus with a varying ratio of the minor to major axis of the torus. To allow major flexibility RXTorus is also distributed in three components: absorbed primary emission, scattered radiation and fluorescent lines. RXTorus is provided for different values of the abundance, and with (atomic configuration) or without (free-electron configuration) taking into account Rayleigh scattering and bound electrons. We apply the RXTorus model in both configurations on the XMM-Newton and NuSTAR spectrum of the Compton-thick AGN NGC 424 and find that the models are able to reproduce very well the observations, but that the assumption on the bound or free state of the electrons has significant consequences on the fit parameters. RefleX executable, user manual and example models are available at http://www.astro.unige.ch/reflex. A copy of the RefleX executable is also available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/607/A31

  19. Coelectrodeposition of Ternary Mn-Oxide/Polypyrrole Composites for ORR Electrocatalysts: A Study Based on Micro-X-ray Absorption Spectroscopy and X-ray Fluorescence Mapping

    Directory of Open Access Journals (Sweden)

    Benedetto Bozzini

    2015-08-01

    Full Text Available Low energy X-ray fluorescence (XRF and soft X-ray absorption (XAS microspectroscopies at high space-resolution are employed for the investigation of the coelectrodeposition of composites consisting of a polypyrrole(PPy-matrix and Mn-based ternary dispersoids, that have been proposed as promising electrocatalysts for oxygen-reduction electrodes. Specifically, we studied Mn–Co–Cu/PP, Mn–Co–Mg/PPy and Mn–Ni–Mg/PPy co-electrodeposits. The Mn–Co–Cu system features the best ORR electrocatalytic activity in terms of electron transfer number, onset potential, half-wave potential and current density. XRF maps and micro-XAS spectra yield compositional and chemical state distributions, contributing unique molecular-level information on the pulse-plating processes. Mn, Ni, Co and Mg exhibit a bimodal distribution consisting of mesoscopic aggregates of micrometric globuli, separated by polymer-rich ridges. Within this common qualitative scenario, the individual systems exhibit quantitatively different chemical distribution patterns, resulting from specific electrokinetic and electrosorption properties of the single components. The electrodeposits consist of Mn3+,4+-oxide particles, accompanied by combinations of Co0/Co2+, Ni0/Ni2+ and Cu0,+/Cu2+ resulting from the alternance of cathodic and anodic pulses. The formation of highly electroactive Mn3+,4+ in the as-fabricated material is a specific feature of the ternary systems, deriving from synergistic stabilisation brought about by two types of bivalent dopants as well as by galvanic contact to elemental metal; this result represents a considerable improvement in material quality with respect to previously studied Mn/PPy and Mn-based/PPy binaries.

  20. High pressure study of nanostructured Cu2Sb by X-ray Diffraction, Extended X-ray Absorption fine structure and Raman measurements

    International Nuclear Information System (INIS)

    Souza, Sergio Michielon de; Triches, Daniela Menegon; Lima, Joao Cardoso de; Polian, Alain

    2016-01-01

    Full text: Nanostructured tetragonal Cu 2 Sb was prepared by mechanical alloying and its stability was studied as a function of pressure using synchrotron X-ray diffraction (XRD) Extended X-Ray Absorption Fine Structure (EXAFS) and Raman spectroscopy. The high pressure XRD data were collected at 0.6, 1.1, 2.2, 3.4, 5.0, 7.1, 8.0, 9.9, 14.8, 18.7, 23.2, 29.3 and 40.6 GPa in the ELETTRA synchrotron (Italy) with λ = 0.68881 Å. The high pressure EXAFS measurements were carried out in the Soleil synchrotron (France) in 0.6, 1.8, 3.0, 4.5, 6.1, 8.0, 10.3, 12.7, 15.5, 18.0, 19.0, 20.0, 22.1, 23.9, 26.3 and 29.4 GPa and the high pressure Raman spectroscopy in the Institut de Mineralogie et de Physique des Milieux Condenses (France) collected at 0.1, 1.6, 3.7, 6.7, 11.2, 15.1, 19.4, 24.5, 30.8, 36.3, 41.3 and 44.5 GPa. The results show high structural and optical phase stability. The moduli bulk and its derivatives were obtained by using the Birch-Murnaghan equation of states to the XRD and EXAFS results. The evolution of the Raman modes and the bulk moduli were used to obtain the Grueneisen parameters. (author)

  1. Determination of ash content of coal by mass absorption coefficient measurements at two X-ray energies

    International Nuclear Information System (INIS)

    Fookes, R.A.; Gravitis, V.L.; Watt, J.S.

    1977-01-01

    A method for determining the ash content of coal is proposed. It involves measurements proportional to mass absorption coefficients of coal at two X-ray energies. These measurements can be made using X-ray transmission or scatter techniques. Calculations based on transmission of narrow beams of X-rays have shown that ash can be determined to about 1wt%(1 sigma) in coal of widely varying ash content and composition. Experimentally, ash content was determined to 0.67wt% by transmission techniques and 1.0wt% by backscatter techniques in coal samples from the Bulli seam, NSW, Australia, having ash in the range 11-34wt%. For samples with a much wider range of coal composition (7-53wt% ash and 0-25wt% iron in the ash), ash content was determined by backscatter measurements to 1.62wt%. The method produced ash determinations at least as accurate as those produced by the established technique which compensates for variation in iron content of the ash by X-ray fluorescence analysis for iron. Compared with the established technique, it has the advantage of averaging analysis over much larger volumes of coal, but the disadvantage that much more precise measurements of X-ray intensities are required. (author)

  2. Origin of the chemical shift in X-ray absorption near-edge spectroscopy at the Mn K-Edge in manganese oxide compounds

    NARCIS (Netherlands)

    de Vries, AH; Hozoi, L.; Broer, R.

    2003-01-01

    The absorption edge in Mn K-edge X-ray absorption spectra of manganese oxide compounds shows a shift of several electronvolts in going from MnO through LaMnO3 to CaMnO3. On the other hand, in X-ray photoelectron spectra much smaller shifts are observed. To identify the mechanisms that cause the

  3. Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, F. J., E-mail: fredm@lle.rochester.edu; Radha, P. B. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-11-15

    A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.

  4. Masked-backlighter technique used to simultaneously image x-ray absorption and x-ray emission from an inertial confinement fusion plasma.

    Science.gov (United States)

    Marshall, F J; Radha, P B

    2014-11-01

    A method to simultaneously image both the absorption and the self-emission of an imploding inertial confinement fusion plasma has been demonstrated on the OMEGA Laser System. The technique involves the use of a high-Z backlighter, half of which is covered with a low-Z material, and a high-speed x-ray framing camera aligned to capture images backlit by this masked backlighter. Two strips of the four-strip framing camera record images backlit by the high-Z portion of the backlighter, while the other two strips record images aligned with the low-Z portion of the backlighter. The emission from the low-Z material is effectively eliminated by a high-Z filter positioned in front of the framing camera, limiting the detected backlighter emission to that of the principal emission line of the high-Z material. As a result, half of the images are of self-emission from the plasma and the other half are of self-emission plus the backlighter. The advantage of this technique is that the self-emission simultaneous with backlighter absorption is independently measured from a nearby direction. The absorption occurs only in the high-Z backlit frames and is either spatially separated from the emission or the self-emission is suppressed by filtering, or by using a backlighter much brighter than the self-emission, or by subtraction. The masked-backlighter technique has been used on the OMEGA Laser System to simultaneously measure the emission profiles and the absorption profiles of polar-driven implosions.

  5. Extended x-ray absorption fine structure (EXAFS): a novel probe for local structure of glassy solids

    International Nuclear Information System (INIS)

    Wong, J.

    1979-01-01

    The extended x-ray absorption fine structure (EXAFS) is the oscillation in the absorption coefficient extending a few hundred eVs on the high energy side of an x-ray absorption edge. This mode of spectroscopy has recently been realized to be a powerful tool in probing the local atomic structure of all states of matter, particularly with the advent of intense synchrotron radiation. More importantly is the unique ability of EXAFS to probe the structure and dynamics around individual atomic species in a multi-atomic system. In this paper, the physical processes associated with the EXAFS phenomenon will be discussed. Experimental results obtained at the Stanford Synchrotron Radiation Laboratory on some oxide and metallic glasses will be presented. The local structure in these materials are elucidated using a Fourier transform technique

  6. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, G. C.; Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V. [Physics Department, University of Nevada, Reno, Reno, Nevada 89557 (United States); Ouart, N. D. [Naval Research Laboratory, Washington, D.C. 20375 (United States)

    2012-10-15

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature ({approx}10-40 eV) plasmas than emission spectra ({approx}350-500 eV).

  7. Grazing exit versus grazing incidence geometry for x-ray absorption near edge structure analysis of arsenic traces

    International Nuclear Information System (INIS)

    Meirer, F.; Streli, C.; Wobrauschek, P.; Zoeger, N.; Pepponi, G.

    2009-01-01

    In the presented study the grazing exit x-ray fluorescence was tested for its applicability to x-ray absorption near edge structure analysis of arsenic in droplet samples. The experimental results have been compared to the findings of former analyses of the same samples using a grazing incidence (GI) setup to compare the performance of both geometries. Furthermore, the investigations were accomplished to gain a better understanding of the so called self-absorption effect, which was observed and investigated in previous studies using a GI geometry. It was suggested that a normal incidence-grazing-exit geometry would not suffer from self-absorption effects in x-ray absorption fine structure (XAFS) analysis due to the minimized path length of the incident beam through the sample. The results proved this assumption and in turn confirmed the occurrence of the self-absorption effect for GI geometry. Due to its lower sensitivity it is difficult to apply the GE geometry to XAFS analysis of trace amounts (few nanograms) of samples but the technique is well suited for the analysis of small amounts of concentrated samples

  8. Simulation of intense laser-dense matter interactions. X-ray production and laser absorption

    Energy Technology Data Exchange (ETDEWEB)

    Ueshima, Yutaka; Kishimoto, Yasuaki; Sasaki, Akira [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Sentoku, Yasuhiko; Tajima, Toshiki

    1998-03-01

    The development of short-pulse ultra high intensity lasers will enable us to generate short-pulse intense soft and hard X-rays. Acceleration of an electron in laser field generates intense illuminated located radiation, Larmor radiation, around KeV at 10{sup 18} W/cm{sup 2} with 100 TW and 1 {mu}m wave length laser. The Coulomb interaction between rest ions and relativistic electron generates broad energy radiation, bremsstrahlung emission, over MeV at 10{sup 18} W/cm{sup 2} with the same condition. These intense radiations come in short pulses of the same order as that of the irradiated laser. The generated intense X-rays, Larmor and bremsstrahlung radiation, can be applied to sources of short pulse X-ray, excitation source of inner-shell X-ray laser, position production and nuclear excitation, etc. (author)

  9. Measurement of fractional x-ray absorption for radiation attenuating surgical gloves

    International Nuclear Information System (INIS)

    Nagalakshmi, B.; Sawant, S.G.; Nair, C.P.R.; Joshi, V.D.

    2000-01-01

    It is essential to make use of lead gloves having 0.25 mm lead equivalence only for routine x-ray screening as stipulated by International Commission on Radiological Protection. Such surgical gloves which provide attenuation to the extent of one half value thickness for low energy are very useful for the present trend of special x-ray examinations which are on the increase

  10. Bimetallic Catalysts and Platinum Surfaces Studied by X-ray Absorption Spectroscopy and Scanning Tunnelling Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Roenning, Magnus

    2000-07-01

    Bimetallic catalyst systems used in Fischer-Tropsch synthesis (Co-Re/Al{sub 2}O{sub 3}) and in the naphtha reforming process (Pt-Re/Al{sub 2}O{sub 3}) have been studied in situ using X-ray absorption spectroscopy (EXAFS). Additionally, the adsorption of ethene on platinum single crystal surfaces has been investigated using scanning tunnelling microscopy. In situ EXAFS at the cobalt K absorption edge have been carried out at 450{sup o}C on the hydrogen reduction of a rhenium-promoted Co{sub 3}O{sub 4}/Al{sub 2}O{sub 3} catalyst. Reductions carried out using 100% hydrogen and 5% hydrogen in helium gave different results. Whereas the reduction using dilute hydrogen leads to bulk-like metallic cobalt particles (hcp or fcc), reaction with pure hydrogen yields a more dispersed system with smaller cobalt metal particles (< 40 A). The results are rationalised in terms of different degrees of reoxidation of cobalt by the higher and lower concentrations of water generated during the reduction of cobalt oxide by 100% and 5% hydrogen, respectively. Additionally, in both reduction protocols a small fraction (3 -4 wt%) of the cobalt content is randomly dispersed over the tetrahedral vacancies of the alumina support. This dispersion occurs during reduction and not calcination. The cobalt in these sites cannot be reduced at 450 {sup o}C. The local environments about the rhenium atoms in Co-Re/{gamma}-A1{sub 2}O{sub 3} catalyst after different reduction periods have been studied by X-ray absorption spectroscopy. A bimetallic catalyst containing 4.6 wt% cobalt and 2 wt% rhenium has been compared with a corresponding monometallic sample with 2 wt% rhenium on the same support. The rhenium L{sub III} EXAFS analysis shows that bimetallic particles are formed after reduction at 450{sup o}C with the average particle size being 10-15 A. Rhenium is shown to be reduced at a later stage than cobalt. The fraction of cobalt atoms entering the support obstructs the access to the support for the

  11. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    International Nuclear Information System (INIS)

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    A method for a direct measurement of X-ray projections of the atomic structure is described. Projections of the atomic structure around Nb atoms in a LiNbO 3 single crystal were obtained from a white-beam X-ray absorption anisotropy pattern detected using Nb K fluorescence. Projections of the atomic structure around Nb atoms in a LiNbO 3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples

  12. Rapid Mapping of Lithiation Dynamics in Transition Metal Oxide Particles with Operando X-ray Absorption Spectroscopy

    Science.gov (United States)

    Nowack, Lea; Grolimund, Daniel; Samson, Vallerie; Marone, Federica; Wood, Vanessa

    2016-02-01

    Since the commercialization of lithium ion batteries (LIBs), layered transition metal oxides (LiMO2, where M = Co, Mn, Ni, or mixtures thereof) have been materials of choice for LIB cathodes. During cycling, the transition metals change their oxidation states, an effect that can be tracked by detecting energy shifts in the X-ray absorption near edge structure (XANES) spectrum. X-ray absorption spectroscopy (XAS) can therefore be used to visualize and quantify lithiation kinetics in transition metal oxide cathodes; however, in-situ measurements are often constrained by temporal resolution and X-ray dose, necessitating compromises in the electrochemistry cycling conditions used or the materials examined. We report a combined approach to reduce measurement time and X-ray exposure for operando XAS studies of lithium ion batteries. A highly discretized energy resolution coupled with advanced post-processing enables rapid yet reliable identification of the oxidation state. A full-field microscopy setup provides sub-particle resolution over a large area of battery electrode, enabling the oxidation state within many transition metal oxide particles to be tracked simultaneously. Here, we apply this approach to gain insights into the lithiation kinetics of a commercial, mixed-metal oxide cathode material, nickel cobalt aluminium oxide (NCA), during (dis)charge and its degradation during overcharge.

  13. Pt and Ru X-ray absorption spectroscopy of PtRu anode catalysts in operating direct methanol fuel cells.

    Science.gov (United States)

    Stoupin, Stanislav; Chung, Eun-Hyuk; Chattopadhyay, Soma; Segre, Carlo U; Smotkin, Eugene S

    2006-05-25

    In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.

  14. X-ray absorption investigation of titanium oxynitride nanoparticles obtained from laser pyrolysis

    International Nuclear Information System (INIS)

    Simon, Pardis; March, Katia; Stéphan, Odile; Leconte, Yann; Reynaud, Cécile; Herlin-Boime, Nathalie; Flank, Anne-Marie

    2013-01-01

    Highlights: • Original Ti(O,N) nanoparticles with a TiO FCC structure were synthesized by laser pyrolysis. • EELS and XAS allows to demonstrate that the nanoparticles are a solid solution of N and O in Ti. • Upon heat treatment, oxidation occurs from the surface with survival of FCC contribution till 400 °C. • Optical properties (absorption in the visible range) can be adjusted through the control of oxidation state. - Abstract: This work presents a structural study by X-ray Absorption Spectroscopy (XAS) and Electron Energy-Loss Spectroscopy (EELS) of complex titanium oxynitride nanoparticles (Ti(O,N)), synthesized by laser pyrolysis from titanium tetraisopropoxide and ammonia as precursors. Previous structural characterizations obtained by XRD and XPS have shown that the nanoparticles present a TiO type face-centered cubic (FCC) structure but with three different oxidation degree for titanium. The synthesis of this kind of titanium oxide or oxynitride nanoparticles is very unusual. Moreover, their properties are highly dependent of their structure. EELS spectrum-imaging data were therefore used for mapping the different chemical species. These measurements reveal that the nanoparticles are composed of a FCC solid solution of nitrogen and oxygen in titanium. The local structure around Ti was then studied. XANES measurements show an absorption threshold corresponding to a global valence state between Ti 3+ and Ti 4+ , with a pre-edge structure characteristic of a mix between a face-centered cubic (FCC) structure and a disordered TiO 2 structure whereas the EXAFS signal is dominated by the contribution of the FCC structure. Oxidative heat-treatments have been performed from 250 to 450 °C in order to follow the transition towards the dioxide phase. EELS measurements show that the oxidation occurs from the surface of the nanoparticles. XAS show that this transition does not involve any other crystallographic phase than TiO 2 , mainly in its anatase form, and

  15. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    Energy Technology Data Exchange (ETDEWEB)

    Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com [Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033 (India); Yadav, A. K. [Atomic and molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It is a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.

  16. The origin of luminescence from di[4-(4-diphenylaminophenyl)phenyl]sulfone (DAPSF), a blue light emitter: an X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) study.

    Science.gov (United States)

    Zhang, Duo; Zhang, Hui; Zhang, Xiaohong; Sham, Tsun-Kong; Hu, Yongfeng; Sun, Xuhui

    2016-03-07

    The electronic structure and optical properties of di[4-(4-diphenylaminophenyl)phenyl]sulfone (denoted as DAPSF), a highly efficient fluorophor, have been investigated using X-ray excited optical luminescence (XEOL) and X-ray absorption near edge structure (XANES) spectroscopy at excitation energies across the C, N, O K-edges and the sulfur K-edge. The results indicate that the blue luminescence is mainly related to the sulfur functional group.

  17. X ray absorption fine structure of systems in the anharmonic limit

    Science.gov (United States)

    Mustredeleon, J.; Conradson, S. D.; Batistic, I.; Bishop, A. R.; Raistrick, I.; Jackson, W. E.; Brown, G. E.

    A new approach to the analysis of x-ray absorption fine structure (XAFS) data is presented. It is based on the use of radial distribution functions directly calculated from a single-particle ion Hamiltonian containing model potentials. The starting point of this approach is the statistical average of the XAFS for an atomic pair. This average can be computed using a radial distribution function (RDF), which can be expressed in terms of the eigenvalues and wavefunctions associated with the model potential. The pair potential describing the ionic motion is then expressed in terms of parameters that are determined by fitting this statistical average to the experimental XAFS spectrum. This approach allows the use of XAFS as a tool for mapping near-neighbor interatomic potentials, and allows the treatment of systems which exhibit strongly anharmonic potentials which can be treated by perturbative methods. Using this method we have analyzed the high temperature behavior of the oxygen contributions to the Fe K-edge XAFS in the ferrosilicate minerals andradite (Ca3Fe2Si3O12) and magnesiowustite (Mg(0.9)Fe(0.1)O). Using a temperature dependent anharmonic correction derived from these model compounds, we have found evidence for a local structural change in the Fe-O coordination environment upon melting of the geologically important mineral fayalite (Fe2SiO4). We have also employed this method to the study of the axial oxygen contributions to the polarized Cu K-edge XAFS on oriented samples of YBa2Cu3O7 and related compounds. From this study we find evidence for an axial oxygen-centered lattice distortion accompanying the superconducting phase transition and a correlation between this distortion and Tc. The relation of the observed lattice distortion to mechanisms of superconductivity is discussed.

  18. X-ray absorption fine structure of systems in the anharmonic limit

    International Nuclear Information System (INIS)

    Mustre de Leon, J.; Conradson, S.D.; Batistic, I.; Bishop, A.R.; Raistrick, I.; Jackson, W.E.; Brown, G.E.

    1991-01-01

    A new approach to the analysis of x-ray absorption fine structure (XAFS) data is presented. It is based on the use of radial distribution functions directly calculated from a single-particle ion hamiltonian containing model potentials. The starting point of this approach is the statistical average of the XAFS for an atomic pair. This average can be computed using a radial distribution function (RDF), which can be expressed in terms of the eigenvalues and wavefunctions associated with the model potential. The pair potential describing the ionic motion is then expressed in terms of parameters that are determined by fitting this statistical average to the experimental XAFS spectrum. This approach allow the use of XAFS as a tool for mapping near-neighbor interatomic potentials, and allows the treatment of systems which exhibit strongly anharmonic potentials which can be treated by perturbative methods. Using this method we have analyzed the high temperature behavior of the oxygen contributions to the Fe K-edge XAFS in the ferrosilicate minerals andradite (Ca 3 Fe 2 Si 3 O 12 ) and magnesiowustite (Mg 0.9 Fe 0.1 O). Using a temperature dependent anharmonic correction derived from these model compounds, we have found evidence for a local structural change in the Fe-O coordination environment upon melting of the geologically important mineral fayalite (Fe 2 SiO 4 ). We have also employed this method to the study of the axial oxygen contributions to the polarized Cu K-edge XAFS on oriented samples of YBa 2 Cu 3 O 7 and related compounds. From this study we find evidence for an axial oxygen-centered lattice distortion accompanying the superconducting phase transition and a correlation between this distortion and T c . The relation of the observed lattice distortion to mechanisms of superconductivity is discussed. 33 refs., 6 figs

  19. Urban airborne lead: X-ray absorption spectroscopy establishes soil as dominant source.

    Directory of Open Access Journals (Sweden)

    Nicholas E Pingitore

    Full Text Available BACKGROUND: Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008 US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds of lead in recent ambient airborne particulate matter collected in El Paso, TX, USA. METHODOLOGY/PRINCIPAL FINDINGS: We used synchrotron-based XAFS (x-ray absorption fine structure to identify and quantify the major Pb species. XAFS provides molecular-level structural information about a specific element in a bulk sample. Pb-humate is the dominant form of lead in contemporary El Paso air. Pb-humate is a stable, sorbed complex produced exclusively in the humus fraction of Pb-contaminated soils; it also is the major lead species in El Paso soils. Thus such soil must be the dominant source, and its resuspension into the air, the transfer process, providing lead particles to the local air. CONCLUSIONS/SIGNIFICANCE: Current industrial and commercial activity apparently is not a major source of airborne lead in El Paso, and presumably other locales that have eliminated such traditional sources as leaded gasoline. Instead, local contaminated soil, legacy of earlier anthropogenic Pb releases, serves as a long-term reservoir that gradually leaks particulate lead to the atmosphere. Given the difficulty and expense of large-scale soil remediation or removal, fugitive soil likely constrains a lower limit for airborne lead levels in many urban settings.

  20. X-ray Absorption Spectroscopy Identifies Calcium-Uranyl-Carbonate Complexes at Environmental Concentrations

    International Nuclear Information System (INIS)

    Kelly, Shelly D.; Kemner, Kenneth M.; Brooks, Scott C.

    2007-01-01

    Current research on bioremediation of uranium-contaminated groundwater focuses on supplying indigenous metal-reducing bacteria with the appropriate metabolic requirements to induce microbiological reduction of soluble uranium(VI) to poorly soluble uranium(IV). Recent studies of uranium(VI) bioreduction in the presence of environmentally relevant levels of calcium revealed limited and slowed uranium(VI) reduction and the formation of a Ca-UO2-CO3 complex. However, the stoichiometry of the complex is poorly defined and may be complicated by the presence of a Na-UO2-CO3 complex. Such a complex might exist even at high calcium concentrations, as some UO2-CO3 complexes will still be present. The number of calcium and/or sodium atoms coordinated to a uranyl carbonate complex will determine the net charge of the complex. Such a change in aqueous speciation of uranium(VI) in calcareous groundwater may affect the fate and transport properties of uranium. In this paper, we present the results from X-ray absorption fine structure (XAFS) measurements of a series of solutions containing 50 lM uranium(VI) and 30 mM sodium bicarbonate, with various calcium concentrations of 0-5 mM. Use of the data series reduces the uncertainty in the number of calcium atoms bound to the UO2-CO3 complex to approximately 0.6 and enables spectroscopic identification of the Na-UO2-CO3 complex. At nearly neutral pH values, the numbers of sodium and calcium atoms bound to the uranyl triscarbonate species are found to depend on the calcium concentration, as predicted by speciation calculations

  1. Urban airborne lead: X-ray absorption spectroscopy establishes soil as dominant source.

    Science.gov (United States)

    Pingitore, Nicholas E; Clague, Juan W; Amaya, Maria A; Maciejewska, Beata; Reynoso, Jesús J

    2009-01-01

    Despite the dramatic decrease in airborne lead over the past three decades, there are calls for regulatory limits on this potent pediatric neurotoxin lower even than the new (2008) US Environmental Protection Agency standard. To achieve further decreases in airborne lead, what sources would need to be decreased and what costs would ensue? Our aim was to identify and, if possible, quantify the major species (compounds) of lead in recent ambient airborne particulate matter collected in El Paso, TX, USA. We used synchrotron-based XAFS (x-ray absorption fine structure) to identify and quantify the major Pb species. XAFS provides molecular-level structural information about a specific element in a bulk sample. Pb-humate is the dominant form of lead in contemporary El Paso air. Pb-humate is a stable, sorbed complex produced exclusively in the humus fraction of Pb-contaminated soils; it also is the major lead species in El Paso soils. Thus such soil must be the dominant source, and its resuspension into the air, the transfer process, providing lead particles to the local air. Current industrial and commercial activity apparently is not a major source of airborne lead in El Paso, and presumably other locales that have eliminated such traditional sources as leaded gasoline. Instead, local contaminated soil, legacy of earlier anthropogenic Pb releases, serves as a long-term reservoir that gradually leaks particulate lead to the atmosphere. Given the difficulty and expense of large-scale soil remediation or removal, fugitive soil likely constrains a lower limit for airborne lead levels in many urban settings.

  2. Nustar Reveals an Intrinsically X-ray Weak Broad Absorption Line Quasar in the Ultraluminous Infrared Galaxy Markarian 231

    Science.gov (United States)

    Teng, Stacy H.; Brandt. W. N.; Harrison, F. A.; Luo, B.; Alexander, D. M.; Bauer, F. E.; Boggs, S. E.; Christensen, F. E.; Comastri, A.; Craig, W. W.; hide

    2014-01-01

    We present high-energy (3-30 keV) NuSTAR observations of the nearest quasar, the ultraluminous infrared galaxy (ULIRG) Markarian 231 (Mrk 231), supplemented with new and simultaneous low-energy (0.5-8 keV) data from Chandra. The source was detected, though at much fainter levels than previously reported, likely due to contamination in the large apertures of previous non-focusing hard X-ray telescopes. The full band (0.5-30 keV) X-ray spectrum suggests the active galactic nucleus (AGN) in Mrk 231 is absorbed by a patchy and Compton-thin N(sub H) approx. 1.2(sup +0.3) sub-0.3) x 10(exp 23) / sq cm) column. The intrinsic X-ray luminosity L(sub 0.5-30 Kev) approx. 1.0 x 10(exp 43) erg /s) is extremely weak relative to the bolometric luminosity where the 2-10 keV to bolometric luminosity ratio is approx. 0.03% compared to the typical values of 2-15%. Additionally, Mrk 231 has a low X-ray-to-optical power law slope alpha(sub 0X) approx. -1.7. It is a local example of a low-ionization broad absorption line (LoBAL) quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may be a result of the super-Eddington accretion occurring in the nucleus of this ULIRG, and may also be naturally related to the powerful wind event seen in Mrk 231, a merger remnant escaping from its dusty cocoon.

  3. Determination of the separation between the soft X-ray K-emission and K-absorption edges in beryllium metal from self-absorption studies

    International Nuclear Information System (INIS)

    Crisp, R.S.

    1979-01-01

    Recent theoretical studies have aroused interest in the phonon broadening of the soft X-ray emission and absorption edges and the shift between them. Using a self-absorption technique a separation of about 0.2 eV is shown to exist between the edges in Be metal. This shift explains the very small self-absorption effects previously observed in Be by Crisp (1977). (Auth.)

  4. Determination of the separation between the soft X-ray K-emission and K-absorption edges in beryllium metal from self-absorption studies

    International Nuclear Information System (INIS)

    Crisp, R.S.

    1979-01-01

    Recent theoretical studies have aroused interest in the phonon broadening of the soft X-ray emission and absorption edges and the shift between them. Using a self-absorption technique a separation of about 0.2 eV is shown to exist between the edges in Be metal. This shift explains the very small self-absorption effects previously observed in Be. (Auth.)

  5. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    Science.gov (United States)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  6. Development of an x-ray beam line at the NSLS for studies in materials science using x-ray absorption spectroscopy: Annual progress report

    International Nuclear Information System (INIS)

    Sayers, D.E.

    1986-01-01

    Although only in operation since May, 1985, the X-11 participation research team (PRT) at the NSLS has already demonstrated that it is one of the leading centers of x-ray absorption spectroscopy (XAS). During this time, results have been obtained and programs initiated in a number of areas, for example: interfaces, including deposited metal-metal and metal-semiconductor systems, multilayers and ion implanted layers; electrochemical systems, including Pt electrode fuel cells, Ni oxide battery electrodes, conducting polymers, passivation and corrosion; catalysts, including highly-dispersed supported metal catalysts and zeolite systems; quasi-crystals, heavy fermion systems, uranium and neptunium compounds, rare gas clusters, disordered metals and semiconductors, ferroelectric transition; and, biological systems and related models, including synthetic porphyrins and a number of metalloproteins. In concert with these scientific results have been a number of developments involving the technique itself. These include implementation of unique optical systems on both the A and B lines for optical performance over their designed energy ranges, advances in experimental capability, particular in glancing angle studies, optimization of ion chambers for surface studies, the improvement of electron yield detectors, and improved software for data acquisition and analysis. This report emphasizes some of the research highlights and significant developments of our PRT which occurred during the past year. A detailed bibliography of papers and talks resulting from work done at our beamline and the progress reports for our PRT which were in the 1985 NSLS Annual Report are appended

  7. Development of an x-ray beam line at the NSLS for studies in materials science using x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Sayers, D.E.

    1989-01-01

    At the time of the submission of the original proposal more than 7 years ago, the X-11 PRT had set as a goal to develop one of the leading and most comprehensive x-ray absorption beam lines in the world. By any measure we have been successful. As is well documented in previous annual progress report and in the NSLS annual reports, our PRT has been extremely productive in a wide range of topics in materials science, solid state physics, chemistry and biology. Well over 100 papers have been published acknowledging the support of this contract and this continues at a rate of about 30 papers per year and about 20 invited presentations per year. Significant in this report are major studies in high T c compounds, advances in interface studies, new results in premelting phenomena, several pioneering studies in application of XAS to electrochemistry and significant progress in our understanding of the structure of amorphous chalcogenide systems and their photostructural changes

  8. Monte Carlo simulation of photon scattering in x-ray absorption imaging of high-intensity discharge lamps

    Energy Technology Data Exchange (ETDEWEB)

    Curry, J J, E-mail: jjcurry@nist.go [National Institute of Standards and Technology, Gaithersburg, MD 20899-8422 (United States)

    2010-06-16

    Coherent and incoherent scattering of x-rays during x-ray absorption imaging of high-intensity discharge lamps have been studied with Monte Carlo simulations developed specifically for this purpose. The Monte Carlo code is described and some initial results are discussed. Coherent scattering, because of its angular concentration in the forward direction, is found to be the most significant scattering mechanism. Incoherent scattering, although comparably strong, is not as significant because it results primarily in photons being scattered in the rearward direction and therefore out of the detector. Coherent scattering interferes with the detected absorption signal because the path of a scattered photon through the object to be imaged is unknown. Although scattering is usually a small effect, it can be significant in regions of high contrast. At the discharge/wall interface, as many as 50% of the detected photons are scattered photons. The effect of scattering on analysis of Hg distributions has not yet been quantified.

  9. X-ray absorption spectroscopy of ultramarine pigments: A new analytical method for the polysulfide radical anion S3- chromophore

    International Nuclear Information System (INIS)

    Fleet, Michael E.; Liu, Xi

    2010-01-01

    Blue and mauve ultramarine artists' pigments and their heat-treated products have been investigated by sulfur K-edge X-ray absorption. X-ray absorption near-edge structure spectra are dominated by features of reduced sulfur and sulfate species. There is also a pre-peak at about 2468.0 eV which reflects the presence of the unpaired electron on the polysulfide radical anion (S 3 - ). Pre-peak intensity is directly proportional to the depth of blue coloration, and provides a new, independent method for estimating the proportion of ultramarine cage sites occupied by the blue chromophore. The occupancy of the polysulfide radical anion S 3 - is estimated to be 33% in an intense ultramarine blue pigment, 22% in a dark blue ultramarine pigment, and 1% in deep royal blue lazurite from Afghanistan. The more efficient development of color in lazurite is attributed to extensive annealing of the mineral structure in the natural environment.

  10. Local structure near actinides and nucleating elements in borosilicate glass for nuclear industry: Results of X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Petit-Maire, D.

    1988-01-01

    Possibilities and limits of X-ray absorption spectroscopy for cation site description in silicate glasses and possible applications for complex glasses, like glass for fission product containment, are examined. In borosilicate glasses two types of sites are evidenced for actinides at the valence 4: Coordinance 6 sites with a narrow radial distribution for the distance An-0; higher coordination (7, 8 or more) with a wider and asymmetrical radial distribution. Proportion of low coordinance sites increases when cation size decreases (Th > Np). U and Np VI and V are characterized as actinyles with a chain 0-An-0 practically linear, coordinance in a plane perpendicular to this complex is probably 5. X-ray absorption spectroscopy allows an accurate description of actinide sites in fission product glasses [fr

  11. Fast Time-Dependent Density Functional Theory Calculations of the X-ray Absorption Spectroscopy of Large Systems.

    Science.gov (United States)

    Besley, Nicholas A

    2016-10-11

    The computational cost of calculations of K-edge X-ray absorption spectra using time-dependent density functional (TDDFT) within the Tamm-Dancoff approximation is significantly reduced through the introduction of a severe integral screening procedure that includes only integrals that involve the core s basis function of the absorbing atom(s) coupled with a reduced quality numerical quadrature for integrals associated with the exchange and correlation functionals. The memory required for the calculations is reduced through construction of the TDDFT matrix within the absorbing core orbitals excitation space and exploiting further truncation of the virtual orbital space. The resulting method, denoted fTDDFTs, leads to much faster calculations and makes the study of large systems tractable. The capability of the method is demonstrated through calculations of the X-ray absorption spectra at the carbon K-edge of chlorophyll a, C 60 and C 70 .

  12. Theoretically predicted soft x-ray emission and absorption spectra of graphitic-structured BC2N

    Science.gov (United States)

    Muramatsu, Yasuji

    Theoretical B K, C K and N K x-ray emission/absorption spectra of three possible graphitic-structured BC2N clusters are predicted based on the B2p-, C2p-, and N2p- density-of-states (DOS) calculated by discrete variational (DV)-X[alpha] molecular orbital calculations. Several prominent differences in DOS spectral features among BC2Ns, h-BN, and graphite are confirmed from comparison of calculated B2p-, C2p-, and N2p-DOS spectra. These variations in the spectra allow BC2N structures to be positively identified by high-resolution x-ray emission/absorption spectroscopy in the B K, C K, and N K regions.

  13. X-Ray Absorption Studies of Vanadium-Containing Metal Oxide Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Hohn, Keith, L.

    2006-01-09

    Metal oxide nanocrystals offer significant potential for use as catalysts or catalyst supports due to their high surface areas and unique chemical properties that result from the high number of exposed corners and edges. However, little is known about the catalytic activity of these materials, especially as oxidation catalysts. This research focused on the preparation, characterization and use of vanadium-containing nanocrystals as selective oxidation catalysts. Three vanadium-containing nanocrystals were prepared using a modified sol-gel procedure: V/MgO, V/SiO2, and vanadium phosphate (VPO). These represent active oxidation catalysts for a number of industrially relevant reactions. The catalysts were characterized by x-ray diffraction and Raman, UV-VIS, infrared and x-ray absorption spectroscopies with the goal of determining the primary structural and chemical differences between nanocrystals and microcrystals. The catalytic activity of these catalysts was also studied in oxidative dehydrogenation of butane and methanol oxidation to formaldehyde. V/MgO nanocrystals were investigated for activity in oxidative dehydrogenation of butane and compared to conventional V/MgO catalysts. Characterization of V/MgO catalysts using Raman spectroscopy and x-ray absorption spectroscopy showed that both types of catalysts contained magnesium orthovanadate at vanadium loadings below 15 weight%, but above that loading, magnesium pyrovanadate may have been present. In general, MgO nanocrystals had roughly half the crystal size and double the surface area of the conventional MgO. In oxidative dehydrogenation of butane, nanocrystalline V/MgO gave higher selectivity to butene than conventional V/MgO at the same conversion. This difference was attributed to differences in vanadium domain size resulting from the higher surface areas of the nanocrystalline support, since characterization suggested that similar vanadium phases were present on both types of catalysts. Experiments in

  14. Time-resolved X-ray absorption spectroscopy for laser-ablated silicon particles in xenon gas

    International Nuclear Information System (INIS)

    Makimura, Tetsuya; Sakuramoto, Tamaki; Murakami, Kouichi

    1996-01-01

    We developed a laboratory-scale in situ apparatus for soft X-ray absorption spectroscopy with a time resolution of 10 ns and a space resolution of 100 μm. Utilizing this spectrometer, we have investigated the dynamics of silicon atoms formed by laser ablation in xenon gas. It was found that 4d-electrons in the xenon atoms are excited through collision with electrons in the laser-generated silicon plasma. (author)

  15. A CHANDRA SURVEY OF THE X-RAY PROPERTIES OF BROAD ABSORPTION LINE RADIO-LOUD QUASARS

    International Nuclear Information System (INIS)

    Miller, B. P.; Brandt, W. N.; Garmire, G. P.; Gibson, R. R.; Shemmer, O.

    2009-01-01

    This work presents the results of a Chandra study of 21 broad absorption line (BAL) radio-loud quasars (RLQs). We conducted a Chandra snapshot survey of 12 bright BAL RLQs selected from Sloan Digital Sky Survey Data/Faint Images of the Radio Sky data and possessing a wide range of radio and C IV absorption properties. Optical spectra were obtained nearly contemporaneously with the Hobby-Eberly Telescope; no strong flux or BAL variability was seen between epochs. In addition to the snapshot targets, we include in our sample nine additional BAL RLQs possessing archival Chandra coverage. We compare the properties of (predominantly high-ionization) BAL RLQs to those of non-BAL RLQs as well as to BAL radio-quiet quasars (RQQs) and non-BAL RQQs for context. All 12 snapshots and 8/9 archival BAL RLQs are detected, with observed X-ray luminosities less than those of non-BAL RLQs having comparable optical/UV luminosities by typical factors of 4.1-8.5. (BAL RLQs are also X-ray weak by typical factors of 2.0-4.5 relative to non-BAL RLQs having both comparable optical/UV and radio luminosities.) However, BAL RLQs are not as X-ray weak relative to non-BAL RLQs as are BAL RQQs relative to non-BAL RQQs. While some BAL RLQs have harder X-ray spectra than typical non-BAL RLQs, some have hardness ratios consistent with those of non-BAL RLQs, and there does not appear to be a correlation between X-ray weakness and spectral hardness, in contrast to the situation for BAL RQQs. RLQs are expected to have X-ray continuum contributions from both accretion-disk corona and small-scale jet emission. While the entire X-ray continuum in BAL RLQs cannot be obscured to the same degree as in BAL RQQs, we calculate that the jet is likely partially covered in many BAL RLQs. We comment briefly on implications for geometries and source ages in BAL RLQs.

  16. X-ray absorption spectroscopic study of trivalent and tetravalent actinides in solution at varying pH values

    Energy Technology Data Exchange (ETDEWEB)

    Brendebach, B.; Banik, N.L.; Marquardt, C.M.; Rothe, J.; Denecke, M.A.; Geckeis, H. [Forschungszentrum Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung

    2009-07-01

    We perform X-ray absorption spectroscopy (XAS) investigations to monitor the stabilization of redox sensitive trivalent and tetravalent actinide ions in solution at acidic conditions in a pH range from 0 to 3 after treatment with holding reductants, hydroxylamine hydrochloride (NH{sub 2}OHHCl) and Rongalite (sodium hydroxymethanesulfinate, CH{sub 3}NaO{sub 3}S). X-ray absorption near edge structure (XANES) measurements clearly demonstrate the stability of the actinide species for several hours under the given experimental conditions. Hence, structural parameters can be accurately derived by extended X-ray absorption fine structure (EXAFS) investigations. The coordination structure of oxygen atoms belonging to water ligands surrounding the actinide ions does not change with increasing pH value (approximately 11 O atoms at 2.42 A in the case of U(IV) at pH 1, 9 0 atoms at 2.52 A for Np(III) at pH 1.5, and 10 O atoms at 2.49 A for Pu(III) up to pH 3), indicating that hydrolysis reactions are suppressed under the given chemical conditions. (orig.)

  17. Role of local absorption on the X-ray emission from MHD accretion shocks in classical T Tauri stars

    Directory of Open Access Journals (Sweden)

    Bonito

    2014-01-01

    Full Text Available Accretion processes onto classical T Tauri stars (CTTSs are believed to generate shocks at the stellar surface due to the impact of supersonic downflowing plasma. Although current models of accretion streams provide a plausible global picture of this process, several aspects are still unclear. For example, the observed X-ray luminosity in accretion shocks is, in general, well below the predicted value. A possible explanation discussed in the literature is in terms of significant absorption of the emission due to the thick surrounding medium. Here we consider a 2D MHD model describing an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere. The model includes all the relevant physics, namely the gravity, the thermal conduction, and the radiative cooling, and a realistic description of the unperturbed stellar atmosphere (from the chromosphere to the corona. From the model results, we synthesize the X-ray emission emerging from the hot slab produced by the accretion shock, exploring different configurations and strengths of the stellar magnetic field. The synthesis includes the local absorption by the thick surrounding medium and the Doppler shift of lines due to the component of plasma velocity along the line-of-sight. We explore the effects of absorption on the emerging X-ray spectrum, considering different inclinations of the accretion stream with respect to the observer. Finally we compare our results with the observations.

  18. Soft X-ray magnetic scattering study of rotational magnetisation processes in cobalt/copper multilayers

    International Nuclear Information System (INIS)

    Hase, T.P.A.; Fulthorpe, B.D.; Wilkins, S.B.; Tanner, B.K.; Marrows, C.H.; Hickey, B.J.

    2001-01-01

    We report the observation of magnetic viscosity in the intensity of resonant magnetic soft X-ray scattering during rotational magnetisation processes in antiferromagnetically coupled Co/Cu multilayers. The hysteretic time-dependent component of the signal can be fitted to a single-exponential function that varies as a function of magnetising field

  19. Using X-ray transmission/attenuation to quantify fluid absorption in cracked concrete

    DEFF Research Database (Denmark)

    Weiss, Jason; Geiker, Mette R.; Hansen, Kurt Kielsgaard

    2015-01-01

    Cracks can alter the rate of fluid transport in concrete. Unfortunately, however, quantitative information is lacking to provide definitive statements regarding the extent to which cracks reduce durability or long-term performance. This paper describes a study that used X-ray transmission......-ray attenuation measurements were taken using a grid of points around the crack. By repeating this measurement and comparing the change in X-ray transmission/attenuation, the ingress of the fluid could be determined by locating the position of the moisture front. An approach is presented to determine the geometry...

  20. X-Ray Absorption Near-Edge Structure (XANES) of Calcium L3,2 Edges of Various Calcium Compounds and X-Ray Excited Optical Luminescence (XEOL) Studies of Luminescent Calcium Compounds

    International Nuclear Information System (INIS)

    Ko, J. Y. Peter; Zhou Xingtai; Sham, T.-K.; Heigl, Franziskus; Regier, Tom; Blyth, Robert

    2007-01-01

    X-ray absorption at calcium L3,2 edges of various calcium compounds were measured using a high resolution Spherical Grating Monochromator (SGM) at the Canadian Light Source (CLS). We observe that each compound has its unique fine structure of L3,2 edges. This uniqueness is due to differences in local structure of compounds. We also performed (X-ray Excited Optical Luminescence) XEOL of selected luminescent calcium compounds to investigate their optical properties. XEOL is a photon-in-photon-out technique in which the optical luminescence that is excited by tunable x-rays from a synchrotron light source is monitored. Depending on excitation energy of the x-ray, relative intensities of luminescence peaks vary. Recent findings of the results will be presented here

  1. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  2. Analysis of the X-ray emission spectra of copper, germanium and rubidium plasmas produced at the Phelix laser facility

    Science.gov (United States)

    Comet, M.; Pain, J.-C.; Gilleron, F.; Piron, R.; Denis-Petit, D.; Méot, V.; Gosselin, G.; Morel, P.; Hannachi, F.; Gobet, F.; Tarisien, M.; Versteegen, M.

    2017-03-01

    We present the analysis of X-ray emission spectra of copper, germanium and rubidium plasmas measured at the Phelix laser facility. The laser intensity was around 6×1014 W.cm-2. The analysis is based on the hypothesis of an homogeneous plasma in local thermodynamic equilibrium using an effective temperature. This temperature is deduced from hydrodynamic simulations and collisional-radiative computations. Spectra are then calculated using the LTE opacity codes OPAMCDF and SCO-RCG and compared to experimental data.

  3. X-ray absorption spectroscopy of GeO2 glass to 64 GPa

    International Nuclear Information System (INIS)

    Hong, Xinguo; Newville, Matthew; Sutton, Stephen R; Rivers, Mark L; Duffy, Thomas S

    2014-01-01

    The structural behavior of GeO 2 glass has been investigated up to 64 GPa using results from x-ray absorption spectroscopy in a diamond anvil cell combined with previously reported density measurements. The difference between the nearest Ge–O distances of glassy and rutile-type GeO 2 disappears at the Ge–O distance maximum at 20 GPa, indicating completion of the tetrahedral–octahedral transition in GeO 2 glass. The mean-square displacement σ 2 of the Ge–O distance in the first Ge–O shell increases progressively to a maximum at 10 GPa, followed by a substantial reduction at higher pressures. The octahedral glass is, as expected, less dense and has a higher compressibility than the corresponding crystalline phase, but the differences in Ge–O distance and density between the glass and the crystals are gradually eliminated over the 20–40 GPa pressure range. Above 40 GPa, GeO 2 forms a dense octahedral glass with a compressibility similar to that of the corresponding crystalline phase (α-PbO 2 type). The EXAFS and XANES spectra show evidence for subtle changes in the dense glass continuing to occur at these high pressures. The Ge–O bond distance shows little change between 45–64 GPa, and this may reflect a balance between bond shortening and a gradual coordination number increase with compression. The density of the glass is similar to that of the α–PbO 2 -type phase, but the Ge–O distance is longer and is close to that in the higher-coordination pyrite-type phase which is stable above ∼60 GPa. The density data provide evidence for a possible discontinuity and change in compressibility at 40–45 GPa, but there are no major changes in the corresponding EXAFS spectra. A pyrite-type local structural model for the glass can provide a reasonable fitting to the XAFS spectra at 64 GPa. (paper)

  4. Use of x-ray absorption imaging to evaluate the effects of heterogeneity on matrix diffusion

    International Nuclear Information System (INIS)

    Altman, S.J.; Tidwell, V.C.; McKenna, S.A.; Meigs, L.C.

    1998-01-01

    An understanding of matrix diffusion is important in assessing potential nuclear waste repositories in geologic media, as it is a potentially significant process in retarding the transport of contaminant species. Recent work done in evaluating the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico has brought up two issues that complicate the incorporation of diffusion in Performance Assessment calculations. First, interpretations of single-well tracer test data suggest that the tracer was diffusing at multiple rates. Second, the estimated relevant rate(s) of diffusion are dependent on the time and length scales of the problem. To match the observed tracer test data, a model with a distribution of diffusion coefficients was required. This has led to the proposal of applying a model with multiple rates of diffusion, the multirate model, to Performance Assessment calculations for the WIPP. A series of laboratory- scale experiments have been designed for the purpose of evaluating heterogeneity and scaling properties of diffusion rates and to test the multirate model. X-ray absorption imaging was used to visualize and quantify the effects of matrix heterogeneity on the diffusion characteristics for four different centimeter-scale samples of dolomite. The samples were obtained from the Culebra dolomite at the WIPP site. Significant variations in diffusion rates were observed over relatively small length and time (months) scales for the preliminary laboratory experiments. A strong correlation between diffusion rate and porosity was also observed in each of the samples. Two sets of experiments are planned for 1998. The first set of experiments is similar to those described above. For these experiments, fourteen samples exhibiting a broader range of physical characteristics are being tested. The second set of experiments will visualize the combined effect of advection in a fracture and diffusion into adjacent matrix materials. Tracer solution will flow through

  5. Electronic decay cascades in media initiated by resonant absorption of X-ray photons

    Energy Technology Data Exchange (ETDEWEB)

    Miteva, Tsveta

    2015-07-16

    The resonant-Auger - interatomic Coulombic decay (RA-ICD) cascade was recently proposed as a very efficient means of controlling the generation site and energies of slow ICD electrons. The control mechanism was verified in a series of experiments where both the energy of the photons producing the initial core excitation, and the neighbouring species were varied. The aim of this thesis is to provide a detailed theoretical investigation of the RA-ICD cascade in rare-gas dimers and give a first insight into the course of the cascade in aqueous medium. The potential energy curves (PECs) of ionisation satellites are key ingredients in the theoretical description of electronic decay cascades. In the first chapter, we conducted a study on the PECs of the ionisation satellites of the ArHe dimer with a view to modelling such PECs in heavier dimers. Our results show that the complex valence structure in the rare-gas atom leads to the mixing of different electronic configurations of the dimer, which prevents one from assigning a single dicationic parent state to some of the ionisation satellites. In the second part of the thesis, we present and analyse the ICD-electron and kinetic-energy-release (KER) spectra following different resonant core excitations of Ar in the rare-gas dimers Ar{sub 2} and ArKr. We demonstrate that the manifold of ICD states populated in the resonant Auger process consists of fast- and slow-decaying ionisation satellites, and that the accurate description of nuclear dynamics in the latter ICD states is crucial for obtaining theoretical electron and KER spectra in good agreement with the experiment. We also show that by varying the neighbouring atom one can tune the energies of the emitted ICD electrons and even control the ICD yield. Finally, as a first step towards the investigation of the RA-ICD cascade in aqueous medium, we present and discuss the X-Ray absorption spectra of microsolvated clusters of Na{sup +} and Mg{sup 2+} at the metal 1s

  6. X-Ray Absorption Spectroscopy of Fe-Substituted Allophane and Imogolite

    Science.gov (United States)

    Baker, L. L.; Strawn, D. G.; Nickerson, R. D.; McDaniel, P.

    2011-12-01

    Martian rocks and sediments contain weathering products including clay minerals formed as a result of interaction between rocks and water, and these materials can act as important indicators of past surface conditions on Mars. Weathering of terrestrial volcanic rocks similar to those on Mars produces nano-sized, variably hydrated aluminosilicate and iron oxide minerals, including allophane, imogolite, halloysite, hisingerite, and ferrihydrite. The nanoaluminosilicates can contain isomorphically substituted Fe, which may affect their spectral and physical properties as well as their eventual recrystallization products. Detection and quantification of such minerals in natural environments on Earth is difficult due to their variable chemical composition and lack of long-range crystalline order. Their accurate detection and quantification on Mars requires a better understanding of how composition affects their spectral properties and evolution to more crystalline phases. Aluminosilicate nanoparticles of varying composition were synthesized with isomorphically substituted Fe at Fe:Al ratios of 1:100. Allophanes were synthesized with Al:Si ratios of 2:1, 1:1, and 1:3. The substituted Fe was probed using Fe K-edge X-ray absorption fine structure spectroscopy (XAFS). The XAFS spectrum contains information about the molecular environment surrounding the target atom, and is an ideal technique for studying poorly crystalline materials that are difficult to characterize using bulk methods such as XRD. The near-edge (XANES) and extended (EXAFS) portions of the XAFS spectrum were examined, and allophane backscattering paths were fit using coordinates for a modified nanoball model (1). XANES spectra rule out ferrihydrite in the synthetic samples, suggesting all Fe was incorporated into the aluminosilicate structure. The XAFS results suggest that Fe substituted into the allophane structure is present as Fe(III) in octahedral coordination in a well-ordered sheet. Some Fe

  7. X-ray absorption spectroscopy on high-temperature superconductors and related compounds

    International Nuclear Information System (INIS)

    Pellegrin, E.J.H.A.

    1995-07-01

    The electronic structure of the cuprate high-temperature superconductors La 2-x Sr x CuO 4+δ , Tl 2 Ba 2 CaCu 2 O 8 and Tl 2 Ba 2 Ca 2 Cu 3 O 10 has been investigated using polarization-dependent near-edge X-ray absorption fine structure spectroscopy (NEXAFS). In addition, La 2-x Sr x NiO 4+δ has been included in the actual study as an isostructural analogue to the La 2-x Sr x CuO 4+δ system. It appears that the electronic structure of these compounds corresponds to that of a p-type doped charge-transfer insulator including electron-electron interactions on the Cu(Ni) sites and a strong hybridization between Cu(Ni) and O atoms. It is concluded that the low-energy excitations in these compounds can be described on the basis of an effective one-band Mott-Hubbard model. The polarization-dependence of the above spectra gives evidence for the strong in-plane character of the intrinsic and the doped holes. The small amount and the doping-dependence of the out-of-plane character of these charge carriers rule out models for a microscopic mechanism of superconductivity based on a large amount of hole states in the corresponding Apex-O2p z /Cu3d 3z 2 -r 2 orbitals. On the other hand, the reduction of this anisotropy in the overdoped compounds together with similar findings in the macroscopic properties seems to indicate a detrimental influence of non-planar orbitals on the superconducting properties. The differences in the energetic ordering and atomic character of the states close to the Fermi level between the undoped compounds La 2 CuO 4+δ , La 2 NiO 4+δ , and NiO have been determined from the NEXAFS data. It is found that these differences can be explained by the different size of the tetragonal crystal field splitting E Z compared to that of the Hund's rule interaction J H in these systems. This gives evidence for the high-spin d 8 ground state of the undoped nickelates (i.e. J H >E Z ). It is suggested that the polarons in La 2-x Sr x NiO 4+δ can be seen as non

  8. X-ray absorption and Raman spectroscopy studies of molybdenum environments in borosilicate waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    McKeown, David A., E-mail: davidm@vsl.cua.edu; Gan, Hao; Pegg, Ian L.

    2017-05-15

    Mo-containing high-level nuclear waste borosilicate glasses were investigated as part of an effort to improve Mo loading while avoiding yellow phase crystallization. Previous work showed that additions of vanadium decrease yellow phase formation and increases Mo solubility. X-ray absorption spectroscopy (XAS) and Raman spectroscopy were used to characterize Mo environments in HLW borosilicate glasses and to investigate possible structural relationships between Mo and V. Mo XAS spectra for the glasses indicate isolated tetrahedral Mo{sup 6+}O{sub 4} with Mo-O distances near 1.75 Å. V XANES indicate tetrahedral V{sup 5+}O{sub 4} as the dominant species. Raman spectra show composition dependent trends, where Mo-O symmetrical stretch mode frequencies (ν{sub 1}) are sensitive to the mix of alkali and alkaline earth cations, decreasing by up to 10 cm{sup −1} for glasses that change from Li{sup +} to Na{sup +} as the dominant network-modifying species. This indicates that MoO{sub 4} tetrahedra are isolated from the borosilicate network and are surrounded, at least partly, by Na{sup +} and Li{sup +}. Secondary ν{sub 1} frequency effects, with changes up to 7 cm{sup −1}, were also observed with increasing V{sub 2}O{sub 5} and MoO{sub 3} content. These secondary trends may indicate MoO{sub 4}-MoO{sub 4} and MoO{sub 4}-VO{sub 4} clustering, suggesting that V additions may stabilize Mo in the matrix with respect to yellow phase formation. - Highlights: •Raman and XAS data indicate isolated MoO{sub 4} tetrahedra from the borosilicate network. •Mo-O stretch frequency is sensitive to network-modifying Li and Na concentrations. •Mo-O stretch frequency shifts were also seen with increasing V{sub 2}O{sub 5} and MoO{sub 3} content. •The Raman trends may indicate MoO{sub 4}-MoO{sub 4} and MoO{sub 4}-VO{sub 4} clustering in the glass. •V may stabilize Mo in the glass matrix avoiding yellow phase formation.

  9. X-ray absorption fine structure (XAFS) spectroscopy: a tool for structural studies in material sciences (abstract)

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    2011-01-01

    XAFS spectroscopy has revealed itself as a powerful technique for structural characterization of the local atomic environment of individual atomic species, including bond distances, coordination numbers and type of nearest neighbors surrounding the central atom. This technique is particularly useful for materials that show considerable structural and chemical disorder. XAFS spectroscopy has found extensive applications in determining the local atomic and electronic structure of the absorbing centers (atoms) in the materials science, physics, chemistry, biology and geophysics. X-ray absorption edges contain a variety of information on the chemical state and the local structure of the absorbing atom. On the higher energy side of an absorption edge fine structure is observed due to backscattering of the emitted photoelectron. The post-edge region can be divided into two parts. The X-ray Absorption Near Edge Structure (XANES) which extends up to 50 eV of an absorption edge, the spectrum is interpreted in terms of the appropriate components of the local density of states, which would be expected to be sensitive to the valence state of the atom. The intensity, shape and location of the absorption edge features provide information on the valence state, electronic structure and coordination geometry of the absorbing atom.The Extended X-ray Absorption Fine Structure (EXAFS) region is dominated by the single scattering processes and extends up to 1000 eV above the edge and provides information on the radial distribution (coordination number, radial distance and type of neighboring atoms) around the central atom. The results on perovskite based and spinel ferrites systems will be presented, where valence state and cation distributions are determined; the present study will show focus on SrFeO/sub 3/, MnFe/sub 2/O/sub 4/ and Zn/sub 1-x/Ni/sub x/Fe/sub 2/O/sub 4/ materials. (author)

  10. Evaluating X-ray absorption of nano-bismuth oxide ointment for decreasing risks associated with X-ray exposure among operating room personnel and radiology experts

    Directory of Open Access Journals (Sweden)

    M. Rashidi

    2015-12-01

      Conclusion: It seems that due to higher atomic number and lower toxicity, Bi2O3 nanoparticles have better efficiency in X-ray absorbtion, comparing to the lead. Cream and ointment of bismuth oxide nanoparticles can be used as X-ray absorbant for different professions such as physicians, dentists, radiology experts, and operating room staff and consequently increase health and safety of these employees.

  11. Micro-X-ray absorption near edge structure as a suitable probe to monitor live organisms

    International Nuclear Information System (INIS)

    Oger, Phil M.; Daniel, I.; Simionovici, A.; Picard, A.

    2008-01-01

    X-ray spectroscopies are very powerful tools to determine the chemistry of complex dilute solutes in abiotic and biotic systems. We have assayed their suitability to monitor the chemistry of complex solutions in a live biotic system. The impact of the probe on cells was quantified for 4 different cellular organisms differing in their resistance level to environmental stresses. We show that none of the organisms tested can survive the radiation doses needed for the acquisition of meaningful spectroscopic data. Therefore, on one hand, X-ray spectroscopy cannot be applied to the monitoring of single cells, and cellular damages have to be taken into account in the interpretation of the evolution of such systems. On the other hand, due to the limited extension of X-ray induced cellular damages in the culture volume, it is possible to probe a population of live cells provided that the culture to beam probe ratio is large enough to minimize the impact of mortality on the evolution of the biological system. Our results suggest that it could be possible to probe the volume in the close vicinity of a cell without affecting its activity. Using this setup we could monitor the reduction of selenite by the X-ray sensitive bacterium, Agrobacterium tumefaciens strain C58, for 24 h. This method has a great potential to monitor the respiration of various metals, such as iron, manganese and arsenic, in situ under relevant environmental conditions by live microorganisms

  12. Micro-X-ray absorption near edge structure as a suitable probe to monitor live organisms

    Energy Technology Data Exchange (ETDEWEB)

    Oger, Phil M. [Laboratoire de Sciences de la Terre, UMR CNRS 5570, Ecole Normale Superieure de Lyon-Universite Claude Bernard Lyon 1, Lyon, F-69364 (France)], E-mail: poger@ens-lyon.fr; Daniel, I.; Simionovici, A.; Picard, A. [Laboratoire de Sciences de la Terre, UMR CNRS 5570, Ecole Normale Superieure de Lyon-Universite Claude Bernard Lyon 1, Lyon, F-69364 (France)

    2008-04-15

    X-ray spectroscopies are very powerful tools to determine the chemistry of complex dilute solutes in abiotic and biotic systems. We have assayed their suitability to monitor the chemistry of complex solutions in a live biotic system. The impact of the probe on cells was quantified for 4 different cellular organisms differing in their resistance level to environmental stresses. We show that none of the organisms tested can survive the radiation doses needed for the acquisition of meaningful spectroscopic data. Therefore, on one hand, X-ray spectroscopy cannot be applied to the monitoring of single cells, and cellular damages have to be taken into account in the interpretation of the evolution of such systems. On the other hand, due to the limited extension of X-ray induced cellular damages in the culture volume, it is possible to probe a population of live cells provided that the culture to beam probe ratio is large enough to minimize the impact of mortality on the evolution of the biological system. Our results suggest that it could be possible to probe the volume in the close vicinity of a cell without affecting its activity. Using this setup we could monitor the reduction of selenite by the X-ray sensitive bacterium, Agrobacterium tumefaciens strain C58, for 24 h. This method has a great potential to monitor the respiration of various metals, such as iron, manganese and arsenic, in situ under relevant environmental conditions by live microorganisms.

  13. Diffuse X-ray scattering and far infrared absorption of barium and lead β" aluminas

    DEFF Research Database (Denmark)

    Hayes, W.; Kjær, Kristian; Pratt, F. L.

    1985-01-01

    The authors have carried out high-momentum-resolution studies in diffuse X-ray scattering of barium and lead B" aluminas in the temperature range 20-700 degrees C. They have also measured the vibrational spectra of these compounds between 2K and 300K in the energy range 10-100 cm-1. The results...

  14. Chemical shift of Mn and Cr K-edges in X-ray absorption ...

    Indian Academy of Sciences (India)

    particularly on Mn and Cr compounds (Ghatikar et al 1977;. Padalia and Nayak 1977; ... conventional X-ray sources and hence may lack reliability. 2. Experimental ..... with the result obtained by Hinge et al (2011) for Cu com- pounds and is ... Chem. 84 2200. Nietubyc R, Sobczak E and Attenkofer K E 2001 J. Alloys Compd.

  15. Summary of radiation-induced transient absorption and recovery in fiber optic waveguides. [Pulsed electrons and x-rays

    Energy Technology Data Exchange (ETDEWEB)

    Skoog, C.D.

    1976-11-01

    The absorption induced in fiber optic waveguides by pulsed electron and X-ray radiation has been measured as a function of optical wavelength from 450 to 950 nm, irradiation temperature from -54 to 71/sup 0/C, and dose from 1 to 500 krads. The fibers studied are Ge-doped silica core fibers (Corning Low Loss), ''pure'' vitreous silica core fibers (Schott, Bell Laboratories, Fiberoptic Cable Corp., and Valtec Fiberoptics), polymethyl-methacrylate core fibers (DuPont CROFON and PFX), and polystyrene core fibers (International Fiber Optics and Polyoptics). Models that have been developed to account for the observed absorption recovery are also summarized.

  16. NuSTAR reveals an intrinsically x-ray weak broad absorption line quasar in the ultraluminous infrared galaxy Markarian 231

    DEFF Research Database (Denmark)

    Teng, Stacy H.; Brandt, W. N.; Harrison, F. A.

    2014-01-01

    -ionization broad absorption line quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may...

  17. Experimental and theoretical determination of the absorption coefficients of X-rays through barium plaster from 100 to 400 keV

    International Nuclear Information System (INIS)

    Joksimovicj, V.

    1976-01-01

    The absorption coefficients of X-rays from 100 to 400 keV through barium plaster of equivalent atomic number of 26 have been determined experimentally and theoretically. Calculated values are compared with experimental data. Matrix components of barium plaster were determined chemically and by X-ray fluorescence

  18. Insight into the structure of Pd/ZrO2 during the total oxidation of methane using combined in situ XRD, X.-ray absorption and Raman spectroscopy

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk; van Vegten, Niels; Baiker, Alfons

    2009-01-01

    The structure of palladium during the total combustion of methane has been studied by a combination of the complementary in situ techniques X-ray absorption spectroscopy, Raman spectroscopy and X-ray diffraction. The study demonstrates that finely dispersed and oxidized palladium is most active f...

  19. X-ray absorption tomography of a high-pressure metal-halide lamp with a bent arc due to Lorentz-forces

    NARCIS (Netherlands)

    Denisova, N.; Haverlag, M.; Ridderhof, E.J.; Nimalasuriya, T.; Mullen, van der J.J.A.M.

    2007-01-01

    The arc temperature is one of the most important characteristics which cotrol the emission properties of plasma light sources. X-ray absorption technique has received some attention as a powerful method to determine the temperature in high-pressure metal-halide lamps. An important advantage of x-ray

  20. PROBING X-RAY ABSORPTION AND OPTICAL EXTINCTION IN THE INTERSTELLAR MEDIUM USING CHANDRA OBSERVATIONS OF SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Foight, Dillon R.; Slane, Patrick O. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Güver, Tolga [Istanbul University, Science Faculty, Department of Astronomy and Space Sciences, Beyazıt, 34119, Istanbul (Turkey); Özel, Feryal [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2016-07-20

    We present a comprehensive study of interstellar X-ray extinction using the extensive Chandra supernova remnant (SNR) archive and use our results to refine the empirical relation between the hydrogen column density and optical extinction. In our analysis, we make use of the large, uniform data sample to assess various systematic uncertainties in the measurement of the interstellar X-ray absorption. Specifically, we address systematic uncertainties that originate from (i) the emission models used to fit SNR spectra; (ii) the spatial variations within individual remnants; (iii) the physical conditions of the remnant such as composition, temperature, and non-equilibrium regions; and (iv) the model used for the absorption of X-rays in the interstellar medium. Using a Bayesian framework to quantify these systematic uncertainties, and combining the resulting hydrogen column density measurements with the measurements of optical extinction toward the same remnants, we find the empirical relation N {sub H} = (2.87 ± 0.12) × 10{sup 21} A {sub V} cm{sup 2}, which is significantly higher than the previous measurements.

  1. Damage to adenosine-triphosphate induced by monochromatic X rays around the K shell absorption edge of phosphorus

    International Nuclear Information System (INIS)

    Watanabe, Ritsuko; Ishikawa, Mitsuo; Takakura, Kaoru; Kobayashi, Katsumi

    1992-01-01

    Adenosine-triphosphate (ATP) is well known to have an important role in the energy metabolism in biological systems. The purpose of this study is to clarify the radiation effects on ATP specific to inner shell ionization. ATP, in concentrated aqueous solution, was irradiated with monochromatic X rays having energies of the resonance absorption peak of the phosphorus K shell, 2.153 keV, and slightly below and above the peak, 2.145 keV and 2.160 keV, selected from synchrotron radiation. Adenine, Adenosine 5'monophosphate (5'AMP) and Adenosine 5'diphosphate (5'ADP) were obtained as radioproducts by the method of high performance liquid chromatography (HPLC). G values of these products were calculated on the basis of the absorbed energy. When the ATP solution of 0.282 mol/l was irradiated with 2.160 keV X rays which can ionize the K shell of phosphorus, G values of Adenine, 5'AMP and 5'ADP were estimated to be 1.4, 0.40 and 0.46, respectively. These values were respectively 1.3, 2.9 and 3.8 times higher than those obtained upon irradiation with 2.146 keV X rays which cannot ionize the K shell of phosphorus. These energy dependent enhancements may reflect the difference in energy absorption processes, especially the Auger cascade in phosphorus may be suspected to play an important role in these enhancements

  2. Depth distribution of secondary phases in kesterite Cu2ZnSnS4 by angle-resolved X-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    J. Just

    2017-12-01

    Full Text Available The depth distribution of secondary phases in the solar cell absorber material Cu2ZnSnS4 (CZTS is quantitatively investigated using X-ray Absorption Near Edge Structure (XANES analysis at the K-edge of sulfur at varying incidence angles. Varying information depths from several nanometers up to the full thickness is achieved. A quantitative profile of the phase distribution is obtained by a self-consistent fit of a multilayer model to the XANES spectra for different angles. Single step co-evaporated CZTS thin-films are found to exhibit zinc and copper sulfide secondary phases preferentially at the front or back interfaces of the film.

  3. Study of the L2,3 edges of 3d transition metals by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Akguel, G.; Aksoy, F.; Bozduman, A.; Ozkendir, O.M.; Ufuktepe, Y.; Luening, J.

    2008-01-01

    In the soft X-rays energy region, near edge X-ray absorption fine structure (NEXAFS) spectra are generally recorded by monitoring yield signals of secondary particles. These secondary particles, electrons or fluorescence photons, follow from the decay of the core hole excited in the primary absorption process. In general the yield signals are, to a good approximation, proportional to the absorption coefficient. However, in several applications it would be desirable to measure the absorption coefficient quantitatively. To derive the absorption coefficient quantitatively from a yield spectrum, one needs to know the escape depth of the emitted electrons (λ e ) of the applied yield technique in the material of interest. Since this quantity is difficult to calculate, it is unknown for most materials. In this paper we present the first results of our systematic investigation of the total electron-yield (TEY) escape depth of the 3d transition metals (Fe, Co and Cu). In addition our results gave important information on the variation of the TEY escape depth with the filling of the 3d band

  4. Study of the L2,3 Edges of 3d Transition Metals By X-Ray Absorption Spectroscopy

    International Nuclear Information System (INIS)

    Akgul, G.; Aksoy, F.; Bozduman, A.; Ozkendir, O.M.; Ufuktepe, Y.; Luning, J.

    2008-01-01

    In the soft X-rays energy region, near edge X-ray absorption fine structure (NEXAFS) spectra are generally recorded by monitoring yield signals of secondary particles. These secondary particles, electrons or fluorescence photons, follow from the decay of the core hole excited in the primary absorption process. In general the yield signals are, to a good approximation, proportional to the absorption coefficient. However, in several applications it would be desirable to measure the absorption coefficient quantitatively. To derive the absorption coefficient quantitatively from a yield spectrum, one needs to know the escape depth of the emitted electrons (λ e ) of the applied yield technique in the material of interest. Since this quantity is difficult to calculate, it is unknown for most materials. In this paper we present the first results of our systematic investigation of the total electron-yield (TEY) escape depth of the 3d transition metals (Fe, Co and Cu). In addition our results gave important information on the variation of the TEY escape depth with the filling of the 3d band.

  5. Changes of soft X-ray emission spectra of oxygen and copper in high Tc superconductors

    International Nuclear Information System (INIS)

    Fukushima, Sei; Gohshi, Yohichi; Kohiki, Shigemi; Saitoh, Naoki

    1989-01-01

    X-ray induced soft X-ray emission spectroscopy is one of the bulk analysis methods used to characterize high-Tc superconductor. In this report, some observations on the changes in O Kα and Cu L spectra of thin layer LnBa 2 Cu 3 O 7-δ (Ln=Er,Gd) samples are presented. From the measurement of O Kα, no discernible difference was found between those of Gd compounds which were composed single phase or not. It may be said that the electronic structure of p state localized on the O is not sensitive to the change of Tc or zero-resistance temperature. From the measurement of Cu L spectra, it was found that Cu Lα of only Gd containing compounds has a low energy shoulder

  6. Nanocomposites of polypropylene and organophilic clay: X ray diffraction, absorption infrared spectroscopy with fourier transform and water vapor permeation

    International Nuclear Information System (INIS)

    Morelli, Fernanda C.; Ruvolo Filho, Adhemar

    2010-01-01

    In this work nano composites were prepared from polypropylene, graft polypropylene with maleic anhydride as compatibilizer and organophilic montmorillonite Cloisite 20A with concentrations of 1.5, 2.5, 5.0 and 7.5% clay. The mixture was made in the melt state using a twin screw extruder. The materials were characterized by X ray diffraction, infrared spectroscopy with Fourier transform and analysis of water vapor permeation. The results of X ray diffraction and absorption infrared spectroscopy indicates the formation of nano composites with structures probably exfoliate and or intercalated for concentrations of 1.5 and 2.5% clay, and provided a marked decrease in the water permeability, corroborating with other analyses. (author)

  7. Sudden f/sub min/ enhancements and sudden cosmic noise absorptions associated with solar X-ray flares

    Energy Technology Data Exchange (ETDEWEB)

    Sato, T [Hyogo Coll. of Medicine, Hyogo (Japan). Dept. of Physics

    1975-01-01

    Sudden fsub(min) enhancements (SFsub(m)E's) and sudden cosmic noise absorptions (SCNA's) associated with increments of X-ray fluxes during solar flares are studied on the basis of X-ray flux data measured by SOLRAD 9 and 10 satellites. Some statistical analyses on SFsub(m)E's observed at five observatories in Japan, corresponding to increased X-ray fluxes in the 1-8 A band are made for 50 solar flare events during the period January 1972 to December 1973, and value of fsub(min) is expressed as functions of cos x(x; solar zenith angle) and 1-8 A band X-ray flux. Similar study is also made for SCNA's observed by 30 MHz riometer at Hiraiso for 15 great solar flare events during the same period, together with 27.6 MHz riometer data reported by Schwentek (1973) and 18 MHz data published by Deshpande and Mitra (1972b). It is found that fsub(min) value (MHz) and SCNA value (L, dB) of a radio wave with frequency f(MHz) are related to X-ray flux (F/sub 0/, erg cm/sup -2/ sec/sup -1/) in the 1-8 A band and to cos x, by following approximate expressions, fsub(min)(MHz)=10F/sub 0/sup(1/4) cossup(1/2) x, and L(dB)=4.37x10/sup 3/f/sup -2/F/sub 0/sup(1/2) cos x, respectively. Blackout seems to occur for F/sub 0/ values causing fsub(min)'s greater than about 5 MHz. It is shown that these expressions can be derived from a brief theoretical calculation of radio wave absorption in the lower ionosphere. Also it is suggested that threshold X-ray fluxes in the 1-8 A band which may produce a minimum SFsub(m)E (2 MHz), blackout and minimum SCNA (0.27-0.36 dB for 30 MHz noise) are 1.6x10/sup -3/, 6.2x10/sup -2/ and (3-8) x 10/sup -3/ erg cm/sup -2/ sec/sup -1/, respectively, for cos x=1.

  8. Crystal structure of non-stoichiometric copper selenides studied by neutron scattering and X-ray diffraction

    International Nuclear Information System (INIS)

    Bikkulova, N.N.; Yagafarova, Z.A.; Asylguzhina, G.N.; Danilkin, S.A.; Fuess, H.; Skomorokhov, A.N.; Yadrovskii, E.L.; Beskrovnyi, A.I.

    2003-01-01

    Structural characteristics of non-stoichiometric copper selenides were studied by the elastic neutron and X-ray scattering techniques. Rietveld analysis was used to refine the structure of the high-temperature β-phase of the Cu 1.75 Se, Cu 1.78 Se, and Cu 1.83 Se samples. The homogeneity ranges of the cubic phase were determined. The modification of the crystal structure accompanying the β-α phase transition was studied for Cu 1.75 Se and Cu 1.98 Se compounds within the 443-10 K temperature range. It was shown that the phase transition is accompanied by distortions of the fcc lattice and the ordering of copper ions

  9. Influence of silver and copper doping on luminescent properties of zinc-phosphate glasses after x-ray irradiation

    Science.gov (United States)

    Murashov, Alexander A.; Sidorov, Alexander I.; Shakhverdov, Teimur A.; Stolyarchuk, Maxim V.

    2017-11-01

    It is shown, experimentally, that in silver- and copper-containing zinc-phosphate glasses, metal molecular clusters are formed during the glass synthesis. X-ray irradiation of these glasses led to the considerable increase of its luminescence in visible spectral range. This effect is caused by the transformation of the charged metal molecular clusters into the neutral state. Luminescence and excitation spectra of the glass, doped with silver and copper simultaneously, change significantly in comparison with the spectra of glasses doped with one metal. The reason for this can be the formation of hybrid AgnCum molecular clusters. The computer simulation of the structure and optical properties of such clusters by the time-dependent density functional theory method is presented. It is shown that the optimal luminescent material for photonics application, in comparison with other studied materials, is glass, containing hybrid molecular clusters.

  10. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  11. Determining biological fine structure by differential absorption of soft x-rays

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.; Warren, J.B.

    1979-06-01

    The use of soft x-ray contact microscopy in examining histochemically treated human tissue embedded in plastic and exposed as unstained thin sections is demonstrated. When our preliminary data revealed that we could clearly image not only the histochemical reaction product, but the unstained biological fine structure of the surrounding tissues, we decided to test our hypothesis further and see if we could image unstained biological molecular aggregates as well. For this part of the investigation, we chose to examine hydrated proteoglycan aggregates. Proteoglycans are an essential component of the organic matrix of cartilage, and play a primary role in the retention and maintenance of extracellular water. To avoid any artifacts due to the introduction of exogeneous materials, and examine the proteoglycan aggregates in their hydrated, natural configuration, we made contact x-ray images of isolated proteoglycan aggregates in water

  12. Fe K-EDGE X-RAY ABSORPTION SPECTROSCOPY OF SILICATE MINERALS AND GLASSES

    OpenAIRE

    Binsted , N.; Greaves , G.; Henderson , C.

    1986-01-01

    Structural parameters determined for crystalline iron, fayalite and aegirine agree closely with X-ray crystallograhic data. A glass of NaFeSi2O6 composition has Fe predominantly present as Fe3+ in tetrahedral coordination i.e. as a network former. CaFeSiO4 and CaFeSi2O6 glasses have about 1/3 of the total Fe in octahedral coordination i.e. as a network modifier.

  13. Combined X-ray fluorescence and absorption computed tomography using a synchrotron beam

    International Nuclear Information System (INIS)

    Hall, C

    2013-01-01

    X-ray computed tomography (CT) and fluorescence X-ray computed tomography (FXCT) using synchrotron sources are both useful tools in biomedical imaging research. Synchrotron CT (SRCT) in its various forms is considered an important technique for biomedical imaging since the phase coherence of SR beams can be exploited to obtain images with high contrast resolution. Using a synchrotron as the source for FXCT ensures a fluorescence signal that is optimally detectable by exploiting the beam monochromaticity and polarisation. The ability to combine these techniques so that SRCT and FXCT images are collected simultaneously, would bring distinct benefits to certain biomedical experiments. Simultaneous image acquisition would alleviate some of the registration difficulties which comes from collecting separate data, and it would provide increased information about the sample: functional X-ray images from the FXCT, with the morphological information from the SRCT. A method is presented for generating simultaneous SRCT and FXCT images. Proof of principle modelling has been used to show that it is possible to recover a fluorescence image of a point-like source from an SRCT apparatus by suitably modulating the illuminating planar X-ray beam. The projection image can be successfully used for reconstruction by removing the static modulation from the sinogram in the normal flat and dark field processing. Detection of the modulated fluorescence signal using an energy resolving detector allows the position of a fluorescent marker to be obtained using inverse reconstruction techniques. A discussion is made of particular reconstruction methods which might be applied by utilising both the CT and FXCT data.

  14. 1913–2013 – The centennial of X-ray absorption spectroscopy (XAS): Evidences about a question still open

    Energy Technology Data Exchange (ETDEWEB)

    Mottana, Annibale, E-mail: annibale.mottana@uniroma3.it [Università degli Studi Roma Tre, Dipartimento di Scienze, Largo S. Leonardo Murialdo 1, I-00146 Roma (Italy); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Via E. Fermi 40, I-00044 Frascati, RM (Italy)

    2014-10-15

    Highlights: • X-ray Absorption Spectroscopy (XAS) cannot be dated exactly as for its birth. • The assumed discoverer, M. de Broglie, was preceded by J. Herweg in the submission. • However, both their spectra were found to be mistaken. • Before the work of W. Stenström and H. Fricke no sure evidence of XAS is published. • The solution is, probably, taking October 1, 1918 as XAS fictitious birthday. - Abstract: In 1913 J. Herweg first (June 30) and M. de Broglie slightly later (November 17) claimed the discovery of a series of spots and lines closely following the main absorption edges of heavy metals, which they interpreted as the proof of the existence of X-ray spectra analogous to light spectra. In the following year they documented their discoveries via photographic plates. However, they were both discredited: Herweg by G.E.M. Jauncey, who showed that his spectra, taken on Pt and W, did not obey Moseley's rule; de Broglie by W.H. Bragg, M. Siegbahn and E. Wagner, who showed that his lines were in fact the fluorescence lines of the Ag and Br constituents of the photographic emulsion. Consequently, W. Stenström's description (sent to publisher on July 2, 1918) of certain photographically recorded and graphically rendered modulations near the M-series edges of heavy metals may possibly be the first published evidence of true X-ray absorption spectra. Indeed, they were interpreted as such by W. Kossel (1920) in his seminal theoretical paper. Otherwise, H. Fricke's table, although printed in 1920, which exhibits the photographic plate of sulphur absorption dated October 1, 1918, and its graphical rendering by a photometric method, is the first unequivocally dated evidence of recorded modulations at a XAS K-edge.

  15. Experimental and theoretical study of electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Festa, Floriane

    2013-01-01

    Matter in extreme conditions belongs to Warm Dense Matter regime which lays between dense plasma regime and condensed matter. This regime is still not well known, indeed it is very complex to generate such plasma in the laboratory to get experimental data and validate models. The goal of this thesis is to study electronic structure of aluminum in extreme conditions with X-ray absorption spectroscopy. Experimentally aluminum has reached high densities and high temperatures, up to now unexplored. An X-ray source has also been generated to probe highly compressed aluminum. Two spectrometers have recorded aluminum absorption spectra and aluminum density and temperature conditions have been deduced thanks to optical diagnostics. Experimental spectra have been compared to ab initio spectra, calculated in the same conditions. The theoretical goal was to validate the calculation method in high densities and high temperatures regime with the study of K-edge absorption modifications. We also used absorption spectra to study the metal-non metal transition which takes place at low density (density ≤ solid density). This transition could be study with electronic structure modifications of the system. (author) [fr

  16. X-ray beam generator

    International Nuclear Information System (INIS)

    Koller, T.J.; Randmer, J.A.

    1977-01-01

    A method of minimizing the preferential angular absorption of the divergent beam from an X-ray generator is described. The generator consists of an X-ray shielded housing with an X-ray transmissive window symmetrically placed in radial alignment with a focal spot area on a sloped target surface of an X-ray tube in the housing. The X-ray tube may be of the stationary anode type or of the rotating anode type. (U.K.)

  17. In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy

    Data.gov (United States)

    U.S. Environmental Protection Agency — In situ analyses of Ag speciation in tissues of cucumber and wheat using synchrotron-based X-ray absorption spectroscopy showing spectral fitting and linear...

  18. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    DEFF Research Database (Denmark)

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measured...... on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of the electronic configuration on specific metal...

  19. Radiographic x-ray flux monitoring during explosive experiments by copper activation

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1986-01-01

    During radiographic experiments involving explosives, it is valuable to have a method of monitoring the X-ray flux ratio between the dynamic experiment and an X-ray taken of a static object for comparison. The standard method of monitoring with thermoluminescent detectors suffers the disadvantages of being sensitive to temperature, shock, UV radiation, cleanliness and saturation. We are studying an additional flux monitoring system which is not subject to any of the above disadvantages and is based upon the 63 Cu(photon,n) 62 Cu reaction. The 62 Cu has a 10 min. half-life and is counted by a nuclear pulse-counting system within a few minutes of an explosive test. 170 MicroCoulomb of 19.3 MeV electrons hitting 1.18mm of Ta produces X-rays which illuminate a 0.8mm thick by 1.6cm diameter Cu disk placed 46cm from the Ta. The activated Cu is placed in a counting system with a window between 400-600 keV and produces about 42500 counts in the first 100 sec counting period. Less than 0.2% of the initial activity is due to other reactions. Photo-induced neutrons in Be parts of the system are shown to produce a negligible effect in the Cu. The main disadvantage of the Cu activation is its sensitivity to electron energy. Monte-Carlo calculations of the excitation function for our accelerator are shown, along with excitation functions for three other configurations

  20. Radiographic x-ray flux monitoring during explosive experiments by copper activation

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1986-01-01

    During radiographic experiments involving explosives, it is valuable to have a method of monitoring the x-ray flux ratio between the dynamic experiment and an x-ray taken of a static object for comparison. The standard method of monitoring with thermoluminescent detectors suffers the disadvantages of being sensitive to temperature, shock, uv radiation, cleanliness and saturation. A flux monitoring system is being studied which is not subject to any of the above disadvantages and is based upon the 63Cu(photon,n)62Cu reaction. The 62Cu has a 10 min half life and is counted by a nuclear pulse counting system within a few minutes of an explosive test. 170 microcoulomb of 19.3 MeV electrons hitting 1.18 mm of Ta produces x-rays which illuminate a 0.8mm thick by 1.6 cm diameter Cu disk placed 46 cm from the Ta. The activated Cu is placed in a counting system with a window between 400 to 600 keV and produces about 42,500 counts in the first 100 sec. counting period. Less than 0.2% of the initial activity is due to other reactions. Photo-induced neutrons in Be parts of the system are shown to produce a negligible effect in the Cu. The main disadvantage of the Cu activation is its sensitivity to electron energy. Monte-Carlo calculations of the excitation function for our accelerator are shown, along with excitation functions for three other configurations

  1. Anionic and cationic redox and interfaces in batteries: Advances from soft X-ray absorption spectroscopy to resonant inelastic scattering

    Science.gov (United States)

    Yang, Wanli; Devereaux, Thomas P.

    2018-06-01

    Recent advances in battery science and technology have triggered both the challenges and opportunities on studying the materials and interfaces in batteries. Here, we review the recent demonstrations of soft X-ray spectroscopy for studying the interfaces and electrode materials. The focus of this review is on the recently developed mapping of resonant inelastic X-ray scattering (mRIXS) as a powerful probe of battery chemistry with superior sensitivity. Six different channels of soft X-ray absorption spectroscopy (sXAS) are introduced for different experimental purposes. Although conventional sXAS channels remain effective tools for quantitative analysis of the transition-metal states and surface chemistry, we elaborate the limitations of sXAS in both cationic and anionic redox studies. Particularly, based on experimental findings in various electrodes, we show that sXAS is unreliable for studying oxygen redox. We then demonstrate the mRIXS as a reliable technique for fingerprinting oxygen redox and summarize several crucial observations. We conclude that mRIXS is the tool-of-choice to study both the practical issue on reversibility of oxygen redox and the fundamental nature of bulk oxygen states. We hope this review clarifies the popular misunderstanding on oxygen sXAS results of oxide electrodes, and establishes a reliable technique for detecting oxygen redox through mRIXS.

  2. Restricted active space calculations of L-edge X-ray absorption spectra: from molecular orbitals to multiplet states.

    Science.gov (United States)

    Pinjari, Rahul V; Delcey, Mickaël G; Guo, Meiyuan; Odelius, Michael; Lundberg, Marcus

    2014-09-28

    The metal L-edge (2p → 3d) X-ray absorption spectra are affected by a number of different interactions: electron-electron repulsion, spin-orbit coupling, and charge transfer between metal and ligands, which makes the simulation of spectra challenging. The core restricted active space (RAS) method is an accurate and flexible approach that can be used to calculate X-ray spectra of a wide range of medium-sized systems without any symmetry constraints. Here, the applicability of the method is tested in detail by simulating three ferric (3d(5)) model systems with well-known electronic structure, viz., atomic Fe(3+), high-spin [FeCl6](3-) with ligand donor bonding, and low-spin [Fe(CN)6](3-) that also has metal backbonding. For these systems, the performance of the core RAS method, which does not require any system-dependent parameters, is comparable to that of the commonly used semi-empirical charge-transfer multiplet model. It handles orbitally degenerate ground states, accurately describes metal-ligand interactions, and includes both single and multiple excitations. The results are sensitive to the choice of orbitals in the active space and this sensitivity can be used to assign spectral features. A method has also been developed to analyze the calculated X-ray spectra using a chemically intuitive molecular orbital picture.

  3. Ligand-field symmetry effects in Fe(ii) polypyridyl compounds probed by transient X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hana; Strader, Matthew L.; Hong, Kiryong; Jamula, Lindsey; Gullikson, Eric M.; Kim, Tae Kyu; de Groot, Frank M. F.; McCusker, James K.; Schoenlein, Robert W.; Huse, Nils

    2012-01-01

    Ultrafast excited-state evolution in polypyridyl FeII complexes are of fundamental interest for understanding the origins of the sub-ps spin-state changes that occur upon photoexcitation of this class of compounds as well as for the potential impact such ultrafast dynamics have on incorporation of these compounds in solar energy conversion schemes or switchable optical storage technologies. We have demonstrated that ground-state and, more importantly, ultrafast time-resolved x-ray absorption methods can offer unique insights into the interplay between electronic and geometric structure that underpin the photo-induced dynamics of this class of compounds. The present contribution examines in greater detail how the symmetry of the ligand field surrounding the metal ion can be probed using these x-ray techniques. In particular, we show that steady-state K-edge spectroscopy of the nearest-neighbour nitrogen atoms reveals the characteristic chemical environment of the respective ligands and suggests an interesting target for future charge-transfer femtosecond and attosecond spectroscopy in the x-ray water window.

  4. Study of apical oxygen atoms in a spin-ladder cuprate compound by X-ray absorption spectroscopy near the Cu K edge

    Energy Technology Data Exchange (ETDEWEB)

    Hatterer, C.J.; Eustache, B.; Collin, L.; Beuran, C.F.; Partiot, C.; Germain, P.; Xu, X.Z.; Lagues, M. [CNRS, Paris (France). Surfaces et Supraconducteurs; Michalowicz, A. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France)]|[LURE, Universite Paris Sud, 91405, Orsay Cedex (France); Moscovici, J. [Laboratoire de Physique des Milieux Desordonnes, Universite Paris XII Val-de-Marne, 61 avenue du general de Gaulle, 94010, Creteil Cedex (France); Deville Cavellin, C. [CNRS, Paris (France). Surfaces et Supraconducteurs]|[Laboratoire d`Electronique, Universite Paris XII Val-de-Marne, 61 av. du general de Gaulle, 94010, Creteil Cedex (France); Traverse, A. [LURE, Universite Paris Sud, 91405, Orsay Cedex (France)

    1997-04-01

    The structure of high-T{sub c} superconducting cuprate compounds is based on CuO{sub 2} planes alternating with blocks that behave as charge reservoirs. The apical oxygen atoms which belong to these reservoirs are suspected to play a role in the mechanism of superconductivity. It thus seems necessary to measure the amount of apical oxygen atoms in various compounds, as a function of the superconducting properties. Polarisation dependent X-ray absorption spectroscopy (XAS) measurements were performed near the Cu K-edge on three types of phases. We collected information about the neighbourhood of the copper atom in the cuprate planes and in the direction perpendicular to these planes. Two of these phases have well known structures: Bi2212 in which copper atoms are on a pyramidal site and infinite layer phase, a square planar cuprate without apical oxygen. We used the obtained results as reference data to study a new copper-rich phase related to the spin-ladder series. (orig.)

  5. Quantitative Interpretation of X-ray Absorption Near Structure Continuation Progress Report for 1st year 9/15/98-9/14/99

    International Nuclear Information System (INIS)

    Rehr, John J.; Bare, Simon; Stocht, Joachim

    1999-01-01

    OAK-B135 Quantitative Interpretation of X-ray Absorption Near Structure Continuation Progress Report for 1st year 9/15/98-9/14/99. This paper proposes to develop two industrial research collaborations to further develop the FEFF8 x-ray spectroscopy code to achieve a quantitative interpretation of x-ray absorption near edge structure (XANES) in materials of interest in energy research: (a) Quantitative interpretation of XANES for heterogeneous catalysts and disordered materials; and (b) quantitative interpretation of white-lines in XANES. The paper also outlines significant results achieved during the first Grant year

  6. Metal X-ray microanalysis in the olfactory system of rainbow trout exposed to low level of copper

    International Nuclear Information System (INIS)

    Julliard, A.K.; Astic, L.; Saucier, D.

    1995-01-01

    It has recently been shown that a chronic copper exposure induces specific degeneration of olfactory receptor cells in rainbow trout; however, the exact mechanism of action of the metal is not yet known. Using X-ray microanalysis in transmission electron microscopy, we have studied the distribution of metal in the olfactory system of fish exposed for 15,30 and 60 days to 20 μg/l of copper. This was done in order to determine if it was accumulated in receptor cells and transported into the central nervous system via the olfactory nerve. No copper accumulation was detected either in the olfactory epithelium, in the olfactory nerve or in the olfactory bulb. The heavy metal was exclusively found within melanosomes of melanophores located in the lamina propria. After 60 days of exposure, the copper content in melanosomes was about two-fold higher than that in controls. As far as some morphological recovery took place in the olfactory organ during the metal exposure, which lets us suppose that some detoxication mechanism occurs, it could be suggested that metanophores might be somehow involved in such a mechanism. (authors). 57 refs., 15 figs

  7. X-ray absorption fine structure spectroscopic determination of plutonium speciation at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Lezama-pacheco, Juan S.; Conradson, Steven D.; Clark, David L.

    2008-01-01

    X-ray Absorption Fine Structure spectroscopy was used to probe the speciation of the ppm level Pu in thirteen soil and concrete samples from the Rocky Flats Environmental Technology Site in support of the site remediation effort that has been successfully completed since these measurements. In addition to X-ray Absorption Near Edge Spectra, two of the samples yielded Extended X-ray Absorption Fine Structure spectra that could be analyzed by curve-fits. Most of these spectra exhibited features consistent with PU(IV), and more specificaJly, PuO 2+x -type speciation. Two were ambiguous, possibly indicating that Pu that was originally present in a different form was transforming into PuO 2+x , and one was interpreted as demonstrating the presence of an unusual Pu(VI) compound, consistent with its source being spills from a PUREX purification line onto a concrete floor and the resultant extreme conditions. These experimental results therefore validated models that predicted that insoluble PuO 2+x would be the most stable form of Pu in equilibrium with air and water even when the source terms were most likely Pu metal with organic compounds or a Pu fire. A corollary of these models' predictions and other in situ observations is therefore that the minimal transport of Pu that occurred on the site was via the resuspension and mobilization of colloidal particles. Under these conditions, the small amounts of diffusely distributed Pu that were left on the site after its remediation pose only a negligible hazard.

  8. Indentation size effects in single crystal copper as revealed by synchrotron x-ray microdiffraction

    Science.gov (United States)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2008-08-01

    For a Cu single crystal, we find that indentation hardness increases with decreasing indentation depth, a phenomenon widely observed before and called the indentation size effect (ISE). To understand the underlying mechanism, we measure the lattice rotations in indentations of different sizes using white beam x-ray microdiffraction (μXRD); the indentation-induced lattice rotations are directly measured by the streaking of x-ray Laue spots associated with the indentations. The magnitude of the lattice rotations is found to be independent of indentation size, which is consistent with the basic tenets of the ISE model. Using the μXRD data together with an ISE model, we can estimate the effective radius of the indentation plastic zone, and the estimate is consistent with the value predicted by a finite element analysis. Using these results, an estimate of the average dislocation densities within the plastic zones has been made; the findings are consistent with the ISE arising from a dependence of the dislocation density on the depth of indentation.

  9. X-ray-diffraction and absorption-spectrophotometric studies of AmI/sub 3/ and AmOI

    Energy Technology Data Exchange (ETDEWEB)

    Haire, R.G.; Young, J.P.; Peterson, J.R.

    1983-01-01

    The anhydrous tri-iodides and the oxyiodide of americium were investigated by X-ray diffraction and absorption spectrophotometry. From the X-ray analysis of the tri-iodide, an orthorhombic form (PuBr/sub 3/-type structure) has been identified, which is isostructural with the lighter actinide (U-Pu) tri-iodides. A hexagonal form (BiI/sub 3/-type structure) of the tri-iodide was also found. The transition temperature for converting the orthorhombic form to the hexagonal form was established to be 400 +- 30/sup 0/C. Room temperature lattice parameters for the tri-iodide are: (1) a/sub 0/ = 0.428(4), b/sub 0/ = 1.394(1) and c/sub 0/ = 0.9974(7) nm for the orthorbombic form; and (2) a/sub 0/ = 0.7637(4) and c/sub 0/ = 2.091(2) nm for the hexagonal form. Tetragonal parameters for the oxyiodide are a/sub 0/ = 0.4010(3) and c/sub 0/ = 0.9038(6) nm. From differences in the absorption spectra of the solids at 25/sup 0/C, it is possible to differentiate between these three materials by absorption spectrophotometry.

  10. Assessing the Portion of the Crack Length Contributing to Water Sorption in Concrete Using X-ray Absorption

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Couch, Jon; Geiker, Mette Rica

    2009-01-01

    While it is generally known that cracks accelerate fluid movements, there is a need to quantify how cracks influence the controlling transport mechanism(s) for more accurate service life modeling. This paper describes an experimental approach using x-ray absorption measurements to quantify the in......-ray absorption measurements over time. The effect cracks have on sorption is discussed and compared to the behavior of pristine concrete. In addition, the maximum water sorption depth after one hour of exposure is compared to crack lengths determined by the cracked hinge model.......While it is generally known that cracks accelerate fluid movements, there is a need to quantify how cracks influence the controlling transport mechanism(s) for more accurate service life modeling. This paper describes an experimental approach using x-ray absorption measurements to quantify...... the influence of cracks with varying width and length on water sorption in concrete. Concrete wedge splitting specimens, conditioned to 50% relative humidity, were loaded to varying crack openings. Water sorption was monitored for ponded specimens with varying crack widths and lengths by taking multiple x...

  11. Using Synchrotron-based X-ray Absorption Spectrometry to Identify the Arsenic Chemical Forms in Mine Waste Materials

    International Nuclear Information System (INIS)

    Matanitobua, Vitukawalu P.; Noller, Barry N.; Chiswell, Barry; Ng, Jack C.; Bruce, Scott L.; Huang, Daphne; Riley, Mark; Harris, Hugh H.

    2007-01-01

    X-ray Absorption Near Edge Spectroscopy (XANES) gives arsenic form directly in the solid phase and has lower detection limits than extraction techniques. An important and common application of XANES is to use the shift of the edge position to determine the valence state. XANES speciation analysis is based on fitting linear combinations of known spectra from model compounds to determine the ratios of valence states and/or phases present. As(V)/As(III) ratios were determined for various Australian mine waste samples and dispersed mine waste samples from river/creek sediments in Vatukoula, Fiji

  12. Analysis of the local structure of AlN:Mn using X-ray absorption fine structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Takao [Materials Laboratories, Sony Corporation, 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa 243-0014 (Japan); Kudo, Yoshihiro [Materials Analysis Lab., Sony Corporation, 4-18-1 Okada, Atsugi-shi, Kanagawa 243-0021 (Japan); Uruga, Tomoya [Japan Synchrotron Radiation Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hara, Kazuhiko [Research Inst. of Electronics, Shizuoka Univ., 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan)

    2006-06-15

    The local structure around the Mn atoms in MOCVD-grown AlN:Mn films which show Mn-related red-orange photoluminescence with a 600nm-peak at room temperature was investigated using the X-ray absorption fine structure (XAFS) measurements. We found that Mn atoms occupy Al lattice sites in the AlN film and that the Mn ions have a charge between +2 and +3. From these results, we think that the red-orange luminescence is caused by the transition of d-electrons in the Mn ions. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Study of X-ray L2 absorption edges of Gd, Dy, Ho and Er in metals and compounds

    International Nuclear Information System (INIS)

    Agarwal, B.K.; Agarwal, B.R.K.

    1978-01-01

    The positions and shapes of L2 X-ray absorption edges of Gd, Dy, Ho and Er have been studied in metals and in oxides and chlorides, using a forty centimetre bent mica crystal spectrograph. It has been found that the L2 edge shifts towards the high energy side in the compounds and that the chemical shift ΔE depends on the degree of covalency involved. The white line structure at the edge has been analysed in terms of transitions of L2 shell electron to optical nd (n >= 5) states. (author)

  14. Time resolved measurement of laser-ablated particles by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy)

    International Nuclear Information System (INIS)

    Miyashita, Atsumi; Yoda, Osamu; Murakami, Kouichi

    1999-01-01

    The time- and spatially-resolved properties of laser ablated carbon, boron and silicon particles were measured by LAPXAS (Laser Plasma Soft X-ray Absorption Spectroscopy). The maximum speed of positively charged ions is higher than those of neutral atoms and negatively charged ions. The spatial distributions of the laser-ablated particles in the localized rare gas environment were measured. In helium gas environment, by the helium cloud generated on the top of ablation plume depressed the ablation plume. There is no formation of silicon clusters till 15 μs after laser ablation in the argon gas environment. (author)

  15. M-edge x-ray absorption spectroscopy: A new tool for dilute mixed-valent materials

    International Nuclear Information System (INIS)

    Kaindl, G.; Brewer, W.D.; Kalkowski, G.; Holtzberg, F.

    1983-01-01

    The valence of Tm compounds is derived from M/sub V/ x-ray absorption spectra recorded by total electron yield under ultra-high-vacuum conditions. For mixed-valent systems the spectra are superpositions of Tm 3+ (three lines) and Tm 2+ (one line) components, providing accurate mean valence values even in highly dilute systems, such as Tm/sub x/Y/sub 1-x/Se, which agree well with those from lattice constant systematics. A surface valence change on TmS(100) is identified as an initial-state effect

  16. Soft X-ray absorption spectra of aqueous salt solutions with highly charged cations in liquid microjets

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Craig P.; Uejio, Janel S.; Duffin, Andrew M.; Drisdell, Walter S.; Smith, Jared D.; Saykally, Richard J.

    2010-03-11

    X-ray absorption spectra of 1M aqueous solutions of indium (III) chloride, yttrium (III) bromide, lanthanum (III) chloride, tin (IV) chloride and chromium (III) chloride have been measured at the oxygen K-edge. Relatively minor changes are observed in the spectra compared to that of pure water. SnCl{sub 4} and CrCl{sub 3} exhibit a new onset feature which is attributed to formation of hydroxide or other complex molecules in the solution. At higher energy, only relatively minor, but salt-specific changes in the spectra occur. The small magnitude of the observed spectral changes is ascribed to offsetting perturbations by the cations and anions.

  17. X-ray absorption in insulators with non-Hermitian real-time time-dependent density functional theory.

    Science.gov (United States)

    Fernando, Ranelka G; Balhoff, Mary C; Lopata, Kenneth

    2015-02-10

    Non-Hermitian real-time time-dependent density functional theory was used to compute the Si L-edge X-ray absorption spectrum of α-quartz using an embedded finite cluster model and atom-centered basis sets. Using tuned range-separated functionals and molecular orbital-based imaginary absorbing potentials, the excited states spanning the pre-edge to ∼20 eV above the ionization edge were obtained in good agreement with experimental data. This approach is generalizable to TDDFT studies of core-level spectroscopy and dynamics in a wide range of materials.

  18. Study on Coloration Mechanism of Chinese Ancient Ceramics by X-ray Absorption Near-edge Structure

    Science.gov (United States)

    Peng, Y. H.; Xie, Z.; He, J. F.; Liu, Q. H.; Pan, Z. Y.; Cheng, W. R.; Wei, S. Q.

    2013-04-01

    The Fe K-edge X-ray absorption near-edge structure (XANES) spectra of a series of ceramic shards were measured by fluorescence mode to reveal the color-generating techniques of Chinese porcelain. The analysis disclosed relationships among the chemical form of the iron, the firing conditions and the colors of the ceramics. The results indicate that the coloration for different ceramics depend on the valence states of iron as the main color element in glaze and the proportion of Fe2+ and Fe3+ was attributed to the baking technology. The findings provide important information for archaeologist on the coloration researches.

  19. X-ray absorption spectroscopy and neutron diffraction study of the perovskite-type rare-earth cobaltites

    Science.gov (United States)

    Sikolenko, V.; Efimova, E.; Franz, A.; Ritter, C.; Troyanchuk, I. O.; Karpinsky, D.; Zubavichus, Y.; Veligzhanin, A.; Tiutiunnikov, S. I.; Sazonov, A.; Efimov, V.

    2018-05-01

    Correlations between local and long-range structure distortions in the perovskite-type RE1-xSrxCoO3-δ (RE = La, Pr, Nd; x = 0.0 and 0.5) compounds have been studied at room temperature by extended X-ray absorption fine structure (EXAFS) at the Co K-edge and high-resolution neutron powder diffraction (NPD). The use of two complementary experimental techniques allowed us to explore the influence of the type of rare-earth element and strontium substitution on unusual behavior of static and dynamic features of both the Co-O bond lengths.

  20. Highly efficient angularly resolving x-ray spectrometer optimized for absorption measurements with collimated sources

    Czech Academy of Sciences Publication Activity Database

    Šmíd, Michal; Gonzalez, I.G.; Ekerfelt, H.; Svensson, J.B.; Hansson, M.; Wood, I. C.; Persson, A.; Mangles, S.P.D.; Lundh, O.; Falk, Kateřina

    2017-01-01

    Roč. 88, č. 6 (2017), s. 1-8, č. článku 063102. ISSN 0034-6748 R&D Projects: GA MŠk EF15_008/0000162; GA MŠk LQ1606 EU Projects: European Commission(XE) 654148 - LASERLAB-EUROPE Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : acceleration * measurments * x ray * high energy Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 1.515, year: 2016

  1. XMM-Newton Survey of Local O VII Absorption Lines in the Spectra of Galactic X-Ray Sources

    Science.gov (United States)

    Luo, Yang; Fang, Taotao; Ma, Renyi

    2018-04-01

    The detection of highly ionized metal absorption lines in the X-ray spectra of the Galactic X-ray binaries (XRBs) implies the distribution of hot gas along the sightline toward the background sources. However, the origin of this hot gas is still unclear: it can arise in the hot interstellar medium (ISM), or is intrinsic to the XRBs. In this paper, we present an XMM-Newton survey of the O VII absorption lines in the spectra of Galactic XRBs. A total of 33 XRBs were selected, with 29 low-mass XRBs and 4 high-mass XRBs. At a more than 3σ threshold, O VII absorption line was detected in 16 targets, among which 4 were newly discovered in this work. The average line equivalent width is centered around ∼20 mÅ. Additionally, we do not find strong correlations between the O VII EWs and the Galactic neutral absorption N H, the Galactic coordinates, or the distance of background targets. Such non-correlation may suggest contamination of the circumstellar material, or a lack of constraints on the line Doppler-b parameter. We also find that regardless of the direction of the XRBs, the O VII absorption lines are always detected when the flux of the background XRBs reaches a certain level, suggesting a uniform distribution of this hot gas. We estimate a ratio of 0.004–0.4 between the hot and neutral phases of the ISM. This is the second paper in the series following Fang et al. (2015), in which we focused on the local O VII absorption lines detected in the background AGN spectra. Detailed modeling of the hot ISM distribution will be investigated in a future paper.

  2. The origin of blueshifted absorption features in the X-ray spectrum of PG 1211+143: outflow or disc

    Science.gov (United States)

    Gallo, L. C.; Fabian, A. C.

    2013-07-01

    In some radio-quiet active galactic nuclei (AGN), high-energy absorption features in the X-ray spectra have been interpreted as ultrafast outflows (UFOs) - highly ionized material (e.g. Fe XXV and Fe XXVI) ejected at mildly relativistic velocities. In some cases, these outflows can carry energy in excess of the binding energy of the host galaxy. Needless to say, these features demand our attention as they are strong signatures of AGN feedback and will influence galaxy evolution. For the same reason, alternative models need to be discussed and refuted or confirmed. Gallo and Fabian proposed that some of these features could arise from resonance absorption of the reflected spectrum in a layer of ionized material located above and corotating with the accretion disc. Therefore, the absorbing medium would be subjected to similar blurring effects as seen in the disc. A priori, the existence of such plasma above the disc is as plausible as a fast wind. In this work, we highlight the ambiguity by demonstrating that the absorption model can describe the ˜7.6 keV absorption feature (and possibly other features) in the quasar PG 1211+143, an AGN that is often described as a classic example of a UFO. In this model, the 2-10 keV spectrum would be largely reflection dominated (as opposed to power law dominated in the wind models) and the resonance absorption would be originating in a layer between about 6 and 60 gravitational radii. The studies of such features constitute a cornerstone for future X-ray observatories like Astro-H and Athena+. Should our model prove correct, or at least important in some cases, then absorption will provide another diagnostic tool with which to probe the inner accretion flow with future missions.

  3. Study of the pressing operation of large-sized tiles using X-ray absorption

    International Nuclear Information System (INIS)

    Amoros, J. L.; Mallol, G.; Llorens, D.; Boix, J.; Arnau, J. M.; Feliu, C.; Cerisuelo, J. A.; Gargallo, J. J.

    2010-01-01

    An apparatus for X-Ray non destructive inspection of bulk density distribution in large ceramic tiles has been designed, built and patented. This technique has many advantages compared with other methods: it allows tile bulk density distribution to be mapped and is neither destructive nor toxic, provided the X-ray tube and detector area are shielded to prevent leakage. In the present study, this technique, whose technical feasibility and accuracy had been verified in previous studies, has been used to scan ceramic tiles formed under different industrial conditions, modifying press working parameters. The use of high-precision laser telemeters allows tile thicknesses to be mapped, facilitating the interpretation of manufacturing defects produced in pressing, which cannot be interpreted by just measuring bulk density. The bulk density distributions obtained in the same unfired and fired tiles are also compared, a possibility afforded only by this measurement method, since it is non-destructive. The comparison of both unfired and fired tile bulk density distributions allows the influence of the pressing and firing stages on tile end porosity to be individually identified. (Author) 12 refs.

  4. DETECTING THE WARM-HOT INTERGALACTIC MEDIUM THROUGH X-RAY ABSORPTION LINES

    International Nuclear Information System (INIS)

    Yao Yangsen; Shull, J. Michael; Cash, Webster; Wang, Q. Daniel

    2012-01-01

    The warm-hot intergalactic medium (WHIM) at temperatures 10 5 -10 7 K is believed to contain 30%-50% of the baryons in the local universe. However, all current X-ray detections of the WHIM at redshifts z > 0 are of low statistical significance (∼ Ovii ∼10 15 cm -2 (corresponding to an equivalent width of 2.5 mÅ for a Doppler velocity of 50 km s –1 ) at ∼> 3σ significance level. The simulation results also suggest that it would take >60 Ms for Chandra and 140 Ms for XMM-Newton to measure the N Ovii at ≥4σ from a spectrum of a background QSO with flux of ∼0.2 mCrab (1 Crab = 2 × 10 –8 erg s –1 cm –2 at 0.5-2 keV). Future X-ray spectrographs need to be equipped with spectral resolution R ∼ 4000 and effective area A ≥ 100 cm 2 to accomplish the similar constraints with an exposure time of ∼2 Ms and would require ∼11 Ms to survey the 15 QSOs with flux ∼> 0.2 mCrab along which clear intergalactic O VI absorbers have been detected.

  5. A nearly on-axis spectroscopic system for simultaneously measuring UV-visible absorption and X-ray diffraction in the SPring-8 structural genomics beamline.

    Science.gov (United States)

    Sakaguchi, Miyuki; Kimura, Tetsunari; Nishida, Takuma; Tosha, Takehiko; Sugimoto, Hiroshi; Yamaguchi, Yoshihiro; Yanagisawa, Sachiko; Ueno, Go; Murakami, Hironori; Ago, Hideo; Yamamoto, Masaki; Ogura, Takashi; Shiro, Yoshitsugu; Kubo, Minoru

    2016-01-01

    UV-visible absorption spectroscopy is useful for probing the electronic and structural changes of protein active sites, and thus the on-line combination of X-ray diffraction and spectroscopic analysis is increasingly being applied. Herein, a novel absorption spectrometer was developed at SPring-8 BL26B2 with a nearly on-axis geometry between the X-ray and optical axes. A small prism mirror was placed near the X-ray beamstop to pass the light only 2° off the X-ray beam, enabling spectroscopic analysis of the X-ray-exposed volume of a crystal during X-ray diffraction data collection. The spectrometer was applied to NO reductase, a heme enzyme that catalyzes NO reduction to N2O. Radiation damage to the heme was monitored in real time during X-ray irradiation by evaluating the absorption spectral changes. Moreover, NO binding to the heme was probed via caged NO photolysis with UV light, demonstrating the extended capability of the spectrometer for intermediate analysis.

  6. Sulfur X-ray absorption fine structure in porous Li–S cathode films measured under argon atmospheric conditions

    International Nuclear Information System (INIS)

    Müller, Matthias; Choudhury, Soumyadip; Gruber, Katharina; Cruz, Valene B.; Fuchsbichler, Bernd; Jacob, Timo; Koller, Stefan; Stamm, Manfred; Ionov, Leonid; Beckhoff, Burkhard

    2014-01-01

    In this paper we present the first results for the characterization of highly porous cathode materials with pore sizes below 1 μm for Lithium Sulfur (Li–S) batteries by Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. A novel cathode material of porous carbon films fabricated with colloidal array templates has been investigated. In addition, an electrochemical characterization has been performed aiming on an improved correlation of physical and chemical parameters with the electrochemical performance. The performed NEXAFS measurements of cathode materials allowed for a chemical speciation of the sulfur content inside the cathode material. The aim of the presented investigation was to evaluate the potential of the NEXAFS technique to characterize sulfur in novel battery material. The long term goal for the characterization of the battery materials is the sensitive identification of undesired side reactions, such as the polysulfide shuttle, which takes place during charging and discharging of the battery. The main drawback associated with the investigation of these materials is the fact that NEXAFS measurements can usually only be performed ex situ due to the limited in situ instrumentation being available. For Li–S batteries this problem is more pronounced because of the low photon energies needed to study the sulfur K absorption edge at 2472 eV. We employed 1 μm thick Si 3 N 4 windows to construct sealed argon cells for NEXAFS measurements under ultra high vacuum (UHV) conditions as a first step towards in situ measurements. The cells keep the sample under argon atmosphere at any time and the X-ray beam passes mainly through vacuum which enables the detection of the low energy X-ray emission of sulfur. Using these argon cells we found indications for the presence of lithium polysulfides in the cathode films whereas the correlations to the offline electrochemical results remain somewhat ambiguous. As a consequence of these findings one may

  7. X-ray absorption spectroscopy on the calcium cofactor to the manganese cluster in photosynthetic oxygen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Cinco, Roehl M. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Along with Mn, calcium and chloride ions are necessary cofactors for oxygen evolution in Photosystem II (PS II). To further test and verify whether Ca is close to the Mn cluster, the authors substituted strontium for Ca and probed from the Sr point of view for any nearby Mn. The extended X-ray absorption fine structure (EXAFS) of Sr-reactivated PS II indicates major differences between the intact and NH2OH-treated samples. In intact samples, the Fourier transform of the Sr EXAFS shows a Fourier peak that is missing in inactive samples. This peak II is best simulated by two Mn neighbors at a distance of 3.5 Angstrom, confirming the proximity of Ca (Sr) cofactor to the Mn cluster. In addition, polarized Sr EXAFS on oriented Sr-reactivated samples shows this peak II is dichroic: large magnitude at 10 degrees (angle between the PS II membrane normal and the x-ray electric field vector) and small at 80 degrees. Analysis of the dichroism yields the relative angle between the Sr-Mn vector and membrane normal (23 degrees ± 4 degrees), and the isotropic coordination number for these layered samples. X-ray absorption spectroscopy has also been employed to assess the degree of similarity between the manganese cluster in PS II and a family of synthetic manganese complexes containing the distorted cubane [Mn4O3X] core (X = benzoate, acetate, methoxide, hydroxide, azide, fluoride, chloride or bromide). In addition, Mn4O3Cl complexes containing three or six terminal Cl ligands at three of the Mn were included in this study. The EXAFS method detects the small changes in the core structures as X is varied in this series, and serves to exclude these distorted cubanes of C3v symmetry as a topological model for the Mn catalytic cluster. The sulfur K-edge x-ray absorption near-edge structure (XANES) spectra for the amino acids cysteine, methionine, their corresponding oxidized forms cystine and methionine sulfoxide, and

  8. PREFACE: The 15th International Conference on X-ray Absorption Fine Structure (XAFS15)

    Science.gov (United States)

    Wu, Z. Y.

    2013-04-01

    The 15th International Conference on X-ray Absorption Fine Structure (XAFS15) was held on 22-28 July 2012 in Beijing, P. R. China. About 340 scientists from 34 countries attended this important international event. Main hall Figure 1. Main hall of XAFS15. The rapidly increasing application of XAFS to the study of a large variety of materials and the operation of the new SR source led to the first meeting of XAFS users in 1981 in England. Following that a further 14 International Conferences have been held. Comparing a breakdown of attendees according to their national origin, it is clear that participation is spreading to include attendees from more and more countries every year. The strategy of development in China of science and education is increasing quickly thanks to the large investment in scientific and technological research and infrastructure. There are three Synchrotron Radiation facilities in mainland China, Hefei Light Source (HLS) in the National Natural Science Foundation of China (NSRL), Beijing Synchrotron Radiation Facility (BSRF) in the Institute of High Energy Physics, and Shanghai Synchrotron Radiation Facility (SSRF) in the Shanghai Institute of Applied Physics. More than 10000 users and over 5000 proposals run at these facilities. Among them, many teams from the USA, Japan, German, Italy, Russia, and other countries. More than 3000 manuscript were published in SCI journals, including (incomplete) Science (7), Nature (10), Nature Series (7), PNAS (3), JACS (12), Angew. Chem. Int. Ed. (15), Nano Lett. (2), etc. In XAFS15, the participants contributed 18 plenary invited talks, 16 parallel invited talks, 136 oral presentations, 12 special talks, and 219 poster presentations. Wide communication was promoted in the conference halls, the classical banquet restaurant, and the Great Wall. Parallel hallCommunicationPoster room Figure 2. Parallel hallFigure 3. CommunicationFigure 4. Poster room This volume contains 136 invited and contributed papers

  9. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Liu, Peng; Ptacek, Carol J.; Blowes, David W.; Landis, Richard C.

    2016-01-01

    Highlights: • Dissolved Hg decreases by >90% with high-T biochars (600 and 700 °C). • Elevated SO 4 2− (up to 1000 mg L −1 ) is released from manure-derived biochar. • XRF results indicate Hg is distributed heterogeneously throughout biochar particles. • S XANES indicates presence of reduced and oxidized S species in biochar. • Hg EXAFS indicate Hg is bound to S atoms in biochar particle when S content is high. - Abstract: Thirty-six biochars produced from distinct feedstocks at different temperatures were evaluated for their potential to remove mercury (Hg) from aqueous solution at environmentally relevant concentrations. Concentrations of total Hg (THg) decreased by >90% in batch systems containing biochars produced at 600 and 700 °C and by 40–90% for biochars produced at 300 °C. Elevated concentrations of SO 4 2− (up to 1000 mg L −1 ) were observed in solutions mixed with manure-based biochars. Sulfur X-ray absorption near edge structure (XANES) analyses indicate the presence of both reduced and oxidized S species in both unwashed and washed biochars. Sulfur XANES spectra obtained from biochars with adsorbed Hg were similar to those of washed biochars. Micro-X-ray fluorescence mapping results indicate that Hg was heterogeneously distributed across biochar particles. Extended X-ray absorption fine structure modeling indicates Hg was bound to S in biochars with high S content and to O and Cl in biochars with low S content. The predominant mechanisms of Hg removal are likely the formation of chemical bonds between Hg and various functional groups on the biochar. This investigation provides information on the effectiveness and mechanisms of Hg removal that is critical for evaluating biochar applications for stabilization of Hg in surface water, groundwater, soils, and sediments.

  10. Mechanisms of mercury removal by biochars produced from different feedstocks determined using X-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peng [Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1 (Canada); Ptacek, Carol J., E-mail: ptacek@uwaterloo.ca [Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1 (Canada); Blowes, David W. [Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. W., Waterloo, ON N2L 3G1 (Canada); Landis, Richard C. [E I. du Pont de Nemours and Company, 974 Centre Road, Wilmington, DE 19805 (United States)

    2016-05-05

    Highlights: • Dissolved Hg decreases by >90% with high-T biochars (600 and 700 °C). • Elevated SO{sub 4}{sup 2−} (up to 1000 mg L{sup −1}) is released from manure-derived biochar. • XRF results indicate Hg is distributed heterogeneously throughout biochar particles. • S XANES indicates presence of reduced and oxidized S species in biochar. • Hg EXAFS indicate Hg is bound to S atoms in biochar particle when S content is high. - Abstract: Thirty-six biochars produced from distinct feedstocks at different temperatures were evaluated for their potential to remove mercury (Hg) from aqueous solution at environmentally relevant concentrations. Concentrations of total Hg (THg) decreased by >90% in batch systems containing biochars produced at 600 and 700 °C and by 40–90% for biochars produced at 300 °C. Elevated concentrations of SO{sub 4}{sup 2−} (up to 1000 mg L{sup −1}) were observed in solutions mixed with manure-based biochars. Sulfur X-ray absorption near edge structure (XANES) analyses indicate the presence of both reduced and oxidized S species in both unwashed and washed biochars. Sulfur XANES spectra obtained from biochars with adsorbed Hg were similar to those of washed biochars. Micro-X-ray fluorescence mapping results indicate that Hg was heterogeneously distributed across biochar particles. Extended X-ray absorption fine structure modeling indicates Hg was bound to S in biochars with high S content and to O and Cl in biochars with low S content. The predominant mechanisms of Hg removal are likely the formation of chemical bonds between Hg and various functional groups on the biochar. This investigation provides information on the effectiveness and mechanisms of Hg removal that is critical for evaluating biochar applications for stabilization of Hg in surface water, groundwater, soils, and sediments.

  11. X-ray fluorescence spectrometric and optical emission spectographic analysis of thoria in thoriated copper metal powder

    International Nuclear Information System (INIS)

    Chandola, L.C.; Khanna, P.P.

    1984-01-01

    Two methods, one using the X-ray fluorescence (XRF) spectrometric technique and another using optical emission spectrographic (OES) technique are described for the determination of thoria in the concentration range 0.5-10% in thoriated copper metal powder. The precision of XRF method is superior to OES method but when sample quantity is very small, the OES method is useful. For XRF method, 500 mg sample is mixed with boric acid binding material and converted to a tablet for analysis. For OES method, only 200 mg sample is needed which is glued to the flat ends of two graphite electrodes for excitation by AC arc. The precision obtained in XRF is better than +-1% and in OES it is +-23%. (author)

  12. X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Lyle E. [National Institute of Standards and Technology (NIST); Larson, Ben C [ORNL; Yang, Wenge [Carnegie Institution of Washington; Kassner, Michael E. [University of Southern California; Tischler, Jonathan Zachary [ORNL; Delos-Reyes, Michael A. [University of Southern California; Fields, Richard J. [National Institute of Standards and Technology (NIST); Liu, Wenjun [Argonne National Laboratory (ANL)

    2006-01-01

    The distribution of elastic strains (and thus stresses) at the sub-micrometer length scale within deformed metal single crystals has surprisingly broad implications for our understanding of important physical phenomena. These include the evolution of the complex dislocation structures that govern mechanical behavior within individual grains [1-4], the transport of dislocations through such structures [5-7], changes in mechanical properties that occur during reverse loading [8-10] (e.g. sheet metal forming), and the analyses of diffraction line profiles for microstructural studies of these phenomena [11-17]. We present the first direct, spatially-resolved measurements of the elastic strains within individual dislocation cells in copper single crystals deformed in tension and compression along <100> axes. Broad distributions of elastic strains are found, with profound implications for theories of dislocation structure evolution [4,18], dislocation transport [5-7], and the extraction of dislocation parameters from X-ray line profiles [11-17,19].

  13. X-ray diffraction phase analysis of crystalline copper corrosion products after treatment in different chloride solutions

    International Nuclear Information System (INIS)

    Chmielova, M.; Seidlerova, J.; Weiss, Z.

    2003-01-01

    The corrosion products Cu 2 (OH) 3 Cl, Cu 2 O, and CuCl 2 were identified on the surface of copper plates after their four days treating in three different sodium chloride, sodium/magnesium, and sodium/calcium chloride solutions using X-ray diffraction powder analysis. However, the quantitative proportions of individual corrosion products differ and depend on the type of chloride solution used. Treating of copper plates only in the sodium chloride solution produced the mixture of corrosion products where Cu 2 O is prevailing over the Cu 2 (OH) 3 Cl and CuCl 2 was not identified. The sample developed after treating of the cooper surface in the sodium/magnesium chloride solution contains Cu 2 (OH) 3 Cl and CuCl 2 prevailing over the Cu 2 O, while the sample developed after treatment of copper in sodium/calcium chloride solution contains Cu 2 (OH) 3 Cl prevailing over CuCl 2 and Cu 2 O was not identified

  14. X-ray absorption imaging of Hg vapour in a ceramic metal-halide lamp using synchrotron radiation

    International Nuclear Information System (INIS)

    Curry, J J; Adler, H G; MacPhee, A; Narayanan, S; Wang, J

    2004-01-01

    The diagnostic technique of x-ray absorption imaging of Hg vapour in high-intensity discharge lamps has been extended. X-ray absorption imaging has been used previously to determine the time-averaged absolute Hg density (Curry J J, Sakai M and Lawler J E 1998 J. Appl. Phys. 84 3066). Now, using an intensified charge-coupled device detector and synchrotron radiation, time-resolved measurements have been made. Although no significant time-dependence was seen as a function of the electrical phase for an electronically ballasted lamp, real-time observations were made of the decaying Hg density during the cool-down period. The cold-spot temperature in a 150 W ceramic lamp containing Hg and rare-earth iodides decreased with a time constant of 48.4 s following arc extinction. The primary limitation to the sensitivity of these measurements has been identified, and methods for overcoming this limitation in future work are proposed. Other aspects of the technique are also discussed

  15. First-principles X-ray absorption dose calculation for time-dependent mass and optical density.

    Science.gov (United States)

    Berejnov, Viatcheslav; Rubinstein, Boris; Melo, Lis G A; Hitchcock, Adam P

    2018-05-01

    A dose integral of time-dependent X-ray absorption under conditions of variable photon energy and changing sample mass is derived from first principles starting with the Beer-Lambert (BL) absorption model. For a given photon energy the BL dose integral D(e, t) reduces to the product of an effective time integral T(t) and a dose rate R(e). Two approximations of the time-dependent optical density, i.e. exponential A(t) = c + aexp(-bt) for first-order kinetics and hyperbolic A(t) = c + a/(b + t) for second-order kinetics, were considered for BL dose evaluation. For both models three methods of evaluating the effective time integral are considered: analytical integration, approximation by a function, and calculation of the asymptotic behaviour at large times. Data for poly(methyl methacrylate) and perfluorosulfonic acid polymers measured by scanning transmission soft X-ray microscopy were used to test the BL dose calculation. It was found that a previous method to calculate time-dependent dose underestimates the dose in mass loss situations, depending on the applied exposure time. All these methods here show that the BL dose is proportional to the exposure time D(e, t) ≃ K(e)t.

  16. Enabling liquid solvent structure analysis using hard x-ray absorption spectroscopy with a transferrable microfluidic reactor

    Science.gov (United States)

    Zheng, Jian; Zhang, Wei; Wang, Feng; Yu, Xiao-Ying

    2018-05-01

    In this paper, a vacuum compatible microfluidic device, system for analysis at the liquid vacuum interface, is integrated to hard x-ray absorption spectroscopy to obtain the local structure of K3[Fe(CN)6] in aqueous solutions with three concentrations of 0.5 M, 0.05 M, and 0.005 M. The solutions were sealed in a microchannel 500 µm wide and 300 µm deep in a portable microfluidic device. The Fe K-edge x-ray absorption spectra indicate a presence of Fe(III) in the complex in water, with an octahedral geometry coordinated with 6 C atoms in the first shell with a distance of ~1.92 Å and 6 N atoms in the second shell with a distance of ~3.10 Å. Varying the concentration has no observable influence on the structure of K3[Fe(CN)6]. Our results demonstrate the feasibility of using microfluidic based liquid cells in large synchrotron facilities. Using portable microfludic reactors provides a viable approach to enable multifaceted measurements of liquids in the future.

  17. Enabling liquid solvent structure analysis using hard x-ray absorption spectroscopy with a transferrable microfluidic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jian; Zhang, Wei; Wang, Feng; Yu, Xiao-Ying

    2018-04-11

    In this paper, a vacuum compatible microfluidic device, System for Analysis at the Liquid Vacuum Interface (SALVI), is integrated to hard x-ray absorption spectroscopy (XAS) to obtain the local structure of K3[Fe(CN)6] in aqueous solutions with three concentrations of 0.5 M, 0.05 M, and 0.005 M. The solutions were sealed in a microchannel of 500 μm wide and 300 µm deep in a portable microfluidic device. The Fe K-edge x-ray absorption spectra show that the complex in water is Fe(III). The complex is present with octahedral geometry coordinated with 6 C atoms in the first shell with a distance of ~1.92 Å and 6 N atoms in the second shell with a distance of ~3.10 Å. Varying the concentration has no observable influence on the structure of K3[Fe(CN)6]. Our results demonstrate the feasibility of using microfluidic based liquid cells in large synchrotron facilities and it is a viable approach to enable multifaceted measurements of liquids in the future.

  18. Study of Cr(VI) adsorption onto magnetite nanoparticles using synchrotron-based X-ray absorption spectroscopy

    Science.gov (United States)

    Chen, Yen-Hua; Liu, Dian-Yu; Lee, Jyh-Fu

    2018-04-01

    In this study, the efficiency of Cr(VI) adsorption onto nano-magnetite was examined by batch experiments, and the Cr(VI) adsorption mechanism was investigated using synchrotron-based X-ray absorption spectroscopy. Magnetite nanoparticles with a mean diameter of 10 nm were synthesized using an inexpensive and simple co-precipitation method. It shows a saturation magnetization of 54.3 emu/g, which can be recovered with an external magnetic field. The adsorption data fitted the Langmuir adsorption isotherm well, implying a monolayer adsorption behavior of Cr(VI) onto nano-magnetite. X-ray absorption spectroscopy results indicate that the adsorption mechanism involves electron transfer between Fe(II) in nano-magnetite (Fe2+OFe3+ 2O3) and Cr(VI) to transform into Cr(III), which may exist as an Fe(III)-Cr(III) mixed solid phase. Moreover, the Cr(III)/Cr(VI) ratio in the final products can be determined by the characteristic pre-edge peak area of Cr(VI) in the Cr K-edge spectrum. These findings suggest that nano-magnetite is effective for Cr(VI) removal from wastewater because it can transform highly poisonous Cr(VI) species into nontoxic Cr(III) compounds, which are highly insoluble and immobile under environmental conditions.

  19. In operando observation system for electrochemical reaction by soft X-ray absorption spectroscopy with potential modulation method

    International Nuclear Information System (INIS)

    Nagasaka, Masanari; Kosugi, Nobuhiro; Yuzawa, Hayato; Horigome, Toshio

    2014-01-01

    In order to investigate local structures of electrolytes in electrochemical reactions under the same scan rate as a typical value 100 mV/s in cyclic voltammetry (CV), we have developed an in operando observation system for electrochemical reactions by soft X-ray absorption spectroscopy (XAS) with a potential modulation method. XAS spectra of electrolytes are measured by using a transmission-type liquid flow cell with built-in electrodes. The electrode potential is swept with a scan rate of 100 mV/s at a fixed photon energy, and soft X-ray absorption coefficients at different potentials are measured at the same time. By repeating the potential modulation at each fixed photon energy, it is possible to measure XAS of electrochemical reaction at the same scan rate as in CV. We have demonstrated successful measurement of the Fe L-edge XAS spectra of aqueous iron sulfate solutions and of the change in valence of Fe ions at different potentials in the Fe redox reaction. The mechanism of these Fe redox processes is discussed by correlating the XAS results with those at different scan rates

  20. Experimental and theoretical study of X-ray absorption around the chlorine L edge in vinyl chloride

    International Nuclear Information System (INIS)

    Kawerk, Elie; Carniato, Stéphane; Iwayama, Hiroshi; Shigemasa, Eiji; Piancastelli, Maria Novella; Wassaf, Joseph; Khoury, Antonio; Simon, Marc

    2013-01-01

    Highlights: ► We measured the X-ray absorption spectrum of C 2 H 3 Cl around the chlorine L edge. ► Ab-initio calculations of the spectrum shed light on eventual electronic resonances. ► Vibrational substructures for particular core excited states are considered. ► The potential energy surfaces of the core excited electronic states are evaluated. ► Sharp or narrow spectral bands are associated to bound or dissociative surfaces. -- Abstract: We present a combined experimental and theoretical study of the high-resolution chlorine L edge X-ray absorption spectrum in gas-phase vinyl chloride (C 2 H 3 Cl). With the help of ab-initio calculations, we interpret the experimental spectrum and attribute each band to its corresponding electronic transitions terminating at states characterized by an either binding or dissociative potential energy surface (PES). Vibrational substructures in some specific core-excited electronic states are taken into account

  1. Experimental and theoretical study of X-ray absorption around the chlorine L edge in vinyl chloride

    Energy Technology Data Exchange (ETDEWEB)

    Kawerk, Elie, E-mail: elie.kawerk@etu.upmc.fr [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Université Libanaise, Faculté des Sciences II Fanar, Laboratoire de Physique Appliquée, 90656 Jdeidet el Metn (Lebanon); Carniato, Stéphane [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Iwayama, Hiroshi; Shigemasa, Eiji [Ultraviolet Synchrotron Orbital Radiation Facility, Institute for Molecular Science, Okazaki 444-8585 (Japan); Piancastelli, Maria Novella [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France); Wassaf, Joseph; Khoury, Antonio [Université Libanaise, Faculté des Sciences II Fanar, Laboratoire de Physique Appliquée, 90656 Jdeidet el Metn (Lebanon); Simon, Marc [Université Pierre et Marie Curie, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 11 rue Pierre et Marie Curie, 75231 Paris Cedex 05 (France)

    2013-02-15

    Highlights: ► We measured the X-ray absorption spectrum of C{sub 2}H{sub 3}Cl around the chlorine L edge. ► Ab-initio calculations of the spectrum shed light on eventual electronic resonances. ► Vibrational substructures for particular core excited states are considered. ► The potential energy surfaces of the core excited electronic states are evaluated. ► Sharp or narrow spectral bands are associated to bound or dissociative surfaces. -- Abstract: We present a combined experimental and theoretical study of the high-resolution chlorine L edge X-ray absorption spectrum in gas-phase vinyl chloride (C{sub 2}H{sub 3}Cl). With the help of ab-initio calculations, we interpret the experimental spectrum and attribute each band to its corresponding electronic transitions terminating at states characterized by an either binding or dissociative potential energy surface (PES). Vibrational substructures in some specific core-excited electronic states are taken into account.

  2. Absorption corrections for x-ray fluorescence analysis of environmental samples

    International Nuclear Information System (INIS)

    Bazan, F.; Bonner, N.A.

    1975-01-01

    The discovery of a very simple and useful relationship between the absorption coefficient of a particular element and the ratio of incoherent to coherent scattering by the sample containing the element is discussed. By measuring the absorption coefficients for a few elements in a few samples, absorption coefficients for many elements in an entire set of similar samples can be obtained. (auth)

  3. Absorption corrections for x-ray fluorescence analysis of environmental samples

    International Nuclear Information System (INIS)

    Bazan, F.; Bonner, N.A.

    1976-01-01

    The discovery of a very simple and useful relationship between the absorption coefficient of a particular element and the ratio of incoherent to coherent scattering by the sample containing the element is discussed. By measuring the absorption coefficients for a few elements in a few samples, absorption coefficients for many elements in an entire set of similar samples can be obtained

  4. Soft x-ray absorption and emission spectra and the electronic structure of some exotic materials

    International Nuclear Information System (INIS)

    Ederer, D.L.; Canfield, L.R.; Callcott, T.A.; Tsang, K.L.; Zhang, C.H.; Arakawa, E.T.

    1988-01-01

    The technique of soft x-ray fluorescence spectroscopy (SXE) is complimentary to that of photoemission spectroscopy (PES). SXE probes the local partial density of states (PDOS), selects dipole allowed symmetries, and is not necessarily surface sensitive. PES on the other hand, averages over the DOS and can be used to measure the dispersion of the energy bands. PES is also very surface sensitive. We present measurements on the high T/sub c/ superconductors, the quasicrystalline phase of AlMn, and the LiAl intermetallic alloy. These measurements provide insight for theoretical modeling. In the case of the high T/sub c/ compound and the intermetallic compound the measurements are in good agreement with the theory. However, for the quasicrystals the measurements provide new insights to challenge theory. 13 refs., 3 figs

  5. The problem of channel dependence in foil-absorption X-ray spectroscopy

    International Nuclear Information System (INIS)

    Rodriguez-Trelles, F.; Caputo, M.C.

    1986-01-01

    We analyze the interdependence among measurements of X-ray spectra in the energy range 4-60 keV by a multi-channel instrument. Two methods of estimating it are described. One gives the error magnification expected in spectrum deconvolution resulting from the covariance matrix of the products of filter transmission times detector sensitivity, evaluated over the whole accessible range of photon energies. The other is an extension of the former evaluating the covariance matrices over consecutive energy bands. This extension allows one to analyze channel dependence for each band, thus improving the prospects of filter and detector selection in the design of an experiment. We present tables showing the expected behaviors of several combinations of filters (homogeneous, heterogeneous, doublets, Ross) and detectors (flat, film, diodes). The advantages of heterogeneous filters are emphasized. (orig.)

  6. Local versus global electronic properties of chalcopyrite alloys: X-ray absorption spectroscopy and ab initio calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento-Pérez, Rafael; Botti, Silvana, E-mail: silvana.botti@univ-lyon1.fr [Institut Lumière Matière and ETSF, UMR5306 Université Lyon 1-CNRS, Université de Lyon, F-69622 Villeurbanne Cedex (France); Schnohr, Claudia S., E-mail: c.schnohr@uni-jena.de [Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Lauermann, Iver [Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109 Berlin (Germany); Rubio, Angel [Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de Física de Materiales, Centro de Física de Materiales CSIC-MPC and DIPC, Universidad del País Vasco UPV/EHU, Avenida de Tolosa 72, E-20018 San Sebastián (Spain); Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany); Johnson, Benjamin, E-mail: benjamin.johnson@alumni.tu-berlin.de [Fritz Haber Institute, Max Planck Society, Faradayweg 4-6, 14195 Berlin (Germany)

    2014-09-07

    Element-specific unoccupied electronic states of Cu(In, Ga)S{sub 2} were studied as a function of the In/Ga ratio by combining X-ray absorption spectroscopy with density functional theory calculations. The S absorption edge shifts with changing In/Ga ratio as expected from the variation of the band gap. In contrast, the cation edge positions are largely independent of composition despite the changing band gap. This unexpected behavior is well reproduced by our calculations and originates from the dependence of the electronic states on the local atomic environment. The changing band gap arises from a changing spatial average of these localized states with changing alloy composition.

  7. Double resonance capacitance spectroscopy (DORCAS): A new experimental technique for assignment of X-ray absorption peaks to surface sites of semiconductor

    CERN Document Server

    Ishii, M

    2003-01-01

    As a new microspectroscopy for semiconductor surface analysis using an X-ray beam, double resonance capacitance spectroscopy (DORCAS) is proposed. For a microscopic X-ray absorption measurement, a local capacitance change owing to X-ray induced emission of localized electrons is detected by a microprobe. The applied bias voltage V sub b dependence of the capacitance also provides information on the surface density of state. The resonance of the Fermi energy with a surface level by V sub b control makes possible the selection of the observable surface site in the X-ray absorption measurements, i.e. site-specific spectroscopy. The double resonance of the surface site selection (V sub b resonance) and the resonant X-ray absorption of the selected site (photon energy h nu resonance) enhances the capacitance signal. The DORCAS measurement of the GaAs surface shows correlation peaks at h nu=10.402 keV and V sub b =-0.4 V and h nu=10.429 keV and V sub b =+0.1 V, indicating that these resonant X-ray absorption peaks ...

  8. A total content X-ray fluorescence method for copper prospecting

    International Nuclear Information System (INIS)

    Zhou Sichun; Xie Tingzhou; Ge Liangquan

    1992-01-01

    A new method is proposed to prospect copper deposits with portable XRF analyzer. The method is based on the close relation between Cu and the chalcophile elements or some other elements in the geochemical anomalies of a Cu deposit. Applications of the technique in Northeast China are presented

  9. Combining Sequential Extractions and X-ray Absorption Spectroscopy for Quantitative and Qualitative Zinc Speciation in Soil

    Science.gov (United States)

    Bauer, Tatiana; Minkina, Tatiana; Batukaev, Abdulmalik; Nevidomskaya, Dina; Burachevskaya, Marina; Tsitsuashvili, Viktoriya; Urazgildieva, Kamilya

    2017-04-01

    The combined use of X-ray absorption spectrometry and extractive fractionation is an effective approach for studying the interaction of metal ions with soil compounds and identifying the phases-carriers of metals in soil and their stable fixation. These studies were carried out using the technique of X-ray absorption spectroscopy and chemical extractive fractionation. In a model experiment the samples taken in Calcic Chernozem were artificially contaminated with higher portion of Zn(NO3)2 (2000 mg/kg). The metal were incubated in soil samples for 2 year. The samples of soil mineral and organic phases (calcite, kaolinite, bentonite, humic acids) were saturated with Zn2+ from a solution of nitrate salts of metal. The total content of Zn in soil and soil various phases was determined using the X-ray fluorescence method. Extended X-ray absorption fine structure (EXAFS) Zn was measured at the Structural Materials Science beamline of the Kurchatov Center for Synchrotron Radiation. Sequential fractionation of Zn in soil conducted by Tessier method (Tessier et al., 1979) which determining 5 fractions of metals in soil: exchangeable, bound to Fe-Mn oxide, bound to carbonate, bound to the organic matter, and bound to silicate (residual). This methodology has so far more than 4000 citations (Web of Science), which demonstrates the popularity of this approach. Much Zn compounds are contained in uncontaminated soils in stable primary and secondary silicates inherited from the parental rocks (67% of the total concentrations in all fractions), which is a regional trait of soils in the fore-Caucasian plain. Extracted fractionation of metal compounds in soil samples, artificially contaminated with Zn salts, indicates the priority holding of Zn2+ ions by silicates, carbonates and Fe-Mn oxides. The Zn content significantly increases in the exchangeable fraction. Atomic structure study of the soil various phases saturated with Zn2+ ion by using (XANES) X-ray absorption spectroscopy

  10. Analysis of heavy metals and minerals elements in the turmeric using Total-Reflection X-ray Fluorescence analysis technique and Atomic Absorption Spectrometry

    International Nuclear Information System (INIS)

    Andriamisetra, V.M.Z.

    2014-01-01

    Currently, many studies demonstrate anti-cancer and anti-inflammatory benefits of turmeric. The aims of this work is to perform analysis of metals such as calcium, chromium, manganese, iron, cobalt, nickel, copper, zinc, arsenic, bromine, rubidium, strontium, cadmium and lead in the turmeric collected from various places in Madagascar. The analysis by total reflection X-ray fluorescence technique is used to determine the concentrations of heavy metals, while the atomic absorption spectrometry is used for the determination of trace elements. Analysis results show that the concentration of calcium in the turmeric is very high, its average concentration is 1025.8 mg.kg -1 . The average concentrations of manganese, of copper and of iron are respectively 44.7 mg.kg -1 ; 19.7 mg.kg -1 and 53.6 mg.kg -1 . The average concentrations of zinc, of rubidium and of strontium are respectively 17.3 mg.kg -1 ; 35.2 mg.kg -1 and 21.7 mg.kg -1 [fr

  11. Ultrathin copper aluminum and nickel aluminide protective oxidation studied with an x-ray photoelectron spectrometer

    Science.gov (United States)

    Moore, J. F.; McCann, M. P.; Pellin, M. J.; Zinovev, A.; Hryn, J. N.

    2003-09-01

    Oxidation in a regime where diffusion is rapid and pressures are low is addressed. Kinetic effects under these conditions are minimized and a protective oxide film of near-equilibrium composition that is a few nanometers thick may form. Ultrathin oxides have great potential for addressing the corrosion resistance of metals, since they do not always suffer stress-induced cracking upon thermal cycling, and can be reformed under high temperature, oxidizing environments. Ultrathin oxide films are also preferable to those on a thick oxide scale for electrochemical applications due to their electrical properties. To study the growth of these oxide films, we have developed a high signal x-ray photoelectron spectrometer. The instrument can measure the near-surface composition during growth under oxygen partial pressures of up to 10-5 mbar and surface temperatures up to 1300 K. Under these conditions, films grow to a level of 3 nm in 1 h. Experiments with Cu-Al alloys show rapid segregation of Al upon oxygen exposure at 875 K, whereas exposures at lower temperatures result in a mixed oxide. With a Ni-Al intermetallic, higher temperatures were needed to preferentially segregate Al. Thermal cycling followed by exposure to chlorine in the same instrument is used as a measure of the degree of corrosion resistance of the oxides in question.

  12. Indentation Size Effects in Single Crystal Copper as Revealed by Synchrotron X-ray Microdiffraction

    Energy Technology Data Exchange (ETDEWEB)

    Feng, G.; Budiman, A. S.; Nix, W. D.; Tamura, N.; Patel, J. R.

    2007-11-19

    The indentation size effect (ISE) has been observed in numerous nanoindentation studies on crystalline materials; it is found that the hardness increases dramatically with decreasing indentation size - a 'smaller is stronger' phenomenon. Some have attributed the ISE to the existence of strain gradients and the geometrically necessary dislocations (GNDs). Since the GND density is directly related to the local lattice curvature, the Scanning X-ray Microdiffraction ({mu}SXRD) technique, which can quantitatively measure relative lattice rotations through the streaking of Laue diffractions, can used to study the strain gradients. The synchrotron {mu}SXRD technique we use - which was developed at the Advanced Light Source (ALS), Berkeley Lab - allows for probing the local plastic behavior of crystals with sub-micrometer resolution. Using this technique, we studied the local plasticity for indentations of different depths in a Cu single crystal. Broadening of Laue diffractions (streaking) was observed, showing local crystal lattice rotation due to the indentation-induced plastic deformation. A quantitative analysis of the streaking allows us to estimate the average GND density in the indentation plastic zones. The size dependence of the hardness, as found by nanoindentation, will be described, and its correlation to the observed lattice rotations will be discussed.

  13. X ray Production. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Nowotny, R. [Medical University of Vienna, Vienna (Austria)

    2014-09-15

    The differential absorption of X rays in tissues and organs, owing to their atomic composition, is the basis for the various imaging methods used in diagnostic radiology. The principles in the production of X rays have remained the same since their discovery. However, much refinement has gone into the design of X ray tubes to achieve the performance required for today’s radiological examinations. In this chapter, an outline of the principles of X ray production and a characterization of the radiation output of X ray tubes will be given. The basic processes producing X rays are dealt with in Section 1.4.

  14. X-ray spectrum microanalysis of copper and stainless steel surface layer after electroerosion machining

    International Nuclear Information System (INIS)

    Abdukarimov, Eh.T.; Saidinov, S.Ya.

    1989-01-01

    The results of experimental investigations of the surface layer of copper and steel 12Kh18N10T after electroerrosion treatment by a rotating tungsten electrode in natural and distilled water are presented. It is established that the quantity of electrode material transferred to the surface of the steel treated grows with the spark discharge energy increase. Tungsten concentration in the surface layer reaches 5-10% with the average depth of penetration 40-50 μm

  15. Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water.

    Science.gov (United States)

    Zhovtobriukh, Iurii; Besley, Nicholas A; Fransson, Thomas; Nilsson, Anders; Pettersson, Lars G M

    2018-04-14

    The connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b 1 ) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterized by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b 1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b 1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b 1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.

  16. Relationship between x-ray emission and absorption spectroscopy and the local H-bond environment in water

    Science.gov (United States)

    Zhovtobriukh, Iurii; Besley, Nicholas A.; Fransson, Thomas; Nilsson, Anders; Pettersson, Lars G. M.

    2018-04-01

    The connection between specific features in the water X-ray absorption spectrum and X-ray emission spectrum (XES) and the local H-bond coordination is studied based on structures obtained from path-integral molecular dynamics simulations using either the opt-PBE-vdW density functional or the MB-pol force field. Computing the XES spectrum using all molecules in a snapshot results in only one peak in the lone-pair (1b1) region, while the experiment shows two peaks separated by 0.8-0.9 eV. Different H-bond configurations were classified based on the local structure index (LSI) and a geometrical H-bond cone criterion. We find that tetrahedrally coordinated molecules characterized by high LSI values and two strong donated and two strong accepted H-bonds contribute to the low energy 1b1 emission peak and to the post-edge region in absorption. Molecules with the asymmetric H-bond environment with one strong accepted H-bond and one strong donated H-bond and low LSI values give rise to the high energy 1b1 peak in the emission spectrum and mainly contribute to the pre-edge and main-edge in the absorption spectrum. The 1b1 peak splitting can be increased to 0.62 eV by imposing constraints on the H-bond length, i.e., for very tetrahedral structures short H-bonds (less than 2.68 Å) and for very asymmetric structures elongated H-bonds (longer than 2.8 Å). Such structures are present, but underrepresented, in the simulations which give more of an average of the two extremes.

  17. Measurements of void fraction in a water-molten tin system by X-ray absorption

    International Nuclear Information System (INIS)

    Baker, Michael C.; Bonazza, Riccardo; Corradini, Michael L.

    1998-01-01

    A facility has been developed to study the explosive interactions of gas-water injection into a molten tin pool. The experimental apparatus allows for variable nitrogen gas and water injection into the base of a steel tank containing up to 25 kg of molten tin. Due to the opaque nature of the molten metal-gas-water mixture and steel tank, a visualization and measurement technique using continuous high energy x-rays had to be developed. Visualization of the multiphase mixture can be done at 220 Hz with 256x256 pixel resolution or at 30 Hz with 480x1128 pixel resolution. These images are stored digitally and subsequently processed to obtain two dimensional mappings of the chordal average void fraction in the mixture. The image processing method has been used to measure void fraction in experiments that did not include water in the injection mixture. This work includes a comparison to previous studies of integral void fraction data in pools of molten metal with gas injection. (author)

  18. Electrochemical kinetics and X-ray absorption spectroscopy investigations of select chalcogenide electrocatalysts for oxygen reduction reaction applications

    International Nuclear Information System (INIS)

    Ziegelbauer, Joseph M.; Murthi, Vivek S.; O'Laoire, Cormac; Gulla, Andrea F.; Mukerjee, Sanjeev

    2008-01-01

    Transition metal-based chalcogenide electrocatalysts exhibit a promising level of performance for oxygen reduction reaction applications while offering significant economic benefits over the state of the art Pt/C systems. The most active materials are based on Ru x Se y clusters, but the toxicity of selenium will most likely limit their embrace by the marketplace. Sulfur-based analogues do not suffer from toxicity issues, but suffer from substantially less activity and stability than their selenium brethren. The structure/property relationships that result in these properties are not understood due to ambiguities regarding the specific morphologies of Ru x S y -based chalcogenides. To clarify these properties, an electrochemical kinetics study was interpreted in light of extensive X-ray diffraction, scanning electron microscopy, and in situ X-ray absorption spectroscopy evaluations. The performance characteristics of ternary M x Ru y S z /C (M = Mo, Rh, or Re) chalcogenide electrocatalysts synthesized by the now-standard low-temperature nonaqueous (NA) route are compared to commercially available (De Nora) Rh- and Ru-based systems. Interpretation of performance differences is made in regards to bulk and surface properties of these systems. In particular, the overall trends of the measured activation energies in respect to increasing overpotential and the gross energy values can be explained in regards to these differences

  19. Monopeptide versus Monopeptoid: Insights on Structure and Hydration of Aqueous Alanine and Sarcosine via X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Uejio, Janel S.; Schwartz, Craig P.; Duffin, Andrew M.; England, Alice; Prendergast, David; Saykally, Richard J.

    2009-11-19

    Despite the obvious significance, the aqueous interactions of peptides remain incompletely understood. Their synthetic analogues called peptoids (poly-N-substituted glycines), have recently emerged as a promising biomimetic material, particularly due to their robust secondary structure and resistance to denaturation. We describe comparative near-edge x-ray absorption fine structure (NEXAFS) spectroscopy studies of aqueous sarcosine, the simplest peptoid, and alanine, its peptide isomer, interpreted by density functional theory calculations. The sarcosine nitrogen K-edge spectrum is blue-shifted with respect to that of alanine, in agreement with our calculations; we conclude that this shift results primarily from the methyl group substitution on the nitrogen of sarcosine. Our calculations indicate that the nitrogen K-edge spectrum of alanine differs significantly between dehydrated and hydrated scenarios, while that of the sarcosine zwitterion is less affected by hydration. In contrast, the computed sarcosine spectrum is greatly impacted by conformational variations, while the alanine spectrum is not. This relates to a predicted solvent dependence for alanine, as compared to sarcosine. Additionally, we show the theoretical nitrogen K-edge spectra to be sensitive to the degree of hydration, indicating that experimental X-ray spectroscopy may be able to distinguish between bulk and partial hydration, such as found in confined environments near proteins and in reverse micelles.

  20. Fluorescence detection of white-beam X-ray absorption anisotropy: towards element-sensitive projections of local atomic structure

    Science.gov (United States)

    Korecki, P.; Tolkiehn, M.; Dąbrowski, K. M.; Novikov, D. V.

    2011-01-01

    Projections of the atomic structure around Nb atoms in a LiNbO3 single crystal were obtained from a white-beam X-ray absorption anisotropy (XAA) pattern detected using Nb K fluorescence. This kind of anisotropy results from the interference of X-rays inside a sample and, owing to the short coherence length of a white beam, is visible only at small angles around interatomic directions. Consequently, the main features of the recorded XAA corresponded to distorted real-space projections of dense-packed atomic planes and atomic rows. A quantitative analysis of XAA was carried out using a wavelet transform and allowed well resolved projections of Nb atoms to be obtained up to distances of 10 Å. The signal of nearest O atoms was detected indirectly by a comparison with model calculations. The measurement of white-beam XAA using characteristic radiation indicates the possibility of obtaining element-sensitive projections of the local atomic structure in more complex samples. PMID:21997909