WorldWideScience

Sample records for copper wire arrays

  1. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  2. Observation of >400-eV precursor plasmas from low-wire-number copper arrays at the 1-MA zebra facility.

    Science.gov (United States)

    Coverdale, C A; Safronova, A S; Kantsyrev, V L; Ouart, N D; Esaulov, A A; Deeney, C; Williamson, K M; Osborne, G C; Shrestha, I; Ampleford, D J; Jones, B

    2009-04-17

    Experiments with cylindrical copper wire arrays at the 1-MA Zebra facility show that high temperatures exist in the precursor plasmas formed when ablated wire array material accretes on the axis prior to the stagnation of a z pinch. In these experiments, the precursor radiated approximately 20% of the >1000 eV x-ray output, and time-resolved spectra show substantial emission from Cu L-shell lines. Modeling of the spectra shows an increase in temperature as the precursor forms, up to approximately 450 eV, after which the temperature decreases to approximately 220-320 eV until the main implosion.

  3. Effect of wire shape on wire array discharge

    International Nuclear Information System (INIS)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M.; Teramoto, Y.; Katsuki, S.; Akiyama, H.

    2001-01-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  4. Effect of wire shape on wire array discharge

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, N.; Tanaka, Y.; Yushita, Y.; Nagata, M. [University of Tokushima, Department of Electrical and Electronic Engineering, Tokushima (Japan); Teramoto, Y.; Katsuki, S.; Akiyama, H. [Kumamoto University, Department of Electrical and Computer Engineering, Kumamoto (Japan)

    2001-09-01

    Although considerable investigations have been reported on z-pinches to achieve nuclear fusion, little attention has been given from the point of view of how a wire array consisting of many parallel wires explodes. Instability existing in the wire array discharge has been shown. In this paper, the effect of wire shape in the wire array on unstable behavior of the wire array discharge is represented by numerical analysis. The claws on the wire formed in installation of wire may cause uniform current distribution on wire array. The effect of error of wire diameter in production is computed by Monte Carlo Method. (author)

  5. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  6. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  7. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  8. Experimental investigation of industrial copper deformed by wire ...

    African Journals Online (AJOL)

    drawing on microstructure and physical properties of industrial copper wires. Copper wires were provided by E.N.I.CA.Biskra (Algeria). We investigated some wires with different strain levels (as received, 1.20, 2.10, and ε = 3.35).

  9. Si Wire-Array Solar Cells

    Science.gov (United States)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  10. Prediction of grain deformation in drawn copper wire

    OpenAIRE

    Chang Chao-Cheng; Wang Zi-Wei; Huang Chien-Kuo; Wu Hsu-Fu

    2015-01-01

    Most copper wire is produced using a drawing process. The crystallographic texture of copper wire, which is strongly associated with grain deformation, can have a profound effect on the formability and mechanical and electrical properties. Thus, the ability to predict grain deformation in drawn copper wire could help to elucidate the evolution of microstructure, which could be highly valuable in product design. This study developed a novel method for predicting grain deformation in drawn copp...

  11. Experimental study on underwater electrical explosion of a copper wire

    International Nuclear Information System (INIS)

    Zhou Qing; Zhang Jun; Tan Xiangyu; Ren Baozhong; Zhang Qiaogen

    2010-01-01

    Through analyzing the physical process of underwater electrical wire explosion, electrical wire explosions with copper wires were investigated underwater using pulsed voltage in the time scale of a few microseconds. A self-integrating Rogowsky coil and a voltage divider were used for current and voltage at the wire load, respectively. The shock wave pressure is measured with a piezoelectric pressure probe at the same distance. The current rise rate was adjusted by changing the applied voltage, circuit inductance, length and diameter of copper wire. The change of the current rise rate had a great effect on the process of underwater electrical wire explosion with copper wires. At last, the effect of discharge voltage, circuit inductance, length and diameter of copper wire were obtained on the explosion voltage and current as well as shock wave pressure. (authors)

  12. Influences of Corrosive Sulfur on Copper Wires and Oil-Paper Insulation in Transformers

    Directory of Open Access Journals (Sweden)

    Jian Li

    2011-10-01

    Full Text Available Oil-impregnated paper is widely used in power transmission equipment as a reliable insulation. However, copper sulphide deposition on oil-paper insulation can lead to insulation failures in power transformers. This paper presents the influences of copper sulfur corrosion and copper sulphide deposition on copper wires and oil-paper insulation in power transformers. Thermal aging tests of paper-wrapped copper wires and bare copper wires in insulating oil were carried out at 130 °C and 150 °C in laboratory. The corrosive characteristics of paper-wrapped copper wires and bare copper wires were analyzed. Dielectric properties of insulation paper and insulating oil were also analyzed at different stages of the thermal aging tests using a broadband dielectric spectrometer. Experiments and analysis results show that copper sulfide deposition on surfaces of copper wires and insulation paper changes the surface structures of copper wires and insulation paper. Copper sulfur corrosion changes the dielectric properties of oil-paper insulation, and the copper sulfide deposition greatly reduces the electrical breakdown strength of oil-paper insulation. Metal passivator is capable of preventing copper wires from sulfur corrosion. The experimental results are helpful for investigations for fault diagnosis of internal insulation in power transformers.

  13. Nearly 60% Copper Rod & Wire Companies Neutral about Future Copper Price

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>How about the trend of copper price recently? According to the survey result of Shanghai Metals Market, amongst 21 domestic copper rod & wire companies, 57% of the companies are neutral about the future copper price, while 14% and 19% of the companies consider that

  14. Synthesis of Commercial Products from Copper Wire-Drawing Waste

    Science.gov (United States)

    Ayala, J.; Fernández, B.

    2014-06-01

    Copper powder and copper sulfate pentahydrate were obtained from copper wire-drawing scale. The hydrometallurgical recycling process proposed in this article yields a high-purity copper powder and analytical grade copper sulfate pentahydrate. In the first stage of this process, the copper is dissolved in sulfuric acid media via dismutation of the scale. In the second stage, copper sulfate pentahydrate is precipitated using ethanol. Effects such as pH, reaction times, stirring speed, initial copper concentration, and ethanol/solution volume ratio were studied during the precipitation from solution reaction. The proposed method is technically straightforward and provides efficient recovery of Cu from wire-drawing scale.

  15. Theory of wire number scaling in wire-array Z pinches

    International Nuclear Information System (INIS)

    Desjarlais, M.P.; Marder, B.M.

    1999-01-01

    Pulsed-power-driven Z pinches, produced by imploding cylindrical arrays of many wires, have generated very high x-ray radiation powers (>200 TW) and energies (2 MJ). Experiments have revealed a steady improvement in Z-pinch performance with increasing wire number at fixed total mass and array radius. The dominant mechanism acting to limit the performance of these devices is believed to be the Rayleigh-Taylor instability which broadens the radially imploding plasma sheath and consequently reduces the peak radiation power. A model is presented which describes an amplification over the two-dimensional Rayleigh-Taylor growth rate brought about by kink-like forces on the individual wires. This amplification factor goes to zero as the number of wires approaches infinity. This model gives results which are in good agreement with the experimental data and provides a scaling for wire-array Z pinches. copyright 1999 American Institute of Physics

  16. PRODUCTION OF ELECTROTECHNICAL WIRE OF SCRAP AND COPPER WASTES

    Directory of Open Access Journals (Sweden)

    I. P. Volchok

    2006-01-01

    Full Text Available Chemical composition, structure and properties of copper upon base steps of wire production technology (melting of anode copper with using of scrap and waste, electrolitical refining, producing of rod by continuous casting, manufacture of electrotechnical wire and fibres is described.

  17. Wire Array Solar Cells: Fabrication and Photoelectrochemical Studies

    Science.gov (United States)

    Spurgeon, Joshua Michael

    Despite demand for clean energy to reduce our addiction to fossil fuels, the price of these technologies relative to oil and coal has prevented their widespread implementation. Solar energy has enormous potential as a carbon-free resource but is several times the cost of coal-produced electricity, largely because photovoltaics of practical efficiency require high-quality, pure semiconductor materials. To produce current in a planar junction solar cell, an electron or hole generated deep within the material must travel all the way to the junction without recombining. Radial junction, wire array solar cells, however, have the potential to decouple the directions of light absorption and charge-carrier collection so that a semiconductor with a minority-carrier diffusion length shorter than its absorption depth (i.e., a lower quality, potentially cheaper material) can effectively produce current. The axial dimension of the wires is long enough for sufficient optical absorption while the charge-carriers are collected along the shorter radial dimension in a massively parallel array. This thesis explores the wire array solar cell design by developing potentially low-cost fabrication methods and investigating the energy-conversion properties of the arrays in photoelectrochemical cells. The concept was initially investigated with Cd(Se, Te) rod arrays; however, Si was the primary focus of wire array research because its semiconductor properties make low-quality Si an ideal candidate for improvement in a radial geometry. Fabrication routes for Si wire arrays were explored, including the vapor-liquid-solid growth of wires using SiCl4. Uniform, vertically aligned Si wires were demonstrated in a process that permits control of the wire radius, length, and spacing. A technique was developed to transfer these wire arrays into a low-cost, flexible polymer film, and grow multiple subsequent arrays using a single Si(111) substrate. Photoelectrochemical measurements on Si wire array

  18. Effect of discrete wires on the implosion dynamics of wire array Z pinches

    International Nuclear Information System (INIS)

    Lebedev, S. V.; Beg, F. N.; Bland, S. N.; Chittenden, J. P.; Dangor, A. E.; Haines, M. G.; Kwek, K. H.; Pikuz, S. A.; Shelkovenko, T. A.

    2001-01-01

    A phenomenological model of wire array Z-pinch implosions, based on the analysis of experimental data obtained on the mega-ampere generator for plasma implosion experiments (MAGPIE) generator [I. H. Mitchell , Rev. Sci. Instrum. 67, 1533 (1996)], is described. The data show that during the first ∼80% of the implosion the wire cores remain stationary in their initial positions, while the coronal plasma is continuously jetting from the wire cores to the array axis. This phase ends by the formation of gaps in the wire cores, which occurs due to the nonuniformity of the ablation rate along the wires. The final phase of the implosion starting at this time occurs as a rapid snowplow-like implosion of the radially distributed precursor plasma, previously injected in the interior of the array. The density distribution of the precursor plasma, being peaked on the array axis, could be a key factor providing stability of the wire array implosions operating in the regime of discrete wires. The modified ''initial'' conditions for simulations of wire array Z-pinch implosions with one-dimension (1D) and two-dimensions (2D) in the r--z plane, radiation-magnetohydrodynamic (MHD) codes, and a possible scaling to a larger drive current are discussed

  19. Mass accretion and nested array dynamics from Ni-Clad Ti-Al wire array Z pinches

    International Nuclear Information System (INIS)

    Jones, Brent Manley; Jennings, Christopher A.; Coverdale, Christine Anne; Cuneo, Michael Edward; Maron, Yitzhak; LePell, Paul David; Deeney, Christopher

    2010-01-01

    Analysis of 50 mm diameter wire arrays at the Z Accelerator has shown experimentally the accretion of mass in a stagnating z pinch and provided insight into details of the radiating plasma species and plasma conditions. This analysis focused on nested wire arrays with a 2:1 (outeninner) mass, radius, and wire number ratio where Al wires were fielded on the outer array and Ni-clad Ti wires were fielded on the inner array.In this presentation, we will present analysis of data from other mixed Al/Ni-clad Ti configurations to further evaluate nested wire array dynamics and mass accretion. These additional configurations include the opposite configuration to that described above (Ni-clad Ti wires on the outer array, with Al wires on the inner array) as well as higher wire number Al configurations fielded to vary the interaction of the two arrays. These same variations were also assessed for a smaller diameter nested array configuration (40 mm). Variations in the emitted radiation and plasma conditions will be presented, along with a discussion of what the results indicate about the nested array dynamics. Additional evidence for mass accretion will also be presented.

  20. Niobium Titanium and Copper wire samples

    CERN Multimedia

    2009-01-01

    Two wire samples, both for carrying 13'000Amperes. I sample is copper. The other is the Niobium Titanium wiring used in the LHC magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable ...

  1. Physical analysis for designing nested-wire arrays on Z-pinch implosion

    International Nuclear Information System (INIS)

    Yang Zhenhua; Liu Quan; Ding Ning; Ning Cheng

    2005-01-01

    Z-pinch experiments have demonstrated that the X-ray power increases 40% with a nested-wire array compared with that with a single-layered wire array. The design of the nested-wire array on Z accelerator is studied through the implosion dynamics and the growth of RT instabilities. The analysis shows that the nested-wire array does not produce more total X-ray radiation energy than the single-layered wire array, but it obviously increases the X-ray power. The radius of the outer array of the nested-wire array could be determined based on the radius of the optimized single-layered. The masses of the outer and inner arrays could be determined by the implosion time of the nested-wire array, which is roughly the same as that of the single-layered wire array. Some suggestions are put forward which may be helpful in the nested-wire array design for Z-pinch experiments. (authors)

  2. Copper wire theft and high voltage electrical burns

    OpenAIRE

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresenc...

  3. Copper wire theft and high voltage electrical burns.

    Science.gov (United States)

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale.

  4. Copper wire theft and high voltage electrical burns

    Science.gov (United States)

    Francis, Eamon C; Shelley, Odhran P

    2014-01-01

    High voltage electrical burns are uncommon. However in the midst of our economic recession we are noticing an increasing number of these injuries. Copper wire is a valuable commodity with physical properties as an excellent conductor of electricity making it both ubiquitous in society and prized on the black market. We present two consecutive cases referred to the National Burns Unit who sustained life threatening injuries from the alleged theft of high voltage copper wire and its omnipresence on an international scale. PMID:25356371

  5. Thermal poling of multi-wire array optical fiber

    DEFF Research Database (Denmark)

    Huang, Lin; An, Honglin; Hayashi, Juliano G.

    2018-01-01

    We demonstrate in this paper thermal poling of multi-wire array fibers, which extends poling of fibers with two anodes to similar to 50 and similar to 500 wire array anodes. The second harmonic microscopy observations show that second order nonlinearity (SON) layers are developed surrounding all...... the rings of wires in the similar to 50 anode array fiber with poling of 1.8kV, 250 degrees C and 30min duration, and the outer rings of the similar to 500 anode array fiber at lower poling temperature. Our simulations based on a two-dimensional charge dynamics model confirm this can be explained...

  6. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection.

    Science.gov (United States)

    Ju, Jie; Xiao, Kai; Yao, Xi; Bai, Hao; Jiang, Lei

    2013-11-06

    Inspired by the efficient fog collection on cactus spines, conical copper wires with gradient wettability are fabricated through gradient electrochemical corrosion and subsequent gradient chemical modification. These dual-gradient copper wires' fog-collection ability is demonstrated to be higher than that of conical copper wires with pure hydrophobic surfaces or pure hydrophilic surfaces, and the underlying mechanism is also analyzed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Soft X-ray radiation parameters of nested tungsten wire array

    International Nuclear Information System (INIS)

    Ning Jiamin; Jiang Shilun; Xu Rongkun; Xu Zeping; Li Zhenghong; Yang Jianlun

    2011-01-01

    Implosions with nested tungsten wire array were performed at the Angara-5-1 facility in Russian Research Centre. The experimental results of nested tungsten wire array are compared with those of single array. Radiation parameters of nested array are discussed based on four different dynamic models. When the implosions of outer and inner wire arrays are synchronized,the relatively uniform distribution of inner layer plasma will improve the uniformity of outer layer plasma. As compared with single array, nested array has an increase of 32% in X-ray radiation power. (authors)

  8. Application of Copper Cladding Aluminum Composites in UHV Portable Earthing and Short-circuiting Wires

    Directory of Open Access Journals (Sweden)

    Zhu Jianjun

    2018-01-01

    Full Text Available Aiming at the heavy weight and inconvenience when carrying and installing copper earthing wires on the UHV transmission lines, in this paper, we present the use of copper clad aluminum(CCA composite materials as a lightweight method for UHV earthing wire conductor. Theoretical calculations and tests of the fusing current in a short time for copper and CCA material are conducted. The results show that the theoretical value of the earthing wire conductor's fusing current corresponds with the test value on condition of the conductor cross section greater than 4mm2 as well as fusing time less than 1.5s. The CCA-10 earthing wires get 36.2% weight reduction compared with copper wires.

  9. The role of oxide structure on copper wire to the rubber adhesion

    Science.gov (United States)

    Su, Yea-Yang; Shemenski, Robert M.

    2000-07-01

    Most metals have an oxide layer on the surface. However, the structure of the oxide varies with the matrix composition, and depends upon the environmental conditions. A bronze coating, nominal composition of 98.5% Cu and balance of Sn, is applied to steel wire for reinforcing pneumatic tire beads and to provide adhesion to rubber. This work studied the influence of copper oxides on the bronze coating on adhesion during vulcanization. To emphasize the oxide structures, electrolytic tough pitch (ETP) copper wire was used instead of the traditional bronze-coated tire bead wire. Experimental results confirmed the hypothesis that cuprous oxide (Cu 2O) could significantly improve bonding between copper wire and rubber, and demonstrated that the interaction between rubber and oxide layer on wire is an electrochemical reaction.

  10. Generation of ultra-fast cumulative water jets by sub-microsecond underwater electrical explosion of conical wire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Shafer, D.; Gurovich, V. Tz.; Gleizer, S.; Gruzinsky, K.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2015-12-15

    The results of experiments with underwater electrical explosion of modified conical arrays of copper and aluminum wires are presented. A pulsed generator producing a 550 kA-amplitude current with a 400 ns rise time was used in the explosion of the arrays. The array explosion generates water flows converging at the axis of the cone. This flow generates a fast-moving water jet with a velocity exceeding 1.8 × 10{sup 5 }cm/s, which was observed being ejected from the surface of the water covering the array. The positions of the water jet were measured by multiple-exposure fast framing imaging. In experiments, the apex angle of the array, the thickness of the water layer above the arrays, or the material of the wires was altered, which changed the resulting velocities and shapes of the emitted jets. A model that considers the converging stationary flow of a slightly compressible fluid is suggested. The velocities and shapes of the jets obtained by this model agree well with the experimentally measured jet velocities.

  11. Thermosonic wire bonding of gold wire onto copper pad using the saturated interfacial phenomena

    Science.gov (United States)

    Jeng, Yeau-Ren; Aoh, Jong-Hing; Wang, Chang-Ming

    2001-12-01

    Copper has been used to replace conventional aluminium interconnection to improve the performance of deep submicron integrated circuits. This study used the saturated interfacial phenomena found in thermosonic ball bonding of gold wire onto aluminium pad to investigate thermosonic ball bonding of gold wire onto copper pad. The effects of preheat temperatures and ultrasonic powers on the bonding force were investigated by using a thermosonic bonding machine and a shear tester. This work shows that under proper preheat temperatures, the bonding force of thermosonic wire bonding can be explained based on interfacial microcontact phenomena such as energy intensity, interfacial temperature and real contact area. It is clearly shown that as the energy intensity is increased, the shear force increases, reaches a maximum, and then decreases. After saturation, i.e. the establishment of maximum atomic bonding, any type of additional energy input will damage the bonding, decreasing the shear force. If the preheat temperature is not within the proper range, the interfacial saturation phenomenon does not exist. For a preload of 0.5 N and a welding time of 15 ms in thermosonic wire bonding of gold wire onto copper pads, a maximum shear force of about 0.33 N is found where the interfacial energy intensity equals 1.8×106 J m-2 for preheat temperatures of 150°C and 170°C. Moreover, the corresponding optimal ultrasonic power is about 110 units.

  12. Comparison and analysis of the efficiency of heat exchange of copper rod and copper wires current lead

    International Nuclear Information System (INIS)

    Fang, J.; Yu, T.; Li, Z.M.; Wei, B.; Qiu, M.; Zhang, H.J.

    2013-01-01

    Highlights: •An optimized design of HTS binary current leads is proposed. •Temperature distributions of two different current leads are calculated. •Experiments are done to certify the calculated temperature distributions. •The experiments proved that the copper wires increase security margins. -- Abstract: Current leads are the key components that connect the low-temperature and high temperature parts of the cryogenic system. Owing to the wide range of temperatures, current leads are the main sources of heat leakage. Since the HTS tapes have no resistance and the generated Joule heat is almost zero, HTS binary current leads can reduce heat leakage compared to the conventional leads. However, heat will still be generated and conducted to the cryogenic system through the copper parts of the HTS current leads. In order to reduce heat leakage by the copper parts of the HTS current leads, this paper presents an optimized design of the copper parts of HTS binary current leads. Inside the leads, the copper wires were applied as an alternative to the copper rod without changing the overall dimensions. Firstly, the differential function of heat transfer was derived. By solving the function, the optimum number of the copper wires and the temperature distribution of two different current leads were gotten. Then the experiment of the temperature distribution was done, and the experimental results were basically the same with the calculative results. The simulation and related experiments proved that the copper wire can increase security margins and reduce maximum temperatures under the same shunt current

  13. Comparison and analysis of the efficiency of heat exchange of copper rod and copper wires current lead

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J., E-mail: fangseer@sina.com [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Yu, T. [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Li, Z.M.; Wei, B.; Qiu, M.; Zhang, H.J. [China Electric Power Research Institute, Haidian District, Beijing (China)

    2013-11-15

    Highlights: •An optimized design of HTS binary current leads is proposed. •Temperature distributions of two different current leads are calculated. •Experiments are done to certify the calculated temperature distributions. •The experiments proved that the copper wires increase security margins. -- Abstract: Current leads are the key components that connect the low-temperature and high temperature parts of the cryogenic system. Owing to the wide range of temperatures, current leads are the main sources of heat leakage. Since the HTS tapes have no resistance and the generated Joule heat is almost zero, HTS binary current leads can reduce heat leakage compared to the conventional leads. However, heat will still be generated and conducted to the cryogenic system through the copper parts of the HTS current leads. In order to reduce heat leakage by the copper parts of the HTS current leads, this paper presents an optimized design of the copper parts of HTS binary current leads. Inside the leads, the copper wires were applied as an alternative to the copper rod without changing the overall dimensions. Firstly, the differential function of heat transfer was derived. By solving the function, the optimum number of the copper wires and the temperature distribution of two different current leads were gotten. Then the experiment of the temperature distribution was done, and the experimental results were basically the same with the calculative results. The simulation and related experiments proved that the copper wire can increase security margins and reduce maximum temperatures under the same shunt current.

  14. Electrodeposition of nickel nano wire arrays

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok Kuan Ying; Ng Inn Khuan; Nurazila Mat Zali; Siti Salwa Zainal Abidin

    2010-01-01

    Synthesis, characterization and assembly of one-dimensional nickel nano wires prepared by template directed electrodeposition are discussed in this paper. Parallel arrays of high aspect ratio nickel nano wires were electrodeposited using electrolytes with different cations and pH. The nano wires were characterized using X-ray diffractometry and scanning electron microscopy. It was found that the orientations of the electro deposited Ni nano wires were governed by the deposition current and the electrolyte conditions. Free standing nickel nano wires can be obtained by dissolving the template. Due to the magnetic nature of the nano wires, magnetic alignment was employed to assemble and position the free standing nano wires in the device structure. (author)

  15. Dynamical analysis of surface-insulated planar wire array Z-pinches

    Science.gov (United States)

    Li, Yang; Sheng, Liang; Hei, Dongwei; Li, Xingwen; Zhang, Jinhai; Li, Mo; Qiu, Aici

    2018-05-01

    The ablation and implosion dynamics of planar wire array Z-pinches with and without surface insulation are compared and discussed in this paper. This paper first presents a phenomenological model named the ablation and cascade snowplow implosion (ACSI) model, which accounts for the ablation and implosion phases of a planar wire array Z-pinch in a single simulation. The comparison between experimental data and simulation results shows that the ACSI model could give a fairly good description about the dynamical characteristics of planar wire array Z-pinches. Surface insulation introduces notable differences in the ablation phase of planar wire array Z-pinches. The ablation phase is divided into two stages: insulation layer ablation and tungsten wire ablation. The two-stage ablation process of insulated wires is simulated in the ACSI model by updating the formulas describing the ablation process.

  16. Long-Term Effects of Soldering By-Products on Nickel-Coated Copper Wire

    Science.gov (United States)

    Rolin, T. D.; Hodge, R. E.

    2008-01-01

    An analysis of thirty-year-old, down graded flight cables was conducted to determine the makeup of a green material on the surface of the shielded wire near soldered areas and to ascertain if the green material had corroded the nickel-coated copper wire. Two likely candidates were possible due to the handling and environments to which these cables were exposed. The flux used to solder the cables is known to contain abietic acid, a carboxylic acid found in many pine rosins used for the soldering process. The resulting material copper abietate is green in color and is formed during the application of heat during soldering operations. Copper (II) chloride, which is also green in color is known to contaminate flight parts and is corrosive. Data is presented that shows the material is copper abietate, not copper (II) chloride, and more importantly that the abietate does not aggressively attack nickel-plated copper wire.

  17. Plasma dynamics in aluminium wire array Z-pinch implosions

    International Nuclear Information System (INIS)

    Bland, S.N.

    2001-01-01

    The wire array Z-pinch is the world's most powerful laboratory X-ray source. An achieved power of ∼280TW has generated great interest in the use of these devices as a source of hohlraum heating for inertial confinement fusion experiments. However, the physics underlying how wire array Z-pinches implode is not well understood. This thesis presents the first detailed measurements of plasma dynamics in wire array experiments. The MAGPIE generator, with currents of up to 1.4MA, 150ns 10-90% rise-time, was used to implode arrays of 16mm diameter typically containing between 8 and 64 15μm aluminium wires. Diagnostics included: end and side-on laser probing with interferometry, schlieren and shadowgraphy channels; radial and axial streak photography; gated X-ray imaging; XUV and hard X-ray spectrometry; filtered XRDs and diamond PCDs; and a novel X-ray backlighting system to probe high density plasma. It was found that the plasma formed from the wires consisted of cold, dense cores, which ablated producing hot, low density coronal plasma. After an initial acceleration around the cores, coronal plasma streams flowed force-free towards the axis, with an instability wavelength determined by the core size. At ∼50% of the implosion time, the streams collided on axis forming a precursor plasma which appeared to be uniform, stable, and inertially confined. The existence of core-corona structure significantly affected implosion dynamics. For arrays with <64 wires, the wire cores remained in their original positions until ∼80% of the implosion time before accelerating rapidly. At 64 wires a transition in implosion trajectories to 0-D like occurred indicating a possible merger of current carrying plasma close to the cores - the cores themselves did not merge. During implosion, the cores initially developed uncorrelated instabilities that then transformed into a longer wavelength global mode of instability. The study of nested arrays (2 concentric arrays, one inside the other

  18. Studies of implosion processes of nested tungsten wire-array Z-pinch

    International Nuclear Information System (INIS)

    Ning Cheng; Ding Ning; Liu Quan; Yang Zhenhua

    2006-01-01

    Nested wire-array is a kind of promising structured-load because it can improve the quality of Z-pinch plasma and enhance the radiation power of X-ray source. Based on the zero-dimensional model, the assumption of wire-array collision, and the criterion of optimized load (maximal load kinetic energy), optimization of the typical nested wire-array as a load of Z machine at Sandia Laboratory was carried out. It was shown that the load has been basically optimized. The Z-pinch process of the typical load was numerically studied by means of one-dimensional three-temperature radiation magneto-hydrodynamics (RMHD) code. The obtained results reproduce the dynamic process of the Z-pinch and show the implosion trajectory of nested wire-array and the transfer process of drive current between the inner and outer array. The experimental and computational X-ray pulse was compared, and it was suggested that the assumption of wire-array collision was reasonable in nested wire-array Z-pinch at least for the current level of Z machine. (authors)

  19. Investigation of mechanical behavior of copper in Nb3Sn superconducting composite wire

    International Nuclear Information System (INIS)

    Hojo, M.; Matsuoka, T.; Nakamura, M.; Tanaka, M.; Adachi, T.; Ochiai, S.; Miyashita, K.

    2004-01-01

    The mechanical properties and the thermal residual stress distribution of copper in Nb 3 Sn/Cu composite superconductor were investigated in detail. The stabilizer copper was removed from the composite wire, and the stress-strain behavior of this wire was compared with that of the original composite wire. The subtraction yielded the stress-strain curves of the copper when the Bauschinger effect was taken into account. The tensile test of the composites from which about 30% and 60% of copper was removed suggested the existence of the distribution of the thermal residual stress in the stabilizer copper. When this factor was taken into account, the analytical stress-strain curve agreed well with the experimental stress-strain curve. Thus, the stress-stain behavior of each component was fully understood

  20. Deformable wire array: fiber drawn tunable metamaterials

    DEFF Research Database (Denmark)

    Fleming, Simon; Stefani, Alessio; Tang, Xiaoli

    2017-01-01

    By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated.......By fiber drawing we fabricate a wire array metamaterial, the structure of which can be actively modified. The plasma frequency can be tuned by 50% by compressing the metamaterial; recovers when released and the process can be repeated....

  1. A creative therapy in treating cavernous hemangioma of penis with copper wire.

    Science.gov (United States)

    Zhang, Dong; Zhang, Haiyang; Sun, Peng; Li, Peng; Xue, Aibing; Jin, Xunbo

    2014-10-01

    Cavernous hemangiomas of penis are rare benign lesions infrequently described in the literature. No completely satisfactory treatment has been found to correct the cosmetic deformities especially the extensive hemangiomas of corpus penis. In light of the promising application of copper wire/needle in vascular malformations, we began a clinical study to investigate the safety, feasibility, and cosmetic effect of copper wire therapy in treating cavernous hemangioma of penis. Seven patients ranging in age from 12 to 32 years with penile cavernous hemangiomas entered our study from 2005 to 2011. All patients received treatments with percutaneous copper wires. Perioperative data including mean operation time, estimated blood loss, length of copper wire retention, and length of hospital stay were analyzed. All possible complications were noted, and cosmetic result was evaluated. Patients were followed up after discharge from the hospital. All operations were successful, and no obvious complications were observed. The patients were satisfied with the aesthetic results. Follow-up time ranged from 1 to 5 years. Recurrence was discovered in a patient with the largest lesion of corpus penis 2 months after the treatment. Secondary procedure was carried out with the same technique, and no lesions were found later. The shortage of studies on this topic prevented us from defining a therapeutic reference standard. The results of our study confirmed that copper wire therapy was a simple, safe, and useful option for penile cavernous hemangioma. © 2013 International Society for Sexual Medicine.

  2. Fast commutation of high current in double wire array Z-pinch loads

    International Nuclear Information System (INIS)

    Davis, J.; Gondarenko, N.A.; Velikovich, A.L.

    1997-01-01

    A dynamic model of multi-MA current commutation in a double wire array Z-pinch load is proposed and studied theoretically. Initially, the load is configured as nested concentric wire arrays, with the current driven through the outer array and imploding it. Once the outer array or the annular plasma shell formed from it approaches the inner array, the imploded plasma might penetrate through the gaps between the wires, but the azimuthal magnetic field is trapped due to both the high conductivity of the inner wires and the inductive coupling between the two parts of the array, causing a rapid switching of the total current to the inner part of the array. copyright 1997 American Institute of Physics

  3. Seeded perturbations in wire array Z-Pinches

    International Nuclear Information System (INIS)

    Robinson, Allen Conrad; Fedin, Dmitry; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Coverdale, Christine Anne; Ouart, Nicholas D.; LePell, Paul David; Safronova, Alla S.; Shrestha, I.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S.C.; Palmer, J.B.A.; Sotnikov, Vladimir Isaakovich; Bland, Simon Nicholas; Ivanov, Vladimir V.; Chittenden, Jeremy Paul; Jones, B.; Garasi, Christopher Joseph; Hall, Gareth Neville; Yilmaz, M. Faith; Mehlhorn, Thomas Alan; Deeney, Christopher; Pokala, S.; Nalajala, V.

    2005-01-01

    Controlled seeding of perturbations is employed to study the evolution of wire array z-pinch implosion instabilities which strongly impact x-ray production when the 3D plasma stagnates on axis. Wires modulated in radius exhibit locally enhanced magnetic field and imploding bubble formation at discontinuities in wire radius due to the perturbed current path. Wires coated with localized spectroscopic dopants are used to track turbulent material flow. Experiments and MHD modeling offer insight into the behavior of z-pinch instabilities.

  4. Wire array z-pinch insights for high X-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P.

    1998-01-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  5. Wire array z-pinch insights for high X-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Marder, B.M.; Desjarlais, M.P. [and others

    1998-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  6. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-12-31

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X-ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  7. Wire array z-pinch insights for high x-ray power generation

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Nash, T.J. [and others

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays.

  8. Wire array z-pinch insights for high x-ray power generation

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1998-08-01

    The discovery that the use of very large numbers of wires enables high x-ray power to be generated from wire-array z-pinches represents a breakthrough in load design for large pulsed power generators, and has permitted high temperatures to be generated in radiation cavities on Saturn and Z. In this paper, changes in x-ray emission characteristics as a function of wire number, array mass, and load radius, for 20-mm-long aluminum arrays on Saturn that led to these breakthrough hohlraum results, are discussed and compared with a few related emission characteristics of high-wire-number aluminum and tungsten arrays on Z. X=ray measurement comparisons with analytic models and 2-D radiation-magnetohydrodynamic (RMHC) code simulations in the x-y and r-z planes provide confidence in the ability of the models and codes to predict future x-ray performance with very-large-number wire arrays

  9. Anodic Aluminum Oxide Templates for Nano wires Array Fabrication

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Kok, K.Y.; Ng, I.K.

    2011-01-01

    This paper reports on the process developed to fabricate anodic aluminium oxide (AAO) templates suitable for the fabrication of nano wire arrays. Anodization process has been used to fabricate the AAO templates with pore diameters ranging from 15 nm to 30 nm. Electrodeposition of parallel arrays of high aspect ratio nickel nano wires were demonstrated using these fabricated AAO templates. The nano wires produced were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the orientations of the electrodeposited nickel nano wires were governed by the deposition current and electrolyte conditions. (author)

  10. Wire number dependence of the implosion dynamics, stagnation, and radiation output of tungsten wire arrays at Z driver

    Energy Technology Data Exchange (ETDEWEB)

    Mazarakis, Michael G.; Stygar, William A.; Sinars, Daniel B.; Cuneo, Michael E.; Nash, Thomas J.; Chandler, Gordon A.; Keith Matzen, M.; Porter, John L.; Struve, Kenneth W.; McDaniel, Dillon H. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); Deeney, Christopher E. [National Nuclear Security Administration, Washington, D.C. 20585 (United States); Douglas, Melissa R. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Chittenden, Jerry [Imperial College, London, SW and 2BW (United Kingdom)

    2011-11-15

    We report results of the experimental campaign, which studied the initiation, implosion dynamics, and radiation yield of tungsten wire arrays as a function of the wire number. The wire array dimensions and mass were those of interest for the Z-pinch driven Inertial Confinement Fusion (ICF) program. An optimization study of the x-ray emitted peak power, rise time, and full width at half maximum was effectuated by varying the wire number while keeping the total array mass constant and equal to {approx}5.8 mg. The driver utilized was the {approx}20-MA Z accelerator before refurbishment in its usual short pulse mode of 100 ns. We studied single arrays of 20-mm diameter and 1-cm height. The smaller wire number studied was 30 and the largest 600. It appears that 600 is the highest achievable wire number with present day's technology. Radial and axial diagnostics were utilized including crystal monochromatic x-ray backlighter. An optimum wire number of {approx}375 was observed which was very close to the routinely utilized 300 for the ICF program in Sandia.

  11. Wire number dependence of the implosion dynamics, stagnation, and radiation output of tungsten wire arrays at Z driver

    International Nuclear Information System (INIS)

    Mazarakis, Michael G.; Stygar, William A.; Sinars, Daniel B.; Cuneo, Michael E.; Nash, Thomas J.; Chandler, Gordon A.; Keith Matzen, M.; Porter, John L.; Struve, Kenneth W.; McDaniel, Dillon H.; Deeney, Christopher E.; Douglas, Melissa R.; Chittenden, Jerry

    2011-01-01

    We report results of the experimental campaign, which studied the initiation, implosion dynamics, and radiation yield of tungsten wire arrays as a function of the wire number. The wire array dimensions and mass were those of interest for the Z-pinch driven Inertial Confinement Fusion (ICF) program. An optimization study of the x-ray emitted peak power, rise time, and full width at half maximum was effectuated by varying the wire number while keeping the total array mass constant and equal to ∼5.8 mg. The driver utilized was the ∼20-MA Z accelerator before refurbishment in its usual short pulse mode of 100 ns. We studied single arrays of 20-mm diameter and 1-cm height. The smaller wire number studied was 30 and the largest 600. It appears that 600 is the highest achievable wire number with present day's technology. Radial and axial diagnostics were utilized including crystal monochromatic x-ray backlighter. An optimum wire number of ∼375 was observed which was very close to the routinely utilized 300 for the ICF program in Sandia.

  12. Texture orientation of glancing angle deposited copper nanowire arrays

    International Nuclear Information System (INIS)

    Alouach, H.; Mankey, G.J.

    2004-01-01

    Self-assembled copper nanowires were deposited on native oxide Si(100) substrates using glancing angle deposition with and without substrate rotation. Wire morphology, texture and crystallographic orientation are strongly dependent on the deposition parameters. A method for determining the preferred crystal orientation is described. This orientation is found to be different from what is expected from the geometric orientation of the wires. For wires deposited without substrate rotation, the face-centered-cubic (fcc)(111) crystal orientation, which corresponds to the close-packed, low surface energy (111) plane of copper, lies between the long axis of the wire and that normal to the substrate. X-ray diffraction data show that the wires exhibit bundling behavior perpendicular to the plane of incidence. For samples deposited with azimuthal rotation of the substrate, the fcc(111) directions in the wires are evenly distributed in a cone around the long axis of the wires, which point normal to the substrate. When the substrate is rotated during deposition at an angle of 75 deg., the wires exhibit a strong fcc(220) texture. These observations show that wires deposited with substrate rotation are highly textured and have random orientations in the plane of the substrate

  13. Attaching Copper Wires to Magnetic-Reed-Switch Leads

    Science.gov (United States)

    Kamila, Rudolf

    1987-01-01

    Bonding method reliably joins copper wires to short iron-alloy leads from glass-encased dry magnetic-reed switch without disturbing integrity of glass-to-metal seal. Joint resistant to high temperatures and has low electrical resistance.

  14. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    International Nuclear Information System (INIS)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B.; Peterson, D.L.; Mosher, D.; Roderick, N.F.

    1998-01-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh - Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ∼40 TW and energy of ∼325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ∼8 TW and energy of ∼70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh - Taylor instability observed in small-wire-number imploding loads. copyright 1998 American Institute of Physics

  15. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    Science.gov (United States)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Peterson, D. L.; Mosher, D.; Roderick, N. F.

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh-Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ˜40 TW and energy of ˜325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ˜8 TW and energy of ˜70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh-Taylor instability observed in small-wire-number imploding loads.

  16. Mechanical behaviour of copper 15% volume niobium microcomposite wires

    Directory of Open Access Journals (Sweden)

    Marcello Filgueira

    2001-01-01

    Full Text Available Cu-Nb microcomposites are attractive in magnet pulsed field technology applications due to their anomalous mechanism of mechanical strength and high electrical conductivity. In this sense, recently it was conceived the use of Cu 15% vol. Nb wires to operate as a high tensile strength cable for a diamond cutting tool (diamond wires for marble and granite slabbing. The multifilamentary Cu 15% vol. Nb composite was obtained using a new processing route, starting with niobium bars bundled into copper tubes, without arc melting. Cold working techniques, such as swaging and wire drawing, combined with heat treatments such as sintering and annealing, and tube restacking were employed. The tensile property of the composite was measured as a function of the niobium filaments dimensions and morphology into the copper matrix, in the several processing steps. An ultimate tensile strength (UTS of 960 MPa was obtained for an areal reduction (R = Ao/A, with Ao-initial cross section area, and A-final cross section area of 4x10(8 X, in which the niobium filaments reached thickness less than 20 nm. The anomalous mechanical strength increase is attributed to the fact that the niobium filaments acts as a barrier to copper dislocations.

  17. Experimental investigation of copper matrix longitudinal resistance in a composite Nb-Ti wire

    International Nuclear Information System (INIS)

    Gubkin, I.N.; Kozlenkova, N.I.; Nikulin, A.D.; Polikarpova, M.V.; Filkin, V.Ya.

    1994-01-01

    The longitudinal resistance of multifilamentary superconducting wires is among the major parameters used in design and optimization of superconducting magnetic systems. To enhance the conductivity of the copper matrix, it is made of pipes and rods of enhanced quality copper produced by electron beam melting (resistance ratio between two temperatures, 295 K and 4.2 K, R 295 /R 4.2 > 200). Yet for readily obtainable conductors this parameter is much lower. The reduction of the copper-matrix electrical conductivity may be attributed to wire-production technology involving processes such as extrusion, drawing and intermediate thermal processing, as well as to the size effect. Copper-matrix longitudinal resistance was studied as a function of wire diameter on specimens of multifilamentary Nb-Ti wire with filaments coated by a Nb layer. Experimental results are compared with the Sondheimer calculations for a monofilament conductor as well as with the Gavalloni calculations for an ideal wire with hexagonally located filaments. It has been shown that the best fit with the experiment is provided by the Sondheimer approximation. Comparison of the results of this work with other authors' data obtained for the specimens with no niobium barrier, allows the authors to single out the influence of a pure size effect and diffusion of Ti on the resistivity

  18. Soft X-ray radiation power characteristics of tungsten wire arrays on Yang accelerator

    International Nuclear Information System (INIS)

    Zhang Siqun; Ouyang Kai; Huang Xianbin; Dan Jiakun; Zhou Rongguo; Yang Liang

    2013-01-01

    A series of experiments were carried out to research the X-ray radiation characteristics of tungsten wire arrays on Yang accelerator. In those experiments, we charged the Marx generator of 60 kV, and the load current of 0.85-1.00 MA, the rise time of 75-90 ns (10%-90%). A soft X-ray scintillator powermeter which responded flatly to 50-1800 eV X-rays was used to measure the power of soft X-ray emitted from implosion plasma. In this paper, we present the measuring results of time-resolved soft X-ray radiation power, and discuss the radiation characteristics of implosion plasma by analyzing the correlations of soft X-ray radiant power and the diameter, length, wire number of the tungsten wire arrays. The optimizing wire array configuration parameters on Yang are as follows: 8 mm array diameter, 15 mm wire length, and 24 wire number. We also present the radiant power difference in radial and axial directions of the wire arrays. (authors)

  19. 3D MHD Simulations of Radial Wire Array Z-pinches

    International Nuclear Information System (INIS)

    Niasse, N.; Chittenden, J. P.; Bland, S. N.; Suzuki-Vidal, F. A.; Hall, G. N.; Lebedev, S. V.; Calamy, H.; Zucchini, F.; Lassalle, F.; Bedoch, J. P.

    2009-01-01

    Recent experiments carried out on the MAGPIE (1 MA, 250 ns), OEDIPE (730 kA, 1.5 μs) and SPHINX (4 MA, 700 ns)[1] facilities have shown the relatively high level of scalability of the Radial Wire Array Z-pinches. These configurations where the wires stretch radially outwards from a central cathode offer numerous advantages over standard cylindrical arrays. In particular, imploding in a very stable and compact way, they seem suitable for coupling to small scale hohlraums. Making use of the 3D resistive magneto-hydrodynamic code GORGON[2] developed at Imperial College, the dynamic of the radial wire arrays is investigated. Influence of the cathode hotspots and wires angle on the x-ray emissions is also discussed. Comparison with experiments is offered to validate the numerical studies.

  20. Obtention of copper-magnesium alloys wires used in electrical transmission lines

    International Nuclear Information System (INIS)

    Fernandes, Marcos Gonzales

    2010-01-01

    The aim of this work was to obtain copper wires in three different chemical compositions starting from electrolytic copper and magnesium. The mains steps were evaluated, starting from the melting of small eutectic cooper-magnesium specimens in an electric arc furnace, followed by further dilution of this buttons in a resistive furnace and casting it in a copper mould. The as cast billets were homogenized in a resistive furnace at 910 degree C for 2 h. The billets were mechanically cold worked by swaging and a final drawing step to attain a round shape and a reasonable surface quality. The cast ingots chemical analysis indicated that the processing route showed to be adequate, in laboratory scale, to obtain wires with cross sectional area of 4 mm2 and 10 m in length. The wires in both conditions - as cold worked and after a recovering heat treatment at 510 degree C for 1 h, were mechanically characterized by tensile testing and hardness. The wires had also the electric conductivity assessed in the recovered heat-treated state and the results were compared to the literature data. The obtained material showed to be adequate to be used as electric conductor. The yield strain and ultimate tensile strength were improved with the increasing amount of Mg in the alloy, 11 % and 24 %, respectively, while the electric conductivity decreased to 60 % IACS (International Annealed Copper Standard). (author)

  1. Synthesis and characterization of copper nanoparticles by using the exploding wire method

    International Nuclear Information System (INIS)

    Das, Rashmita; Das, Basanta Kumar; Shyam, Anurag

    2012-01-01

    During the past few years, the synthesis of copper nanoparticles has attracted much attention because of their huge potential for replacing the expensive nano silver inks utilized in conductive printing. This opens a new possibility in printed electronics. Copper-based inkjet inks can be used to form various devices such as solar cells, RF identification tags and electroluminescence devices. This paper describes controlled synthesis of pure copper nanoparticles, mainly by using the exploding wire method. A wire of 0.26 mm in diameter was exploded in a nitrogen environment. The sample was characterized by using X-ray diffraction (XRD) and atomic force microscopy (AFM). XRD revealed the presence of pure copper and AFM revealed the presence of nanoparticles with an average size of 55 nm.

  2. Radius scaling of titanium wire arrays on the Z accelerator

    International Nuclear Information System (INIS)

    Coverdale, C.A.; Denney, C.; Spielman, R.B.

    1999-01-01

    The 20 MA Z accelerator has made possible the generation of substantial radiation (> 100 kJ) at higher photon energies (4.8 keV) through the use of titanium wire arrays. In this paper, the results of experiments designed to study the effects of initial load radius variations of nickel-clad titanium wire arrays will be presented. The load radius was varied from 17.5 mm to 25 mm and titanium K-shell (4.8 keV) yields of greater than 100 kJ were measured. The inclusion of the nickel cladding on the titanium wires allows for higher wire number loads and increases the spectral broadness of the source; kilovolt emissions (nickel plus titanium L-shell) of 400 kJ were measured in these experiments. Comparisons of the data to calculations will be made to estimate pinched plasma parameters such as temperature and participating mass fraction. These results will also be compared with previous pure titanium wire array results

  3. Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B. [Sandia National Laboratories, P.O. Box 5800, Albuquerque, New Mexico 87185 (United States); Peterson, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545-0010 (United States); Mosher, D. [Naval Research Laboratory, Pulsed Power Physics Branch, Washington, DC 20375 (United States); Roderick, N.F. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    1998-10-01

    A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. {bold 77}, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh{endash}Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of {approximately}40 TW and energy of {approximately}325 kJ show little change outside of a {plus_minus}15{percent} shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak {ital K}-shell (lines plus continuum) power of {approximately}8 TW and energy of {approximately}70 kJ show little change with radius. The minimal change in {ital K}-shell yield is in agreement with simple {ital K}-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh{endash}Taylor instability observed in small-wire-number imploding loads. {copyright} {ital 1998 American Institute of Physics.}

  4. Ways of improvement of technological process of copper wire rod production

    OpenAIRE

    Dvoryanyn, Hrystyna; Shvachco, Sergiy

    2015-01-01

    Copper is a unique chemical element which is used since ancient times due to its universal chemical properties. By means of the method of continuous founding, hundreds of items of rod-like billets of different cross-section shapes are manufactured from copper. The problem of production of defectfree copper wire rods is important nowadays, because the market of cable products still increases. As the deposits of cooper ore in the nature are being exhausted, the processing of copper scrap become...

  5. [XPS analysis of beads formed by fuse breaking of electric copper wire].

    Science.gov (United States)

    Wu, Ying; Meng, Qing-Shan; Wang, Xin-Ming; Gao, Wei; Di, Man

    2010-05-01

    The in-depth composition of beads formed by fuse breaking of the electric copper wire in different circumstances was studied by XPS with Ar+ ion sputtering. In addition, the measured Auger spectra and the calculated Auger parameters were compared for differentiation of the substances of Cu and Cu2O. Corresponding to the sputtering depth, the molten product on a bead induced directly by fuse breaking of the copper wire without cover may be distinguished as three portions: surface layer with a drastic decrease in carbon content; intermediate layer with a gentle change in oxygen content and gradually diminished carbon peak, and consisting of Cu2O; transition layer without Cu2O and with a rapid decrease in oxygen content. While the molten product on a bead formed by fuse breaking of the copper wire after its insulating cover had been burned out may be distinguished as two portions: surface layer with carbon content decreasing quickly; subsurface layer without Cu2O and with carbon and oxygen content decreasing gradually. Thus, it can be seen that there was an obvious interface between the layered surface product and the substrate for the first type of bead, while as to the second type of bead there was no interface. As a result, the presence of Cu2O and the quantitative results can be used to identify the molten product on a bead induced directly by fuse breaking of the copper wire without cover and the molten product on a bead formed by fuse breaking of the cupper wire after its insulating cover had been burned out, as a complementary technique for the judgments of fire cause.

  6. Signals analysis of fluxgate array for wire rope defaults

    International Nuclear Information System (INIS)

    Gu Wei; Chu Jianxin

    2005-01-01

    In order to detecting the magnetic leakage fields of the wire rope defaults, a transducer made up of the fluxgate array is designed, and a series of the characteristic values of wire rope defaults signals are defined. By processing the characteristic signals, the LF or LMA of wire rope are distinguished, and the default extent is estimated. The experiment results of the new method for detecting the wire rope faults are introduced

  7. The effect of copper additions in the synthesis of in situ MgB2 Cu-sheathed wires

    International Nuclear Information System (INIS)

    Woźniak, M.; Hopkins, S.C.; Gajda, D.; Glowacki, B.A.

    2012-01-01

    The powder-in-tube (PIT) technique has been used to fabricate copper-sheathed magnesium diboride (MgB 2 ) wires using an insitu reaction method. The effect of copper powder additions, magnesium-boron molar ratio and heat treatment is studied by SEM, XRD, transport critical current I c (B) and resistivity ρ(T, B) measurements. The results show that addition of copper powder to the core of the wire accelerates the formation of MgB 2 and hence increases its amount and greatly decreases the amount of Mg-Cu intermetallic phases present in the core of the wire after heat treatment. Excess magnesium proved to be effective in compensating for Mg loss due to interdiffusion with the Cu of the wire sheath and resulted in less unreacted boron in the core for wires without added Cu, but seems to oppose the accelerated formation of MgB 2 in Cu added wires. The highest critical current density, 2.8 × 10 4 A cm -2 at 3 T and 4.2 K, was achieved for a wire with a stoichiometric Mg:B ratio and 3 at.% added copper powder heat treated at 700 °C for 5 min.

  8. Heat treatment effect on the mechanical properties of industrial drawn copper wires

    International Nuclear Information System (INIS)

    Beribeche, Abdellatif; Boumerzoug, Zakaria; Ji, Vincent

    2013-01-01

    In this present investigation, the mechanical properties of industrial drawn copper wires have been studied by tensile tests. The effect of prior heat treatments at 500°C on the drawn wires behavior was the main goal of this investigation. We have found that the mechanical behavior of drawn wires depends strongly on those treatments. SEM observations of the wire cross section after tensile tests have shown that the mechanism of rupture was mainly controlled by the void formation

  9. Seeded perturbations in wire array z-pinches

    International Nuclear Information System (INIS)

    Robinson, Allen Conrad; Kantsyrev, Victor Leonidovich; Wunsch, Scott Edward; Oliver, Bryan Velten; Lebedev, Sergey V.; Safronova, Alla S.; Maxwell, J.; McKenney, John Lee; Ampleford, David J.; Rapley, J.; Bott, S.C.; Palmer, J.B.A.; Bland, Simon Nicholas; Jones, Brent Manley; Chittenden, Jeremy Paul; Garasi, Christopher Joseph; Hall, Gareth Neville; Mehlhorn, Thomas Alan; Deeney, Christopher

    2004-01-01

    The impact of 3D structure on wire array z-pinch dynamics is a topic of current interest, and has been studied by the controlled seeding of wire perturbations. First, Al wires were etched at Sandia, creating 20% radial perturbations with variable axial wavelength. Observations of magnetic bubble formation in the etched regions during experiments on the MAGPIE accelerator are discussed and compared to 3D MHD modeling. Second, thin NaF coatings of 1 mm axial extent were deposited on Al wires and fielded on the Zebra accelerator. Little or no axial transport of the NaF spectroscopic dopant was observed in spatially resolved K-shell spectra, which places constraints on particle diffusivity in dense z-pinch plasmas. Finally, technology development for seeding perturbations is discussed

  10. Interfacial Microstructure and Its Influence on Resistivity of Thin Layers Copper Cladding Steel Wires

    Science.gov (United States)

    Li, Hongjuan; Ding, Zhimin; Zhao, Ruirong

    2018-04-01

    The interfacial microstructure and resistivity of cold-drawn and annealed thin layers copper cladding steel (CCS) wires have been systematically investigated by the methods of scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and resistivity testing. The results showed that the Cu and Fe atoms near interface diffused into each other matrixes. The Fe atoms diffused into Cu matrixes and formed a solid solution. The mechanism of solid solution is of substitution type. When the quantity of Fe atoms exceeds the maximum solubility, the supersaturated solid solution would form Fe clusters and decompose into base Cu and α-Fe precipitated phases under certain conditions. A few of α-Fe precipitates was observed in the copper near Cu/Fe interfaces of cold-drawn CCS wires, with 1-5 nm in size. A number of α-Fe precipitates of 1-20 nm in size can be detected in copper near Cu/Fe interfaces of CCS wires annealed at 850°C. When annealing temperature was less than 750°C, the resistivity of CCS wires annealed was lower than that of cold-drawn CCS wires. However, when annealing temperature was above 750°C, the resistivity of CCS wires was greater than that of cold-drawn CCS wires and increased with rising the annealing temperature. The relationship between nanoscale α-Fe precipitation and resistivity of CCS wires has been well discussed.

  11. Single and nested tungsten-wire-array dynamics and applications to inertial confinement fusion

    Science.gov (United States)

    Cuneo, Michael

    2005-10-01

    Wire array z-pinches show great promise as x-ray sources for indirect-drive inertial confinement fusion (ICF). The double z-pinch hohlraum, for example, has produced capsule radiation drive symmetric to within 3%. This ICF concept will require that each of two 20-mm-diam arrays scale to x-ray powers ˜1 PW, to drive high-yield (>0.2 GJ) capsules to ignition. High-yield fusion will also require a temporally shaped radiation pulse to drive a low-entropy capsule implosion. Recently, improved understanding of high current (11-19 MA) single and nested wire-array dynamics has enabled significant progress towards these goals. As at lower currents, a single wire array (and both the outer and inner arrays of a nested system) shows a wire ablation phase, axial modulation of the ablation rate, a larger ablation rate for larger diameter wires, trailing mass and trailing current. These processes and others produce a broad mass profile that may impact the optimization of x-ray output for single and nested arrays. Our new insights into wire array physics have led to 20-mm-diam single and nested arrays with peak powers of 150-190 TW at implosion times of 55-90 ns, increased from 60-120 TW at 95-110 ns, improving power scaling. Radiation pulse shapes required for 3-shock isentropic compression of high-yield ICF capsules have also been demonstrated with nested wire arrays operating in current-transfer mode. In collaboration with: D.B. Sinars, R.A. Vesey, E.M. Waisman, W.A. Stygar, D.E. Bliss, S.V. Lebedev, J.P. Chittenden, P.V. Sasorov, R.W. Lemke, E.P. Yu, B.B. Afeyan, G.R. Bennett, M.G. Mazarakis, M.R. Lopez, M.E. Savage, J.L. Porter, T.A. Mehlhorn.

  12. Wire array Z-pinch insights for enhanced x-ray production

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B. [Sandia National Laboratories, Albuquerque, New Mexico 87185-1196 (United States); Haines, M.G.; Chittenden, J.P. [The Blackett Laboratory, Imperial College, London, SW7 2BZ (United Kingdom); Whitney, K.G.; Apruzese, J.P. [Naval Research Laboratory, Radiation Hydrodynamics Branch, Washington, D.C. 20375 (United States); Peterson, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Greenly, J.B.; Sinars, D.B. [Laboratory of Plasma Studies, Cornell University, Ithaca, New York 14853 (United States); Reisman, D.B. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Mosher, D. [Naval Research Laboratory, Pulsed Power Physics Branch, Washington, D.C. 20375 (United States)

    1999-05-01

    Comparisons of measured total radiated x-ray power from annular wire-array {ital z}-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. {bold 26}, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh{endash}Taylor instability in the r{endash}z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas {bold 3}, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh{endash}Taylor instability in the r{endash}z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels. {copyright} {ital 1999 American Institute of Physics.}

  13. Wire array Z-pinch insights for enhanced x-ray production

    Science.gov (United States)

    Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Haines, M. G.; Chittenden, J. P.; Whitney, K. G.; Apruzese, J. P.; Peterson, D. L.; Greenly, J. B.; Sinars, D. B.; Reisman, D. B.; Mosher, D.

    1999-05-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels.

  14. Wire Array Z-Pinch Insights for Enhanced X-Ray Production

    Energy Technology Data Exchange (ETDEWEB)

    Apruzese, J.P.; Chittenden, J.P.; Greenly, J.B.; Haines, M.G.; Mock, R.C.; Mosher, D.; Peterson, D.L.; Reisman, D.B.; Sanford, T.W.L.; Sinars, D.B.; Spielman, R.B.; Whitnery, K.G.

    1999-01-04

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci., 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, interact. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the 2-D Eulerian-radiation-magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels.

  15. Wire array Z-pinch insights for enhanced x-ray production

    International Nuclear Information System (INIS)

    Sanford, T.W.; Mock, R.C.; Spielman, R.B.; Haines, M.G.; Chittenden, J.P.; Whitney, K.G.; Apruzese, J.P.; Peterson, D.L.; Greenly, J.B.; Sinars, D.B.; Reisman, D.B.; Mosher, D.

    1999-01-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci. 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh - Taylor instability in the r - z plane, develop. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the two-dimensional Eulerian-radiation- magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh - Taylor instability in the r - z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels. copyright 1999 American Institute of Physics

  16. Wire Array Z-Pinch Insights for Enhanced X-Ray Production

    International Nuclear Information System (INIS)

    Apruzese, J.P.; Chittenden, J.P.; Greenly, J.B.; Haines, M.G.; Mock, R.C.; Mosher, D.; Peterson, D.L.; Reisman, D.B.; Sanford, T.W.L.; Sinars, D.B.; Spielman, R.B.; Whitnery, K.G.

    1999-01-01

    Comparisons of measured total radiated x-ray power from annular wire-array z-pinches with a variety of models as a function of wire number, array mass, and load radius are reviewed. The data, which are comprehensive, have provided important insights into the features of wire-array dynamics that are critical for high x-ray power generation. Collectively, the comparisons of the data with the model calculations suggest that a number of underlying dynamical mechanisms involving cylindrical asymmetries and plasma instabilities contribute to the measured characteristics. For example, under the general assumption that the measured risetime of the total-radiated-power pulse is related to the thickness of the plasma shell formed on axis, the Heuristic Model [IEEE Trans. Plasma Sci., 26, 1275 (1998)] agrees with the measured risetime under a number of specific assumptions about the way the breakdown of the wires, the wire-plasma expansion, and the Rayleigh-Taylor instability in the r-z plane, interact. Likewise, in the high wire-number regime (where the wires are calculated to form a plasma shell prior to significant radial motion of the shell) the comparisons show that the variation in the power of the radiation generated as a function of load mass and array radius can be simulated by the 2-D Eulerian-radiation-magnetohydrodynamics code (E-RMHC) [Phys. Plasmas 3, 368 (1996)], using a single random-density perturbation that seeds the Rayleigh-Taylor instability in the r-z plane. For a given pulse-power generator, the comparisons suggest that (1) the smallest interwire gaps compatible with practical load construction and (2) the minimum implosion time consistent with the optimum required energy coupling of the generator to the load should produce the highest total-radiated-power levels

  17. Primarily Experimental Results for a W Wire Array Z Pinch

    International Nuclear Information System (INIS)

    Kuai Bin; Aici, Qiu; Wang Liangping; Zeng Zhengzhong; Wang Wensheng; Cong Peitian; Gai Tongyang; Wei Fuli; Guo Ning; Zhang Zhong

    2006-01-01

    Primarily experimental results are given for a W wire array Z pinch imploded with up to 2 MA in 100 ns on a Qiangguang-I pulsed power generator. The configuration and parameters of the generator, the W wire array load assembly and the diagnostic system for the experiment are described. The total X-ray energy has been obtained with a averaged power of X-ray radiation of 1.28 TW

  18. The fabrication techniques of Z-pinch targets. Techniques of fabricating self-adapted Z-pinch wire-arrays

    International Nuclear Information System (INIS)

    Qiu Longhui; Wei Yun; Liu Debin; Sun Zuoke; Yuan Yuping

    2002-01-01

    In order to fabricate wire arrays for use in the Z-pinch physical experiments, the fabrication techniques are investigated as follow: Thickness of about 1-1.5 μm of gold is electroplated on the surface of ultra-fine tungsten wires. Fibers of deuterated-polystyrene (DPS) with diameters from 30 to 100 microns are made from molten DPS. And two kinds of planar wire-arrays and four types of annular wire-arrays are designed, which are able to adapt to the variation of the distance between the cathode and anode inside the target chamber. Furthermore, wire-arrays with diameters form 5-24 μm are fabricated with tungsten wires, respectively. The on-site test shows that the wire-arrays can self-adapt to the distance changes perfectly

  19. 7 CFR 1755.702 - Copper coated steel reinforced (CCSR) aerial service wire.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Copper coated steel reinforced (CCSR) aerial service wire. 1755.702 Section 1755.702 Agriculture Regulations of the Department of Agriculture (Continued..., ACCEPTABLE MATERIALS, AND STANDARD CONTRACT FORMS § 1755.702 Copper coated steel reinforced (CCSR) aerial...

  20. Effect of curettage and copper wire on rabbit endometrium: a novel rabbit model of endometrial mechanical injury.

    Science.gov (United States)

    Li, Li; Shi, Jing; Zhang, Qiu-Fang; Yan, Jie; Yan, Li-Ying; Shen, Fei; Qiao, Jie; Feng, Huai-Liang

    2011-06-01

    It remains almost a helpless situation for the recurrent implantation failure and pregnancy loss caused by endometrial injury at present. The purpose of this study was to develop a rabbit model of endometrial mechanical injury that could provide a research platform for this difficult clinical predicament. Three experiments were conducted. Experiment 1: Curettages in both uterus horns and copper wire inserting after curettage (double-injury) in one horn. The histological changes were monitored at 0, 24, 48, 72 hours, as well as in 1 and 2 weeks after operation. Experiment 2: Direct copper wire inserting in one horn and double-injury in other horn. The wires in both horns were removed after 2 weeks. The histological changes were recorded at 0, 1 and 2 weeks after wire removal. Experiment 3: Double-injury procedure in one horn was performed and wire was removed after 2 weeks; another horn was remained normal to serve as control. Histological changes were recorded, tissue areas were measured, and proliferation indices (PIs, %) were calculated at 1, 2, 4 and 8 weeks after wire removal, respectively. The experiments revealed that the injured endometrium by simple curettage or copper wire could be fully repaired. While the endometrial regeneration was severely impaired by double-injury, both areas of endometrium and uterine cavity decreased (P copper wire with comparable clinical index.

  1. Young's modulus of a copper-stabilized niobium-titanium superconductive wire

    International Nuclear Information System (INIS)

    Ledbetter, H.M.; Moulder, J.C.; Austin, M.W.

    1980-01-01

    Young's modulus was determined for a 0.6-mm-dia niobium-titanium superconductive wire. Two methods were used: continuous-wave-resonance and laser-pulse-excitation. Young's moduli were also determined for the components - copper and Nb-Ti - in both wire and bulk forms. Some mechanical-deformation effects on Young's modulus were also measured. From the component' elastic moduli, that of the composite was predicted accurately by a simple rule-of-mixtures relationship

  2. Preparation and characterization of copper-graphite composites by electrical explosion of wire in liquid.

    Science.gov (United States)

    Bien, T N; Gul, W H; Bac, L H; Kim, J C

    2014-11-01

    Copper-graphite nanocomposites containing 5 vol.% graphite were prepared by a powder metallurgy route using an electrical wire explosion (EEW) in liquid method and spark plasma sintering (SPS) process. Graphite rods with a 0.3 mm diameter and copper wire with a 0.2 mm diameter were used as raw materials for EEWin liquid. To compare, a pure copper and copper-graphite mixture was also prepared. The fabricated graphite was in the form of a nanosheet, onto which copper particles were coated. Sintering was performed at 900 degrees C at a heating rate of 30 degrees C/min for 10 min and under a pressure of 70 MPa. The density of the sintered composite samples was measured by the Archimedes method. A wear test was performed by a ball-on-disc tribometer under dry conditions at room temperature in air. The presence of graphite effectively reduced the wear of composites. The copper-graphite nanocomposites prepared by EEW had lower wear rates than pure copper material and simple mixed copper-graphite.

  3. Astrophysically relevant radiatively cooled hypersonic bow shocks in nested wire arrays

    Science.gov (United States)

    Ampleford, David

    2009-11-01

    We have performed laboratory experiments which introduce obstructions into hypersonic plasma flows to study the formation of shocks. Astrophysical observations have demonstrated many examples of equivalent radiatively cooled bow shocks, for example the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. Wire array z-pinches allow us to study quasi-planar radiatively cooled flows in the laboratory. The early stage of a wire array z-pinch implosion consists of a steady flow of the wire material towards the axis. Given a high rate of radiative cooling, these flows reach high sonic- Mach numbers, typically up to 5. The 2D nature of this configuration allows the insertion of obstacles into the flow, such as a concentric ``inner'' wire array, as has previously been studied for ICF research. Here we study the application of such a nested array to laboratory astrophysics where the inner wires act as obstructions perpendicular to the flow, and induce bow shocks. By varying the wire array material (W/Al), the significance of radiative cooling on these shocks can be controlled, and is shown to change the shock opening angle. As multiple obstructions are present, the experiments show the interaction of multiple bow shocks. It is also possible to introduce a magnetic field around the static object, increasing the opening angle of the shocks. Further experiments can be designed to control the flow density, magnetic field structure and obstruction locations. In collaboration with: S.V. Lebedev, M.E. Cuneo, C.A. Jennings, S.N. Bland, J.P. Chittenden, A. Ciardi, G.N. Hall, S.C. Bott, M. Sherlock, A. Frank, E. Blackman

  4. Experimental studies of Z-pinches of mixed wire array with aluminum and tungsten

    International Nuclear Information System (INIS)

    Ning Cheng; Li Zhenghong; Hua Xinsheng; Xu Rongkun; Peng Xianjue; Xu Zeping; Yang Jianlun; Guo Cun; Jiang Shilun; Feng Shuping; Yang Libing; Yan Chengli; Song Fengjun; Smirnov, V.P.; Kalinin, Yu.G.; Kingsep, A.S.; Chernenko, A.S.; Grabovsky, E.V.

    2004-01-01

    In the form of joint experiment between China and Russia, the experimental studies of Z-pinches of mixed wire array of aluminum (A1) and tungsten (W) were carried out on S-300 generator, which was located on Kurchatov Institute of Russia. The experimental results were compared with those of single A1 array and single W array, respectively. There are obvious difference between mixed one and single one in their photon spectral distributions. The intensity of K-series emission lines from the mixed wire array Z-pinch is lower than that from single A1 array. The radiated lines with wavelengths less than 1.6 nm were not found in single W array Z-pinches. In the Z-pinch processes, the area radiating x-rays in mixed wire array is smaller than that of single A1 array, but is slightly lower than that from single W array. The FWHM of x-ray pulse with a maximal power 0.3-0.5 TW and total energy 10-20 kJ is about 25 ns, which radiated from Z-pinches with a radial convergence of 4-5 on S-300 generator. The shadow photograph of the mixed wire-array Z-pinch plasma by laser probe shows that the core-corona configuration was formed and the corona was moving toward the center axis during the wire-array plasma formation, that the interface of the plasma is not clear, and that there are a number structures inside. They also suggests that there was an obvious development of Magneto Rayleigh-Taylor instability in the Z-pinch process as well

  5. Compact wire array sources: power scaling and implosion physics.

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, Jason Dimitri; Chuvatin, Alexander S. (Laboratoire du Centre National de la Recherche Scientifique Ecole Polytechnique, Palaiseau, France); Jones, M. C.; Vesey, Roger Alan; Waisman, Eduardo M.; Ivanov, V. V. (University of Nevada - Reno, Reno, NV); Esaulov, Andrey A. (University of Nevada - Reno, Reno, NV); Ampleford, David J.; Cuneo, Michael Edward; Kantsyrev, Victor Leonidovich (University of Nevada - Reno, Reno, NV); Coverdale, Christine Anne; Rudakov, L. I. (Icarus Research, Bethesda, MD); Jones, Brent Manley; Safronova, Alla S. (University of Nevada - Reno, Reno, NV); Vigil, Marcelino Patricio

    2008-09-01

    A series of ten shots were performed on the Saturn generator in short pulse mode in order to study planar and small-diameter cylindrical tungsten wire arrays at {approx}5 MA current levels and 50-60 ns implosion times as candidates for compact z-pinch radiation sources. A new vacuum hohlraum configuration has been proposed in which multiple z pinches are driven in parallel by a pulsed power generator. Each pinch resides in a separate return current cage, serving also as a primary hohlraum. A collection of such radiation sources surround a compact secondary hohlraum, which may potentially provide an attractive Planckian radiation source or house an inertial confinement fusion fuel capsule. Prior to studying this concept experimentally or numerically, advanced compact wire array loads must be developed and their scaling behavior understood. The 2008 Saturn planar array experiments extend the data set presented in Ref. [1], which studied planar arrays at {approx}3 MA, 100 ns in Saturn long pulse mode. Planar wire array power and yield scaling studies now include current levels directly applicable to multi-pinch experiments that could be performed on the 25 MA Z machine. A maximum total x-ray power of 15 TW (250 kJ in the main pulse, 330 kJ total yield) was observed with a 12-mm-wide planar array at 5.3 MA, 52 ns. The full data set indicates power scaling that is sub-quadratic with load current, while total and main pulse yields are closer to quadratic; these trends are similar to observations of compact cylindrical tungsten arrays on Z. We continue the investigation of energy coupling in these short pulse Saturn experiments using zero-dimensional-type implosion modeling and pinhole imaging, indicating 16 cm/?s implosion velocity in a 12-mm-wide array. The same phenomena of significant trailing mass and evidence for resistive heating are observed at 5 MA as at 3 MA. 17 kJ of Al K-shell radiation was obtained in one Al planar array fielded at 5.5 MA, 57 ns and we

  6. Intralesional copper wire retention and pingyangmycin injection: an effective combinational therapy for complex venous malformation in soft tissue.

    Science.gov (United States)

    Yuan, S-M; Hong, Z-J; Jiang, H-Q; Wang, J; Hu, X-B

    2014-04-01

    Complex venous malformations (VMs) may extensively involve the soft tissue. The treatment remains a challenge till now. Here we introduce a combinational therapy of copper wires and pingyangmycin (bleomycin A5,PYM). Copper wires were retained in VMs by repeated penetration with a straight needle. Subsequently, PYM solution was injected into the lesion. Eight to 10 days later, copper wires were removed. The dressing was changed every day until the puncture pores healed. Magnetic resonance imaging scanning was performed to observe the change of VMs. From January 2001 to December 2011, 56 patients were treated. During the follow-up period, most of the VMs shrunk obviously. The symptoms were relieved or disappeared. The complications included local pain, temporary paraesthesia and moderate fever, which disappeared quickly after the removal of copper wires. This combinational therapy is a safe and effective approach for the complex VMs in soft tissue.

  7. Method for producing superconductive wires of multifilaments which are encased in copper or a copper alloy and contain niobium and aluminium

    International Nuclear Information System (INIS)

    Flukiger, R.

    1983-01-01

    A method is disclosed for producing a superconductive wire of multifilaments having components comprising niobium and aluminum encased in copper or a copper alloy, wherein the multifilament configuration and the formation of a superconductive A15 phase are positively developed from the components disposed in a copper or copper alloy tube having an interior metallic coating serving as a diffusion barrier, by cold forming and subsequent heat treatment

  8. Soldered Contact and Current Risetime Effects on Negative Polarity Wire Array Z-pinches

    International Nuclear Information System (INIS)

    Chalenski, D. A.; Kusse, B. R.; Greenly, J. B.; Blesener, I. C.; McBride, R. D.; Hammer, D. A.; Knapp, P. F.

    2009-01-01

    The Cornell University COBRA pulser is a nominal 1 MA machine, capable of driving up to 32 wire cylindrical Z-pinch arrays. COBRA can operate with variable current risetimes ranging from 100 ns to 200 ns (short and long pulse, respectively). Wires are typically strung with a ''press'' contact to the electrode hardware, where the wire is loosely pulled against the hardware and held there to establish electrical contact. The machine is normally negative, but a bolt-on convolute can be used to modify the current path and effectively produce positive polarity operation at the load.Previous research with single wires on a 1-5 kA pulser has shown that soldering the wire, thereby improving the wire/electrode contact, and operating in positive polarity can improve the energy deposition into the wire and enhance wire core expansion. Negative polarity showed no difference. Previous experiments on the negative polarity, 20 MA, 100 ns Z accelerator have shown that improving the contact improved the x-ray yield.Cornell data were collected on 16-wire Aluminum Z-pinch arrays in negative polarity. Experiments were conducted with both short and long current pulses with soldered and no-soldered wire/electrode contacts. The initiation, ablation, implosion and stagnation phases were compared for these four conditions. Time dependent x-ray signals were measured using diodes and diamond detectors. An inductive voltage monitor was used to infer minimum current radius achieved, as defined by a uniform shell of current moving radially inward, producing a time dependent inductance. Total energy data were collected with a metal-strip bolometer. Self-emission data were collected by an XUV 4-frame camera and an optical streak camera.In negative polarity and with short pulses, soldering appeared to produce a smaller radius pinch and decrease variations in the x-ray pulse shape. The bolometer, laser backlighter, 4-frame and streak cameras showed negligible differences in the initiation ablation

  9. Absorbed Dose Distributions in Small Copper Wire Insulation due to Multiple-Sided Irradiations by 0.4 MeV Electrons

    DEFF Research Database (Denmark)

    Miller, Arne; McLaughlin, W. L.; Pedersen, Walther Batsberg

    1979-01-01

    When scanned electron beams are used to crosslink polymeric insulation of wire and cable, an important goal is to achieve optimum uniformity of absorbed dose distributions. Accurate measurements of dose distributions in a plastic dosimeter simulating a typical insulating material (polyethylene......) surrounding a copper wire core show that equal irradiations from as few as four sides give approximately isotropy and satisfactorily uniform energy depositions around the wire circumference. Electron beams of 0.4 MeV maximum energy were used to irradiate wires having a copper core of 1.0 mm dia....... and insulation thicknesses between 0.4 and 0.8 mm. The plastic dosimeter simulating polyethylene insulations was a thin radiochromic polyvinyl butyral film wrapped several times around the copper wire, such that when unwrapped and analyzed optically on a scanning microspectrophotometer, high-resolution radial...

  10. Formation of plasma around wire fragments created by electrically exploded copper wire

    International Nuclear Information System (INIS)

    Taylor, Michael J.

    2002-01-01

    The physical processes occurring during the electrical explosion of metallic conductors has attracted interest for many years. Applications include circuit breakers, segmented lightning divertor strips for aircraft radomes, disruption of metallic shaped charge jets, plasma armatures for electromagnetic railguns and plasma generators for electrothermal-chemical guns. Recent work has cited the phenomenology of the fragmentation processes, particularly the development of a plasma around the lower resistance condensed fragments. An understanding of both the fragmentation process and the development of the accompanying formation of plasma is essential for the optimization of devices that utilize either of these phenomena. With the use of x-radiography and fast photography, this paper explores the wire explosion process, in particular the relationship between the fragmentation, plasma development and resistance rise that occurs during this period. A hypothesis is put forward to account for the development of plasma around the condensed wire fragments. Experimental parameters used in this study are defined. Wires studied were typically copper, with a diameter of 1 mm and length in excess of 150 mm. Circuit inductance used were from 26 to 800 μH. This relatively high circuit inductance gave circuit rise times less than 180 MA s -1 , slow with respect to many other exploding wire studies. Discharge duration ranged from 0.8 to 10 ms. (author)

  11. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    Science.gov (United States)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-07-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  12. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    International Nuclear Information System (INIS)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-01-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm 2 ) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  13. Localized etching of an insulator film coated on a copper wire using an atmospheric-pressure microplasma jet.

    Science.gov (United States)

    Yoshiki, Hiroyuki

    2007-04-01

    Atmospheric-pressure microplasma jets (APmicroPJs) of Ar and ArO(2) gases were generated from the tip of a stainless steel surgical needle having outer and inner diameters of 0.4 and 0.2 mm, respectively, with a rf excitation of 13.56 MHz. The steel needle functions both as a powered electrode and a gas nozzle. The operating power is 1.2-6 W and the corresponding peak-to-peak voltage Vp.p. is about 1.5 kV. The APmicroPJ was applied to the localized etching of a polyamide-imide insulator film (thickness of 10 microm) of a copper winding wire of 90 microm diameter. The insulator film around the copper wire was completely removed by the irradiated plasma from a certain direction without fusing the wire. The removal time under the Ar APmicroPJ irradiation was only 3 s at a rf power of 4 W. Fluorescence microscopy and scanning electron microscope images reveal that good selectivity of the insulator film to the copper wire was achieved. In the case of ArO(2) APmicroPJ irradiation with an O(2) concentration of 10% or more, the removed copper surface was converted to copper monoxide CuO.

  14. Localized etching of an insulator film coated on a copper wire using an atmospheric-pressure microplasma jet

    International Nuclear Information System (INIS)

    Yoshiki, Hiroyuki

    2007-01-01

    Atmospheric-pressure microplasma jets (APμPJs) of Ar and Ar/O 2 gases were generated from the tip of a stainless steel surgical needle having outer and inner diameters of 0.4 and 0.2 mm, respectively, with a rf excitation of 13.56 MHz. The steel needle functions both as a powered electrode and a gas nozzle. The operating power is 1.2-6 W and the corresponding peak-to-peak voltage Vp.p. is about 1.5 kV. The APμPJ was applied to the localized etching of a polyamide-imide insulator film (thickness of 10 μm) of a copper winding wire of 90 μm diameter. The insulator film around the copper wire was completely removed by the irradiated plasma from a certain direction without fusing the wire. The removal time under the Ar APμPJ irradiation was only 3 s at a rf power of 4 W. Fluorescence microscopy and scanning electron microscope images reveal that good selectivity of the insulator film to the copper wire was achieved. In the case of Ar/O 2 APμPJ irradiation with an O 2 concentration of 10% or more, the removed copper surface was converted to copper monoxide CuO

  15. The anodization synthesis of copper oxide nanosheet arrays and their photoelectrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Xia [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zheng, Hongmei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Xu, Guangqing, E-mail: gqxu1979@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Zhao, Jiebo [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Cui, Lihua [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Materials Science and Engineering, Beifang University of Nationalities, Yinchuan 750021 (China); Cui, Jiewu; Qin, Yongqiang; Wang, Yan [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang, Yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China)

    2017-08-01

    Graphical abstract: Current-time and potential-time curves of the copper foil anodization process, CV of copper substrate in anodization solution and SEM morphologies of anodization products on Cu substrates obtained at different time. - Highlights: • Copper oxides nanosheet arrays were achieved via anodization method. • The growth mechanisms of the copper anodization process were studied. • Photoelectrochemical performances of copper oxides NSAs were studied. - Abstract: We studied the growth of copper oxide nanosheet arrays on copper foil via a simple anodization method. The structures, morphologies, and elemental compositions of the specimens were characterized with an X-ray diffractometer, scanning electron microscope, high resolution transmission electron microscope, and X-ray photoelectron spectrometer. The copper oxide (Cu{sub 2}O and CuO) nanosheet arrays were comprised of 30-nm-thick nanosheets that stand vertically on the Cu substrate. The anodizing parameters, such as the current density, temperature, and polyethylene glycol concentration, were optimized to obtain the regular nanosheet arrays. The optical absorption properties of the anodized products were evaluated using a diffuse reflectance spectrometer, and broad and strong optical absorption bands arising from the UV to visible region were observed. The photoelectrochemical performance of the nanosheet arrays was measured with chronoamperometry and cyclic voltammetry on an electrochemical workstation equipped with a Xe lamp (wavelength >400 nm). A negative photocurrent was obtained due to the p-type semiconductor of the copper oxides. The copper oxide nanosheet arrays achieve the highest photocurrent of 0.4 mA/cm{sup 2} at the current density of 1.0 A/dm{sup 2}, temperature of 70 °C, and polyethylene glycol concentration of 0.5 g/L.

  16. Variation of high-power aluminum-wire array z-pinch dynamics with wire number, load mass, and array radius

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-12-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below {approximately} 1.4 mm. In this plasma-shell regime, many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models.

  17. Variation of high-power aluminum-wire array z-pinch dynamics with wire number, load mass, and array radius

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M.

    1997-01-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ∼ 1.4 mm. In this plasma-shell regime, many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models

  18. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, load mass, and array radius

    Science.gov (United States)

    Sanford, T. W. L.; Mock, R. C.; Marder, B. M.; Nash, T. J.; Spielman, R. B.; Peterson, D. L.; Roderick, N. F.; Hammer, J. H.; De Groot, J. S.; Mosher, D.; Whitney, K. G.; Apruzese, J. P.

    1997-05-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ˜1.4 mm. In this "plasma-shell regime," many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models.

  19. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, load mass, and array radius

    International Nuclear Information System (INIS)

    Sanford, T. W. L.; Mock, R. C.; Marder, B. M.; Nash, T. J.; Spielman, R. B.; Peterson, D. L.; Roderick, N. F.; Hammer, J. H.; De Groot, J. S.; Mosher, D.; Whitney, K. G.; Apruzese, J. P.

    1997-01-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ∼1.4 mm. In this ''plasma-shell regime,'' many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models

  20. Interlot variations of transition temperature range and force delivery in copper-nickel-titanium orthodontic wires.

    Science.gov (United States)

    Pompei-Reynolds, Renée C; Kanavakis, Georgios

    2014-08-01

    The manufacturing process for copper-nickel-titanium archwires is technique sensitive. The primary aim of this investigation was to examine the interlot consistency of the mechanical properties of copper-nickel-titanium wires from 2 manufacturers. Wires of 2 sizes (0.016 and 0.016 × 0.022 in) and 3 advertised austenite finish temperatures (27°C, 35°C, and 40°C) from 2 manufacturers were tested for transition temperature ranges and force delivery using differential scanning calorimetry and the 3-point bend test, respectively. Variations of these properties were analyzed for statistical significance by calculating the F statistic for equality of variances for transition temperature and force delivery in each group of wires. All statistical analyses were performed at the 0.05 level of significance. Statistically significant interlot variations in austenite finish were found for the 0.016 in/27°C (P = 0.041) and 0.016 × 0.022 in/35°C (P = 0.048) wire categories, and in austenite start for the 0.016 × 0.022 in/35°C wire category (P = 0.01). In addition, significant variations in force delivery were found between the 2 manufacturers for the 0.016 in/27°C (P = 0.002), 0.016 in/35.0°C (P = 0.049), and 0.016 × 0.022 in/35°C (P = 0.031) wires. Orthodontic wires of the same material, dimension, and manufacturer but from different production lots do not always have similar mechanical properties. Clinicians should be aware that copper-nickel-titanium wires might not always deliver the expected force, even when they come from the same manufacturer, because of interlot variations in the performance of the material. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  1. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, load mass, and array radius

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.; Mock, R.C.; Marder, B.M.; Nash, T.J.; Spielman, R.B. [Sandia National Laboratories, Albuquerque, New Mexico87185 (United States); Peterson, D.L.; Roderick, N.F. [Los Alamos National Laboratory, Los Alamos, New Mexico87545 (United States); Hammer, J.H.; De Groot, J.S. [Lawrence Livermore National Laboratory, Livermore, California94550 (United States); Mosher, D. [Naval Research Laboratory, Pulsed Power Physics Branch, Washington, District of Columbia20375 (United States); Whitney, K.G.; Apruzese, J.P. [Naval Research Laboratory, Radiation Hydrodynamics Branch, Washington, District of Columbia20375 (United States)

    1997-05-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below {approximately}1.4mm. In this {open_quotes}plasma-shell regime,{close_quotes} many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models. {copyright} {ital 1997 American Institute of Physics.}

  2. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, load mass, and array radius

    International Nuclear Information System (INIS)

    Sanford, T.W.; Mock, R.C.; Marder, B.M.; Nash, T.J.; Spielman, R.B.; Peterson, D.L.; Roderick, N.F.; Hammer, J.H.; De Groot, J.S.; Mosher, D.; Whitney, K.G.; Apruzese, J.P.

    1997-01-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ∼1.4mm. In this open-quotes plasma-shell regime,close quotes many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models. copyright 1997 American Institute of Physics

  3. Primary experimental results of wire-array Z-pinches on PTS

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X. B., E-mail: caephxb2003@aliyun.com; Zhou, S. T., E-mail: caephxb2003@aliyun.com; Ren, X. D., E-mail: caephxb2003@aliyun.com; Dan, J. K., E-mail: caephxb2003@aliyun.com; Wang, K. L., E-mail: caephxb2003@aliyun.com; Zhang, S. Q., E-mail: caephxb2003@aliyun.com; Li, J., E-mail: caephxb2003@aliyun.com; Xu, Q., E-mail: caephxb2003@aliyun.com; Cai, H. C., E-mail: caephxb2003@aliyun.com; Duan, S. C., E-mail: caephxb2003@aliyun.com; Ouyang, K., E-mail: caephxb2003@aliyun.com; Chen, G. H., E-mail: caephxb2003@aliyun.com; Ji, C., E-mail: caephxb2003@aliyun.com; Wang, M., E-mail: caephxb2003@aliyun.com; Feng, S. P., E-mail: caephxb2003@aliyun.com; Yang, L. B., E-mail: caephxb2003@aliyun.com; Xie, W. P., E-mail: caephxb2003@aliyun.com; Deng, J. J., E-mail: caephxb2003@aliyun.com [Key Lab of Pulsed Power, Institute of Fluid Physics, CAEP, P.O. Box 919-108, Mianyang, Sichuan 621999 (China)

    2014-12-15

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a multiterawatt pulsed power driver, which can deliver a ∼10 MA, 70 ns rise-time (10%-90%) current to a short circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. In this paper, primary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 14.4-26.4 mm, and consisting of 132∼276 tungsten wires with 5∼10 μm in diameter. Multiple diagnostics were fielded to determine the characteristics of x-ray radiations and to obtain self-emitting images of imploding plasmas. X-ray power up to 80 TW with ∼3 ns FWMH is achieved by using nested wire arrays. The total x-ray energy exceeds 500 kJ and the peak radiation temperature is about 150 eV. Typical velocity of imploding plasmas goes around 3∼5×10{sup 7} cm/s and the radial convergence ratio is between 10 and 20.

  4. Spontaneous and Directional Bubble Transport on Porous Copper Wires with Complex Shapes in Aqueous Media.

    Science.gov (United States)

    Li, Wenjing; Zhang, Jingjing; Xue, Zhongxin; Wang, Jingming; Jiang, Lei

    2018-01-24

    Manipulation of gas bubble behaviors is crucial for gas bubble-related applications. Generally, the manipulation of gas bubble behaviors generally takes advantage of their buoyancy force. It is very difficult to control the transportation of gas bubbles in a specific direction. Several approaches have been developed to collect and transport bubbles in aqueous media; however, most reliable and effective manipulation of gas bubbles in aqueous media occurs on the interfaces with simple shapes (i.e., cylinder and cone shapes). Reliable strategies for spontaneous and directional transport of gas bubbles on interfaces with complex shapes remain enormously challenging. Herein, a type of 3D gradient porous network was constructed on copper wire interfaces, with rectangle, wave, and helix shapes. The superhydrophobic copper wires were immersed in water, and continuous and stable gas films then formed on the interfaces. With the assistance of the Laplace pressure gradient between two bubbles, gas bubbles (including microscopic gas bubbles) in the aqueous media were subsequently transported, continuously and directionally, on the copper wires with complex shapes. The small gas bubbles always moved to the larger ones.

  5. Decomposition of poly(amide-imide) film enameled on solid copper wire using atmospheric pressure non-equilibrium plasma.

    Science.gov (United States)

    Sugiyama, Kazuo; Suzuki, Katsunori; Kuwasima, Shusuke; Aoki, Yosuke; Yajima, Tatsuhiko

    2009-01-01

    The decomposition of a poly(amide-imide) thin film coated on a solid copper wire was attempted using atmospheric pressure non-equilibrium plasma. The plasma was produced by applying microwave power to an electrically conductive material in a gas mixture of argon, oxygen, and hydrogen. The poly(amide-imide) thin film was easily decomposed by argon-oxygen mixed gas plasma and an oxidized copper surface was obtained. The reduction of the oxidized surface with argon-hydrogen mixed gas plasma rapidly yielded a metallic copper surface. A continuous plasma heat-treatment process using a combination of both the argon-oxygen plasma and argon-hydrogen plasma was found to be suitable for the decomposition of the poly(amide-imide) thin film coated on the solid copper wire.

  6. Variation of high-power aluminum-wire array Z-pinch dynamics with wire number, array radius, and load mass

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Mock, R.C.; Marder, B.M. [and others

    1997-06-01

    A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, including the radiated power, increases with wire number. Radiation magnetohydrodynamic (RMEC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below {approximately} 1.4 mm. In the plasma-shell regime, the experimental implosions exhibit 1D- and 2D-code characteristics as evidenced by the presence of a strong first and a weak second radiation pulse that correlates with a strong and weak radial convergence. In this regime, many of the radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. Moreover, measured changes in the radiation pulse width with variations in array mass and radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple K-shell radiation scaling models.

  7. Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment

    NARCIS (Netherlands)

    Grant-Jacob, J.A.; Mills, B.; Feinaeugle, M.; Sones, C.L.; Oosterhuis, G.; Hoppenbrouwers, M.B.; Eason, R.W.

    2013-01-01

    We demonstrate the use of laser-induced forward transfer (LIFT) in combination with a novel donor replenishment scheme to print continuous copper wires. Wires of mm length, a few microns wide and submicron in height have been printed using a 800 nm, 1 kHz repetition rate, 150 fs pulsed laser. A 120

  8. Fabrication of Copper-Rich Cu-Al Alloy Using the Wire-Arc Additive Manufacturing Process

    Science.gov (United States)

    Dong, Bosheng; Pan, Zengxi; Shen, Chen; Ma, Yan; Li, Huijun

    2017-12-01

    An innovative wire-arc additive manufacturing (WAAM) process is used to fabricate Cu-9 at. pct Al on pure copper plates in situ, through separate feeding of pure Cu and Al wires into a molten pool, which is generated by the gas tungsten arc welding (GTAW) process. After overcoming several processing problems, such as opening the deposition molten pool on the extremely high-thermal conductive copper plate and conducting the Al wire into the molten pool with low feed speed, the copper-rich Cu-Al alloy was successfully produced with constant predesigned Al content above the dilution-affected area. Also, in order to homogenize the as-fabricated material and improve the mechanical properties, two further homogenization heat treatments at 1073 K (800 °C) and 1173 K (900 °C) were applied. The material and mechanical properties of as-fabricated and heat-treated samples were compared and analyzed in detail. With increased annealing temperatures, the content of precipitate phases decreased and the samples showed gradual improvements in both strength and ductility with little variation in microstructures. The present research opened a gate for in-situ fabrication of Cu-Al alloy with target chemical composition and full density using the additive manufacturing process.

  9. Intraneural stimulation using wire-microelectrode arrays: analysis of force steps in recruitment curves

    NARCIS (Netherlands)

    Smit, J.P.A.; Rutten, Wim; Boom, H.B.K.

    1996-01-01

    In acute experiments on six Wistar rats, a wire-microelectrode array was inserted into the common peroneal nerve. A 5-channel array and a 24-channel array were available. Each electrode in the array was used to generate a twitch contraction force recruitment curve for the extensor digitorum longus

  10. Preliminary experimental results of tungsten wire-array Z-pinches on primary test stand

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xian-Bin; Zhou, Shao-Tong; Dan, Jia-Kun; Ren, Xiao-Dong, E-mail: amosrxd@163.com; Wang, Kun-Lun; Zhang, Si-Qun; Li, Jing; Xu, Qiang; Cai, Hong-Chun; Duan, Shu-Chao; Ouyang, Kai; Chen, Guang-Hua; Ji, Ce; Wei, Bing; Feng, Shu-Ping; Wang, Meng; Xie, Wei-Ping; Deng, Jian-Jun [Key Laboratory of Pulsed Power, Institute of Fluid Physics, China Academy of Engineering Physics, P.O. Box 919-108, Mianyang, Sichuan 621999 (China); Zhou, Xiu-Wen; Yang, Yi [Research Center of Laser Fusion, China Academy of Engineering Physics, P.O. Box 919-987, Mianyang, Sichuan 621999 (China)

    2015-07-15

    The Primary Test Stand (PTS) developed at the China Academy of Engineering Physics is a 20 TW pulsed power driver, which can deliver a ∼10 MA, 70 ns rise-time (10%–90%) current to a short-circuit load and has important applications in Z-pinch driven inertial confinement fusion and high energy density physics. Preliminary results of tungsten wire-array Z-pinch experiments on PTS are presented. The load geometries investigated include 15-mm-tall cylindrical single and nested arrays with diameter ranging from 13 mm to 30 mm, consisting of 132–300 tungsten wires with 5–10 μm in diameter. Multiple diagnostics were fielded to characterize the x-ray radiation from wire-array Z pinches. The x-ray peak power (∼50 TW) and total radiated energy (∼500 kJ) were obtained from a single 20-mm-diam array with 80-ns stagnation time. The highest x-ray peak power up to 80 TW with 2.4 ns FWHM was achieved by using a nested array with 20-mm outer diameter, and the total x-ray energy from the nested array is comparable to that of single array. Implosion velocity estimated from the time-resolved image measurement exceeds 30 cm/μs. The detailed experimental results and other findings are presented and discussed.

  11. 50 K anomalies in superconducting MgB{sub 2} wires in copper and silver tubes

    Energy Technology Data Exchange (ETDEWEB)

    Majoros, M [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Glowacki, B A [Interdisciplinary Research Centre in Superconductivity, University of Cambridge, Cambridge (United Kingdom); Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom); Vickers, M E [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom)

    2002-02-01

    In situ and ex situ MgB{sub 2} wires were prepared by the powder-in-tube method. Copper and silver tubes were used as a cladding material. AC susceptibility measurements revealed a small anomalous decrease with onset around 50 K. This effect persisted also when the wires were ground into powders. Electron microscopy and x-ray studies were performed on copper clad samples. Spectroscopic measurements in a SEM showed that regions contained either Cu or Mg and B. X-ray diffraction gave the major crystalline phases as Cu, MgCu{sub 2} and MgB{sub 2}. Diffraction evidence for Cu substituting in the Mg position was inconclusive. (author)

  12. Effects of filler wire on residual stress in electron beam welded QCr0.8 copper alloy to 304 stainless steel joints

    International Nuclear Information System (INIS)

    Zhang, Bing-Gang; Zhao, Jian; Li, Xiao-Peng; Chen, Guo-Qing

    2015-01-01

    The electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with or without copper filler wire was studied in detail. The temperature fields and magnitude and distribution of stress fields in the joints during the welding process were numerically simulated using finite element method. The temperature cycles and residual stresses were also experimentally measured by thermometric and hole-drilling methods, respectively. The accuracy of the modeling procedure was verified by the good agreement between the calculated results and experimental data. The temperature distribution in the joint was found to be asymmetric along the center of weld. In particular, the temperature in the copper alloy plate is much higher than that in the 304 SS plate owing to the great difference in thermal conductivity between the two materials. The peak three-dimensional residual stresses all appeared at the interface between the copper and steel in the two different joints. Furthermore, the weld was subjected to tensile stress. The longitudinal residual stress, generally the most harmful to the integrity of the structure among the stress components in EBW with filler wire (EBFW), was 53 MPa lower than that of autogenous EBW (AEBW), and the through-thickness residual stress was 12 MPa lower. The transverse residual stress of EBFW was 44 MPa higher than that of AEBW. However, analysis of the von Mises stress showed that the EBFW process effectively reduced the extent of the high residual stress region in the weld location and the magnitude of the residual stresses in the copper side compared with those of the AEBW joint. - Highlights: • Copper and steel was welded by electron beam welding with copper filler wire. • The copper wire fed into gap can reduce the peak value of residual stress. • The peak value of longitudinal stress can be reduced 53 MPa by the filler wire. • The range of nov Mises stress in the weld could be reduced by the wire

  13. Testing the equation of state and electrical conductivity of copper by the electrical wire explosion in air: Experiment and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Barysevich, A. E.; Cherkas, S. L.

    2011-01-01

    We perform experiments on testing the equations of state and electrical conductivity of copper in three different regimes of copper wire electrical explosion, when the inserted energy (i) is slightly exceeded, (ii) is approximately equal, and (iii) is substantially exceeded the energy needed for the wire complete evaporation. Magnetohydrodynamic simulation is performed. The results predicted by the two different equations of state are compared with the experiment. Empirical expression for the copper electrical conductivity is presented. Parameters in this expression is fit on every of two equations of state. Map of copper conductivity is plotted.

  14. The influence of the manufacturing method on the microstructure and drawing properties of copper wires

    International Nuclear Information System (INIS)

    Gruber, A.; Jeglitsch, F.

    1982-01-01

    Copper is the third most important common metal from production figures after iron and aluminium and is largely used as pure metal in the electroindustry mainly here in the form of wires of different sizes due to its excellent electrical properties. Therefore all factors influencing the drawing ability are very important. The following work deals with the influence of impurity measurements as well as of the microstructure on the deformation or recrystallization behaviour in manufacturing continuous casting and rolling wire and dip-forming wire, and gives a rupture cause specific to each manufacturing method in the wire drawing process. (orig.) [de

  15. Copper Refinement from Anode to Cathode and then to Wire Rod: Effects of Impurities on Recrystallization Kinetics and Wire Ductility.

    Science.gov (United States)

    Helbert, Anne-Laure; Moya, Alice; Jil, Tomas; Andrieux, Michel; Ignat, Michel; Brisset, François; Baudin, Thierry

    2015-10-01

    In this paper, the traceability of copper from the anode to the cathode and then the wire rod has been studied in terms of impurity content, microstructure, texture, recrystallization kinetics, and ductility. These characterizations were obtained based on secondary ion mass spectrometry, differential scanning calorimetry (DSC), X-ray diffraction, HV hardness, and electron backscattered diffraction. It is shown that the recrystallization was delayed by the total amount of impurities. From tensile tests performed on cold drawn and subsequently annealed wires for a given time, a simplified model has been developed to link tensile elongation to the chemical composition. This model allowed quantification of the contribution of some additional elements, present in small quantity, on the recrystallization kinetics. The proposed model adjusted for the cold-drawn wires was also validated on both the cathode and wire rod used for the study of traceability.

  16. Cryogenic deuterium Z-pinch and wire array Z-pinch studies at Imperial College

    International Nuclear Information System (INIS)

    Haines, M.G.; Aliaga-Rossel, R.; Beg, N.F.

    2001-01-01

    Z-pinch experiments using cryogenic deuterium fibre loads have been carried out on the MAGPIE generator at currents up to 1.4MA. M=0 instabilities in the corona caused plasma expansion and disruption before the plasma could enter the collisionless Large ion Larmor radius regime. For the last 12 months we have studied Aluminium wire array implosions using laser probing, optical streaks and gated X-ray images. Plasma from the wires in accelerated to the axis as radial plasma streams with uncorrelated m=0 instabilities superimposed. Later in the discharge a global Rayleigh-Taylor (R-T) instability develops. Single and double aluminium and tungsten wire shots were conducted at 150kA. 2-D and 3-D simulations and a heuristic model of wire arrays will be presented along with theories on the combined MHD/R-T instability and sheared axial flow generation by large ion Larmor radius effects. (author)

  17. Cryogenic deuterium Z-pinch and wire array Z-pinch studies at imperial college

    International Nuclear Information System (INIS)

    Haines, M.G.; Aliaga-Rossel, R.; Beg, F.N.

    1999-01-01

    Z-pinch experiments using cryogenic deuterium fibre loads have been carried out on the MAGPIE generator at currents up to 1.4MA. M=0 instabilities in the corona caused plasma expansion and disruption before the plasma could enter the collisionless Large ion Larmor radius regime. For the last 12 months we have studied Aluminium wire array implosions using laser probing, optical streaks and gated X-ray images. Plasma from the wires in accelerated to the axis as radial plasma streams with uncorrelated m=0 instabilities superimposed. Later in the discharge a global Rayleigh-Taylor (R-T) instability develops. Single and double aluminium and tungsten wire shots were conducted at 150kA. 2-D and 3-D simulations and a heuristic model of wire arrays will be presented along with theories on the combined MHD/R-T instability and sheared axial flow generation by large ion Larmor radius effects. (author)

  18. Quasi-isentropic compression using compressed water flow generated by underwater electrical explosion of a wire array

    Science.gov (United States)

    Gurovich, V.; Virozub, A.; Rososhek, A.; Bland, S.; Spielman, R. B.; Krasik, Ya. E.

    2018-05-01

    A major experimental research area in material equation-of-state today involves the use of off-Hugoniot measurements rather than shock experiments that give only Hugoniot data. There is a wide range of applications using quasi-isentropic compression of matter including the direct measurement of the complete isentrope of materials in a single experiment and minimizing the heating of flyer plates for high-velocity shock measurements. We propose a novel approach to generating quasi-isentropic compression of matter. Using analytical modeling and hydrodynamic simulations, we show that a working fluid composed of compressed water, generated by an underwater electrical explosion of a planar wire array, might be used to efficiently drive the quasi-isentropic compression of a copper target to pressures ˜2 × 1011 Pa without any complex target designs.

  19. Progress in Effect of Nano-modified Coatings and Welding Process Parameters on Wear of Contact Tube for Non-copper Coated Solid Wires

    Directory of Open Access Journals (Sweden)

    LI Zhuo-xin

    2017-12-01

    Full Text Available Environment-friendly non-copper coated solid wire is the main developing trend for gas shielded solid wires, whereas wear of contact tube limits their wide application. The effect of nano-modified coatings and welding process parameters on wear of contact tube for non-copper coated solid wires was reviewed. It was found that the wear of contact tube can be reduced due to the formation of tribo-films on the rubbing surfaces of welding wires against contact tube; it is feasible to decrease contact tube wear when non-copper coated solid wires are coated with nano-modified lubricants, thereby displaying excellent lubricating and thermal or electrical conduction characteristics. The wear of contact tube increases with the increase of welding current. The wear of contact tube is worse in direct-current electrode positive (DCEP than in direct-current electrode negative (DCEN. Arc ablation and electrical erosion are the dominant wear mechanisms of contact tube.

  20. X-ray power increase from symmetrized wire-array z-pinch implosions

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Allshouse, G.O.; Marder, B.M. [and others

    1996-08-01

    A systematic experimental study of annular aluminum-wire z-pinches on the Saturn accelerator shows that, for the first time, the measured spatial characteristics and x-ray powers can approach those of two-dimensional, radiation-magneto-hydrodynamic simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual plasma wires to that of a continuous plasma shell, when the circumferential gap between wires in the array is reduced below 1.4+1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4 {+-}0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma shell regime, x-ray powers in excess of a factor of three over that generated in the plasma-wire region are measured.

  1. X-ray power increase from symmetrized wire-array z-pinch implosions

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Allshouse, G.O.; Marder, B.M.

    1996-08-01

    A systematic experimental study of annular aluminum-wire z-pinches on the Saturn accelerator shows that, for the first time, the measured spatial characteristics and x-ray powers can approach those of two-dimensional, radiation-magneto-hydrodynamic simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual plasma wires to that of a continuous plasma shell, when the circumferential gap between wires in the array is reduced below 1.4+1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4 ±0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma shell regime, x-ray powers in excess of a factor of three over that generated in the plasma-wire region are measured

  2. Copper nanorod array assisted silicon waveguide polarization beam splitter.

    Science.gov (United States)

    Kim, Sangsik; Qi, Minghao

    2014-04-21

    We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology.

  3. A copper ion-selective electrode with high selectivity prepared by sol-gel and coated wire techniques.

    Science.gov (United States)

    Mazloum Ardakani, M; Salavati-Niasari, M; Khayat Kashani, M; Ghoreishi, S M

    2004-03-01

    A sol-gel electrode and a coated wire ion-selective poly(vinyl chloride) membrane, based on thiosemicarbazone as a neutral carrier, were successfully developed for the detection of Cu (II) in aqueous solutions. The sol-gel electrode and coated electrode exhibited linear response with Nernstian slopes of 29.2 and 28.1 mV per decade respectively, within the copper ion concentration ranges 1.0 x 10(-5) - 1.0 x 10(-1) M and 6.0 x 10(-6) - 1.0 x 10(-1) M for coated and sol-gel sensors. The coated and sol-gel electrodes show detection limits of 3.0 x 10(-6) and 6.0 x 10(-6) M respectively. The electrodes exhibited good selectivities for a number of alkali, alkaline earth, transition and heavy metal ions. The proposed electrodes have response times ranging from 10-50 s to achieve a 95% steady potential for Cu2+ concentration. The electrodes are suitable for use in aqueous solutions over a wide pH range (4-7.5). Applications of these electrodes for the determination of copper in real samples, and as an indicator electrode for potentiometric titration of Cu2+ ion using EDTA, are reported. The lifetimes of the electrodes were tested over a period of six months to investigate their stability. No significant change in the performance of the sol-gel electrode was observed over this period, but after two months the coated wire copper-selective electrode exhibited a gradual decrease in the slope. The selectivity of the sol-gel electrode was found to be better than that of the coated wire copper-selective electrode. Based on these results, a novel sol-gel copper-selective electrode is proposed for the determination of copper, and applied to real sample assays.

  4. Preliminary study of Rayleigh-Taylor instability in wire-array Z-pinch

    International Nuclear Information System (INIS)

    He Kaihui; Feng Kaiming; Li Qiang; Gao Chunming

    2000-01-01

    It is important to research into the MHD Rayleigh-Taylor instability developed in Z-pinch implosion. A snowplough model of the single wire Z-pinch is presented. The perturbation amplitude of Rayleigh-Taylor instability in the wire-array Z-pinch is analyzed quantitatively. Sheared axial flow is put forward to mitigate and reduce the Rayleigh-Taylor instability. And other approaches used to mitigate MHD instability in such a super-fast process are explored

  5. X-ray power increase from symmetrized wire-array Z-pinch implosions

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Allshouse, G.O.; Marder, B.M.

    1996-01-01

    A systematic experimental study of annular aluminum-wire z-pinches on the Saturn accelerator shows that, for the first time, the measured spatial characteristics and x-ray powers can approach those of two-dimensional, radiation-magneto-hydrodynamic simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual plasma wires to that of a continuous plasma shell, when the circumferential gap between wires in the array is reduced below 1.4 +1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4 ± 0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma-shell regime, x-ray powers in excess of a factor of three over that generated in the plasma-wire region are measured. (author). 5 figs., 16 refs

  6. X-ray power increase from symmetrized wire-array Z-pinch implosions

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T W.L.; Allshouse, G O; Marder, B M [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    A systematic experimental study of annular aluminum-wire z-pinches on the Saturn accelerator shows that, for the first time, the measured spatial characteristics and x-ray powers can approach those of two-dimensional, radiation-magneto-hydrodynamic simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual plasma wires to that of a continuous plasma shell, when the circumferential gap between wires in the array is reduced below 1.4 +1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4 {+-} 0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma-shell regime, x-ray powers in excess of a factor of three over that generated in the plasma-wire region are measured. (author). 5 figs., 16 refs.

  7. Effects of Mass Ablation on the Scaling of X-Ray Power with Current in Wire-Array Z Pinches

    International Nuclear Information System (INIS)

    Lemke, R. W.; Sinars, D. B.; Waisman, E. M.; Cuneo, M. E.; Yu, E. P.; Haill, T. A.; Hanshaw, H. L.; Brunner, T. A.; Jennings, C. A.; Stygar, W. A.; Desjarlais, M. P.; Mehlhorn, T. A.; Porter, J. L.

    2009-01-01

    X-ray production by imploding wire-array Z pinches is studied using radiation magnetohydrodynamics simulation. It is found that the density distribution created by ablating wire material influences both x-ray power production, and how the peak power scales with applied current. For a given array there is an optimum ablation rate that maximizes the peak x-ray power, and produces the strongest scaling of peak power with peak current. This work is consistent with trends in wire-array Z pinch x-ray power scaling experiments on the Z accelerator

  8. Left-handed compact MIMO antenna array based on wire spiral resonator for 5-GHz wireless applications

    Science.gov (United States)

    Alqadami, Abdulrahman Shueai Mohsen; Jamlos, Mohd Faizal; Soh, Ping Jack; Rahim, Sharul Kamal Abdul; Narbudowicz, Adam

    2017-01-01

    A compact coplanar waveguide-fed multiple-input multiple-output antenna array based on the left-handed wire loaded spiral resonators (SR) is presented. The proposed antenna consists of a 2 × 2 wire SR with two symmetrical microstrip feed lines, each line exciting a 1 × 2 wire SR. Left-handed metamaterial unit cells are placed on its reverse side and arranged in a 2 × 3 array. A reflection coefficient of less than -16 dB and mutual coupling of less than -28 dB are achieved at 5.15 GHz WLAN band.

  9. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array.

    Science.gov (United States)

    Wu, Jianfeng; Wang, Yu; Li, Jianqing; Song, Aiguo

    2016-05-18

    For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach's performance with Multisim simulations and actual experiments.

  10. A Novel Two-Wire Fast Readout Approach for Suppressing Cable Crosstalk in a Tactile Resistive Sensor Array

    Directory of Open Access Journals (Sweden)

    Jianfeng Wu

    2016-05-01

    Full Text Available For suppressing the crosstalk problem due to wire resistances and contacted resistances of the long flexible cables in tactile sensing systems, we present a novel two-wire fast readout approach for the two-dimensional resistive sensor array in shared row-column fashion. In the approach, two wires are used for every driving electrode and every sampling electrode in the resistive sensor array. The approach with a high readout rate, though it requires a large number of wires and many sampling channels, solves the cable crosstalk problem. We also verified the approach’s performance with Multisim simulations and actual experiments.

  11. Copper vertical micro dendrite fin arrays and their superior boiling heat transfer capability

    Science.gov (United States)

    Wang, Ya-Qiao; Lyu, Shu-Shen; Luo, Jia-Li; Luo, Zhi-Yong; Fu, Yuan-Xiang; Heng, Yi; Zhang, Jian-Hui; Mo, Dong-Chuan

    2017-11-01

    Micro pin fin arrays have been widely used in electronic cooling, micro reactors, catalyst support, and wettability modification and so on, and a facile way to produce better micro pin fin arrays is demanded. Herein, a simple electrochemical method has been developed to fabricate copper vertical micro dendrite fin arrays (Cu-VMDFA) with controllable shapes, number density and height. High copper sulphate concentration is one key point to make the dendrite stand vertically. Besides, the applied current should rise at an appropriate rate to ensure the copper dendrite can grow vertically on its own. The Cu-VMDFA can significantly enhance the heat transfer coefficient by approximately twice compared to the plain copper surface. The Cu-VMDFA may be widely used in boiling heat transfer areas such as nuclear power plants, electronic cooling, heat exchangers, and so on.

  12. Role of surface on the size-dependent mechanical properties of copper nano-wire under tensile load: A molecular dynamics simulation

    Science.gov (United States)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nano-wires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nano-wires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nano-wires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress-strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nano-wire. Thus the size-dependent mechanical properties of single crystal copper nano-wire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  13. Propagation velocities of laser-produced plasmas from copper wire targets and water droplets

    Science.gov (United States)

    Song, Kyo-Dong; Alexander, Dennis R.

    1994-01-01

    Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.

  14. Radial density distribution of a warm dense plasma formed by underwater electrical explosion of a copper wire

    Science.gov (United States)

    Nitishinskiy, M.; Yanuka, D.; Virozub, A.; Krasik, Ya. E.

    2017-12-01

    Time- and space-resolved evolution of the density (down to 0.07 of solid state density) of a copper wire during its microsecond timescale electrical explosion in water was obtained by X-ray backlighting. In the present research, a flash X-ray source of 20 ns pulse-width and >60 keV photon energy was used. The conductivity of copper was evaluated for a temperature of 10 kK and found to be in good agreement with the data obtained in earlier experiments [DeSilva and Katsouros, Phys. Rev. E 57, 5945 (1998) and Sheftman and Krasik, Phys. Plasmas 18, 092704 (2011)] where only electrical and optical diagnostics were applied. Magneto-hydrodynamic simulation shows a good agreement between the simulated and experimental waveforms of the current and voltage and measured the radial expansion of the exploding wire. Also, the radial density distribution obtained by an inverse Abel transform analysis agrees with the results of these simulations. Thus, the validity of the equations of state for copper and the conductivity model used in the simulations was confirmed for the parameters of the exploding wire realized in the present research.

  15. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    International Nuclear Information System (INIS)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun; Jia, Shenli

    2016-01-01

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shunting breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.

  16. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun; Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shanxi 710049 (China)

    2016-03-15

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shunting breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.

  17. Design of Tunnel Magnetoresistive-Based Circular MFL Sensor Array for the Detection of Flaws in Steel Wire Rope

    Directory of Open Access Journals (Sweden)

    Liu Xiucheng

    2016-01-01

    Full Text Available Tunnel magnetoresistive (TMR devices have superior performances in weak magnetic field detection. In this study, TMR devices were first employed to form a circular magnetic flux leakage (MFL sensor for slight wire rope flaw detection. Two versions of this tailor-made circular TMR-based sensor array were presented for the inspection of wire ropes with the diameters of 14 mm and 40 mm, respectively. Helmholtz-like coils or a ferrite magnet-based magnetizer was selected to provide the proper magnetic field, in order to meet the technical requirements of the TMR devices. The coefficient of variance in the flaw detection performance of the sensor array elements was experimentally estimated at 4.05%. Both versions of the MFL sensor array were able to detect multiple single-broken wire flaws in the wire ropes. The accurate axial and circumferential positions of these broken wire flaws were estimated from the MFL scanning image results. In addition, the proposed TMR-based sensor array was applied to detect the MFL signal induced by slight surface wear defects. A mutual correlation analysis method was used to distinguish the signals caused by the lift-off fluctuation from the MFL scanning image results. The MFL sensor arrays presented in this study provide inspiration for the designing of tailor-made TMR-based circular sensor arrays for cylindrical ferromagnetic structural inspections.

  18. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage.

  19. Effect on deformation process of adding a copper core to multifilament MgB2 superconducting wire

    DEFF Research Database (Denmark)

    Hancock, Michael Halloway; Bay, Niels

    2007-01-01

    Using the PIT method, multifilament wire with different packing strategies has been manufactured. In all, three types of wire have been investigated, a 19-filament configuration using ex-situ powder in an Fe-matrix and two 8-filament configurations in an Fe-matrix applying a copper core, one using....... This finding is supported by numerical simulations of the deformation process which indicate that tensile stresses are. concentrated around the middle of the wire during the drawing process. As such, strategic packing of the multifilament configuration can reduce the need for annealing during the mechanical...

  20. The effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Li, M., E-mail: limo@nint.ac.cn; Li, Y. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China); State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Sheng, L.; Wang, L. P.; Zhao, C.; Yuan, Y.; Zhang, X. J.; Zhang, M.; Peng, B. D.; Zhang, J. H.; Zhang, S. G.; Qiu, M. T. [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Li, X. W. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Shaanxi 710049 (China)

    2015-12-15

    This paper presents experimental results on the effects of insulating coatings and current prepulse on tungsten planar wire array Z-pinches on ∼100 ns main current facility. Optical framing images indicated that without a current prepulse the wire ablation process was asymmetrical and the implosion was zippered. The x-ray peak power was ∼320 GW. By using insulating coatings on the wire surface the asymmetry remained, and the processes of ablation and implosion were delayed by ∼30 ns. The x-ray burst was narrow and decreased to ∼200 GW. When current prepulses were used on both standard and insulated wire arrays, implosion symmetry was improved and the x-ray burst was improved (to ∼520 GW peak power). In addition, there was a strong emitting precursor column for insulated loads with the current prepulse.

  1. Compression dynamics of quasi-spherical wire arrays with different linear mass profiles

    International Nuclear Information System (INIS)

    Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Grabovski, E. V.; Frolov, I. N.; Laukhin, Ya. N.; Oleinik, G. M.; Ol’khovskaya, O. G.

    2016-01-01

    Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m_l(θ) ∝ sin"–"1θ and m_l(θ) ∝ sin"–"2θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear mass profiling, m_l(θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m_l(θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.

  2. Annealing effects in plated-wire memory elements. I - Interdiffusion of copper and Permalloy.

    Science.gov (United States)

    Knudson, C. I.; Kench, J. R.

    1971-01-01

    Results of investigations using X-ray diffraction and electron-beam microprobe techniques have shown that copper and Permalloy platings interdiffuse at low temperatures when plated-wire memory elements are annealed for times as short as 50 hr. Measurable interdiffusion between Permalloy platings and gold substrates does not occur in similar conditions. Both magnetic and compositional changes during aging are found to occur by a thermally activated process with activation energies around 38 kcal/mol. It is shown, however, that copper-diffusion and magnetic-dispersion changes during aging are merely concurrent processes, neither being the other's cause.

  3. Experimental study of surface insulated-standard hybrid tungsten planar wire array Z-pinches at “QiangGuang-I” facility

    Energy Technology Data Exchange (ETDEWEB)

    Sheng, Liang; Peng, Bodong; Yuan, Yuan; Zhang, Mei; Zhao, Chen; Zhao, Jizhen; Wang, Liangping [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi' an 710024 (China); Li, Yang, E-mail: liyang@nint.ac.cn; Li, Mo [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi' an 710024 (China); Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-01-15

    The experimental results of the insulated-standard hybrid wire array Z pinches carried out on “QiangGuang-I” facility at Northwest Institute of Nuclear Technology were presented and discussed. The surface insulating can impose a significant influence on the dynamics and radiation characteristics of the hybrid wire array Z pinches, especially on the early stage (t/t{sub imp} < 0.6). The expansion of insulated wires at the ablation stage is suppressed, while the streams stripped from the insulated wires move faster than that from the standard wires. The foot radiation of X-ray is enhanced by increment of the number of insulated wires, 19.6 GW, 33.6 GW, and 68.6 GW for shots 14037S, 14028H, and 14039I, respectively. The surface insulation also introduces nonhomogeneity along the single wire—the streams move much faster near the electrodes. The colliding boundary of the hybrid wire array Z pinches is bias to the insulated side approximately 0.6 mm.

  4. Gold Wire-networks: Particle Array Guided Evaporation Lithograpy

    KAUST Repository

    Lone, Saifullah

    2015-06-29

    We exploited the combination of dry deposition of monolayer of 2D (two dimensional) templates, lift-up transfer of 2D template onto flat surfaces and evaporation lithography [1] to fabricate gold micro- and submicron size wire networks. The approach relies upon the defect free dry deposition of 2D monolayer of latex particles [2] on patterned silicon template and flat PDMS-substrate to create square centered and honey-comb wire networks respectively. The process is followed by lift-up transfer of 2D latex crystal on glass substrate. Subsequently, a small amount of AuNP-suspension is doped on top of the transferred crystal; the suspension is allowed to spread instantaneously and dried at low temperature. The liquid evaporates uniformly to the direction perpendicular to glass substrate. During evaporation, AuNPs are de-wetted along with the movement of liquid to self-assemble in-between the inter-particle spaces and therefore, giving rise to liquid-bridge networks which upon delayed evaporation, transforms into wire networks. The approach is used to fabricate both micro- and submicron wire-networks by simply changing the template dimensions. One of the prime motives behind this study is to down-scale the existing particle array template-based evaporation lithography process to fabricate connected gold wire networks at both micro- and submicron scale. Secondly, the idea of combining the patterned silicon wafer with lifted latex particle template creates an opportunity to clean and res-use the patterned wafer more often and thereby, saving fabrication time and resources. Finally, we illustrated the validity of this approach by creating an easy and high-speed approach to develop gold wire networks on a flexible substrate with a thin deposited adhesive. These advances will not only serve as a platform to scale up the production, but also demonstrated that the fabrication method can produce metallic wire networks of different scale and onto a variety of substrates.

  5. Optimization of the copper addition to the core of in situ Cu-sheathed MgB2 wires

    International Nuclear Information System (INIS)

    Woźniak, M; Juda, K L; Hopkins, S C; Glowacki, B A; Gajda, D

    2013-01-01

    Recent results on powder-in-tube in situ Cu-sheathed MgB 2 wires have shown that copper powder additions to the core can accelerate the formation of MgB 2 , increasing its volume fraction and greatly decreasing the amount of Mg–Cu intermetallic phases present in the core after heat treatment. The amount of added copper and heat treatment conditions strongly affect the critical current of the wire and require optimization. To identify the optimum parameters, eight wires with starting core compositions of Mg+2B+xCu with x = 0, 0.01, 0.03, 0.05, 0.07, 0.09, 0.12 and 0.15 were prepared with two heating ramp rates and their properties were investigated by SEM, XRD and J c and n-value measurements. The highest J c was found to be for x = 0.09, whereas x = 0.03 resulted in the highest n-value. The results are relatively independent of the heating ramp rate used for heat treatment. (paper)

  6. Cu-Nb3Sn superconducting wires prepared by ''Copper Liquid Phase Sintering method'' using the Nb-H

    International Nuclear Information System (INIS)

    Resende, A.T. de.

    1985-01-01

    Cu-30% Nb in weighting were prepared by the method of Copper sintering liquid phase the method was improved by substitution of Nb power by Nb-H powder, obtaining a high density material with good mechanical properties, which was reduced to fine. Wire, Without heat treatment. The Cu-Nb 3 Sn wires were obtained by external diffusion process depositing tin in the Cu-30%Nb wires, and by internal diffusion process using the Sn-8.5% Cu in weighting, which was reduced to rods of 3.5 mm. These Cu-30%Nb rods were enclosed in copper tubes and deformed mechanically by rotary swaging and drawing. During the drawing step some wires were fractured, that were analysed and correlated with the microstructure of the Sn-8.5 Wt% Cu alloy. External and internal diffusion samples; after a fast thermal treatment for Sn diffusion, were submited to the temperature of 700 0 C to provide the reaction between Sn and Nb, leading to the Nb 3 Sn phase. Samples with several reaction times, and its influence on T c and J c critical parameters and normal resistivity were prepared and analysed. (author) [pt

  7. Expansion of plasma of electrically exploding single copper wire under 4.5 kA-9.5 kA/wire

    International Nuclear Information System (INIS)

    Li Yexun; Yang Libing; Sun Chengwei

    2003-01-01

    The experimental system for electrically exploding single metal wire has been designed and manufactured. Expansion of the dense plasma column formed from an electrically exploding Cu wire of diameter 30 μm has been studied with a high-speed photographer to obtain the time-dependent radius (R-t) curve. The experimental results demonstrate that the mean expansion rate of the dense plasma column is 1.94 μm/ns, 2.6 μm/ns and 3.75 μm/ns according to the peak pulse current 4.5 kA, 7 kA and 9.5 kA respectively. The results can be beneficial to giving a profound understanding of the early stage of wire-array Z-pinch physics and to improvement on their design

  8. Electrical wire explosion process of copper/silver hybrid nano-particle ink and its sintering via flash white light to achieve high electrical conductivity.

    Science.gov (United States)

    Chung, Wan-Ho; Hwang, Yeon-Taek; Lee, Seung-Hyun; Kim, Hak-Sung

    2016-05-20

    In this work, combined silver/copper nanoparticles were fabricated by the electrical explosion of a metal wire. In this method, a high electrical current passes through the metal wire with a high voltage. Consequently, the metal wire evaporates and metal nanoparticles are formed. The diameters of the silver and copper nanoparticles were controlled by changing the voltage conditions. The fabricated silver and copper nano-inks were printed on a flexible polyimide (PI) substrate and sintered at room temperature via a flash light process, using a xenon lamp and varying the light energy. The microstructures of the sintered silver and copper films were observed using a scanning electron microscope (SEM) and a transmission electron microscope (TEM). To investigate the crystal phases of the flash-light-sintered silver and copper films, x-ray diffraction (XRD) was performed. The absorption wavelengths of the silver and copper nano-inks were measured using ultraviolet-visible spectroscopy (UV-vis). Furthermore, the resistivity of the sintered silver and copper films was measured using the four-point probe method and an alpha step. As a result, the fabricated Cu/Ag film shows a high electrical conductivity (4.06 μΩcm), which is comparable to the resistivity of bulk copper (1.68 μΩcm). In addition, the fabricated Cu/Ag nanoparticle film shows superior oxidation stability compared to the Cu nanoparticle film.

  9. Sheath-flow electrochemical detection of amino acids with a copper wire electrode in capillary electrophoresis.

    Science.gov (United States)

    Inoue, Junji; Kaneta, Takashi; Imasaka, Totaro

    2012-09-01

    Here, we report the detection of native amino acids using a sheath-flow electrochemical detector with a working electrode made of copper wire. A separation capillary that was inserted into a platinum tube in the detector acted as a grounded electrode for electrophoresis and as a flow channel for sheath liquid. Sheath liquid flowed outside the capillary to support the transport of the separated analytes to the working electrode for electrochemical detection. The copper wire electrode was aligned at the outlet of the capillary in a wall-jet configuration. Amino acids injected into the capillary were separated following elution from the end of the capillary and detection by the copper electrode. Three kinds of copper electrodes with different diameters-50, 125, and 300 μm-were examined to investigate the effect of the electrode diameter on sensitivity. The peak widths of the analytes were independent of the diameter of the working electrode, while the 300-μm electrode led to a decrease in the signal-to-noise ratio compared with the 50- and 125-μm electrodes, which showed no significant difference. The flow rate of the sheath liquid was also varied to optimize the detection conditions. The limits of detection for amino acids ranged from 4.4 to 27 μM under optimal conditions. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermal Stability of Nanocrystalline Copper for Potential Use in Printed Wiring Board Applications

    Science.gov (United States)

    Woo, Patrick Kai Fai

    Copper is a widely used conductor in the manufacture of printed wiring boards (PWB). The trends in miniaturization of electronic devices create increasing challenges to all electronic industries. In particular PWB manufacturers face great challenges because the increasing demands in greater performance and device miniaturization pose enormous difficulties in manufacturing and product reliability. Nanocrystalline and ultra-fine grain copper can potentially offer increased reliability and functionality of the PWB due to the increases in strength and achievable wiring density by reduction in grain size. The first part of this thesis is concerned with the synthesis and characterization of nanocrystalline and ultra-fine grain-sized copper for potential applications in the PWB industry. Nanocrystalline copper with different amounts of sulfur impurities (25-230ppm) and grain sizes (31-49nm) were produced and their hardness, electrical resistivity and etchability were determined. To study the thermal stability of nanocrystalline copper, differential scanning calorimetry and isothermal heat treatments combined with electron microscopy techniques for microstructural analysis were used. Differential scanning calorimetry was chosen to continuously monitor the grain growth process in the temperature range from 40?C to 400?C. During isothermal annealing experiments samples were annealed at 23?C, 100?C and 300?C to study various potential thermal issues for these materials in PWB applications such as the long-term room temperature thermal stability as well as for temperature excursions above the operation temperature and peak temperature exposure during the PWB manufacturing process. From all annealing experiments the various grain growth events and the overall stability of these materials were analyzed in terms of driving and dragging forces. Experimental evidence is presented which shows that the overall thermal stability, grain boundary character and texture evolution of

  11. Multi-Dimensional Radiation Transport in Dense Z-pinch Wire Array Plasmas

    Science.gov (United States)

    Jennings, C. A.; Chittenden, J. P.; Ciardi, A.; Sherlock, M.; Lebedev, S. V.

    2004-11-01

    Z-pinch wire arrays have proven to be an extremely efficient high yield, short pulse x-ray source with potential application to ICF. The characteristics of the x-ray pulse produced have been shown to be largely determined by non-uniform break up of the wires leading to a highly irregular distribution of mass which implodes towards the axis. Modelling the inherent 3D nature of these plasmas is already computationally very expensive, and so energy exchange through radiation is frequently neglected, assuming instead an optically thin radiation loss model. With a significant fraction of the total energy at late stages being radiated through a dense, optically thick plasma this approach is potentially inadequate in fully describing the implosion. We analyse the effects of radiative cooling and radiation transport on stagnation and precursor development in wire array z-pinch implosions. A three temperature multidimensional MHD code using a single group radiation diffusion model is used to study radiation trapping in the precursor, and the effects of preheating on the implosion dynamics. Energy exchange in the final stagnated plasma and its effects on the x-ray pulse shape is also discussed. This work was partially supported by the SSAA program of the NNSA through DoE cooperative agreement DE-F03-02NA00057.

  12. Analysis of X-ray iron and nickel radiation and jets from planar wire arrays and X-pinches

    International Nuclear Information System (INIS)

    Safronova, A S; Kantsyrev, V L; Esaulov, A A; Ouart, N D; Shlyaptseva, V; Williamson, K M; Shrestha, I; Osborne, G C; Weller, M E

    2010-01-01

    University-scale Z-pinch devices are able to produce plasmas with a broad range of sizes, temperatures, densities, their gradients, and opacity properties. Radiative properties of such plasmas depend on material, mass, and configuration of the wire array loads. Experiments with two different types of loads, double planar wire arrays (DPWA) and X-pinches, performed on the 1 MA Zebra generator at UNR are analyzed. X-pinches are made from Stainless Steel (69% Fe, 20% Cr, and 9% Ni) wires. Combined DPWAs consist of one plane from SS wires and another plane from Alumel (95% Ni, 2% Al, 2% Si) wires. The main focus of this work is on the analysis of plasma jets at the early phase of plasma formation and the K-and L-shell radiation generation at the implosion and stagnation phases in experiments with the two aforementioned wire loads. The relevant theoretical tools that guide the data analysis include non-LTE collisional-radiative and wire ablation dynamics models. The astrophysical relevance of the plasma jets as well as of spectroscopic and imaging studies are demonstrated.

  13. Easy route to superhydrophobic copper-based wire-guided droplet microfluidic systems.

    Science.gov (United States)

    Mumm, Florian; van Helvoort, Antonius T J; Sikorski, Pawel

    2009-09-22

    Droplet-based microfluidic systems are an expansion of the lab on a chip concept toward flexible, reconfigurable setups based on the modification and analysis of individual droplets. Superhydrophobic surfaces are one suitable candidate for the realization of droplet-based microfluidic systems as the high mobility of aqueous liquids on such surfaces offers possibilities to use novel or more efficient approaches to droplet movement. Here, copper-based superhydrophobic surfaces were produced either by the etching of polycrystalline copper samples along the grain boundaries using etchants common in the microelectronics industry, by electrodeposition of copper films with subsequent nanowire decoration based on thermal oxidization, or by a combination of both. The surfaces could be easily hydrophobized with thiol-modified fluorocarbons, after which the produced surfaces showed a water contact angle as high as 171 degrees +/- 2 degrees . As copper was chosen as the base material, established patterning techniques adopted from printed circuit board fabrication could be used to fabricate macrostructures on the surfaces with the intention to confine the droplets and, thus, to reduce the system's sensitivity to tilting and vibrations. A simple droplet-based microfluidic chip with inlets, outlets, sample storage, and mixing areas was produced. Wire guidance, a relatively new actuation method applicable to aqueous liquids on superhydrophobic surfaces, was applied to move the droplets.

  14. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  15. Excimer laser produced plasmas in copper wire targets and water droplets

    Science.gov (United States)

    Song, Kyo-Dong; Alexander, D. R.

    1994-01-01

    Elastically scattered incident radiation (ESIR) from a copper wire target illuminated by a KrF laser pulse at lambda = 248 nm shows a dinstinct two-peak structure which is dependent on the incident energy. The time required to reach the critical electron density (n(sub c) approximately = 1.8 x 10(exp 22) electrons/cu cm) is estimated at 11 ns based on experimental results. Detailed ESIR characteristics for water have been reported previously by the authors. Initiation of the broadband emission for copper plasma begins at 6.5 +/- 1.45 ns after the arrival of the laser pulse. However, the broadband emission occurs at 11 +/- 0.36 ns for water. For a diatomic substance such as water, the electron energy rapidly dissipates due to dissociation of water molecules, which is absent in a monatomic species such as copper. When the energy falls below the excitation energy of the lowest electron state for water, it becomes a subexcitation electron. Lifetimes of the subexcited electrons to the vibrational states are estimated to be of the order of 10(exp -9) s. In addition, the ionization potential of copper (440-530 nm) is approximately 6 eV, which is about two times smaller than the 13 eV ionization potential reported for water. The higher ionization potential contributes to the longer observed delay time for plasma formation in water. After initiation, a longer time is required for copper plasma to reach its peak value. This time delay in reaching the maximum intensity is attributed to the energy loss during the interband transition in copper.

  16. Method of preparing composite superconducting wire

    International Nuclear Information System (INIS)

    Verhoeven, J. D.; Finnemore, D. K.; Gibson, E. D.; Ostenson, J. E.; Schmidt, F. A.

    1985-01-01

    An improved method of preparing composite multifilament superconducting wire of Nb 3 Sn in a copper matrix which eliminates the necessity of coating the drawn wire with tin. A generalized cylindrical billet of an alloy of copper containing at least 15 weight percent niobium, present in the copper as discrete, randomly distributed and oriented dendritic-shaped particles, is provided with at least one longitudinal opening which is filled with tin to form a composite drawing rod. The drawing rod is then drawn to form a ductile composite multifilament wire containing a filament of tin. The ductile wire containing the tin can then be wound into magnet coils or other devices before heating to diffuse the tin through the wire to react with the niobium forming Nb 3 Sn. Also described is an improved method for making large billets of the copper-niobium alloy by consumable-arc casting

  17. Studies of Hot Spots in Imploding Wire Arrays at 1 MA on COBRA

    International Nuclear Information System (INIS)

    Pikuz, Sergey A.; Shelkovenko, Tatiana A.; McBride, Ryan D.; Hammer, David A.

    2009-01-01

    We present recent results from hot spot investigations in imploding Al wire array z-pinches on the COBRA generator at Cornell University using x-ray diagnostics. Measurements of the temporal and spatial distribution of hot spots in stagnating plasmas by an x-ray streak-camera are included. Experiments show that hot spots have nanosecond lifetime and appear randomly along the array axis after plasma stagnation in secondary pinches in 8 mm diameter and during plasma stagnation in the arrays with 4 mm diameter.

  18. FE modeling of Cu wire bond process and reliability

    NARCIS (Netherlands)

    Yuan, C.A.; Weltevreden, E.R.; Akker, P. van den; Kregting, R.; Vreugd, J. de; Zhang, G.Q.

    2011-01-01

    Copper based wire bonding technology is widely accepted by electronic packaging industry due to the world-wide cost reduction actions (compared to gold wire bond). However, the mechanical characterization of copper wire differs from the gold wire; hence the new wire bond process setting and new bond

  19. Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection

    Science.gov (United States)

    Gulati, Karan; Aw, Moom Sinn; Losic, Dusan

    2011-10-01

    Current bone fixation technology which uses stainless steel wires known as Kirschner wires for fracture fixing often causes infection and reduced skeletal load resulting in implant failure. Creating new wires with drug-eluting properties to locally deliver drugs is an appealing approach to address some of these problems. This study presents the use of titanium [Ti] wires with titania nanotube [TNT] arrays formed with a drug delivery capability to design alternative bone fixation tools for orthopaedic applications. A titania layer with an array of nanotube structures was synthesised on the surface of a Ti wire by electrochemical anodisation and loaded with antibiotic (gentamicin) used as a model of bone anti-bacterial drug. Successful fabrication of TNT structures with pore diameters of approximately 170 nm and length of 70 μm is demonstrated for the first time in the form of wires. The drug release characteristics of TNT-Ti wires were evaluated, showing a two-phase release, with a burst release (37%) and a slow release with zero-order kinetics over 11 days. These results confirmed our system's ability to be applied as a drug-eluting tool for orthopaedic applications. The established biocompatibility of TNT structures, closer modulus of elasticity to natural bones and possible inclusion of desired drugs, proteins or growth factors make this system a promising alternative to replace conventional bone implants to prevent bone infection and to be used for targeted treatment of bone cancer, osteomyelitis and other orthopaedic diseases.

  20. Switchable DNA wire: deposition-stripping of copper nanoclusters as an "ON-OFF" nanoswitch.

    Science.gov (United States)

    Zhu, Xiaoli; Liu, Siyu; Cao, Jiepei; Mao, Xiaoxia; Li, Genxi

    2016-01-19

    Today, a consensus that DNA working as a molecular wire shows promise in nanoscale electronics is reached. Considering that the "ON-OFF" switch is the basis of a logic circuit, the switch of DNA-mediated charge transport (DNA CT) should be conquered. Here, on the basis of chemical or electrochemical deposition and stripping of DNA-templated copper nanoclusters (CuNCs), we develop an "ON-OFF" nanoswitch for DNA CT. While CuNCs are deposited, the DNA CT is blocked, which can be also recovered after stripping the CuNCs. A switch cycle can be completed in a few seconds and can be repeated for many times. Moreover, by regulating the amount of reagents, deposition/stripping time, applied potential, etc., the switch is adjustable to make the wire at either an "ON-OFF" state or an intermediate state. We believe that this concept and the successful implementation will promote the practical application of DNA wire one step further.

  1. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.

    Science.gov (United States)

    Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E

    2015-09-02

    The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.

  2. Corrosion Study and Intermetallics Formation in Gold and Copper Wire Bonding in Microelectronics Packaging

    Directory of Open Access Journals (Sweden)

    Christopher Breach

    2013-07-01

    Full Text Available A comparison study on the reliability of gold (Au and copper (Cu wire bonding is conducted to determine their corrosion and oxidation behavior in different environmental conditions. The corrosion and oxidation behaviors of Au and Cu wire bonding are determined through soaking in sodium chloride (NaCl solution and high temperature storage (HTS at 175 °C, 200 °C and 225 °C. Galvanic corrosion is more intense in Cu wire bonding as compared to Au wire bonding in NaCl solution due to the minimal formation of intermetallics in the former. At all three HTS annealing temperatures, the rate of Cu-Al intermetallic formation is found to be three to five times slower than Au-Al intermetallics. The faster intermetallic growth rate and lower activation energy found in this work for both Au/Al and Cu/Al as compared to literature could be due to the thicker Al pad metallization which removed the rate-determining step in previous studies due to deficit in Al material.

  3. Analysis of Precursor Properties of mixed Al/Alumel Cylindrical Wire Arrays*

    Science.gov (United States)

    Stafford, A.; Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Osborne, G. C.; Shlyaptseva, V. V.; Keim, S. F.; Coverdale, C. A.; Chuvatin, A. S.

    2012-10-01

    Previous studies of mid-Z (Cu and Ni) cylindrical wire arrays (CWAs) on Zebra have found precursors with high electron temperatures of >300 eV. However, past experiments with Al CWAs did not find the same high temperature precursors. New precursor experiments using mixed Al/Alumel (Ni 95%, Si 2%, and Al 2%) cylindrical wire arrays have been performed to understand how the properties of L-shell Ni precursor will change and whether Al precursor will be observed. Time gated spectra and pinholes are used to determine precursor plasma conditions for comparison with previous Alumel precursor experiments. A full diagnostic set which included more than ten different beam-lines was implemented. Future work in this direction is discussed. [4pt] *This work was supported by NNSA under DOE Cooperative Agreements DE-FC52-06NA27588, and in part by DE-FC52-06NA27586, and DE-FC52-06NA27616. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

  4. Examination of rapid phase change in copper wires to improve material models and understanding of burst

    Science.gov (United States)

    Olles, Joseph; Garasi, Christopher; Ball, J. Patrick

    2017-11-01

    Electrically-pulsed wires undergo multiple phase changes including a postulated metastable phase resulting in explosive wire growth. Simulations using the MHD approximation attempt to account for the governing physics, but lack the material properties (equations-of-state and electrical conductivity) to accurately predict the phase evolution of the exploding (bursting) wire. To explore the dynamics of an exploding copper wire (in water), we employ a digital micro-Schlieren streak photography technique. This imaging quantifies wire expansion and shock waves emitted from the wire during phase changes. Using differential voltage probes, a Rogowski coil, and timing fiducials, the phase change of the wire is aligned with electrical power and energy deposition. Time-correlated electrical diagnostics and imaging allow for detailed validation of MHD simulations, comparing observed phases with phase change details found in the material property descriptions. In addition to streak imaging, a long exposure image is taken to capture axial striations along the length of the wire. These images are used to compare with results from 3D MHD simulations which propose that these perturbations impact the rate of wire expansion and temporal change in phases. If successful, the experimental data will identify areas for improvement in the material property models, and modeling results will provide insight into the details of phase change in the wire with correlation to variations in the electrical signals.

  5. Conversion of electromagnetic energy in Z-pinch process of single planar wire arrays at 1.5 MA

    International Nuclear Information System (INIS)

    Liangping, Wang; Mo, Li; Juanjuan, Han; Ning, Guo; Jian, Wu; Aici, Qiu

    2014-01-01

    The electromagnetic energy conversion in the Z-pinch process of single planar wire arrays was studied on Qiangguang generator (1.5 MA, 100 ns). Electrical diagnostics were established to monitor the voltage of the cathode-anode gap and the load current for calculating the electromagnetic energy. Lumped-element circuit model of wire arrays was employed to analyze the electromagnetic energy conversion. Inductance as well as resistance of a wire array during the Z-pinch process was also investigated. Experimental data indicate that the electromagnetic energy is mainly converted to magnetic energy and kinetic energy and ohmic heating energy can be neglected before the final stagnation. The kinetic energy can be responsible for the x-ray radiation before the peak power. After the stagnation, the electromagnetic energy coupled by the load continues increasing and the resistance of the load achieves its maximum of 0.6–1.0 Ω in about 10–20 ns

  6. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    Science.gov (United States)

    Calamy, H.; Hamann, F.; Lassalle, F.; Bayol, F.; Mangeant, C.; Morell, A.; Huet, D.; Bedoch, J. P.; Chittenden, J. P.; Lebedev, S. V.; Jennings, C. A.; Bland, S. N.

    2006-01-01

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1μs rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim of giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-θ simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions.

  7. Wire Array Z-pinches on Sphinx Machine: Experimental Results and Relevant Points of Microsecond Implosion Physics

    International Nuclear Information System (INIS)

    Calamy, H.; Hamann, F.; Lassalle, F.; Bayol, F.; Mangeant, C.; Morell, A.; Huet, D.; Bedoch, J.P.; Chittenden, J.P.; Lebedev, S.V.; Jennings, C.A.; Bland, S.N.

    2006-01-01

    Centre d'Etudes de Gramat (France) has developed an efficient long implosion time (800 ns) Aluminum plasma radiation source (PRS). Based on the LTD technology, the SPHINX facility is developed as a 1-3MJ, 1μs rise time, 4-10 MA current driver. In this paper, it was used in 1MJ, 4MA configuration to drive Aluminum nested wire arrays Z-pinches with K-shell yield up to 20 kJ and a FWHM of the x-ray pulse of about 50 ns. We present latest SPHINX experiments and some of the main physic issues of the microsecond regime. Experimental setup and results are described with the aim of giving trends that have been obtained. The main features of microsecond implosion of wire arrays can be analyzed thanks to same methods and theories as used for faster Z-pinches. The effect of load polarity was examined. The stability of the implosion , one of the critical point of microsecond wire arrays due to the load dimensions imposed by the time scale, is tackled. A simple scaling from 100 ns Z-pinch results to 800 ns ones gives good results and the use of nested arrays improves dramatically the implosion quality and the Kshell yield of the load. However, additional effects such as the impact of the return current can geometry on the implosion have to be taken into account on our loads. Axial inhomogeneity of the implosion the origin of which is not yet well understood occurs in some shots and impacts the radiation output. The shape of the radiative pulse is discussed and compared with the homogeneity of the implosion. Numerical 2D R-Z and R-θ simulations are used to highlight some experimental results and understand the plasma conditions during these microsecond wire arrays implosions

  8. Experimental study of implosion dynamics of multi-material nested wire-arrays on S-300 pulsed power generator

    International Nuclear Information System (INIS)

    Chernenko, A.S.; Smirnov, V.P.; Kingsep, A.S.

    2004-01-01

    On 'S-300' generator (700 kV, 4 MA, 70 ns) at the Kurchatov Institute, the experimental studies with multi-material wire array units are carried on aimed at creating the powerful X-ray source. The development of new diagnostic methods would definitely contribute to attain new data, which could help in explanation of X-ray emission mechanism of imploding multi-wire arrays that has not well understood yet. The experimental study of soft X-ray emission of different wire sets, different in both mass and composition, has been carried on in the same geometry. One of the purposes of these experiments was investigation of the wire array chemical composition influence on the implosion dynamics and stability. Study of the nested (cascade) liner dynamics shows that the minimal liner radius at the stagnation moment of time (2r ∼ 3 - 3.5 mm) recorded in the visible range by the streak camera fairly coincides with the outer diameter of the inner tungsten array of 4 mm. The same size is shown by the integral pinhole pictures obtained in the SXR range, without a filter. Unlike all these pictures, images obtained in the range E > 2 keV demonstrate the resulting state of Z-pinch in the form of a thin (∼ 0.2 mm) twisting filament. In addition, small space scales are typical of the liner pictures taken in the range of He- and H-like aluminum ions by means of a spectrograph. Thus, one may conclude that Al plasma of the outer liner passes into the inner space of the almost immovable W array where becomes trapped and compressed by the magnetic field. (author)

  9. Surface cleaning of metal wire by atmospheric pressure plasma

    International Nuclear Information System (INIS)

    Nakamura, T.; Buttapeng, C.; Furuya, S.; Harada, N.

    2009-01-01

    In this study, the possible application of atmospheric pressure dielectric barrier discharge plasma for the annealing of metallic wire is examined and presented. The main purpose of the current study is to examine the surface cleaning effect for a cylindrical object by atmospheric pressure plasma. The experimental setup consists of a gas tank, plasma reactor, and power supply with control panel. The gas assists in the generation of plasma. Copper wire was used as an experimental cylindrical object. This copper wire was irradiated with the plasma, and the cleaning effect was confirmed. The result showed that it is possible to remove the tarnish which exists on the copper wire surface. The experiment reveals that atmospheric pressure plasma is usable for the surface cleaning of metal wire. However, it is necessary to examine the method for preventing oxidization of the copper wire.

  10. Study of ablation and implosion stages in wire arrays using coupled ultraviolet and X-ray probing diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, A. A.; Ivanov, V. V.; Astanovitskiy, A. L.; Wiewior, P. P.; Chalyy, O. [University of Nevada Reno, Reno, Nevada 89557 (United States); Papp, D. [University of Nevada Reno, Reno, Nevada 89557 (United States); ELI-ALPS, ELI-Hu Nkft., H-6720 Szeged (Hungary)

    2015-11-15

    Star and cylindrical wire arrays were studied using laser probing and X-ray radiography at the 1-MA Zebra pulse power generator at the University of Nevada, Reno. The Leopard laser provided backlighting, producing a laser plasma from a Si target which emitted an X-ray probing pulse at the wavelength of 6.65 Å. A spherically bent quartz crystal imaged the backlit wires onto X-ray film. Laser probing diagnostics at the wavelength of 266 nm included a 3-channel polarimeter for Faraday rotation diagnostic and two-frame laser interferometry with two shearing interferometers to study the evolution of the plasma electron density at the ablation and implosion stages. Dynamics of the plasma density profile in Al wire arrays at the ablation stage were directly studied with interferometry, and expansion of wire cores was measured with X-ray radiography. The magnetic field in the imploding plasma was measured with the Faraday rotation diagnostic, and current was reconstructed.

  11. Switchable DNA wire: deposition-stripping of copper nanoclusters as an “ON-OFF” nanoswitch

    Science.gov (United States)

    Zhu, Xiaoli; Liu, Siyu; Cao, Jiepei; Mao, Xiaoxia; Li, Genxi

    2016-01-01

    Today, a consensus that DNA working as a molecular wire shows promise in nanoscale electronics is reached. Considering that the “ON-OFF” switch is the basis of a logic circuit, the switch of DNA-mediated charge transport (DNA CT) should be conquered. Here, on the basis of chemical or electrochemical deposition and stripping of DNA-templated copper nanoclusters (CuNCs), we develop an “ON-OFF” nanoswitch for DNA CT. While CuNCs are deposited, the DNA CT is blocked, which can be also recovered after stripping the CuNCs. A switch cycle can be completed in a few seconds and can be repeated for many times. Moreover, by regulating the amount of reagents, deposition/stripping time, applied potential, etc., the switch is adjustable to make the wire at either an “ON-OFF” state or an intermediate state. We believe that this concept and the successful implementation will promote the practical application of DNA wire one step further. PMID:26781761

  12. Preparation of Electrospun Polymer Fibers Using a Copper Wire Electrode in a Capillary Tube

    Science.gov (United States)

    Shinbo, Kazunari; Onozuka, Shintaro; Hoshino, Rikiya; Mizuno, Yoshinori; Ohdaira, Yasuo; Baba, Akira; Kato, Keizo; Kaneko, Futao

    2010-04-01

    Polymer fibers were prepared by an electrospinning method utilizing a copper wire electrode in a capillary tube. The morphology of electrospun poly(vinyl alcohol) (PVA) fibers was observed, and was found to be dependent on the wire electrode tip position in the capillary tube, the concentration of the polymer solution, the distance between the electrodes, and the applied voltage. By using the wire electrode, the experimental setup is simple and the distance between the electrodes and the applied voltage can be easily reduced. Furthermore, the preparation of poly(3-hexylthiophene) (P3HT) fibers was carried out. P3HT fibers were successfully prepared by mixing poly(ethylene oxide) (PEO) in P3HT solution. Orientation control was also carried out by depositing the fibers on a rotating collector electrode, and the alignment of the P3HT:PEO fibers was confirmed. Anisotropy of the optical absorption spectra was also observed for the aligned fibers.

  13. Planar wire array dynamics and radiation scaling at multi-MA levels on the Saturn pulsed power generator

    International Nuclear Information System (INIS)

    Chuvatin, Alexander S.; Vesey, Roger Alan; Waisman, Eduardo Mario; Esaulov, Andrey A.; Ampleford, David J.; Kantsyrev, Victor Leonidovich; Cuneo, Michael Edward; Rudakov, Leonid I.; Coverdale, Christine Anne; Jones, Brent Manley; Safronova, Alla S.; Jones, Michael C.

    2008-01-01

    Planar wire arrays are studied at 3-6 MA on the Saturn pulsed power generator as potential drivers of compact hohlraums for inertial confinement fusion studies. Comparison with zero-dimensional modeling suggests that there is significant trailing mass. The modeled energy coupled from the generator cannot generally explain the energy in the main x-ray pulse. Preliminary comparison at 1-6 MA indicates sub-quadratic scaling of x-ray power in a manner similar to compact cylindrical wire arrays. Time-resolved pinhole images are used to study the implosion dynamics

  14. Wafer-scale high-throughput ordered arrays of Si and coaxial Si/Si(1-x)Ge(x) wires: fabrication, characterization, and photovoltaic application.

    Science.gov (United States)

    Pan, Caofeng; Luo, Zhixiang; Xu, Chen; Luo, Jun; Liang, Renrong; Zhu, Guang; Wu, Wenzhuo; Guo, Wenxi; Yan, Xingxu; Xu, Jun; Wang, Zhong Lin; Zhu, Jing

    2011-08-23

    We have developed a method combining lithography and catalytic etching to fabricate large-area (uniform coverage over an entire 5-in. wafer) arrays of vertically aligned single-crystal Si nanowires with high throughput. Coaxial n-Si/p-SiGe wire arrays are also fabricated by further coating single-crystal epitaxial SiGe layers on the Si wires using ultrahigh vacuum chemical vapor deposition (UHVCVD). This method allows precise control over the diameter, length, density, spacing, orientation, shape, pattern and location of the Si and Si/SiGe nanowire arrays, making it possible to fabricate an array of devices based on rationally designed nanowire arrays. A proposed fabrication mechanism of the etching process is presented. Inspired by the excellent antireflection properties of the Si/SiGe wire arrays, we built solar cells based on the arrays of these wires containing radial junctions, an example of which exhibits an open circuit voltage (V(oc)) of 650 mV, a short-circuit current density (J(sc)) of 8.38 mA/cm(2), a fill factor of 0.60, and an energy conversion efficiency (η) of 3.26%. Such a p-n radial structure will have a great potential application for cost-efficient photovoltaic (PV) solar energy conversion. © 2011 American Chemical Society

  15. Preparation and characterization of polyaniline-copper composites by electrical explosion of wire.

    Science.gov (United States)

    Liu, Aijie; Bac, Luong Huu; Kim, Jin-Chun; Liu, Lizhu

    2012-07-01

    Polyaniline-copper composites with a polyacrylic acid (PAA) were synthesized by electrical explosion of wire. Polyaniline (PANI) and PAA were put into the explosion medium, deionized water (DIW) and ethanol, stirred for 24 hrs and sonicated for 2 hrs. These solutions were used as base liquids for explosion process to fabricate Cu nanoparticle. Optical absorption in the UV-visible region of PANI and PANI/PAA-Cu composites was measured in a range of 200-900 nm. X-ray diffraction was used to analyze the phase of the composites. XRD pattern showed the PANI was amorphous and copper was polycrystalline. Two phases of Cu and Cu2O were formed in aqueous solution while single Cu phase was obtained in ethanol solution. Field emission scanning electron microscope was used to observe the microstructure of the composites. The synthesized composites were extensively characterized by Fourier Transform Infrared (FTIR) spectroscopy and electrical measurements.

  16. Effect of the plasma production rate on the implosion dynamics of cylindrical wire/fiber arrays with a profiled linear mass

    International Nuclear Information System (INIS)

    Aleksandrov, V. V.; Mitrofanov, K. N.; Gritsuk, A. N.; Frolov, I. N.; Grabovski, E. V.; Laukhin, Ya. N.

    2013-01-01

    Results are presented from experimental studies on the implosion of arrays made of wires and metalized fibers under the action of current pulses with an amplitude of up to 3.5 MA at the Angara-5-1 facility. The effect of the parameters of an additional linear mass of bismuth and gold deposited on the wires/fibers is investigated. It is examined how the material of the wires/fibers and the metal coating deposited on them affect the penetration of the plasma with the frozen-in magnetic field into a cylindrical array. Information on the plasma production rate for different metals is obtained by analyzing optical streak images of imploding arrays. The plasma production rate m-dot m for cylindrical arrays made of the kapron fibers coated with bismuth is determined. For the initial array radius of R 0 = 1 cm and discharge current of I = 1 MA, the plasma production rate is found to be m-dot m approx. 0.095 ± 0.015 μg/(cm 2 ns)

  17. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas.

    Science.gov (United States)

    Wallace, M S; Haque, S; Neill, P; Pereira, N R; Presura, R

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  18. Effect of copper oxide wire particles dosage and feed supplement level on Haemonchus contortus infection in lambs.

    Science.gov (United States)

    Burke, J M; Miller, J E; Olcott, D D; Olcott, B M; Terrill, T H

    2004-09-02

    The objective of the experiment was to determine the optimal dose of copper oxide wire particles (COWPs) to reduce infection of Haemonchus contortus in male lambs. Five to six-month-old hair breed lambs were housed on concrete and fed 450 (L; n = 25) or 675 g (H; n = 25) corn/soybean meal supplement and bermudagrass hay. In July, lambs were inoculated with 10,000 L(3) larvae (97% H. contortus; Day 0). Lambs were administered 0, 2, 4, or 6 g COWP on Day 28. Concentrations of copper in the liver were determined. There were no effects of supplement level on concentrations of copper in the liver and a linear relationship existed between COWP treatment and concentrations of copper in liver (P copper in the liver of the COWP treatment groups. PCV values were more favorable for lambs fed the higher level of supplement, especially when FEC were greater than 8000 epg.

  19. Influence of a cold deformation process by drawing on the electrical properties of copper wires

    Directory of Open Access Journals (Sweden)

    Rafael da Silva Bernardo

    Full Text Available Abstract This article presents a study of the drawing, deformation, hardening and heat treatment of copper wire, in order to investigate the influence of combinations of operating variables (annealing factor, oil emulsion temperature and machine speed during the drawing process on the electrical conductivity of copper wires. The results showed that when the metal is deformed, the value of electrical conductivity suffers a decrease due to the hardening phenomenon. Because of this, it is necessary to heat treat the material. So, it was observed that the annealing factor, which is associated with the thermal treatment temperature, showed a high degree of correlation with the electrical conductivity. This fact is explained by the annealing factor which is responsible for the intensity of the heat treatment. The speed at which the drawing occurs also showed a direct correlation with electric conductivity because the higher the value, the greater the heat treatment temperature and consequently, the greater the electrical conductivity of the material. On the other hand, it had not been possible to establish a conclusion about the correlation between the electrical conductivity and oil emulsion temperature during the drawing process.

  20. Magnetic characterization of the nickel layer protecting the copper wires in harsh applications

    Directory of Open Access Journals (Sweden)

    Roger Daniel

    2017-06-01

    Full Text Available High Temperature (HT° motor coils open new perspectives for extending the applications of electrical motors or generators to very harsh environments or for designing very high power density machines working with high internal temperature gradients. Over a temperature of 300°C, the classic enameled wire cannot work permanently, the turn-to-turn insulation must be inorganic and made with high temperature textiles or vitro-ceramic compounds. For both cases, a diffusion barrier must protect the copper wire against oxidation. The usual solution consists of adding a nickel layer that yields an excellent chemical protection. Unfortunately, the nickel has ferromagnetic properties that change a lot the skin effect in the HT wire at high frequencies. For many applications such as aeronautics, electrical machines are always associated with PWM inverters for their control. The windings must resist to high voltage short spikes caused by the fast fronted pulses imposed by the feeding inverter. The nickel protection layer of the HT° inorganic wire has a large influence on the high frequency behavior of coils and, consequently, on the magnitude of the voltage spikes. A good knowledge of the non-linear magnetic characteristics of this nickel layer is helpful for designing reliable HT inorganic coils. The paper presents a method able to characterize non-linear electromagnetic properties of this nickel layer up to 500°C.

  1. RESEARCH OF PROCESS OF AN ALLOYING OF THE FUSED COATINGS RECEIVED FROM THE SUPERFICIAL ALLOYED WIRE BY BORON WITH IN ADDITIONALLY APPLIED ELECTROPLATED COATING OF CHROME AND COPPER

    Directory of Open Access Journals (Sweden)

    V. A. Stefanovich

    2015-01-01

    Full Text Available Researches on distribution of chrome and copper in the fused coating received from the superficial alloyed wire by boron with in additionally applied electroplated coating of chrome and copper were executed. The structure of the fused coating consists of dendrites on which borders the boride eutectic is located. It is established that the content of chrome in dendrites is 1,5– 1,6 times less than in the borid; distribution of copper on structure is uniformed. Coefficients of digestion of chrome and copper at an argon-arc welding from a wire electrode with electroplated coating are established. The assimilation coefficient for chrome is equal to 0,9–1,0; for copper – 0,6–0,75.

  2. Inhomogeneous wire explosion in water

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Kong, H.J.; Lee, S.S.

    1980-01-01

    Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)

  3. Wireless electrochemical preparation of gradient nanoclusters consisting of copper(II), stearic acid and montmorillonite on a copper wire for headspace in-tube microextraction of chlorobenzenes.

    Science.gov (United States)

    Enteshari Najafabadi, Marzieh; Bagheri, Habib

    2017-12-26

    This work introduces a new gradient fiber coating for microextraction of chlorobenzenes. Nanoclusters of organoclay-Cu(II) on a copper wire were fabricated by wireless electrofunctionalization. The resultant gradient coatings are more robust, and thermally and mechanically stable. Wireless electrofunctionalization was carried out in a bipolar cell under a constant deposition potential and using an ethanolic electrolyte solution containing stearic acid and montmorillonite. Stearic acid acts as an inexpensive and green coating while montmorillonite acts as a modifier to impart thermal stability. The gradient morphology of the nanoclusters was investigated by scanning electron microscopy, thermogravimetric analysis and energy dispersive X-ray spectroscopy. The coated wire was placed in a hollow needle and used for headspace in-tube microextraction (HS-ITME) of chlorobenzenes (CBs). Effects of various parameters affecting synthesis and extraction were optimized. Following extraction, the needles were directly inserted into the GC injector, and the CBs (chlorobenzene, 1,4-dichlorobenzene, 1,2-dichlorobenzene, 1,2,4-trichlorobenzene, 1,2,3,4-tetrachlorobenzene) were quantified by GC-MS. The limits of detection under optimized conditions range from 0.5 to 10 ng.L -1 . The intra- and inter-day relative standard deviations (RSDs) (for n = 10, 5 respectively) using a single fiber are 6-10 and 10-15%, respectively. The fiber-to-fiber RSDs (for n = 3) is between 17 and 24%. The method was successfully applied to the extraction of CBs from real water samples, and relative recoveries are between 91 and 110%. Graphical abstract A gradient coating of organoclay-Cu nanoclusters was fabricated on a copper wire by wireless electrofunctionalization. The oxidation of copper takes place at the anodic pole (red) while dissolved oxygen in ethanol solution is reduced at the cathodic pole (blue).

  4. Temperature-controlled transfer and self-wiring for multi-color light-emitting diode arrays

    International Nuclear Information System (INIS)

    Onoe, Hiroaki; Nakai, Akihito; Iwase, Eiji; Matsumoto, Kiyoshi; Shimoyama, Isao

    2009-01-01

    We propose an integration method for arranging light-emitting diode (LED) bare chips on a flexible substrate for multi-color inorganic LED displays. The LED bare chips (240 µm × 240 µm × 75 µm), which were diced on an adhesive sheet by the manufacturer, were transferred to a flexible polyimide substrate by our temperature-controlled transfer (TCT) and self-wiring (SW) processes. In these processes, low-melting point solder (LMPS) and poly-(ethylene glycol) (PEG) worked as adhesive layers for the LED chips during the TCT processes, and the adhesion force of the LMPS and PEG layers was controlled by changing the temperature to melt and solidify the layers. After the TCT processes, electrical connection between the transferred LED chips and the flexible substrate was automatically established via the SW process, by using the surface tension of the melted LMPS. This TCT/SW method enabled us to (i) handle arrays of commercially available bare chips, (ii) arrange multiple types of chips on the circuit substrate by simply repeating the TCT processes and (iii) establish electrical connection between the chips and the substrate automatically. Applying this transfer printing and wiring method, we experimentally demonstrated a 5-by-5 flexible LED array and a two-color (blue and green) LED array

  5. Texture investigation in the trench depth direction of very fine copper wires less than 100 nm wide using electron backscatter diffraction

    International Nuclear Information System (INIS)

    Khoo, Khyoupin; Onuki, Jin

    2010-01-01

    We clarified the correlations between resistivity and microstructures in the depth direction of copper (Cu) wires. The resistivity of Cu wires increased with the polishing depth ΔH, and the influence of ΔH on resistivity increment was significant for 60 nm wide Cu wires. We attributed this to the fact that the deeper the depth and the finer the line width, the smaller are the grain sizes and the lower are the fractions of {111} textures and Σ3 coincident site lattice boundaries. Among the above factors, the grain size was the dominant factor determining the resistivity of less than 100 nm wide Cu wire.

  6. Development and manufacture of ultra-fine NbTi filament wires at ALSTHOM

    International Nuclear Information System (INIS)

    Hoang, G.K.; Laumond, Y.; Sabrie, J.L.; Dubots, P.

    1986-01-01

    Ultra-fine NbTi filament wires have been developed and manufactured by ALSTHOM. It is now possible to produce industrial copper -copper-nickel matrix wires with 0.6 mu m NbTi filaments for use in 50 / 60 Hz machines. Smaller filaments with diameters down to 0.08 mu m have been obtained with 254 100 filament wire samples. Studies are now being carried out on copper matrix conductors to reduce the filament diameter. The first results show that it is possible to obtain submicron filaments even in copper matrix wires

  7. Transverse vorticity measurements using an array of four hot-wire probes

    Science.gov (United States)

    Foss, J. F.; Klewickc, C. L.; Disimile, P. J.

    1986-01-01

    A comprehensive description of the technique used to obtain a time series of the quasi-instantaneous transverse vorticity from a four wire array of probes is presented. The algorithmic structure which supports the technique is described in detail and demonstration data, from a large plane shear layer, are presented to provide a specific utilization of the technique. Sensitivity calculations are provided which allow one contribution to the inherent uncertainty of the technique to be evaluated.

  8. Structure and electrochemical properties of copper wires with seamless 1D nanostructures

    Directory of Open Access Journals (Sweden)

    Yutong Wu

    2018-04-01

    Full Text Available A seamless Cu nanowire array grown on Cu wire is prepared by combining thermal oxidation method and electrochemical reduction. The data set described in this paper includes the structure of the Cu nanowires electrode, electrocatalytic active surface area, linear sweep voltammetry and amperometry measurement for nitrate sensing. The electrochemical data show that Cu nanowire arrays exhibited a linear response to nitrate ions over a concentration range from 50 μM to 600 μM (R2 = 0.9974 with a sensitivity of 0.357 μA μM−1 cm−1 and detection limit of 12.2 μM at a signal-to-noise ratio of 3, respectively.

  9. Functionalized polypyrrole nanotube arrays as electrochemical biosensor for the determination of copper ions

    International Nuclear Information System (INIS)

    Lin Meng; Hu Xiaoke; Ma Zhaohu; Chen Lingxin

    2012-01-01

    Highlights: ► PPy nanotube arrays were electropolymerized using ZnO nanowire arrays as templates. ► PPy nanotube arrays were anchored onto ITO glass without any chemical linker. ► Using SWV, the biosensor was found to be highly sensitive and selective to Cu 2+ . ► The biosensor was successfully applied for the determination of Cu 2+ in drinking water. - Abstract: A novel electrochemical biosensor based on functionalized polypyrrole (PPy) nanotube arrays modified with a tripeptide (Gly-Gly-His) proved to be highly effective for electrochemical analysis of copper ions (Cu 2+ ). The vertically oriented PPy nanotube arrays were electropolymerized by using modified zinc oxide (ZnO) nanowire arrays as templates which were electrodeposited on indium–tin oxide (ITO) coated glass substrates. The electrodes were functionalized by appending pyrrole-α-carboxylic acid onto the surface of polypyrrole nanotube arrays by electrochemical polymerization. The carboxylic groups of the polymer were covalently coupled with the amine groups of the tripeptide, and its structural features were confirmed by attenuated total reflection infrared (ATR-IR) spectroscopy. The tripeptide modified PPy nanotube arrays electrode was used for the electrochemical analysis of various trace copper ions by square wave voltammetry. The electrode was found to be highly sensitive and selective to Cu 2+ in the range of 0.1–30 μM. Furthermore, the developed biosensor exhibited a high stability and reproducibility, despite the repeated use of the biosensor electrode.

  10. Experimental investigations of ablation stream interaction dynamics in tungsten wire arrays: Interpenetration, magnetic field advection, and ion deflection

    Energy Technology Data Exchange (ETDEWEB)

    Swadling, G. F.; Lebedev, S. V.; Hall, G. N.; Suzuki-Vidal, F.; Burdiak, G. C.; Pickworth, L.; De Grouchy, P.; Skidmore, J.; Khoory, E.; Suttle, L.; Bennett, M.; Hare, J. D.; Clayson, T.; Bland, S. N.; Smith, R. A.; Stuart, N. H.; Patankar, S.; Robinson, T. S. [Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom); Harvey-Thompson, A. J. [Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico 87185-1193 (United States); Rozmus, W. [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2J1 (Canada); and others

    2016-05-15

    Experiments have been carried out to investigate the collisional dynamics of ablation streams produced by cylindrical wire array z-pinches. A combination of laser interferometric imaging, Thomson scattering, and Faraday rotation imaging has been used to make a range of measurements of the temporal evolution of various plasma and flow parameters. This paper presents a summary of previously published data, drawing together a range of different measurements in order to give an overview of the key results. The paper focuses mainly on the results of experiments with tungsten wire arrays. Early interferometric imaging measurements are reviewed, then more recent Thomson scattering measurements are discussed; these measurements provided the first direct evidence of ablation stream interpenetration in a wire array experiment. Combining the data from these experiments gives a view of the temporal evolution of the tungsten stream collisional dynamics. In the final part of the paper, we present new experimental measurements made using an imaging Faraday rotation diagnostic. These experiments investigated the structure of magnetic fields near the array axis directly; the presence of a magnetic field has previously been inferred based on Thomson scattering measurements of ion deflection near the array axis. Although the Thomson and Faraday measurements are not in full quantitative agreement, the Faraday data do qualitatively supports the conjecture that the observed deflections are induced by a static toroidal magnetic field, which has been advected to the array axis by the ablation streams. It is likely that detailed modeling will be needed in order to fully understand the dynamics observed in the experiment.

  11. Examination of commercially available copper oxide wire particles in combination with albendazole for control of gastrointestinal nematodes in lambs

    Science.gov (United States)

    Alternatives to synthetic anthelmintics remain critical due to the prevalence of anthelmintic resistance. The objective of the experiment was to determine the efficacy of copper oxide wire particles (COWP) from three commercial sources to control Haemonchus contortus in lambs. Naturally infected Ka...

  12. Numerical simulation of wire array load implosion on Yang accelerator

    International Nuclear Information System (INIS)

    Zhao Hailong; Deng Jianjun; Wang Qiang; Zou Wenkang; Wang Ganghua

    2012-01-01

    Based on the ZORK model describing the Saturn facility, a zero dimensional load model of the wire array Z-pinch on Yang accelerator is designed using Pspice to simulate the implosion process. Comparisons between the calculated results and experimental data prove the load model to be correct. The applicability and shortcomings of the load model are presented. One-dimensional magnetohydrodynamic calculations are performed by using the current curve obtained from calculated results of experiment Yang 1050#. and the parameters such as implosion time and radiation X-ray power are obtained. (authors)

  13. [Use of copper oxide wire particles (Copinox) for the prevention of congenital copper deficiency in a herd of German Improved Fawn breed of goat].

    Science.gov (United States)

    Winter, P; Hochsteiner, W; Chizzola, R

    2004-10-01

    In a herd of German Improved Fawn breed of goat in the year 2000 neonatal kid losses due to congenital copper deficiencies were observed. To clarify the problems and to prevent losses in the next breeding season serum copper levels of 10 dams and four control Boer goats were investigated at four time points during one year. Additionally ten kids of the following year were sampled and the serum copper levels were studied. Immediatly after parturition and 8 weeks later the dams showed low serum copper levels (10.4 +/- 11.1 micromol/l, 5.7 +/- 2.9 micromol/l resp.). At the end of the pasture season an increase of serum copper could be measured (19.3 +/- 16.0 micromol/l). To prevent enzootic ataxia due to congenital copper deficiency, the dams were treated with copper oxide wire particles in the next late gestation. At this time point serum copper concentrations started to decrease (18.5 +/- 8.4 micromol/l). The re-examination 3 month later demonstrated an increase of the serum mean copper concentrations up to 23.4 micromol/l in the dams and to 16.2 micromol/l in the kids. The serum copper levels were significantly higher compared to the levels the year before. Big variation of the serum copper levels in the control Boer goats occurred during the year, but no clinical symptoms of copper deficiency could be observed. The copper levels in the grass and soil samples were 6.8 mg/kg and 0.2 mg/kg dry substance, respectively. A secondary copper deficiency based on cadmium could be excluded through the low levels of soil samples. The contents of sulphur and molybdenum were not determined. The results indicate that the German Improved Fawn breed of goats suffered from a primary copper deficiency due to the inefficient mineral supplementation. The administration of Copinox in the last third of the gestation leads to a continious raising of the copper concentrations in the serum and is suited to prevent ataxia due to congential copper deficiency in neonatal kids.

  14. Cyclic hot firing results of tungsten-wire-reinforced, copper-lined thrust chambers

    Science.gov (United States)

    Kazaroff, John M.; Jankovsky, Robert S.

    1990-01-01

    An advanced thrust liner material for potential long life reusable rocket engines is described. This liner material was produced with the intent of improving the reusable life of high pressure thrust chambers by strengthening the chamber in the hoop direction, thus avoiding the longitudinal cracking due to low cycle fatigue that is observed in conventional homogeneous copper chambers, but yet not reducing the high thermal conductivity that is essential when operating with high heat fluxes. The liner material produced was a tungsten wire reinforced copper composite. Incorporating this composite into two hydrogen-oxygen test rocket chambers was done so that its performance as a reusable liner material could be evaluated. Testing results showed that both chambers failed prematurely, but the crack sites were perpendicular to the normal direction of cracking indicating a degree of success in containing the tremendous thermal strain associated with high temperature rocket engines. The failures, in all cases, were associated with drilled instrumentation ports and no other damages or deformations were found elsewhere in the composite liners.

  15. Status On Multi-microsecond Prepulse Technique On Sphinx Machine Going From Nested To Single Wire Array For 800 ns Implosion Time Z-pinch

    Science.gov (United States)

    Maury, P.; Calamy, H.; Grunenwald, J.; Lassalle, F.; Zucchini, F.; Loyen, A.; Georges, A.; Morell, A.; Bedoch, J. P.

    2009-01-01

    The Sphinx machine[1] is a 6 MA, 1 μS driver based on the LTD technology, used for Z-pinch experiments. Important improvements of Sphinx radiation output were recently obtained using a multi-microsecond current prepulse[2]. Total power per unit of length is multiplied by a factor of 6 and FWHM divided by a factor of 2.5. Early breakdown of the wires during the prepulse phase dramatically changes the ablation phase leading to an improvement of axial homogeneity of both the implosion and the final radiating column. As a consequence, the cathode bubble observed on classical shots is definitively removed. The implosion is then centered and zippering effect is reduced, leading to simultaneous x-ray emission of the whole length. A great reproducibility is obtained. Nested arrays were used before to mitigate the Rayleigh-Taylor instabilities during the implosion phase. Further experiments with pre-pulse technique are described here were inner array was removed. The goal of these experiments was to see if long prepulse could give stable enough implosion with single array and at the same time increase the η parameter by reducing the mass of the load. Experimental results of single wire array loads of typical dimension 5 cm in height with implosion time between 700 and 900 ns and diameter varying between 80 and 140 mm are given. Parameters of the loads were varying in term of radius and number of wires. Comparisons with nested wire array loads are done and trends are proposed. Characteristics of both the implosion and the final radiating column are shown. 2D MHD numerical simulations of single wire array become easier as there is no interaction between outer and inner array anymore. A systematic study was done using injection mass model to benchmark simulation with experiments.

  16. Status On Multi-microsecond Prepulse Technique On Sphinx Machine Going From Nested To Single Wire Array For 800 ns Implosion Time Z-pinch

    International Nuclear Information System (INIS)

    Maury, P.; Calamy, H.; Grunenwald, J.; Lassalle, F.; Zucchini, F.; Loyen, A.; Georges, A.; Morell, A.; Bedoch, J. P.

    2009-01-01

    The Sphinx machine [1] is a 6 MA, 1 μS driver based on the LTD technology, used for Z-pinch experiments. Important improvements of Sphinx radiation output were recently obtained using a multi-microsecond current prepulse [2] . Total power per unit of length is multiplied by a factor of 6 and FWHM divided by a factor of 2.5. Early breakdown of the wires during the prepulse phase dramatically changes the ablation phase leading to an improvement of axial homogeneity of both the implosion and the final radiating column. As a consequence, the cathode bubble observed on classical shots is definitively removed. The implosion is then centered and zippering effect is reduced, leading to simultaneous x-ray emission of the whole length. A great reproducibility is obtained. Nested arrays were used before to mitigate the Rayleigh-Taylor instabilities during the implosion phase. Further experiments with pre-pulse technique are described here were inner array was removed. The goal of these experiments was to see if long prepulse could give stable enough implosion with single array and at the same time increase the η parameter by reducing the mass of the load. Experimental results of single wire array loads of typical dimension 5 cm in height with implosion time between 700 and 900 ns and diameter varying between 80 and 140 mm are given. Parameters of the loads were varying in term of radius and number of wires. Comparisons with nested wire array loads are done and trends are proposed. Characteristics of both the implosion and the final radiating column are shown. 2D MHD numerical simulations of single wire array become easier as there is no interaction between outer and inner array anymore. A systematic study was done using injection mass model to benchmark simulation with experiments.

  17. High-resolution two-dimensional and three-dimensional modeling of wire grid polarizers and micropolarizer arrays

    Science.gov (United States)

    Vorobiev, Dmitry; Ninkov, Zoran

    2017-11-01

    Recent advances in photolithography allowed the fabrication of high-quality wire grid polarizers for the visible and near-infrared regimes. In turn, micropolarizer arrays (MPAs) based on wire grid polarizers have been developed and used to construct compact, versatile imaging polarimeters. However, the contrast and throughput of these polarimeters are significantly worse than one might expect based on the performance of large area wire grid polarizers or MPAs, alone. We investigate the parameters that affect the performance of wire grid polarizers and MPAs, using high-resolution two-dimensional and three-dimensional (3-D) finite-difference time-domain simulations. We pay special attention to numerical errors and other challenges that arise in models of these and other subwavelength optical devices. Our tests show that simulations of these structures in the visible and near-IR begin to converge numerically when the mesh size is smaller than ˜4 nm. The performance of wire grid polarizers is very sensitive to the shape, spacing, and conductivity of the metal wires. Using 3-D simulations of micropolarizer "superpixels," we directly study the cross talk due to diffraction at the edges of each micropolarizer, which decreases the contrast of MPAs to ˜200∶1.

  18. Use of copper oxide wire particles to control gastrointestinal nematodes in goats.

    Science.gov (United States)

    Burke, J M; Terrill, T H; Kallu, R R; Miller, J E; Mosjidis, J

    2007-10-01

    The objectives of these experiments were to determine the optimal dose of copper oxide wire particles (COWP) necessary to reduce gastrointestinal nematode (GIN) infection in young and mature goats naturally infected with Haemonchus contortus or a mixed infection and to determine whether the effectiveness could be enhanced through feeding management. Two experiments were conducted during cooler months in Georgia, and 4 experiments were conducted during warmer spring or summer months in Arkansas. Meat goats received 0 up to 10 g of COWP under a variety of management conditions. In all experiments, blood and feces were collected every 3 or 7 d from 6 to 42 d to determine blood packed cell volume (PCV) and fecal egg counts (FEC) to estimate the degree of GIN infection. In mature goats grazing fall pasture, mean FEC of 0 g of COWP-treated goats increased, and those of 4 g of COWP-treated goats remained low on d 0, 7, and 14 (COWP x d, P 0.10), which were lower on d 7 through 21 (COWP x date, P copper toxicity, was effective in reducing FEC in young goats, and 5 g of COWP was effective in older goats. Copper oxide does not appear to be effective in controlling newly acquired L4 stage (preadult) larvae, which also feed on blood, leading to decreased PCV in newly infected goats.

  19. Copper-encapsulated vertically aligned carbon nanotube arrays.

    Science.gov (United States)

    Stano, Kelly L; Chapla, Rachel; Carroll, Murphy; Nowak, Joshua; McCord, Marian; Bradford, Philip D

    2013-11-13

    A new procedure is described for the fabrication of vertically aligned carbon nanotubes (VACNTs) that are decorated, and even completely encapsulated, by a dense network of copper nanoparticles. The process involves the conformal deposition of pyrolytic carbon (Py-C) to stabilize the aligned carbon-nanotube structure during processing. The stabilized arrays are mildly functionalized using oxygen plasma treatment to improve wettability, and they are then infiltrated with an aqueous, supersaturated Cu salt solution. Once dried, the salt forms a stabilizing crystal network throughout the array. After calcination and H2 reduction, Cu nanoparticles are left decorating the CNT surfaces. Studies were carried out to determine the optimal processing parameters to maximize Cu content in the composite. These included the duration of Py-C deposition and system process pressure as well as the implementation of subsequent and multiple Cu salt solution infiltrations. The optimized procedure yielded a nanoscale hybrid material where the anisotropic alignment from the VACNT array was preserved, and the mass of the stabilized arrays was increased by over 24-fold because of the addition of Cu. The procedure has been adapted for other Cu salts and can also be used for other metal salts altogether, including Ni, Co, Fe, and Ag. The resulting composite is ideally suited for application in thermal management devices because of its low density, mechanical integrity, and potentially high thermal conductivity. Additionally, further processing of the material via pressing and sintering can yield consolidated, dense bulk composites.

  20. Experiments with a Gas-Puff-On-Wire-Array Load on the GIT-12 Generator for Al K-shell Radiation Production at Microsecond Implosion Times

    International Nuclear Information System (INIS)

    Shishlov, Alexander V.; Baksht, Rina B.; Chaikovsky, Stanislav A.; Fedunin, Anatoly V.; Fursov, Fedor I.; Kovalchuk, Boris M.; Kokshenev, Vladimir A.; Kurmaev, Nikolai E.; Labetsky, Aleksey Yu.; Oreshkin, Vladimir I.; Rousskikh, Alexander G.; Lassalle, Francis; Bayol, Frederic

    2006-01-01

    Results of the experiments carried out on the GIT-12 generator at the current level of 3.5 MA and the Z-pinch implosion times from 700 ns to 1.1 μs are presented. A multi-shell (triple-shell) load configuration with the outer gas puffs (neon) and the inner wire array (aluminum) was used in the experiments. In the course of the research, implosion dynamics of the triple-shell z-pinch was studied, and the radiation yield in the spectral range of neon and aluminum K-lines have been measured. Optimization of the inner wire array parameters aimed at obtaining the maximum aluminum K-shell radiation yield has been carried out. As a result of optimization of the gas-puff-on-wire-array Z-pinch load, the aluminum K-shell radiation yield (hv> 1.55 keV) up to 4 kJ/cm in the radiation pulse with FWHM less than 30 ns has been obtained. Comparison of the experimental results with the results of preliminary 1D RMHD simulations allows a conclusion that at least 2/3 of the generator current is switched from a gas puff to an aluminum wire array. The radiation yield in the spectral range of neon K-lines (0.92-1.55 keV) increases considerably in the shots with the inner wire array in comparison with the shots carried out with the outer gas puffs only. The radiation yield in the spectral range above 1 keV registered in the experiments reached 10 kJ/cm. The presence of a high portion of the neon plasma inside an inner wire array can limit the radiation yield in the spectral range above 1.55 keV

  1. What is the Potential for More Copper Fabrication in Zambia?

    OpenAIRE

    World Bank

    2011-01-01

    The copper fabrication industry lies between: (1) the industry that produces copper (as a commodity metal from mined ores as well as from recycling), and (2) the users of copper in finished products such as electronic goods. Copper fabrication involves the manufacture of products such as copper wire, wire rod, low-voltage cable, and other copper based semi-manufactures. Copper is clearly a...

  2. Oligo-m-phenyleneoxalamide copper(II) mesocates as electro-switchable ferromagnetic metal-organic wires.

    Science.gov (United States)

    Pardo, Emilio; Ferrando-Soria, Jesús; Dul, Marie-Claire; Lescouëzec, Rodrigue; Journaux, Yves; Ruiz-García, Rafael; Cano, Joan; Julve, Miguel; Lloret, Francesc; Cañadillas-Delgado, Laura; Pasán, Jorge; Ruiz-Pérez, Catalina

    2010-11-15

    Double-stranded copper(II) string complexes of varying nuclearity, from di- to tetranuclear species, have been prepared by the Cu(II)-mediated self-assembly of a novel family of linear homo- and heteropolytopic ligands that contain two outer oxamato and either zero (1 b), one (2 b), or two (3 b) inner oxamidato donor groups separated by rigid 2-methyl-1,3-phenylene spacers. The X-ray crystal structures of these Cu(II) (n) complexes (n=2 (1 d), 3 (2 d), and 4 (3 d)) show a linear array of metal atoms with an overall twisted coordination geometry for both the outer CuN(2)O(2) and inner CuN(4) chromophores. Two such nonplanar all-syn bridging ligands 1 b-3 b in an anti arrangement clamp around the metal centers with alternating M and P helical chiralities to afford an overall double meso-helicate-type architecture for 1 d-3 d. Variable-temperature (2.0-300 K) magnetic susceptibility and variable-field (0-5.0 T) magnetization measurements for 1 d-3 d show the occurrence of S=nS(Cu) (n=2-4) high-spin ground states that arise from the moderate ferromagnetic coupling between the unpaired electrons of the linearly disposed Cu(II) ions (S(Cu)=1/2) through the two anti m-phenylenediamidate-type bridges (J values in the range of +15.0 to 16.8 cm(-1)). Density functional theory (DFT) calculations for 1 d-3 d evidence a sign alternation of the spin density in the meta-substituted phenylene spacers in agreement with a spin polarization exchange mechanism along the linear metal array with overall intermetallic distances between terminal metal centers in the range of 0.7-2.2 nm. Cyclic voltammetry (CV) and rotating-disk electrode (RDE) electrochemical measurements for 1 d-3 d show several reversible or quasireversible one- or two-electron steps that involve the consecutive metal-centered oxidation of the inner and outer Cu(II) ions (S(Cu)=1/2) to diamagnetic Cu(III) ones (S(Cu)=0) at relatively low formal potentials (E values in the range of

  3. Numerical simulations of annular wire-array z-pinches in (x,y), (r,θ), and (r,z) geometries

    International Nuclear Information System (INIS)

    Marder, B.M.; Sanford, T.W.L.; Allshouse, G.O.

    1997-12-01

    The Total Immersion PIC (TIP) code has been used in several two-dimensional geometries to understand better the measured dynamics of annular, aluminum wire-array z-pinches. The areas investigated include the formation of the plasma sheath from current-induced individual wire explosions, the effects of wire number and symmetry on the implosion dynamics, and the dependence of the Rayleigh-Taylor instability growth on initial sheath thickness. A qualitative change in the dynamics with increasing wire number was observed, corresponding to a transition between a z-pinch composed of non-merging, self-pinching individual wires, and one characterized by the rapid formation and subsequent implosion of a continuous plasma sheath. A sharp increase in radiated power with increasing wire number has been observed experimentally near this calculated transition. Although two-dimensional codes have correctly simulated observed power pulse durations, there are indications that three dimensional effects are important in understanding the actual mechanism by which these pulse lengths are produced

  4. X-ray Power Increase from Symmetrized Wire-Array z-Pinch Implosions on Saturn.*

    Science.gov (United States)

    Sanford, T. W. L.; Allshouse, G. O.; Marder, B. M.; Nash, T. J.; Mock, R. C.; Douglas, M. R.; Spielman, R. B.; Seaman, J. F.; McGurn, J. S.; Jobe, D.; Gilliland, T. L.; Vargas, M.; Struve, K. W.; Stygar, W. A.; Hammer, J. H.; Degroot, J. S.; Eddleman, J. L.; Peterson, D. L.; Whitney, K. G.; Thornhill, J. W.; Pulsifer, P. E.; Apruzese, J. P.; Mosher, D.; Maron, Y.

    1996-11-01

    A systematic experimental study of annular aluminum wire z-pinches on the Saturn accelerator at Sandia National Laboratories shows that, for the first time, many of the measured spatial characteristics and x-ray powers can be correlated to 1D and 2D, radiation-magneto-hydrodynamic code (RMHC) simulations when large numbers of wires are used. Calculations show that the implosion begins to transition from that of individual wire plasmas to that of a continuous plasma shell when the circumferential gap between wires in the array is reduced below 1.4 +1.3/-0.7 mm. This calculated gap coincides with the measured transition of 1.4±0.4 mm between the observed regimes of slow and rapid improvement in power output with decreasing gap. In the plasma-shell regime, x-ray power has been more than tripled over that generated in the wire-plasma regime. In the full paper, measured characteristics in the plasma-shell regime are compared with 2D, 1- and 20-mm axial length simulations of the implosion using a multi-photon-group Lagrangian RMHC^1 and a three-temperature Eulerian RMHC,^2 respectively. ^1J.H. Hammer, et al., Phys. Plasmas 3, 2063 (1996). ^2D.L. Peterson, et al., Phys. Plasmas 3, 368 (1996). Work supported by U.S. DOE Contract No. DE-AC04-94AL85000.

  5. Ductile alloy and process for preparing composite superconducting wire

    Science.gov (United States)

    Verhoeven, J.D.; Finnemore, D.K.; Gibson, E.D.; Ostenson, J.E.

    An alloy for the commercial production of ductile superconducting wire is prepared by melting together copper and at least 15 weight percent niobium under non-oxygen-contaminating conditions, and rapidly cooling the melt to form a ductile composite consisting of discrete, randomly distributed and oriented dendritic-shaped particles of niobium in a copper matrix. As the wire is worked, the dendritic particles are realigned parallel to the longitudinal axis and when drawn form a plurality of very fine ductile superconductors in a ductile copper matrix. The drawn wire may be tin coated and wound into magnets or the like before diffusing the tin into the wire to react with the niobium. Impurities such as aluminum or gallium may be added to improve upper critical field characteristics.

  6. Numerical and experimental investigations on the interaction of light wire-array Z-pinches with embedded heavy foam converters

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Delong; Ding, Ning; Sun, Shunkai [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Ye, Fan; Ning, Jiamin; Hu, Qingyuan; Chen, Faxin; Qin, Yi; Xu, Rongkun; Li, Zhenghong [Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900 (China)

    2014-04-15

    The interaction of a light tungsten wire-array Z-pinch with an embedded heavy foam converter, whose mass ratio is typically less than 0.16, is numerically analyzed and experimentally investigated on the 1.3 MA “QiangGuang I” facility. Computational results show that this implosion process can be divided into three stages: acceleration of the tungsten wire-array plasma, collision, and stagnation. The tungsten plasma is accelerated to a high speed by the J × B force and interacts weakly with the foam plasma in the first stage. Strong energy conversions take place in the second collision stage. When the high speed tungsten plasma impacts on the foam converter, the plasma is thermalized and a radial radiation peak is produced. Meanwhile, a shock wave is generated due to the collision. After the shock rebounds from the axis and meets the W/Foam boundary, the plasma stagnates and the second radial radiation peak appears. The collision and stagnation processes were observed and the two-peak radial radiation pulse was produced in experiments. Increasing the wire-array radius from 4 mm to 6 mm, the kinetic energy of the tungsten plasma is increased, causing a stronger thermalization and generating a higher first radiation peak. Experimental results also showed a higher ratio of the first peak to the second peak in the case of larger wire-array radius. If we add a thin CH film cover onto the surface of the embedded foam converter, the first radiation peak will be hardly changed, because the acceleration of the tungsten plasma is not evidently affected by the film cover. However, the second radiation peak decreases remarkably due to the large load mass and the corresponding weak compression.

  7. Converting Existing Copper Wire Firing System to a Fiber Optically Controlled Firing System for Electromagnetic Pulsed Power Experiments

    Science.gov (United States)

    2017-12-19

    Pulsed Power Experiments by Robert Borys Jr Weapons and Materials Research Directorate, ARL Colby Adams Bowhead Total Enterprise Solutions...ARL-TN-0863 ● DEC 2017 US Army Research Laboratory Converting Existing Copper Wire Firing System to a Fiber-Optically Controlled...Firing System for Electromagnetic Pulsed Power Experiments by Robert Borys Jr and Colby Adams Approved for public release

  8. Demonstration of radiation pulse shaping with nested-tungsten-wire-array pinches for high-yield inertial confinement fusion.

    Science.gov (United States)

    Cuneo, M E; Vesey, R A; Sinars, D B; Chittenden, J P; Waisman, E M; Lemke, R W; Lebedev, S V; Bliss, D E; Stygar, W A; Porter, J L; Schroen, D G; Mazarakis, M G; Chandler, G A; Mehlhorn, T A

    2005-10-28

    Nested wire-array pinches are shown to generate soft x-ray radiation pulse shapes required for three-shock isentropic compression and hot-spot ignition of high-yield inertial confinement fusion capsules. We demonstrate a reproducible and tunable foot pulse (first shock) produced by interaction of the outer and inner arrays. A first-step pulse (second shock) is produced by inner array collision with a central CH2 foam target. Stagnation of the inner array at the axis produces the third shock. Capsules optimized for several of these shapes produce 290-900 MJ fusion yields in 1D simulations.

  9. The importance of carbon nanotube wire density, structural uniformity, and purity for fabricating homogeneous carbon nanotube-copper wire composites by copper electrodeposition

    Science.gov (United States)

    Sundaram, Rajyashree; Yamada, Takeo; Hata, Kenji; Sekiguchi, Atsuko

    2018-04-01

    We present the influence of density, structural regularity, and purity of carbon nanotube wires (CNTWs) used as Cu electrodeposition templates on fabricating homogeneous high-electrical performance CNT-Cu wires lighter than Cu. We show that low-density CNTWs (wires) with regular macro- and microstructures and high CNT content (>90 wt %) are essential for making homogeneous CNT-Cu wires. These homogeneous CNT-Cu wires show a continuous Cu matrix with evenly mixed nanotubes of high volume fractions (˜45 vol %) throughout the wire-length. Consequently, the composite wires show densities ˜5.1 g/cm3 (33% lower than Cu) and electrical conductivities ˜6.1 × 104 S/cm (>100 × CNTW conductivity). However, composite wires from templates with higher densities or structural inconsistencies are non-uniform with discontinuous Cu matrices and poor CNT/Cu mixing. These non-uniform CNT-Cu wires show conductivities 2-6 times lower than the homogeneous composite wires.

  10. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    Energy Technology Data Exchange (ETDEWEB)

    SANFORD,THOMAS W. L.

    2000-05-23

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.

  11. Wire-number effects on high-power annular z-pinches and some characteristics at high wire number

    International Nuclear Information System (INIS)

    SANFORD, THOMAS W. L.

    2000-01-01

    Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here

  12. Wire-array initiation and interwire-plasma merger concerns in PBFA-Z tungsten z-pinch implosions

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Spielman, R.B.; Allshouse, G.O. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1997-12-31

    Experiments with annular wire-array loads to generate high quality, high-power, z-pinch implosions on Saturn have shown the importance of maintaining azimuthal symmetry and how the individual wire plasmas merge to form a plasma shell. Here the authors discuss the impact of current symmetry, current prepulse, interwire spacing, and wire size on generating high-quality, high-power, z-pinch implosions on PBFA-Z, with annular tungsten wire loads. B-dot monitors measured the current as a function of azimuth in the MITLs and 4.5 cm upstream of the load. Bolometers and filtered XRDs and PCDs, spanning the energy range {approximately} 0 eV to 6 keV, monitored the temporal characteristics of the radiation. Time-integrated and time-resolved, filtered, fast-framing, x-ray pinhole cameras, and a crystal spectrometer monitored the spatial and spectral structure of the radiation. The radial dynamics of single-wire plasmas from the solid-state, using the measured current, was calculated by 1D radiation magnetohydrodynamics code (RMHC) and used as input to an xy RMHC. These calculations together with 2D RMHC simulations in the rz plane are discussed and correlated with the measurements.

  13. Wire-array initiation and interwire-plasma merger concerns in PBFA-Z tungsten z-pinch implosions

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Spielman, R.B.; Allshouse, G.O.

    1997-01-01

    Experiments with annular wire-array loads to generate high quality, high-power, z-pinch implosions on Saturn have shown the importance of maintaining azimuthal symmetry and how the individual wire plasmas merge to form a plasma shell. Here the authors discuss the impact of current symmetry, current prepulse, interwire spacing, and wire size on generating high-quality, high-power, z-pinch implosions on PBFA-Z, with annular tungsten wire loads. B-dot monitors measured the current as a function of azimuth in the MITLs and 4.5 cm upstream of the load. Bolometers and filtered XRDs and PCDs, spanning the energy range ∼ 0 eV to 6 keV, monitored the temporal characteristics of the radiation. Time-integrated and time-resolved, filtered, fast-framing, x-ray pinhole cameras, and a crystal spectrometer monitored the spatial and spectral structure of the radiation. The radial dynamics of single-wire plasmas from the solid-state, using the measured current, was calculated by 1D radiation magnetohydrodynamics code (RMHC) and used as input to an xy RMHC. These calculations together with 2D RMHC simulations in the rz plane are discussed and correlated with the measurements

  14. In situ electron backscatter diffraction investigation of recrystallization in a copper wire.

    Science.gov (United States)

    Brisset, François; Helbert, Anne-Laure; Baudin, Thierry

    2013-08-01

    The microstructural evolution of a cold drawn copper wire (reduction area of 38%) during primary recrystallization and grain growth was observed in situ by electron backscatter diffraction. Two thermal treatments were performed, and successive scans were acquired on samples undergoing heating from ambient temperature to a steady state of 200°C or 215°C. During a third in situ annealing, the temperature was continuously increased up to 600°C. Nuclei were observed to grow at the expense of the deformed microstructure. This growth was enhanced by the high stored energy difference between the nuclei and their neighbors (driving energy in recrystallization) and by the presence of high-angle grain boundaries of high mobility. In the early stages of growth, the nuclei twin and the newly created orientations continue to grow to the detriment of the strained copper. At high temperatures, the disappearance of some twins was evidenced by the migration of the incoherent twin boundaries. Thermal grooving of grain boundaries is observed at these high temperatures and affects the high mobile boundaries but tends to preserve the twin boundaries of lower energy. Thus, grooving may contribute to the twin vanishing.

  15. Liquid Metal Machine Triggered Violin-Like Wire Oscillator.

    Science.gov (United States)

    Yuan, Bin; Wang, Lei; Yang, Xiaohu; Ding, Yujie; Tan, Sicong; Yi, Liting; He, Zhizhu; Liu, Jing

    2016-10-01

    The first ever oscillation phenomenon of a copper wire embraced inside a self-powered liquid metal machine is discovered. When contacting a copper wire to liquid metal machine, it would be swallowed inside and then reciprocally moves back and forth, just like a violin bow. Such oscillation could be easily regulated by touching a steel needle on the liquid metal surface.

  16. Micro Wire-Drawing: Experiments And Modelling

    International Nuclear Information System (INIS)

    Berti, G. A.; Monti, M.; Bietresato, M.; D'Angelo, L.

    2007-01-01

    In the paper, the authors propose to adopt the micro wire-drawing as a key for investigating models of micro forming processes. The reasons of this choice arose in the fact that this process can be considered a quasi-stationary process where tribological conditions at the interface between the material and the die can be assumed to be constant during the whole deformation. Two different materials have been investigated: i) a low-carbon steel and, ii) a nonferrous metal (copper). The micro hardness and tensile tests performed on each drawn wire show a thin hardened layer (more evident then in macro wires) on the external surface of the wire and hardening decreases rapidly from the surface layer to the center. For the copper wire this effect is reduced and traditional material constitutive model seems to be adequate to predict experimentation. For the low-carbon steel a modified constitutive material model has been proposed and implemented in a FE code giving a better agreement with the experiments

  17. Novel micromachined on-chip 10-elements wire-grid array operating at 60 GHz

    KAUST Repository

    Sallam, Mai O.

    2017-06-07

    This paper presents a new topology for a wire-grid antenna array which operates at 60 GHz. The array consists of ten λ/2 dipole radiators connected via non-radiating connectors. Both radiators and connectors are placed on top of narrow silicon walls. The antenna is fed with a coplanar microstrip lines placed at the other side of the wafer and is connected with its feeding transmission lines using through-silicon-vias. The antenna is optimized for two cases: using high- and low-resistivity silicon substrates. The former has better radiation characteristics while the later is more compatible with the driving electronic circuits. The antenna has high directivity, reasonable bandwidth and high polarization purity.

  18. A comparison of torque expression between stainless steel, titanium molybdenum alloy, and copper nickel titanium wires in metallic self-ligating brackets.

    Science.gov (United States)

    Archambault, Amy; Major, Thomas W; Carey, Jason P; Heo, Giseon; Badawi, Hisham; Major, Paul W

    2010-09-01

    The force moment providing rotation of the tooth around the x-axis (buccal-lingual) is referred to as torque expression in orthodontic literature. Many factors affect torque expression, including the wire material characteristics. This investigation aims to provide an experimental study into and comparison of the torque expression between wire types. With a worm-gear-driven torquing apparatus, wire was torqued while a bracket mounted on a six-axis load cell was engaged. Three 0.019 x 0.0195 inch wire (stainless steel, titanium molybdenum alloy [TMA], copper nickel titanium [CuNiTi]), and three 0.022 inch slot bracket combinations (Damon 3MX, In-Ovation-R, SPEED) were compared. At low twist angles (wires were not statistically significant. At twist angles over 24 degrees, stainless steel wire yielded 1.5 to 2 times the torque expression of TMA and 2.5 to 3 times that of nickel titanium (NiTi). At high angles of torsion (over 40 degrees) with a stiff wire material, loss of linear torque expression sometimes occurred. Stainless steel has the largest torque expression, followed by TMA and then NiTi.

  19. Diagnostics for exploding wires (abstract)

    International Nuclear Information System (INIS)

    Moosman, B.; Bystritskii, V.; Wessel, F.J.; Van Drie, A.

    1999-01-01

    Two diagnostics, capable of imaging fast, high temperature, plasmas were used on exploding wire experiments at UC Irvine. An atmospheric pressure nitrogen laser (λ=337.1 nm) was used to generate simultaneous shadow and shearing interferogram images with a temporal resolution of ∼1 ns and a spatial resolution of 10 μm. An x-ray backlighter imaged the exploding wire 90 degree with respect to the laser and at approximately the same instant in time. The backlighter spatial resolution as determined by geometry and film resolution was 25 μm. Copper wires of diameters (25, 50, and 100 μm) and steel wire d=25 μm were exploded in vacuum (10 -5 Torr) at a maximum current level of 12 kA, by a rectified marx bank at a voltage of 50 kV and a current rise time (quarter period) of 900 ns. Copper wires which were cleaned and then resistively heated under vacuum to incandescence for several hours prior to high current initiation, exhibited greater expansion velocities at peak current than wires which had not been heated prior to discharge. Axial variations on the surface of the wire observed with the laser were found to correlate with bulk axial mass differences from x-ray backlighting. High electron density, measured near the opaque surface of the exploding wire, suggests that much of the current is shunted outward away from the bulk of the wire. copyright 1999 American Institute of Physics

  20. Multi-scale analysis by SEM, EBSD and X-ray diffraction of deformation textures of a copper wire drawn industrially

    Directory of Open Access Journals (Sweden)

    Zidani M.

    2013-09-01

    Full Text Available In this study, we tried to understand the texture evolution of deformation during the cold drawing of copper wire (99.26% Drawn by the company ENICAB destined for electrical cabling and understand its link with the electrical conductivity. Characterisations performed show the appearance and texture development during the reduction of section of the wire. The texture is mainly composed of the fiber // DN (DN // drawing axis (majority and the fiber // ND (minority whose acuity increases with deformation level. The wire was performed for the main components of the texture, ie the fiber and conventionally present in these materials. We will pay particular attention on the energy of the cube component {100} recrystallization that develops when the level of reduction is sufficient. There was also an increase in hardness and electrical resistivity along the applied deformation.

  1. Experimental study on imploding characteristics of wire-array Z pinches on Qiangguang-1 facility

    Institute of Scientific and Technical Information of China (English)

    Wang Zhen; Xu Rong-Kun; Yang Jian-Lun; Hua Xin-Sheng; Li Lin-Bo; Xu Ze-Ping; Ning Jia-Min; Song Feng-Jun

    2007-01-01

    To investigate the imploding characteristics of cylindrical wire array,experiments with load current varying from 1.5MA to 1.7MA were carried out on the Qiangguang-1 facility.The complicated temporal-spatial distribution of x-ray radiation was measured by the one-dimensional (1D) x-ray imaging system.Other diagnostic equipments including the x-ray power meter(XRPM) and the time-integrated pinhole camera were used to record time-resolved x-ray power pulse and pinhole x-ray images.Analysis shows that the fast leading edge of the local x-ray radiation pulse is of primary importance in sharpening x-ray power pulse rather than the temporal synchrony and the spatial uniformity of implosion.Experimental results indicated that the better axial imploding synchrony,the faster the increase of X-ray power for an array consisting of 32 tungsten wires of 5μm diameter than for the others,and the higher the x-ray radiation power with maximal convergence ratio (r0/r1) of 10.5.A 'zipper-like' effect of x-ray radiation extending from the cathode Was also observed.

  2. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  3. Water Desalination with Wires

    NARCIS (Netherlands)

    Porada, S.; Sales, B.B.; Hamelers, H.V.M.; Biesheuvel, P.M.

    2012-01-01

    We show the significant potential of water desalination using a novel capacitive wire-based technology in which anode/cathode wire pairs are constructed from coating a thin porous carbon electrode layer on top of electrically conducting rods (or wires). By alternately dipping an array of electrode

  4. Microwave left-handed composite material made of slim ferrite rods and metallic wires

    International Nuclear Information System (INIS)

    Fang, Xu; Yang, Bai; Li-Jie, Qiao; Hong-Jie, Zhao; Ji, Zhou

    2009-01-01

    This paper reports on experimental study of the microwave properties of a composite material consisting of ferrite and copper wires. It finds that the slim ferrite rods can modify the magnetic field distribution through their anisotropy, so that the ferrite's negative influence on the copper wires' plasma will be reduced. Left-handed properties are observed even in the specimen with close stuck ferrite rods and copper wires. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Nanomolar Trace Metal Analysis of Copper at Gold Microband Arrays

    Science.gov (United States)

    Wahl, A.; Dawson, K.; Sassiat, N.; Quinn, A. J.; O'Riordan, A.

    2011-08-01

    This paper describes the fabrication and electrochemical characterization of gold microband electrode arrays designated as a highly sensitive sensor for trace metal detection of copper in drinking water samples. Gold microband electrodes have been routinely fabricated by standard photolithographic methods. Electrochemical characterization were conducted in 0.1 M H2SO4 and found to display characteristic gold oxide formation and reduction peaks. The advantages of gold microband electrodes as trace metal sensors over currently used methods have been investigated by employing under potential deposition anodic stripping voltammetry (UPD-ASV) in Cu2+ nanomolar concentrations. Linear correlations were observed for increasing Cu2+ concentrations from which the concentration of an unknown sample of drinking water was estimated. The results obtained for the estimation of the unknown trace copper concentration in drinking was in good agreement with expected values.

  6. Nanomolar Trace Metal Analysis of Copper at Gold Microband Arrays

    International Nuclear Information System (INIS)

    Wahl, A; Dawson, K; Sassiat, N; Quinn, A J; O'Riordan, A

    2011-01-01

    This paper describes the fabrication and electrochemical characterization of gold microband electrode arrays designated as a highly sensitive sensor for trace metal detection of copper in drinking water samples. Gold microband electrodes have been routinely fabricated by standard photolithographic methods. Electrochemical characterization were conducted in 0.1 M H 2 SO 4 and found to display characteristic gold oxide formation and reduction peaks. The advantages of gold microband electrodes as trace metal sensors over currently used methods have been investigated by employing under potential deposition anodic stripping voltammetry (UPD-ASV) in Cu 2+ nanomolar concentrations. Linear correlations were observed for increasing Cu 2+ concentrations from which the concentration of an unknown sample of drinking water was estimated. The results obtained for the estimation of the unknown trace copper concentration in drinking was in good agreement with expected values.

  7. Vortex pinning vs superconducting wire network: origin of periodic oscillations induced by applied magnetic fields in superconducting films with arrays of nanomagnets

    International Nuclear Information System (INIS)

    Gomez, A; Del Valle, J; Gonzalez, E M; Vicent, J L; Chiliotte, C E; Carreira, S J; Bekeris, V; Prieto, J L; Schuller, Ivan K

    2014-01-01

    Hybrid magnetic arrays embedded in superconducting films are ideal systems to study the competition between different physical (such as the coherence length) and structural length scales such as are available in artificially produced structures. This interplay leads to oscillation in many magnetically dependent superconducting properties such as the critical currents, resistivity and magnetization. These effects are generally analyzed using two distinct models based on vortex pinning or wire network. In this work, we show that for magnetic dot arrays, as opposed to antidot (i.e. holes) arrays, vortex pinning is the main mechanism for field induced oscillations in resistance R(H), critical current I c (H), magnetization M(H) and ac-susceptibility χ ac (H) in a broad temperature range. Due to the coherence length divergence at T c , a crossover to wire network behaviour is experimentally found. While pinning occurs in a wide temperature range up to T c , wire network behaviour is only present in a very narrow temperature window close to T c . In this temperature interval, contributions from both mechanisms are operational but can be experimentally distinguished. (papers)

  8. Josephson junction arrays and superconducting wire networks

    International Nuclear Information System (INIS)

    Lobb, C.J.

    1992-01-01

    Techniques used to fabricate integrated circuits make it possible to construct superconducting networks containing as many as 10 6 wires or Josephson junctions. Such networks undergo phase transitions from resistive high-temperature states to ordered low-resistance low-temperature states. The nature of the phase transition depends strongly on controllable parameters such as the strength of the superconductivity in each wire or junction and the external magnetic field. This paper will review the physics of these phase transitions, starting with the simplest zero-magnetic field case. This leads to a Kosterlitz-Thouless transition when the junctions or wires are weak, and a simple mean-field fransition when the junctions or wires are strong. Rich behavior, resulting from frustration, occurs in the presence of a magnetic field. (orig.)

  9. Pretinning Nickel-Plated Wire Shields

    Science.gov (United States)

    Igawa, J. A.

    1985-01-01

    Nickel-plated copper shielding for wires pretinned for subsequent soldering with help of activated rosin flux. Shield cut at point 0.25 to 0.375 in. (6 to 10 mm) from cut end of outer jacket. Loosened end of shield straightened and pulled toward cut end. Insulation of inner wires kept intact during pretinning.

  10. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    International Nuclear Information System (INIS)

    Wnęk, M; Stockley, P G; Górzny, M Ł; Evans, S D; Ward, M B; Brydson, R; Wälti, C; Davies, A G

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating. (paper)

  11. Fabrication and characterization of gold nano-wires templated on virus-like arrays of tobacco mosaic virus coat proteins

    Science.gov (United States)

    Wnęk, M.; Górzny, M. Ł.; Ward, M. B.; Wälti, C.; Davies, A. G.; Brydson, R.; Evans, S. D.; Stockley, P. G.

    2013-01-01

    The rod-shaped plant virus tobacco mosaic virus (TMV) is widely used as a nano-fabrication template, and chimeric peptide expression on its major coat protein has extended its potential applications. Here we describe a simple bacterial expression system for production and rapid purification of recombinant chimeric TMV coat protein carrying C-terminal peptide tags. These proteins do not bind TMV RNA or form disks at pH 7. However, they retain the ability to self-assemble into virus-like arrays at acidic pH. C-terminal peptide tags in such arrays are exposed on the protein surface, allowing interaction with target species. We have utilized a C-terminal His-tag to create virus coat protein-templated nano-rods able to bind gold nanoparticles uniformly. These can be transformed into gold nano-wires by deposition of additional gold atoms from solution, followed by thermal annealing. The resistivity of a typical annealed wire created by this approach is significantly less than values reported for other nano-wires made using different bio-templates. This expression construct is therefore a useful additional tool for the creation of chimeric TMV-like nano-rods for bio-templating.

  12. Superconducting magnet wire

    Science.gov (United States)

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  13. Artificial Leaks in Container Closure Integrity Testing: Nonlinear Finite Element Simulation of Aperture Size Originated by a Copper Wire Sandwiched between the Stopper and the Glass Vial.

    Science.gov (United States)

    Nieto, Alejandra; Roehl, Holger; Brown, Helen; Adler, Michael; Chalus, Pascal; Mahler, Hanns-Christian

    2016-01-01

    Container closure integrity (CCI) testing is required by different regulatory authorities in order to provide assurance of tightness of the container closure system against possible contamination, for example, by microorganisms. Microbial ingress CCI testing is performed by incubation of the container closure system with microorganisms under specified testing conditions. Physical CCI uses surrogate endpoints, such as coloration by dye solution ingress or gas flow (helium leakage testing). In order to correlate microbial CCI and physical CCI test methods and to evaluate the methods' capability to detect a given leak, artificial leaks are being introduced into the container closure system in a variety of different ways. In our study, artificial leaks were generated using inserted copper wires between the glass vial opening and rubber stopper. However, the insertion of copper wires introduces leaks of unknown size and shape. With nonlinear finite element simulations, the aperture size between the rubber stopper and the glass vial was calculated, depending on wire diameter and capping force. The dependency of the aperture size on the copper wire diameter was quadratic. With the data obtained, we were able to calculate the leak size and model leak shape. Our results suggest that the size as well as the shape of the artificial leaks should be taken into account when evaluating critical leak sizes, as flow rate does not, independently, correlate to hole size. Capping force also affected leak size. An increase in the capping force from 30 to 70 N resulted in a reduction of the aperture (leak size) by approximately 50% for all wire diameters. From 30 to 50 N, the reduction was approximately 33%. Container closure integrity (CCI) testing is required by different regulatory authorities in order to provide assurance of tightness of the container closure system against contamination, for example, by microorganisms. Microbial ingress CCI testing is performed by incubation of the

  14. Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion

    International Nuclear Information System (INIS)

    Calamy, H.; Lassalle, F.; Loyen, A.; Zucchini, F.; Chittenden, J. P.; Hamann, F.; Maury, P.; Georges, A.; Bedoch, J. P.; Morell, A.

    2008-01-01

    The Sphinx machine [F. Lassalle et al., 'Status on the SPHINX machine based on the 1microsecond LTD technology'] based on microsecond linear transformer driver (LTD) technology is used to implode an aluminium wire array with an outer diameter up to 140 mm and maximum current from 3.5 to 5 MA. 700 to 800 ns implosion Z-pinch experiments are performed on this driver essentially with aluminium. Best results obtained before the improvement described in this paper were 1-3 TW radial total power, 100-300 kJ total yield, and 20-30 kJ energy above 1 keV. An auxiliary generator was added to the Sphinx machine in order to allow a multi microsecond current to be injected through the wire array load before the start of the main current. Amplitude and duration of this current prepulse are adjustable, with maxima ∼10 kA and 50 μs. This prepulse dramatically changes the ablation phase leading to an improvement of the axial homogeneity of both the implosion and the final radiating column. Total power was multiplied by a factor of 6, total yield by a factor of 2.5 with a reproducible behavior. This paper presents experimental results, magnetohydrodynamic simulations, and analysis of the effect of such a long current prepulse

  15. Investigation of the effects of metal-wire resonators in sub-wavelength array based on time-reversal technique

    International Nuclear Information System (INIS)

    Tu, Hui-Lin; Xiao, Shao-Qiu

    2016-01-01

    The resonant metalens consisting of metal-wire resonators with equally finite length can break the diffraction barrier well suited for super-resolution imaging. In this study, a basic combination constructed by two metal-wire resonators with different lengths is proposed, and its resonant characteristics is analyzed using the method of moments (MoM). Based on the time reversal (TR) technique, this kind of combination can be applied to a sub-wavelength two-element antenna array with a 1/40-wavelength interval to make the elements work simultaneously with little interference in the frequency band of 1.0-1.5 GHz and 1.5-2.0 GHz, respectively. The simulations and experiments show that analysis of MoM and the application of the resonators can be used to design multi-frequency sub-wavelength antenna arrays efficiently. This general design method is convenient and can be used for many applications, such as weakening jamming effectiveness in communication systems, and sub-wavelength imaging in a broad frequency band.

  16. Nano-/micro metallic wire synthesis on Si substrate and their characterization

    International Nuclear Information System (INIS)

    Kaur, Jaskiran; Kaur, Harmanmeet; Singh, Surinder; Kanjilal, Dinakar; Chakarvarti, Shiv Kumar

    2014-01-01

    Nano-/micro wires of copper are grown on semiconducting Si substrate using the template method. It involves the irradiation of 8 um thick polymeric layer coated on Si with150 MeV Ni ion beam at a fluence of 2E8. Later, by using the simple technique of electrodeposition, copper nano-/micro wires were grown via template synthesis. Synthesized wires were morphologically characterized using SEM and electrical characterization was carried out by finding I-V plot

  17. New Regimes of Implosions of Larger Sized Wire Arrays With and Without Modified Central Plane at 1.5-1.7 MA Zebra

    Science.gov (United States)

    Safronova, A. S.; Kantsyrev, V. L.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V.; Stafford, A.; Keim, S. F.; Petkov, E. E.; Lorance, M.; Chuvatin, A. S.; Coverdale, C. A.; Jones, B.

    2013-10-01

    The recent experiments at 1.5-1.7 MA on Zebra at UNR with larger sized planar wires arrays (compared to the wire loads at 1 MA current) have demonstrated higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions. Such multi-planar wire arrays had two outer wire planes from mid-Z material to create a global magnetic field (gmf) and mid-Z plasma flow between them. Also, they included a modified central plane with a few Al wires at the edges to influence gmf and to create Al plasma flow in the perpendicular direction. The stationary shock waves which existed over tens of ns on shadow images and the early x-ray emissions before the PCD peak on time-gated spectra were observed. The most recent experiments with similar loads but without the central wires demonstrated a very different regime of implosion with asymmetrical jets and no precursor formation. This work was supported by NNSA under DOE Cooperative Agreement DE-NA0001984 and in part by DE-FC52-06NA27616. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  18. Anisotropy of energy losses in high-current Z-pinches produced by the implosion of cylindrical tungsten wire arrays

    Science.gov (United States)

    Aleksandrov, V. V.; Volkov, G. S.; Grabovski, E. V.; Gritsuk, A. N.; Lakhtyushko, N. I.; Medovshchikov, S. F.; Oleinik, G. M.; Svetlov, E. V.

    2014-02-01

    Results are presented from measurements of the anisotropy of energy losses in high-current Z-pinches produced by the implosion of wire arrays at the ANGARA-5-1 facility at load currents of up to 4MA. The energy losses were measured in the radial direction and along the pinch axis from the anode side. The main diagnostics were time-integrated thermocouple calorimeters, nanosecond X-ray diodes (XRDs) with different filters, and a foil radiation calorimeter with a time resolution of 2 μs. The azimuthal anisotropy of energy losses was measured for different wire array configurations and different shapes of the high-voltage electrode. The presence of strong initial azimuthal inhomogeneity of the wire mass distribution (sectioned arrays), as well as the use of conical electrodes instead of plane ones, does not increase the azimuthal inhomogeneity of the total energy losses. For cylindrical wire arrays, energy losses in the radial direction are compared with those along the pinch axis. According to XRD and calorimetric measurements, the radiation yield per unit solid angle along the pinch axis is two to three times lower than that in the radial direction. In the axial direction, the energy flux density of the expanding plasma is two to three times lower than the radiation intensity. The measured radiation yield across the pinch is 2.5-5 kJ/sr, while that along the pinch axis is 1-2 kJ/sr. The results obtained by means of XRDs agree to within measurement errors with those obtained using the radiation calorimeter. It is found that the energy per unit solid angle carried by the expanding plasma in the radial direction does not exceed 10% of the soft X-ray yield. Analysis of the structure of time-integrated pinhole images and signals from the radial and axial XRDs shows that radiation emitted in the radial direction from the hot central region of the pinch is partially screened by the less dense surrounding plasma halo, whereas radiation emitted in the axial direction is a

  19. Reliability Criteria for Thick Bonding Wire.

    Science.gov (United States)

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  20. Reliability Criteria for Thick Bonding Wire

    Science.gov (United States)

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  1. A tentative opinion of modeling plasma formation in metallic wire Z pinch

    International Nuclear Information System (INIS)

    Ding Ning

    2002-01-01

    Numerous experiments in both single wire and in wire arrays have attracted much attention. For the wire array Z-pinch implosions the plasma formation in the metallic wire Z pinches is a key question. By means of analyzing a number of single-wire and multi-wire experiments, two models to describe the behavior of a wire array Z-pinch in initial phase are suggested. In this phase each wire carries a rising current and behaves independently in a way similar to that found in single wire Z-pinch experiments in which a comparable current in one wire is employed. Based on one- or/and two-dimensional magnetohydrodynamics (MHD) theory, one model is used to simulate the electrical explosion stage of the metallic wire, another is used to simulate the wire-plasma formation stage

  2. Stabilized superconductive wires

    International Nuclear Information System (INIS)

    Randall, R.N.; Wong, J.

    1976-01-01

    A stable, high field, high current conductor is produced by packing multiple, multi-layer rods of a bronze core and niobium or vanadium inner jacket and copper outer jacket into a pure copper tube or other means for forming a pure copper matrix, sealing, working the packed tube to a wire, and by diffusion, heat treating to form a type II superconducting, Beta-Wolfram structure, intermetallic compound as a layer within each of several filaments derived from the rods. The layer of Beta-Wolfram structure compound may be formed in less than 2 h of diffusion heat treatment in a thickness of 0.5--2μ

  3. Comparison of copper heptonate with copper oxide wire particles as copper supplements for sheep on pasture of high molybdenum content.

    Science.gov (United States)

    Judson, G J; Babidge, P J

    2002-10-01

    To assess the effectiveness of intramuscular injection of copper heptonate (CuHep) and an oral dose of copper oxide wire particles (COWP) in preventing Cu inadequacy in adult and young sheep on pasture of high Mo content. Field experiments with flocks of mature Merino wethers and crossbred weaners. Adult wethers were given 25 or 37.5 mg Cu as CuHep, 2.5 g COWP or no Cu treatment. The weaners were given 12.5 or 25 mg Cu as CuHep, 1.25 g COWP or no Cu treatment. At intervals over the next 12 (adults) or 8 (weaners) months the sheep were weighed and samples of blood and liver were collected for trace element assay. Wool samples collected from the adults at the end of the experiment were assessed for physical characteristics. The higher dosage of CuHep raised liver Cu above control group values for at least 9 months in adults and 3 months in weaners. The lower dosage of CuHep was similarly effective for 3 months in adults but was without effect in weaners. In adults the response to COWP matched that to the higher dosage of CuHep; in weaners it was greater, lasting at least 5 months. No changes indicative of Cu deficiency, apart from a depressed body weight in adults, were seen. In sheep on pasture of high Mo content a single intramuscular injection of CuHep providing 37.5 mg Cu to adults or 25 mg Cu to weaners will raise liver Cu reserves for at least 9 and 3 months respectively and may be an acceptable alternative to COWP for preventing seasonal Cu deficiency in sheep in southern Australia.

  4. Phase transformation changes in thermocycled nickel-titanium orthodontic wires.

    Science.gov (United States)

    Berzins, David W; Roberts, Howard W

    2010-07-01

    In the oral environment, orthodontic wires will be subject to thermal fluctuations. The purpose of this study was to investigate the effect of thermocycling on nickel-titanium (NiTi) wire phase transformations. Straight segments from single 27 and 35 degrees C copper NiTi (Ormco), Sentalloy (GAC), and Nitinol Heat Activated (3M Unitek) archwires were sectioned into 5mm segments (n=20). A control group consisted of five randomly selected non-thermocycled segments. The remaining segments were thermocycled between 5 and 55 degrees C with five randomly selected segments analyzed with differential scanning calorimetry (DSC; -100150 degrees C at 10 degrees C/min) after 1000, 5000, and 10,000 cycles. Thermal peaks were evaluated with results analyzed via ANOVA (alpha=0.05). Nitinol HA and Sentalloy did not demonstrate qualitative or quantitative phase transformation behavior differences. Significant differences were observed in some of the copper NiTi transformation temperatures, as well as the heating enthalpy with the 27 degrees C copper NiTi wires (p<0.05). Qualitatively, with increased thermocycling the extent of R-phase in the heating peaks decreased in the 35 degrees C copper NiTi, and an austenite to martensite peak shoulder developed during cooling in the 27 degrees C copper NiTi. Repeated temperature fluctuations may contribute to qualitative and quantitative phase transformation changes in some NiTi wires. Copyright 2010 Academy of Dental Materials. All rights reserved.

  5. Reliability Criteria for Thick Bonding Wire

    Directory of Open Access Journals (Sweden)

    Turker Dagdelen

    2018-04-01

    Full Text Available Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al and aluminum coated copper (CucorAl wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  6. Alleviation of mandibular anterior crowding with copper-nickel-titanium vs nickel-titanium wires: a double-blind randomized control trial.

    Science.gov (United States)

    Pandis, Nikolaos; Polychronopoulou, Argy; Eliades, Theodore

    2009-08-01

    The purpose of this study was to investigate the efficiency of copper-nickel-titanium (CuNiTi) vs nickel-titanium (NiTi) archwires in resolving crowding of the anterior mandibular dentition. Sixty patients were included in this single-center, single-operator, double-blind randomized trial. All patients were bonded with the In Ovation-R self-ligating bracket (GAC, Central Islip, NY) with a 0.022-in slot, and the amount of crowding of the mandibular anterior dentition was assessed by using the irregularity index. The patients were randomly allocated into 2 groups of 30 patients, each receiving a 0.016-in CuNiTi 35 degrees C (Ormco, Glendora, Calif) or a 0.016-in NiTi (ModernArch, Wyomissing, Pa) wire. The type of wire selected for each patient was not disclosed to the provider or the patient. The date that each patient received a wire was recorded, and all patients were followed monthly for a maximum of 6 months. Demographic and clinical characteristics between the 2 wire groups were compared with the t test or the chi-square test and the Fisher exact test. Time to resolve crowding was explored with statistical methods for survival analysis, and alignment rate ratios for wire type and crowding level were calculated with Cox proportional hazards multivariate modeling. The type of wire (CuNiTi vs NiTi) had no significant effect on crowding alleviation (129.4 vs 121.4 days; hazard ratio, 1.3; P >0.05). Severe crowding (>5 on the irregularity index) showed a significantly higher probability of crowding alleviation duration relative to dental arches with a score of wires in laboratory and clinical conditions might effectively eliminate the laboratory-derived advantage of CuNiTi wires.

  7. Reliable porcine coronary model of chronic total occlusion using copper wire stents and bioabsorbable levo-polylactic acid polymer.

    Science.gov (United States)

    Sim, Doo Sun; Jeong, Myung Ho; Cha, Kyoung Rae; Park, Suk Ho; Park, Jong Oh; Shin, Young Min; Shin, Heungsoo; Hong, Young Joon; Ahn, Youngkeun; Schwartz, Robert S; Kang, Jung Chaee

    2012-12-01

    Chronic total occlusion (CTO) remains a challenge in interventional cardiology. We investigated the feasibility and reliability of copper wire stents and levo-polylactic acid (l-PLA) as a means of CTO induction in a porcine model. In one group of 20 swine, copper stents were crimped on a 3.0mm angioplasty balloon and inserted into the mid-left anterior descending coronary artery (LAD). In the other group of 20 swine, l-PLA was wrapped on a guidewire and pushed into the distal LAD with a 3.0mm balloon catheter to induce embolization. Of 20 swine which underwent copper stent implantation, 13 died of stent thrombosis. In the remaining 7 swine, total or near total occlusion with collateral circulation was observed at 5 weeks. Of 20 swine which underwent l-PLA embolization, 4 died of ventricular fibrillation during or shortly after the procedure. Serial histopathologic studies showed complete absorption of the polymer with replacement by fibrotic tissue approximately 4 weeks following the polymer implantation. CTO could be reliably induced in porcine coronary arteries by copper stents and l-PLA. These models may support investigation of new percutaneous devices to facilitate CTO interventions. Copyright © 2012 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  8. A cryogenic thermal source for detector array characterization

    Science.gov (United States)

    Chuss, David T.; Rostem, Karwan; Wollack, Edward J.; Berman, Leah; Colazo, Felipe; DeGeorge, Martin; Helson, Kyle; Sagliocca, Marco

    2017-10-01

    We describe the design, fabrication, and validation of a cryogenically compatible quasioptical thermal source for characterization of detector arrays. The source is constructed using a graphite-loaded epoxy mixture that is molded into a tiled pyramidal structure. The mold is fabricated using a hardened steel template produced via a wire electron discharge machining process. The absorptive mixture is bonded to a copper backplate enabling thermalization of the entire structure and measurement of the source temperature. Measurements indicate that the reflectance of the source is <0.001 across a spectral band extending from 75 to 330 GHz.

  9. Implosion dynamics of a megampere wire-array Z-pinch with an inner low-density foam shell at the Angara-5-1 facility

    International Nuclear Information System (INIS)

    Aleksandrov, V. V.; Bolkhovitinov, E. A.; Volkov, G. S.; Grabovski, E. V.; Gritsuk, A. N.; Medovshchikov, S. F.; Oleinik, G. M.; Rupasov, A. A.; Frolov, I. N.

    2016-01-01

    The implosion dynamics of a pinch with a highly inhomogeneous initial axial distribution of the load mass was studied experimentally. A cascade array consisting of a double nested tungsten wire array and a coaxial inner cylindrical shell located symmetrically with respect to the high-voltage electrodes was used as a load of the Angara-5-1 high-current generator. The cylindrical foam shell was half as long as the cathode− anode gap, and its diameter was equal to the diameter of the inner wire array. It is shown experimentally that two stages are typical of the implosion dynamics of such a load: the formation of two separate pinches formed as a result of implosion of the wire array near the cathode and anode and the subsequent implosion of the central part of the load containing the cylindrical foam shell. The conditions are determined at which the implosion of the central part of the pinch with the foam cylinder is preceded by intense irradiation of the foam with the soft X-ray (SXR) emission generated by the near-electrode pinches and converting it into the plasma state. Using such a load, which models the main elements of the scheme of a dynamic hohlraum for inertial confinement fusion, it is possible to increase the efficiency of interaction between the outer accelerated plasma sheath and the inner foam shell by preionizing the foam with the SXR emission of the near-electrode pinches.

  10. Total focusing method with correlation processing of antenna array signals

    Science.gov (United States)

    Kozhemyak, O. A.; Bortalevich, S. I.; Loginov, E. L.; Shinyakov, Y. A.; Sukhorukov, M. P.

    2018-03-01

    The article proposes a method of preliminary correlation processing of a complete set of antenna array signals used in the image reconstruction algorithm. The results of experimental studies of 3D reconstruction of various reflectors using and without correlation processing are presented in the article. Software ‘IDealSystem3D’ by IDeal-Technologies was used for experiments. Copper wires of different diameters located in a water bath were used as a reflector. The use of correlation processing makes it possible to obtain more accurate reconstruction of the image of the reflectors and to increase the signal-to-noise ratio. The experimental results were processed using an original program. This program allows varying the parameters of the antenna array and sampling frequency.

  11. Current trends in copper theft prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mastrofrancesco, A. [Electrical Safety Authority, ON (Canada)

    2009-07-01

    Copper is used in electrical wiring, water and gas piping, currency, and in household items. An increase in the price and demand for copper has made copper theft a profitable venture for some thieves. Copper consumed in North America is typically supplied by recycling. Scrap dealers may pay near-market prices for pure copper wires. However, copper theft poses a serious threat to the safety of utility workers and the public. Power outages caused by copper theft are now affecting grid reliability. This paper examined technologies and techniques used to prevent copper theft as part of a security strategy for utilities. Attempts to steal copper can leave utility substations unsecured and accessible to children. The theft of neutral grounds will cause the local distribution company (LDC) to malfunction and may cause power surges in homes as well as appliance fires. Utilities are now looking at using a hybrid steel and copper alternative to prevent copper theft. Asset identification techniques are also being used to identify the original owners of the copper and more easily prosecute thieves. Automated monitoring techniques are also being used to increase substation security. Utilities are also partnering with law enforcement agencies and pressuring governments to require scrap dealers to record who they buy from. It was concluded that strategies to prevent copper theft should be considered as part of an overall security strategy for utilities. tabs., figs.

  12. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  13. Epoxy cracking in the epoxy-impregnated superconducting winding: nonuniform dissipation of stress energy in a wire-epoxy matrix model

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Iwasa, Y.

    1985-01-01

    The authors present the epoxy-crack-induced temperature data of copper wires imbedded in wire-epoxy resin composite model at 4.2 K. The experimental results show that the epoxy-crackinduced temperature rise is higher in the copper wires than in the epoxy matrix, indicating that in stress-induced wire-epoxy failure, stress energy stored in the wire-epoxy matrix is preferrentially dissipated in the wire. A plausible mechanism of the nonuniform dissipation is presented

  14. High Resolution Eddy-Current Wire Testing Based on a Gmr Sensor-Array

    Science.gov (United States)

    Kreutzbruck, Marc; Allweins, Kai; Strackbein, Chris; Bernau, Hendrick

    2009-03-01

    Increasing demands in materials quality and cost effectiveness have led to advanced standards in manufacturing technology. Especially when dealing with high quality standards in conjunction with high throughput quantitative NDE techniques are vital to provide reliable and fast quality control systems. In this work we illuminate a modern electromagnetic NDE approach using a small GMR sensor array for testing superconducting wires. Four GMR sensors are positioned around the wire. Each GMR sensor provides a field sensitivity of 200 pT/√Hz and a spatial resolution of about 100 μm. This enables us to detect under surface defects of 100 μm in size in a depth of 200 μm with a signal-to-noise ratio of better than 400. Surface defects could be detected with a SNR of up to 10,000. Besides this remarkably SNR the small extent of GMR sensors results in a spatial resolution which offers new visualisation techniques for defect localisation, defect characterization and tomography-like mapping techniques. We also report on inverse algorithms based on either a Finite Element Method or an analytical approach. These allow for accurate defect localization on the urn scale and an estimation of the defect size.

  15. Superconductor with improved persistence characteristics

    International Nuclear Information System (INIS)

    Stekly, Z. J. J.; Strauss, B. P.

    1984-01-01

    In a multifilamentary superconductor, plural filaments are separated from one another by a ductile nonsuperconducting copper matrix. The niobium titanium filaments are arrayed through the copper, with one filament being substantially larger than the others, and preferably, centrally located in the wire. Preferably also, the other filaments are arrayed in an annular configuration about the periphery of the wire

  16. Electrochemically synthesized Si nano wire arrays and thermoelectric nano structures

    International Nuclear Information System (INIS)

    Khuan, N.I.; Ying, K.K.; Nur Ubaidah Saidin; Foo, C.T.

    2012-01-01

    Thermoelectric nano structures hold great promise for capturing and directly converting into electricity some vast amount of low-grade waste heats now being lost to the environment (for example from nuclear power plant, fossil fuel burning, automotive and household appliances). In this study, large-area vertically-aligned silicon nano wire (SiNW) arrays were synthesized in an aqueous solution containing AgNO 3 and HF on p-type Si (100) substrate by self-selective electroless etching process. The etching conditions were systematically varied in order to achieve different stages of nano wire formation. Diameters of the SiNWs obtained varied from approximately 50 to 200 nm and their lengths ranged from several to a few tens of μm. Te/ Bi 2 Te 3 -Si thermoelectric core-shell nano structures were subsequently obtained via galvanic displacement of SiNWs in acidic HF electrolytes containing HTeO 2 + and Bi 3+ / HTeO 2 + ions. The reactions were basically a nano-electrochemical process due to the difference in redox potentials between the materials. the surface-modified SiNWs of core-shell structures had roughened surface morphologies and therefore, higher surface-t-bulk ratios compared to unmodified SiNWs. They have potential applications in sensors, photovoltaic and thermoelectric nano devices. Growth study on the SiNWs and core-shell nano structures produced is presented using various microscopy, diffraction and probe-based techniques for microstructural, morphological and chemical characterizations. (Author)

  17. The effect of silicon addition to the interfilamentary copper on Jc, compound formation and interdiffusion

    International Nuclear Information System (INIS)

    Liu, H.; Gregory, E.; Zeitlin, B.A.; Faase, K.J.

    1994-01-01

    One of the reasons why high critical current density is difficult to achieve in fine filament Nb-Ti superconducting wire is that a reaction occurs between the copper matrix and Nb-Ti filaments. A diffusion barrier around each filament was introduced in the processing of fine filament wire in order to achieve J c values close to the intrinsic ones. One study of diffusional reaction rates through the Nb barrier has indicated that, for typical SSC composites, a barrier area of 4% and 9% is necessary for producing 6 μm and 2.5 μm diameter filaments respectively. Consequently, if diffusional interactions can be eliminated without adding a large volume of barrier material, it is possible to achieve higher J c 's at lower cost. Another limitation on the J c in fine filament Nb-Ti superconducting wire results from the mismatch in mechanical properties of Nb-Ti filaments and copper matrix at high wave strains. The hardness and ultimate tensile strength (UTS) of Nb-Ti filaments increase with increasing amount of the cold work and no UTS saturation has been seen, whereas the UTS of copper saturates. An improper filament array also adversely affects J c , but this can be resolved by changing the filament distribution geometry, i.e., by reducing the interfilamentary spacing. Improving mechanical strength of copper matrix is important for reducing the amount of fine filament sausaging. Recently, in work that was primarily directed towards the development of material for ac applications, it was reported that, when silicon is added to the copper matrix, the formation of intermetallic compounds can be greatly reduced. Cu-Si alloy also has mechanical properties more compatible with NbTi than copper. If the above results can be verified, the technique can probably be applied to the manufacture of high J c SSC type conductors and large filamentary NbTi superconductor materials for general use

  18. Results of the Fermilab wire production program

    International Nuclear Information System (INIS)

    Strauss, B.P.; Remsbottom, R.H.; Reardon, P.J.; Curtis, C.W.; McDonald, W.K.

    1976-01-01

    In examining the various schedules of wire drawing and heat treating, the Critchlow type of schedule provided the highest and most uniform data from billet to billet. It consists of a long anneal at 400 +- 20 0 C at a cold work point giving about 99 percent reduction in area from the extrusion size. Several quick copper anneals at 300 0 C may be interspersed to aid in fabrication. A final anneal at finished size both peaks up the resistivity ratio of the copper as well as the critical current of the alloy by moving dislocations to subcell walls. Using this method, critical currents of 1.7 x 10 5 A/cm 2 could be maintained in all billets. The copper cladding and sinking method looks promising and should save production costs. In spite of this, it was important to attain good packing density in the billets to assure uniform filament pattern and reduce breakage in wire drawing. Overall, a procedure was found for fabricating wire in large production lots that would be acceptable for constructing dipole magnets. It is felt that this method could be peaked up with time

  19. Raman Analysis of Dilute Aqueous Samples by Localized Evaporation of Submicroliter Droplets on the Tips of Superhydrophobic Copper Wires.

    Science.gov (United States)

    Cheung, Melody; Lee, Wendy W Y; McCracken, John N; Larmour, Iain A; Brennan, Steven; Bell, Steven E J

    2016-04-19

    Raman analysis of dilute aqueous solutions is normally prevented by their low signal levels. A very general method to increase the concentration to detectable levels is to evaporate droplets of the sample to dryness, creating solid deposits which are then Raman probed. Here, superhydrophobic (SHP) wires with hydrophilic tips have been used as supports for drying droplets, which have the advantage that the residue is automatically deposited at the tip. The SHP wires were readily prepared in minutes using electroless galvanic deposition of Ag onto copper wires followed by modification with a polyfluorothiol (3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decanethiol, HDFT). Cutting the coated wires with a scalpel revealed hydrophilic tips which could support droplets whose maximum size was determined by the wire diameter. Typically, 230 μm wires were used to support 0.6 μL droplets. Evaporation of dilute melamine droplets gave solid deposits which could be observed by scanning electron microscopy (SEM) and Raman spectroscopy. The limit of detection for melamine using a two stage evaporation procedure was 1 × 10(-6) mol dm(-3). The physical appearance of dried droplets of sucrose and glucose showed that the samples retained significant amounts of water, even under high vacuum. Nonetheless, the Raman detection limits of sucrose and glucose were 5 × 10(-4) and 2.5 × 10(-3) mol dm(-3), respectively, which is similar to the sensitivity reported for surface-enhanced Raman spectroscopy (SERS) detection of glucose. It was also possible to quantify the two sugars in mixtures at concentrations which were similar to those found in human blood through multivariate analysis.

  20. High-Efficiency Fog Collector: Water Unidirectional Transport on Heterogeneous Rough Conical Wires.

    Science.gov (United States)

    Xu, Ting; Lin, Yucai; Zhang, Miaoxin; Shi, Weiwei; Zheng, Yongmei

    2016-12-27

    An artificial periodic roughness-gradient conical copper wire (PCCW) can be fabricated by inspiration from cactus spines and wet spider silks. PCCW can harvest fog on periodic points of the conical surface from air and transports the drops for a long distance without external force, which is attributed to dynamic as-released energy generated from drop deformation in drop coalescence, in addition to both gradients of geometric curve (inducing Laplace pressure) and periodic roughness (inducing surface energy difference). It is found that the ability of fog collection can be related to various tilt-angle wires, thus a fog collector with an array system of PCCWs is further designed to achieve a continuous process of efficient water collection. As a result, the effect of water collection on PCCWs is better than previous results. These findings are significant to develop and design materials with water collection and water transport for promising application in fogwater systems to ease the water crisis.

  1. Review of effects of dielectric coatings on electrical exploding wires and Z pinches

    Science.gov (United States)

    Wu, Jian; Li, Xingwen; Li, Mo; Li, Yang; Qiu, Aici

    2017-10-01

    As the most powerful x-ray source in the laboratories, the wire array Z pinches have been of great relevance to inertial confinement fusions, laboratory astrophysics, and other high-energy density applications. In order to produce x-ray with greater power and higher efficiency, the dynamics of wire array has been investigated extensively, and various methods have been proposed to improve the implosion quality of the wire array. This review focuses on the experimental and theoretical investigations regarding the effects of the dielectric coatings on electrical exploding wires and Z pinches. Since the early 2000, the electrical wire explosion related to the first stage of the wire array Z pinches has been studied extensively, and the results indicated that the dielectric coatings can significantly increase the joule energy deposition into a wire in the initial stage, and even the corona free explosion of tungsten wires can be achieved. Recently, there is an increasing interest in the dynamics of insulated wire array Z pinches. By applying dielectric coatings, the ablation process is suppressed, the x-ray start time is delayed, and the possibility of multi-peak radiation is decreased. This review is organized by the evolution dynamics of wire array Z pinches, and a broad introduction to relevant scientific concepts and various other applications are presented. According to the current research status, the challenges, opportunities and further developments of Z pinch loads using dielectric coatings are proposed to further promote the researches and their applications.

  2. Review of effects of dielectric coatings on electrical exploding wires and Z pinches

    International Nuclear Information System (INIS)

    Wu, Jian; Li, Mo; Li, Yang; Li, Xingwen; Qiu, Aici

    2017-01-01

    As the most powerful x-ray source in the laboratories, the wire array Z pinches have been of great relevance to inertial confinement fusions, laboratory astrophysics, and other high-energy density applications. In order to produce x-ray with greater power and higher efficiency, the dynamics of wire array has been investigated extensively, and various methods have been proposed to improve the implosion quality of the wire array. This review focuses on the experimental and theoretical investigations regarding the effects of the dielectric coatings on electrical exploding wires and Z pinches. Since the early 2000, the electrical wire explosion related to the first stage of the wire array Z pinches has been studied extensively, and the results indicated that the dielectric coatings can significantly increase the joule energy deposition into a wire in the initial stage, and even the corona free explosion of tungsten wires can be achieved. Recently, there is an increasing interest in the dynamics of insulated wire array Z pinches. By applying dielectric coatings, the ablation process is suppressed, the x-ray start time is delayed, and the possibility of multi-peak radiation is decreased. This review is organized by the evolution dynamics of wire array Z pinches, and a broad introduction to relevant scientific concepts and various other applications are presented. According to the current research status, the challenges, opportunities and further developments of Z pinch loads using dielectric coatings are proposed to further promote the researches and their applications. (topical review)

  3. The effect of copper-amended fertiliser and copper oxide wire particles on the copper status of farmed red deer (Cervus elaphus) and their progeny.

    Science.gov (United States)

    Grace, N D; Wilson, P R; Quinn, A K

    2005-02-01

    To determine changes in serum and liver copper concentrations in postnatal, weaner, yearling, and mature deer after grazing pasture topdressed with copper (Cu) at two rates of application of copper sulphate (CuSO4(.)5H2O), and following oral administration of copper oxide (CuO) wire particles to some of the deer. In mid-March 2000 (Year 1), 1.1-ha paddocks (two/treatment) of ryegrass/white clover pasture received either 0 (Control), 6 (Low) or 12 (High) kg CuSO4(.)5H2O /ha applied with 250 kg potash superphosphate/ha. They were grazed by 4-month-old red deer hinds (n=11/treatment) from mid-April 2000 until early March 2001. In mid-March 2001 (Year 2), the pastures were topdressed again as for Year 1, and the original hinds, now yearlings which had grazed as a single group between studies, were returned to their respective treatments in mid-April 2001 and remained on the trial until mid-March 2002. They were mated during April/May. The pastures were also grazed by pregnant mature hinds (n=8/treatment) from mid-May 2001. As the Cu status (i.e. liver Cu concentration) of the yearling hinds on the pasture treated with 6 kg CuSO4(.)5H2O/ha was not significantly different from the untreated animals, in late July 2001 the yearling and mature deer on this treatment were treated orally with 10 g CuO wire particles. The mature hinds calved in November and the yearling hinds in December. Pasture samples were collected at about monthly intervals to determine concentrations of Cu and other minerals. In Year 1, liver biopsies and blood samples were collected at 4-6-weekly intervals for determination of Cu concentrations. In Year 2, samples were collected similarly at 6-12-weekly intervals. Liver biopsies and blood were also collected from progeny, along with milk from their dams. Liveweights were determined at 3-7-monthly intervals, as well as data on calving/mortality rates. Pasture Cu concentrations before the application of CuSO4(.)5H2O were 6-9 mg Cu/kg dry matter (DM) and

  4. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    Science.gov (United States)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  5. Superconducting wire for the T-15 toroidal magnet

    International Nuclear Information System (INIS)

    Klimenko, E.Yu.; Kruglov, V.S.; Martovetskij, N.N.

    1987-01-01

    Main characteristics of a wire designed for the T-15 toroidal superconducting magnet production are given. The wire with circulation cooling is a twist of 11 niobium-tin wires 1.5 mm in diameter, joined electrolytically by two copper tubes with 3 mm inside diameter. The wire is capable to carry 10 kA current in the 8.5 T induction field. Wire features and structures promote to receive high structural current density in winding: diffuseness of superconducting-to-normal transition increases wire stability, screw symmetry od a current-carrying core provides wire resistance to pulse longitudinal field effect at plasma current disruption, low bronze thermal conductivity in a twist increases stability to outside pulse perturbations

  6. Copper oxide resistive switching memory for e-textile

    Directory of Open Access Journals (Sweden)

    Jin-Woo Han

    2011-09-01

    Full Text Available A resistive switching memory suitable for integration into textiles is demonstrated on a copper wire network. Starting from copper wires, a Cu/CuxO/Pt sandwich structure is fabricated. The active oxide film is produced by simple thermal oxidation of Cu in atmospheric ambient. The devices display a resistance switching ratio of 102 between the high and low resistance states. The memory states are reversible and retained over 107 seconds, with the states remaining nondestructive after multiple read operations. The presented device on the wire network can potentially offer a memory for integration into smart textile.

  7. Copper spherical cavity arrays: Fluorescence enhancement in PFO films

    Energy Technology Data Exchange (ETDEWEB)

    Spada, Edna R., E-mail: edspada@gmail.com [Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP (Brazil); Valente, Gustavo T.; Pereira-da-Silva, Marcelo A. [Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP (Brazil); Sartorelli, Maria L. [Departamento de Física, Universidade Federal de Santa Catarina, Caixa Postal 476, 88040-900, Florianópolis, SC (Brazil); Guimarães, Francisco E.G.; Faria, Roberto M. [Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP (Brazil)

    2017-01-15

    This manuscript addresses the use of a well-ordered antidot copper nanostructure as a active substrate for surface enhancement fluorescence (SEF). The antidot array was produced by electrodeposition and nanosphere lithography and characterized by microscopy technique, its successful application as SEF-active substrates was verified using polyfluorene (PFO) as a probe layer. Atomic force microscopy (AFM) was used to evaluate the regularity of the metal surface as well PFO coated process and confocal laser fluorescence microscopy (CLSM) to determine the behavior exhibited by the fluorescent layer due to the existence of the nanostructured surface. No accumulation PFO in the cavities was detected and the more intense emission regions coincides with the position of the cavities and is at about one order of magnitude higher.

  8. Forensic discrimination of copper wire using trace element concentrations.

    Science.gov (United States)

    Dettman, Joshua R; Cassabaum, Alyssa A; Saunders, Christopher P; Snyder, Deanna L; Buscaglia, JoAnn

    2014-08-19

    Copper may be recovered as evidence in high-profile cases such as thefts and improvised explosive device incidents; comparison of copper samples from the crime scene and those associated with the subject of an investigation can provide probative associative evidence and investigative support. A solution-based inductively coupled plasma mass spectrometry method for measuring trace element concentrations in high-purity copper was developed using standard reference materials. The method was evaluated for its ability to use trace element profiles to statistically discriminate between copper samples considering the precision of the measurement and manufacturing processes. The discriminating power was estimated by comparing samples chosen on the basis of the copper refining and production process to represent the within-source (samples expected to be similar) and between-source (samples expected to be different) variability using multivariate parametric- and empirical-based data simulation models with bootstrap resampling. If the false exclusion rate is set to 5%, >90% of the copper samples can be correctly determined to originate from different sources using a parametric-based model and >87% with an empirical-based approach. These results demonstrate the potential utility of the developed method for the comparison of copper samples encountered as forensic evidence.

  9. Transparent, double-sided, ITO-free, flexible dye-sensitized solar cells based on metal wire/ZnO nanowire arrays

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhao, Qing; Li, Heng; Yu, Dapeng [State Key Laboratory for Mesoscopic Physics and Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871 (China); Wu, Hongwei; Zou, Dechun [Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)

    2012-07-10

    Transparent, double-sided, flexible, ITO-free dye-sensitized solar cells (DSSCs) are fabricated in a simple, facile, and controllable way. Highly ordered, high-crystal-quality, high-density ZnO nanowire arrays are radially grown on stainless steel, Au, Ag, and Cu microwires, which serve as working electrodes. Pt wires serve as the counter electrodes. Two metal wires are encased in electrolyte between two poly(ethylene terephthalate) (PET) films (or polydimethylsiloxane (PDMS) films) to render the device both flexible and highly transparent. The effect of the dye thickness on the photovoltaic performance of the DSSCs as a function of dye-loading time is investigated systematically. Shorter dye-loading times lead to thinner dye layers and better device performance. A dye-loading time of 20 min results in the best device performance. An oxidation treatment of the metal wires is developed effectively to avoid the galvanic-battery effect found in the experiment, which is crucial for real applications of double-metal-wire DSSC configurations. The device shows very good transparency and can increase sunlight use efficiency through two-sided illumination. The double-wire DSSCs remain stable for a long period of time and can be bent at large angles, up to 107 , reversibly, without any loss of performance. The double-wire-PET, planar solar-cell configuration can be used as window stickers and can be readily realized for large-area-weave roll-to-roll processing. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  11. Neutron and soft X-ray emission from wire array Z-pinch imploding onto deuterated fiber

    International Nuclear Information System (INIS)

    Klir, D.; Kravarik, J.; Kubes, P.

    2005-01-01

    The implosion of a wire array Z-pinch onto a deuterated fiber was studied. The peak power of soft X-rays exceeded 200 GW and the total emitted energy was 2-8 kJ. The radiation was close to the radiation of the blackbody with the temperature of 40 eV. The neutron yield from the D-D reaction reached 2x10 8 per shot. The mean energy of neutrons determined in the axial direction was shifted from 2.45 MeV towards higher energies [ru

  12. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mosher, D.; De Groot, J.S.

    1996-01-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays in 5-MA Saturn discharges is reported. The timing of multiple implosions and the thermal x-ray spectra (1 to 10 keV) agree with 2D radiation-hydrocode simulations. Nonthermal x-ray emission (10 to 100 keV) correlates with pinch spots distributed along the z-axis. The similarities of the measured nonthermal spectrum, yield, and pinch-spot emission with those of 0.8-MA, single-exploded-wire discharges on Gamble-II suggest a common nonthermal-production mechanism. Nonthermal x-ray yields are lower than expected from current scaling of Gamble II results, suggesting that implosion geometries are not as efficient as single-wire geometries for nonthermal x-ray production. The instabilities, azimuthal asymmetries, and inferred multiple implosions that accompany the implosion geometry lead to larger, more irregular pinch spots, a likely reason for reduced nonthermal efficiency. A model for nonthermal-electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas combined with 1D hydrocode simulations of Saturn compact loads predicts weak nonthermal x-ray emission. (author). 3 figs., 10 refs

  13. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Mosher, D.; De Groot, J.S.

    1996-01-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays in 5-MA Saturn discharges is reported. The timing of multiple implosions and the thermal x-ray spectra (1 to 10 keV) agree with 2D radiation-hydrocode simulations. Nonthermal x-ray emission (10 to 100 keV) correlates with pinch spots distributed along the z-axis. The similarities of the measured nonthermal spectrum, yield, and pinch-spot emission with those of 0.8-MA, single- exploded-wire discharges on Gamble-II suggest a common nonthermal- production mechanism. Nonthermal x-ray yields are lower than expected from current scaling of Gamble II results, suggesting that implosion geometries are not as efficient as single-wire geometries for nonthermal x-ray production. The instabilities, azimuthal asymmetries, and inferred multiple implosions that accompany the implosion geometry lead to larger, more irregular pinch spots, a likely reason for reduced nonthermal efficiency. A model for nonthermal-electron acceleration across magnetic fields in highly- collisional, high-atomic-number plasmas combined with 1D hydrocode simulations of Saturn compact loads predicts weak nonthermal x-ray emission

  14. High reproducibility and sensitivity of bifacial copper nanowire array for detection of glucose

    Directory of Open Access Journals (Sweden)

    Hanqing Zhang

    2017-06-01

    Full Text Available The ordered bifacial copper nanowire array (Cu BNWA was synthesized by a template assisted electrochemical deposition method. The morphology and structure of the as-prepared samples were investigated by field emission scanning electron microscope (FESEM and X-ray diffraction (XRD. The results show that the ordered Cu nanowire array with uniform geometrical dimensions covered both side of the Cu substrate. When used as the electrode for glucose detection, the minimum detectable concentration of glucose can be reached as low as 0.2 mM. Impressively, the sample still showed high sensitivity and stability for glucose detection after two months placement in ambient environment. These excellent performances of the Cu BNWA make it a promising non-enzyme glucose detection sensor for various applications.

  15. A comparison study of exploding a Cu wire in air, water, and solid powders

    Science.gov (United States)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Zhou, Haibin; Qiu, Aici; Wang, Yanan

    2017-11-01

    In this paper, an experimental study on exploding a copper wire in air, water, incombustible powders, and energetic materials is performed. We examined the effects of the surrounding media on the explosion process and its related phenomena. Experiments were first carried out with copper wire explosions driven by microsecond timescale pulsed currents in air, water, and the half-half case. Then, the copper wires were exploded in air, water, SiO2 powders, quartz sand, NaCl powders, and energetic-material cylinders, respectively. Our experimental results indicated that the explosion process was significantly influenced by the surrounding media, resulting in noticeable differences in energy deposition, optical emission, and shock waves. In particular, incombustible powders could throttle the current flow completely when a fine wire was adopted. We also found that an air or incombustible-powder layer could drastically attenuate the shock wave generated by a wire explosion. As for energetic-material loads, obvious discrepancies were found in voltage/current waveforms from vaporization when compared with a wire explosion in air/water, which meant the metal vapor/liquid drops play a significant role in the ignition process.

  16. Hybrid simulations of Z-Pinches in support of wire array implosion experiments at NTF

    International Nuclear Information System (INIS)

    Sotnikov, Vladimir Isaakovich; Oliver, Bryan Velten; Ivanov, Vladimir V.; LePell, Paul David; Fedin, Dmitry; Kantsyrev, Victor Leonidovich; Coverdale, Christine Anne; Travnicek, P.; Deeney, Christopher; Hellinger, P.; Jones, B.; Leboeuf, J.N.; Cowan, Thomas E.; Safronova, Alla S.

    2005-01-01

    Three-dimensional hybrid simulation of a plasma current-carrying column reveal two different regimes of sausage and kink instability development. In the first regime, with small Hall parameter, development of instabilities leads to the appearance of large-scale axial perturbations and eventually to bending of the plasma column. In the second regime, with a four-times-larger Hall parameter, small-scale perturbations dominate and no bending of the plasma column is observed. Simulation results are compared with laser probing experimental data obtained during wire array implosions on the Zebra pulse power generator at the Nevada Terawatt Facility.

  17. CFD Simulation and Experimental Analyses of a Copper Wire Woven Heat Exchanger Design to Improve Heat Transfer and Reduce the Size of Adsorption Beds

    Directory of Open Access Journals (Sweden)

    John White

    2016-02-01

    Full Text Available The chief objective of this study is the proposal design and CFD simulation of a new compacted copper wire woven fin heat exchanger and silica gel adsorbent bed used as part of an adsorption refrigeration system. This type of heat exchanger design has a large surface area because of the wire woven fin design. It is estimated that this will help improve the coefficient of performance (COP of the adsorption phase and increase the heat transfer in this system arrangement. To study the heat transfer between the fins and porous adsorbent reactor bed, two experiments were carried out and matched to computational fluid dynamics (CFD results.

  18. Bio-inspired multistructured conical copper wires for highly efficient liquid manipulation.

    Science.gov (United States)

    Wang, Qianbin; Meng, Qingan; Chen, Ming; Liu, Huan; Jiang, Lei

    2014-09-23

    Animal hairs are typical structured conical fibers ubiquitous in natural system that enable the manipulation of low viscosity liquid in a well-controlled manner, which serves as the fundamental structure in Chinese brush for ink delivery in a controllable manner. Here, drawing inspiration from these structure, we developed a dynamic electrochemical method that enables fabricating the anisotropic multiscale structured conical copper wire (SCCW) with controllable conicity and surface morphology. The as-prepared SCCW exhibits a unique ability for manipulating liquid with significantly high efficiency, and over 428 times greater than its own volume of liquid could be therefore operated. We propose that the boundary condition of the dynamic liquid balance behavior on conical fibers, namely, steady holding of liquid droplet at the tip region of the SCCW, makes it an excellent fibrous medium to manipulate liquid. Moreover, we demonstrate that the titling angle of the SCCW can also affect its efficiency of liquid manipulation by virtue of its mechanical rigidity, which is hardly realized by flexible natural hairs. We envision that the bio-inspired SCCW could give inspiration in designing materials and devices to manipulate liquid in a more controllable way and with high efficiency.

  19. Magnetic behavior of arrays of nickel nanowires

    International Nuclear Information System (INIS)

    Karim, S.; Maaz, K.; Ahmed, M.; Nisar, A.

    2012-01-01

    Recently, there is an increasing interest in magnetic nano wires because of their unusual properties compared to the bulk materials. To understand the complexity of nano wire arrays and to improve their potential in various applications more studies are still needed, for example, to understand completely the effect of geometrical factors, i.e. aspect ratio, areal density etc., on magnetic properties of these arrays. In this work, arrays of nickel nano wires with aspect ratio is proportional to 1200 and diameter ranging between 25-100 nm were fabricated by electrodeposition in etched ion track templates. Samples with areal density from 1 X 10/sup 6/ cm/sup -2/ to 1 X 10/ sup 8/ cm/sup -2/ were prepared. Measurements of magnetic hysteresis loops were performed at room temperature with SQUID magnetometer and magnetic properties of arrays of different diameters and aspect ratios were compared. Coercivity of the wires showed strong dependence on aspect ratio, diameter and microstructure. Room temperature coercivity of the wires showed a maximum at is proportional to 40 nm diameter and arrays with high density of nano wires showed lower coercivity. The results were discussed by taking into account anisotropies originating from the shape, crystalline structure and magnetostatic interactions among the wires and by previous experimental observations in literature. (Orig./A.B.)

  20. A CuNi bimetallic cathode with nanostructured copper array for enhanced hydrodechlorination of trichloroethylene (TCE).

    Science.gov (United States)

    Liu, Bo; Zhang, Hao; Lu, Qi; Li, Guanghe; Zhang, Fang

    2018-09-01

    To address the challenges of low hydrodechlorination efficiency by non-noble metals, a CuNi bimetallic cathode with nanostructured copper array film was fabricated for effective electrochemical dechlorination of trichloroethylene (TCE) in aqueous solution. The CuNi bimetallic cathodes were prepared by a simple one-step electrodeposition of copper onto the Ni foam substrate, with various electrodeposition time of 5/10/15/20 min. The optimum electrodeposition time was 10 min when copper was coated as a uniform nanosheet array on the nickel foam substrate surface. This cathode exhibited the highest TCE removal, which was twice higher compared to that of the nickel foam cathode. At the same passed charge of 1080C, TCE removal increased from 33.9 ± 3.3% to 99.7 ± 0.1% with the increasing operation current from 5 to 20 mA cm -2 , while the normalized energy consumption decreased from 15.1 ± 1.0 to 2.6 ± 0.01 kWh log -1  m -3 . The decreased normalized energy consumption at a higher current density was due to the much higher removal efficiency at a higher current. These results suggest that CuNi cathodes prepared by simple electrodeposition method represent a promising and cost-effective approach for enhanced electrochemical dechlorination. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Investigation of dynamics of soft X-ray radiation of mixed-material wire-arrays on S-300 pulsed power generator

    NARCIS (Netherlands)

    Cai, HC; Chernenko, AC; Korolev, VD; Ustroev, GI; Ivanov, MI

    2004-01-01

    The dynamics of radiation spectra of fast Z-pinch plasmas was studied. The experiments were carried out on the S-300 pulsed power machine (4 MA, 0.15 Omega, 100 ns). By means of the polychromator, X-ray spectra of imploding wire arrays were measured in the range of 60 divided by 1500 eV, where the

  2. Advanced Process Possibilities in Friction Crush Welding of Aluminum, Steel, and Copper by Using an Additional Wire

    Science.gov (United States)

    Besler, Florian A.; Grant, Richard J.; Schindele, Paul; Stegmüller, Michael J. R.

    2017-12-01

    Joining sheet metal can be problematic using traditional friction welding techniques. Friction crush welding (FCW) offers a high speed process which requires a simple edge preparation and can be applied to out-of-plane geometries. In this work, an implementation of FCW was employed using an additional wire to weld sheets of EN AW5754 H22, DC01, and Cu-DHP. The joint is formed by bringing together two sheet metal parts, introducing a wire into the weld zone and employing a rotating disk which is subject to an external force. The requirements of the welding preparation and the fundamental process variables are shown. Thermal measurements were taken which give evidence about the maximum temperature in the welding center and the temperature in the periphery of the sheet metals being joined. The high welding speed along with a relatively low heat input results in a minimal distortion of the sheet metal and marginal metallurgical changes in the parent material. In the steel specimens, this FCW implementation produces a fine grain microstructure, enhancing mechanical properties in the region of the weld. Aluminum and copper produced mean bond strengths of 77 and 69 pct to that of the parent material, respectively, whilst the steel demonstrated a strength of 98 pct. Using a wire offers the opportunity to use a higher-alloyed additional material and to precisely adjust the additional material volume appropriate for a given material alignment and thickness.

  3. Wire array K-shell sources on the SPHINX generator

    Science.gov (United States)

    D'Almeida, Thierry; Lassalle, Francis; Grunenwald, Julien; Maury, Patrick; Zucchini, Frédéric; Niasse, Nicolas; Chittenden, Jeremy

    2014-10-01

    The SPHINX machine is a LTD based Z-pinch driver operated by the CEA Gramat (France) and primarily used for studying K-shell radiation effects. We present the results of experiments carried out with single and nested large diameter aluminium wire array loads driven by a current of ~5 MA in ~800 ns. The dynamic of the implosion is studied with filtered X-UV time-integrated pin-hole cameras. The plasma electron temperature and the characteristics of the sources are estimated with time and spatially dependent spectrographs and PCDs. It is shown that Al K-shell yields (>1 keV) up to 27 kJ are obtained for a total radiation of ~ 230 kJ. These results are compared with simulations performed using the latest implementation of the non-LTE DCA code Spk in the 3D Eulerian MHD framework Gorgon developed at Imperial College. Filtered synthetic bolometers and PCD signals, time-dependent spatially integrated spectra and X-UV images are produced and show a good agreement with the experimental data. The capabilities of a prospective SPHINX II machine (20 MA ~ 800 ns) are also assessed for a wider variety of sources (Ti, Cu and W).

  4. Low-Cost Superconducting Wire for Wind Generators: High Performance, Low Cost Superconducting Wires and Coils for High Power Wind Generators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    REACT Project: The University of Houston will develop a low-cost, high-current superconducting wire that could be used in high-power wind generators. Superconducting wire currently transports 600 times more electric current than a similarly sized copper wire, but is significantly more expensive. The University of Houston’s innovation is based on engineering nanoscale defects in the superconducting film. This could quadruple the current relative to today’s superconducting wires, supporting the same amount of current using 25% of the material. This would make wind generators lighter, more powerful and more efficient. The design could result in a several-fold reduction in wire costs and enable their commercial viability of high-power wind generators for use in offshore applications.

  5. Microstructural studies of 35 degrees C copper Ni-Ti orthodontic wire and TEM confirmation of low-temperature martensite transformation.

    Science.gov (United States)

    Brantley, William A; Guo, Wenhua; Clark, William A T; Iijima, Masahiro

    2008-02-01

    Previous temperature-modulated differential scanning calorimetry (TMDSC) study of nickel-titanium orthodontic wires revealed a large exothermic low-temperature peak that was attributed to transformation within martensitic NiTi. The purpose of this study was to use transmission electron microscopy (TEM) to verify this phase transformation in a clinically popular nickel-titanium wire, identify its mechanism and confirm other phase transformations found by TMDSC, and to provide detailed information about the microstructure of this wire. The 35 degrees C Copper nickel-titanium wire (Ormco) with cross-section dimensions of 0.016 in. x 0.022 in. used in the earlier TMDSC investigation was selected. Foils were prepared for TEM analyses by mechanical grinding, polishing, dimpling, ion milling and plasma cleaning. Standard bright-field and dark-field TEM images were obtained, along with convergent-beam electron diffraction patterns. A cryo-stage with the electron microscope (Phillips CM 200) permitted the specimen to be observed at -187, -45, and 50 degrees C, as well as at room temperature. Microstructures were also observed with an optical microscope and a scanning electron microscope. Room temperature microstructures had randomly oriented, elongated grains that were twinned. Electron diffraction patterns confirmed that phase transformations took place over temperature ranges previously found by TMDSC. TEM observations revealed a high dislocation density and fine-scale oxide particles, and that twinning is the mechanism for the low-temperature transformation in martensitic NiTi. TEM confirmed the low-temperature peak and other phase transformations observed by TMDSC, and revealed that twinning in martensite is the mechanism for the low-temperature peak. The high dislocation density and fine-scale oxide particles in the microstructure are the result of the wire manufacturing process.

  6. Boiling heat transfer on single phosphor bronze and copper mesh microstructures

    Directory of Open Access Journals (Sweden)

    Orman Łukasz J.

    2014-03-01

    Full Text Available The paper presents experimental results of boiling heat transfer of distilled water and ethyl alcohol on surfaces covered with single layers of wire mesh structures made of phosphor bronze and copper. For each material two kinds of structures have been considered (higher and lower in order to determine the impact of the height of the structure on boiling heat transfer. The wire diameter of the copper meshes was 0,25 mm and 0,32 mm, while of the bronze meshes: 0,20 mm and 0,25 mm. The structures had the same mesh aperture (distance between the wires – 0,50 mm for copper and 0,40 for bronze but different wire diameter and, consequently, different height of the layers. The tests have been performed under ambient pressure in the pool boiling mode. The obtained results indicate a visible impact of the layer height on the boiling heat transfer performance of the analysed microstructures.

  7. A-15 superconducting composite wires and a method for making

    International Nuclear Information System (INIS)

    Suenaga, M.; Klamut, C. J.; Luhman, Th. S.

    1984-01-01

    A method for fabricating superconducting wires wherein a billet of copper containing filaments of niobium or vanadium is rolled to form a strip which is wrapped about a tin-alloy core to form a composite. The alloy is a tin-copper alloy for niobium filaments and a gallium-copper alloy for vanadium filaments. The composite is then drawn down to a desired wire size and heat treated. During the heat treatment process, The tin in the bronze reacts with the niobium to form the superconductor niobium tin. In the case where vanadium is used, the gallium in the gallium bronze reacts with the vanadium to form the superconductor vanadium gallium. This new process eliminates the costly annealing steps, external tin plating and drilling of bronze ingots required in a number of prior art processes

  8. Temperature Diffusion Distribution of Electric Wire Deteriorated by Overcurrent

    Science.gov (United States)

    Choi, Chung-Seog; Kim, Hyang-Kon; Kim, Dong-Woo; Lee, Ki-Yeon

    This study presents thermal diffusion distribution of the electric wires when overcurrent is supplied to copper wires. And then, this study intends to provide a basis of knowledge for analyzing the causes of electric accidents through hybrid technology. In the thermal image distribution analysis of the electric wire to which fusing current was supplied, it was found that less heat was accumulated in the thin wires because of easier heat dispersion, while more heat was accumulated in the thicker wires. The 3-dimensional thermal image analysis showed that heat distribution was concentrated at the center of the wire and the inclination of heat distribution was steep in the thicker wires. When 81A was supplied to 1.6mm copper wire for 500 seconds, the surface temperature of wire was maximum 46.68°C and minimum 30.87°C. It revealed the initial characteristics of insulation deterioration that generates white smoke without external deformation. In the analysis with stereoscopic microscope, the surface turned dark brown and rough with the increase of fusing current. Also, it was known that exfoliation occurred when wire melted down with 2 times the fusing current. With the increase of current, we found the number of primary arms of the dendrite structure to be increased and those of the secondary and tertiary arms to be decreased. Also, when the overcurrent reached twice the fusing current, it was found that columnar composition, observed in the cross sectional structure of molten wire, appeared and formed regular directivity. As described above, we could present the burning pattern and change in characteristics of insulation and conductor quantitatively. And we could not only minimize the analysis error by combining the information but also present the scientific basis in the analysis of causes of electric accidents, mediation of disputes on product liability concerning the electric products.

  9. Wire number doubling in plasma-shell regime increases z-accelerator x-ray power

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Spielman, R.B.; Chandler, G.A.

    1997-11-01

    Doubling the number of tungsten wires from 120 to 240, keeping the mass fixed, increased the radiated x-ray power relative to the electrical power at the insulator stack of the z accelerator by (40±20)% for 8.75- and 20-mm-radii z-pinch wire arrays. Radiation-magneto-hydrodynamic calculations suggest that the arrays were operating in the 'plasma shell' regime, where the plasmas generated by the individual wires merge prior to the inward implosion of the entire array

  10. Wire number doubling in plasma-shell regime increases Z-accelerator X-ray power

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Spielman, R.B.; Chandler, G.A.

    1997-01-01

    Doubling the number of tungsten wires from 120 to 240, keeping the mass fixed, increased the radiated x-ray power relative to the electrical power at the insulator stack of the z accelerator by (40 ± 20)% for 8.75- and 20-mm-radii z-pinch wire arrays. Radiation-magneto-hydrodynamic calculations suggest that the arrays were operating in the plasma shell regime, where the plasma generated by the individual wires merge prior to the inward implosion of the entire array

  11. Wire number doubling in plasma-shell regime increases Z-accelerator X-ray power

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Spielman, R.B.; Chandler, G.A. [and others

    1997-12-01

    Doubling the number of tungsten wires from 120 to 240, keeping the mass fixed, increased the radiated x-ray power relative to the electrical power at the insulator stack of the z accelerator by (40 {+-} 20)% for 8.75- and 20-mm-radii z-pinch wire arrays. Radiation-magneto-hydrodynamic calculations suggest that the arrays were operating in the plasma shell regime, where the plasma generated by the individual wires merge prior to the inward implosion of the entire array.

  12. A heuristic model of the wire array z-pinch

    International Nuclear Information System (INIS)

    Haines, M.G.

    1998-01-01

    Recent experimental results at the Sandia National Laboratory have shown that the X-ray power increases as the number of wires n employed is increased, with a sharper increase in power when the wire gap is below a critical value. This paper proposes a model that can not only explain these phenomena, but also shows how the initial perturbations that lead to the Rayleigh-Taylor instability scale as n -1/2 . The model predicts the shell thickness at merger of the expanding separate wires which will mainly determine the final pinch radius. The largest amplitude Rayleigh-Taylor mode at the pinch time is also found, in reasonable agreement with experiment

  13. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  14. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  15. Method of making Nb3Sn composite wires and cables

    International Nuclear Information System (INIS)

    Scanlan, R.M.; Fietz, W.A.

    1977-01-01

    By providing a nickel or copper overcoat to a tin coating on a niobium-copper multifilamentary composite wire, one can avoid the necessity for choosing between poor superconducting properties due to tin droplet formation and substantially increasing production costs by adding a number of special processing steps. 9 claims, 1 figure

  16. Wire number doubling in plasma-shell regime increases z-accelerator x-ray power

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, T.W.L.; Spielman, R.B.; Chandler, G.A. [and others

    1997-11-01

    Doubling the number of tungsten wires from 120 to 240, keeping the mass fixed, increased the radiated x-ray power relative to the electrical power at the insulator stack of the z accelerator by (40{+-}20)% for 8.75- and 20-mm-radii z-pinch wire arrays. Radiation-magneto-hydrodynamic calculations suggest that the arrays were operating in the {open_quotes}plasma shell{close_quotes} regime, where the plasmas generated by the individual wires merge prior to the inward implosion of the entire array.

  17. Research of oxygen free copper of Upcast {sup registered} technology for electric and electronic uses

    Energy Technology Data Exchange (ETDEWEB)

    Knych, Tadeusz; Smyrak, Beata; Walkowicz, Monika [AGH-Univ. of Science and Technology, Cracow (Poland)

    2011-01-15

    Rapid development of electronics and electrical engineering imposes a necessity to search for new materials enabling fast and lossless transmission of electrical signals. Increasingly common application of electronic systems and elements of electrical engineering contributed to the development of a new group of products representing highly advanced properties. Modern solutions concerning the materials to be used for manufacturing of the above specified products concentrate mainly on high purity copper. As a standard Oxygen Free Copper (OFC) or high purity Oxygen Free High Conductivity Copper (OFHC) are used for production of this kind of wires. OFHC copper purity class of 4N (99.99 %) contains approximately 1 to 3 ppm of oxygen and the total amount of impurities on the level not exceeding 22 ppm. This type of copper is additionally characterized by excellent deformation capabilities as well as corrosion and hydrogen embrittlement resistance. This article presents the analysis of the results of the complex research program on identification of the properties pertaining to wire rods produced oxygen free copper from Upcast line and ETP wire rod produced on Contirod {sup registered} line - in both cases the same type of cathode was used. Additionally, a subsequent analysis of the annealing susceptibility of wires obtained from Cu-OF rod (Upcast {sup registered}) and Cu-ETP wire rod (Contirod {sup registered}) was carried out. The comparative research on the recrystallization temperature proved to be the most interesting point. (orig.)

  18. The status of commercial and developmental HTS wires

    Energy Technology Data Exchange (ETDEWEB)

    Masur, L.J.; Buczek, D.; Harley, E.; Kodenkandath, T.; Li, X.; Lynch, J.; Nguyen, N.; Rupich, M.; Schoop, U.; Scudiere, J.; Siegal, E.; Thieme, C.; Verebelyi, D.; Zhang, W.; Kellers, J

    2003-10-15

    This paper provides an update on the development, performance and application of first and second generation high temperature superconductor (HTS) wires fabricated at American Superconductor (AMSC). First generation, multifilamentary composite wire is available commercially today in different viable product forms. This conductor carries 140 x the current of copper of the same cross-section, and is robust enough to stand tough industrial requirements. Second generation HTS wires, having a coated conductor composite architecture, are under development today and achieved substantial progress recently. AMSC's first generation wire will continue as the workhorse of the industry for the next 3-4 years while AMSC's second generation coated conductor wire is on track to be reproducible, uniform, scalable, and low cost. This paper provides a product differentiation with a view on the application of HTS wire in the electric power sector. Basic engineering data is reviewed that shall aid the engineer in the selection of the HTS wire product.

  19. Effect of Flow Direction on the Extinction Limit for Flame Spread over Wire Insulation in Microgravity

    DEFF Research Database (Denmark)

    Nagachi, Masashi; Mitsui, Fumiya; Citerne, Jean-Marie

    Experiments to determine the Limiting Oxygen Concentration (LOC) of a flame spread over electric wire insulation were carried out in microgravity provided by parabolic flights. The difference between the LOC in opposed and concurrent flows was evidenced. Polyethylene insulated Copper (Cu) wires...... and polyethylene insulated Nickel-Chrome (NiCr) wires with inner core diameter of 0.50 mm and insulation thickness of 0.30 mm were examined with external flow velocities ranging from 50mm/s to 200mm/s. The results for the Copper wires show that with increasing external flow velocity, the LOC monotonically...... decreased for the concurrent flow conditions and the LOC first decreased and then increased (“U” trend) for the opposed flow conditions. Similar trends were found in the experiments with NiCr wires. Also, in terms of the minimum LOC value, the minimum LOC was comparable for both wire types in both flow...

  20. Comparison of galvanic corrosion potential of metal injection molded brackets to that of conventional metal brackets with nickel-titanium and copper nickel-titanium archwire combinations.

    Science.gov (United States)

    Varma, D Praveen Kumar; Chidambaram, S; Reddy, K Baburam; Vijay, M; Ravindranath, D; Prasad, M Rajendra

    2013-05-01

    The aim of the study is to investigate the galvanic corrosion potential of metal injection molding (MIM) brackets to that of conventional brackets under similar in vitro conditions with nickel-titanium and copper nickel-titanium archwires. Twenty-five maxillary premolar MIM stainless steel brackets and 25 conventional stainless steel brackets and archwires, 0.16 inch, each 10 mm length, 25 nickeltitanium wires, 25 copper nickel-titanium wires were used. They were divided into four groups which had five samples each. Combination of MIM bracket with copper nickel-titanium wire, MIM bracket with nickel-titanium wire and conventional stainless steel brackets with copper nickel-titanium wire and conventional stainless steel brackets with nickel-titanium wires which later were suspended in 350 ml of 1 M lactic acid solution media. Galvanic corrosion potential of four groups were analyzed under similar in vitro conditions. Precorrosion and postcorrosion elemental composition of MIM and conventional stainless steel bracket by scanning electron microscope (SEM) with energy dispersive spectroscope (EDS) was done. MIM bracket showed decreased corrosion susceptibility than conventional bracket with copper nickeltitanium wire. Both MIM and conventional bracket showed similar corrosion resistance potential in association with nickel-titanium archwires. It seems that both brackets are more compatible with copper nickel-titanium archwires regarding the decrease in the consequences of galvanic reaction. The EDS analysis showed that the MIM brackets with copper nickel-titanium wires released less metal ions than conventional bracket with copper nickeltitanium wires. MIM brackets showed decreased corrosion susceptibility, copper nickel-titanium archwires are compatible with both the brackets than nickel-titanium archwires. Clinically MIM and conventional brackets behaved more or less similarly in terms of corrosion resistance. In order to decrease the corrosion potential of MIM

  1. Quality Analysis of Welded and Soldered Joints of Cu-Nb Microcomposite Wires

    Directory of Open Access Journals (Sweden)

    Nikolaj VIŠNIAKOV

    2011-03-01

    Full Text Available Quality analysis of welded and soldered joints of Cu-Nb microcomposite wires has been performed. Quality and mechanical characteristics of joints as ultimate tensile stress limit and elongation at break were measured with an universal testing machine and controlled visually using an optical microscope. Two wires joints were soldered with silver and copper solders and put into steel and copper sleeve respectively. Another two wires joints were soldered with silver solder and welded without any reinforcement. Joints soldered with the silver solder and steel sleeve have demonstrated the best mechanical characteristics: ultimate tensile stress limit of 650 MPa and elongation at break of 0.85 %. Joints soldered with the copper sleeve have no advantages comparing with the soldered butt joint. Ultimate tensile stress limit and elongation at break were in 300 MPa - 350 MPa and in 0.35 % - 0.45 % ranges respectively. Two welded joints had ultimate tensile stress limit of 470 MPa and elongation at break of 0.71 %. In all joints the microstructure of Nb filaments was destroyed and mechanical properties have been specified by mechanical strength of copper and sleeve materials only.http://dx.doi.org/10.5755/j01.ms.17.1.242

  2. Progress in symmetric ICF capsule implosions and wire-array z-pinch source physics for double z-pinch driven hohlraums

    International Nuclear Information System (INIS)

    Bliss, David Emery; Vesey, Roger Alan; Rambo, Patrick K.; Lebedev, Sergey V.; Hanson, David L.; Nash, Thomas J.; Yu, Edmund P.; Matzen, Maurice Keith; Afeyan, Bedros B.; Smith, Ian Craig; Stygar, William A.; Porter, John Larry Jr.; Cuneo, Michael Edward; Bennett, Guy R.; Campbell, Robert B.; Sinars, Daniel Brian; Chittenden, Jeremy Paul; Waisman, Eduardo Mario; Mehlhorn, Thomas Alan

    2005-01-01

    Over the last several years, rapid progress has been made evaluating the double-z-pinch indirect-drive, inertial confinement fusion (ICF) high-yield target concept (Hammer et al 1999 Phys. Plasmas 6 2129). We have demonstrated efficient coupling of radiation from two wire-array-driven primary hohlraums to a secondary hohlraum that is large enough to drive a high yield ICF capsule. The secondary hohlraum is irradiated from two sides by z-pinches to produce low odd-mode radiation asymmetry. This double-pinch source is driven from a single electrical power feed (Cuneo et al 2002 Phys. Rev. Lett. 88 215004) on the 20 MA Z accelerator. The double z-pinch has imploded ICF capsules with even-mode radiation symmetry of 3.1 ± 1.4% and to high capsule radial convergence ratios of 14-21 (Bennett et al 2002 Phys. Rev. Lett. 89 245002; Bennett et al 2003 Phys. Plasmas 10 3717; Vesey et al 2003 Phys. Plasmas 10 1854). Advances in wire-array physics at 20 MA are improving our understanding of z-pinch power scaling with increasing drive current. Techniques for shaping the z-pinch radiation pulse necessary for low adiabat capsule compression have also been demonstrated.

  3. Composite vascular scaffold combining electrospun fibers and physically-crosslinked hydrogel with copper wire-induced grooves structure.

    Science.gov (United States)

    Liu, Yuanyuan; Jiang, Chen; Li, Shuai; Hu, Qingxi

    2016-08-01

    While the field of tissue engineered vascular grafts has greatly advanced, many inadequacies still exist. Successfully developed scaffolds require mechanical and structural properties that match native vessels and optimal microenvironments that foster cell integration, adhesion and growth. We have developed a small diameter, three-layered composite vascular scaffold which consists of electrospun fibers and physically-crosslinked hydrogel with copper wire-induced grooves by combining the electrospinning and dip-coating methods. Scaffold morphology and mechanics were assessed, quantified and compared to native vessels. Scaffolds were seeded with Human Umbilical Vein Endothelial Cells (HUVECs), cultured in vitro for 3 days and were evaluated for cell viability and morphology. The results showed that composite scaffolds had adjustable mechanical strength and favorable biocompatibility, which is important in the future clinical application of Tissue-engineered vascular grafts (TEVGs). Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Titanium K-Shell X-Ray Production from High Velocity Wire Arrays Implosions on the 20-MA Z Accelerator

    International Nuclear Information System (INIS)

    Apruzese, J.P.; Beg, F.N.; Clark, R.C.; Coverdale, C.A.; Davis, J.; Deeney, C.; Douglas, M.R.; Nash, T.J.; Ruiz-Comacho, J.; Spielman, R.B.; Struve, K.W.; Thornhill, J.W.; Whitney, K.G.

    1999-01-01

    The advent of the 20-MA Z accelerator [R.B. Spielman, C. Deeney, G.A. Chandler, et al., Phys. Plasmas 5, 2105, (1997)] has enabled implosions of large diameter, high-wire-number arrays of titanium to begin testing Z-pinch K-shell scaling theories. The 2-cm long titanium arrays, which were mounted on a 40-mm diameter, produced between 75±15 to 125±20 kJ of K-shell x-rays. Mass scans indicate that, as predicted, higher velocity implosions in the series produced higher x-ray yields. Spectroscopic analyses indicate that these high velocity implosions achieved peak electron temperatures from 2.7±0.1 to 3.2±0.2 keV and obtained a K-shell emission mass participation of up to 12%

  5. Submerged-arc wire electrodes with nickel-plated surfaces

    International Nuclear Information System (INIS)

    Hagen, H. vom.

    1976-01-01

    The article reports on the development of SANWELD welding rods at GARHYTTAN's which is a wire free of impurities, copper, and hydrogen with a nickel surface. It is producted according to the SANBOND process. The wire has an optimum of mechanical quality grades depending on the powder used for welding, especially an improvement of notch impact strength. The elongation, especially the long-time values, are improved, hydrogen cracks are excluded depending on the correct powder or protective gas, and the low-temparature values are improved. An attendant phenomenon, which is not unimportant, is that the wires are practically corrosion-resistant in the non-welded state. The wire is suitable for submerged-arc welding in steam boilers and pressure vessels. (IHoe) [de

  6. AC over-current characteristics of YBCO coated conductor with copper stabilizer layer considering insulation layer

    International Nuclear Information System (INIS)

    Du, H.-I.; Kim, M.-J.; Kim, Y.-J.; Lee, D.-H.; Han, B.-S.; Song, S.-S.

    2010-01-01

    Compared with the first-generation BSCCO wire, the YBCO thin-film wire boasts low material costs and high J c and superior magnetic-field properties, among other strengths. Meanwhile, the previous BSCCO wire material for superconducting cables has been researched on considerably with regard to its post-wire quenching characteristics during the application of an alternating over-current. In this regard, the promising YBCO thin-film wire has yet to be further researched on. Moreover, still lacking is research on the YBCO thin-film wire with insulating layers, which is essential in the manufacture of superconducting cables, along with the testing of the application of an alternating over-current to the wire. In this study, YBCO thin-film wires with copper-stabilizing layers were used in testing alternating over-current application according to the presence or absence of insulating layers and to the thickness of such layers, to examine the post-quenching wire resistance increase and quenching trends. The YBCO thin-film wire with copper-stabilizing layers has a critical temperature of 90 K and a critical current of 85 A rms . Moreover, its current application cycle is 5.5 cycles, and its applied currents are 354, 517, 712, and 915 A peak . These figures enabled the YBCO thin-film wires with copper-stabilizing layers to reach 90, 180, 250, and 300 K, respectively, in this study. These temperatures serve as a relative reference to examine the post-quenching wire properties following the application of an alternating over-current.

  7. Fiber vs Rolling Texture: Stress State Dependence for Cold-Drawn Wire

    Science.gov (United States)

    Zorina, M. A.; Karabanalov, M. S.; Stepanov, S. I.; Demakov, S. L.; Loginov, Yu. N.; Lobanov, M. L.

    2018-02-01

    The texture of the cold-drawn copper wire was investigated along the radius using electron backscatter diffraction. The complex fiber texture of the central region of the wire was considered as the rolling texture consisting of a set of preferred orientations. The texture of the periphery region was revealed to be similar to the shear texture. The orientation-dependent properties of the wire were proven to be determined by the texture of the near-surface layers.

  8. Oxidation study on as-bonded intermetallic of copper wire-aluminum bond pad metallization for electronic microchip

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Sahaya Anand, T., E-mail: anand@utem.edu.my [Faculty of Manufacturing Engineering, University Technical Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Yau, Chua Kok [Faculty of Manufacturing Engineering, University Technical Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); University of Technical Malaysia Supported by Infineon Technology - Malaysia - Sdn. Bhd., Melaka (Malaysia); Huat, Lim Boon [Department of Innovation, Infineon Technology - Malaysia - Sdn. Bhd., FTZ Batu Berendam, 75350 Melaka (Malaysia)

    2012-10-15

    In this work, influence of Copper free air ball (FAB) oxidation towards Intermetallic Compound (IMC) at Copper wire-Aluminum bond pad metallization (Cu/Al) is studied. Samples are synthesized with different Copper FAB oxidation condition by turning Forming Gas supply ON and OFF. Studies are performed using Optical Microscope (OM), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and line-scan Energy Dispersive X-ray (EDX). SEM result shows there is a cross-sectional position offset from center in sample synthesized with Forming Gas OFF. This is due to difficulty of determining the position of cross-section in manual grinding/polishing process and high occurrence rate of golf-clubbed shape of oxidized Copper ball bond. TEM inspection reveals that the Copper ball bond on sample synthesized with Forming Gas OFF is having intermediate oxidation. Besides, the presence of IMC at the bonding interface of Cu/Al for both samples is seen. TEM study shows voids form at the bonding interface of Forming Gas ON sample belongs to unbonded area; while that in Forming Gas OFF sample is due to volume shrinkage of IMC growth. Line-scan EDX shows the phases present in the interfaces of as-bonded samples are Al{sub 4}Cu{sub 9} ({approx}3 nm) for sample with Forming Gas ON and mixed CuAl and CuAl{sub 2} ({approx}15 nm) for sample with Forming Gas OFF. Thicker IMC in sample with Forming Gas OFF is due to cross-section is positioned at high stress area that is close to edge of ball bond. Mechanical ball shear test shows that shear strength of sample with Forming Gas OFF is about 19% lower than that of sample with Forming Gas ON. Interface temperature is estimated at 437 Degree-Sign C for as-bonded sample with Forming Gas ON by using empirical parabolic law of volume diffusion. -- Highlights: Black-Right-Pointing-Pointer 3 nm Al{sub 4}Cu{sub 9} are found in sample prepared with Forming Gas ON. Black-Right-Pointing-Pointer 15 nm mixed CuAl + CuAl{sub 2} are found

  9. Servo scanning 3D micro EDM for array micro cavities using on-machine fabricated tool electrodes

    Science.gov (United States)

    Tong, Hao; Li, Yong; Zhang, Long

    2018-02-01

    Array micro cavities are useful in many fields including in micro molds, optical devices, biochips and so on. Array servo scanning micro electro discharge machining (EDM), using array micro electrodes with simple cross-sectional shape, has the advantage of machining complex 3D micro cavities in batches. In this paper, the machining errors caused by offline-fabricated array micro electrodes are analyzed in particular, and then a machining process of array servo scanning micro EDM is proposed by using on-machine fabricated array micro electrodes. The array micro electrodes are fabricated on-machine by combined procedures including wire electro discharge grinding, array reverse copying and electrode end trimming. Nine-array tool electrodes with Φ80 µm diameter and 600 µm length are obtained. Furthermore, the proposed process is verified by several machining experiments for achieving nine-array hexagonal micro cavities with top side length of 300 µm, bottom side length of 150 µm, and depth of 112 µm or 120 µm. In the experiments, a chip hump accumulates on the electrode tips like the built-up edge in mechanical machining under the conditions of brass workpieces, copper electrodes and the dielectric of deionized water. The accumulated hump can be avoided by replacing the water dielectric by an oil dielectric.

  10. The corrosion of copper in pure oxygen-free water; Korrosion av koppar i ren syrefritt vatten

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Kenneth [SP Sveriges Tekniska Forskningsinstitut, Boraas (Sweden)

    2012-02-15

    The overall objective of this study was to investigate whether further growth of copper oxides occurred during the 19 years the test tube with copper wires was stored at SP. Further more detailed analyzes have been added during the investigation. These assays have not only been focused on the copper wires but also the palladium closure plate, the test tube and the water in the test tube have come to be analyzed by a variety of techniques.

  11. Control of gastrointestinal nematodes with copper oxide wire particles in a flock of lactating Polypay ewes and offspring in Iowa, USA.

    Science.gov (United States)

    Burke, J M; Morrical, D; Miller, J E

    2007-05-31

    Copper oxide wire particles (COWP) have been used to reduce infection of Haemonchus contortus in hair breed lambs in southeastern USA without signs of copper toxicity. However, copper sensitivity among breeds and regions varies. The objective was to determine the effectiveness and safety of COWP in lactating Polypay ewes and their offspring grazing alfalfa/bluegrass pasture in a rotational grazing system. Mature Polypay ewes were administered 0, 0.5, 1, or 2 g (n=8 or 9/dose) COWP approximately 60 days after lambing in mid-July 2005. Their offspring were administered 0 (n=6), 0.5 or 0.75 g (n=9), 1 or 2 g (n=6) COWP 2 weeks later in late July. The primary gastrointestinal nematode was H. contortus (70%). Between Days 7 and 35, FEC were greater in 0 and 0.5 g COWP groups compared with ewes administered 2 g COWP (COWP x day, Pcopper levels, and body weight was similar among groups of ewes. FEC decreased within 7 days in COWP-treated compared with untreated lambs and remained low throughout experiment (COWP x day, Pcopper toxicity in ewes or lambs. Alternative suppression of H. contortus infections may be necessary in ewes, but COWP was effective in H. contortus management for lambs.

  12. Multi-Response Optimization and Regression Analysis of Process Parameters for Wire-EDMed HCHCr Steel Using Taguchi’s Technique

    Directory of Open Access Journals (Sweden)

    K. Srujay Varma

    2017-04-01

    Full Text Available In this study, effect of machining process parameters viz. pulse-on time, pulse-off time, current and servo-voltage for machining High Carbon High Chromium Steel (HCHCr using copper electrode in wire EDM was investigated. High Carbon High Chromium Steel is a difficult to machine alloy, which has many applications in low temperature manufacturing, and copper is chosen as electrode as it has good electrical conductivity and most frequently used electrode all over the world. Tool making culture of copper has made many shops in Europe and Japan to used copper electrode. Experiments were conducted according to Taguchi’s technique by varying the machining process parameters at three levels. Taguchi’s method based on L9 orthogonal array was followed and number of experiments was limited to 9. Experimental cost and time consumption was reduced by following this statistical technique. Targeted output parameters are Material Removal Rate (MRR, Vickers Hardness (HV and Surface Roughness (SR. Analysis of Variance (ANOVA and Regression Analysis was performed using Minitab 17 software to optimize the parameters and draw relationship between input and output process parameters. Regression models were developed relating input and output parameters. It was observed that most influential factor for MRR, Hardness and SR are Ton, Toff and SV.

  13. Inductor Design Comparison of Three-wire and Four-wire Three-phase Voltage Source Converters in Power Factor Correction Applications

    DEFF Research Database (Denmark)

    Kouchaki, Alireza; Nymand, Morten

    2015-01-01

    This paper studies the inductor design for three-wire and four-wire power factor correction converter (PFC). Designing the efficient inductor for this converter (regardless of connecting the midpoint to the ground) requires a comprehensive knowledge of the inductor current and voltage behavior....... This paper investigates how changing three-wire PFC to four-wire counterpart influences the inductor design in terms of size, losses, and overall efficiency of the converter. Therefore, the inductor current and voltage waveforms are analyzed and generalized in both cases for one switching cycle to build...... a foundation for comparison. Accordingly, the analyses are able to interpret the differences between both configurations and explain the core losses and the copper losses of inductors, especially those caused by the high frequency ac current ripple. Finally, two inductors are designed for a 5 kW PFC...

  14. Observation of fast expansion velocity with insulating tungsten wires on ∼80 kA facility

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Li, Y. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China); State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Zhang, J. H.; Sun, T. P.; Wang, L. P.; Sheng, L.; Qiu, M. T.; Mao, W. T. [State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi' an 710024 (China); Wu, J., E-mail: jxjawj@mail.xjtu.edu.cn; Li, X. W. [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-07-15

    This paper presents experimental results on the effects of insulating coatings on tungsten planar wire array Z-pinches on an 80 kA, 100 ns current facility. Expansion velocity is obviously increased from ∼0.25 km/s to ∼3.5 km/s by using the insulating coatings. It can be inferred that the wire cores are in gaseous state with this fast expansion velocity. An optical framing camera and laser probing images show that the standard wire arrays have typical ablation process which is similar to their behaviors on mega-ampere facilities. The ablation process and precursor plasma are suppressed for dielectric tungsten wires. The wire array implosion might be improved if these phenomena can be reproduced on Mega-ampere facilities.

  15. Nano-powder production by electrical explosion of wires

    International Nuclear Information System (INIS)

    Mao Zhiguo; Zou Xiaobing; Wang Xinxin; Jiang Weihua

    2010-01-01

    A device for nano-powder production by electrical explosion of wires was designed and built. Eight wires housed in the discharge chamber are exploded one by one before opening the chamber for the collection of the produced nano-powder. To increase the rate of energy deposition into a wire, the electrical behavior of the discharge circuit including the exploding wire was simulated. The results showed that both reducing the circuit inductance and reducing the capacitance of the energy-storage capacitor (keeping the storage energy constant) can increase the energy deposition rate. To better understand the physical processes of the nano-powder formation by the wire vapor, a Mach-Zehnder interferometer was used to record the time evolution of the wire vapor as well as the plasma. A thermal expansion lag of the dense vapor core as well as more than one times of the vapor burst was observed for the first time. Finally, nano-powders of titanium nitride, titanium dioxide, copper oxides and zinc oxide were produced by electrical explosion of wires. (authors)

  16. Interchip link system using an optical wiring method.

    Science.gov (United States)

    Cho, In-Kui; Ryu, Jin-Hwa; Jeong, Myung-Yung

    2008-08-15

    A chip-scale optical link system is presented with a transmitter/receiver and optical wire link. The interchip link system consists of a metal optical bench, a printed circuit board module, a driver/receiver integrated circuit, a vertical cavity surface-emitting laser/photodiode array, and an optical wire link composed of plastic optical fibers (POFs). We have developed a downsized POF and an optical wiring method that allows on-site installation with a simple annealing as optical wiring technologies for achieving high-density optical interchip interconnection within such devices. Successful data transfer measurements are presented.

  17. Nanoscale Copper and Copper Compounds for Advanced Device Applications

    Science.gov (United States)

    Chen, Lih-Juann

    2016-12-01

    Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

  18. [Radiographic findings in 4 cows with traumatic reticuloperitonitis caused by a nonmagnetic copper wire].

    Science.gov (United States)

    Braun, U; Gansohr, B; Flückiger, M

    2003-04-01

    The goal of this study was to describe the findings in four cows with non-magnetic reticular foreign bodies composed of copper. The cows were referred to our clinic because of reduced appetite and a marked decrease in milk production. Based on the clinical findings, a tentative diagnosis of traumatic reticuloperitonitis was made in all cows. The reticulum of all cows was then examined ultrasonographically and radiographically. In all cows, radiographs of the reticulum showed wire-shaped foreign bodies, ranging from 3 to 7 cm in length, which appeared to have penetrated the reticular wall. Two cows (No. 3, 4) had a magnet in the reticulum close to the foreign body but there was no direct contact between the two. A magnet was administered to cows No. 1 and 2, and radiography of the reticulum was performed for a second time the following day. The magnets were observed in the reticulum; however, they did not contact the foreign bodies. Because all the magnets were correctly placed in the reticulum yet, despite close proximity, did not contact the foreign bodies, the latter were thought to be non-magnetic. Cow No. 1 was slaughtered. Left flank laparoruminotomy was performed in the remaining three cows. In all cows, copper foreign bodies ranging in length from 3.0 to 7.0 cm, were found in the reticulum. They had penetrated the reticular wall and were not attached to magnets. The radiographic findings described in the present study are strongly indicative of a non-magnetic foreign body. Ruminotomy is the treatment of choice but slaughter may also be considered.

  19. MIP Plasma Decapsulation of Copper-wired Semiconductor Devices for Failure Analysis

    NARCIS (Netherlands)

    Tang, J.

    2014-01-01

    The majority of Integrated Circuit (IC) devices are encapsulated in wire-bonded plastic IC packages. Epoxy molding compound is used as the encapsulation material and gold was used as the bonding wire material. However, the increase of gold material price from 400 USD/ounce in year 2005 to 1400

  20. Angular dependence of the coercivity in arrays of ferromagnetic nanowires

    International Nuclear Information System (INIS)

    Holanda, J.; Silva, D.B.O.; Padrón-Hernández, E.

    2015-01-01

    We present a new magnetic model for polycrystalline nanowires arrays in porous anodic aluminum oxide. The principal consideration here is the crystalline structure and the morphology of the wires and them the dipolar interactions between the crystals into the wire. Other aspect here is the direct calculation of the dipolar energy for the interaction of one wire with the others in the array. The free energy density was formulated for polycrystalline nanowires arrays in order to determinate the anisotropy effective field. It was using the microstructure study by scanning and transmission electron microscopy for the estimation of the real structure of the wires. After the structural analysis we used the angular dependences for the coercivity field and for the remnant magnetization to determine the properties of the wires. All analysis were made by the theory treatment proposed by Stoner and Wohlfarth

  1. Angular dependence of the coercivity in arrays of ferromagnetic nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J. [Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Silva, D.B.O. [Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Padrón-Hernández, E., E-mail: padron@df.ufpe.br [Departamento de Física, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil); Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, Recife 50670-901, PE (Brazil)

    2015-03-15

    We present a new magnetic model for polycrystalline nanowires arrays in porous anodic aluminum oxide. The principal consideration here is the crystalline structure and the morphology of the wires and them the dipolar interactions between the crystals into the wire. Other aspect here is the direct calculation of the dipolar energy for the interaction of one wire with the others in the array. The free energy density was formulated for polycrystalline nanowires arrays in order to determinate the anisotropy effective field. It was using the microstructure study by scanning and transmission electron microscopy for the estimation of the real structure of the wires. After the structural analysis we used the angular dependences for the coercivity field and for the remnant magnetization to determine the properties of the wires. All analysis were made by the theory treatment proposed by Stoner and Wohlfarth.

  2. Single-step laser deposition of functionally graded coating by dual ‘wire powder’ or ‘powder powder’ feeding—A comparative study

    Science.gov (United States)

    Syed, Waheed Ul Haq; Pinkerton, Andrew J.; Liu, Zhu; Li, Lin

    2007-07-01

    The creation of iron-copper (Fe-Cu) alloys has practical application in improving the surface heat conduction and corrosion resistance of, for example, conformal cooling channels in steel moulds, but is difficult to achieve because the elements have got low inter-solubility and are prone to solidification cracking. Previous work by these authors has reported a method to produce a graded iron-nickel-copper coating in a single-step by direct diode laser deposition (DLD) of nickel wire and copper powder as a combined feedstock. This work investigates whether dual powder feeds can be used in that process to afford greater geometric flexibility and compares attributes of the 'nickel wire and copper powder' and 'nickel powder and copper powder' processes for deposition on a H13 tool steel substrate. In wire-powder deposition, a higher temperature developed in the melt pool causing a clad with a smooth gradient structure. The nickel powder in powder-powder deposition did not impart much heat into the melt pool so the melt pool solidified with sharp composition boundaries due to single metal melting in some parts. In wire-powder experiments, a graded structure was obtained by varying the flow rates of wire and powder. However, a graded structure was not realised in powder-powder experiments by varying either the feed or the directions. Reasons for the differences and flow patterns in the melt pools and their effect on final part properties of parts produced are discussed.

  3. An Optical Fiber-Based Sensor Array for the Monitoring of Zinc and Copper Ions in Aqueous Environments

    Directory of Open Access Journals (Sweden)

    Steven Kopitzke

    2014-02-01

    Full Text Available Copper and zinc are elements commonly used in industrial applications as aqueous solutions. Before the solutions can be discharged into civil or native waterways, waste treatment processes must be undertaken to ensure compliance with government guidelines restricting the concentration of ions discharged in solution. While currently there are methods of analysis available to monitor these solutions, each method has disadvantages, be it high costs, inaccuracy, and/or being time-consuming. In this work, a new optical fiber-based platform capable of providing fast and accurate results when performing solution analysis for these metals is described. Fluorescent compounds that exhibit a high sensitivity and selectivity for either zinc or copper have been employed for fabricating the sensors. These sensors demonstrated sub-part-per-million detection limits, 30-second response times, and the ability to analyze samples with an average error of under 10%. The inclusion of a fluorescent compound as a reference material to compensate for fluctuations from pulsed excitation sources has further increased the reliability and accuracy of each sensor. Finally, after developing sensors capable of monitoring zinc and copper individually, these sensors are combined to form a single optical fiber sensor array capable of simultaneously monitoring concentration changes in zinc and copper in aqueous environments.

  4. Characterization of NbTi multifilamentary superconducting wires

    International Nuclear Information System (INIS)

    Vellego, G.

    1988-01-01

    Pirelli is developing superconducting mulfilamentary NbTi wires, with current carrying capacities of up to 500 A, for use in magnetic resonance imaging (MRI) systems and in small research magnets. Pirelli and IFUSP have developed a system for assessing wire performance, whose quality is comparable to the equivalent systems at the Brookhaven National Laboratory (BNL) and at the National Bureau of Standards (NBS). In particular, a high sensitivity is required for critical current measurements, so that the modern criteria for definition of critical current can be used. These involve conductor resistivities of the order of 10 -12 ohm-cm. The methods of measurements of critical current in applied magnetic fields, of residual resistance ratio and of copper to superconductor ratio are described. The results of the first tests performed in Pirelli wires and in wires of other manufacturers are described. These include tests on a NBS standard reference material. These results are of the same quality as results obtained at BNL or NBS on the same wires. So this system can be very useful throughout the Pirelli program. (author) [pt

  5. Comparison of optimization techniques for MRR and surface roughness in wire EDM process for gear cutting

    Directory of Open Access Journals (Sweden)

    K.D. Mohapatra

    2016-11-01

    Full Text Available The objective of the present work is to use a suitable method that can optimize the process parameters like pulse on time (TON, pulse off time (TOFF, wire feed rate (WF, wire tension (WT and servo voltage (SV to attain the maximum value of MRR and minimum value of surface roughness during the production of a fine pitch spur gear made of copper. The spur gear has a pressure angle of 20⁰ and pitch circle diameter of 70 mm. The wire has a diameter of 0.25 mm and is made of brass. Experiments were conducted according to Taguchi’s orthogonal array concept with five factors and two levels. Thus, Taguchi quality loss design technique is used to optimize the output responses carried out from the experiments. Another optimization technique i.e. desirability with grey Taguchi technique has been used to optimize the process parameters. Both the optimized results are compared to find out the best combination of MRR and surface roughness. A confirmation test was carried out to identify the significant improvement in the machining performance in case of Taguchi quality loss. Finally, it was concluded that desirability with grey Taguchi technique produced a better result than the Taguchi quality loss technique in case of MRR and Taguchi quality loss gives a better result in case of surface roughness. The quality of the wire after the cutting operation has been presented in the scanning electron microscopy (SEM figure.

  6. Effects of copper oxide wire particle bolus therapy on trichostrongyle fecal egg counts in exotic artiodactylids.

    Science.gov (United States)

    Fontenot, Deidre K; Kinney-Moscona, Allyson; Kaplan, Ray M; Miller, James

    2008-12-01

    Four species of artiodactylids (scimitar-horned oryx [Oryx dama]), roan antelope [Hippotragus equinus], blackbuck [Antilope cervicapra]), and blesbok [Damaliscus pygargus phillipsi]) totaling 13 animals were treated with a one-time 12.5-g dose of copper oxide wire particles (COWPs) in a bolus form. Pretreatment, individual trichostrongyle fecal egg counts (FECs) were performed using the McMaster technique. Individual posttreatment FECs were performed every 7 days for 35 days beginning 7 days after bolus administration, and FEC reduction ratios (FECRRs) expressed as percentage reductions from pretreatment values were calculated every 7 days. Mean FECRRs for the 13 animals were 93% +/- 16%, 98% +/- 7%, 91% +/- 28%, 94% +/- 16%, and 90% +/- 13% at 7, 14, 21, 28, and 35 days posttreatment, respectively. These data demonstrate that COWPs in a bolus form were an effective method for reducing FEC in exotic artiodactylids. Based on this limited data, COWPs show promise as an anthelmintic alternative for exotic artiodactylids in zoologic collections.

  7. Improvement of the adhesion strength between copper plated layer and resin substrate using a chemically adsorbed monolayer

    Directory of Open Access Journals (Sweden)

    Tsuchiya K.

    2013-08-01

    Full Text Available With reducing the size and weight of electric devices, high-tensile, light and fine copper wire is demanded. So the production technique of a copper wire plated on a super fiber resin (Vectran film was researched for improving the adhesion strength between the copper and the resin. In this study, we used the Cu2+ or Pd2+ complex prepared with a chemically adsorbed monolayer (CAM to improve the adhesion strength between the copper plated layer and the Vectran film. As the result of scotch tape test, it was observed that the adhesion strength between the copper plated layer and Vectran film was improved by the Cu2+ or Pd2+ complex CAM.

  8. Silicon Sheet Growth Development for the Large Area Sheet Task of the Low Cost Solar Array Project. Heat Exchanger Method - Ingot Casting Fixed Abrasive Method - Multi-Wire Slicing

    Science.gov (United States)

    Schmid, F.; Khattak, C. P.

    1978-01-01

    Solar cells fabricated from HEM cast silicon yielded up to 15% conversion efficiencies. This was achieved in spite of using unpurified graphite parts in the HEM furnace and without optimization of material or cell processing parameters. Molybdenum retainers prevented SiC formation and reduced carbon content by 50%. The oxygen content of vacuum cast HEM silicon is lower than typical Czochralski grown silicon. Impregnation of 45 micrometers diamonds into 7.5 micrometers copper sheath showed distortion of the copper layer. However, 12.5 micrometers and 15 micrometers copper sheath can be impregnated with 45 micrometers diamonds to a high concentration. Electroless nickel plating of wires impregnated only in the cutting edge showed nickel concentration around the diamonds. This has the possibility of reducing kerf. The high speed slicer fabricated can achieve higher speed and longer stroke with vibration isolation.

  9. Copper corrosion in pure oxygen-free water

    International Nuclear Information System (INIS)

    Moeller, K.

    1995-12-01

    The study was initiated following reports on corrosion of Copper in water in absence of Oxygen. Quartz glass tubes containing pure water and Copper plates were sealed in two different ways, using Palladium or Platinum foils, respectively. Tests were also performed with Copper wires. The insulated systems contained Oxygen initially. The Oxygen was dissolved in the water, and in the air column between the water surface and the Palladium/Platinum foils. The tubes were kept in a hot cabinet at 50 C for a total of two years. The exposed plates were analyzed in different ways, e g using reflectance FTIR. The amounts of oxide formed were also weighed. The following conclusions could be drawn: No difference in color was observed for the Pd and Pt seals except in one case for the Copper wire, where only a slight difference was noticed. No significant difference in oxidation between the plates with Pd or Pt seals in quartz glass tubes. No oxide growth was observed during the last year. The corrosion rate at 50 C is below 2.3 micrograms Copper/cm 2 /year. A certain imbalance was noted between the amounts of oxides formed, and expected amount estimated from the original amount of oxygen in the system. A significant amount of water has 'disappeared' from the tubes. 17 refs, 10 figs, 3 tabs

  10. Basic characteristics of thin wire arc plasma

    International Nuclear Information System (INIS)

    Urushihara, K.; Endoh, N.; Ono, S.; Teii, S.; Ishimura, T.

    1998-01-01

    The investigated plasma was generated by applying an electric current of about 50 A to a copper wire of 48 μm diameter in air. The development in time of emission spectra was measured and relative line intensity ratios were used to determine the temperature. The extension of the plasma was measured with a movable electrostatic probe which was placed next to the thin wire, and the electron density was estimated using the known electron mobility. The electron temperature was typically about 8000 K. On the other hand, the electron density tended to decrease with time from about 3.10 16 cm -3

  11. The wire array Z-pinch: an efficient x-ray source for ICF and a new ion heating mechanism

    Science.gov (United States)

    Haines, M. G.

    2008-10-01

    The Z-pinch provides an efficient x-ray source for driving a hohlraum for inertial confinement fusion. The basic physics of wire-array implosions is reviewed. It can be understood in several sequential stages. Firstly, the wires heat and form a surrounding vapour which ionizes, causing the current to transfer to this lower resistance. The J×B global force leads to ejection of this plasma towards the axis to form a precursor plasma. The wire cores continue to ablate due to the heat flux from the Joule-heated nearby plasma. The cooling of this plasma by the wire-cores leads to a low magnetic Reynolds number so that the precursor plasma carries little or no current. When gaps appear in the liquid/vapour cores the plasma temperature and Reynolds number rise and this plasma accelerates in towards the axis carrying the current. This is the main implosion, and it sweeps up earlier ablated plasma, which acts to reduce Rayleigh-Taylor growth. At stagnation, the ion kinetic energy is thermalized and equipartition heats the electrons, which then radiate in a 5 ns pulse. In some conditions the energy radiated by soft x-rays exceeds the ion kinetic energy by a factor of 3 or 4. A theory has been developed to explain this in which fine-scale, fast growing m= 0 MHD instabilities grow to saturation, viscous dissipation of which leads to ion heating, followed by equipartition. World record ion temperatures of 2-3 billion Kelvin were predicted, and measured at Sandia National Laboratory. Lastly, progress in capsule implosions and in application to inertial fusion energy is reported.

  12. Energy transformation in Z-pinch and plasma focus discharges with wire and wire-in-liner loads

    International Nuclear Information System (INIS)

    Kubes, Pavel; Kravarik, Jozef; Klir, Daniel; Scholz, Marek; Paduch, Marian; Tomaszewski, Krzysztof; Karpinski, Leslaw; Bakshaev, Yury L.; Blinov, Peter I.; Chernenko, Andrey S.; Dan'ko, Sergey A.; Korolev, Valery D.; Shashkov, Andrey Y.; Tumanov, Victor I.

    2002-01-01

    The results of the study of the Z-pinch and plasma-focus plasmas at presence of the axial C, Al, or Cu wires of sufficient high diameter are discussed in this paper. The wire was positioned on the top of the inner electrode of the PF 1000 plasma focus (1.8 MA, IPPLM Warsaw), or at the axis with or without the tungsten or alumine wire array load at the S-300 facility (3 MA, RRC Kurchatov Institute, Moscow), and at the axis of the small Z-pinch Z-150 (50 kA, CTU Prague). The plasma corona around the wire was generated both by the current going through the wires and by the implosion of the wire array or of the current sheath. The experiments showed interesting results often observed in some shots of Z-pinch type discharges - existence of helical structures, two relatively long and stable pinch phases, oscillation of pinch diameter, and back return of the plasma exploding from the pinch. All these observed phenomena can be evolved by spontaneous self-generation and transformation of the axial magnetic field in the pinch during the plasma implosion and explosion. A configuration of axial and azimuthal magnetic field confines the plasma and later transforms or dissipates during a few tens or hundreds ns. A fast transformation of internal magnetic fields can induce a sufficiently high electric field for generation of keV particles and radiation. Study and usage of Z-pinch discharges is connected with solving of two principal problems, limitation of instability development and a way of generation of high energy particles and radiation. The first problem is partially solved by the faster increase of the current, by better cylindrical symmetry of the load and plasma, by higher density of the plasma or by the presence of a stronger magnetized plasma

  13. Composite superconductors with copper-aluminum stabilizing matrix

    International Nuclear Information System (INIS)

    Keilin, V.E.; Anashkin, O.P.; Krivikh, A.V.; Kiriya, I.V.; Kovalev, I.A.; Dolgosheev, P.I.; Rychagov, A.V.; Sytnikov, V.E.

    1992-01-01

    A new type of composite superconductors has been developed. They consist of one or several (cabled) multifilamentary wires with low Cu-to-Sc ratio which are embedded and soldered into grooves made in matrix of rectangular cross-section. The latter consists of aluminum core metallurgically plated with a thin copper sheath. Such conductors combine the advantages of both aluminum and copper as stabilizing materials. They have low density, exhibit almost not magnetoresistance, are relatively cheap and can be produced in very long pieces. Copper plating offers the possibility of soft soldering thus ensuring good electrical and thermal contact between superconducting wires and stabilizing matrix, and helping to join pieces to each other. the properties of two Nb-Ti conductors (3.5 x 2 mm 2 and 7x4 mm 2 ) are described in more detail. The first is used in SC coils for whole-body magnetoresonance tomography, and the second will be used in a open-quotes thinclose quotes coil for charged particles detector. The influence of aluminum purity on SC magnet behavior is also briefly discussed

  14. Rectangle Surface Coil Array in a Grid Arrangement for Resonance Imaging

    Science.gov (United States)

    2016-02-13

    magnet wires with insulating coating for rectangular surface coils. The wires are formed into four one turn 145mm x 32mm rectangular coils...switchable array, RF magnetic field, NQR, MRI, NMR, tuning, decoupling I. INTRODUCTION ESONANCE imaging can be accomplished using Nuclear Magnetic ...grid array. This achieves the switchable array configuration. Later, investigations will have circuit controlled multiplexer for switching to

  15. Aluminium K-shell radiation from 800 ns implosion time nested wire arrays. First results on the 1 MJ SPHINX generator

    International Nuclear Information System (INIS)

    Bayol, F.; Lassalle, F.; Mangeant, C.

    2005-01-01

    This paper discusses experiments to analyze the performances of plasma radiation sources for K-shell production with long implosion time increased up to 800 ns. SPHINX generator is used to implode single and nested aluminium wire arrays Z-pinches with maximum current 3.4 MA to 3.8 MA. Results show more than 10 kJ of energy radiated above 1 keV, with pulse widths of 30-50 ns for a total radiation yield around 100 kJ [ru

  16. High-speed railway lines. Fatigue of contact wires

    Energy Technology Data Exchange (ETDEWEB)

    Avronsart, Stephane; Kalsbeek, Guido van [SNCF, La Plaine St. Denis (France); Mai, Si Hai; Massat, Jean Pierre; Nguyen-Tajan, Thi Mac-Lan [SNCF, Paris (France)

    2013-06-15

    With more than 30 years of operation of High-Speed Lines, SNCF has a large feedback on behaviour of components. Regarding the contact wire, the only operation of maintenance consists in measuring the thickness in order to estimate the remaining lifetime which in total is around 50 years. With such a long period of operation the question was raised on fatigue phenomena. The research project launched by SNCF on this topic in 2011 includes tests on copper material characteristics, modelling of the crack initiation and propagation and detection of cracks on the contact wire. The result of this research project could lead to request for changes in EN 50149 by introducing new material characteristic parameters for contact wire related to fatigue. (orig.)

  17. Interaction between copper oxide wire particles and Duddingtonia flagrans in lambs.

    Science.gov (United States)

    Burke, J M; Miller, J E; Larsen, M; Terrill, T H

    2005-11-25

    An experiment was completed to determine if copper oxide wire particles (COWP) had any effect on the activity of the nematode-trapping fungus Duddingtonia flagrans in growing lambs. COWP has been used recently as a dewormer in small ruminants because of nematode resistance to anthelmintics. D. flagrans has been used to control free-living stages of parasitic nematodes in livestock. Katahdin and Dorper lambs, 4 months of age, were administered no or 4 g COWP (n=24/dose) in early October 2003. Haemonchus contortus was the predominant gastrointestinal parasite during the trial, which was acquired naturally from pasture. Half the lambs from each COWP group were supplemented with corn/soybean meal with or without D. flagrans for 35 days. Fecal egg counts (FEC) and packed cell volume (PCV) were determined weekly between days 0 (day of COWP administration) and 35. Feces from lambs in each treatment group were pooled and three replicates per group were cultured for 14 days at room temperature. Larvae (L3) were identified and counted per gram of feces cultured. Treatment with COWP was effective in decreasing FEC, which remained low compared with FEC from lambs not treated with COWP. This led to an increase in PCV in these lambs (COWP x day, Pcopper on H. contortus, and the additional larval reducing effect exerted by the nematode destroying fungus D. flagrans, the expected result would be a much lower larval challenge on pasture when these two tools are used together in a sustainable control strategy.

  18. Effectiveness of copper oxide wire particles for Haemonchus contortus control in sheep.

    Science.gov (United States)

    Knox, M R

    2002-04-01

    To assess the efficacy of copper oxide wire particles (COWP) for the control of H contortus infections in grazing sheep. In experiment 1, 40 worm-free Merino hoggets (11 to 12 months of age) were divided into four equal groups and allocated to separate 0.8 ha pasture plots. Two groups then received 2.5 g COWP whereas the other two groups were untreated. From 1 week after COWP treatment all lambs received a weekly infection of 2000 H contortus larvae. At week 8, six sheep from the untreated group were then allocated to two groups and treated with either 2.5 or 5.0 g of COWP to establish therapeutic efficacy of treatment. Experiment 2 followed a similar protocol but was conducted with 40 worm-free Merino lambs (3 to 4 months of age) and no assessment of therapeutic efficacy was made. In experiment 1 no significant difference in faecal worm egg counts was observed between treatments and faecal worm egg counts remained less than 3000 epg in all animals. Total worm counts were reduced by 37% by COWP treatment (P = 0.055). Both 2.5 g and 5.0 g doses of COWP at 8 weeks of infection reduced faecal worm egg counts by > 85% with the higher dose giving an earlier response to treatment. In experiment 2, faecal worm egg counts at 4 and 6 weeks were reduced by more than 90% in the COWP treated lambs and worm numbers were 54% lower after 6 weeks when all remaining untreated lambs had to be treated for haemonchosis. Mean faecal worm egg counts in the COWP lambs remained below 3500 epg and clinical disease did not develop in the majority of lambs before the end of the experiment at 10 weeks. Treatment with COWPs appears to have the potential to reduce establishment and worm fecundity of Haemonchus spp for an extended period and may offer livestock producers a supplementary means of reducing larval contamination of pasture particularly in areas where anthelmintic resistance is a problem and copper supplementation is likely to be beneficial.

  19. Gold Wire-networks: Particle Array Guided Evaporation Lithograpy

    KAUST Repository

    Lone, Saifullah; Zhang, Jiaming; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2015-01-01

    relies upon the defect free dry deposition of 2D monolayer of latex particles [2] on patterned silicon template and flat PDMS-substrate to create square centered and honey-comb wire networks respectively. The process is followed by lift-up transfer of 2D

  20. The Quantum Socket: Wiring for Superconducting Qubits - Part 2

    Science.gov (United States)

    Bejanin, J. H.; McConkey, T. G.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum computing research has reached a level of maturity where quantum error correction (QEC) codes can be executed on linear arrays of superconducting quantum bits (qubits). A truly scalable quantum computing architecture, however, based on practical QEC algorithms, requires nearest neighbor interaction between qubits on a two-dimensional array. Such an arrangement is not possible with techniques that rely on wire bonding. To address this issue, we have developed the quantum socket, a device based on three-dimensional wires that enables the control of superconducting qubits on a two-dimensional grid. In this talk, we present experimental results characterizing this type of wiring. We will show that the quantum socket performs exceptionally well for the transmission and reflection of microwave signals up to 10 GHz, while minimizing crosstalk between adjacent wires. Under realistic conditions, we measured an S21 of -5 dB at 6 GHz and an average crosstalk of -60 dB. We also describe time domain reflectometry results and arbitrary pulse transmission tests, showing that the quantum socket can be used to control superconducting qubits.

  1. Persistence of the efficacy of copper oxide wire particles against Haemonchus contortus in sheep.

    Science.gov (United States)

    Galindo-Barboza, A J; Torres-Acosta, J F J; Cámara-Sarmiento, R; Sandoval-Castro, C A; Aguilar-Caballero, A J; Ojeda-Robertos, N F; Reyes-Ramírez, R; España-España, E

    2011-03-10

    The aim was to determine the persistent efficacy of copper oxide wire particles (COWP) against Haemonchus contortus in sheep, using the harmonization guidelines protocol. Thirty-six male lambs (2 months old) reared free of gastrointestinal nematodes were used (average body weight of 10.8±3.8kg). Before and for the duration of the study, lambs were kept in raised cages with slatted floors and were offered ad libitum a complete mixed diet. Animals were divided into six groups (n=6): one non-treated control group (G0) and five groups treated with one COWP capsule (1.7g of copper oxide; Copinox(®)). Animals in each group were treated on pre-defined dates before the artificial infection was applied: days -35 (G1), -28 (G2), -21 (G3), -14 (G4) and -7 (G5). On day 0 animals were infected with 3700 H. contortus infective larvae per animal. Animals were humanely slaughtered between days 22 and 23 post-infection. The abomasums were individually washed to obtain the contents. These organs were subjected to separate artificial digestions. Adult parasites were counted from the abomasum contents and the larvae from the digested material. Worm burden geometric means were calculated for each group. A significant worm burden reduction in either of the treated groups (G1, G2, G3, G4, and G5) compared to the control (G0) was considered as persistence of the anthelmintic effect. Copper levels were determined from individual liver samples of each animal. The geometric mean worm burden of the control group (G0) was 1959. Compared to the control, worm burdens geometric means were significantly reduced in groups G1 (1108), G4 (528) and G5 (1063) (P<0.03). Efficacies in G1, G4 and G5 were 43.4%, 73.0% and 45.7% respectively. No significant reduction was found for G2 (1342) and G3 (1430). A larger quantity of Cu was found in the livers of treated animals compared to the control group (P<0.05) except for G3 (P=0.06). A negative association between Cu liver content and worm burdens was

  2. Inspection of copper canisters for spent nuclear fuel by means of Ultrasonic Array System. Electron beam evaluation, modeling and materials characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ping Wu; Lingvall, F.; Stepinski, T. [Uppsala Univ. (Sweden). Dept. of Material Science

    1999-12-01

    Research conducted in the fifth phase of the SKB's study aimed at developing ultrasonic techniques for assessing EB welds copper canisters is reported here. This report covers three main tasks: evaluation of electron beam (EB) welds, modeling of ultrasonic fields and characterization of copper material. A systematic analysis of ultrasonic interaction and imaging of an EB weld has been performed. From the analysis of histograms of the weld ultrasonic image, it appeared that the porosity tended to be concentrated towards the upper side of a HV weld, and a guideline on how to select the gates for creating C-scans has been proposed. The spatial diversity method (SDM) has shown a limited ability to suppress grain noise both in the parent material (copper) and in the weld so that the ultrasonic image of the weld could be improved. The suppression was achieved at the price of reduced spatial resolution. The ability of wavelet filters to enhance flaw responses has been studied. An FIR (finite impulse response) filter, based on Sombrero mother wavelet, has yield encouraging results concerning clutter suppression. However, the physical explanation for the results is still missing and needs further research. For modeling of ultrasonic fields of the ALLIN array, an approach to computing the SIR (spatial impulse response) of a cylindrically curved, rectangular aperture has been developed. The aperture is split into very narrow strips in the cylindrically curved direction and SIR of the whole aperture by superposing the individual impulse responses of those strips. Using this approach, the SIR of the ALLIN array with a cylindrically curved surface has been calculated. The pulse excitation of normal velocity on the surface of the array, that is required for simulating actual ultrasonic fields, has been determined by measurement in combination with a deconvolution technique. Using the SIR and the pulse excitation obtained, the pulsed-echo fields from the array have been

  3. Synthesis of vertical MnO_2 wire arrays on hemp-derived carbon for efficient and robust green catalysts

    International Nuclear Information System (INIS)

    Yang, MinHo; Kim, Dong Seok; Sim, Jae-Wook; Jeong, Jae-Min; Kim, Do Hyun; Choi, Jae Hyung; Kim, Jinsoo; Kim, Seung-Soo; Choi, Bong Gill

    2017-01-01

    Highlights: • The three-dimensional nanocomposites based on vertical MnO_2 array on hemp-derived carbon (HDC) were prepared by hydrothermal method. • The 3D v-MnO_2/HDC nanocomposites showed well-defined porous nature with a high specific surface area of 382.3 m"2 g"−"1. • PET glycolysis was performed using the 3D v-MnO_2/HDC nanocomposites as a catalyst, leading to efficient catalytic performance. - Abstract: Three-dimensional (3D) carbon materials derived from waste biomass have been attracted increasing attention in catalysis and materials science because of their great potential of catalyst supports with respect to multi-functionality, unique structures, high surface area, and low cost. Here, we present a facile and efficient way for preparing 3D heterogeneous catalysts based on vertical MnO_2 wires deposited on hemp-derived 3D porous carbon. The 3D porous carbon materials are fabricated by carbonization and activation processes using hemp (Cannabis Sttiva L.). These 3D porous carbon materials are employed as catalyst supports for direct deposition of vertical MnO_2 wires using a one-step hydrothermal method. The XRD and XPS results reveal the crystalline structure of α-MnO_2 wires. The resultant composites are further employed as a catalyst for glycolysis of poly(ethylene terephthalate) (PET) with high conversion yield of 98%, which is expected to be expressly profitable for plastics recycling industry.

  4. Electrical Characterization of Spherical Copper Oxide Memristive Array Sensors

    Science.gov (United States)

    2014-03-27

    47 4.2 A 47 µm flake reaching between two spheres . . . . . . . . . . . . . . . . . . 47 x Figure Page 4.3 The XRD pattern shows the copper spheres...image of the copper sphere surface and a zoomed view of emphasizing the flaking feature on the surface. These images depict just one sphere to...spheres. Placed next to one-another, a copper flake extending 47 µm such as that shown in Figure 4.1 can result in an electrical short, which may

  5. Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments

    Science.gov (United States)

    Zhou, Lin; Li, Zhenghong; Wang, Zhen; Liang, Chuan; Li, Mingjia; Qi, Jianmin; Chu, Yanyun

    2016-03-01

    The linear-transformer-driver (LTD) is a recently developed pulsed-power technology that shows great promise for a number of applications. These include a Z -pinch-driven fission-fusion-hybrid reactor that is being developed by the Chinese Academy of Engineering Physics. In support of the reactor development effort, we are planning to build an LTD-based accelerator that is optimized for driving wire-array Z -pinch loads. The accelerator comprises six modules in parallel, each of which has eight series 0.8-MA LTD cavities in a voltage-adder configuration. Vacuum transmission lines are used from the interior of the adder to the central vacuum chamber where the load is placed. Thus the traditional stack-flashover problem is eliminated. The machine is 3.2 m tall and 12 m in outer diameter including supports. A prototype cavity was built and tested for more than 6000 shots intermittently at a repetition rate of 0.1 Hz. A novel trigger, in which only one input trigger pulse is needed by utilizing an internal trigger brick, was developed and successfully verified in these shots. A full circuit modeling was conducted for the accelerator. The simulation result shows that a current pulse rising to 5.2 MA in 91 ns (10%-90%) can be delivered to the wire-array load, which is 1.5 cm in height, 1.2 cm in initial radius, and 1 mg in mass. The maximum implosion velocity of the load is 32 cm /μ s when compressed to 0.1 of the initial radius. The maximum kinetic energy is 78 kJ, which is 11.7% of the electric energy stored in the capacitors. This accelerator is supposed to enable a radiation energy efficiency of 20%-30%, providing a high efficient facility for research on the fast Z pinch and technologies for repetition-rate-operated accelerators.

  6. A platform for exploding wires in different media

    Science.gov (United States)

    Han, Ruoyu; Wu, Jiawei; Qiu, Aici; Zhou, Haibin; Wang, Yanan; Yan, Jiaqi; Ding, Weidong

    2017-10-01

    A platform SWE-2 used for single wire explosion experiments has been designed, established, and commissioned. This paper describes the design and initial experiments of SWE-2. In summary, two pulsed current sources based on pulse capacitors and spark gaps are adopted to drive sub-microsecond and microsecond time scale wire explosions in a gaseous/liquid medium, respectively. In the initial experiments, a single copper wire was exploded in air, helium, and argon with a 0.1-0.3 MPa ambient pressure as well as tap water with a 283-323 K temperature, 184-11 000 μ S/cm conductivity, or 0.1-0.9 MPa hydrostatic pressure. In addition, the diagnostic system is introduced in detail. Energy deposition, optical emission, and shock wave characteristics are briefly discussed based on experimental results. The platform was demonstrated to operate successfully with a single wire load. These results provide the potential for further applications of this platform, such as plasma-matter interactions, shock wave effects, and reservoir simulations.

  7. X-ray emission from a high-atomic-number z-pinch plasma created from compact wire arrays

    International Nuclear Information System (INIS)

    Sanford, T.W.L.; Nash, T.J.; Marder, B.M.

    1996-03-01

    Thermal and nonthermal x-ray emission from the implosion of compact tungsten wire arrays, driven by 5 MA from the Saturn accelerator, are measured and compared with LLNL Radiation-Hydro-Code (RHC) and SNL Hydro-Code (HC) numerical models. Multiple implosions, due to sequential compressions and expansions of the plasma, are inferred from the measured multiple x-radiation bursts. Timing of the multiple implosions and the thermal x-ray spectra measured between 1 and 10 keV are consistent with the RHC simulations. The magnitude of the nonthermal x-ray emission measured from 10 to 100 keV ranges from 0.02 to 0.08% of the total energy radiated and is correlated with bright-spot emission along the z-axis, as observed in earlier Gamble-11 single exploding-wire experiments. The similarities of the measured nonthermal spectrum and bright-spot emission with those measured at 0.8 MA on Gamble-II suggest a common production mechanism for this process. A model of electron acceleration across magnetic fields in highly-collisional, high-atomic-number plasmas is developed, which shows the existence of a critical electric field, E c , below which strong nonthermal electron creation (and the associated nonthermal x rays) do not occur. HC simulations show that significant nonthermal electrons are not expected in this experiment (as observed) because the calculated electric fields are at least one to two orders-of-magnitude below E c . These negative nonthermal results are confirmed by RHC simulations using a nonthermal model based on a Fokker-Plank analysis. Lastly, the lower production efficiency and the larger, more irregular pinch spots formed in this experiment relative to those measured on Gamble II suggest that implosion geometries are not as efficient as single exploding-wire geometries for warm x-ray production

  8. V-I transition and n-value of multifilamentary LTS and HTS wires and cables

    International Nuclear Information System (INIS)

    Ghosh, Arup K.

    2004-01-01

    For low T c multifilamentary conductors like NbTi and Nb 3 Sn, the V-I transition to the normal state is typically quantified by the parameter, n, defined by (ρ/ρ c )=(I/I c ) n . For NbTi, this parameterization has been very useful in the development of high J c wires, where the n-value is regarded as an index of the filament quality. In copper-matrix wires with undistorted filaments, the n-value at 5 T is ∼40-60, and drops monotonically with increasing field. However, n can vary significantly in conductors with higher resistivity matrices and those with a low copper fraction. Usually high n-values are associated with unstable resistive behavior and premature quenching. The n-value in NbTi Rutherford cables, when compared to that in the wires is useful in evaluating cabling degradation of the critical current due to compaction at the edges of the cable. In Nb 3 Sn wires, n-value has been a less useful tool, since often the resistive transition shows small voltages ∼ a few μV prior to quenching. However, in 'well behaved' wires, n is ∼30-40 at 12 T and also shows a monotonic behavior with field. Strain induced I c degradation in these wires is usually associated with lower n-values. For high T c multifilamentary wires and tapes, a similar power law often describes the resistive transition. At 4.2 K, Bi-2223 tapes as well as Bi-2212 wires exhibit n-values ∼15-20. In either case, n does not change appreciably with field. Rutherford cables of Bi-2212 wire show lower values of n than the virgin wire

  9. Wear behavior of Cu-Ag-Cr alloy wire under electrical sliding

    International Nuclear Information System (INIS)

    Jia, S.G.; Liu, P.; Ren, F.Z.; Tian, B.H.; Zheng, M.S.; Zhou, G.S.

    2005-01-01

    The wear behavior of a Cu-Ag-Cr alloy contact wire against a copper-base sintered alloy strip was investigated. Wear tests were conducted under laboratory conditions with a special sliding wear apparatus that simulated train motion under electrical current conditions. The initial microstructure of the Cu-Ag-Cr alloy contact wire was analyzed by transmission electron microscopy. Worn surfaces of the Cu-Ag-Cr alloy wire were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDS). The results indicate that the wear rate of the Cu-Ag-Cr wire increased with increasing electrical current and sliding. Within the studied range of electrical current, the wear rate increases with increasing electrical current and sliding speed. Compared with the Cu-Ag contact wire under the same testing conditions, the Cu-Ag-Cr alloy wire has much better wear resistance. Adhesive, abrasive, and electrical erosion wear are the dominant mechanisms during the electrical sliding processes

  10. Study of the core gaps formed accidentally during wire explosion

    International Nuclear Information System (INIS)

    Tkachenko, S. I.; Khattatov, T. A.; Romanova, V. M.; Mingaleev, A. R.; Baksht, R. B.; Oreshkin, V. I.; Shelkovenko, T. A.; Pikuz, S. A.

    2012-01-01

    During wire explosion, along with striations (a regular structure with alternating lower and higher density bands), low-density regions the characteristic axial size of which differs substantially from that of striations and can reach 1–2 mm are also observed in the discharge channel. Such irregular structures came to be known as “gaps” (D. B. Sinars et al., Phys. Plasmas 8, 216 (2001)). In the present study, the mechanism of the formation of core gaps during explosions of 25- and 50-μm-diameter copper and nickel wires in air is investigated. It is shown that the specific energy deposited in the gap region substantially exceeds the average specific energy deposited in the wire material.

  11. Improved Symmetry Greatly Increases X-Ray Power from Wire-Array Z-Pinches

    International Nuclear Information System (INIS)

    Sanford, T.W.; Allshouse, G.O.; Marder, B.M.; Nash, T.J.; Mock, R.C.; Spielman, R.B.; Seamen, J.F.; McGurn, J.S.; Jobe, D.; Gilliland, T.L.; Vargas, M.; Struve, K.W.; Stygar, W.A.; Douglas, M.R.; Matzen, M.K.; Hammer, J.H.; De Groot, J.S.; Eddleman, J.L.; Peterson, D.L.; Mosher, D.; Whitney, K.G.; Thornhill, J.W.; Pulsifer, P.E.; Apruzese, J.P.; Maron, Y.

    1996-01-01

    A systematic experimental study of annular aluminum-wire Z-pinches on a 20-TW electrical generator shows that the measured spatial characteristics and emitted x-ray power agree more closely with rad-hydro simulations when large numbers of wires are used. The measured x-ray power increases first slowly and then rapidly with decreasing interwire gap spacing. Simulations suggested that this increase reflects the transition from implosion of individual wire plasmas to one of an azimuthally symmetric plasma shell. In the plasma-shell regime, x-ray powers of 40TW are achieved. copyright 1996 The American Physical Society

  12. Opacity and gradients in aluminum wire array z-pinch implosions on the Z pulsed power facility

    Energy Technology Data Exchange (ETDEWEB)

    Ampleford, D. J., E-mail: damplef@sandia.gov; Hansen, S. B.; Jennings, C. A.; Jones, B.; Coverdale, C. A.; Harvey-Thompson, A. J.; Rochau, G. A.; Dunham, G.; Moore, N. W.; Harding, E. C.; Cuneo, M. E. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Chong, Y.-K.; Clark, R. W.; Ouart, N.; Thornhill, J. W.; Giuliani, J.; Apruzese, J. P. [Naval Research Laboratory, Washington, DC 20375 (United States)

    2014-03-15

    Aluminum wire array z pinches imploded on the Z generator are an extremely bright source of 1–2 keV radiation, with close to 400 kJ radiated at photon energies >1 keV and more than 50 kJ radiated in a single line (Al Ly-α). Opacity plays a critical role in the dynamics and K-shell radiation efficiency of these pinches. Where significant structure is present in the stagnated pinch this acts to reduce the effective opacity of the system as demonstrated by direct analysis of spectra. Analysis of time-integrated broadband spectra (0.8–25 keV) indicates electron temperatures ranging from a few 100 eV to a few keV are present, indicative of substantial temperature gradients.

  13. Composite superconducting wires produced by rapid coating in Bi-Sr-Ca-Cu-O metal oxide system

    International Nuclear Information System (INIS)

    Grozav, A.D.; Konopko, L.A.; Leoporda, N.I.

    1989-01-01

    Method for producing superconducting composite wires by dip coating of copper wires in metal-oxide BiSrCaCu 2 O x melt is developed. The thickness of the coating is regulated by the change of dip rate, melt viscosity and by the number of passages through the melt. Wire annealing at 700-800 deg C leads to the production of two phases, one of them being superconducting with T c =80K

  14. Temperature-modulated DSC provides new insight about nickel-titanium wire transformations.

    Science.gov (United States)

    Brantley, William A; Iijima, Masahiro; Grentzer, Thomas H

    2003-10-01

    Differential scanning calorimetry (DSC) is a well-known method for investigating phase transformations in nickel-titanium orthodontic wires; the microstructural phases and phase transformations in these wires have central importance for their clinical performance. The purpose of this study was to use the more recently developed technique of temperature-modulated DSC (TMDSC) to gain insight into transformations in 3 nickel-titanium orthodontic wires: Neo Sentalloy (GAC International, Islandia, NY), 35 degrees C Copper Ni-Ti (Ormco, Glendora, Calif) and Nitinol SE (3M Unitek, Monrovia, Calif). In the oral environment, the first 2 superelastic wires have shape memory, and the third wire has superelastic behavior but not shape memory. All wires had cross-section dimensions of 0.016 x 0.022 in. Archwires in the as-received condition and after bending 135 degrees were cut into 5 or 6 segments for test specimens. TMDSC analyses (Model 2910 DSC, TA Instruments, Wilmington, Del) were conducted between -125 degrees C and 100 degrees C, using a linear heating and cooling rate of 2 degrees C per min, an oscillation amplitude of 0.318 degrees C with a period of 60 seconds, and helium as the purge gas. For all 3 wire alloys, strong low-temperature martensitic transformations, resolved on the nonreversing heat-flow curves, were not present on the reversing heat-flow curves, and bending appeared to increase the enthalpy change for these peaks in some cases. For Neo Sentalloy, TMDSC showed that transformation between martensitic and austenitic nickel-titanium, suggested as occurring directly in the forward and reverse directions by conventional DSC, was instead a 2-step process involving the R-phase. Two-step transformations in the forward and reverse directions were also found for 35 degrees C Copper Ni-Ti and Nitinol SE. The TMDSC results show that structural transformations in these wires are complex. Some possible clinical implications of these observations are discussed.

  15. Composite ceramic superconducting wires for electric motor applications

    Science.gov (United States)

    Halloran, John W.

    1990-07-01

    Several types of HTSC wire have been produced and two types of HTSC motors are being built. Hundreds of meters of Ag- clad wire were fabricated from YBa2Cu3O(7-x) (Y-123) and Bi2Ca2Sr2Cu3O10 (BiSCCO). The dc homopolar motor coils are not yet completed, but multiple turns of wire have been wound on the coil bobbins to characterize the superconducting properties of coiled wire. Multifilamentary conductors were fabricated as cables and coils. The sintered polycrystalline wire has self-field critical current densities (Jc) as high as 2800 A/sq cm, but the Jc falls rapidly with magnetic field. To improve Jc, sintered YBCO wire is melt textured with a continuous process which has produced textures wire up to 0.5 meters long with 77K transport Jc above 11, 770 A/sq cm2 in self field and 2100 A/sq cm2 at 1 telsa. The Emerson Electric dc homopolar HTSC motor has been fabricated and run with conventional copper coils. A novel class of potential very powerful superconducting motors have been designed to use trapped flux in melt textures Y-123 as magnet replicas in an new type of permanent magnet motor. The stator element and part of the rotor of the first prototype machine exist, and the HTSC magnet replica segments are being fabricated.

  16. Nanopowder production by gas-embedded electrical explosion of wire

    International Nuclear Information System (INIS)

    Zou Xiao-Bing; Wang Xin-Xin; Jiang Wei-Hua; Mao Zhi-Guo

    2013-01-01

    A small electrical explosion of wire (EEW) setup for nanopowder production is constructed. It consists of a low inductance capacitor bank of 2 μF–4 μF typically charged to 8 kV−30 kV, a triggered gas switch, and a production chamber housing the exploding wire load and ambient gas. With the EEW device, nanosize powders of titanium oxides, titanium nitrides, copper oxides, and zinc oxides are successfully synthesized. The average particle size of synthesized powders under different experimental conditions is in a range of 20 nm−80 nm. The pressure of ambient gas or wire vapor can strongly affect the average particle size. The lower the pressure, the smaller the particle size is. For wire material with relatively high resistivity, such as titanium, whose deposited energy W d is often less than sublimation energy W s due to the flashover breakdown along the wire prematurely ending the Joule heating process, the synthesized particle size of titanium oxides or titanium nitrides increases with overheat coefficient k (k = W d /W s ) increasing. (physics of gases, plasmas, and electric discharges)

  17. Nanopowder production by gas-embedded electrical explosion of wire

    Institute of Scientific and Technical Information of China (English)

    Zou Xiao-Bing; Mao Zhi-Guo; Wang Xin-Xin; Jiang Wei-Hua

    2013-01-01

    A small electrical explosion of wire (EEW) setup for nanopowder production is constructed.It consists of a low inductance capacitor bank of 2 μF--4 μF typically charged to 8 kV-30 kV,a triggered gas switch,and a production chamber housing the exploding wire load and ambient gas.With the EEW device,nanosize powders of titanium oxides,titanium nitrides,copper oxides,and zinc oxides are successfully synthesized.The average particle size of synthesized powders under different experimental conditions is in a range of 20 nm-80 nm.The pressure of ambient gas or wire vapor can strongly affect the average particle size.The lower the pressure,the smaller the particle size is.For wire material with relatively high resistivity,such as titanium,whose deposited energy Wd is often less than sublimation energy Ws due to the flashover breakdown along the wire prematurely ending the Joule heating process,the synthesized particle size of titanium oxides or titanium nitrides increases with overheat coefficient k (k =Wd/Ws) increasing.

  18. Synthesis of vertical MnO{sub 2} wire arrays on hemp-derived carbon for efficient and robust green catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Yang, MinHo [Department of Materials Science and Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL 61801 (United States); Kim, Dong Seok; Sim, Jae-Wook [Department of Chemical Engineering, Kangwon National University, 346 Joongang-ro, Samcheok, Gangwon-do 25913 (Korea, Republic of); Jeong, Jae-Min; Kim, Do Hyun [Department of Chemical & Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141 (Korea, Republic of); Choi, Jae Hyung [Department of Chemical Engineering, Kangwon National University, 346 Joongang-ro, Samcheok, Gangwon-do 25913 (Korea, Republic of); Department of Chemical Engineering, Pukyong National University, 365 Sinseon-ro, Nam-gu, Busan 48513 (Korea, Republic of); Kim, Jinsoo [Department of Chemical Engineering, Kyung Hee University, 1732, Daogyong-daero, Giheung-gu, Yongin, Gyeonggi-do 17104 (Korea, Republic of); Kim, Seung-Soo, E-mail: sskim2008@kangwon.ac.kr [Department of Chemical Engineering, Kangwon National University, 346 Joongang-ro, Samcheok, Gangwon-do 25913 (Korea, Republic of); Choi, Bong Gill, E-mail: bgchoi@kangwon.ac.kr [Department of Chemical Engineering, Kangwon National University, 346 Joongang-ro, Samcheok, Gangwon-do 25913 (Korea, Republic of)

    2017-06-15

    Highlights: • The three-dimensional nanocomposites based on vertical MnO{sub 2} array on hemp-derived carbon (HDC) were prepared by hydrothermal method. • The 3D v-MnO{sub 2}/HDC nanocomposites showed well-defined porous nature with a high specific surface area of 382.3 m{sup 2} g{sup −1}. • PET glycolysis was performed using the 3D v-MnO{sub 2}/HDC nanocomposites as a catalyst, leading to efficient catalytic performance. - Abstract: Three-dimensional (3D) carbon materials derived from waste biomass have been attracted increasing attention in catalysis and materials science because of their great potential of catalyst supports with respect to multi-functionality, unique structures, high surface area, and low cost. Here, we present a facile and efficient way for preparing 3D heterogeneous catalysts based on vertical MnO{sub 2} wires deposited on hemp-derived 3D porous carbon. The 3D porous carbon materials are fabricated by carbonization and activation processes using hemp (Cannabis Sttiva L.). These 3D porous carbon materials are employed as catalyst supports for direct deposition of vertical MnO{sub 2} wires using a one-step hydrothermal method. The XRD and XPS results reveal the crystalline structure of α-MnO{sub 2} wires. The resultant composites are further employed as a catalyst for glycolysis of poly(ethylene terephthalate) (PET) with high conversion yield of 98%, which is expected to be expressly profitable for plastics recycling industry.

  19. Determination of separation efficiency in wire mesh mist eliminator by CFD

    International Nuclear Information System (INIS)

    Shen Shengqiang; Zhen Ni; Mu Xingsen

    2014-01-01

    On the assumption of the staggered array model, a numerical simulation of the vapor flow field in wire mesh mist eliminator along with the mechanism for droplet capture due to inertial impaction is presented in this paper. The efficiency of a single wire in the eliminator is computed in order that the efficiency of wire mesh mist eliminator can be calculated. The obtained efficiency is found to be within a reasonable agreement with the published literature data. The effect of wire diameter, pad thickness, packing fraction on the separation efficiency and the relation between Stk and the efficiency of a single wire is investigated. (authors)

  20. Current scaling of radiated power for 40-mm diameter single wire arrays on Z

    Science.gov (United States)

    Nash, T. J.; Cuneo, M. E.; Spielman, R. B.; Chandler, G. A.; Leeper, R. J.; Seaman, J. F.; McGurn, J.; Lazier, S.; Torres, J.; Jobe, D.; Gilliland, T.; Nielsen, D.; Hawn, R.; Bailey, J. E.; Lake, P.; Carlson, A. L.; Seamen, H.; Moore, T.; Smelser, R.; Pyle, J.; Wagoner, T. C.; LePell, P. D.; Deeney, C.; Douglas, M. R.; McDaniel, D.; Struve, K.; Mazarakis, M.; Stygar, W. A.

    2004-11-01

    In order to estimate the radiated power that can be expected from the next-generation Z-pinch driver such as ZR at 28 MA, current-scaling experiments have been conducted on the 20 MA driver Z. We report on the current scaling of single 40 mm diameter tungsten 240 wire arrays with a fixed 110 ns implosion time. The wire diameter is decreased in proportion to the load current. Reducing the charge voltage on the Marx banks reduces the load current. On one shot, firing only three of the four levels of the Z machine further reduced the load current. The radiated energy scaled as the current squared as expected but the radiated power scaled as the current to the 3.52±0.42 power due to increased x-ray pulse width at lower current. As the current is reduced, the rise time of the x-ray pulse increases and at the lowest current value of 10.4 MA, a shoulder appears on the leading edge of the x-ray pulse. In order to determine the nature of the plasma producing the leading edge of the x-ray pulse at low currents further shots were taken with an on-axis aperture to view on-axis precursor plasma. This aperture appeared to perturb the pinch in a favorable manner such that with the aperture in place there was no leading edge to the x-ray pulses at lower currents and the radiated power scaled as the current squared ±0.75. For a full-current shot we will present x-ray images that show precursor plasma emitting on-axis 77 ns before the main x-ray burst.

  1. A simple homogeneous model for regular and irregular metallic wire media samples

    Science.gov (United States)

    Kosulnikov, S. Y.; Mirmoosa, M. S.; Simovski, C. R.

    2018-02-01

    To simplify the solution of electromagnetic problems with wire media samples, it is reasonable to treat them as the samples of a homogeneous material without spatial dispersion. The account of spatial dispersion implies additional boundary conditions and makes the solution of boundary problems difficult especially if the sample is not an infinitely extended layer. Moreover, for a novel type of wire media - arrays of randomly tilted wires - a spatially dispersive model has not been developed. Here, we introduce a simplistic heuristic model of wire media samples shaped as bricks. Our model covers WM of both regularly and irregularly stretched wires.

  2. Double-sided coaxial circuit QED with out-of-plane wiring

    Science.gov (United States)

    Rahamim, J.; Behrle, T.; Peterer, M. J.; Patterson, A.; Spring, P. A.; Tsunoda, T.; Manenti, R.; Tancredi, G.; Leek, P. J.

    2017-05-01

    Superconducting circuits are well established as a strong candidate platform for the development of quantum computing. In order to advance to a practically useful level, architectures are needed which combine arrays of many qubits with selective qubit control and readout, without compromising on coherence. Here, we present a coaxial circuit quantum electrodynamics architecture in which qubit and resonator are fabricated on opposing sides of a single chip, and control and readout wiring are provided by coaxial wiring running perpendicular to the chip plane. We present characterization measurements of a fabricated device in good agreement with simulated parameters and demonstrating energy relaxation and dephasing times of T1 = 4.1 μs and T2 = 5.7 μs, respectively. The architecture allows for scaling to large arrays of selectively controlled and measured qubits with the advantage of all wiring being out of the plane.

  3. A new route to process diamond wires

    Directory of Open Access Journals (Sweden)

    Marcello Filgueira

    2003-06-01

    Full Text Available We propose an original route to process diamond wires, denominated In Situ Technology, whose fabrication involves mechanical conformation processes, such as rotary forging, copper tubes restacking, and thermal treatments, such as sintering and recrystallisation of a bronze 4 wt.% diamond composite. Tensile tests were performed, reaching an ultimate tensile strength (UTS of 230 MPa for the diameter of Æ = 1.84 mm. Scanning electron microscopy showed the diamond crystals distribution along the composite rope during its manufacture, as well as the diamond adhesion to the bronze matrix. Cutting tests were carried out with the processed wire, showing a probable performance 4 times higher than the diamond sawing discs, however its probable performance was about 5 to 8 times less than the conventional diamond wires (pearl system due to the low abrasion resistance of the bronze matrix, and low adhesion between the pair bronze-diamond due to the use of not metallised diamond single crystals.

  4. Experimental investigation of the ribbon-array ablation process

    International Nuclear Information System (INIS)

    Li Zhenghong; Xu Rongkun; Chu Yanyun; Yang Jianlun; Xu Zeping; Ye Fan; Chen Faxin; Xue Feibiao; Ning Jiamin; Qin Yi; Meng Shijian; Hu Qingyuan; Si Fenni; Feng Jinghua; Zhang Faqiang; Chen Jinchuan; Li Linbo; Chen Dingyang; Ding Ning; Zhou Xiuwen

    2013-01-01

    Ablation processes of ribbon-array loads, as well as wire-array loads for comparison, were investigated on Qiangguang-1 accelerator. The ultraviolet framing images indicate that the ribbon-array loads have stable passages of currents, which produce axially uniform ablated plasma. The end-on x-ray framing camera observed the azimuthally modulated distribution of the early ablated ribbon-array plasma and the shrink process of the x-ray radiation region. Magnetic probes measured the total and precursor currents of ribbon-array and wire-array loads, and there exists no evident difference between the precursor currents of the two types of loads. The proportion of the precursor current to the total current is 15% to 20%, and the start time of the precursor current is about 25 ns later than that of the total current. The melting time of the load material is about 16 ns, when the inward drift velocity of the ablated plasma is taken to be 1.5 × 10 7 cm/s.

  5. Analysis of antioxidants in insulation cladding of copper wire: a comparison of different mass spectrometric techniques (ESI-IT, MALDI-RTOF and RTOF-SIMS).

    Science.gov (United States)

    Schnöller, Johannes; Pittenauer, Ernst; Hutter, Herbert; Allmaier, Günter

    2009-12-01

    Commercial copper wire and its polymer insulation cladding was investigated for the presence of three synthetic antioxidants (ADK STAB AO412S, Irganox 1010 and Irganox MD 1024) by three different mass spectrometric techniques including electrospray ionization-ion trap-mass spectrometry (ESI-IT-MS), matrix-assisted laser desorption/ionization reflectron time-of-flight (TOF) mass spectrometry (MALDI-RTOF-MS) and reflectron TOF secondary ion mass spectrometry (RTOF-SIMS). The samples were analyzed either directly without any treatment (RTOF-SIMS) or after a simple liquid/liquid extraction step (ESI-IT-MS, MALDI-RTOF-MS and RTOF-SIMS). Direct analysis of the copper wire itself or of the insulation cladding by RTOF-SIMS allowed the detection of at least two of the three antioxidants but at rather low sensitivity as molecular radical cations and with fairly strong fragmentation (due to the highly energetic ion beam of the primary ion gun). ESI-IT- and MALDI-RTOF-MS-generated abundant protonated and/or cationized molecules (ammoniated or sodiated) from the liquid/liquid extract. Only ESI-IT-MS allowed simultaneous detection of all three analytes in the extract of insulation claddings. The latter two so-called 'soft' desorption/ionization techniques exhibited intense fragmentation only by applying low-energy collision-induced dissociation (CID) tandem MS on a multistage ion trap-instrument and high-energy CID on a tandem TOF-instrument (TOF/RTOF), respectively. Strong differences in the fragmentation behavior of the three analytes could be observed between the different CID spectra obtained from either the IT-instrument (collision energy in the very low eV range) or the TOF/RTOF-instrument (collision energy 20 keV), but both delivered important structural information. Copyright 2009 John Wiley & Sons, Ltd.

  6. X-ray absorption spectroscopy of aluminum z-pinch plasma with tungsten backlighter planar wire array source

    Energy Technology Data Exchange (ETDEWEB)

    Osborne, G. C.; Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Weller, M. E.; Shrestha, I.; Shlyaptseva, V. V. [Physics Department, University of Nevada, Reno, Reno, Nevada 89557 (United States); Ouart, N. D. [Naval Research Laboratory, Washington, D.C. 20375 (United States)

    2012-10-15

    Absorption features from K-shell aluminum z-pinch plasmas have recently been studied on Zebra, the 1.7 MA pulse power generator at the Nevada Terawatt Facility. In particular, tungsten plasma has been used as a semi-backlighter source in the generation of aluminum K-shell absorption spectra by placing a single Al wire at or near the end of a single planar W array. All spectroscopic experimental results were recorded using a time-integrated, spatially resolved convex potassium hydrogen phthalate (KAP) crystal spectrometer. Other diagnostics used to study these plasmas included x-ray detectors, optical imaging, laser shadowgraphy, and time-gated and time-integrated x-ray pinhole imagers. Through comparisons with previous publications, Al K-shell absorption lines are shown to be from much lower electron temperature ({approx}10-40 eV) plasmas than emission spectra ({approx}350-500 eV).

  7. Thermal analysis methods for LMFBR wire wrapped bundles

    International Nuclear Information System (INIS)

    Todreas, N.E.

    1976-11-01

    A note is presented which was written to stimulate an awareness and discussion of the fundamental differences in the formulation of certain existing analysis codes for LMFBR wire wrap bundles. The contention of the note is that for those array types where data exists (one wire per pin, equal start angles), the ENERGY method results for coolant temperature under forced convection conditions provide benchmarks of reliability equal to the results of codes COBRA and TH1-3D

  8. Underwater electrical wire explosion: Shock wave from melting being overtaken by shock wave from vaporization

    Science.gov (United States)

    Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin

    2018-05-01

    The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.

  9. Structural Investigations of GaAs/AIAs quantum wires and quantum dots

    NARCIS (Netherlands)

    Darhuber, A.A.; Bauer, G.; Wang, P.D.; Song, Y.P.; Sotomayor Torres, C.M.; Holland, M.C.

    1995-01-01

    We have investigated periodic arrays of dry etched 150 nm and 175 nm wide, (110) oriented GaAs/AlAs quantum wires and quantum dots by means of reciprocal-space mapping using triple-axis X-ray diffractometry. From the X-ray data the lateral periodicity of wires and dots, the etch depth and the angle

  10. Pulsed wire discharge apparatus for mass production of copper nanopowders.

    Science.gov (United States)

    Suematsu, H; Nishimura, S; Murai, K; Hayashi, Y; Suzuki, T; Nakayama, T; Jiang, W; Yamazaki, A; Seki, K; Niihara, K

    2007-05-01

    A pulsed wire discharge (PWD) apparatus for the mass production of nanopowders has been developed. The apparatus has a continuous wire feeder, which is operated in synchronization with a discharging circuit. The apparatus is designed for operation at a maximum repetition rate of 1.4 Hz at a stored energy of 160 J. In the present study, Cu nanopowder was synthesized using the PWD apparatus and the performance of the apparatus was examined. Cu nanopowder of 2.0 g quantity was prepared in N(2) gas at 100 kPa for 90 s. The particle size distribution of the Cu nanopowder was analyzed by transmission electron microscopy and the mean surface diameter was determined to be 65 nm. The ratio of the production mass of the powder to input energy was 362 g/kW h.

  11. Surface state of the wire electrode and its influence on the application characteristics in MAG welding

    International Nuclear Information System (INIS)

    Piffer, W.; Marques, P.V.; Modenesi, P.J.

    1997-01-01

    This work presents an evaluation of the effect of the surface condition of the wire on GMA welding performance. Three wires samples were produced from the same steel heat with different surface conditions. Short circuit transfer welding trials were performed for two wire feed rates and different voltage levels. These tests indicated that stability tended to be worse and spatter level higher for the lowest and the highest welding voltage operation and the wire with no copper coating. No major difference was observed for intermediate voltage operation. Scanning electron microscopy of contact tips suggested that cooper coated wires produced less erosion on the tips. Electrical resistance of wires and friction forces between wires and contact tip were also evaluated and used to analyze differences in influence of wire surface condition on welding results. (Author) 14 refs

  12. Stress/strain characteristics of Cu alloy sheath in situ processed MgB2 superconducting wires

    International Nuclear Information System (INIS)

    Katagiri, Kazumune; Kasaba, Koichi; Shoji, Yoshitaka

    2005-01-01

    The mechanical properties of copper and copper alloy (Cu-Zr, Cu-Be and Cu-Cr) sheath in situ PIT-processed MgB 2 superconducting wires were studied at room temperature (RT) and 4.2 K. The effects of stress-strain on the critical current (I c ) of the wires have also been studied at 4.2 K and in magnetic fields up to 5 T. It has been clarified that alloying the Cu sheath significantly increases the yield and flow stresses of the wires at both RT and 4.2 K. The 0.5% flow stresses of the Cu alloy sheath wire were 147-237 MPa, whereas that of Cu was 55 MPa. At RT, serration corresponding to multiple cracking was observed around a strain of 0.4% and the stress-strain curves saturated beyond that point. The strain dependence of I c prior to the critical strain (ε irr ) was different depending on the magnetic field; being almost constant at 2 T and increasing with strain at 5 T. The I c decreased beyond ε irr , which is much larger for Cu alloy sheath wires as compared to Cu sheath wire. This is due to the difference in the residual compressive strain in the MgB 2 core during cooling from the heat-treatment temperature to 4.2 K, which is determined through relaxation by yielding in the sheath materials. The transverse compression tests revealed that the I c of the Cu alloy sheath wire did not degrade up to 314 MPa, which is also higher than that of Cu sheath wire. (author)

  13. Design of a 5-MA 100-ns linear-transformer-driver accelerator for wire array Z-pinch experiments

    Directory of Open Access Journals (Sweden)

    Zhou Lin

    2016-03-01

    Full Text Available The linear-transformer-driver (LTD is a recently developed pulsed-power technology that shows great promise for a number of applications. These include a Z-pinch-driven fission-fusion-hybrid reactor that is being developed by the Chinese Academy of Engineering Physics. In support of the reactor development effort, we are planning to build an LTD-based accelerator that is optimized for driving wire-array Z-pinch loads. The accelerator comprises six modules in parallel, each of which has eight series 0.8-MA LTD cavities in a voltage-adder configuration. Vacuum transmission lines are used from the interior of the adder to the central vacuum chamber where the load is placed. Thus the traditional stack-flashover problem is eliminated. The machine is 3.2 m tall and 12 m in outer diameter including supports. A prototype cavity was built and tested for more than 6000 shots intermittently at a repetition rate of 0.1 Hz. A novel trigger, in which only one input trigger pulse is needed by utilizing an internal trigger brick, was developed and successfully verified in these shots. A full circuit modeling was conducted for the accelerator. The simulation result shows that a current pulse rising to 5.2 MA in 91 ns (10%–90% can be delivered to the wire-array load, which is 1.5 cm in height, 1.2 cm in initial radius, and 1 mg in mass. The maximum implosion velocity of the load is 32  cm/μs when compressed to 0.1 of the initial radius. The maximum kinetic energy is 78 kJ, which is 11.7% of the electric energy stored in the capacitors. This accelerator is supposed to enable a radiation energy efficiency of 20%–30%, providing a high efficient facility for research on the fast Z pinch and technologies for repetition-rate-operated accelerators.

  14. Inspection of copper canisters for spent nuclear fuel by means of ultrasonic array system. Modelling, defect detection and grain noise estimation

    International Nuclear Information System (INIS)

    Wu Ping; Stepinski, T.

    1998-07-01

    . These experiments have demonstrated that use of focused, steered beams is a very effective solution to the inspection of the zone close to the outer walls of copper canisters, and they have also indicated the most suitable beam angle for this inspection. For evaluation of attenuation, the log-spectral difference method and the spectral shift method have been employed. Measurements were made on copper specimens of different grades. The results have shown that the spectral shift method gives a stable estimation of attenuation when the echoes from front and back surfaces of a specimen are used. Therefore, the spectral shift method has been chosen for the attenuation evaluation. For estimation of grain noise, two statistical models, i.e., the independent scattering model (ISM) and the K-distribution model (KDM), are used. The ISM has been applied to estimate grain noise in three copper specimens with different grades. The results have shown that the model gives good prediction under the approximation which is expected to be valid for the early time portion of a signal when the main beam has not been significantly attenuated. They have also demonstrated that the figure of merit (FOM) obtained from the ISM can be a good parameter used for depicting grain noise severity. The KDM has been further exploited and applied to evaluate grain noise from welds in copper canisters, and also applied to detect defects in welds. To suppress structure noise in weld, formerly developed frequency diversity technique has been applied. Unfortunately, no improvement has been observed after processing the ultrasonic data using non coherent detector (NCD). A novel technique based on the concept of spatial diversity has been proposed for the suppression of noise in the weld zone. The spatial diversity is realized by using a set of beams steered at different angles by the array. The preliminary tests have shown some potential for the noise suppression, but more effort is needed to evaluate it

  15. Superconducting wire for Lawrence Livermore National Laboratory in U.S.A

    International Nuclear Information System (INIS)

    Inoue, Itaru; Ikeda, Masaru; Tanaka, Yasuzo; Meguro, Shinichiro

    1985-01-01

    In Lawrence Livermore National Laboratory in USA, the development of a mirror type nuclear fusion reactor is carried out, and for plasma confinement, superconducting magnets are used. For the axicell coil generating a 12 T magnetic field in one of these magnets, Nb 3 Sn superconducting wires are to be used, and after the completion, it will be the largest magnet in the world as high magnetic field superconducting magnets. Furukawa Electric Co., Ltd. has completed the delivery of Nb 3 Sn superconducting wires used for this purpose. Since the Nb 3 Sn superconducting wires are very brittle, attention was paid to the manufacture to satisfy the required characteristics, and it was able to obtain the good reputation that the product was highly homogeneous as the superconducting wires of this type. In this paper, the design, manufacture and various characteristics of these superconducting wires are reported. The Nb 3 Sn superconducting wires were manufactured on industrial scale of 8 tons. The features of these Nb 3 Sn wires are the compound structure with semi-hard copper for low temperature stability and strengthening. (Kako, I.)

  16. Strain sensing systems tailored for tensile measurement of fragile wires

    Science.gov (United States)

    Nyilas, Arman

    2005-12-01

    Fundamental stress versus strain measurements were completed on superconducting Nb3Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb3Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb3Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb3Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb3Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system.

  17. Strain sensing systems tailored for tensile measurement of fragile wires

    International Nuclear Information System (INIS)

    Nyilas, Arman

    2005-01-01

    Fundamental stress versus strain measurements were completed on superconducting Nb 3 Sn wires within the framework of IEC/TC90 and VAMAS/TWA16. A key task was the assessment of sensing systems regarding resolution, accuracy, and precision when measuring Young's modulus. Prior to actual Nb 3 Sn wire measurements metallic wires, consisting of copper and stainless steel having diameters similar to the Nb 3 Sn wire, were extensively investigated with respect to their elastic line properties using different types of extensometers. After these calibration tests Nb 3 Sn wire measurements of different companies resulted in several important facts with respect to total size and weight of the used extensometers. The size could be correlated to the initial stage of stress versus strain behaviour. In fact, the effect of wire curls resulting from the production line had a profound effect on Young's modulus measurements. Within this context, the possibility of determining Young's modulus from unloading compliance lines in the plastic regime of the stress-strain curve was considered. The data obtained using this test methodology were discussed under consideration of the composite nature of Nb 3 Sn wire. In addition, a non-contacting sensing system based on a double-beam laser extensometer was used to investigate the potential of this new sensing system

  18. Multifilamentary Cu-Nb3Sn superconductor wires

    International Nuclear Information System (INIS)

    Rodrigues, D.; Pinatti, D.G.

    1990-01-01

    This paper reports on one of the main technological problems concerning Nb 3 Sn superconducting wires production which is the optimization of heat treatments for the formation of the A-15 intermetallic compound. At the present work, Nb 3 Sn superconducting wire is produced by solid-liquid diffusion method which increases considerably the critical current values of the superconductor. Through this method, niobium, copper and Sn 7% wt Cu alloy are kept in the pure state. Thus, the method dispenses intermediate heat treatments of recrystallization during the manufacturing process of the wire. After the wire was ready, optimization work of heat treatments was accomplished aiming to obtain its best superconducting characteristics, Measurement of critical temperature, critical current versus magnetic field, normal and at room temperature resistivity were performed, as well as scanning electron microscopy for determination of Nb 3 Sn layers and transmission electron microscopy measurements of redetermining the grain sizes in Nb 3 Sn formed in each treatment. It was obtained critical current densities of 1.8 x 10 6 A/cm 2 in the Nb 3 Sn layer, at 10 Teslas and 4.2 K. The samples were analyzed by employing the superconducting collective flux pinning theories and a satisfactory agreement between the experimental and theoretical data was attained. The production process and the small size of the filaments used made a successful optimization of the wire possible

  19. Variable-delay Polarization Modulators for the CLASS Telescope

    Science.gov (United States)

    Harrington, Kathleen; Ali, A.; Amiri, M.; Appel, J. W.; Araujo, D.; Bennett, C. L.; Boone, F.; Chan, M.; Cho, H.; Chuss, D. T.; Colazo, F.; Crowe, E.; Denis, K.; Dünner, R.; Eimer, J.; Essinger-Hileman, T.; Gothe, D.; Halpern, M.; Hilton, G.; Hinshaw, G. F.; Huang, C.; Irwin, K.; Jones, G.; Karakla, J.; Kogut, A. J.; Larson, D.; Limon, M.; Lowry, L.; Marriage, T.; Mehrle, N.; Miller, A. D.; Miller, N.; Mirel, P.; Moseley, S. H.; Novak, G.; Reintsema, C.; Rostem, K.; Stevenson, T.; Towner, D.; U-Yen, K.; Wagner, E.; Watts, D.; Wollack, E.; Xu, Z.; Zeng, L.

    2014-01-01

    The challenges of measuring faint polarized signals at microwave wavelengths have motivated the development of rapid polarization modulators. One scalable technique, called a Variable-delay Polarization Modulator (VPM), consists of a stationary wire array in front of a movable mirror. The mirror motion creates a changing phase difference between the polarization modes parallel and orthogonal to the wire array. The Cosmology Large Angular Scale Surveyor (CLASS) will use a VPM as the first optical element in a telescope array that will search for the signature of inflation through the “B-mode” pattern in the polarization of the cosmic microwave background. In the CLASS VPMs, parallel transport of the mirror is maintained by a voice-coil actuated flexure system which will translate the mirror in a repeatable manner while holding tight parallelism constraints with respect to the wire array. The wire array will use 51 μm diameter copper-plated tungsten wire with 160 μm pitch over a 60 cm clear aperture. We present the status of the construction and testing of the mirror transport mechanism and wire arrays for the CLASS VPMs.

  20. Preparation of anodic aluminum oxide (AAO) nano-template on silicon and its application to one-dimensional copper nano-pillar array formation

    International Nuclear Information System (INIS)

    Shen, Lan; Ali, Mubarak; Gu, Zhengbin; Min, Bonggi; Kim, Dongwook; Park, Chinho

    2013-01-01

    Anodized aluminum oxide (AAO) nanotemplates were prepared using the Al/Si substrates with an aluminum layer thickness of about 300 nm. A two-step anodization process was used to prepare an ordered porous alumina nanotemplate, and the pores of various sizes and depths were constructed electrochemically through anodic oxidation. The optimum morphological structure for large area application was constructed by adjusting the applied potential, temperature, time, and electrolyte concentration. SEM investigations showed that hexagonal-close-packed alumina nano-pore arrays were nicely constructed on Si substrate, having smooth wall morphologies and well-defined diameters. It is also reported that one dimensional copper nanopillars can be fabricated using the tunable nanopore sized AAO/Si template, by controlling the copper deposition process

  1. Stress effects on multifilamentary Nb3Sn wire

    International Nuclear Information System (INIS)

    Bartlett, R.J.; Taylor, R.D.; Thompson, J.D.

    1979-01-01

    Critical current I/sub c/ measurements were obtained on highly stabilized mf Nb 3 Sn wires as a function of heat treatment, stress, temperature, and applied magnetic field. The ratio of the area of the copper to bronze core-niobium tube is about 8, and the filaments are concentrated in the inner 30% of the wire cross section. Values of I/sub c/ and T/sub c/ were determined for samples subjected to a wide range of heat treatments. Diffusion reaction times and temperatures in the ranges 16 to 128 hr and 700 to 750 0 C provided a number of mf Nb 3 Sn wires having similar I/sub c/ characteristics. To some extent the residual compressive loading on the Nb 3 Sn wires varied with the particular heat treatment. This loading arises primarily from the differential contraction of the remaining bronze and the Nb 3 Sn layer when cooled from the reaction temperature to the operating temperature. It was found that, by controlled bending or stretching of the wires, whereby some of the strain in the Nb 3 Sn is relieved, the I/sub c/ at 14 K is increased by as much as 30% and the critical temperature is increased by up to 1 K

  2. Elastic stiffnesses of an Nb-Ti/Cu-composite superconductive wire

    Science.gov (United States)

    Kim, Sudook; Ledbetter, Hassel; Ogi, Hirotsugu

    2000-09-01

    Elastic-stiffness coefficients were determined on a 1.4-mm-diameter wire consisting of superconducting Nb-Ti fibers in a copper matrix, with a polyvinyl-resin coating. The matrix contained 324 Nb-Ti fibers. An electromagnetic-acoustic-resonance method was used to obtain five independent elastic-stiffness coefficients assuming transverse-isotropic symmetry. From these we calculated Young moduli, bulk modulus, and principal Poisson ratios. As a check, we used a mechanical-impulse-excitation method to directly measure the Young modulus in the fiber direction. The three-phase composite wire showed a 10% anisotropy in the Young modulus.

  3. Virtual electrodes for high-density electrode arrays

    Science.gov (United States)

    Cela, Carlos J.; Lazzi, Gianluca

    2015-10-13

    The present embodiments are directed to implantable electrode arrays having virtual electrodes. The virtual electrodes may improve the resolution of the implantable electrode array without the burden of corresponding complexity of electronic circuitry and wiring. In a particular embodiment, a virtual electrode may include one or more passive elements to help steer current to a specific location between the active electrodes. For example, a passive element may be a metalized layer on a substrate that is adjacent to, but not directly connected to an active electrode. In certain embodiments, an active electrode may be directly coupled to a power source via a conductive connection. Beneficially, the passive elements may help to increase the overall resolution of the implantable array by providing additional stimulation points without requiring additional wiring or driver circuitry for the passive elements.

  4. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    Science.gov (United States)

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively.

  5. Efficacy of copper oxide wire particles against gastrointestinal nematodes in sheep and goats.

    Science.gov (United States)

    Soli, F; Terrill, T H; Shaik, S A; Getz, W R; Miller, J E; Vanguru, M; Burke, J M

    2010-02-26

    Profitable sheep and goat production in the USA is severely limited by gastrointestinal nematode (GIN) parasitism, particularly by Haemonchus contortus. Copper oxide wire particles (COWP) have anti-parasitic properties in the diet of small ruminants, but efficacy of COWP may differ between sheep and goats. In a study with weaned kids (Kiko x Spanish cross, 6 months old) and lambs (Katahdin or Dorper x Blackface crosses, 5 months old), grazing the same pasture area in Central Georgia, 2g of COWP in a gel capsule was given to half the animals of each species, while the other half were given no COWP. Fecal and blood samples were taken weekly to determine GIN fecal egg counts (FEC) and blood packed cell volume (PCV). After COWP treatment, animals were grazed for 4 weeks and then slaughtered, with adult GIN recovered from the abomasum and small intestines for counting and identification to species. For both sheep and goats, COWP treatment reduced EPG (P<0.05), increased PCV (P<0.05), and lowered abomasal GIN numbers (P<0.05). For EPG, these differences were 82.5 and 90.5% for sheep and goats, respectively, 26 days after treatment, while adult H. contortus were 67.2 and 85.8% lower for COWP-treated sheep and goats, respectively. In this study, COWP treatment was equally effective against H. contortus infection in lambs and kids and appears to be an effective method of controlling H. contortus infection for up to 6 weeks in small ruminants following weaning.

  6. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno; Accardo, Angelo; Falqui, Andrea; Marini, Monica; Giugni, Andrea; Leoncini, Marco; De Angelis, Francesco De; Krahne, Roman; Di Fabrizio, Enzo M.

    2014-01-01

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  7. Writing and functionalisation of suspended DNA nanowires on superhydrophobic pillar arrays

    KAUST Repository

    Miele, Ermanno

    2014-08-08

    Nanowire arrays and networks with precisely controlled patterns are very interesting for innovative device concepts in mesoscopic physics. In particular, DNA templates have proven to be versatile for the fabrication of complex structures that obtained functionality via combinations with other materials, for example by functionalisation with molecules or nanoparticles, or by coating with metals. Here, the controlled motion of the a three-phase contact line (TCL) of DNA-loaded drops on superhydrophobic substrates is used to fabricate suspended nanowire arrays. In particular, the deposition of DNA wires is imaged in situ, and different patterns are obtained on hexagonal pillar arrays by controlling the TCL velocity and direction. Robust conductive wires and networks are achieved by coating the wires with a thin layer of gold, and as proof of concept conductivity measurements are performed on single suspended wires. The plastic material of the superhydrophobic pillars ensures electrical isolation from the substrate. The more general versatility of these suspended nanowire networks as functional templates is outlined by fabricating hybrid organic-metal-semiconductor nanowires by growing ZnO nanocrystals onto the metal-coated nanowires.

  8. Quality analysis of superconducting wire and cable for SSC dipole magnets

    International Nuclear Information System (INIS)

    Pollock, D.A.

    1992-01-01

    This paper reports that a critical component of the SSC collider dipole magnets is superconducting cable. The uniformity and reliability requirements for the dipoles place stringent demands on the cable. These needs have been defined as various contract requirements in the material specifications for NbTi alloy, superconducting wire and cable. A supplied qualification program is being started by the SSCL with industry to establish reliable sources of superconductor cable. Key to this qualification program is the establishment by industry of detailed process methods and controls for wire and cable manufacture. To monitor conductor performance, a computer database is being developed by the SSCL Magnet Systems Division Quality Assurance Department. The database is part of a program for ensuring superconductor uniformity by focusing on the understanding and control of variation. A statistical and graphical summary of current data for key performance variables will be presented in light of the specification requirement for uniformity. Superconductor material characteristics to be addressed will include Wire Critical Current (I c ), Copper Ratio (Cu:SC), Wire Diameter, Wire Piece Length, and Cable Dimensional Control

  9. Persistence of the efficacy of copper oxide wire particles against Haemonchus contortus in grazing South African goats.

    Science.gov (United States)

    Vatta, A F; Waller, P J; Githiori, J B; Medley, G F

    2012-11-23

    A study was conducted to examine the duration of anthelmintic effect of copper oxide wire particles (COWP) in grazing goats, as data for the persistence of efficacy of COWP in this host species is limited. Forty-eight indigenous male goats were infected naturally by grazing them on Haemonchus contortus-infected pasture. When the faecal egg count (FEC) in the goats was 3179 ± 540 eggs per gram of faeces (mean ± standard error), half the animals were treated with 4 g COWP (day 0; mean live weight=25.5 ± 0.8 kg). Eight treated (COWP) and eight non-treated (CONTROL) goats were removed from the pasture on each of days 7, 28 and 56, maintained for 27 or 29 days in concrete pens and then humanely slaughtered for nematode recovery. Mean liver copper levels were in the high range in the goats removed from pasture at day 7 (treated: 191 ± 19.7 ppm; untreated: 120 ± 19.7 ppm; P=0.022), but had dropped to normal levels at days 28 and 56. The mean H. contortus burdens of the treated versus the non-treated goats were, respectively, 184 ± 48 and 645 ± 152 for the goats removed from pasture at day 7 (71% reduction; P=0.004), 207 ± 42 and 331 ± 156 at day 28 (37% reduction; P=0.945) and 336 ± 89 and 225 ± 53 at day 56 (-49% reduction; P=0.665). Weekly monitoring of FECs after treatment until slaughter indicated that the COWP-treated goats had lower FECs than the controls, the treatment main effect being significant at days 7, 28 and 56 (Pcopper levels return to normal two to three months after COWP treatment. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Transfer printing of graphene strip from the graphene grown on copper wires

    International Nuclear Information System (INIS)

    Su, Ching-Yuan; Fu Dongliang; Lu, Ang-Yu; Liu, Keng-Ku; Xu Yanping; Juang, Zhen-Yu; Li, Lain-Jong

    2011-01-01

    A simple, cost-effective and lithography-free fabrication of graphene strips for device applications is demonstrated. The graphene thin layers were directly grown on Cu wires, followed by Cu etching and transfer printing to arbitrary substrates by a PDMS stamp. The Cu wires can be arranged on the PDMS stamp in a desired pattern; hence, the substrates can receive graphene strips with the same pattern. Moreover, the preparation of graphene strips does not involve conventional lithography; therefore, the surface of the graphene strip is free of residual photoresists, which may be useful for studies requiring clean graphene surfaces.

  11. Examination of commercially available copper oxide wire particles in combination with albendazole for control of gastrointestinal nematodes in lambs.

    Science.gov (United States)

    Burke, J M; Miller, J E; Terrill, T H; Smyth, E; Acharya, M

    2016-01-15

    Control of gastrointestinal nematodes (GIN) remains a critical issue due to the prevalence of anthelmintic resistance. The objective of the experiment was to determine the efficacy of copper oxide wire particles (COWP) from three commercial sources and a combination of COWP and albendazole to control GIN and/or Haemonchus contortus in lambs. Naturally infected Katahdin lambs in early June 2014 and 2015 were randomly assigned to receive no COWP (CON; n=9 and 12) or 2g COWP in a gel capsule as Copasure(®) (COP; n=4 and 17; Animax Ltd.), copper oxide-wire form (AUS; n=7 in 2014 only; Pharmplex), Ultracruz™ (ULT; n=8 and 15; Santa Cruz Animal Health™), no COWP and albendazole (CON+alb; n=10 in 2015 only; 15mg/kg BW; Valbazen(®); Zoetis Animal Health), or COWP+alb (n=7 and 11; in 2014, lambs were administered alb on day 3). Lambs grazed grass pastures as a group and were supplemented with 227g/lamb daily of a commercial grain mix (15% crude protein) and the same amount of alfalfa pellets. Feces were collected on days 0 (day of COWP treatment), 7, and 14 for determination of fecal egg counts (FEC). Pooled (2014) or pooled treatment group feces were cultured on days 0, 7, and 14 (2015 only) to determine GIN genera. Data were analyzed using repeated measures in a mixed model, and FEC were log transformed. The predominant GIN on day 0 was H. contortus (87%) in 2014, and there was a mixed population in 2015. The mean FEC was reduced by day 7 in AUS and ULT lambs (treatment×day, P=0.001), and all of the COWP products were similar. By day 14, the AUS FEC were lower than the CON and COP groups. When examining the combination of COWP and synthetic anthelmintic, the FEC of COWP+alb were reduced to nearly 0eggs/g (back-transformed) and lower than the other groups (treatment×day, P=0.001). The percentage of H. contortus in cultured feces was reduced to a greater extent in the COWP than CON or CON+alb groups of lambs. In a mixed GIN population, the COWP products appeared to

  12. Gaseous discharge display panel including pilot electrodes and radioactive wire

    International Nuclear Information System (INIS)

    Edwards, R.J.; Hairabedian, B.Z.; Poley, N.M.

    1975-01-01

    In a plasma display panel consisting of gas enclosed between adjacent insulating members, a light source is used to supply charged particles in the gas to permit firing of the gas when coordinate conductors identifying a site location are energized. The use of such pilot lamps facilitates ignition in firing with uniform selection and firing potentials within all sites of the display panel. To eliminate the difficulty in achieving firing during cold starts a radioactive source comprised of a copper wire electroplated with nickel 63 and overcoated with a protective coat of nickel is placed within the gas panel to provide a source of free electrons. The wire is held in place by friction against the inside walls of the panel. Since the wire emits only beta radiation, no radiation hazard exists externally to the panel

  13. Design of a wire imaging synchrotron radiation detector

    International Nuclear Information System (INIS)

    Kent, J.; Gomez-Cadenas, J.J.; Hogan, A.; King, M.; Rowe, W.; Watson, S.; Von Zanthier, C.; Briggs, D.D.; Levi, M.

    1990-01-01

    This paper documents the design of a detector invented to measure the positions of synchrotron radiation beams for the precision energy spectrometers of the Stanford Linear Collider (SLC). The energy measurements involve the determination, on a pulse-by-pulse basis, of the separation of pairs of intense beams of synchrotron photons in the MeV energy range. The detector intercepts the beams with arrays of fine wires. The ejection of Compton recoil electrons results in charges being developed in the wires, thus enabling a determination of beam positions. 10 refs., 4 figs

  14. Microneedle arrays for biosensing and drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger; Miller, Philip

    2017-08-29

    Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce a probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.

  15. Microneedle arrays for biosensing and drug delivery

    Science.gov (United States)

    Wang, Joseph; Windmiller, Joshua Ray; Narayan, Roger; Miller, Philip; Polsky, Ronen; Edwards, Thayne L.

    2017-08-22

    Methods, structures, and systems are disclosed for biosensing and drug delivery techniques. In one aspect, a^ device for detecting an analyte and/or releasing a biochemical into a biological fluid can include an array of hollowed needles, in which each needle includes a protruded needle structure including an exterior wall forming a hollow interior and an opening at a terminal end of the protruded needle structure that exposes the hollow interior, and a probe inside the exterior wall to interact with one or more chemical or biological substances that come in contact with the probe via the opening to produce a probe sensing signal, and an array of wires that are coupled to probes of the array of hollowed needles, respectively, each wire being electrically conductive to transmit the probe sensing signal produced by a respective probe.

  16. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites.

    Science.gov (United States)

    Florián-Algarín, David; Marrero, Raúl; Li, Xiaochun; Choi, Hongseok; Suárez, Oscar Marcelo

    2018-03-10

    This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas) welding of aluminum. A206 (Al-4.5Cu-0.25Mg) master nanocomposites with 5 wt % γAl₂O₃ nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl₂O₃ nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al-γAl₂O₃ nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires' electrical conductivity compared with that of pure aluminum and aluminum-copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.

  17. Inspection of copper canisters for spent nuclear fuel by means of ultrasound. Phased arrays, ultrasonic imaging and nonlinear acoustics

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Ping Wu; Wennerstroem, Erik [Uppsala Univ. (Sweden). Signals and Systems

    2004-09-01

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in years 2003/2004. After a short introduction a review of beam forming fundamentals required for proper understanding phased array operation is included. The factors that determine lateral resolution during ultrasonic imaging of flaws in solids are analyzed and results of simulations modelling contact inspection of copper are presented. In the second chapter an improved synthetic aperture imaging (SAI) technique is introduced. The proposed SAI technique is characterized by an enhanced lateral resolution compared with the previously proposed extended synthetic aperture focusing technique (ESAFT). The enhancement of imaging performance is achieved due to more realistic assumption concerning the probability density function of scatterers in the region of interest. The proposed technique takes the form of a two-step algorithm using the result obtained in the first step as a prior for the second step. Final chapter contains summary of our recent experimental and theoretical research on nonlinear ultrasonics of unbounded interfaces. A new theoretical model for rough interfaces is developed, and the experimental results from the copper specimens that mimic contact cracks of different types are presented. Derivation of the theory and selected measurement results are given in appendix.

  18. Inspection of copper canister for spent nuclear fuel by means of ultrasound. FSW monitoring with emission, copper characterization and ultrasonic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (ed.); Engholm, Marcus; Olofsson, Tomas (Uppsala Univ., Signals and Systems, Dept. of Technical Sciences, Uppsala (Sweden))

    2008-09-15

    This report contains the research results concerning advanced ultrasound for the inspection of copper canisters for spent nuclear fuel obtained at Signals and Systems, Uppsala University in 2007. In the first part of the report we further develop the concept of monitoring of the friction stir welding (FSW) process by means of acoustic emission (AE) technique implemented using multiple sensors formed into a circular array. After a brief introduction into the field of arrays and beamforming we focus on the features of uniform circular arrays (UCA). Results obtained from the simulations of UCA beamformer based on phase mode concept are presented for the continuous wave as well as for the pulse, noise-free input signals. The influence of white noise corrupting the input pulse is also considered and a simple regularization technique proposed as a solution to this problem. The second part of the report is concerned with aspects related to ultrasonic attenuation of copper material used for canisters. We compare resonant ultrasound spectroscopy (RUS) with other methods used for characterization of the copper material. RUS is a non-destructive technique based on sensing mechanical resonances present in a tested sample in the ultrasonic frequency range. Resonance frequencies observed in a material sample (with given geometry) are directly related to the vibration modes occurring in the inspected volume defined by the material parameters (elastic constants). We solve the inverse problem that consists in using the information about resonance frequencies acquired in physical measurements for estimating material parameters. Our aim in this project is to investigate the feasibility of RUS for the grain size estimation in copper using copper specimens that were provided by SKB. In the final part we consider the design of input signals for ultrasonic arrays. The Bayesian linear minimum mean squared error (LMMSE) estimator discussed in our former reports is studied. We show that it

  19. Preparation and characterization of CuO nanowire arrays

    International Nuclear Information System (INIS)

    Yu Dongliang; Ge Chuannan; Du Youwei

    2009-01-01

    CuO nanowire arrays were prepared by oxidation of copper nanowires embedded in anodic aluminum oxide (AAO) membranes. The AAO was fabricated in an oxalic acid at a constant voltage. Copper nanowires were formed in the nanopores of the AAO membranes in an electrochemical deposition process. The oxidized copper nanowires at different temperatures were studied. X-ray diffraction patterns confirmed the formation of a CuO phase after calcining at 500 0 C in air for 30 h. A transmission electron microscopy was used to characterize the nanowire morphologies. Raman spectra were performed to study the CuO nanowire arrays. After measuring, we found that the current-voltage curve of the CuO nanowires is nonlinear.

  20. AC losses of single-core MgB{sub 2} wires with different metallic sheaths

    Energy Technology Data Exchange (ETDEWEB)

    Kováč, J., E-mail: elekjkov@savba.sk; Šouc, J.; Kováč, P.; Hušek, I.

    2015-12-15

    Highlights: • AC losses in single-core MgB{sub 2} wires with different metallic sheaths have been measured. • It has been shown that metallic sheath can affect the measured AC loss considerably. • GlidCop and Stainless Steel have negligible effect to the overall loss. • Strong contribution of eddy currents has been found in the wire with well conductive copper sheath. • Due to Monel sheath AC loss of MgB{sub 2} core is not visible. - Abstract: AC losses of single-core MgB{sub 2} superconductors with different metallic sheaths (Cu, GlidCop, stainless steel and Monel) have been measured and analyzed. These wires were exposed to external magnetic field with frequencies 72 and 144 Hz and amplitudes up to 0.1 T at temperatures ranged from 18 to 40 K. The obtained results have shown that applied metallic sheath can affect the measured AC loss considerably. In the case of GlidCop and Stainless Steel a negligible small effect of metallic sheath was observed. Strong contribution of eddy currents has been found in the wire with well conductive copper sheath. In the case of Monel sheath, the hysteresis loss of magnetic sheath is dominated and AC loss of MgB{sub 2} core is practically not visible.

  1. X-ray backlighting of two-wire Z-pinch plasma using X-pinch

    International Nuclear Information System (INIS)

    Tong, Zhao; Xiao-Bing, Zou; Ran, Zhang; Xin-Xin, Wang

    2010-01-01

    Two 50-μm Mo wires in parallel used as a Z-pinch load are electrically exploded with a pulsed current rising to 275 kA in 125 ns and their explosion processes are backlighted using an X-pinch as an x-ray source. The backlighting images show clearly the processes similar to those occurring in the initial stages of a cylindrical wire-array Z-pinch, including the electric explosion of single wires characterised by the dense wire cores surrounded by a low-density coronal plasma, the expansion of the exploding wire, the sausage instability (m = 0) in the coronal plasma around each wire, the motion of the coronal plasma as well as the wire core toward the current centroid, the formation of the precursor plasma column with a twist structure something like that of higher mode instability, especially the kink instability (m = 1). (fluids, plasmas and electric discharges)

  2. Microwave heating of electric cable insulated wires before their impregnation with a hydrophobic material

    Energy Technology Data Exchange (ETDEWEB)

    Niculae, D; Mihailescu, A [Romanian Electricity Authority (Romania); Indreias, I; Martin, D [Institute of Atomic Physics, Bucharest (Romania); Margaritescu, A [ICPE Electrostatica, Bucharest, (Romania); Zlatonovici, D

    1998-12-31

    Underground insulated telecommunication cables must be impregnated with a hydrophobic material in order to prevent water penetration damage. To do so, the cable wire bundle must be heated to a temperature of 60 to 90 degrees C to ensure proper fluidity of the hydrophobic material that must fill the free spaces between the copper wires of the telephone cable. This paper described the microwave heating method of the wires before their impregnation. A cylindrical applicator was designed to perform a telephone bundle heating test. 800 W of microwave power were used on a telephone cable made up of 800 wires of 0.4 mm in diameter. A uniform heating was obtained throughout the section. Microwave heating was also found to be 53 per cent more energy efficient than hot air heating. 4 refs., 4 figs.

  3. Copper, Aluminum and Nickel: A New Monocrystalline Orthodontic Alloy

    Science.gov (United States)

    Wierenga, Mark

    Introduction: This study was designed to evaluate, via tensile and bend testing, the mechanical properties of a newly-developed monocrystalline orthodontic archwire comprised of a blend of copper, aluminum, and nickel (CuAlNi). Methods: The sample was comprised of three shape memory alloys; CuAlNi, copper nickel titanium (CuNiTi), and nickel titanium (NiTi); from various orthodontic manufacturers in both 0.018" round and 0.019" x 0.025" rectangular dimensions. Additional data was gathered for similarly sized stainless steel and beta-titanium archwires as a point of reference for drawing conclusions about the relative properties of the archwires. Measurements of loading and unloading forces were recorded in both tension and deflection testing. Repeated-measure ANOVA (alpha= 0.05) was used to compare loading and unloading forces across wires and one-way ANOVA (alpha= 0.05) was used to compare elastic moduli and hysteresis. To identify significant differences, Tukey post-hoc comparisons were performed. Results: The modulus of elasticity, deflection forces, and hysteresis profiles of CuAlNi were significantly different than the other superelastic wires tested. In all tests, CuAlNi had a statistically significant lower modulus of elasticity compared to the CuNiTi and NiTi wires (P orthodontic metallurgy.

  4. Dynamic hohlraum and ICF pellet implosion experiments on Z

    International Nuclear Information System (INIS)

    Nash, T.J.; Derzon, M.S.; Chandler, G.A.

    1999-01-01

    By stabilizing an imploding z-pinch on Z (20 MA, 100 ns) with a solid current return can and a nested wire array the authors have achieved dynamic hohlraum radiation temperatures over 200 eV at a diameter of approximately 1 mm. The pinch configuration yielding this temperature is a nested tungsten wire array of 240 and 120 wires at 4 and 2 cm diameters weighing 2 and 1 mg, 1 cm long, imploding onto a 5 mm diameter, 14 mg/cc cylindrical CH foam, weighing 3 mg. They have used a single 4 cm diameter tungsten wire array to drive a 1.6 mm diameter ICF capsule mounted in a 6 mg/cc foam inside a 3 mg copper annulus at 5 mm diameter, and measured x-ray emissions indicative of the pellet implosion. Mounting the pellet in foam may have caused the hohlraum to become equator-hot. They will present results from upcoming pellet experiments in which the pellet is mounted by thread and driven by a larger diameter, 6 or 7 mm, copper annulus to improve radiation drive symmetry. They will also discuss designs for tapered foam annular targets that distort a cylindrical pinch into a quasi-sphere that will wrap around an ICF pellet to further improve drive symmetry

  5. Persistence of the efficacy of copper oxide wire particles against Haemonchus contortus in grazing South African goats

    Science.gov (United States)

    Vatta, A.F.; Waller, P.J.; Githiori, J.B.; Medley, G.F.

    2012-01-01

    A study was conducted to examine the duration of anthelmintic effect of copper oxide wire particles (COWP) in grazing goats, as data for the persistence of efficacy of COWP in this host species is limited. Forty-eight indigenous male goats were infected naturally by grazing them on Haemonchus contortus-infected pasture. When the faecal egg count (FEC) in the goats was 3179 ± 540 eggs per gram of faeces (mean ± standard error), half the animals were treated with 4 g COWP (day 0; mean live weight = 25.5 ± 0.8 kg). Eight treated (COWP) and eight non-treated (CONTROL) goats were removed from the pasture on each of days 7, 28 and 56, maintained for 27 or 29 days in concrete pens and then humanely slaughtered for nematode recovery. Mean liver copper levels were in the high range in the goats removed from pasture at day 7 (treated: 191 ± 19.7 ppm; untreated: 120 ± 19.7 ppm; P = 0.022), but had dropped to normal levels at days 28 and 56. The mean H. contortus burdens of the treated versus the non-treated goats were, respectively, 184 ± 48 and 645 ± 152 for the goats removed from pasture at day 7 (71% reduction; P = 0.004), 207 ± 42 and 331 ± 156 at day 28 (37% reduction; P = 0.945) and 336 ± 89 and 225 ± 53 at day 56 (−49% reduction; P = 0.665). Weekly monitoring of FECs after treatment until slaughter indicated that the COWP-treated goats had lower FECs than the controls, the treatment main effect being significant at days 7, 28 and 56 (P goats removed from pasture at day 28 (P ≤ 0.001). Packed cell volumes increased during the course of the experiment (day, P goats removed from pasture at day 28 (CONTROL 28 d, 28.65 ± 0.52% goats, extending at most to 28 days after treatment. However, repeated COWP administration at three-month intervals may be safe, given that liver copper levels return to normal two to three months after COWP treatment. PMID:22789299

  6. Microstructural characterization of high strength and high conductivity nanocomposite wires

    International Nuclear Information System (INIS)

    Dupouy, F.; Snoeck, E.; Casanove, M.J.; Roucau, C.; Peyrade, J.P.; Askenazy, S.; Complexe Scientifique de Rangueil, Toulouse

    1996-01-01

    The generation of high pulsed magnetic fields by non-destructive magnets is a subject of research in several laboratories in the world. Combining copper and niobium seems to be a promising way to develop composites for such application. CuNb nanofilamentary wires with interesting mechanical properties for non-destructive magnets were obtained. For heavily deformed nanofilamentary wires, the fiber size decreases and the TEM studies reveal a strong fiber-matrix orientation relationship. The Cu/Nb interfaces become semi-coherent and almost completely relaxed, with a distance between misfit dislocations in good agreement with the theoretical predictions. As lowering the filament section improves the mechanical properties, one may expect to elaborate wires with larger numbers of dilaments exhibiting enhanced mechanical properties. The subsequent reduction of the filament section may lead to the formation of mono-crystalline Nb fibers and to perfect coherency of the Cu/Nb interfaces over larger distances

  7. The potential to control Haemonchus contortus in indigenous South African goats with copper oxide wire particles.

    Science.gov (United States)

    Vatta, A F; Waller, P J; Githiori, J B; Medley, G F

    2009-06-10

    The high prevalence of resistance of Haemonchus contortus to all major anthelmintic groups has prompted investigations into alternative control methods in South Africa, including the use of copper oxide wire particle (COWP) boluses. To assess the efficacy of COWP against H. contortus in indigenous South African goats, 18 male faecal egg-count-negative goats were each given ca.1200 infective larvae of H. contortus three times per week during weeks 1 and 2 of the experiment. These animals made up an "established" infection group (ESTGRP). At the start of week 7, six goats were each given a 2-g COWP bolus orally; six goats received a 4-g COWP bolus each and six animals were not treated. A further 20 goats constituted a "developing" infection group (DEVGRP). At the beginning of week 1, seven of the DEVGRP goats were given a 2-g COWP bolus each; seven goats were treated with a 4-g COWP bolus each and no bolus was given to a further six animals. During weeks 1-6, each of these DEVGRP goats was given ca. 400 H. contortus larvae three times per week. All 38 goats were euthanized for worm recovery from the abomasa and small intestines in week 11. In the ESTGRP, the 2-g and 4-g COWP boluses reduced the worm burdens by 95% and 93%, respectively compared to controls (mean burden+/-standard deviation, SD: 23+/-33, 30+/-56 and 442+/-518 worms, P=0.02). However, in the DEVGRP goats, both the 2-g and 4-g COWP treatments were ineffective in reducing the worm burdens relative to the controls (mean burdens+/-SD: 1102+/-841, 649+/-855, 1051+/-661 worms, P=0.16). Mean liver copper levels did not differ between the ESTGRP goats treated with 2-g COWP, 4-g COWP or no COWP (mean+/-standard error of the mean, SEM, in ppm: 93.7+/-8.3; 101.5+/-8.3; 71.8+/-8.3, P=0.07) nor did they differ between the DEVGRP goats (mean+/-SEM, in ppm: 74.1+/-9.1; 75.4+/-9.1; 74.9+/-10.0, P>0.99). The copper values were considered adequate, but not high, for goats. The COWP boluses have the potential to be used

  8. Ion-beam-directed self-organization of conducting nanowire arrays

    International Nuclear Information System (INIS)

    Batzill, M.; Bardou, F.; Snowdon, K. J.

    2001-01-01

    Glancing-incidence ion-beam irradiation has been used both to ease kinetic constraints which otherwise restrict the establishment of long-range order and to impose external control on the orientation of nanowire arrays formed during stress-field-induced self-ordering of calcium atoms on a CaF 2 (111) surface. The arrays exhibit exceptional long-range order, with the long axis of the wires oriented along the azimuthal direction of ion-beam incidence. Transport measurements reveal a highly anisotropic electrical conductivity, whose maximum lies in the direction of the long axis of the 10.1-nm-period calcium wires

  9. Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics

    Directory of Open Access Journals (Sweden)

    Marco Abdo Gravina

    2014-01-01

    Full Text Available OBJECTIVE: This research aimed at comparing the qualitative chemical compositions and the surface morphology of fracture regions of eight types of Nickel (Ni Titanium (Ti conventional wires, superelastic and heat-activated (GAC, TP, Ormco, Masel, Morelli and Unitek, to the wires with addition of copper (CuNiTi 27oC and 35oC, Ormco after traction test. METHODS: The analyses were performed in a scanning electronic microscope (JEOL, model JSM-5800 LV with EDS system of microanalysis (energy dispersive spectroscopy. RESULTS : The results showed that NiTi wires presented Ni and Ti as the main elements of the alloy with minimum differences in their composition. The CuNiTi wires, however, presented Ni and Ti with a significant percentage of copper (Cu. As for surface morphology, the wires that presented the lowest wire-surface roughness were the superelastic ones by Masel and Morelli, while those that presented the greatest wire-surface roughness were the CuNiTi 27oC and 35oC ones by Ormco, due to presence of microcavity formed as a result of pulling out some particles, possibly of NiTi. 4 The fracture surfaces presented characteristics of ductile fracture, with presence of microcavities. The superelastic wires by GAC and the CuNiTi 27oC and the heat-activated ones by Unitek presented the smallest microcavities and the lowest wire-surface roughness with regard to fracture, while the CuNiTi 35oC wires presented inadequate wire-surface roughness in the fracture region. CONCLUSION: CuNiTi 35oC wires did not present better morphologic characteristics in comparison to the other wires with regard to surfaces and fracture region.

  10. Effect of a copper intrauterine contraceptive device of estrogen and progesterone uptake by the Rabbit uterus and cervix

    International Nuclear Information System (INIS)

    Ghosh, Maya; Roy, S.K.

    1976-01-01

    The uptake of labelled estrogen 17β-6,7- 3 H and progesterone 1,2- 3 H by the uterus and cervix of rabbit fitted with inert (nylon) and active (copper wire) IUCD was studied by the in vitro method. The estrogen uptake was significantly high in IUCD fitted horn as compared to its contralateral control with both types of devices. The contralateral control-horn of copper treated animals showed significantly high estrogen uptake than that of intact control horn. This may be due to the bilateral effect of active (copper) IUCD. Similar offsets were not observed with nylon device. Estrogen uptake in the cervix was higher due to either of the devices used compared to that of intact control. The progesterone uptake was not modified in the IUCD horn by copper wire but there was an increase when a nylon suture was used. It appears that the mechanism of action of 'active' IUCDs may be different from that of 'inert' devices. (author)

  11. Multifilamentary MgB2 wires fracture behavior during the drawing process

    International Nuclear Information System (INIS)

    Shan, D.; Yan, G.; Zhou, L.; Li, J.S.; Li, C.S.; Wang, Q.Y.; Xiong, X.M.; Jiao, G.F.

    2012-01-01

    The fracture behavior of 6 + 1 filamentary MgB 2 superconductive wires is presented here. The composite wires were fabricated by in situ Powder-in-Tube method using Nb as a barrier and copper as a stabilizer. The microstructure of the material has a great influence on its fracture behavior. The microstructural aspects of crack nucleation and propagation are discussed. It shows that there are complicated correlations between fracture behavior and the main influencing parameters, which contain specific drawing conditions (drawing velocity, reduction in area per pass), materials properties (strength, yield stress, microstructure) as well as the extent of bonding between the metal sheaths at their interface.

  12. Deposition of copper indium sulfide on TiO2 nanotube arrays and its application for photocatalytic decomposition of gaseous IPA

    Directory of Open Access Journals (Sweden)

    Young Ku

    2016-09-01

    Full Text Available TiO2 nanotube arrays (TNTs were modified with copper indium sulfide (Cu/In/S by successive ionic layer adsorption and reaction (SILAR method. The field-emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis demonstrated the presence of copper indium sulfide nanoparticles on the surface of the modified TNTs. The Cu/In/S-modified TNTs exhibited higher photocurrent density and photocatalytic activity than plain TNTs. The concentration of sulfur precursor was found to be an important factor on the composition of modified Cu/In/S films by SILAR. Some composition deviations were observed on the stoichiometry of the Cu/In/S-modified TNTs, which evidently affected the electrochemical characteristics of the modified TNTs. Experiments using the modified TNTs of composition close to the stoichiometric ratio of CuInS2 usually delivered higher photocatalytic decomposition of gaseous isopropyl alcohol in air streams and exhibited better stability during operation.

  13. Sonochemical fabrication of petal array-like copper/nickel oxide composite foam as a pseudocapacitive material for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Namachivayam; Edison, Thomas Nesakumar Jebakumar Immanuel [School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Sethuraman, Mathur Gopalakrishnan, E-mail: mgsethu@gmail.com [Department of Chemistry, Gandhigram Rural Institute – Deemed University, Gandhigram, 624 302, Dindigul District, Tamil Nadu (India); Lee, Yong Rok, E-mail: yrlee@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2017-02-28

    Highlights: • A composite Ni foam textured with Cu particles was fabricated by a sonication method. • The foam can be used as a pseudocapacitive material for energy storage applications. • The foam has a high specific capacitance of 1773 F g{sup −1} at a scan rate of 5 mV s{sup −1}. - Abstract: Copper/nickel oxide composite foam (Cu/Ni) with petal array-like textures were successfully fabricated via a facile sonochemical approach, and its applications as a pseudocapacitive material for energy storage were examined. The nickel foam was immersed into a mixture of copper chloride (CuCl{sub 2}) and hydrochloric acid (HCl) and subsequently sonicated for 30 min at 60 °C. As a result of galvanic replacement, nickel was oxidized while copper was reduced, and the walls of the nickel foam were coated with copper particles. Studies using field emission scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopic analyses confirmed the morphology and chemical structure of the as-obtained Cu/Ni oxide composite foam. The supercapacitive performance of the as-fabricated Cu/Ni oxide composite foam was evaluated in 2 M KOH by employing cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy analyses. Cyclic voltammograms revealed that the Cu/Ni oxide composite foam exhibited pseudocapacitive behavior and delivered a high specific capacitance of 1773 F g{sup −1} at a scan rate of 5 mV s{sup −1}. This improvement may be attributed to the morphology, surface functionalization with heteroatoms, hydrogen evolution, and high conductivity, along with the low resistance due to short path lengths for electron transportation.

  14. Non-destructive X-ray examination of weft knitted wire structures

    Science.gov (United States)

    Obermann, M.; Ellouz, M.; Aumann, S.; Martens, Y.; Bartelt, P.; Klöcker, M.; Kordisch, T.; Ehrmann, A.; Weber, M. O.

    2016-07-01

    Conductive yarns or wires are often integrated in smart textiles to enable data or energy transmission. In woven fabrics, these conductive parts are fixed at defined positions and thus protected from external loads. Knitted fabrics, however, have relatively loose structures, resulting in higher impacts of possible mechanical forces on the individual yarns. Hence, metallic wires with smaller diameters in particular are prone to break when integrated in knitted fabrics. In a recent project, wires of various materials including copper, silver and nickel with diameters varying between 0.05 mm and 0.23 mm were knitted in combination with textile yarns. Hand flat knitting machines of appropriate gauges were used to produce different structures. On these samples, non-destructive examinations, using an industrial X-ray system Seifert x|cube (225 kV) equipped with a minifocus X-ray tube, were carried out, directly after knitting as well as after different mechanical treatments (tensile, burst, and washing tests). In this way, structural changes of the stitch geometry could be visualized before failure. In this paper, the loop geometries in the knitted fabrics are depicted depending on knitted structures, wire properties and the applied mechanical load. Consequently, it is shown which metallic wires and yarns are most suitable to be integrated into knitted smart textiles.

  15. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  16. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    International Nuclear Information System (INIS)

    Mi Jiaping; Li Yuanqian; Zhou Xiaoli; Zheng Bo; Zhou Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%∼100.9% for Iron, 92.50%∼108.0% for Copper, 93.00%∼110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%∼12.1%. The sampling rate is 45 samples h -1 . The determination results of the food samples were in good agreement between the proposed method and ICP-AES

  17. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    Energy Technology Data Exchange (ETDEWEB)

    Mi Jiaping; Li Yuanqian; Zhou Xiaoli; Zheng Bo; Zhou Ying [West China School of Public Health, Sichuan University, Chengdu, 610041 (China)

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%{approx}100.9% for Iron, 92.50%{approx}108.0% for Copper, 93.00%{approx}110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%{approx}12.1%. The sampling rate is 45 samples h{sup -1}. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.

  18. Simultaneous Determination of Iron, Copper and Cobalt in Food Samples by CCD-diode Array Detection-Flow Injection Analysis with Partial Least Squares Calibration Model

    Science.gov (United States)

    Mi, Jiaping; Li, Yuanqian; Zhou, Xiaoli; Zheng, Bo; Zhou, Ying

    2006-01-01

    A flow injection-CCD diode array detection spectrophotometry with partial least squares (PLS) program for simultaneous determination of iron, copper and cobalt in food samples has been established. The method was based on the chromogenic reaction of the three metal ions and 2- (5-Bromo-2-pyridylazo)-5-diethylaminophenol, 5-Br-PADAP in acetic acid - sodium acetate buffer solution (pH5) with Triton X-100 and ascorbic acid. The overlapped spectra of the colored complexes were collected by charge-coupled device (CCD) - diode array detector and the multi-wavelength absorbance data was processed using partial least squares (PLS) algorithm. Optimum reaction conditions and parameters of flow injection analysis were investigated. The samples of tea, sesame, laver, millet, cornmeal, mung bean and soybean powder were determined by the proposed method. The average recoveries of spiked samples were 91.80%~100.9% for Iron, 92.50%~108.0% for Copper, 93.00%~110.5% for Cobalt, respectively with relative standard deviation (R.S.D) of 1.1%~12.1%. The sampling rate is 45 samples h-1. The determination results of the food samples were in good agreement between the proposed method and ICP-AES.

  19. Copper Recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).

  20. Electronic transport properties of copper and gold at atomic scale

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadzadeh, Saeideh

    2010-11-23

    The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green's function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. (orig.)

  1. Structure of Polymer Fibers Fabricated by Electrospinning Method Utilizing a Metal Wire Electrode in a Capillary Tube

    Science.gov (United States)

    Onozuka, Shintaro; Hoshino, Rikiya; Mizuno, Yoshinori; Shinbo, Kazunari; Ohdaira, Yasuo; Baba, Akira; Kato, Keizo; Kaneko, Futao

    We fabricated electrospun poly (vinylalcohol) (PVA) fibers using a copper wire electrode in Teflon capillary tube, and the SEM images were observed. The apparatus in this method is reasonable, and needed volume of polymer solution and distance between the electrodes can be largely reduced compared to conventional method. The wire electrode tip position in the capillary tube is also important in this method and should be close to the polymer solution surface.

  2. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  3. Developing and Testing SpaceWire Devices and Networks

    Science.gov (United States)

    Parkes, Steve; Mills, Stuart

    2014-08-01

    SpaceWire is a data-handling network for use on-board spacecraft, which connects together instruments, mass- memory, processors, downlink telemetry, and other on- board sub-systems [1]. SpaceWire is simple to implement and has some specific characteristics that help it support data-handling applications in space: high-speed, low-power, simplicity, relatively low implementation cost, and architectural flexibility making it ideal for many space missions. SpaceWire provides high-speed (2 Mbits/s to 200 Mbits/s), bi- directional, full-duplex data-links, which connect together SpaceWire enabled equipment. Data-handling networks can be built to suit particular applications using point-to-point data-links and routing switches.Since the SpaceWire standard was published in January 2003, it has been adopted by ESA, NASA, JAXA and RosCosmos for many missions and is being widely used on scientific, Earth observation, commercial and other spacecraft. High-profile missions using SpaceWire include: Gaia, ExoMars rover, Bepi- Colombo, James Webb Space Telescope, GOES-R, Lunar Reconnaissance Orbiter and Astro-H.The development and testing of the SpaceWire links and networks used on these and many other spacecraft currently under development, requires a comprehensive array of test equipment. In this paper the requirements for test equipment fulfilling key test functions are outlined and then equipment that meets these requirements is described. Finally the all-important software that operates with the test equipment is introduced.

  4. Transition in x-ray yield, mass scaling observed in the high-wire-number, plasma-shell regime

    International Nuclear Information System (INIS)

    Whitney, K.G.; Pulsifer, P.E.; Apruzese, J.P.; Thornhill, J.W.; Davis, J.; Sanford, T.W.L.; Mock, R.C.; Nash, T.J.

    1999-01-01

    Initial calculations, based on classical transport coefficients and carried out to predict the efficiency with which the implosion kinetic energy of aluminum Z pinches could be thermalized and converted into kilovolt x-rays, predicted a sharp transition between m 2 and m yield scaling, where m is the aluminum array mass. Later, when ad hoc increases in the heat conductivity and artificial viscosity were introduced into these calculations and the densities that were achieved on axis were sharply reduced, the transition from m 2 to m scaling was found to have shifted, but was otherwise still fairly sharp and well-defined. The location of these breakpoint curves defined the locus of implosion velocities at which the yields would obtain their maximum for different mass arrays. The first such mass breakpoint curve that was calculated is termed hard, while the second is termed soft. Early 24, 30, and 42 aluminum wire experiments on the Saturn accelerator at the Sandia National laboratories confirmed the predictions of the soft breakpoint curve calculations. In this talk, the authors present results from a more recent set of aluminum experiments on Saturn, in which the array mass was varied at a fixed array radius and in which the radius was varied for a fixed mass. In both sets of experiments, the wire numbers were large: in excess of 92 and generally 136 or 192. In this high-wire-number regime, the wire plasmas are calculated to merge to form a plasma shell prior to significant radial implosion. Large wire number has been found to improve the pinch compressibility, and the analysis of these experiments in the shell regime shows that they come very close to the original predictions of the hard breakpoint curve calculations. A discussion of these detailed comparisons will be presented

  5. Effect of Sodium Fluoride Mouthwash on the Frictional Resistance of Orthodontic Wires

    Directory of Open Access Journals (Sweden)

    Allahyar Geramy

    2017-12-01

    Full Text Available Objectives: The friction between the brackets and orthodontic wire during sliding mechanics inflicts difficulties such as decreasing the applied force and tooth movement and also the loss of anchorage. Therefore, many studies have focused on the factors that affect the friction. The purpose of this study was to assess the effect of 0.05% sodium fluoride mouthwash on the friction between orthodontic brackets and wire.Materials and Methods: Four types of orthodontic wires including rectangular standard stainless steel (SS, titanium molybdenum alloy (TMA, nickel-titanium (NiTi and copper-nickel-titanium (Cu-NiTi were selected. In each group, half of the samples were immersed in 0.05% sodium fluoride mouthwash and the others were immersed in artificial saliva for 10 hours. An elastomeric ligature was used for ligating the wires to brackets. The frictional test was performed in a universal testing machine at the speed of 10 mm/minute. Two-way ANOVA was used for statistical analysis of the friction rate.Results: The friction rate was significantly higher after immersion in 0.05% sodium fluoride mouthwash in comparison with artificial saliva (P=0.00. Cu-NiTi wire showed the highest friction value followed by TMA, NiTi and SS wires.  Conclusions: According to the results of the current study, 0.05% sodium fluoride mouthwash increased the frictional characteristics of all the evaluated orthodontic wires.

  6. Strengthening of Aluminum Wires Treated with A206/Alumina Nanocomposites

    Directory of Open Access Journals (Sweden)

    David Florián-Algarín

    2018-03-01

    Full Text Available This study sought to characterize aluminum nanocomposite wires that were fabricated through a cold-rolling process, having potential applications in TIG (tungsten inert gas welding of aluminum. A206 (Al-4.5Cu-0.25Mg master nanocomposites with 5 wt % γAl2O3 nanoparticles were first manufactured through a hybrid process combining semi-solid mixing and ultrasonic processing. A206/1 wt % γAl2O3 nanocomposites were fabricated by diluting the prepared master nanocomposites with a monolithic A206 alloy, which was then added to a pure aluminum melt. The fabricated Al–γAl2O3 nanocomposite billet was cold-rolled to produce an Al nanocomposite wire with a 1 mm diameter and a transverse area reduction of 96%. Containing different levels of nanocomposites, the fabricated samples were mechanically and electrically characterized. The results demonstrate a significantly higher strength of the aluminum wires with the nanocomposite addition. Further, the addition of alumina nanoparticles affected the wires’ electrical conductivity compared with that of pure aluminum and aluminum–copper alloys. The overall properties of the new material demonstrate that these wires could be an appealing alternative for fillers intended for aluminum welding.

  7. Susceptibility cancellation of a microcoil wound with a paramagnetic-liquid-filled copper capillary

    Science.gov (United States)

    Takeda, Kazuyuki; Takasaki, Tomoya; Takegoshi, K.

    2015-09-01

    Even though microcoils improve the sensitivity of NMR measurement of tiny samples, magnetic-field inhomogeneity due to the bulk susceptibility effect of the coil material can cause serious resonance-line broadening. Here, we propose to fabricate the microcoil using a thin, hollow copper capillary instead of a wire and fill paramagnetic liquid inside the capillary, so as to cancel the diamagnetic contribution of the copper. Susceptibility cancellation is demonstrated using aqueous solution of NiSO4. In addition, the paramagnetic liquid serves as coolant when it is circulated through the copper capillary, effectively transferring the heat generated by radiofrequency pulses.

  8. Study of Plasma Flow Modes in Imploding Nested Arrays

    Science.gov (United States)

    Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Branitsky, A. V.; Frolov, I. N.; Grabovski, E. V.; Sasorov, P. V.; Ol'khovskaya, O. G.; Zaitsev, V. I.

    2018-02-01

    Results from experimental studies of implosion of nested wire and fiber arrays at currents of up to 4 MA at the Angara-5-1 facility are presented. Depending on the ratio between the radii of the inner and outer arrays, different modes of the plasma flow in the space between the inner and outer arrays were implemented: the sub-Alfvénic ( V r V A ) modes and a mode with the formation of the transition shock wave (SW) region between the cascades. By varying the material of the outer array (tungsten wires or kapron fibers), it is shown that the plasma flow mode between the inner and outer arrays depends on the ratio between the plasma production rates ṁ in / ṁ out in the inner and outer arrays. The obtained experimental results are compared with the results of one-dimensional MHD simulation of the plasma flow between the arrays. Stable implosion of the inner array plasma was observed in experiments with combined nested arrays consisting of a fiber outer array and a tungsten inner array. The growth rates of magnetic Rayleigh-Taylor (MRT) instability in the inner array plasma at different numbers of fibers in the outer array and different ratios between the radii of the inner and outer arrays are compared. Suppression of MRT instability during the implosion of the inner array plasma results in the formation of a stable compact Z-pinch and generation of a soft X-ray pulse. A possible scenario of interaction between the plasmas of the inner and outer arrays is offered. The stability of the inner array plasma in the stage of final compression depends on the character of interaction of plasma jets from the outer array with the magnetic field of the inner array.

  9. 3D modeling of instabilities in multi-wire Z pinches

    International Nuclear Information System (INIS)

    Haill, T.A.; Desjarlais, M.P.; Marder, B.M.; Robinson, A.C.

    1998-01-01

    Recent success in generating large x-ray energies and powers from large wire-number Z pinch arrays has revived a strong interest in MHD and magneto-Rayleigh-Taylor (RT) instabilities. Two-dimensional r-z simulations of Z pinches typically start calculations with a preformed plasma sheath and seed RT instabilities with a random density perturbation. The magnitude of the random density perturbation is tuned so that the calculated x-ray radiation pulse matches the amplitude and pulse-width of experimentally measured data. While these calculations have been extremely useful in understanding the effect of RT instabilities on experiments, they do not capture all of the three-dimension structure seen in experimental images and are not truly predictive in nature. To remedy this shortcoming Sandia is developing a 3D nature of Z pinch dynamics, namely the merger of arrays of wires into a plasma sheath

  10. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  11. Evaluation of multiple low doses of copper oxide wire particles compared with levamisole for control of Haemonchus contortus in lambs.

    Science.gov (United States)

    Burke, J M; Miller, J E

    2006-06-30

    High levels of anthelmintic resistance in gastrointestinal nematodes (GIN) of small ruminants have created the need for alternative approaches to parasite control. Copper oxide wire particles (COWP; 2g) have proven effective in decreasing GIN infection in lambs. However, the risk of copper toxicity has limited the usefulness of this approach. Recently, smaller doses (0.5 and 1g) have proven effective in GIN control, reducing the risk of toxicity. The objective of this study was to examine the effectiveness and risk of toxicity using multiple small doses of COWP for GIN control in lambs between weaning and market weight. Dorper crossbred ram lambs were orally administered levamisole (Levasol, 8.0mg/kg; n=8), 0.5g (n=9), or 1g COWP (n=9) at weaning (Day 0; 118+/-2 days of age; late May 2005) and again at 6-week intervals for a total of four treatments. A pooled fecal culture determined that Haemonchus contortus was the predominant gastrointestinal parasite at weaning. Lambs grazed bermudagrass pastures and were supplemented with up to 500g corn/soybean meal and free choice trace mineralized salt. Fecal egg counts (FEC), packed cell volume (PCV), and plasma aspartate aminotransferase (AST) activity were determined every 14 days and lambs weighed every 28 days. GIN infection reached a peak at Day 42 (high FEC, low PCV). COWP effectively reduced FEC on Days 0 and 42 compared with the previous week, but did not reduce FEC on Days 84 and 126 (treatment by time interaction, Pcopper in the liver on Day 155 were greater in COWP-treated lambs (Pcopper toxicity.

  12. Efficient production of hot plasmas through multiple-wire implosion in transmission line generators

    International Nuclear Information System (INIS)

    Bloomberg, H.W.

    1980-01-01

    Model equations for the implosion of multiple-wire arrays mounted across the electrodes of a transmission line generator are used to obtain an expression for the energy-coupling efficiency. For a useful class of imploding loads, the efficiency is shown to depend on a single dimensionless parameter. Furthermore, the efficiency curve has a maximum, and this permits an explicit optimization of the wire load parameters in terms of the machine parameters

  13. Resistive transition of superconducting-wire networks. Influence of pinning and fluctuations

    International Nuclear Information System (INIS)

    Giroud, M.; Buisson, O.; Wang, Y.Y.; Pannetier, B.; Mailly, D.

    1992-01-01

    The authors studied the resistive transition of several 2-D superconducting-wire networks of various coupling strengths, which they characterize in terms of the Kosterlitz-Thouless transition temperature and the ratio ξ/a of the coherence length to the array period. In the extreme strong-coupling limit where the mesh size is of the order of the zero-temperature coherence length, the superconducting behavior is well described by the mean-field properties of the superconducting wave function. Extending to 2-D array, the 1-D phase-slippage model explains the dissipative regime observed above the Ginzburg-Landau depairing critical current. On the other hand, when the coupling is weak, phase fluctuations below the Ginzburg-Landau transition and vortex depinning dominate the resistive behavior. An activated dissipation is observed even below the depairing critical current. Results obtained in this regime for critical temperature, magnetoresistance, or critical current versus temperature, and magnetic field are shown; their periodic oscillations are discussed in terms of depinning of vortices on the array. A simple periodic pinning potential for a vortex in a wire network is calculated, and compared with the case of pinning in Josephson junction arrays. It is shown that this model explains qualitatively the experimental results observed for small ξ/a

  14. The Application of the Method of Continuous Casting for Manufacturing of Welding Wire AMg6

    International Nuclear Information System (INIS)

    Azhazha, V.M.; Sverdlov, V.Ya.; Kondratov, A.A.; Rudycheva, T.Yu.

    2007-01-01

    The method of manufacturing semifinished item of high alloyed of aluminum, silver and copper alloys has been investigated on the basis of the continuous casting method. The sample of aluminum alloy AMg6 consist of small grains with the vios-cut dimension ∼ 15 mkm and which are stretched in the direction of longitudinal axis of the sample Such microstructure is favourable for plastic deformation of the sample. Welding wire which meets the demands of standards of commercial welding wires of this brand has been produced by the drawing from the sample

  15. X-ray diffraction study of low-temperature phase transformations in nickel-titanium orthodontic wires.

    Science.gov (United States)

    Iijima, M; Brantley, W A; Guo, W H; Clark, W A T; Yuasa, T; Mizoguchi, I

    2008-11-01

    Employ conventional X-ray diffraction (XRD) to analyze three clinically important nickel-titanium orthodontic wire alloys over a range of temperatures between 25 and -110 degrees C, for comparison with previous results from temperature-modulated differential scanning calorimetry (TMDSC) studies. The archwires selected were 35 degrees C Copper Ni-Ti (Ormco), Neo Sentalloy (GAC International), and Nitinol SE (3M Unitek). Neo Sentalloy, which exhibits superelastic behavior, is marketed as having shape memory in the oral environment, and Nitinol SE and 35 degrees C Copper Ni-Ti also exhibit superelastic behavior. All archwires had dimensions of 0.016in.x0.022in. (0.41 mm x 0.56 mm). Straight segments cut with a water-cooled diamond saw were placed side-by-side to yield a 1 cm x 1cm test sample of each wire product for XRD analysis (Rint-Ultima(+), Rigaku) over a 2theta range from 30 degrees to 130 degrees and at successive temperatures of 25, -110, -60, -20, 0 and 25 degrees C. The phases revealed by XRD at the different analysis temperatures were in good agreement with those found in previous TMDSC studies of transformations in these alloys, in particular verifying the presence of R-phase at 25 degrees C. Precise comparisons are not possible because of the approximate nature of the transformation temperatures determined by TMDSC and the preferred crystallographic orientation present in the wires. New XRD peaks appear to result from low-temperature transformation in martensite, which a recent transmission electron microscopy (TEM) study has shown to arise from twinning. While XRD is a useful technique to study phases in nickel-titanium orthodontic wires and their transformations as a function of temperature, optimum insight is obtained when XRD analyses are combined with complementary TMDSC and TEM study of the wires.

  16. Spray-Deposited Large-Area Copper Nanowire Transparent Conductive Electrodes and Their Uses for Touch Screen Applications.

    Science.gov (United States)

    Chu, Hsun-Chen; Chang, Yen-Chen; Lin, Yow; Chang, Shu-Hao; Chang, Wei-Chung; Li, Guo-An; Tuan, Hsing-Yu

    2016-05-25

    Large-area conducting transparent conducting electrodes (TCEs) were prepared by a fast, scalable, and low-cost spray deposition of copper nanowire (CuNW) dispersions. Thin, long, and pure copper nanowires were obtained via the seed-mediated growth in an organic solvent-based synthesis. The mean length and diameter of nanowires are, respectively, 37.7 μm and 46 nm, corresponding to a high-mean-aspect ratio of 790. These wires were spray-deposited onto a glass substrate to form a nanowire conducting network which function as a TCE. CuNW TCEs exhibit high-transparency and high-conductivity since their relatively long lengths are advantageous in lowering in the sheet resistance. For example, a 2 × 2 cm(2) transparent nanowire electrode exhibits transmittance of T = 90% with a sheet resistance as low as 52.7 Ω sq(-1). Large-area sizes (>50 cm(2)) of CuNW TCEs were also prepared by the spray coating method and assembled as resistive touch screens that can be integrated with a variety of devices, including LED lighting array, a computer, electric motors, and audio electronic devices, showing the capability to make diverse sizes and functionalities of CuNW TCEs by the reported method.

  17. Subchannel and bundle friction factors and flow split parameters for laminar transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays

    International Nuclear Information System (INIS)

    Hawley, J.T.; Chiu, C.; Todreas, N.E.; Rohsenow, W.M.

    1980-01-01

    Correlations are presented for subchannel and bundle friction factors and flowsplit parameters for laminar, transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays. These results are obtained from pressure drop models of flow in individual subchannels. For turbulent flow, an existing pressure drop model for flow in edge subchannels is extended, and the resulting edge subchannel friction factor is identified. Using the expressions for flowsplit parameters and the equal pressure drops assumption, the interior subchannel and bundle friction factors are obtained. For laminar flow, models are developed for pressure drops of individual subchannels. From these models, expressions for the subchannel friction factors are identified and expressions for the flowsplit parameters are derived

  18. Subchannel and bundle friction factors and flowsplit parameters for laminar, transition, and turbulent longitudinal flows in wire-wrap spaced hexagonal arrays. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, J.T.; Chiu, C.; Rohsenow, W.M.; Todreas, N.E.

    1980-08-01

    Correlations are presented for subchannel and bundle friction factors and flowsplit parameters for laminar, transition and turbulent longitudinal flows in wire wrap spaced hexagonal arrays. These results are obtained from pressure drop models of flow in individual subchannels. For turbulent flow, an existing pressure drop model for flow in edge subchannels is extended, and the resulting edge subchannel friction factor is identified. Using the expressions for flowsplit parameters and the equal pressured drop assumption, the interior subchannel and bundle friction factors are obtained. For laminar flow, models are developed for pressure drops of individual subchannels. From these models, expressions for the subchannel friction factors are identified and expressions for the flowsplit parameters are derived.

  19. Disulphide linkage: To get cleaved or not? Bulk and nano copper based SERS of cystine

    Science.gov (United States)

    P. J., Arathi; Seemesh, Bhaskar; Rajendra Kumar Reddy, G.; Suresh Kumar, P.; Ramanathan, V.

    2018-05-01

    Different nano-structures of noble metals have been the conventional substrates for carrying out Surface Enhanced Raman Spectroscopy (SERS). In this paper we examine electrodeposited copper (Cu) nano-structures on pencil graphite as novel substrate to carry out SERS measurements by considering L-cystine (Cys-Cys) (dimer of the amino acid cysteine) as the probe. The formation of monolayer of the probe molecule on the substrates was confirmed using cyclic voltammetric measurements. Mode of adsorption of Cys-Cys was observed to be different on bulk Cu (taken in the wire form) and nano-structured Cu on pencil graphite. Whereas in the former the disulphide bond of Cys-Cys remained intact, it got cleaved when Cys-Cys was adsorbed on electrodeposited copper indicating the activated nature of the nano-structure compared to bulk copper. Csbnd S stretching mode of vibration underwent blue shift in Cys-Cys adsorbed on Cu on pencil graphite vis-à-vis Cys-Cys adsorbed on Cu wire. Further evidence on the cleavage of the Csbnd S bond on an activated substrate was obtained by considering a bimetallic substrate comprising of silver on copper which was electrodeposited on pencil graphite. Our studies have demonstrated that nano-copper surface is an excellent substrate for SERS giving 200 μM as lower detection limit for Cys-Cys.

  20. Copper-beryllium alloys for technical applications

    International Nuclear Information System (INIS)

    Heller, W.

    1976-01-01

    Data of physical properties are compiled for the most commonly used copper-beryllium alloys (CuBe 2, CuBe 1.7, CuCoBe, and CuCoAgBe), with emphasis on their temperature dependence and their variation with particular annealing and hardening treatments. The purpose is to provide a reference source and to indicate the versatility of these materials with respect to other copper alloys and to pure copper. The special features of CuBe alloys include high mechanical strength with reasonably high electrical conductivity, as well as good wear and corrosion resistance. For example, CuBe 2 has a yield strength of up to 1200 N/mm 2 , about three times that of pure copper, whilst the electrical conductivity of CuCoBe can be as high as 28 MS/m, nearly half that of pure copper. Typical applications are springs and electrical contacts. The importance of a proper heat treatment is discussed in some detail, notably the metallurgy and effects of low-temperature annealing (precipitation-hardening). A chapter on manufacturing processes covers machining, brazing, welding, and cleaning. This is followed by some remarks on safety precautions against beryllium poisoning. CuBe alloys are commercially available in the form of wires, strips, rods, and bars. Typical dimensions, specifications, a brief cost estimate, and addresses of suppliers are listed. (Author)

  1. Enhancing the x-ray output of a single-wire explosion with a gas-puff based plasma opening switch

    Science.gov (United States)

    Engelbrecht, Joseph T.; Ouart, Nicholas D.; Qi, Niansheng; de Grouchy, Philip W.; Shelkovenko, Tatiana A.; Pikuz, Sergey A.; Banasek, Jacob T.; Potter, William M.; Rocco, Sophia V.; Hammer, David A.; Kusse, Bruce R.; Giuliani, John L.

    2018-02-01

    We present experiments performed on the 1 MA COBRA generator using a low density, annular, gas-puff z-pinch implosion as an opening switch to rapidly transfer a current pulse into a single metal wire on axis. This gas-puff on axial wire configuration was studied for its promise as an opening switch and as a means of enhancing the x-ray output of the wire. We demonstrate that current can be switched from the gas-puff plasma into the wire, and that the timing of the switch can be controlled by the gas-puff plenum backing pressure. X-ray detector measurements indicate that for low plenum pressure Kr or Xe shots with a copper wire, this configuration can offer a significant enhancement in the peak intensity and temporal distribution of radiation in the 1-10 keV range.

  2. Effect of wire size on maxillary arch force/couple systems for a simulated high canine malocclusion.

    Science.gov (United States)

    Major, Paul W; Toogood, Roger W; Badawi, Hisham M; Carey, Jason P; Seru, Surbhi

    2014-12-01

    To better understand the effects of copper nickel titanium (CuNiTi) archwire size on bracket-archwire mechanics through the analysis of force/couple distributions along the maxillary arch. The hypothesis is that wire size is linearly related to the forces and moments produced along the arch. An Orthodontic Simulator was utilized to study a simplified high canine malocclusion. Force/couple distributions produced by passive and elastic ligation using two wire sizes (Damon 0.014 and 0.018 inch) measured with a sample size of 144. The distribution and variation in force/couple loading around the arch is a complicated function of wire size. The use of a thicker wire increases the force/couple magnitudes regardless of ligation method. Owing to the non-linear material behaviour of CuNiTi, this increase is less than would occur based on linear theory as would apply for stainless steel wires. The results demonstrate that an increase in wire size does not result in a proportional increase of applied force/moment. This discrepancy is explained in terms of the non-linear properties of CuNiTi wires. This non-proportional force response in relation to increased wire size warrants careful consideration when selecting wires in a clinical setting. © 2014 British Orthodontic Society.

  3. Fabrication and properties of multifilamentary MgB 2 wires by in-situ powder-in-tube process

    Science.gov (United States)

    Wang, Q. Y.; Jiao, G. F.; Liu, G. Q.; Xiong, X. M.; Yan, S. C.; Zhang, P. X.; Sulpice, A.; Mossang, E.; Feng, Y.; Yan, G.

    2010-11-01

    We have fabricated the long TiC-doped MgB2 wires with 6 filaments by in-situ powder-in-tube method using Nb as the barrier and copper as the stabilizer. To improve the strength of wires, the Nb-core was used as the central filament. The transport engineering critical current density (Jce) of the samples sintered at different temperature were measured, which reaches 2.5 × 104 A/cm2 at 4.2 K, 5 T. 100 m MgB2 wires with different diameter were wound into coils and the transport critical current (Ic) of the coil were measured at 30 K in self-field. The Jce value 100 m coil achieves 1.1 × 104 A/cm2 in 1.2 mm wire. The reasons leading to the enhancement of high field Jce were discussed. The results show a good potential to fabricate high performance MgB2 wires and tapes at ambient pressure on an industrial scale.

  4. Effect of the Ignition Method on the Extinction Limit for a Flame Spreading over Electric Wire Insulation

    DEFF Research Database (Denmark)

    Mitsui, Fumiya; Nagachi, Masashi; Citerne, Jean-Marie

    . The experimental results show that the LOC of NiCr core wires assume an almost constant value under normal gravity conditions once ignition occurred, whereas under microgravity conditions, the LOC gradually decreases as the ignition power or heating time increases and eventually it reaches an almost constant value......Flame spread experiments with wire insulation were conducted in microgravity (parabolic flights) and in normal gravity to understand the effect of the ignition condition on the Limiting Oxygen Concentration (LOC) for an opposed air flow condition of 100 mm/s (typical flow velocity on ISS). Both...... the ignition power (50-110 W) and the igniter heating time (5-15 s) were varied. Polyethylene-coated Nickel-Chrome or copper wires with inner core diameter of 0.50 mm and insulation thickness of 0.30 mm were used as sample wires, and a 0.50 mm diameter coiled Kanthal wire was used as the igniter...

  5. Convergence of shock waves between conical and parabolic boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Yanuka, D.; Zinowits, H. E.; Antonov, O.; Efimov, S.; Virozub, A.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2016-07-15

    Convergence of shock waves, generated by underwater electrical explosions of cylindrical wire arrays, between either parabolic or conical bounding walls is investigated. A high-current pulse with a peak of ∼550 kA and rise time of ∼300 ns was applied for the wire array explosion. Strong self-emission from an optical fiber placed at the origin of the implosion was used for estimating the time of flight of the shock wave. 2D hydrodynamic simulations coupled with the equations of state of water and copper showed that the pressure obtained in the vicinity of the implosion is ∼7 times higher in the case of parabolic walls. However, comparison with a spherical wire array explosion showed that the pressure in the implosion vicinity in that case is higher than the pressure in the current experiment with parabolic bounding walls because of strong shock wave reflections from the walls. It is shown that this drawback of the bounding walls can be significantly minimized by optimization of the wire array geometry.

  6. A Wire Grid Paraboloid for Large Low Frequency Telescopes

    Science.gov (United States)

    Kuiper, Tom

    2017-05-01

    Planetary magnetic fields are usually studied remotely through their electron cyclotron maser (ECM) emission from electrons trapped in their magnetic fields. Jupiter has been well studied since the 1960's because its strong magnetic field allows emissions up to about 40 MHz to be observed. The emission from Earth and other outer planets is mostly below 1 MHz and can only be observed from space. It is reasonable to assume that most exoplanets with ECM must be observed at low frequencies from space. Even optimistic assumptions about the strength of such emission leads one to conclude that very large filled aperture telescopes, with a diameters of a kilometer or more, will be needed.This paper reports on a study of a copper wire reflector with a diameter of 1 km operating between 100 kHz and 3.75 MHz. It would require 200 kg of 0.5 mm diameter copper wire (AWG 24)) to be lifted to and deployed in space. For aluminum, the mass would be about 100 kg. By optimizing the wire spacing the mass can be reduced to 80% of a simple radial-azimuthal arrangement. A relatively flat reflector (0.6 ≤ f/D ≤ 1.0) needs to be anchored at about 5 points from center to ring along 24 radii. Station-keeping CubeSats could serve as anchors. A total of about 100-120 anchors would be needed for an f/D = 1 reflector, adding 200-300 kg. to the mass of the reflector. It would be possible to carry several such reflectors into space in a single payload.The Deep Space Network is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  7. Procurement model for copper and polymer electrical products

    Directory of Open Access Journals (Sweden)

    S. Sremac

    2013-10-01

    Full Text Available Procurement model for copper and polymer electrical products. Electrical cable structure (wire, insulation, filling and mantle is in accordance with the technical specifications of individual cable components in terms of the incorporated materials. Materials used in cable manufacture are copper, aluminum, rubber and polyvinyl chloride. One of the key issues in managing the flow of goods pertains to the timing of procurement. The combination of the two concepts can take advantage of individual strengths of fuzzy logic and neural networks in hybrid systems of homogeneous structure. The model has high practical significance, as, with minor modifications, it can be applied in any enterprise responsible for managing the goods flows.

  8. Cu/Cu2O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization

    Science.gov (United States)

    Sahai, Anshuman; Goswami, Navendu; Kaushik, S. D.; Tripathi, Shilpa

    2016-12-01

    In this article, we explore potential of Exploding Wire Technique (EWT) to synthesize the copper nanoparticles using the copper metal in a plate and wire geometry. Rietveld refinement of X-ray diffraction (XRD) pattern of prepared material indicates presence of mixed phases of copper (Cu) and copper oxide (Cu2O). Agglomerates of copper and copper oxide comprised of ∼20 nm average size nanoparticles observed through high resolution transmission electron microscope (HRTEM) and energy dispersive x-ray (EDX) spectroscopy. Micro-Raman (μR) and Fourier transform infrared (FTIR) spectroscopies of prepared nanoparticles reveal existence of additional minority CuO phase, not determined earlier through XRD and TEM analysis. μR investigations vividly reveal cubic Cu2O and monoclinic CuO phases based on the difference of space group symmetries. In good agreement with μRaman analysis, FTIR stretching modes corresponding to Cu2-O and Cu-O were also distinguished. Investigations of μR and FTIR vibrational modes are in accordance and affirm concurrence of CuO phases besides predominant Cu and Cu2O phase. Quantum confinement effects along with increase of band gaps for direct and indirect optical transitions of Cu/Cu2O/CuO nanoparticles are reflected through UV-vis (UV-vis) spectroscopy. Photoluminescence (PL) spectroscopy spots the electronic levels of each phase and optical transitions processes occurring therein. Iterative X-ray photoelectron spectroscopy (XPS) fitting of core level spectra of Cu (2p3/2) and O (1s), divulges presence of Cu2+ and Cu+ in the lattice with an interesting evidence of O deficiency in the lattice structure and surface adsorption. Magnetic analysis illustrates that the prepared nanomaterial demonstrates ferromagnetic behaviour at room temperature.

  9. Ideal and non-ideal MHD regimes of wire array implosion obtained in 3D hybrid simulations and observed during experiments at NTF (Nevada Terawatt Facility)

    International Nuclear Information System (INIS)

    Sotnikov, Vladimir Isaakovich; Fiala, V.; Oliver, Bryan Velten; Ivanov, Vladimir V.; LePell, Paul David; Fedin, Dmitry; Mehlhorn, Thomas Alan; Kantsyrev, Victor Leonidovich; Coverdale, Christine Anne; Travnicek, P.; Hellinger, P.; Deeney, Christopher; Jones, Brent Manley; Safronova, Alla S.; Leboeuf, J.N.; Cowan, Thomas E.

    2004-01-01

    Recent 3D hybrid simulation of a plasma current-carrying column revealed two regimes of sausage and kink instability development. In the first regime, with small Hall parameter, development of instabilities leads to appearance of large-scale axial perturbations and eventually to the bending of the plasma column. In the second regime, with five times larger Hall parameter, small-scale perturbations dominated and no bending of the plasma column was observed. Simulation results are compared to recent experimental data, including laser probing, x-ray spectroscopy and time-gated x-ray imaging during wire array implosions at NTF

  10. The Pd distribution and Cu flow pattern of the Pd-plated Cu wire bond and their effect on the nanoindentation

    International Nuclear Information System (INIS)

    Lin, Yu-Wei; Wang, Ren-You; Ke, Wun-Bin; Wang, I-Sheng; Chiu, Ying-Ta; Lu, Kuo-Chang; Lin, Kwang-Lung; Lai, Yi-Shao

    2012-01-01

    Highlights: ► Pd distribution in Pd-plated Cu wires reveals the whirlpool flow pattern of Cu. ► The mechanisms of the Cu flow behavior and Pd distribution are proposed. ► At Pd-rich phases, small voids formed and followed the direction of Cu flow. ► Nanoindentation studies show the Cu ball bond is harder in regions with Pd. - Abstract: The Pd plating on the 20 μm Cu wire dissolves in the free air ball (FAB) and the Cu ball bond during the wire bonding process without forming intermetallic compounds. The limiting supply of Pd and the short bonding process, 15 ms of thermosonic bonding, result in uneven distribution of Pd in the as produced Cu ball bond. Also, the Pd-rich phase may accompany small voids formed within the FAB and the wire bond, and following the direction of semi-solid Cu flow. The Pd distribution, as evidenced by the focused ion beam (FIB) and wavelength dispersive X-ray spectroscopy (WDS) mapping, reveals the whirlpool flow pattern of Cu within the FAB and the ball bond. Pd distributes within the copper ball through convective transport by the copper flow. Additionally, hardness measurements by nanoindentation testing show that the Cu ball bond is harder in the regions where Pd exists.

  11. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    Science.gov (United States)

    Baranov, M. I.; Rudakov, S. V.

    2018-03-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  12. Electrothermal Action of the Pulse of the Current of a Short Artificial-Lightning Stroke on Test Specimens of Wires and Cables of Electric Power Objects

    Science.gov (United States)

    Baranov, M. I.; Rudakov, S. V.

    2018-05-01

    The authors have given results of investigations of the electrothermal action of aperiodic pulses of temporal shape 10/350 μs of the current of a short artificial-lightning stroke on test specimens of electric wires and cables with copper and aluminum cores and sheaths with polyvinylchloride and polyethylene insulations of power circuits of industrial electric power objects. It has been shown that the thermal stability of such wires and cables is determined by the action integral of the indicated current pulse. The authors have found the maximum permissible and critical densities of this pulse in copper and aluminum current-carrying parts of the wires and cables. High-current experiments conducted under high-voltage laboratory conditions on a unique generator of 10/350 μs pulses of an artificial-lightning current with amplitude-time parameters normalized according to the existing requirements of international and national standards and with tolerances on them have confirmed the reliability of the proposed calculated estimate for thermal lightning resistance of cabling and wiring products.

  13. Role of surface on the size-dependent mechanical properties of copper nanowire under tensile load: A molecular dynamics simulation

    International Nuclear Information System (INIS)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nanowires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nanowires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nanowires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress–strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nanowire. Thus the size-dependent mechanical properties of single crystal copper nanowire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  14. Role of surface on the size-dependent mechanical properties of copper nanowire under tensile load: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei-Ting [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Hsiao, Chun-I. [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, Tainan City 70101 Taiwan (China); Hsu, Wen-Dung, E-mail: wendung@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan City 70101 Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan City 70101 Taiwan (China); Promotion Center for Global Materials Research, National Cheng Kung University, Tainan City 70101 Taiwan (China)

    2014-01-15

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nanowires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nanowires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nanowires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress–strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nanowire. Thus the size-dependent mechanical properties of single crystal copper nanowire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  15. Bottom-Up Electrodeposition of Large-Scale Nanotwinned Copper within 3D Through Silicon Via.

    Science.gov (United States)

    Sun, Fu-Long; Liu, Zhi-Quan; Li, Cai-Fu; Zhu, Qing-Sheng; Zhang, Hao; Suganuma, Katsuaki

    2018-02-23

    This paper is the first to report a large-scale directcurrent electrodeposition of columnar nanotwinned copper within through silicon via (TSV) with a high aspect ratio (~4). With this newly developed technique, void-free nanotwinned copper array could be fabricated in low current density (30 mA/cm²) and convection conditions (300 rpm), which are the preconditions for copper deposition with a uniform deep-hole microstructure. The microstructure of a whole cross-section of deposited copper array was made up of (111) orientated columnar grains with parallel nanoscale twins that had thicknesses of about 22 nm. The hardness was also uniform along the growth direction, with 2.34 and 2.68 GPa for the top and bottom of the TSV, respectively. The gelatin additive is also first reported hereas a key factor in forming nanoscale twins by adsorbing on the cathode surface, in order to enhance the overpotential for cathodic reaction during the copper deposition process.

  16. Bottom–Up Electrodeposition of Large-Scale Nanotwinned Copper within 3D Through Silicon Via

    Science.gov (United States)

    Sun, Fu-Long; Li, Cai-Fu; Zhu, Qing-Sheng; Zhang, Hao; Suganuma, Katsuaki

    2018-01-01

    This paper is the first to report a large-scale directcurrent electrodeposition of columnar nanotwinned copper within through silicon via (TSV) with a high aspect ratio (~4). With this newly developed technique, void-free nanotwinned copper array could be fabricated in low current density (30 mA/cm2) and convection conditions (300 rpm), which are the preconditions for copper deposition with a uniform deep-hole microstructure. The microstructure of a whole cross-section of deposited copper array was made up of (111) orientated columnar grains with parallel nanoscale twins that had thicknesses of about 22 nm. The hardness was also uniform along the growth direction, with 2.34 and 2.68 GPa for the top and bottom of the TSV, respectively. The gelatin additive is also first reported hereas a key factor in forming nanoscale twins by adsorbing on the cathode surface, in order to enhance the overpotential for cathodic reaction during the copper deposition process. PMID:29473865

  17. Bottom–Up Electrodeposition of Large-Scale Nanotwinned Copper within 3D Through Silicon Via

    Directory of Open Access Journals (Sweden)

    Fu-Long Sun

    2018-02-01

    Full Text Available This paper is the first to report a large-scale directcurrent electrodeposition of columnar nanotwinned copper within through silicon via (TSV with a high aspect ratio (~4. With this newly developed technique, void-free nanotwinned copper array could be fabricated in low current density (30 mA/cm2 and convection conditions (300 rpm, which are the preconditions for copper deposition with a uniform deep-hole microstructure. The microstructure of a whole cross-section of deposited copper array was made up of (111 orientated columnar grains with parallel nanoscale twins that had thicknesses of about 22 nm. The hardness was also uniform along the growth direction, with 2.34 and 2.68 GPa for the top and bottom of the TSV, respectively. The gelatin additive is also first reported hereas a key factor in forming nanoscale twins by adsorbing on the cathode surface, in order to enhance the overpotential for cathodic reaction during the copper deposition process.

  18. Calculation of core loss and copper loss in amorphous/nanocrystalline core-based high-frequency transformer

    Directory of Open Access Journals (Sweden)

    Xiaojing Liu

    2016-05-01

    Full Text Available Amorphous and nanocrystalline alloys are now widely used for the cores of high-frequency transformers, and Litz-wire is commonly used as the windings, while it is difficult to calculate the resistance accurately. In order to design a high-frequency transformer, it is important to accurately calculate the core loss and copper loss. To calculate the core loss accurately, the additional core loss by the effect of end stripe should be considered. It is difficult to simulate the whole stripes in the core due to the limit of computation, so a scale down model with 5 stripes of amorphous alloy is simulated by the 2D finite element method (FEM. An analytical model is presented to calculate the copper loss in the Litz-wire, and the results are compared with the calculations by FEM.

  19. Sample of superconducting wiring from the LHC

    CERN Multimedia

    The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair. The cables carry up to 12’500 amps and must withstand enormous electromagnetic forces. At full field, the force on one metre of magnet is comparable to the weight of a jumbo jet. Coil winding requires great care to prevent movements as the field changes. Friction can create hot spots wh...

  20. Copper Induces Vasorelaxation and Antagonizes Noradrenaline -Induced Vasoconstriction in Rat Mesenteric Artery

    Directory of Open Access Journals (Sweden)

    Yu-Chun Wang

    2013-11-01

    Full Text Available Background/Aims: Copper is an essential trace element for normal cellular function and contributes to critical physiological or pathological processes. The aim of the study was to investigate the effects of copper on vascular tone of rat mesenteric artery and compare the effects of copper on noradrenaline (NA and high K+ induced vasoconstriction. Methods: The rat mesenteric arteries were isolated and the vessel tone was measured by using multi wire myograph system in vitro. Blood pressure of carotid artery in rabbits was measured by using physiological data acquisition and analysis system in vivo. Results: Copper dose-dependently blunted NA-induced vasoconstriction of rat mesenteric artery. Copper-induced vasorelaxation was inhibited when the vessels were pretreated with NG-nitro-L-arginine methyl ester (L-NAME. Copper did not blunt high K+-induced vasoconstriction. Copper preincubation inhibited NA-evoked vasoconstriction and the inhibition was not affected by the presence of L-NAME. Copper preincubation showed no effect on high K+-evoked vasoconstriction. Copper chelator diethyldithiocarbamate trihydrate (DTC antagonized the vasoactivity induced by copper in rat mesenteric artery. In vivo experiments showed that copper injection (iv significantly decreased blood pressure of rabbits and NA or DTC injection (iv did not rescue the copper-induced hypotension and animal death. Conclusion: Copper blunted NA but not high K+-induced vasoconstriction of rat mesenteric artery. The acute effect of copper on NA-induced vasoconstriction was depended on nitric oxide (NO, but the effect of copper pretreatment on NA-induced vasoconstriction was independed on NO, suggesting that copper affected NA-induced vasoconstriction by two distinct mechanisms.

  1. Cu/Cu{sub 2}O/CuO nanoparticles: Novel synthesis by exploding wire technique and extensive characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Anshuman [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307 (India); Goswami, Navendu, E-mail: navendugoswami@gmail.com [Department of Physics and Materials Science and Engineering, Jaypee Institute of Information Technology, A-10, Sector-62, Noida 201307 (India); Kaushik, S.D. [UGC-DAE-Consortium for Scientific Research Mumbai Centre, R5 Shed, BARC, Mumbai 400085 (India); Tripathi, Shilpa [UGC-DAE Consortium for Scientific Research, Indore, M.P. (India)

    2016-12-30

    Highlights: The salient features of this research article are following: • Mixed phase synthesis of Cu/Cu{sub 2}O/CuO nanoparticles prepared by Exploding Wire Technique (EWT). • Predominant Cu/Cu{sub 2}O phases along with minor CuO phase revealed through XRD, TEM, Raman, FTIR, UV–Visible and PL analyses. • XPS analysis provided direct evidences of Cu{sup 2+} and Cu{sup +} along with O deficiency for prepared nanoparticles. • Room temperature weak ferromagnetic behaviour was demonstrated for Cu/Cu{sub 2}O/CuO nanoparticles. - Abstract: In this article, we explore potential of Exploding Wire Technique (EWT) to synthesize the copper nanoparticles using the copper metal in a plate and wire geometry. Rietveld refinement of X-ray diffraction (XRD) pattern of prepared material indicates presence of mixed phases of copper (Cu) and copper oxide (Cu{sub 2}O). Agglomerates of copper and copper oxide comprised of ∼20 nm average size nanoparticles observed through high resolution transmission electron microscope (HRTEM) and energy dispersive x-ray (EDX) spectroscopy. Micro-Raman (μR) and Fourier transform infrared (FTIR) spectroscopies of prepared nanoparticles reveal existence of additional minority CuO phase, not determined earlier through XRD and TEM analysis. μR investigations vividly reveal cubic Cu{sub 2}O and monoclinic CuO phases based on the difference of space group symmetries. In good agreement with μRaman analysis, FTIR stretching modes corresponding to Cu{sub 2}-O and Cu-O were also distinguished. Investigations of μR and FTIR vibrational modes are in accordance and affirm concurrence of CuO phases besides predominant Cu and Cu{sub 2}O phase. Quantum confinement effects along with increase of band gaps for direct and indirect optical transitions of Cu/Cu{sub 2}O/CuO nanoparticles are reflected through UV–vis (UV–vis) spectroscopy. Photoluminescence (PL) spectroscopy spots the electronic levels of each phase and optical transitions processes

  2. Correction of high-voltage pulse front by means of exploding wires

    International Nuclear Information System (INIS)

    Azarkevich, E.I.; Zajtsev, N.I.; Kotov, Yu.A.

    1979-01-01

    A method of correcting the poWer pulse fronts shaped during the discharge of the Akradiev-Marx generator on active load has been suggested with a view to shaping power high-voltage pulses on the diode of a high-current electron accelerator. Thish correction is carried oUt by means of the current breaker on the base of electrically exploding wires. The breaker consists of four copper wires of 0.12 mm diameter, and 940 mm length. A current pulse of 32 kA amplitude, duration of 2.7 μs with a front of 100 ns was obtained by the use of the current breaker when forming the pulse in the electron accelerator power supply at load of 12 Ohm. The correction resulted in a nearly 20-fold reduction of the front duration

  3. Study of Implosion of Twisted Nested Arrays at the Angara-5-1 Facility

    Science.gov (United States)

    Mitrofanov, K. N.; Zukakishvili, G. G.; Aleksandrov, V. V.; Grabovski, E. V.; Frolov, I. N.; Gribov, A. N.

    2018-01-01

    Results are presented from experimental studies of the implosion of twisted nested arrays in which the wires of the outer and inner arrays are twisted about the array axis in opposite directions (clockwise and counterclockwise). Experiments with twisted arrays were carried out at the Angara-5-1 facility at currents of up to 4 MA. The currents through the arrays were switched either simultaneously or the current pulse through the outer array was delayed by 10-15 ns with the help of an anode spark gap. It is shown that, in such arrays, the currents flow along the inclined wires and, accordingly, there are both the azimuthal and axial components of the discharge current. The process of plasma implosion in twisted arrays depends substantially on the value of the axial (longitudinal) magnetic field generated inside the array by the azimuthal currents. Two-dimensional simulations of the magnetic field in twisted nested arrays were performed in the ( r, z) geometry with allowance for the skin effect in the discharge electrodes. It is shown that, depending on the geometry of the discharge electrodes, different configurations of the magnetic field can be implemented inside twisted nested arrays. The calculated magnetic configurations are compared with the results of measurements of the magnetic field inside such arrays. It is shown that the configuration of the axial magnetic field inside a twisted nested array depends substantially on the distribution of the azimuthal currents between the inner and outer arrays.

  4. Properties of thermal air plasma with admixing of copper and carbon

    International Nuclear Information System (INIS)

    Fesenko, S; Veklich, A; Boretskij, V; Cressault, Y; Gleizes, A; Teulet, Ph

    2014-01-01

    This paper deals with investigations of air plasma with admixing of copper and carbon. Model plasma source unit with real breaking arc was used for the simulation of real discharges, which can be occurred during sliding of Cu-C composite electrodes on copper wire at electromotive vehicles. The complex technique of plasma property studies is developed. From one hand, the radial profiles of temperature and electron density in plasma of electric arc discharge in air between Cu-C composite and copper electrodes in air flow were measured by optical spectroscopy techniques. From another hand, the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. It was assumed that the thermal conductivity of air plasma is not depending on copper or carbon vapor admixtures. The electron density is obtained from electric conductivity profiles by calculation in assumption of local thermodynamic equilibrium in plasma. Computed in such way radial profiles of electron density in plasma of electric arc discharge in air between copper electrodes were compared with experimentally measured profiles. It is concluded that developed techniques of plasma diagnostics can be reasonably used in investigations of thermal plasma with copper and carbon vapors

  5. The Quantum Socket: Wiring for Superconducting Qubits - Part 1

    Science.gov (United States)

    McConkey, T. G.; Bejanin, J. H.; Rinehart, J. R.; Bateman, J. D.; Earnest, C. T.; McRae, C. H.; Rohanizadegan, Y.; Shiri, D.; Mariantoni, M.; Penava, B.; Breul, P.; Royak, S.; Zapatka, M.; Fowler, A. G.

    Quantum systems with ten superconducting quantum bits (qubits) have been realized, making it possible to show basic quantum error correction (QEC) algorithms. However, a truly scalable architecture has not been developed yet. QEC requires a two-dimensional array of qubits, restricting any interconnection to external classical systems to the third axis. In this talk, we introduce an interconnect solution for solid-state qubits: The quantum socket. The quantum socket employs three-dimensional wires and makes it possible to connect classical electronics with quantum circuits more densely and accurately than methods based on wire bonding. The three-dimensional wires are based on spring-loaded pins engineered to insure compatibility with quantum computing applications. Extensive design work and machining was required, with focus on material quality to prevent magnetic impurities. Microwave simulations were undertaken to optimize the design, focusing on the interface between the micro-connector and an on-chip coplanar waveguide pad. Simulations revealed good performance from DC to 10 GHz and were later confirmed against experimental measurements.

  6. Thermal-hydraulic analysis for wire-wrapped PWR cores

    Energy Technology Data Exchange (ETDEWEB)

    Diller, P. [General Electric Company, 3901 Castle Hayne Rd., Wilmington, NC 28401 (United States)], E-mail: pdiller@gmail.com; Todreas, N. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)], E-mail: todreas@mit.edu; Hejzlar, P. [Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2009-08-15

    This work focuses on the steady-state and transient thermal-hydraulic analyses for PWR cores using wire wraps in a hexagonal array with either U (45% w/o)-ZrH{sub 1.6} (referred to as U-ZrH{sub 1.6}) or UO{sub 2} fuels. Equivalences (thermal-hydraulic and neutronic) were created between grid spacer and wire wrap designs, and were used to apply results calculated for grid spacers to wire wrap designs. Design limits were placed on the pressure drop, critical heat flux (CHF), fuel and cladding temperature and vibrations. The vibrations limits were imposed for flow-induced vibrations (FIV) and thermal-hydraulic vibrations (THV). The transient analysis examined an overpower accident, loss of coolant accident (LOCA) and loss of flow accident (LOFA). The thermal-hydraulic performance of U-ZrH{sub 1.6} and UO{sub 2} were found very similar. Relative to grid spacer designs, wire wrap designs were found to have smaller fretting wear, substantially lower pressure drop and higher CHF. As a result, wire wrap cores were found to offer substantially higher maximum powers than grid spacer cores, allowing for a 25% power increase relative to the grid spacer uprate [Shuffler, C.A., Malen, J.A., Trant, J.M., Todreas, N.E., 2009a. Thermal-hydraulic analysis for grid supported and inverted fueled PWR cores. Nuclear Technology (this special issue devoted to hydride fuel in LWRs)] and a 58% power increase relative to the reference core.

  7. Cryogenic and radiation-hard asic for interfacing large format NIR/SWIR detector arrays

    Science.gov (United States)

    Gao, Peng; Dupont, Benoit; Dierickx, Bart; Müller, Eric; Verbruggen, Geert; Gielis, Stijn; Valvekens, Ramses

    2017-11-01

    For scientific and earth observation space missions, weight and power consumption is usually a critical factor. In order to obtain better vehicle integration, efficiency and controllability for large format NIR/SWIR detector arrays, a prototype ASIC is designed. It performs multiple detector array interfacing, power regulation and data acquisition operations inside the cryogenic chambers. Both operation commands and imaging data are communicated via the SpaceWire interface which will significantly reduce the number of wire goes in and out the cryogenic chamber. This "ASIC" prototype is realized in 0.18um CMOS technology and is designed for radiation hardness.

  8. Trajectory Analysis of Copper and Glass Particles in Electrostatic Separation for the Recycling of ASR

    Directory of Open Access Journals (Sweden)

    Beom-uk Kim

    2017-10-01

    Full Text Available Automobile-shredder-residue (ASR recycling techniques have been widely applied for improving the total recycling rate of end-of-life vehicles. In this study, to obtain useful information for predicting or improving ASR-separation efficiency, trajectory analyses of conductors (copper and non-conductors (glass were performed using a lab-scale induction electrostatic separator. The copper-wire trajectories obtained showed a good agreement depending significantly on the electric field strength and particle size. The observed copper-wire trajectories showed consistent congruity with the coarse-particles simulation (0.5 and 0.25 mm. The observed fine-particles (0.06 mm trajectory was deflected toward the (− attractive electrode, owing to the charge density effects due to the particle characteristics and relative humidity. This results in superior separation performance because more copper enters the conductor products bin. The actual dielectric-glass trajectory was deflected toward the (− attractive electrode, thus showing characteristics similar to conductive-particle characteristics. Through analyses conducted using a stereoscopic microscope, scanning electron microscope, and energy dispersive spectroscope, we found heterogeneous materials (fine ferrous particles and conductive organics on the glass surface. This demonstrates the separation-efficiency decrease for non-ferrous metals during electrostatic separation in the recycling of ASR. Future work should include a pretreatment process for eliminating impurities from the glass and advanced trajectory-simulation processes.

  9. 1- to 10-keV x-ray backlighting of annular wire arrays on the Sandia Z-machine using bent-crystal imaging techniques

    International Nuclear Information System (INIS)

    Rambo, Patrick K.; Wenger, David Franklin; Bennett, Guy R.; Sinars, Daniel Brian; Smith, Ian Craig; Porter, John Larry Jr.; Cuneo, Michael Edward; Rovang, Dean Curtis; Anderson, Jessica E.

    2003-01-01

    Annular wire array implosions on the Sandia Z-machine can produce >200 TW and 1-2 MJ of soft x rays in the 0.1-10 keV range. The x-ray flux and debris in this environment present significant challenges for radiographic diagnostics. X-ray backlighting diagnostics at 1865 and 6181 eV using spherically-bent crystals have been fielded on the Z-machine, each with a ∼0.6 eVspectral bandpass, 10 (micro)m spatial resolution, and a 4 mm by 20mm field of view. The Z-Beamlet laser, a 2-TW, 2-kJ Nd:glass laser(λ = 527 nm), is used to produce 0.1-1 J x-ray sources for radiography. The design, calibration, and performance of these diagnostics is presented.

  10. Large-Aperture Membrane Active Phased-Array Antennas

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  11. Expeditious low-temperature sintering of copper nanoparticles with thin defective carbon shells

    Science.gov (United States)

    Kim, Changkyu; Lee, Gyoungja; Rhee, Changkyu; Lee, Minku

    2015-04-01

    The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation. Isothermal oxidation and reduction treatment at 200 °C for only about 10 min yields an oxide-free copper network structure with an electrical resistivity of 25.1 μΩ cm (14.0 μΩ cm at 250 °C). Finally, conductive copper line patterns are achieved down to a 50 μm width with an excellent printing resolution (standard deviation ~4.0%) onto a polyimide substrate using screen printing of the optimized inks.The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation

  12. Whole shaft visibility and mechanical performance for active MR catheters using copper-nitinol braided polymer tubes

    Directory of Open Access Journals (Sweden)

    McVeigh Elliot R

    2009-08-01

    Full Text Available Abstract Background Catheter visualization and tracking remains a challenge in interventional MR. Active guidewires can be made conspicuous in "profile" along their whole shaft exploiting metallic core wire and hypotube components that are intrinsic to their mechanical performance. Polymer-based catheters, on the other hand, offer no conductive medium to carry radio frequency waves. We developed a new "active" catheter design for interventional MR with mechanical performance resembling braided X-ray devices. Our 75 cm long hybrid catheter shaft incorporates a wire lattice in a polymer matrix, and contains three distal loop coils in a flexible and torquable 7Fr device. We explored the impact of braid material designs on radiofrequency and mechanical performance. Results The incorporation of copper wire into in a superelastic nitinol braided loopless antenna allowed good visualization of the whole shaft (70 cm in vitro and in vivo in swine during real-time MR with 1.5 T scanner. Additional distal tip coils enhanced tip visibility. Increasing the copper:nitinol ratio in braiding configurations improved flexibility at the expense of torquability. We found a 16-wire braid of 1:1 copper:nitinol to have the optimum balance of mechanical (trackability, flexibility, torquability and antenna (signal attenuation properties. With this configuration, the temperature increase remained less than 2°C during real-time MR within 10 cm horizontal from the isocenter. The design was conspicuous in vitro and in vivo. Conclusion We have engineered a new loopless antenna configuration that imparts interventional MR catheters with satisfactory mechanical and imaging characteristics. This compact loopless antenna design can be generalized to visualize the whole shaft of any general-purpose polymer catheter to perform safe interventional procedures.

  13. Data communication in read-out systems: how fast can we go over copper wires?

    International Nuclear Information System (INIS)

    Schrader, J.H.R.; Klumperink, E.A.M.; Visschers, J.L.; Nauta, B.

    2004-01-01

    In a digital X-ray imaging system, data has to be transmitted from the detector to the storage system. In future digital X-ray imaging systems, higher data rates will be needed. For some applications, e.g. protein crystallography at synchrotron beams, data rates in the order of gigabits per second are expected. Present trend for such systems is to move from a parallel data bus towards a high-speed serial readout. For high speed signaling over short distances (up to 10 m) the attenuation of copper cables is low enough to permit multi-gigabit per second speeds. In this article, an overview will be given of problems encountered in high speed data transmission over copper cable and techniques will be shown to overcome these problems. The bandwidth bottleneck in short distance communication is in the IC-technology and not in the channel. The cable transfer function results in inter-symbol interference (ISI). The skin-effect is the most significant cause of ISI for short length (10 m) coaxial copper cables. Fortunately, equalization can compensate for these effects. An equalizer has a transfer function that is the inverse of the channel transfer function. With the correct equalizer, a very low Bit Error Ratio (BER) can be achieved. The measured RG-58U cable (τ 1 =0.12 ns) could transmit at a bit rate of 8.3 Gbps, with a BER of 10 -12 . Multi-gigabit speeds are possible over short length coaxial copper cables

  14. Data communication in read-out systems: how fast can we go over copper wires?

    Energy Technology Data Exchange (ETDEWEB)

    Schrader, J.H.R. E-mail: j.h.r.schrader@utwente.nl; Klumperink, E.A.M.; Visschers, J.L.; Nauta, B

    2004-09-21

    In a digital X-ray imaging system, data has to be transmitted from the detector to the storage system. In future digital X-ray imaging systems, higher data rates will be needed. For some applications, e.g. protein crystallography at synchrotron beams, data rates in the order of gigabits per second are expected. Present trend for such systems is to move from a parallel data bus towards a high-speed serial readout. For high speed signaling over short distances (up to 10 m) the attenuation of copper cables is low enough to permit multi-gigabit per second speeds. In this article, an overview will be given of problems encountered in high speed data transmission over copper cable and techniques will be shown to overcome these problems. The bandwidth bottleneck in short distance communication is in the IC-technology and not in the channel. The cable transfer function results in inter-symbol interference (ISI). The skin-effect is the most significant cause of ISI for short length (10 m) coaxial copper cables. Fortunately, equalization can compensate for these effects. An equalizer has a transfer function that is the inverse of the channel transfer function. With the correct equalizer, a very low Bit Error Ratio (BER) can be achieved. The measured RG-58U cable ({tau}{sub 1}=0.12 ns) could transmit at a bit rate of 8.3 Gbps, with a BER of 10{sup -12}. Multi-gigabit speeds are possible over short length coaxial copper cables.

  15. Nano-pyramid arrays for nano-particle trapping

    NARCIS (Netherlands)

    Sun, Xingwu; Veltkamp, Henk-Willem; Berenschot, Johan W.; Gardeniers, Johannes G.E.; Tas, Niels Roelof

    2016-01-01

    Abstract In this paper we present the drastic miniaturization of nano-wire pyramids fabricated by corner lithography. A particle trapping device was fabricated in a well-defined and symmetrical array. The entrance and exit hole-size can be tuned by adjusting fabrication parameters. We describe here

  16. Corrosion Induced Loss of Capacity of Post Tensioned Seven Wire Strand Cable Used in Multistrand Anchor Systems Installed at Corps Projects

    Science.gov (United States)

    2016-12-01

    wedges. Method 4: Using a plastic -coated aluminum wire mesh to act as a cushion around the cable to reduce the bite of the serrations in the wedges...PT seven-wire strand cable surrounded by copper sheet layers and the wedges. Method 6: Using one wrap of 0.005 in. bronze shim stock to act as a...sterilized before use to reduce the presence of biological agents that will affect the sample during shipment. Plastics are lighter than glass

  17. Production of diamond wire by Cu15 v-% Nb 'in situ' process

    International Nuclear Information System (INIS)

    Filgueira, M.; Pinatti, D.G.

    2001-01-01

    Diamond wires are cutting tools used in the slabbing of dimension stones, such as marbles and granites, as well as in cutting of concrete structures. This tool consists of a steel cable on which diamond annular segments (pearls) are mounted with spacing between them. This work has developed a new technological route to obtain the diamond wires, whose fabrication involves metal forming processes such as rotary forging and wire drawing, copper tubes restacking, and thermal treatments of sintering and recrystallization. It was idealized the use of Cu 15v% Nb composite wires as the high tensile strength cable, covered with an external cutting rope made of bronze 4wt% diamond composite, along the overall wire surface. Investigations were carried out on the mechanical behavior and on the microstructural evolution of the Cu 15 vol % Nb wires, which showed ultimate tensile strength (UTS) of 960 MPa and deformation of approximately 3,0 %. The cutting external rope of 1.84 mm in diameter showed UTS = 230 MPa. On the microstructural side aspect it was observed that the diamond crystals were uniformly distributed throughout the tool bulk in the several processing steps. Cutting tests were carried out starting with an external diamond rope of 1.93 mm in diameter, which cut a marble sectional area of 1188 cm 2 , and the tool degraded to a final diameter of 1.23 mm. For marble the 'in situ' wire showed a probable performance 4 times higher than the diamond saws, however their probable performance was about 5 to 8 times less than the conventional diamond wires due to the low abrasion resistance of the bronze matrix and the low adhesion between the pair bronze-diamond. (author)

  18. Synthesis and characterization of copper nanofluid by a novel one-step method

    International Nuclear Information System (INIS)

    Kumar, S. Ananda; Meenakshi, K. Shree; Narashimhan, B.R.V.; Srikanth, S.; Arthanareeswaran, G.

    2009-01-01

    This paper presents a novel one-step method for the preparation of stable, non-agglomerated copper nanofluids by reducing copper sulphate pentahydrate with sodium hypophosphite as reducing agent in ethylene glycol as base fluid by means of conventional heating. This is an in situ, one-step method which gives high yield of product with less time consumption. The characterization of the nanofluid is done by particle size analyzer, X-ray diffraction topography, UV-vis analysis and Fourier transform infrared spectroscopy (FT-IR) followed by the study of thermal conductivity of nanofluid by the transient hot wire method

  19. Investigation of thermal and hot-wire chemical vapor deposition copper thin films on TiN substrates using CupraSelect as precursor.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    Copper films were deposited on oxidized Si substrates covered with TiN using a novel chemical vapor deposition reactor in which reactions were assisted by a heated tungsten filament (hot-wire CVD, HWCVD). Liquid at room temperature hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) was directly injected into the reactor with the aid of a direct-liquid injection (DLI) system using N2 as carrier gas. The deposition rates of HWCVD Cu films obtained on TiN covered substrates were found to increase with filament temperature (65 and 170 degrees C were tested). The resistivities of HWCVD Cu films were found to be higher than for thermally grown films due to the possible presence of impurities into the Cu films from the incomplete dissociation of the precursor and W impurities caused by the presence of the filament. For HWCVD films grown at a filament temperature of 170 degrees C, smaller grains are formed than at 65 degrees C as shown from the taken SEM micrographs. XRD diffractograms taken on Cu films deposited on TiN could not reveal the presence of W compounds originating from the filament because the relative peak was masked by the TiN [112] peak.

  20. Influence of titanium oxide films on copper nucleation during electrodeposition

    International Nuclear Information System (INIS)

    Chang, Hyun K.; Choe, Byung-Hak; Lee, Jong K.

    2005-01-01

    Copper electrodeposition has an important industrial role because of various interconnects used in electronic devices such as printed wire boards. With an increasing trend in device miniaturization, in demand are void-free, thin copper foils of 10 μm thick or less with a very low surface profile. In accordance, nucleation kinetics of copper was studied with titanium cathodes that were covered with thin, passive oxide films of 2-3 nm. Such an insulating oxide layer with a band gap of 3 eV is supposed to nearly block charge transfer from the cathode to the electrolyte. However, significant nucleation rates of copper were observed. Pipe tunneling mechanism along a dislocation core is reasoned to account for the high nucleation kinetics. A dislocation core is proposed to be a high electron tunneling path with a reduced energy barrier and a reduced barrier thickness. In supporting the pipe tunneling mechanism, both 'in situ' and 'ex situ' scratch tests were performed to introduce extra dislocations into the cathode surface, that is, more high charge paths via tunneling, before electrodeposition

  1. Relationship between energy deposition and shock wave phenomenon in an underwater electrical wire explosion

    Science.gov (United States)

    Han, Ruoyu; Zhou, Haibin; Wu, Jiawei; Qiu, Aici; Ding, Weidong; Zhang, Yongmin

    2017-09-01

    An experimental study of pressure waves generated by an exploding copper wire in a water medium is performed. We examined the effects of energy deposited at different stages on the characteristics of the resulting shock waves. In the experiments, a microsecond time-scale pulsed current source was used to explode a 300-μm-diameter, 4-cm-long copper wire with initial stored energies ranging from 500 to 2700 J. Our experimental results indicated that the peak pressure (4.5-8.1 MPa) and energy (49-287 J) of the shock waves did not follow a simple relationship with any electrical parameters, such as peak voltage or deposited energy. Conversely, the impulse had a quasi-linear relationship with the parameter Π. We also found that the peak pressure was mainly influenced by the energy deposited before separation of the shock wave front and the discharge plasma channel (DPC). The decay time constant of the pressure waveform was affected by the energy injection after the separation. These phenomena clearly demonstrated that the deposited energy influenced the expansion of the DPC and affected the shock wave characteristics.

  2. Evaluation of Copper Supplementation to Control Haemonchus contortus Infections of Sheep in Sweden

    Directory of Open Access Journals (Sweden)

    Rydzik A

    2004-09-01

    Full Text Available A pen study was conducted to assess the effect of providing daily copper mineral supplement, or copper wire particle (COWP capsules, on established or incoming mixed nematode infections in young sheep. For lambs with established (6 week old infections, COWP resulted in 97% and 56% reduction of the adult and early L4 stages of H. contortus, respectively, compared with controls (p Teladorsagia circumcincta infections in the COWP lambs compared with controls (p H. contortus infections, but lack of parasites during the grazing season prevented an adequate assessment from being made. These results indicate that there is little, if any, benefit from a parasite control standpoint in recommending copper therapy, specifically to control parasites in Swedish sheep flocks.

  3. Optimization of electron beam crosslinking of wire and cable insulation

    International Nuclear Information System (INIS)

    Zimek, Zbigniew; Przybytniak, Grażyna; Nowicki, Andrzej

    2012-01-01

    The computer simulations based on Monte Carlo (MC) method and the ModeCEB software were carried out in connection with electron beam (EB) radiation set-up for crosslinking of electric wire and cable insulation. The theoretical predictions for absorbed dose distribution in irradiated electric insulation induced by scanned EB were compared to the experimental results of irradiation that was carried out in the experimental set-up based on ILU 6 electron accelerator with electron energy 0.5–2.0 MeV. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for various process parameters, namely electric wire and cable geometry (thickness of insulation layers and copper wire diameter), type of polymer insulation, electron energy, energy spread and geometry of electron beam, electric wire and cable layout in irradiation zone. The geometry of electron beam distribution in the irradiation zone was measured using CTA and PVC foil dosimeters for available electron energy range. The temperature rise of the irradiated electric wire and irradiation homogeneity were evaluated for different experimental conditions to optimize technological process parameters. The results of computer simulation are consistent with the experimental data of dose distribution evaluated by gel-fraction measurements. Such conformity indicates that ModeCEB computer simulation is reliable and sufficient for optimization absorbed dose distribution in the multi-layer circular objects irradiated with scanned electron beams. - Highlights: ► We model wire and cables irradiation process by Monte Carlo simulations. ► We optimize irradiation configuration for various process parameters. ► Temperature rise and irradiation homogeneity were evaluated. ► Calculation (dose) and experimental (gel-fraction) results were compared. ► Computer simulation was found reliable and sufficient for process optimization.

  4. wire chamber

    CERN Multimedia

    Proportional multi-wire chamber. Multi-wire detectors contain layers of positively and negatively charged wires enclosed in a chamber full of gas. A charged particle passing through the chamber knocks negatively charged electrons out of atoms in the gas, leaving behind positive ions. The electrons are pulled towards the positively charged wires. They collide with other atoms on the way, producing an avalanche of electrons and ions. The movement of these electrons and ions induces an electric pulse in the wires which is collected by fast electronics. The size of the pulse is proportional to the energy loss of the original particle. Proportional wire chambers allow a much quicker reading than the optical or magnetoscriptive readout wire chambers.

  5. Wire breakage in SLC wire profile monitors

    International Nuclear Information System (INIS)

    Field, C.; McCormick, D.; Raimondi, P.; Ross, M.

    1998-05-01

    Wire scanning beam profile monitors are used at the Stanford Linear Collider (SLC) for emittance preservation control and beam optics optimization. Twenty such scanners have proven most useful for this purpose and have performed a total of 1.5 million scans in the 4 to 6 years since their installation. Most of the essential scanners are equipped with 20 to 40 microm tungsten wires. SLC bunch intensities and sizes often exceed 2 x 10 7 particles/microm 2 (3C/m 2 ). The authors believe that this has caused a number of tungsten wire failures that appear at the ends of the wire, near the wire support points, after a few hundred scans are accumulated. Carbon fibers, also widely used at SLAC, have been substituted in several scanners and have performed well. In this paper, the authors present theories for the wire failure mechanism and techniques learned in reducing the failures

  6. Transition edge sensor series array bolometer

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, J, E-mail: joern.beyer@ptb.d [Physikalisch-Technische Bundesanstalt (PTB), Abbestrasse 2-12, D-10587 Berlin (Germany)

    2010-10-15

    A transition edge sensor series array (TES-SA) is an array of identical TESs that are connected in series by low-inductance superconducting wiring. The array elements are equally and well thermally coupled to the absorber and respond to changes in the absorber temperature in synchronization. The TES-SA total resistance increases compared to a single TES while the shape of the superconducting transition is preserved. We are developing a TES-SA with a large number, hundreds to thousands, of array elements with the goal of enabling the readout of a TES-based bolometer operated at 4.2 K with a semiconductor-based amplifier located at room temperature. The noise and dynamic performance of a TES-SA bolometer based on a niobium/aluminum bilayer is analyzed. It is shown that stable readout of the bolometer with a low-noise transimpedance amplifier is feasible.

  7. Transition edge sensor series array bolometer

    International Nuclear Information System (INIS)

    Beyer, J

    2010-01-01

    A transition edge sensor series array (TES-SA) is an array of identical TESs that are connected in series by low-inductance superconducting wiring. The array elements are equally and well thermally coupled to the absorber and respond to changes in the absorber temperature in synchronization. The TES-SA total resistance increases compared to a single TES while the shape of the superconducting transition is preserved. We are developing a TES-SA with a large number, hundreds to thousands, of array elements with the goal of enabling the readout of a TES-based bolometer operated at 4.2 K with a semiconductor-based amplifier located at room temperature. The noise and dynamic performance of a TES-SA bolometer based on a niobium/aluminum bilayer is analyzed. It is shown that stable readout of the bolometer with a low-noise transimpedance amplifier is feasible.

  8. Perforated plates for cryogenic regenerators and method of fabrication

    International Nuclear Information System (INIS)

    Hendricks, J.B.

    1994-01-01

    Perforated plates having very small holes with a uniform diameter throughout the plate thickness are prepared by a open-quotes wire drawingclose quotes process in which a billet of sacrificial metal is disposed in an extrusion can of the plate metal, and the can is extruded and restacked repeatedly, converting the billet to a wire of the desired hole diameter. At final size, the rod is then sliced into wafers, and the wires are removed by selective etching. This process is useful for plate metals of interest for high performance regenerator applications, in particular, copper, niobium, molybdenum, erbium, and other rare earth metals. Er 3 Ni, which has uniquely favorable thermophysical properties for such applications, may be incorporated in regions of the plates by providing extrusion cans containing erbium and nickel metals in a stacked array with extrusion cans of the plate metal, which may be copper. The array is heated to convert the erbium and nickel metals to Er 3 Ni. Perforated plates having two sizes of perforations, one of which is small enough for storage of helium, are also disclosed. 10 figures

  9. The effectiveness of copper oxide wire particles as an anthelmintic in pregnant ewes and safety to offspring.

    Science.gov (United States)

    Burke, J M; Miller, J E; Brauer, D K

    2005-08-10

    The objective of the experiment was to determine the effectiveness of copper oxide wire particles (COWP) in pregnant ewes and safety to lambs. COWP have been used recently as an anthelmintic in small ruminants to overcome problems associated with nematode resistance to chemical dewormers. Doses of COWP (copper toxicity. Use in pregnant ewes has not been examined. Mature Katahdin ewes were administered 0 (n=14), 2 (n=15), or 4 (n=15)g of COWP 33+/-1.6 days before lambing in late March 2004. Fecal egg counts (FEC) and blood packed cell volume (PCV) were determined between Days 0 (day of COWP administration) and 35. Lambs were weighed within 24h after birth, at 30 and 60 days of age, and in mid-September ( approximately 120 days of age). Blood was collected from lambs within 24h after birth and at 30 days of age for determination of the activity of the liver enzyme, aspartate aminotransferase (AST) in plasma. Within 7 days after COWP administration, FEC decreased by 1308 and 511 eggs/g (epg) in the 2 and 4 g groups, respectively, compared with an increase of 996 epg in the control group (P<0.02). PCV was similar among groups between Days 0 and 35. Lamb plasma AST activity at birth increased with increasing dose of COWP in dams (P<0.001). Plasma AST activity at 30 days of age was similar for lambs from ewes treated with 0 and 2g COWP, but was slightly greater in lambs from ewes treated with 4 g COWP (P<0.02). Birth weights decreased with increasing COWP (P<0.003). By 30 (COWPxbirth type, P<0.02) and 60 (COWPxbirth type, P<0.02) days of age, weight of multiple-born lambs decreased with increasing COWP, while weight of single-born lambs was similar among treatments. In mid-September ( approximately 120 days of age) weights of multiple-born lambs from ewes treated with 4 g COWP tended to be lightest compared with lambs from ewes treated with 0 or 2g COWP or single-born lambs (P<0.09). Lamb survival to 30, 60, or 120 days of age was not affected by COWP treatment to ewes

  10. Administration of copper oxide wire particles in a capsule or feed for gastrointestinal nematode control in goats.

    Science.gov (United States)

    Burke, J M; Soli, F; Miller, J E; Terrill, T H; Wildeus, S; Shaik, S A; Getz, W R; Vanguru, M

    2010-03-25

    Widespread anthelmintic resistance in small ruminants has necessitated alternative means of gastrointestinal nematode (GIN) control. The objective was to determine the effectiveness of copper oxide wire particles (COWP) administered as a gelatin capsule or in a feed supplement to control GIN in goats. In four separate experiments, peri-parturient does (n=36), yearling does (n=25), weaned kids (n=72), and yearling bucks (n=16) were randomly assigned to remain untreated or administered 2g COWP in a capsule (in Experiments 1, 2, and 3) or feed supplement (all experiments). Feces and blood were collected every 7 days between Days 0 and 21 (older goats) or Day 42 (kids) for fecal egg counts (FEC) and blood packed cell volume (PCV) analyses. A peri-parturient rise in FEC was evident in the untreated does, but not the COWP-treated does (COWP x date, P<0.02). In yearling does, FEC of the COWP-treated does tended to be lower than the untreated (COWP, P<0.02). FEC of COWP-treated kids were reduced compared with untreated kids (COWP x date, P<0.001). FEC of treated and untreated bucks were similar, but Haemonchus contortus was not the predominant nematode in these goats. However, total worms were reduced in COWP-fed bucks (P<0.03). In summary, it appeared that COWP in the feed was as effective as COWP in a gelatin capsule to reduce FEC in goats. COWP administration may have a limited effect where H. contortus is not the predominant nematode.

  11. The influence of die geometry on stress distribution by experimental and FEM simulation on electrolytic copper wiredrawing

    Directory of Open Access Journals (Sweden)

    Leonardo Kyo Kabayama

    2009-09-01

    Full Text Available The study of die geometry is vital in determining the surface and mechanical properties of drawn wires, and consequently, their application. In this work, annealed electrolytic copper wire (ETP, with 0.5 mm original diameter was reduced by 19% in dies with 2β = 10º and 18º and Hc = 35 and 50%. The best experimental results were then studied by the Finite Element Method to simulate residual stress distribution. The experimental results show that the friction coefficient decreases as the wire drawing speed increases, and that low 2β and Hc values bring about the most favorable wiredrawing conditions. The simulation shows a variation in the axial and radial tensions, both for the compression and traction stresses on all regions during the wire drawing process. In conclusion, the influence of the internal die geometry on the drawn wire is clarified.

  12. Electrical injuries due to theft of copper.

    Science.gov (United States)

    Curinga, Giuseppe; Pietramaggiori, Giorgio; Scherer, Sandra Saja; Masellis, Alessandro; Gherardini, Giulio; Brancato, Renato; Conte, Francesco; Bistoni, Giovanni

    2010-01-01

    This study shows that the theft of copper, mainly from electrical wires, is becoming a more frequent crime as the value of this metal rises. We have collected all the data from the Burn Centre of the Hospital of Palermo, Italy, from 1992 to 2007. Over the last two decades, we assisted to a dramatic increase of patients admitted to our hospital, reporting burn injuries while attempting to steal it in dangerous conditions. The circumstances of the injury, the clinical management of the case, and the long-term consequences are presented and discussed. We found that the electrical burn related to the theft of copper is often a life-threatening event because of the high-voltage electrical current passing through the patients. Patients, due to the type of activity, often requiring physical effort, were generally young and healthy. From a review of the literature on the subject, we have noticed that theft of copper is not reported as an important risk factor for electrical burns. Our report clearly shows that theft of copper-related electrical injury is becoming more frequent in the community and should be added as a "new" risk factor. The already high incidence reported here may actually be lower than the actual incidence because many patients tend not to come to the hospital because of the risk of being prosecuted by the police.

  13. Thermosonic wire bonding of IC devices using palladium wire

    International Nuclear Information System (INIS)

    Shze, J.H.; Poh, M.T.; Tan, R.M.

    1996-01-01

    The feasibility of replacing gold wire by palladium wire in thermosonic wire bonding of CMOS and bipolar devices are studied in terms of the manufacturability, physical, electrical and assembly performance. The results that palladium wire is a viable option for bonding the bipolar devices but not the CMOS devices

  14. Experimental and numerical investigations of wire bending by linear winding of rectangular tooth coils

    Science.gov (United States)

    Komodromos, A.; Tekkaya, A. E.; Hofmann, J.; Fleischer, J.

    2018-05-01

    Since electric motors are gaining in importance in many fields of application, e.g. hybrid electric vehicles, optimization of the linear coil winding process greatly contributes to an increase in productivity and flexibility. For the investigation of the forming behavior of the winding wire the material behavior is characterized in different experimental setups. Numerical examinatons of the linear winding process are carried out in a case study for a rectangular bobbin in order to analyze the influence of forming parameters on the resulting properties of the wound coil. Besides the numerical investigation of the linear winding method by using the finite element method (FEM), a multi-body dynamics (MBD) simulation is carried out. The multi-body dynamics simulation is necessary to represent the movement of the bodies as well as the connection of the components during winding. The finite element method is used to represent the material behavior of the copper wire and the plastic strain distribution within the wire. It becomes clear that the MBD simulation is not sufficient for analyzing the process and the wire behavior in its entirety. Important parameters that define the final coil properties cannot be analyzed in the manner of a precise manifestation, e.g. the clearance between coil bobbin and wire as well as the wire deformation behavior in form of a diameter reduction which negatively affects the ohmic resistance. Finally, the numerical investigations are validated experimentally by linear winding tests.

  15. Evaluation of force released by deflection of orthodontic wires in conventional and self-ligating brackets.

    Science.gov (United States)

    Higa, Rodrigo Hitoshi; Semenara, Nayara Thiago; Henriques, José Fernando Castanha; Janson, Guilherme; Sathler, Renata; Fernandes, Thais Maria Freire

    2016-01-01

    The aim of the study was to evaluate deflection forces of rectangular orthodontic wires in conventional (MorelliTM), active (In-Ovation RTM) and passive (Damon 3MXTM) self-ligating brackets. Two brands of stainless steel and nickel-titanium (NiTi) wires (MorelliTM and GACTM), in addition to OrmcoTM copper-nickel-titanium wires were used. Specimens were assembled in a clinical simulation device especially designed for this study and tested in an Instron universal testing machine. For the testing procedures, an acrylic structure representative of the maxillary right central incisor was lingually moved in activations of 0 to 1 mm, with readings of the force released by deflection in unloading of 0.5, 0.8 and 1 mm at a constant speed of 2 mm/min. Inter-bracket forces with stainless steel, NiTi and CuNiTi were individually compared by two-way ANOVA, followed by Tukey's tests. Results showed that there were lower forces in conventional brackets, followed by active and passive self-ligating brackets. Within the brands, only for NiTi wires, the MorelliTM brand presented higher forces than GACTM wires. Bracket systems provide different degrees of deflection force, with self-ligating brackets showing the highest forces.

  16. Branched ZnO wire structures for water collection inspired by cacti.

    Science.gov (United States)

    Heng, Xin; Xiang, Mingming; Lu, Zhihui; Luo, Cheng

    2014-06-11

    In this work, motivated by an approach used in a cactus to collect fog, we have developed an artificial water-collection structure. This structure includes a large ZnO wire and an array of small ZnO wires that are branched on the large wire. All these wires have conical shapes, whose diameters gradually increase from the tip to the root of a wire. Accordingly, a water drop that is condensed on the tip of each wire is driven to the root by a capillary force induced by this diameter gradient. The lengths of stem and branched wires in the synthesized structures are in the orders of 1 mm and 100 μm, respectively. These dimensions are, respectively, comparable to and larger than their counterparts in the case of a cactus. Two groups of tests were conducted at relative humidity of 100% to compare the amounts of water collected by artificial and cactus structures within specific time durations of 2 and 35 s, respectively. The amount of water collected by either type of structures was in the order of 0.01 μL. However, on average, what has been collected by the artificial structures was 1.4-5.0 times more than that harvested by the cactus ones. We further examined the mechanism that a cactus used to absorb a collected water drop into its stem. On the basis of the gained understanding, we developed a setup to successfully collect about 6 μL of water within 30 min.

  17. Enhanced transport currents in Cu-sheathed MgB{sub 2} wires

    Energy Technology Data Exchange (ETDEWEB)

    Eisterer, M; Weber, H W [Atomic Institute of the Austrian Universities, Vienna (Austria); Glowacki, B A [Department of Materials Science and Metallurgy, University of Cambridge, Cambridge (United Kingdom); Pacific Northwest National Laboratory, Richland, WA (United States); Greenwood, L R [Pacific Northwest National Laborat