WorldWideScience

Sample records for copper vapor lasers

  1. Development of halide copper vapor laser (the characteristics of using Cul)

    International Nuclear Information System (INIS)

    Oouti, Kazumi; Wada, Yukio; Sasao, Nobuyuki

    1990-01-01

    We are developing halide copper vapor laser that is high efficiency and high reputation rate visible laser. Halide copper vapor laser uses halide copper of copper vapor source. It melts low temperature in comporison with metal copper, because laser tube structure is very simple and it can operate easy. This time, we experiment to use Cul for copper vapor source. We resulted maximum output energy 17.8 (W) and maximum efficiency 0.78 (%) when operate condition was reputation rate 30 (kHz), gas pressure 90 (Torr), charging voltage 13 (kV). (author)

  2. Design and physical features of inductive coaxial copper vapor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Batenin, V. M. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Kazaryan, M. A. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation); Karpukhin, V. T. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Lyabin, N. A. [Istok Research and Production Corporation (Russian Federation); Malikov, M. M., E-mail: mmalikov@oivtran.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2016-11-15

    A physical model of a copper vapor laser pumped by a pulse-periodic inductive (electrodeless) discharge is considered. The feasibility of efficient laser pumping by an inductive discharge and reaching high output parameters comparable to those of conventional copper vapor lasers pumped by a longitudinal electrode discharge is demonstrated. The design and physical features of an inductive copper vapor laser with an annular working volume are discussed.

  3. Kinetics of excited levels in copper-vapor laser

    International Nuclear Information System (INIS)

    Smilanski, I.

    1981-10-01

    A full and representative description of the excited copper level kinetics in a copper-vapor laser is presented. The research was carried out in three stages. The first stage was the development of a representative and reliable measurement cell. A laser tube constructed of refractory materials and an excitation circuit which provides short pulses at a high repetition rate to heat the tube and excite the copper atoms were developed. This stage was also dedicated to characterizing the laser and studying its scaling laws. In the second stage a rapid neasuring system which avoids the problem of spectral line shape was developed. The system is based on the 'hook' method, which utilizes the anomalous dispersion in the vicinity of an atomic line. The light source, a wide band nitrogen-laser-pumped dye laser, ensures a short sampling time, and the recording system, with a television camera face as the recording medium, allows precise data reduction. In the third stage the excited copper level kinetics in a copper vapor laser is measured. The principal conclusions, that only a small part of the energy in the discharge is utilized to populate the upper laser levels and that the lower laser level population is very large at the end of the excitation pulse and cannot be attributed to relaxation of the upper levels, necessitate a new kinetic description of the copper-vapor laser. The laser is not self-terminating; it is activated and terminated by the electrical discharge

  4. Distributed feedback dye laser pumped with copper-vapor laser emission

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S Yu; Soldatov, A N; Sukhanov, V B

    1983-10-01

    The power-spectrum characteristics of the emission of a distributed feedback dye laser pumped with a copper vapor laser have been studied. Laser action has been observed in five dyes over a tuning range of 530-723 nm with an efficiency of 12.4%. The specfic features of the distributed feedback dye laser operating at pulse repetition rates of 4 kHz are discussed.

  5. Microcomponents manufacturing for precise devices by copper vapor laser

    Science.gov (United States)

    Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.

    2001-06-01

    This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.

  6. Discharge characteristics of copper vapor laser

    International Nuclear Information System (INIS)

    Nemoto, Koshichi; Fujii, Takashi

    1988-01-01

    This report describes about the copper vapor laser and experimental results of it's discharge characteristics. We measured time varing of plasma regist, and analyzed electron density. (1) The plasma regist is larger than 100Ω at the beginning of discharge, and is rapidly reduced to about 10Ω. (2) The electron density is estimated about 1∼2 x 10 12 /cc at the begining of discharge. (author)

  7. Effect of the background radiation of a copper vapor laser with an unstable resonator on dye lasing

    Energy Technology Data Exchange (ETDEWEB)

    Elaev, V F; Mirza, S M; Sukhanov, V B; Troitskii, V O; Soldatov, A N

    1986-05-01

    Results of an experimental study of the emission divergence of a copper vapor laser with an unstable resonator are reported. It is shown that a copper vapor laser beam can be conveniently treated as a pair of components with a divergence higher or lower than a certain optimal value; the percent ratio of the components varies with the pulse repetition frequency. In the case where a copper vapor laser is used to pump a dye laser, the contribution of the component with the higher divergence to dye lasing does not exceed 1 percent. 7 references.

  8. Investigation of the lasing of dyes under copper vapor laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Danilova, V I; Kopylova, T N; Maier, G V; Masarnovskii, L V; Soldatov, A N; Sukhanov, V B

    1980-10-01

    The lasing characteristics of dyes pumped by copper vapor laser radiation are investigated in order to determine the optimal energetic parameters of the dye-laser system. Expressions are derived for the yields of stimulated emission from dye molecules, and it is shown that the most effective means of improving the lasing characteristics of rhodamine dye solutions is by the modification of intermolecular interactions, in part by the use of multicomponent solutions. Results are then presented of experimental measurements of the emission intensities of combinations of rhodamine dyes irradiated by the 5106-A line of a copper vapor laser. An increase in the lasing efficiency of the acceptor molecule is found for all the dye pairs investigated, with even greater emission intensities observed for multicomponent dye mixtures when the mixtures were pumped transversely. Under longitudinal pumping, improvements in lasing efficiency were obtained only for mixtures of rhodamine 6 Zh with cresil violet.

  9. A dye center laser pumped by emission from copper vapor and dye lasers

    Energy Technology Data Exchange (ETDEWEB)

    Loktyushin, A A; Chernyshev, A I; Soldatov, A N; Sukhanov, V B; Troitskiy, V O

    1983-01-01

    LiF:F2+ lasing is reported for the case of pumping by total emission with frequencies of 570.6 and 578.2 nanometers or by a single yellow copper vapor laser line and emission from an oxazene-17 dye laser excited by emission from a Cu laser. Lasing with a mean power level of 23 milliwatts with a maximum at 911 nanometers is obtained. The maximum efficiency was 3.4 percent with pumping of the dye centers by emission from the yellow Cu laser line. The lasing characteristics of the laser for all the types of pumping used are given.

  10. Numerical investigation of vessel heating using a copper vapor laser and a pulsed dye laser in treating vascular skin lesions

    Science.gov (United States)

    Pushkareva, A. E.; Ponomarev, I. V.; Isaev, A. A.; Klyuchareva, S. V.

    2018-02-01

    A computer simulation technique was employed to study the selective heating of a tissue vessel using emission from a pulsed copper vapor laser and a pulsed dye laser. The depth and size of vessels that could be selectively and safely removed were determined for the lasers under examination.

  11. Copper laser diagnostics and kinetics support

    International Nuclear Information System (INIS)

    1981-12-01

    In the effort MSNW participated with the LINL copper-Vapor Laser Program by providing a useful plasma diagnostic for interpretation of Copper-vapor laser kinetics. MSNW developed and delivered a pulsed interferometric diagnostic package to LLNL. Moreover MSNW provided personal services at the request and direction of LLL in the implementation of the diagnostic and interpretation of the data

  12. High-speed off-axis holographic cinematography with a copper-vapor-pumped dye laser.

    Science.gov (United States)

    Lauterborn, W; Judt, A; Schmitz, E

    1993-01-01

    A series of coherent light pulses is generated by pumping a dye laser with the pulsed output of a copper-vapor laser at rates of as much as 20 kHz. Holograms are recorded at this pulse rate on a rotating holographic plate. This technique of high-speed holographic cinematography is demonstrated by viewing the bubble filaments that appear in water under the action of a sound field of high intensity.

  13. Dye laser with distributed feedback and with pumping by copper-vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, S Yu; Soldatov, A N; Sukhanov, V B

    1983-10-01

    An experimental study was made for determining the characteristics of dye lasers with distributed feedback, not requiring intricate resonator structures, and the feasibility of their pumping with radiation from a metal-vapor laser. The experiments were performed with five different dyes lasing in the yellow-red (510.6 - 578.2 nm) range of the spectrum: rhodamine 110, 6G, S and ocazine 17,1 in ethyl alcohol solution. The optical equipment included a copper-vapor pumping laser with the gas-discharge tube inside a telescopic resonator of the unstable type. Pumping pulses of 20 ns duration were generated at 510.6 and 578.2 nm wavelengths and a 4 kHz repetition rate. The pumping power was varied by means of an interference filter smoothly adjustable through rotation. The pumping laser beam was focused by a cylindrical lens on the dye cell. At optimum dye concentrations, corresponding to a maximum attainable emission power, dye concentrate was added into the circulation system for determining the dependence of the pumping threshold power on the dye concentration. Also measured were the dependence of the emission efficiency on the pumping power and the tuning range of each dye laser. The efficiency was found to remain constant over the pumping power range from threshold level to eight times higher level. The results reveal different angles of laser beam divergence in the vertical plane and in the horizontal plane, the divergence angle being four times larger in the vertical plane. The conversion efficiency increased, without significant changes in spectral characteristics, with a single annular reflector instead of two reflectors. 9 references, 4 figures, 1 table.

  14. Engine flow visualization using a copper vapor laser

    Science.gov (United States)

    Regan, Carolyn A.; Chun, Kue S.; Schock, Harold J., Jr.

    1987-01-01

    A flow visualization system has been developed to determine the air flow within the combustion chamber of a motored, axisymmetric engine. The engine has been equipped with a transparent quartz cylinder, allowing complete optical access to the chamber. A 40-Watt copper vapor laser is used as the light source. Its beam is focused down to a sheet approximately 1 mm thick. The light plane is passed through the combustion chamber, and illuminates oil particles which were entrained in the intake air. The light scattered off of the particles is recorded by a high speed rotating prism movie camera. A movie is then made showing the air flow within the combustion chamber for an entire four-stroke engine cycle. The system is synchronized so that a pulse generated by the camera triggers the laser's thyratron. The camera is run at 5,000 frames per second; the trigger drives one laser pulse per frame. This paper describes the optics used in the flow visualization system, the synchronization circuit, and presents results obtained from the movie. This is believed to be the first published study showing a planar observation of airflow in a four-stroke piston-cylinder assembly. These flow visualization results have been used to interpret flow velocity measurements previously obtained with a laser Doppler velocimetry system.

  15. XPS studies of short pulse laser interaction with copper

    International Nuclear Information System (INIS)

    Stefanov, P.; Minkovski, N.; Balchev, I.; Avramova, I.; Sabotinov, N.; Marinova, Ts.

    2006-01-01

    The effect of laser ablation on copper foil irradiated by a short 30 ns laser pulse was investigated by X-ray photoelectron spectroscopy. The laser fluence was varied from 8 to 16.5 J/cm 2 and the velocity of the laser beam from 10 to 100 mm/s. This range of laser fluence is characterized by a different intensity of laser ablation. The experiments were done in two kinds of ambient atmosphere: air and argon jet gas. The chemical state and composition of the irradiated copper surface were determined using the modified Auger parameter (α') and O/Cu intensity ratio. The ablation atmosphere was found to influence the size and chemical state of the copper particles deposited from the vapor plume. During irradiation in air atmosphere the copper nanoparticles react with oxygen and water vapor from the air and are deposited in the form of a CuO and Cu(OH) 2 thin film. In argon atmosphere the processed copper surface is oxidized after exposure to air

  16. An overview of copper-laser development for isotope separation

    International Nuclear Information System (INIS)

    Warner, B.E.

    1987-01-01

    We have developed a copper-laser pumped dye-laser system that addresses all of the requirements for atomic vapor laser isotope separation. The requirement for high average power for the laser system has led to the development of copper-laser chains with injection-locked oscillators and multihundred-watt amplifiers. By continuously operating the Laser Demonstration Facility, we gain valuable data for further upgrade and optimization

  17. THERAPY OF SKIN VASCULAR MALFORMATIONS USING COPPER VAPOR LASER AND PULSED DYE LASER

    Directory of Open Access Journals (Sweden)

    Svetlana V. Klyuchareva

    2018-01-01

    Full Text Available Aim. Comparison of effectiveness of the application of copper vapor laser (CVL and pulsed dye laser (PDL in clinical practice. Development of choice criteria of the more effective method of treatment.Materials and methods. The clinical data using CVL and PDL in the treatment of skin vascular malformations are presented. The treatment gave good results in removing of dysplastic skin vessels in 2 and 6 months. The treatment was not painful, and patients did not need general and local anesthesia. The results were presented concerning computer modeling of selective heating of vessels in tissue with CVL and PDL radiation. These results allowed to determine the depth of location and dimensions of vessels for selective and secure removing and the safe dosage ranges were found.Results. On the base of the calculated data, one could conclude that the mode of heating of dysplastic vessels with micropulse series of CVL is more safe and effective than the mode of powerful short pulses in the case of PDL.

  18. A study of the lasing of dyes under the influence of emission from a copper vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Danilova, V I; Kopylova, T N; Maier, G V; Masarnovskii, L V; Soldatov, A N; Sukhanov, V B

    1980-01-01

    Intense pulsed sources of coherent emission with a continuously tunable wavelength and a high pulse repetition frequency are necessary for atmospheric optics. The use of rhodamine lasing during pumping by a copper dye laser is the most promising. The goals of this work include using the opportunities for improving the lasing properties of dyes pumped by a copper dye laser, choosing dye mixtures that are optimum with respect to their lasing relation, and studying the influence of the dye on their lasing characteristics in order to obtain the optimum energy parameters in the device that is built using a copper vapor laser and an optical attachment. On the basis of an analysis of the equations that describe multiatomic molecular lasing, it is possible to come to a conclusion on the intermolecular processes that determine the lasing effectiveness: singlet-singlet and triplettriplet overabsorption of lasing emission, intercombination (S-T) and internal conversion, and photoconversion in excited electron states. A large probability of emission from the lower singlet state (a large value of the constant of the velocity of radiative decay) is also necessary.

  19. Rapid growth of diamond-like-carbon films by copper vapor laser ablation

    International Nuclear Information System (INIS)

    McLean, W.; Warner, B.E.; Havstad, M.A.

    1995-04-01

    Visible light from a copper vapor laser (CVL) operating with 510 and 578 nm radiation (intensity ratio approximately 2:1), an average power of 100 W, a pulse duration of 50 ns, and a repetition frequency of 4.4 kHz has been shown to produce high quality diamond-like-carbon (DLC) films at fluences between 2x10 8 and 5x10 10 W/cm 2 . Maximum deposition rates of 2000 μm·cm 2 /h were obtained at 5x10 8 W/cm 2 . DLC films with hardness values of approximately 60 GPa were characterized by a variety of techniques to confirm DLC character, hydrogen content, and surface morphology. The presence of C 2 in the vapor plume was confirmed by the presence of the C 2 Swan bands in emission spectra obtained during the process. Economic implications of process scale-up to industrially meaningful component sizes are presented

  20. High-power copper vapour lasers and applications

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J.J.; Warner, B.E.; Boley, C.D.; Dragon, E.P.

    1995-08-01

    Expanded applications of copper vapor lasers has prompted increased demand for higher power and better beam quality. This paper reports recent progress in laser power scaling, MOPA operation, beam quality improvement, and applications in precision laser machining. Issues such as gas heating, radial delay, discharge instability, and window heating will also be discussed.

  1. Histologic comparison of the pulsed dye laser and copper vapor laser effects on pig skin

    Energy Technology Data Exchange (ETDEWEB)

    Tan, O.T.; Stafford, T.J.; Murray, S.; Kurban, A.K. (Boston Univ. Medical Center, MA (USA))

    1990-01-01

    Albino pig skin was exposed to the copper vapor (CVL) and flash-lamp pulsed dye (PDL) lasers at 578 nm with a 3 mm diameter spotsize over a range of fluences until purpura and whitening were first established. The total irradiation time was the parameter that was varied in order for the CVL to reach the desired fluence. The lowest fluence producing each clinical endpoint was designated the threshold fluence: 34 J/cm{sup 2} was required to produce purpura using the CVL compared to 7.5 J/cm{sup 2} with the PDL laser. Histologically, skin exposed to purpura fluences from the CVL revealed the presence of constricted, disrupted papillary dermal blood vessels with trapped RBC's within them which were unlike those exposed to PDL where the irradiated vessels were dilated and packed with masses of intravascular agglutinated RBC's. The whitening threshold fluences for the CVL and PDL lasers were 67 J/cm{sup 2} and 29 J/cm{sup 2}, respectively. Streaming of epidermal cells and dermal collagen denaturation were observed in CVL irradiated skin, compared to occasional dyskeratotic epidermal cells and focal dermal collagen denaturation following PDL exposure. The mechanisms responsible for the clinical and histologic changes produced by the two laser systems are discussed.

  2. Wavefront reversal in a copper vapor active medium

    Energy Technology Data Exchange (ETDEWEB)

    Bunkin, F.V.; Savranskii, V.V.; Shafeev, G.A.

    1981-09-01

    Wavefront reversal in the resonator of a copper vapor laser was observed. The frequencies of the signal and reversed waves were the same. The dependence of the reversed signal power on the input signal power had a threshold. Photographs were obtained of the reconstructed image of an object when a distorting phase plate was inserted in the resonator.

  3. The copper-pumped dye laser system at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Hackel, R.P.; Warner, B.E.

    1993-01-01

    The Lawrence Livermore National Laboratory's (LLNL) Atomic Vapor Laser Isotope Separation (AVLIS) Program has developed a high-average-power, pulsed, tunable, visible laser system. Testing of this hardware is in progress at industrial scale. The LLNL copper-dye laser system is prototypical of a basic module of a uranium-AVLIS plant. The laser demonstration facility (LDF) system consists of copper vapor lasers arranged in oscillator-amplifier chains providing optical pump power to dye-laser master-oscillator-power-amplifier chains. This system is capable of thousands of watts (average) tunable between 550 and 650 mm. The copper laser system at LLNL consists of 12 chains operating continuously. The copper lasers operate at nominally 4.4 kHz, with 50 ns pulse widths and produce 20 W at near the diffraction limit from oscillators and >250 W from each amplifier. Chains consist of an oscillator and three amplifiers and produce >750 W average, with availabilities >95% (i.e., >8,300 h/y). The total copper laser system power averages ∼9,000 W and has operated at over 10,000 W for extended intervals. The 12 copper laser beams are multiplexed and delivered to the dye laser system where they pump multiple dye laser chains. Each dye chain consists of a master oscillator and three or four power amplifiers. The master oscillator operates at nominally 100 mW with a 50 MHz single mode bandwidth. Amplifiers are designed to efficiently amplify the dye beam with low ASE content and high optical quality. Sustained dye chain powers are up to 1,400 W with dye conversion efficiency >50%, ASE content <5%, and wavefront quality correctable to <λ/10 RMS, using deformable mirrors. Since the timing of the copper laser chains can be offset, the dye laser system is capable of repetition rates which are multiples of 4.4 kHz, up to 26 kHz, limited by the dye pumping system. Development of plant-scale copper and dye laser hardware is progressing in off-line facilities

  4. Metal halides vapor lasers with inner reactor and small active volume.

    Science.gov (United States)

    Shiyanov, D. V.; Sukhanov, V. B.; Evtushenko, G. S.

    2018-04-01

    Investigation of the energy characteristics of copper, manganese, lead halide vapor lasers with inner reactor and small active volume 90 cm3 was made. The optimal operating pulse repetition rates, temperatures, and buffer gas pressure for gas discharge tubes with internal and external electrodes are determined. Under identical pump conditions, such systems are not inferior in their characteristics to standard metal halide vapor lasers. It is shown that the use of a zeolite halogen generator provides lifetime laser operation.

  5. Relationship between 578-nm (copper vapor) laser beam geometry and heat distribution within biological tissues

    Science.gov (United States)

    Ilyasov, Ildar K.; Prikhodko, Constantin V.; Nevorotin, Alexey J.

    1995-01-01

    Monte Carlo (MC) simulation model and the thermoindicative tissue phantom were applied for evaluation of a depth of tissue necrosis (DTN) as a result of quasi-cw copper vapor laser (578 nm) irradiation. It has been shown that incident light focusing angle is essential for DTN. In particular, there was a significant rise in DTN parallel to elevation of this angle up to +20 degree(s)C and +5 degree(s)C for both the MC simulation and tissue phantom models, respectively, with no further increase in the necrosis depth above these angles. It is to be noted that the relationship between focusing angles and DTN values was apparently stronger for the real target compared to the MC-derived hypothetical one. To what extent these date are applicable for medical practice can be evaluated in animal models which would simulate laser-assisted therapy for PWS or related dermatologic lesions with converged 578 nm laser beams.

  6. Wave-front reversal in a copper-vapor active medium

    Energy Technology Data Exchange (ETDEWEB)

    Bunkin, F.V.; Savranskii, V.V.; Shafeev, G.A.

    1981-09-01

    The implementation of wave-front reversal in a copper-vapor laser resonator is reported. The frequencies of the signal wave and the reversed wave are the same, and the dependence of reversed-signal power on input-signal power has a threshold character. Photographs of the reconstructed object image upon insertion of a distorting phase plate into the resonator are presented.

  7. The electrical characteristic and gain behavior as a function of the radial distance from the laser axis in a copper vapor laser

    International Nuclear Information System (INIS)

    Gal, G.

    1989-06-01

    The dependence of few parameters (related to the laser gain) on the radial distance from the laser axis, is observed very easily in a large-bore Copper Vapor Laser (CVL). An 80-mm-bore CVL which has reproducible parameters for research purposes has been constructed. The temporal development of the gain at different radial distances in this laser has been measured. A narrow probing beam from a small CVL operating as a oscillator has been used for the measurements, while the large-bore CVL has been operated as an amplifier and probed by this beam at different radial points. The electric response of the laser has also been checked and lead to the conclusion that raising the electrons energy in the laser plasma entails higher gain. As the laser tube wall was moved towards the laser axis, a temporal lag in the gain development and a reduction in its size has been found. The temporal lag is related to skin effect which delays the penetration of the electric field in the plasma towards the laser axis. The reduction in gain is related to the radial dependence of the population of the laser lower levels. It has also been found that under saturation the average power per unit area extracted from the laser is weakly dependent on the radial distance. (author)

  8. Copper-vapor-catalyzed chemical vapor deposition of graphene on dielectric substrates

    Science.gov (United States)

    Yang, Chao; Wu, Tianru; Wang, Haomin; Zhang, Xuefu; Shi, Zhiyuan; Xie, Xiaoming

    2017-07-01

    Direct synthesis of high-quality graphene on dielectric substrates is important for its application in electronics. In this work, we report the process of copper-vapor-catalyzed chemical vapor deposition of high-quality and large graphene domains on various dielectric substrates. The copper vapor plays a vital role on the growth of transfer-free graphene. Both single-crystal domains that are much larger than previous reports and high-coverage graphene films can be obtained by adjusting the growth duration. The quality of the obtained graphene was verified to be comparable with that of graphene grown on Cu foil. The progress reported in this work will aid the development of the application of transfer-free graphene in the future.

  9. Enthalpy model for heating, melting, and vaporization in laser ablation

    OpenAIRE

    Vasilios Alexiades; David Autrique

    2010-01-01

    Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu) target in a helium (He) background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model th...

  10. Decrease in lower level density due to cooling of gas temperature by thermal dissociation of hydrogen in copper vapor laser

    International Nuclear Information System (INIS)

    Watanabe, Ikuo; Hayashi, Kazuo; Iseki, Yasushi; Suzuki, Setsuo; Noda, Etsuo; Morimiya, Osamu

    1995-01-01

    A gas temperature calculation is carried out in the copper vapor laser (CVL) with a beam diameter of 80 mm in the case of H 2 addition into the Ne buffer gas. The on-axis gas temperature decreases to 2800K with 1% concentration of H 2 , whereas the gas temperature is 3400K without H 2 . The on-axis lower level density decreases due to the cooling of the gas temperature. This decrease in the lower level density is thought to bring about a non annular beam profile in the case of H 2 addition. (author)

  11. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  12. Innovative lasers for uranium isotope separation

    International Nuclear Information System (INIS)

    Brake, M.L.; Gilgenbach, R.M.

    1993-07-01

    Copper vapor laser have important applications to uranium atomic vapor laser isotope separation (AVLIS). We have investigated two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated in three separate experimental configurations. The first examined the application of CW (0-500W) power and was found to be an excellent method for producing an atomic copper vapor from copper chloride. The second used a pulsed (5kW, 0.5--5 kHz) signal superimposed on the CW signal to attempt to produce vaporization, dissociation and excitation to the laser states. Enhanced emission of the optical radiation was observed but power densities were found to be too low to achieve lasing. In a third experiment we attempted to increase the applied power by using a high power magnetron to produce 100 kW of pulsed power. Unfortunately, difficulties with the magnetron power supply were encountered leaving inconclusive results. Detailed modeling of the electromagnetics of the system were found to match the diagnostics results well. An electron beam pumped copper vapor system (350 kV, 1.0 kA, 300 ns) was investigated in three separate copper chloride heating systems, external chamber, externally heated chamber and an internally heated chamber. Since atomic copper spectral lines were not observed, it is assumed that a single pulse accelerator is not capable of both dissociating the copper chloride and exciting atomic copper and a repetitively pulsed electron beam generator is needed

  13. Evidence for extreme partitioning of copper into a magmatic vapor phase

    International Nuclear Information System (INIS)

    Lowenstern, J.B.; Mahood, G.A.; Rivers, M.L.; Sutton, S.R.

    1991-01-01

    The discovery of copper sulfides in carbon dioxide- and chlorine-bearing bubbles in phenocryst-hosted melt inclusions shows that copper resides in a vapor phase in some shallow magma chambers. Copper is several hundred times more concentrated in magmatic vapor than in coexisting pantellerite melt. The volatile behavior of copper should be considered when modeling the volcanogenic contribution of metals to the atmosphere and may be important in the formation of copper porphyry ore deposits

  14. Innovative lasers for uranium isotope separation. [Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Brake, M.L.; Gilgenbach, R.M.

    1991-06-01

    Copper vapor lasers have important applications to uranium atomic vapor laser isotope separation (AVLIS). The authors have spent the first two years of their project investigating two innovative methods of exciting/pumping copper vapor lasers which have the potential to improve the efficiency and scaling of large laser systems used in uranium isotope separation. Experimental research has focused on the laser discharge kinetics of (1) microwave, and (2) electron beam excitation/pumping of large-volume copper vapor lasers. During the first year, the experiments have been designed and constructed and initial data has been taken. During the second year these experiments have been diagnosed. Highlights of some of the second year results as well as plans for the future include the following: Microwave resonant cavity produced copper vapor plasmas at 2.45 GHz, have been investigated. A CW (0--500 W) signal heats and vaporizes the copper chloride to provide the atomic copper vapor. A pulsed (5 kW, 0.5--5kHz) signal is added to the incoming CW signal via a hybrid mixer to excite the copper states to the laser levels. An enhancement of the visible radiation has been observed during the pulsed pardon of the signal. Electrical probe measurements have been implemented on the system to verify the results of the electromagnetic model formulated last year. Laser gain measurements have been initiated with the use of a commercial copper vapor laser. Measurements of the spatial profile of the emission are also currently being made. The authors plan to increase the amount of pulsed microwave power to the system by implementing a high power magnetron. A laser cavity will be designed and added to this system.

  15. Enthalpy model for heating, melting, and vaporization in laser ablation

    Directory of Open Access Journals (Sweden)

    Vasilios Alexiades

    2010-09-01

    Full Text Available Laser ablation is used in a growing number of applications in various areas including medicine, archaeology, chemistry, environmental and materials sciences. In this work the heat transfer and phase change phenomena during nanosecond laser ablation of a copper (Cu target in a helium (He background gas at atmospheric pressure are presented. An enthalpy model is outlined, which accounts for heating, melting, and vaporization of the target. As far as we know, this is the first model that connects the thermodynamics and underlying kinetics of this challenging phase change problem in a self-consistent way.

  16. Some characteristics of isotopic separation laser systems

    International Nuclear Information System (INIS)

    Pochon, E.

    1988-01-01

    The principle of Laser Isotope Separation (LIS) is simple and based on either selective electronic photoexcitation and photoionization of atomic vapor, or selective vibrational photoexcitation and photodissociation of molecules in the gas phase. These processes, respectively called SILVA (AVLIS) and SILMO (MLIS) in France, both use specific laser systems with wavelengths spanning from infrared to ultraviolet. This article describes briefly some of the characteristics of a SILVA laser system. Following a three-step process, a SILVA laser system is based on dye copper vapor lasers. The pulse dye lasers provide the tunable laser light and are optically pumped by copper vapor laser operating at high repetition rates. In order to meet plant laser system requirements, the main improvements under way relate to copper vapor laser devices the power capability, efficiency, reliability and lifetime of which have to be increased. 1 fig

  17. Preparation of graphite dispersed copper composite on copper plate with CO2 laser

    Science.gov (United States)

    Yokoyama, S.; Ishikawa, Y.; Muizz, M. N. A.; Hisyamudin, M. N. N.; Nishiyama, K.; Sasano, J.; Izaki, M.

    2018-01-01

    It was tried in this work to prepare the graphite dispersed copper composite locally on a copper plate with a CO2 laser. The objectives of this study were to clear whether copper graphite composite was prepared on a copper plate and how the composite was prepared. The carbon content at the laser spot decreased with the laser irradiation time. This mainly resulted from the elimination by the laser trapping. The carbon content at the outside of the laser spot increased with time. Both the laser ablation and the laser trapping did not act on the graphite particles at the outside of the laser spot. Because the copper at the outside of the laser spot melted by the heat conduction from the laser spot, the particles were fixed by the wetting. However, the graphite particles were half-floated on the copper plate. The Vickers hardness decreased with an increase with laser irradiation time because of annealing.

  18. Efficiencies of laser dyes for atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Oki, Yuji; Uchiumi, Michihiro; Takao, Takayuki; Igarashi, Kaoru; Shimamoto, Kojiro.

    1995-01-01

    Efficiencies of 30 laser dyes for the atomic vapor laser isotope separation (AVLIS) are experimentally evaluated with a dye laser pumped by a frequency-doubled Nd:YAG laser. On the other hand, a simulation code is developed to describe the laser action of Rhodamine 6G, and the dependence of the laser efficiency on the pump wavelength is calculated. Following conclusions are obtained by these considerations:space: 1) Pyrromethene 567 showed 16% higher laser efficiency than Rhodamine 6G by 532 nm pumping, and Pyrromethene 556 has an ability to provide better efficiency by green light pumping with a Cu vapor laser; 2) Kiton red 620 and Rhodamine 640, whose efficiencies were almost the same as Rhodamine 6G by 532 nm pumping, will show better efficiencies by two-wavelength pumping with a Cu vapor laser. (author)

  19. An externally heated copper vapour laser

    International Nuclear Information System (INIS)

    Rochefort, P.A.; Sopchyshyn, F.C.; Selkirk, E.B.; Green, L.W.

    1993-08-01

    A pulsed Copper Vapour Laser (CVL), with a nominal 6 kHz repetition rate, was designed, build, and commissioned at Chalk River laboratories. The laser was required for Resonant Ionization Mass Spectroscopy (RIMS) experiments and for projects associated with Atomic Vapour laser Isotope Separation (AVLIS) studies. For the laser to operate, copper coupons position along the length of a ceramic tube must be heated sufficiently to create an appropriate vapour pressure. The AECL CVL uses an external heater element with a unique design to raise the temperature of the tube. The Cylindrical graphite heating element is shaped to compensate for the large radiation end losses of the laser tube. The use of an external heater saves the expensive high-current-voltage switching device from heating the laser tube, as in most commercial lasers. This feature is especially important given the intermittent usage typical of experimental research. As well, the heater enables better parametric control of the laser output when studying the lasing of copper (or other) vapour. This report outlines the lasing process in copper vapour, describes in detail all three major laser sub-systems: the laser body; the laser tube heater; the high voltage pulsed discharge; and, reports parametric measurements of the individual sub-systems and the laser system as a whole. Also included are normal operating procedures to heat up, run and shut down the laser

  20. Laser vapor phase deposition of semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karlov, N.V.; Luk' ianchuk, B.S.; Sisakian, E.V.; Shafeev, G.A.

    1987-06-01

    The pyrolytic effect of IR laser radiation is investigated with reference to the initiation and control of the vapor phase deposition of semiconductor films. By selecting the gas mixture composition and laser emission parameters, it is possible to control the deposition and crystal formation processes on the surface of semiconductors, with the main control action achieved due to the nonadiabatic kinetics of reactions in the gas phase and high temperatures in the laser heating zone. This control mechanism is demonstrated experimentally during the laser vapor deposition of germanium and silicon films from tetrachlorides on single-crystal Si and Ge substrates. 5 references.

  1. Studies on CO2-laser Hybrid-Welding of Copper

    DEFF Research Database (Denmark)

    Nielsen, Jakob Skov; Olsen, Flemming Ove; Bagger, Claus

    2005-01-01

    CO2-laser welding of copper is known to be difficult due to the high heat conductivity of the material and the high reflectivity of copper at the wavelength of the CO2-laser light. THis paper presents a study of laser welding of copper, applying laser hybrid welding. Welding was performed as a hy...

  2. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  3. Copper Vapor Laser with One-Beam Radiation of Diffraction Quality and Its Capabilities for Microprocessing of Materials for Electronic Engineering Products

    Directory of Open Access Journals (Sweden)

    N. A. Lyabin

    2014-01-01

    Full Text Available The structure, spatial, time and energy characteristics of copper vapor laser radiation (CVL with optical resonators possessing high spatial selectivity have been investigated: with an unstable resonator (UR with two convex mirrors and telescopic UR, and the conditions to form one-beam radiation with diffraction divergence and high stability of directivity pattern axis have been defined.The most weighty and prospective application of CVL with UR with two convex mirrors is to use it as a driving oscillator (DO in a copper vapor laser system (CVLS of the type: driving oscillator – power amplifier (DO – PA when diffraction beam radiating power and power density in a focused spot of 10-20 µm in diameter increases by 1-2 orders. Using industrial sealed-off active elements (AE of “Kulon” series with an average radiation power of 15-25 W as PAs the peak power density increases up to 1011 W/cm 2 while an application of AE “Crystal” with 30- 50 W power gives up to 1012 W/cm 2 , which is sufficient for efficient and qualitative microprocessing of materials up to 1…2 mm thick. Such a CVLS has become the basis for creating up-to-date automated laser technological installations (ALTI of “Karavella-1” and “Karavella-1M” types to manufacture precision parts of electronic engineering products (EEP of metal up to 0.5 mm thick and of non-metal up to 1.5…1.8 mm thick.CVL with a telescopic UR with an average power of 5-6 W diffraction radiation beam has become the basis for creating industrial ALTI “Karavella-2” and “Karavella-2M” to manufacture precision parts of electronic engineering products (EEP of metal up to 0.3 mm thick and of non-metal up to 0.5 – 0.7 mm thick.Practical work on all types of ALTI “Karavella” has shown a set of significant advantages of a laser way of pulsed microprocessing over the traditional ones, including electro-erosion machining: a wide range of structural metal and non-metal materials to be

  4. Study on laser atomic spectroscopy

    International Nuclear Information System (INIS)

    Lee, Jong Min; Song, Kyu Seok; Jeong, Do Young; Kim, Chul Joong; Han, Phil Soon

    1992-01-01

    Electric discharge type atomic vaporizer is developed for the spectroscopic study on actinide elements. Laser induced fluorescence study on actinide elements is performed by using this high temperature type atomizer. For the effective photoionization of elements, copper vapor laser pumped dye laser and electron beam heating type atomic vaporizer are built and their characteristics are measured. In addition, resonance ionization mass spectroscopic analysis for lead sample as well as laser induced fluorescence study on uranium sample in solution phase is made. (Author)

  5. Selective laser vaporization of polypropylene sutures and mesh

    Science.gov (United States)

    Burks, David; Rosenbury, Sarah B.; Kennelly, Michael J.; Fried, Nathaniel M.

    2012-02-01

    Complications from polypropylene mesh after surgery for female stress urinary incontinence (SUI) may require tedious surgical revision and removal of mesh materials with risk of damage to healthy adjacent tissue. This study explores selective laser vaporization of polypropylene suture/mesh materials commonly used in SUI. A compact, 7 Watt, 647-nm, red diode laser was operated with a radiant exposure of 81 J/cm2, pulse duration of 100 ms, and 1.0-mm-diameter laser spot. The 647-nm wavelength was selected because its absorption by water, hemoglobin, and other major tissue chromophores is low, while polypropylene absorption is high. Laser vaporization of ~200-μm-diameter polypropylene suture/mesh strands, in contact with fresh urinary tissue samples, ex vivo, was performed. Non-contact temperature mapping of the suture/mesh samples with a thermal camera was also conducted. Photoselective vaporization of polypropylene suture and mesh using a single laser pulse was achieved with peak temperatures of 180 and 232 °C, respectively. In control (safety) studies, direct laser irradiation of tissue alone resulted in only a 1 °C temperature increase. Selective laser vaporization of polypropylene suture/mesh materials is feasible without significant thermal damage to tissue. This technique may be useful for SUI procedures requiring surgical revision.

  6. Analysis of organic vapors with laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nozari, Hadi; Tavassoli, Seyed Hassan [Laser and Plasma Research Institute, Shahid Beheshti University, G. C, 1983963113 Evin, Tehran (Iran, Islamic Republic of); Rezaei, Fatemeh, E-mail: fatemehrezaei@kntu.ac.ir [Department of Physics, K. N. Toosi University of Technology, 15875-4416 Shariati, Tehran (Iran, Islamic Republic of)

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  7. Analysis of organic vapors with laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-01-01

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor

  8. Stress corrosion cracking and dealloying of copper-gold alloy in iodine vapor

    International Nuclear Information System (INIS)

    Galvez, M.F.; Bianchi, G.L.; Galvele, J.R.

    1993-01-01

    The susceptibility to stress corrosion cracking of copper-gold alloy in iodine vapor was studied and the results were analyzed under the scope of the surface mobility stress corrosion cracking mechanism. The copper-gold alloy undergoes stress corrosion cracking in iodine. Copper iodide was responsible of that behavior. The copper-gold alloy shows two processes in parallel: stress corrosion cracking and dealloying. As was predicted by the surface mobility stress corrosion cracking mechanism, the increase in strain rate induces an increase in the crack propagation rate. (Author)

  9. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Ringleb, F.; Eylers, K.; Teubner, Th.; Boeck, T., E-mail: torsten.boeck@ikz-berlin.de [Leibniz-Institute for Crystal Growth, Max-Born-Straße 2, Berlin 12489 (Germany); Symietz, C.; Bonse, J.; Andree, S.; Krüger, J. [Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, Berlin 12205 (Germany); Heidmann, B.; Schmid, M. [Department of Physics, Freie Universität Berlin, Arnimalle 14, Berlin 14195 (Germany); Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Lux-Steiner, M. [Nanooptical Concepts for PV, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany); Heterogeneous Material Systems, Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, Berlin 14109 (Germany)

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Based on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.

  10. Vapor-melt Ratio in Laser Fine Cutting of Slot Arrays

    International Nuclear Information System (INIS)

    Wang Xuyue; Meng Qingxuan; Kang Renke; Xu Wenji; Guo Dongming; Wang Lianji

    2011-01-01

    In order to improve cut quality for slot arrays, a new method of laser fine cutting under the consideration of the ratio of vapor to melt is presented. Laser cutting of 6063 aluminum alloy sheet, 0.5 mm in thickness, was carried out on a JK701H Nd:YAG pulse laser cutting system. The effects of vapor-melt ratio on kerf width, surface roughness and recast layer were studied which relate cutting qualities. Observation on the cut samples with different vapor-melt ratios (0.687, 1.574, 3.601 varied with laser power increasing, and 1.535, 3.601, 7.661 with decreasing of beam cutting speed) shows that high vapor-melt ratio improves laser cut quality clearly. Kerf width 0.2 mm of smooth area on kerf top area and thickness 2.03 μm of recast layer are obtained. No dross was found on the kerf bottom and the percentage of the smooth area is up to 40% out of whole kerf side. The research on vapor-melt ratio provides a deeper understanding of laser cutting and improves laser cut quality effectively.

  11. Atomic-vapor-laser isotope separation

    International Nuclear Information System (INIS)

    Davis, J.I.

    1982-10-01

    This paper gives a brief history of the scientific considerations leading to the development of laser isotope separation (LIS) processes. The close relationship of LIS to the broader field of laser-induced chemical processes is evaluated in terms of physical criteria to achieve an efficient production process. Atomic-vapor LIS processes under development at Livermore are reviwed. 8 figures

  12. Laser materials processing applications at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Hargrove, R.S.; Dragon, E.P.; Hackel, R.P.; Kautz, D.D.; Warner, B.E.

    1993-01-01

    High power and high radiance laser technologies developed at Lawrence Livermore National Laboratory (LLNL) such as copper-vapor lasers, solid-state slab lasers, dye lasers, harmonic wavelength conversion of these lasers, and fiber optic delivery systems show great promise for material processing tasks. Evaluation of models suggests significant potential for tenfold increases in welding, cutting, and drilling performance, as well as capability for applications in emerging technologies such as micromachining, surface treatment, and stereolithography. Copper and dye laser systems are currently being developed at LLNL for uranium enrichment production facilities. The goals of this program are to develop low-cost, reliable and maintainable industrial laser systems. Chains of copper lasers currently operate at more than 1.5 kW output and achieve mean time between failures of more than 1,000 hours. The beam quality of copper vapor lasers is approximately three times the diffraction limit. Dye lasers have near diffraction limited beam quality at greater than 1.0 kW. Diode laser pumped, Nd:YAG slab lasers are also being developed at LLNL. Current designs achieve powers of greater than 1.0 kW and projected beam quality is in the two to five times diffraction limited range. Results from cutting and drilling studies in titanium and stainless steel alloys show that cuts and holes with extremely fine features can be made with dye and copper-vapor lasers. High radiance beams produce low distortion and small heat-affected zones. The authors have accomplished very high aspect ratio holes in drilling tests (> 60: 1) and features with micron scale (5-50 μm) sizes. Other, traditionally more difficult, materials such as copper, aluminum and ceramics will soon be studied in detail

  13. Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Lisi, Nicola, E-mail: nicola.lisi@enea.it [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Buonocore, Francesco; Dikonimos, Theodoros; Leoni, Enrico [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Faggio, Giuliana; Messina, Giacomo [Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Università “Mediterranea” di Reggio Calabria, 89122 Reggio Calabria (Italy); Morandi, Vittorio; Ortolani, Luca [CNR-IMM Bologna, Via Gobetti 101, 40129 Bologna (Italy); Capasso, Andrea [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy)

    2014-11-28

    The growth of graphene by chemical vapor deposition on metal foils is a promising technique to deliver large-area films with high electron mobility. Nowadays, the chemical vapor deposition of hydrocarbons on copper is the most investigated synthesis method, although many other carbon precursors and metal substrates are used too. Among these, ethanol is a safe and inexpensive precursor that seems to offer favorable synthesis kinetics. We explored the growth of graphene on copper from ethanol, focusing on processes of short duration (up to one min). We investigated the produced films by electron microscopy, Raman and X-ray photoemission spectroscopy. A graphene film with high crystalline quality was found to cover the entire copper catalyst substrate in just 20 s, making ethanol appear as a more efficient carbon feedstock than methane and other commonly used precursors. - Highlights: • Graphene films were grown by fast chemical vapor deposition of ethanol on copper. • High-temperature/short-time growth produced highly crystalline graphene. • The copper substrate was entirely covered by a graphene film in just 20 s. • Addition of H{sub 2} had a negligible effect on the crystalline quality.

  14. The use of laser diodes for control of uranium vaporization rates

    International Nuclear Information System (INIS)

    Hagans, K.; Galkowski, J.

    1993-09-01

    Within the Atomic Vapor Laser Isotope Separation (AVLIS) program we have successfully used the laser absorption spectroscopy technique (LAS) to diagnose process physics performance and control vaporization rate. In the LAS technique, a narrow line-width laser is tuned to an absorption line of the species to be measured. The laser light that is propagated through the sample is and, from this data, the density of the species can be calculated. These laser systems have exclusively consisted of expensive, cumbersome, and difficult to maintain argon-ion-pumped ring dye lasers. While the wavelength flexibility of dye lasers is very useful in a laboratory environment, these laser systems are not well suited for the industrial process control system under development for an AVLIS plant. Diode-lasers offer lower system costs, reduced man power requirements, reduced space requirements, higher system availability, and improved operator safety. We report the. successful deployment and test of a prototype laser diode based uranium vapor rate control system. Diode-laser generated LAS data was used to control the uranium vaporization rate in a hands-off mode for greater than 50 hours. With one minor adjustment the system successfully controlled the vaporization rate for greater than 147 hours. We report excellent agreement with ring dye laser diagnostics and uranium weigh-back measurements

  15. Dynamics of trivalent rare earth molecular vapor lasers

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1976-01-01

    Radiative transition probabilities in neodymium bearing vapors are reviewed and calculations are extended to visible laser transitions in terbium bearing vapor. Nonradiative relaxation processes in the pure and complexed halides are treated in greater detail. While precise, quantitative relaxation probabilities cannot be calculated on the basis of information presently available, plausibility arguments can be established which indicate the order of magnitude of relevant nonradiative decay probabilities. Reference to solid and liquid state nonradiative relaxation data for rare earth ions is reviewed to support the plausibility arguments for the vapor state. Having established the likelihood of high fluorescence yields in the vapor phase, various methods of laser pumping are discussed: optical pumping via parity allowed 4f-5d transitions; optical pumping via charge transfer bands of the vapor complex; and direct electron beam pumping

  16. Development of long life pulse power supply for copper vapor laser. Do joki laser yo chojumyo reiki dengen no kaihatsu. ; Saidai shutsuryoku unten oyobi laser hasshin

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, T.; Goto, N.; Nemoto, K. (Central Research Inst. of Electric Power Industry, Tokyo (Japan))

    1990-04-01

    Long life pulse power supply for Cu vapor laser was developed. This is composed of the pulse generation circuit and the pulse compression circuit. Current pulse of 10 mu second pulse width is generated in the pulse generating circuit by switching electric charge on the condensor charged through GTO (gate turn off) thyristors. The pulse compression circuit makes the current pulse fast to 300ms utilizing the difference of inductance at the saturation and the unsaturation on the circuit which uses a reactor having saturable property using a ferromagnetic substance for the core as the magnetic switch. The operation was carried out at the GTO generasting full power. Co base amorphous alloy of low loss was used for the core of saturable inductor and the circuit efficiency of 77% could be obtained by suppressing the heat generation in core even at 4,000Hz operation. The full output power of 8.2kW was possible which corresponds to 100W class laser oscillation. Repeated Cu vapor laser oscillation of 30W succeeded at the condition of 4,000Hz and power supply output of 5.9kW. 7 refs., 21 figs., 8 tabs.

  17. Development of copper bromide laser master oscillator power

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Development of master oscillator power amplifier (MOPA) system of copper bromide laser (CBL) operating at 110 W average power is reported. The spectral distribution of power at green (510.6 nm) and yellow (578.2 nm) components in the output of a copper bromide laser is studied as a function of ...

  18. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    Science.gov (United States)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (deposits of the new RPCG subclass demonstrate the greater potential of these systems, compared to the classically oxidized porphyry Cu-Au systems, to transport Cu and probably precious metals in a magmatic aqueous vapor phase. These PIXE data also support the possibility that Cu partitions preferentially into an immiscible CO2-rich magmatic fluid. References: [1] Heinrich, C.A. et al. (1992) Econ. Geol., 87, 1566-1583. [2] Heinrich, C.A. et al. (1999) Geology, 27, 755-758. [3] Rowins, S.M. (2000) Geology, 28, 491-494. [4] Rowins, S.M. (2000) The Gangue, GAC-MDD Newsletter, 67, 1-7 (www.gac.ca). [5] Rowins, S.M. et al. (1993) Geol. Soc. Australia Abs., 34, 68-70.

  19. Atomic lithium vapor laser isotope separation

    International Nuclear Information System (INIS)

    Olivares, I.E.; Rojas, C.

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the 6 LiD 2 and the 7 LiD 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  20. Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements

    Science.gov (United States)

    Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene

    2011-03-01

    The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.

  1. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  2. Atomic lithium vapor laser isotope separation

    CERN Document Server

    Olivares, I E

    2002-01-01

    An atomic vapor laser isotope separation in lithium was performed using tunable diode lasers. The method permits also the separation of the isotopes between the sup 6 LiD sub 2 and the sup 7 LiD sub 1 lines using a self-made mass separator which includes a magnetic sector and an ion beam designed for lithium. (Author)

  3. Laser additive manufacturing bulk graphene-copper nanocomposites.

    Science.gov (United States)

    Hu, Zengrong; Chen, Feng; Lin, Dong; Nian, Qiong; Parandoush, Pedram; Zhu, Xing; Shao, Zhuqiang; Cheng, Gary J

    2017-11-03

    The exceptional mechanical properties of graphene make it an ideal nanofiller for reinforcing metal matrix composites (MMCs). In this work, graphene-copper (Gr-Cu) nanocomposites have been fabricated by a laser additive manufacturing process. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy were utilized to characterize the fabricated nanocomposites. The XRD, Raman spectroscopy, energy dispersive spectroscopy and TEM results demonstrated the feasibility of laser additive manufacturing of Gr-Cu nanocomposites. The microstructures were characterized by high resolution TEM and the results further revealed the interface between the copper matrix and graphene. With the addition of graphene, the mechanical properties of the composites were enhanced significantly. Nanoindentation tests showed that the average modulus value and hardness of the composites were 118.9 GPa and 3 GPa respectively; 17.6% and 50% increases were achieved compared with pure copper, respectively. This work demonstrates a new way to manufacture graphene copper nanocomposites with ultra-strong mechanical properties and provides alternatives for applications in electrical and thermal conductors.

  4. Lasers for isotope separation processes and their properties

    International Nuclear Information System (INIS)

    George, E.V.; Krupke, W.F.

    1976-08-01

    The laser system requirements for isotope enrichment are presented in the context of an atomic uranium vapor process. Coherently pumped dye lasers using as the pump laser either the frequency doubled Nd:YAG or copper vapor are seen to be quite promising for meeting the near term requirements of a laser isotope separation (LIS) process. The utility of electrical discharge excitation of the rare gas halogens in an LIS context is discussed

  5. Deposition of thermal and hot-wire chemical vapor deposition copper thin films on patterned substrates.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    In this work we study the hot-wire chemical vapor deposition (HWCVD) of copper films on blanket and patterned substrates at high filament temperatures. A vertical chemical vapor deposition reactor was used in which the chemical reactions were assisted by a tungsten filament heated at 650 degrees C. Hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) vapors were used, directly injected into the reactor with the aid of a liquid injection system using N2 as carrier gas. Copper thin films grown also by thermal and hot-wire CVD. The substrates used were oxidized silicon wafers on which trenches with dimensions of the order of 500 nm were formed and subsequently covered with LPCVD W. HWCVD copper thin films grown at filament temperature of 650 degrees C showed higher growth rates compared to the thermally ones. They also exhibited higher resistivities than thermal and HWCVD films grown at lower filament temperatures. Thermally grown Cu films have very uniform deposition leading to full coverage of the patterned substrates while the HWCVD films exhibited a tendency to vertical growth, thereby creating gaps and incomplete step coverage.

  6. Measurement of copper vapour laser-induced deformation of ...

    Indian Academy of Sciences (India)

    2014-02-14

    Feb 14, 2014 ... Laser & Plasma Technology Division, Beam Technology Development Group,. Bhabha Atomic ... of dielectric-coated mirror, caused by an incident repetitive pulsed laser beam with high average power. Minimum ... the optical surface deformation, caused by irradiation by a copper vapour laser (CVL) beam.

  7. Effect of vapor plasma on the coupling of laser radiation with aluminum targets

    Energy Technology Data Exchange (ETDEWEB)

    Shui, V H; Kivel, B; Weyl, G M

    1978-12-01

    The effect of vapor plasma on thermal and impulse coupling of laser radiation with aluminum targets is studied to understand and explain experimental data showing anomalously high coupling to 10.6-micron laser radiation. Heating of vapor by inverse bremsstrahlung absorption of laser radiation, subsequent reradiation in the uv and deep uv by ionized species, and vapor layer growth are modeled. A computer code has been developed to solve the governing equations. Major conclusions include the following: (1) vapor plasma radiative transport can be an important mechanism for laser/target coupling, (2) aluminum vapor (density times thickness) approximately equal to 10 to the 17th power/sq cm (corresponding to about 0.01 micron of target material) can result in thermal coupling coefficients of 20% or more, and (3) too much vapor reduces the net flux at the target.

  8. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    International Nuclear Information System (INIS)

    Labidi, A.; Bejaoui, A.; Ouali, H.; Akkari, F. Chaffar; Hajjaji, A.; Gaidi, M.; Kanzari, M.; Bessais, B.; Maaref, M.

    2011-01-01

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  9. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    Labidi, A., E-mail: Ahmed_laabidi@yahoo.fr [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Bejaoui, A.; Ouali, H. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Akkari, F. Chaffar [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Hajjaji, A.; Gaidi, M. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Maaref, M. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia)

    2011-09-15

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  10. Table of laser lines in gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Beck, R; Englisch, W; Guers, K

    1980-01-01

    Numerous applications of lasers require use of specific wavelengths (gas analysis including remote sensing, Raman spectroscopy, optical pumping, laser chemistry and isotope separation). Scientists active in these fields have been compelled to search, in addition to the available, mostly obsolete, laser-line tables, the entire recent literature in order to find suitable laser transitions. Over 6100 laser transitions are presented. An additional list of the lines arranged in order of wavelength should greatly facilitate the search for a laser material that generates a specific wavelength. Further information has also been supplied by listing the pump transition for each of the FIR lines obtained with the optically pumped organic vapors. In addition to the laser lines, the operating conditions under which emission has been achieved are briefly specified at the top of the list for each active medium. The order in which the atomic laser media are listed is based on the periodic system, beginning with the noble gases, continuing with hydrogen and the alkalies to the halogens and the rare earths. The molecular laser media are arranged in order of chemical composition, beginning with the compounds of noble gases (the excimers), then other diatomic molecules, triatomic molecules, and ending with the more complex molecules of organic vapors. (WHK).

  11. Modeling of a diode-pumped thin-disk cesium vapor laser

    Science.gov (United States)

    An, Guofei; Cai, He; Liu, Xiaoxu; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You

    2018-03-01

    A diode pumped alkali laser (DPAL) provides a significant potential for construction of high-powered lasers. Until now, a series of models have been established to analyze the kinetic process and most of them are based on the end-pumped alkali laser system in which the vapor cell are usually cylindrical and cuboid. In this paper, a mathematic model is constructed to investigate the kinetic processes of a diode pumped thin-disk cesium vapor laser, in which the cesium vapor and the buffer gases are beforehand filled in a sealed glass cell with a thin-disk structure. We systemically study the influences of the cell temperature and cell thickness on the output features of a thin-disk DPAL. Further, we study the thin-disk DPAL with the W-shaped resonator and multiple-disk configuration. To the best of our knowledge, there have not been any similar reports so far.

  12. Real-time monitoring of atom vapor concentration with laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Fan Fengying; Gao Peng; Jiang Tao

    2012-01-01

    The technology of laser absorption spectroscopy was used for real-time monitoring of gadolinium atom vapor concentration measurement and the solid state laser pumped ring dye laser was used as optical source. The optical fiber was taken to improve the stability of laser transmission. The multi-pass absorption technology combined with reference optical signal avoided the influence of laser power fluctuation. The experiment result shows that the system based on this detection method has a standard error of 4%. It is proved that the monitoring system provides reliable data for atom vapor laser isotope separation process and the separation efficiency can be improved. (authors)

  13. Capacitive-discharge-pumped copper bromide vapour laser

    International Nuclear Information System (INIS)

    Sukhanov, V B; Fedorov, V F; Troitskii, V O; Gubarev, F A; Evtushenko, Gennadii S

    2007-01-01

    A copper bromide vapour laser pumped by a high-frequency capacitive discharge is developed. It is shown that, by using of a capacitive discharge, it is possible to built a sealed off metal halide vapour laser of a simple design allowing the addition of active impurities into the working medium. (letters)

  14. Copper vapour laser development for Silva

    International Nuclear Information System (INIS)

    Bettinger, A.; Neu, M.; Chatelet, J.

    1993-01-01

    The recent developments of the components for high power Copper Vapour Laser (CVL) have been oriented towards four main goals: high quality laser beam, mainly for the CVL oscillators, increase of the extracted energy out of the amplifying stage, fully integrated and monolithic design for oscillator and amplifier, extended lifetime and high reliability. A first step of this work, which is done under contract with CILAS (Compagnie Industrielle des Lasers) led to an injection seeded oscillator and a 100 Watts amplifier; the present step concerns development of a 400 Watts class amplifier

  15. Advanced-laser development for isotope separation. Final report

    International Nuclear Information System (INIS)

    1983-06-01

    To address a number of the issues associated with lasers appropriate for both atomic vapor and molecular laser enrichment schemes, MSNW developed pertinent technologies on two test devices. These were a high pulse rate, 100 watt excimer laser named Mistral, and a 20 watt copper-vapor laser (CVL). Mistral is a closed-loop, 100 W, kilohertz rare-gas halide laser system. The first half of the Mistral effort dealt with the study of gas flow and acoustic effects in high PRF rare-gas halide lasers. In burst-mode operation, 1250 Hz operation was demonstrated, the effects on flow quality of acoustic dampers were measured, and gas clearing factors of 2.5 at 1 kHz were demonstrated. The second half of the Mistral program dealt with extending the run time capability of the laser. This effort culminated with the continuous operation of Mistral for almost eight hours at 500 ppS, producing over 50 mJ/pulse at 308 nm on a single fill of XeCl gas mixture. At the end of the program, the effectiveness of using magnetic pulse compression in the modulator circuit of a copper-vapor laser (CVL) was also verified. The magnetic switching/pulse compression scheme as used on both the CVL and Mistral greatly extends thyratron lifetime

  16. Water vapor-nitrogen absorption at CO2 laser frequencies

    Science.gov (United States)

    Peterson, J. C.; Thomas, M. E.; Nordstrom, R. J.; Damon, E. K.; Long, R. K.

    1979-01-01

    The paper reports the results of a series of pressure-broadened water vapor absorption measurements at 27 CO2 laser frequencies between 935 and 1082 kaysers. Both multiple traversal cell and optoacoustic (spectrophone) techniques were utilized together with an electronically stabilized CW CO2 laser. Comparison of the results obtained by these two methods shows remarkable agreement, indicating a precision which has not been previously achieved in pressure-broadened studies of water vapor. The data of 10.59 microns substantiate the existence of the large (greater than 200) self-broadening coefficients determined in an earlier study by McCoy. In this work, the case of water vapor in N2 at a total pressure of 1 atm has been treated.

  17. Atomic vapor laser isotope separation

    International Nuclear Information System (INIS)

    Stern, R.C.; Paisner, J.A.

    1985-01-01

    Atomic vapor laser isotope separation (AVLIS) is a general and powerful technique. A major present application to the enrichment of uranium for light-water power reactor fuel has been under development for over 10 years. In June 1985 the Department of Energy announced the selection of AVLIS as the technology to meet the nation's future need for the internationally competitive production of uranium separative work. The economic basis for this decision is considered, with an indicated of the constraints placed on the process figures of merit and the process laser system. We then trace an atom through a generic AVLIS separator and give examples of the physical steps encountered, the models used to describe the process physics, the fundamental parameters involved, and the role of diagnostic laser measurements

  18. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  19. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium

    International Nuclear Information System (INIS)

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D 2 transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude

  20. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Joulaei, A. [Max-Planck Institute for Physics, Munich (Germany); University of Mazandaran (Iran, Islamic Republic of); Moody, J. [Max-Planck Institute for Physics, Munich (Germany); Berti, N.; Kasparian, J. [University of Geneva (Switzerland); Mirzanejhad, S. [University of Mazandaran (Iran, Islamic Republic of); Muggli, P. [Max-Planck Institute for Physics, Munich (Germany)

    2016-09-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment. - Highlights: • Discussion the AWAKE plasma source based on photoionization of rubidium vapor with a TW/cm^2 Intensity laser with a spectrum across valence ground state transition resonances. • Examines the propagation of the AWAKE ionization laser through rubidium vapor at design density on a small scale and reduced intensity with a linear numerical model compared to experimental results. • Discusses physics of pulse propagation through the vapor at high intensity regime where strong ionization occurs within the laser pulse.

  1. Erratum to: Measurement of copper vapour laser-induced ...

    Indian Academy of Sciences (India)

    Erratum to: Measurement of copper vapour laser-induced deformation of dielectric-coated mirror surface by. Michelson interferometer. A WAHID. ∗. , S KUNDU, J S B SINGH, A K SINGH, A KHATTAR,. S K MAURYA, J S DHUMAL and K DASGUPTA. Laser & Plasma Technology Division, Beam Technology Development ...

  2. Characterization of laser ablation of copper in the irradiance regime of laser-induced breakdown spectroscopy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Picard, J., E-mail: jessica.picard@cea.fr [Commissariat à l' Energie Atomique, DAM, Valduc, F-21120 Is-sur-Tille (France); Sirven, J.-B.; Lacour, J.-L. [Commissariat à l' Energie Atomique, DEN/DANS/DPC/SEARS/LANIE, Saclay, F-91191 Gif-sur-Yvette (France); Musset, O. [Université de Bourgogne, Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 5209, F-21000 Dijon (France); Cardona, D.; Hubinois, J.-C. [Commissariat à l' Energie Atomique, DAM, Valduc, F-21120 Is-sur-Tille (France); Mauchien, P. [Commissariat à l' Energie Atomique, DEN/DANS/DPC/SEARS/LANIE, Saclay, F-91191 Gif-sur-Yvette (France)

    2014-11-01

    The LIBS signal depends both on the ablated mass and on the plasma excitation temperature. These fundamental parameters depend in a complex manner on laser ablation and on laser–plasma coupling. As several works in the literature suggest that laser ablation processes play a predominant role compared to plasma heating phenomena in the LIBS signal variations, this paper focuses on the study of laser ablation. The objective was to determine an interaction regime enabling to maximally control the laser ablation. Nanosecond laser ablation of copper at 266 nm was characterized by scanning electron microscopy and optical profilometry analysis, in air at 1 bar and in the vacuum. The laser beam spatial profile at the sample surface was characterized in order to give realistic values of the irradiance. The effect of the number of accumulated laser shots on the crater volume was studied. Then, the ablation crater morphology, volume, depth and diameter were measured as a function of irradiance between 0.35 and 96 GW/cm². Results show that in the vacuum, a regular trend is observed over the whole irradiance range. In air at 1 bar, below a certain irradiance, laser ablation is very similar to the vacuum case, and the ablation efficiency of copper was estimated at 0.15 ± 0.03 atom/photon. Beyond this irradiance, the laser beam propagation is strongly disrupted by the expansion of the dense plasma, and plasma shielding appears. The fraction of laser energy used for laser ablation and for plasma heating is estimated in the different irradiance regimes. - Highlights: • The morphology of copper's craters was studied as a function of the pulse energy. • Correlation at low energy and two pressures between crater volume and pulse energy • The ablation efficiency of copper at 1 bar is equal to 0.15 atom/photon. • Ablation efficiency in the vacuum is not limited by laser–plasma interaction. • Physical mechanisms of laser ablation at both pressures are discussed.

  3. Cutting and drilling studies using high power visible lasers

    International Nuclear Information System (INIS)

    Kautz, D.D.; Dragon, E.P.; Werve, M.E.; Hargrove, R.S.; Warner, B.E.

    1993-01-01

    High power and radiance laser technologies developed at Lawrence Livermore National Laboratory such as copper-vapor and dye lasers show great promise for material processing tasks. Evaluation of models suggests significant increases in welding, cutting, and drilling capabilities, as well as applications in emerging technologies such as micromachining, surface treatment, and stereolithography. Copper lasers currently operate at 1.8 kW output at approximately three times the diffraction limit and achieve mean time between failures of more than 1,000 hours. Dye lasers have near diffraction limited beam quality at greater than 1.0 kW. Results from cutting and drilling studies in titanium and stainless steel alloys show that cuts and holes with extremely fine features can be made with dye and copper-vapor lasers. High radiance beams produce low distortion and small heat-affected zones. The authors have accomplished very high aspect ratios (> 60:1) and features with micron scale (5-50 μm) sizes. The paper gives a description of the equipment; discusses cutting theory; and gives experimental results of cutting and drilling studies on Ti-6Al-4V and 304 stainless steel

  4. Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond laser

    International Nuclear Information System (INIS)

    Ye, Y.X.; Feng, Y.Y.; Lian, Z.C.; Hua, Y.Q.

    2014-01-01

    Plastic deformation mechanism of polycrystalline copper foil shocked with femtosecond (fs) laser has been characterized through optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Experiments of ns laser shocking copper (Cu) and fs laser shocking aluminum (Al) were also conducted for comparison. Dislocations arranged in multiple forms, profuse twins and stacking faults (SFs) coexist in the fs laser shocked copper. At small strain condition, dislocation slip is the dominant deformation mode and small amount of SFs act as complementary mechanism. With strain increasing, profuse twins and SFs form to accommodate the plastic deformation. Furthermore, new formed SFs incline to locate around the old ones because the dislocation densities there are more higher. So there is a high probability for new SFs overlapping on old ones to form twins, or connecting old ones to lengthen them, which eventually produce the phenomena that twins connect with each other or twins connect with SFs. Strain greatly influences the dislocation density. Twins and SFs are more dependent on strain rate and shock pressure. Medium stacking fault energy (SFE) of copper helps to extend partial dislocations and provides sources for forming SFs and twins.

  5. Apparatus for precision micromachining with lasers

    Science.gov (United States)

    Chang, J.J.; Dragon, E.P.; Warner, B.E.

    1998-04-28

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.

  6. Vapor plume oscillation mechanisms in transient keyhole during tandem dual beam fiber laser welding

    Science.gov (United States)

    Chen, Xin; Zhang, Xiaosi; Pang, Shengyong; Hu, Renzhi; Xiao, Jianzhong

    2018-01-01

    Vapor plume oscillations are common physical phenomena that have an important influence on the welding process in dual beam laser welding. However, until now, the oscillation mechanisms of vapor plumes remain unclear. This is primarily because mesoscale vapor plume dynamics inside a millimeter-scale, invisible, and time-dependent keyhole are difficult to quantitatively observe. In this paper, based on a developed three-dimensional (3D) comprehensive model, the vapor plume evolutions in a dynamical keyhole are directly simulated in tandem dual beam, short-wavelength laser welding. Combined with the vapor plume behaviors outside the keyhole observed by high-speed imaging, the vapor plume oscillations in dynamical keyholes at different inter-beam distances are the first, to our knowledge, to be quantitatively analyzed. It is found that vapor plume oscillations outside the keyhole mainly result from vapor plume instabilities inside the keyhole. The ejection velocity at the keyhole opening and dynamical behaviors outside the keyhole of a vapor plume both violently oscillate with the same order of magnitude of high frequency (several kHz). Furthermore, the ejection speed at the keyhole opening and ejection area outside the keyhole both decrease as the beam distance increases, while the degree of vapor plume instability first decreases and then increases with increasing beam distance from 0.6 to 1.0 mm. Moreover, the oscillation mechanisms of a vapor plume inside the dynamical keyhole irradiated by dual laser beams are investigated by thoroughly analyzing the vapor plume occurrence and flow process. The vapor plume oscillations in the dynamical keyhole are found to mainly result from violent local evaporations and severe keyhole geometry variations. In short, the quantitative method and these findings can serve as a reference for further understanding of the physical mechanisms in dual beam laser welding and of processing optimizations in industrial applications.

  7. Second-harmonic generation in atomic vapor with picosecond laser pulses

    International Nuclear Information System (INIS)

    Kim, D.; Mullin, C.S.; Shen, Y.R.

    1997-01-01

    Picosecond laser pulses were used to study the highly forbidden resonant second-harmonic generation (SHG) in potassium vapor. The input intensity dependence, vapor density dependence, buffer-gas pressure dependence, and spatial profile of the SHG were measured. A pump - probe experiment was conducted to probe the time dependence of the SHG signal. The experimental results can be understood from an ionization-initiated dc-field-induced SHG model. A theory of a dc-field-induced SHG model is developed that takes into account the time development of the dc electric field in detail. This temporal buildup of the dc field along with transient coherent excitation between two-photon-allowed transitions can explain the experimental results quantitatively, including the previous vapor SHG results with nanosecond laser pulses. copyright 1997 Optical Society of America

  8. Synthesis of single walled carbon nanotubes by dual laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK

    2006-07-01

    Full Text Available Single walled carbon nanotubes were synthesized by the laser vaporization of graphite composite targets in a tube furnace. Two pulsed Nd:Yag lasers operating at fundamental (1064 nm) and 2 nd harmonic (532 nm) were combined, focused and evaporated...

  9. Plated copper substrates for the LASL Antares CO2 laser system

    International Nuclear Information System (INIS)

    Blevins, D.J.; Munroe, J.L.

    1979-01-01

    Antares is a large carbon-dioxide laser system presently under construction at the Los Alamos Scientific Laboratory (LASL). Antares will be part of the LASL High Energy Gas Laser Facility (HEGLF). Its purpose will be to investigate inertial confinement fusion with light of 10.6-μm wavelength. Most of the optics comprising Antares will be reflectors and, for many reasons, copper is the material of choice. The mirrors range in size from 2.5 cm in diameter to 45 cm in diameter. The copper must be very pure to help maximize damage threshold, making plated copper an attractive solution. The final mirror should be very stable, i.e., characterized by very low microcreep. This makes an alloy a more suitable substrate candidate than pure copper. For Antares, all of the smaller mirrors will be made of copper plated onto an aluminum-bronze substrate, and all of the larger mirrors will be made of copper plated onto aluminum alloy 2124. This paper discusses how this design was arrived at and the methods used to assure a satisfactory mirror

  10. Using laser absorption spectroscopy to monitor composition and physical properties of metal vapors

    International Nuclear Information System (INIS)

    Berzins, L.V.

    1993-01-01

    The Atomic Vapor Laser Isotope Separation (AVLIS) program has been using laser absorption spectroscopy to monitor vapor densities for over 15 years. Laser absorption spectroscopy has proven itself to be an accurate and reliable method to monitor both density and composition. During this time the diagnostic has moved from a research tool toward a robust component of a process control system. The hardware used for this diagnostic is discussed elsewhere at this symposium. This paper describes how the laser absorption spectroscopy diagnostic is used as a component of a process control system as well as supplying detailed measurements on vapor densities, composition, flow velocity, internal and kinetic temperatures, and constituent distributions. Examples will be drawn from the uranium AVLIS program. In addition potential applications such as composition control in the production of metal matrix composites or aircraft alloys will be discussed

  11. Optimum design of a multi-stage dye-laser amplifier pumped with Cu-vapor lasers

    International Nuclear Information System (INIS)

    Maeda, Mitsuo; Uchiumi, Michihiro

    1990-01-01

    A numerical simulation code, based on the one-dimensional photon transport equation, was developed and analyzed to evaluate the performances of Rhodamine 6G dye laser amplifiers pumped with Cu-vapor lasers. The upper singlet-state absorption played an important role to determine the efficiency. The simulation code was applied to optimize a multi-stage amplifier system with a pulsed or a CW dye-laser oscillator. The analytical results gave a useful guideline to design a high-power pulsed dye-laser system for atomic uranium enrichment. (author)

  12. Development of high-power dye laser chain

    Science.gov (United States)

    Konagai, Chikara; Kimura, Hironobu; Fukasawa, Teruichiro; Seki, Eiji; Abe, Motohisa; Mori, Hideo

    2000-01-01

    Copper vapor laser (CVL) pumped dye laser (DL) system, both in a master oscillator power amplifier (MOPA) configuration, has been developed for Atomic Vapor Isotope Separation program in Japan. Dye laser output power of about 500 W has been proved in long-term operations over 200 hours. High power fiber optic delivery system is utilized in order to efficiently transport kilowatt level CVL beams to the DL MOPA. Single model CVL pumped DL oscillator has been developed and worked for 200 hours within +/- 0.1 pm wavelength stability. Phase modulator for spreading spectrum to the linewidth of hyperfine structure has been developed and demonstrated.

  13. Iron bromide vapor laser

    Science.gov (United States)

    Sukhanov, V. B.; Shiyanov, D. V.; Trigub, M. V.; Dimaki, V. A.; Evtushenko, G. S.

    2016-03-01

    We have studied the characteristics of a pulsed gas-discharge laser on iron bromide vapor generating radiation with a wavelength of 452.9 nm at a pulse repetition frequency (PRF) of 5-30 kHz. The maximum output power amounted to 10 mW at a PRF within 5-15 kHz for a voltage of 20-25 kV applied to electrodes of the discharge tube. Addition of HBr to the medium produced leveling of the radial profile of emission. Initial weak lasing at a wavelength of 868.9 nm was observed for the first time, which ceased with buildup of the main 452.9-nm line.

  14. Development of copper bromide laser master oscillator power ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... Development of master oscillator power amplifier (MOPA) system of copper bromide laser (CBL) operating at ... The spectral distribution of power at .... It is evident from the voltage waveforms that the breakdown voltage drops.

  15. Water vapor absorption of carbon dioxide laser radiation

    Science.gov (United States)

    Shumate, M. S.; Menzies, R. T.; Margolis, J. S.; Rosengren, L.-G.

    1976-01-01

    An optoacoustic detector or spectrophone has been used to perform detailed measurements of the absorptivity of mixtures of water vapor in air. A (C-12) (O-16)2 laser was used as the source, and measurements were made at forty-nine different wavelengths from 9.2 to 10.7 microns. The details of the optoacoustic detector and its calibration are presented, along with a discussion of its performance characteristics. The results of the measurements of water vapor absorption show that the continuum absorption in the wavelength range covered is 5-10% lower than previous measurements.

  16. Low-cost optical fabrication of flexible copper electrode via laser-induced reductive sintering and adhesive transfer

    Science.gov (United States)

    Back, Seunghyun; Kang, Bongchul

    2018-02-01

    Fabricating copper electrodes on heat-sensitive polymer films in air is highly challenging owing to the need of expensive copper nanoparticles, rapid oxidation of precursor during sintering, and limitation of sintering temperature to prevent the thermal damage of the polymer film. A laser-induced hybrid process of reductive sintering and adhesive transfer is demonstrated to cost-effectively fabricate copper electrode on a polyethylene film with a thermal resistance below 100 °C. A laser-induced reductive sintering process directly fabricates a high-conductive copper electrode onto a glass donor from copper oxide nanoparticle solution via photo-thermochemical reduction and agglomeration of copper oxide nanoparticles. The sintered copper patterns were transferred in parallel to a heat-sensitive polyethylene film through self-selective surface adhesion of the film, which was generated by the selective laser absorption of the copper pattern. The method reported here could become one of the most important manufacturing technologies for fabricating low-cost wearable and disposable electronics.

  17. Sorbitol as an efficient reducing agent for laser-induced copper deposition

    Science.gov (United States)

    Kochemirovsky, V. A.; Logunov, L. S.; Safonov, S. V.; Tumkin, I. I.; Tver'yanovich, Yu. S.; Menchikov, L. G.

    2012-10-01

    We have pioneered in revealing the fact that sorbitol may be used as an efficient reducing agent in the process of laser-induced copper deposition from solutions; in this case, it is possible to obtain copper lines much higher quality than by using conventional formalin.

  18. Selective Laser Melting of Pure Copper

    Science.gov (United States)

    Ikeshoji, Toshi-Taka; Nakamura, Kazuya; Yonehara, Makiko; Imai, Ken; Kyogoku, Hideki

    2018-03-01

    Appropriate building parameters for selective laser melting of 99.9% pure copper powder were investigated at relatively high laser power of 800 W for hatch pitch in the range from 0.025 mm to 0.12 mm. The highest relative density of the built material was 99.6%, obtained at hatch pitch of 0.10 mm. Building conditions were also studied using transient heat analysis in finite element modeling of the liquidation and solidification of the powder layer. The estimated melt pool length and width were comparable to values obtained by observations using a thermoviewer. The trend for the melt pool width versus the hatch pitch agreed with experimental values.

  19. Multi-wavelength copper vapour lasers for novel materials processing application

    International Nuclear Information System (INIS)

    Knowles, M.; Foster-Turner, R.; Kearsley, A.; Evans, J.

    1995-01-01

    The copper vapour laser (CVL) is a high average power, short pulse laser with a multi-kilohertz pulse repetition rate. The CVL laser lines (511 nm and 578 nm) combined with the good beam quality and high peak power available from these lasers allow it to operate in a unique parameter space. Consequently, it has demonstrated many unique and advantageous machining characteristics. We have also demonstrated efficient conversion of CVL radiation to other wavelengths using non-linear frequency conversion, dye lasers and Ti:AL 2 O 3 . Output powers of up to 4 W at 255 nm have been achieved by frequency doubling. The frequency doubled CVL is inherently narrow linewidth and frequency locked making it a suitable source for UV photolithography. Slope efficiencies in excess of 25 % have been achieved with CVL pumped Ti:Al 2 O 3 and dye lasers. These laser extend the wavelengths options into the red and infrared regions of the spectrum. The near diffraction limited beams from these tunable lasers can be efficiently frequency doubled into the blue and near UV. The wide range of wavelength options from the CVL enable a wide variety of materials processing and material interactions to be explored. A European consortium for Copper Laser Applications in Manufacture and Production (CLAMP) has been set up under the EUREKA scheme to coordinate the commercial and technical expertise currently available in Europe. (author)

  20. Pulsed CO2 laser for intra-articular cartilage vaporization and subchondral bone perforation in horses

    Science.gov (United States)

    Nixon, Alan J.; Roth, Jerry E.; Krook, Lennart P.

    1991-05-01

    A pulsed carbon dioxide laser was used to vaporize articular cartilage in four horses, and perforate the cartilage and subchondral bone in four horses. Both intercarpal joints were examined arthroscopically and either a 1 cm cartilage crater or a series of holes was created in the third carpal bone of one joint. The contralateral carpus served as a control. The horses were evaluated clinically for 8 weeks, euthanatized and the joints examined radiographically, grossly, and histologically. Pulsed carbon dioxide laser vaporized cartilage readily but penetrated bone poorly. Cartilage vaporization resulted in no greater swelling, heat, pain on flexion, lameness, or synovial fluid reaction than the sham procedure. Laser drilling resulted in a shallow, charred hole with a tenacious carbon residue, and in combination with the thermal damage to deeper bone, resulted in increased swelling, mild lameness and a low-grade, but persistent synovitis. Cartilage removal by laser vaporization resulted in rapid regrowth with fibrous and fibrovascular tissue and occasional regions of fibrocartilage at week 8. The subchondral bone, synovial membrane, and draining lymph nodes appeared essentially unaffected by the laser cartilage vaporization procedure. Conversely, carbon dioxide laser drilling of subchondral bone resulted in poor penetration, extensive areas of thermal necrosis of bone, and significant secondary damage to the apposing articular surface of the radial carpal bone. The carbon dioxide laser is a useful intraarticular instrument for removal of cartilage and has potential application in inaccessible regions of diarthrodial joints. It does not penetrate bone sufficiently to have application in subchondral drilling.

  1. Process Studies on Laser Welding of Copper with Brilliant Green and Infrared Lasers

    OpenAIRE

    Engler, Sebastian; Ramsayer, Reiner; Poprawe, Reinhart

    2011-01-01

    Copper materials are classified as difficult to weld with state-of-the-art lasers. High thermal conductivity in combination with low absorption at room temperature require high intensities for reaching a deep penetration welding process. The low absorption also causes high sensitivity to variations in surface conditions. Green laser radiation shows a considerable higher absorption at room temperature. This reduces the threshold intensity for deep penetration welding significantly. The influen...

  2. Lasers and uranium isotope separation

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, L

    1987-12-01

    The use of lasers by the electronuclear industry to enrich uranium is discussed, particularly economic aspects. The SILMO and SILVA processes (chosen by France for industrial development) are presented. Criteria which lead to the choice of lasers and to their set-up (architecture of the chain) are described. For electricity - consumption linked to the use of lasers of 40 kWh/STU, a laser uranium enrichment plant with 10 STU/yr capacity requires 50kW of light from copper vapor lasers, i.e., 500 units each having 100W capacity, compared with the 40W units currently marketed.

  3. Perspectives of transurethral robotic laser resection of the prostate: vaporization and coagulation effects with the Nd:YAG laser

    Science.gov (United States)

    Ho, Gideon; Teo, Ming Y.; Kwoh, Chee K.; Ng, Wan S.; Cheng, Wai S.

    2000-05-01

    A longer operating time and steeper learning curve in mastering the techniques for transurethral laser resection of the prostate are the main problems faced by surgeons compared to standard transurethral resection of the prostate (TURP). However, these disadvantages can be solved with the introduction of a treatment modality designed and developed based on an integrated system of computer, robotics and laser technology. In vitro experiments were carried out to determine variables affecting the vaporization and coagulation lesions, in order to identify the parameters that could optimize this modality. Human cadaveric prostate and fresh chicken breast tissues were irradiated with different parameters using continuous wave Nd:YAG laser fiber in contact with the tissue. The effects of irrigant flowrate, fiber/tissue angle of inclination, number of passes, direction, speed and power of lase on the volume of tissue vaporized and coagulated, were assessed. A non-contact optical coordinate measuring machine was used to measure the depth and width of the vaporized and coagulated lesion. Results reveal that for each directional vaporization path (forward, clockwise and counter-clockwise), power and speed of lase are the most significant parameters influencing the volume of the vaporized and coagulated lesion. Optimized values of the power and speed of lase at 100 W and 1 - 3 mm/s respectively were obtained from the experiments when the tissues were irradiated in the forward, clockwise and counter-clockwise directions. It was concluded from our study to quantify tissue removal and damage, optimized values of irradiation power and speed could be obtained and implemented in the procedure of transurethral robotic laser resection of the prostate.

  4. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    International Nuclear Information System (INIS)

    Abdel-Kareem, Omar; Harith, M.A.

    2008-01-01

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles

  5. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Kareem, Omar [Conservation Department, Faculty of Archaeology, Cairo University, El-Gamaa Street, El-Giza (Egypt)], E-mail: Omaa67@yahoo.com; Harith, M.A. [National Institute of Laser Enhanced Science, Cairo University (Egypt)], E-mail: mharithm@niles.edu.eg

    2008-07-15

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  6. Evaluating the use of laser radiation in cleaning of copper embroidery threads on archaeological Egyptian textiles

    Science.gov (United States)

    Abdel-Kareem, Omar; Harith, M. A.

    2008-07-01

    Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.

  7. Solid state impact welding of BMG and copper by vaporizing foil actuator welding

    Energy Technology Data Exchange (ETDEWEB)

    Vivek, Anupam, E-mail: vivek.4@osu.edu [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Presley, Michael [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Flores, Katharine M. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University, One Brookings Drive, St. Louis, MO 63130 (United States); Hutchinson, Nicholas H.; Daehn, Glenn S. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States)

    2015-05-14

    The objective of this study was to create impact welds between a Zr-based Bulk Metallic Glass (BMG) and copper at a laboratory scale and subsequently investigate the relationship between interfacial structure and mechanical properties. Vaporizing Foil Actuator (VFA) has recently been demonstrated as a versatile tool for metalworking applications: impact welding of dissimilar materials being one of them. Its implementation for welding is termed as VFA Welding or VFAW. With 8 kJ input energy into an aluminum foil actuator, a 0.5 mm thick Cu110 alloy sheet was launched toward a BMG target resulting in an impact at a velocity of nearly 600 m/s. For this experiment, the welded interface was straight with a few BMG fragments embedded in the copper sheet in some regions. Hardness tests across the interface showed increase in strength on the copper side. Instrumented peel test resulted in failure in the parent copper sheet. A slower impact velocity during a separate experiment resulted in a weld, which had wavy regions along the interface and in peel failure again happened in the parent copper sheet. Some through-thickness cracks were observed in the BMG plate and there was some spall damage in the copper flyers. TEM electron diffraction on a sample, cut out from the wavy weld interface region using a focused ion beam, showed that devitrification of the BMG was completely avoided in this welding process.

  8. Vapor-phase infrared laser spectroscopy: from gas sensing to forensic urinalysis.

    Science.gov (United States)

    Bartlome, Richard; Rey, Julien M; Sigrist, Markus W

    2008-07-15

    Numerous gas-sensing devices are based on infrared laser spectroscopy. In this paper, the technique is further developed and, for the first time, applied to forensic urinalysis. For this purpose, a difference frequency generation laser was coupled to an in-house-built, high-temperature multipass cell (HTMC). The continuous tuning range of the laser was extended to 329 cm(-1) in the fingerprint C-H stretching region between 3 and 4 microm. The HTMC is a long-path absorption cell designed to withstand organic samples in the vapor phase (Bartlome, R.; Baer, M.; Sigrist, M. W. Rev. Sci. Instrum. 2007, 78, 013110). Quantitative measurements were taken on pure ephedrine and pseudoephedrine vapors. Despite featuring similarities, the vapor-phase infrared spectra of these diastereoisomers are clearly distinguishable with respect to a vibrational band centered at 2970.5 and 2980.1 cm(-1), respectively. Ephedrine-positive and pseudoephedrine-positive urine samples were prepared by means of liquid-liquid extraction and directly evaporated in the HTMC without any preliminary chromatographic separation. When 10 or 20 mL of ephedrine-positive human urine is prepared, the detection limit of ephedrine, prohibited in sports as of 10 microg/mL, is 50 or 25 microg/mL, respectively. The laser spectrometer has room for much improvement; its potential is discussed with respect to doping agents detection.

  9. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    Science.gov (United States)

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  10. Patterned self-assembled monolayers of alkanethiols on copper nanomembranes by submerged laser ablation

    Science.gov (United States)

    Rhinow, Daniel; Hampp, Norbert A.

    2012-06-01

    Self-assembled monolayers (SAMs) of alkanethiols are major building blocks for nanotechnology. SAMs provide a functional interface between electrodes and biomolecules, which makes them attractive for biochip fabrication. Although gold has emerged as a standard, copper has several advantages, such as compatibility with semiconductors. However, as copper is easily oxidized in air, patterning SAMs on copper is a challenging task. In this work we demonstrate that submerged laser ablation (SLAB) is well-suited for this purpose, as thiols are exchanged in-situ, avoiding air exposition. Using different types of ω-substituted alkanethiols we show that alkanethiol SAMs on copper surfaces can be patterned using SLAB. The resulting patterns were analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). Both methods indicate that the intense laser beam promotes the exchange of thiols at the copper surface. Furthermore, we present a procedure for the production of free-standing copper nanomembranes, oxidation-protected by alkanethiol SAMs. Incubation of copper-coated mica in alkanethiol solutions leads to SAM formation on both surfaces of the copper film due to intercalation of the organic molecules. Corrosion-protected copper nanomembranes were floated onto water, transferred to electron microscopy grids, and subsequently analyzed by electron energy loss spectroscopy (EELS).

  11. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    Science.gov (United States)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  12. Copper-coated laser-fusion targets using molecular-beam levitation

    International Nuclear Information System (INIS)

    Rocke, M.J.

    1981-01-01

    A series of diagnostic experiments at the Shiva laser fusion facility required targets of glass microspheres coated with 1.5 to 3.0 μm of copper. Previous batch coating efforts using vibration techniques gave poor results due to microsphere sticking and vacuum welding. Molecular Beam Levitation (MBL) represented a noncontact method to produce a sputtered copper coating on a single glassmicrosphere. The coating specifications that were achieved resulted in a copper layer up to 3 μm thick with the allowance of a maximum variation of 10 nm in surface finish and thickness. These techniques developed with the MBL may be applied to sputter coat many soft metals for fusion target applications

  13. Development, production, and application of sealed-off copper and gold vapour lasers

    International Nuclear Information System (INIS)

    Lyabin, Nikolai A; Chursin, A D; Ugol'nikov, S A; Koroleva, M E; Kazaryan, M A

    2001-01-01

    An analysis is made of the current state of the art of scientific and engineering advances in the field of repetitively pulsed self-heating metal vapour (copper and gold) lasers based on industrial, sealed-off, high-temperature, metalceramic and metal-glass active elements. The major applications of these lasers are discussed. The energy, spatial, and time characteristics of the lasers and their dependence on the parameters and construction of the laser active elements (tubes) and optical resonators are considered. The ways for the development of new high-power industrial laser active elements with a high efficiency (1 - 2%) and a service life of 500 - 1000 h are analysed. An average output power of 80 W was realised with a laser tube 150 cm in length and 32 mm in diameter. When the pumping efficiency is improved by raising the voltage to 30 - 35 kV, this system in a copper vapour laser will allow an output power of 100 W to be obtained with one active element. The characteristics of industrial versions of metal vapour lasers manufactured in different countries are compared and discussed. (invited paper)

  14. Micro-Welding of Copper Plate by Frequency Doubled Diode Pumped Pulsed Nd:YAG Laser

    Science.gov (United States)

    Nakashiba, Shin-Ichi; Okamoto, Yasuhiro; Sakagawa, Tomokazu; Takai, Sunao; Okada, Akira

    A pulsed laser of 532 nm wavelength with ms range pulse duration was newly developed by second harmonic generation of diode pumped pulsed Nd:YAG laser. High electro-optical conversion efficiency more than 13% could be achieved, and 1.5 kW peak power green laser pulse was put in optical fiber of 100 μm in diameter. In micro- welding of 1.0 mm thickness copper plate, a keyhole welding was successfully performed by 1.0 kW peak power at spot diameter less than 200 μm. The frequency doubled pulsed laser improved the processing efficiency of copper welding, and narrow and deep weld bead was stably obtained.

  15. Plasma-enhanced chemical vapor deposition of graphene on copper substrates

    Directory of Open Access Journals (Sweden)

    Nicolas Woehrl

    2014-04-01

    Full Text Available A plasma enhanced vapor deposition process is used to synthesize graphene from a hydrogen/methane gas mixture on copper samples. The graphene samples were transferred onto SiO2 substrates and characterized by Raman spectroscopic mapping and atomic force microscope topographical mapping. Analysis of the Raman bands shows that the deposited graphene is clearly SLG and that the sheets are deposited on large areas of several mm2. The defect density in the graphene sheets is calculated using Raman measurements and the influence of the process pressure on the defect density is measured. Furthermore the origin of these defects is discussed with respect to the process parameters and hence the plasma environment.

  16. The disintegration and vaporization of plastic targets irradiated by high-power laser pulses

    International Nuclear Information System (INIS)

    Greig, J.R.; Pechacek, R.E.

    1977-01-01

    We have studied the disintegration of polyethylene and polystyrene targets irradiated by 100-J 40-nsec Nd/glass laser pulses. At power densities of approximately-less-than10 12 W/cm 2 relatively massive targets (6 x 10 -5 to 5 x 10 -4 cm 3 ) are totally disintegrated to produce finely divided target material and un-ionized vapor. Both the size of the target and the presence or absence of a laser prepulse strongly influence the proportions of finely divided target material and un-ionized vapor, especially within the first few microseconds after peak laser power. This disintegration is always preceded by the emission of a hot fully ionized plasma, but only 1% of the target material is contained in the hot plasma. Typically, (1--3) x 10 19 atoms of un-ionized vapor are released as a slowly expanding (vapprox.10 5 cm/sec) cold dense gas cloud (n/sub o/>10 19 cm -3 ) surrounding the initial target position. This cloud of target material has subsequently been heated by absorption of a 300-J 100-nsec CO 2 laser pulse to produce an approximately fully ionized plasma

  17. Nanosecond laser-induced back side wet etching of fused silica with a copper-based absorber liquid

    Science.gov (United States)

    Lorenz, Pierre; Zehnder, Sarah; Ehrhardt, Martin; Frost, Frank; Zimmer, Klaus; Schwaller, Patrick

    2014-03-01

    Cost-efficient machining of dielectric surfaces with high-precision and low-roughness for industrial applications is still challenging if using laser-patterning processes. Laser induced back side wet etching (LIBWE) using UV laser pulses with liquid heavy metals or aromatic hydrocarbons as absorber allows the fabrication of well-defined, nm precise, free-form surfaces with low surface roughness, e.g., needed for optical applications. The copper-sulphatebased absorber CuSO4/K-Na-Tartrate/NaOH/formaldehyde in water is used for laser-induced deposition of copper. If this absorber can also be used as precursor for laser-induced ablation, promising industrial applications combining surface structuring and deposition within the same setup could be possible. The etching results applying a KrF excimer (248 nm, 25 ns) and a Nd:YAG (1064 nm, 20 ns) laser are compared. The topography of the etched surfaces were analyzed by scanning electron microscopy (SEM), white light interferometry (WLI) as well as laser scanning microscopy (LSM). The chemical composition of the irradiated surface was studied by energy-dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FT-IR). For the discussion of the etching mechanism the laser-induced heating was simulated with finite element method (FEM). The results indicate that the UV and IR radiation allows micro structuring of fused silica with the copper-based absorber where the etching process can be explained by the laser-induced formation of a copper-based absorber layer.

  18. Quantitative liquid and vapor distribution measurements in evaporating fuel sprays using laser-induced exciplex fluorescence

    International Nuclear Information System (INIS)

    Fansler, Todd D; Drake, Michael C; Gajdeczko, Boguslaw; Düwel, Isabell; Koban, Wieland; Zimmermann, Frank P; Schulz, Christof

    2009-01-01

    Fully quantitative two-dimensional measurements of liquid- and vapor-phase fuel distributions (mass per unit volume) from high-pressure direct-injection gasoline injectors are reported for conditions of both slow and rapid vaporization in a heated, high-pressure spray chamber. The measurements employ the coevaporative gasoline-like fluorobenzene (FB)/diethylmethylamine (DEMA)/hexane exciplex tracer/fuel system. In contrast to most previous laser-induced exciplex-fluorescence (LIEF) experiments, the quantitative results here include regions in which liquid and vapor fuel coexist (e.g. near the injector exit). A unique aspect is evaluation of both vapor- and liquid-phase distributions at varying temperature and pressure using only in situ vapor-phase fluorescence calibration measurements at room temperature and atmospheric pressure. This approach draws on recent extensive measurements of the temperature-dependent spectroscopic properties of the FB–DEMA exciplex system, in particular on knowledge of the quantum efficiencies of the vapor-phase and liquid-phase (exciplex) fluorescence. In addition to procedures necessary for quantitative measurements, we discuss corrections for liquid–vapor crosstalk (liquid fluorescence that overlaps the vapor-fluorescence bandpass), the unknown local temperature due to vaporization-induced cooling, and laser-sheet attenuation by scattering and absorption

  19. Experimental Investigation of Laser Ablation Characteristics on Nickel-Coated Beryllium Copper

    Directory of Open Access Journals (Sweden)

    Dongkyoung Lee

    2018-03-01

    Full Text Available As electronic products are miniaturized, the components of the spring contact probe are made very fine. Current mechanical processing may make it difficult to perform micro-machining with a high degree of precision. A laser is often used for the high precision micro-machining due to its advantages such as a contact-free process, high energy concentration, fast processing time, and applicability to almost every material. The production of micro-electronics using nickel-coated copper is rapidly increasing and laser material processing is becoming a key processing technology owing to high precision requirements. Before applying laser material processing, it is necessary to understand the ablation characteristics of the materials. Therefore, this study systematically investigates the ablation characteristics of nickel-coated beryllium copper. Key laser parameters are pulse duration (4~200 ns and the total accumulated energy (1~1000 mJ. The processed workpiece is evaluated by analyzing the heat affected zone (HAZ, material removal zone (MRZ, and roundness. Moreover, the surface characteristics such as a burr, spatter, and roundness shapes are analyzed using scanning electron microscope (SEM.

  20. Surface Chemistry and Tribology of Copper Surfaces in Carbon Dioxide and Water Vapor Environments

    Science.gov (United States)

    2011-02-23

    state that the copper brushes in the superconducting homopolar motor experience wear at rates greater than 3X10" wear /distance traveled when biased...positively. It has been found the motor operates best in an atmosphere of carbon dioxide and water vapor. The objective of our research therefore is...possible to prepare different chemical states of the Cu, as those produced in the motor electrodes under positive and negative bias. In situ XAS

  1. Differential absorption lidar measurements of atmospheric water vapor using a pseudonoise code modulated AlGaAs laser. Thesis

    Science.gov (United States)

    Rall, Jonathan A. R.

    1994-01-01

    Lidar measurements using pseudonoise code modulated AlGaAs lasers are reported. Horizontal path lidar measurements were made at night to terrestrial targets at ranges of 5 and 13 km with 35 mW of average power and integration times of one second. Cloud and aerosol lidar measurements were made to thin cirrus clouds at 13 km altitude with Rayleigh (molecular) backscatter evident up to 9 km. Average transmitter power was 35 mW and measurement integration time was 20 minutes. An AlGaAs laser was used to characterize spectral properties of water vapor absorption lines at 811.617, 816.024, and 815.769 nm in a multipass absorption cell using derivative spectroscopy techniques. Frequency locking of an AlGaAs laser to a water vapor absorption line was achieved with a laser center frequency stability measured to better than one-fifth of the water vapor Doppler linewidth over several minutes. Differential absorption lidar measurements of atmospheric water vapor were made in both integrated path and range-resolved modes using an externally modulated AlGaAs laser. Mean water vapor number density was estimated from both integrated path and range-resolved DIAL measurements and agreed with measured humidity values to within 6.5 percent and 20 percent, respectively. Error sources were identified and their effects on estimates of water vapor number density calculated.

  2. Laser ablated copper plasmas in liquid and gas ambient

    Science.gov (United States)

    Kumar, Bhupesh; Thareja, Raj K.

    2013-05-01

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (ne) determined using Stark broadening of the Cu I (3d104d1 2D3/2-3d104p1 2P3/2 at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (Te) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ˜590 nm.

  3. Prospects for trivalent rare earth molecular vapor lasers for fusion

    International Nuclear Information System (INIS)

    Krupke, W.F.

    1976-01-01

    The dynamical properties of three types of RE 3+ molecular vapors were considered: (1) rare earth trihalogens, (2) rare earth trihalogens complexed with transition metal trihalogens, and (3) rare earth chelates. Radiative and nonradiative (unimolecular and bimolecular) transition probabilities have been calculated using phenomenological models predicted on the unique electronic structure of the triply ionized RE ion (well shielded ground electronic configuration of equivalent of electrons). Although all the lanthanide ions have been treated in some detail, specific results are presented for the Nd 3+ and Tb 3+ ions to illustrate the systematics of these vapors as a class of new laser media. Once verified, these phenomenological models will provide a powerful tool for the directed experimental exploration of these systems. Because of the structural similarity to the triply ionized actinides, comments offered here for the lanthanide rare earth series generally apply to gaseous actinide lasers which are also under consideration

  4. Laser Cutting of Thick Diamond Films Using Low-Power Laser

    Energy Technology Data Exchange (ETDEWEB)

    Park, Y.J.; Baik, Y.J. [Korea Institute of Science and Technology, Seoul (Korea)

    2000-02-01

    Laser cutting of thick diamond films is studied rising a low-power(10 W) copper vapor laser. Due to the existence of the saturation depth in laser cutting, thick diamond films are not easily cut by low-power lasers. In this study, we have adopted a low thermal- conductivity underlayer of alumina and a heating stage (up to 500 deg. C in air) to prevent the laser energy from consuming-out and, in turn, enhance the cutting efficiency. Aspect ratio increases twice from 3.5 to 7 when the alumina underlayer used. Adopting a heating stage also increases aspect ratio and more than 10 is obtained at higher temperatures than 400 deg. C. These results show that thick diamond films can be cut, with low-power lasers, simply by modifying the thermal property of underlayer. (author). 13 refs., 5 figs.

  5. Excimer laser produced plasmas in copper wire targets and water droplets

    Science.gov (United States)

    Song, Kyo-Dong; Alexander, D. R.

    1994-01-01

    Elastically scattered incident radiation (ESIR) from a copper wire target illuminated by a KrF laser pulse at lambda = 248 nm shows a dinstinct two-peak structure which is dependent on the incident energy. The time required to reach the critical electron density (n(sub c) approximately = 1.8 x 10(exp 22) electrons/cu cm) is estimated at 11 ns based on experimental results. Detailed ESIR characteristics for water have been reported previously by the authors. Initiation of the broadband emission for copper plasma begins at 6.5 +/- 1.45 ns after the arrival of the laser pulse. However, the broadband emission occurs at 11 +/- 0.36 ns for water. For a diatomic substance such as water, the electron energy rapidly dissipates due to dissociation of water molecules, which is absent in a monatomic species such as copper. When the energy falls below the excitation energy of the lowest electron state for water, it becomes a subexcitation electron. Lifetimes of the subexcited electrons to the vibrational states are estimated to be of the order of 10(exp -9) s. In addition, the ionization potential of copper (440-530 nm) is approximately 6 eV, which is about two times smaller than the 13 eV ionization potential reported for water. The higher ionization potential contributes to the longer observed delay time for plasma formation in water. After initiation, a longer time is required for copper plasma to reach its peak value. This time delay in reaching the maximum intensity is attributed to the energy loss during the interband transition in copper.

  6. Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment

    CERN Document Server

    Joulaei, Atefeh; Berti, Nicolas; Kasparian, Jerome; Mirzanejhad, Saeed; Muggli, Patric

    2016-01-01

    We present the results of numerical studies of laser pulse propagating in a 3.5 cm Rb vapor cell in the linear dispersion regime by using a 1D model and a 2D code that has been modified for our special case. The 2D simulation finally aimed at finding laser beam parameters suitable to make the Rb vapor fully ionized to obtain a uniform, 10 m-long, at least 1 mm in radius plasma in the next step for the AWAKE experiment.

  7. Model of pulse extraction from a copper laser amplifier

    International Nuclear Information System (INIS)

    Boley, C.D.; Warner, B.E.

    1997-03-01

    A computational model of pulse propagation through a copper laser amplifier has been developed. The model contains a system of 1-D (in the axial direction), time-dependent equations for the laser intensity and amplified spontaneous emission (ASE), coupled to rate equations for the atomic levels. Detailed calculations are presented for a high-power amplifier at Lawrence Livermore National Laboratory. The extracted power agrees with experiment near saturation. At lower input power the calculation overestimates experiment, probably because of increased ASE effects. 6 refs., 6 figs

  8. Microstructure and interfacial evaluation of Co-based alloy coating on copper by pulsed Nd:YAG multilayer laser cladding

    International Nuclear Information System (INIS)

    Yan Hua; Wang Aihua; Xu Kaidong; Wang Wenyan; Huang Zaowen

    2010-01-01

    Laser cladding defect-free coatings on copper is rather difficult. The purpose of this study is to fabricate high quality Co-based alloy coating on copper substrate by laser cladding. Powder preplacement with a thickness of 0.7 mm improves the absorptivity of copper substrate to laser effectively and generates defect-free coating. Microstructures, phase constitutions and wear properties are investigated by means of scanning electronic microscopy (SEM) with X-ray energy dispersive microanalysis (EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD), as well as dry sliding wear test. Experimental results show that α-Co solution, Cr 23 C 6 , Ni 17 W 3 and Cr 4 Ni 15 W are the main phases in the Co-based coating. The Ni-based solid solutions (α-Co, Ni) and (Ni, Cu) are formed at interface, which generate metallurgical bonding by diffusion between Co-based coating and copper substrate. The average microhardness of the coating is 478HV 0.1 . Wear resistance of copper is significantly improved by laser cladding Co-based alloy multilayer coating.

  9. Influence of the helium-pressure on diode-pumped alkali-vapor laser

    Science.gov (United States)

    Gao, Fei; Chen, Fei; Xie, Ji-jiang; Zhang, Lai-ming; Li, Dian-jun; Yang, Gui-long; Guo, Jing

    2013-05-01

    Diode-pumped alkali-vapor laser (DPAL) is a kind of laser attracted much attention for its merits, such as high quantum efficiency, excellent beam quality, favorable thermal management, and potential scalability to high power and so on. Based on the rate-equation theory of end-pumped DPAL, the performances of DPAL using Cs-vapor collisionally broadened by helium are simulated and studied. With the increase of helium pressure, the numerical results show that: 1) the absorption line-width increases and the stimulated absorption cross-section decreases contrarily; 2) the threshold pumping power decreases to minimum and then rolls over to increase linearly; 3) the absorption efficiency rises to maximum initially due to enough large stimulated absorption cross-section in the far wings of collisionally broadened D2 transition (absorption transition), and then begins to reduce; 4) an optimal value of helium pressure exists to obtain the highest output power, leading to an optimal optical-optical efficiency. Furthermore, to generate the self-oscillation of laser, a critical value of helium pressure occurs when small-signal gain equals to the threshold gain.

  10. Polymer-coated vertical-cavity surface-emitting laser diode vapor sensor

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2010-01-01

    We report a new method for monitoring vapor concentration of volatile organic compounds using a vertical-cavity surface-emitting laser (VCSEL). The VCSEL is coated with a polymer thin film on the top distributed Bragg reflector (DBR). The analyte absorption is transduced to the electrical domain ...

  11. Interaction of a laser-produced copper plasma jet with ambient plastic plasma

    Czech Academy of Sciences Publication Activity Database

    Kasperczuk, A.; Pisarczyk, T.; Badziak, J.; Borodziuk, S.; Chodukowski, T.; Gus’kov, S.Yu.; Demchenko, N. N.; Klir, D.; Kravarik, J.; Kubes, P.; Rezac, K.; Ullschmied, Jiří; Krouský, Eduard; Mašek, Karel; Pfeifer, Miroslav; Rohlena, Karel; Skála, Jiří; Pisarczyk, P.

    2011-01-01

    Roč. 53, č. 9 (2011), 095003-095003 ISSN 0741-3335 R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528 Institutional research plan: CEZ:AV0Z20430508; CEZ:AV0Z10100523 Keywords : laser produced-plasma jets * PALS laser * laser ablation * copper plasma * plastic plasma Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.425, year: 2011 http://iopscience.iop.org/0741-3335/53/9/095003/pdf/0741-3335_53_9_095003.pdf

  12. High-temperature quadrupole mass spectrometer for studying vaporization from materials heated by a CO2 laser

    International Nuclear Information System (INIS)

    Fredin, L.; Hansen, G.P.; Sampson, M.P.; Margrave, J.L.; Behrens, R.G.

    1986-09-01

    To evaluate the effectiveness of mass spectrometry techniques in studying vaporization from selected materials, we designed a mass spectrometer than can be used either with a continuous wave or pulsed laser heating system or with a conventional furnace heating system. Our experimental apparatus, the components of which are described in detail, consisted of a quadrupole mass spectrometer positioned in a crossed-beam configuration, controlling electronics, a data acquisition system, a vacuum system, a cryogenic collimation system, and a laser heating system. Results of mass spectral scans taken during laser pyrolysis of polymeric materials and laser vaporization of graphite were compatible with data reported in other studies. Results of mass spectral studies of laser-induced combustion in the Ti + C system are also presented

  13. Process Studies on Laser Welding of Copper with Brilliant Green and Infrared Lasers

    Science.gov (United States)

    Engler, Sebastian; Ramsayer, Reiner; Poprawe, Reinhart

    Copper materials are classified as difficult to weld with state-of-the-art lasers. High thermal conductivity in combination with low absorption at room temperature require high intensities for reaching a deep penetration welding process. The low absorption also causes high sensitivity to variations in surface conditions. Green laser radiation shows a considerable higher absorption at room temperature. This reduces the threshold intensity for deep penetration welding significantly. The influence of the green wavelength on energy coupling during heat conduction welding and deep penetration welding as well as the influence on the weld shape has been investigated.

  14. Blue laser diode (450 nm) systems for welding copper

    Science.gov (United States)

    Silva Sa, M.; Finuf, M.; Fritz, R.; Tucker, J.; Pelaprat, J.-M.; Zediker, M. S.

    2018-02-01

    This paper will discuss the development of high power blue laser systems for industrial applications. The key development enabling high power blue laser systems is the emergence of high power, high brightness laser diodes at 450 nm. These devices have a high individual brightness rivaling their IR counterparts and they have the potential to exceed their performance and price barriers. They also have a very high To resulting in a 0.04 nm/°C wavelength shift. They have a very stable lateral far-field profile which can be combined with other diodes to achieve a superior brightness. This paper will report on the characteristics of the blue laser diodes, their integration into a modular laser system suitable for scaling the output power to the 1 kW level and beyond. Test results will be presented for welding of copper with power levels ranging from 150 Watts to 600 Watts

  15. Acetone vapor sensing using a vertical cavity surface emitting laser diode coated with polystyrene

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgaard; Larsen, Niels Bent

    2009-01-01

    We report theoretical and experimental on a new vapor sensor, using a single-mode vertical-cavity surface-emitting laser (VCSEL) coated with a polymer sensor coating, which can detect acetone vapor at a volume fraction of 2.5%. The sensor provides the advantage of standard packaging, small form...

  16. GreenLight laser vs diode laser vaporization of the prostate: 3-year results of a prospective nonrandomized study.

    Science.gov (United States)

    Guo, Sanwei; Müller, Georg; Bonkat, Gernot; Püschel, Heike; Gasser, Thomas; Bachmann, Alexander; Rieken, Malte

    2015-04-01

    Laser vaporization of the prostate is one of the alternatives to transurethral resection of the prostate. Short-term studies report a comparable outcome after laser vaporization with the 532 nm 120-W GreenLight high-performance system (HPS) laser and the 980 nm 200 W high-intensity diode (diode) laser. In this study, we analyzed the intermediate-term results of both techniques. From January 2007 to January 2008, 112 consecutive patients with symptomatic benign prostate enlargement were nonrandomly assigned to treatment with the GreenLight laser or the diode laser. Perioperative parameters, postoperative functional outcome, complications, and the reoperation rate at 3 years were analyzed. Improvement of voiding symptoms (International Prostate Symptom Score, quality-of-life) and micturition parameters (maximum flow rate, postvoid residual volume) showed no significant difference between the HPS group and the diode group. A significantly higher reoperation rate was observed in the diode group in comparison to the HPS group (37.5% vs 8.9%, p=0.0003) due to obstructive necrotic tissue (16.1% vs 0%, p=0.0018), bladder neck stricture (16.1% vs 1.8%, p=0.008), and persisting or recurrent adenoma (5.4% vs 7.1%, p=0.70), respectively. Both lasers lead to comparable improvement of voiding parameters and micturition symptoms. Treatment with the 200 W diode laser led to a significantly higher reoperation rate, which might be attributed to a higher degree of coagulation necrosis. Thus, a careful clinical application of this diode laser type is warranted.

  17. Kinetics of laser pulse vaporization of uranium dioxide by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.

    1981-11-01

    Safety analyses of nuclear reactors require knowledge of the evaporation behavior of UO/sub 2/ at temperatures well above the melting point of 3140 K. In this study, rapid transient heating of a small spot on a UO/sub 2/ specimen was accomplished by a laser pulse, which generates a surface temperature excursion. This in turn vaporizes the target surface and the gas expands into vacuum. The surface temperature transient was monitored by a fast-response automatic optical pyrometer. The maximum surface temperatures investigated range from approx. 3700 K to approx. 4300 K. A computer program was developed to simulate the laser heating process and calculate the surface temperature evolution. The effect of the uncertainties of the high temperature material properties on the calculation was included in a sensitivity study for UO/sub 2/ vaporization. The measured surface temperatures were in satisfactory agreements.

  18. An All-Solid-State High Repetiton Rate Titanium:Sapphire Laser System For Resonance Ionization Laser Ion Sources

    Science.gov (United States)

    Mattolat, C.; Rothe, S.; Schwellnus, F.; Gottwald, T.; Raeder, S.; Wendt, K.

    2009-03-01

    On-line production facilities for radioactive isotopes nowadays heavily rely on resonance ionization laser ion sources due to their demonstrated unsurpassed efficiency and elemental selectivity. Powerful high repetition rate tunable pulsed dye or Ti:sapphire lasers can be used for this purpose. To counteract limitations of short pulse pump lasers, as needed for dye laser pumping, i.e. copper vapor lasers, which include high maintenance and nevertheless often only imperfect reliability, an all-solid-state Nd:YAG pumped Ti:sapphire laser system has been constructed. This could complement or even replace dye laser systems, eliminating their disadvantages but on the other hand introduce shortcomings on the side of the available wavelength range. Pros and cons of these developments will be discussed.

  19. Laser ablated copper plasmas in liquid and gas ambient

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhupesh; Thareja, Raj K. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2013-05-15

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (n{sub e}) determined using Stark broadening of the Cu I (3d{sup 10}4d{sup 1} {sup 2}D{sub 3/2}-3d{sup 10}4p{sup 1} {sup 2}P{sub 3/2} at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (T{sub e}) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ∼590 nm.

  20. Long-Term Outcomes of Laser Prostatectomy for Storage Symptoms: Comparison of Serial 5-Year Followup Data between High Performance System Photoselective Vaporization and Holmium Laser Enucleation of the Prostate.

    Science.gov (United States)

    Cho, Min Chul; Song, Won Hoon; Park, Juhyun; Cho, Sung Yong; Jeong, Hyeon; Oh, Seung-June; Paick, Jae-Seung; Son, Hwancheol

    2018-01-09

    We compared long-term storage symptom outcomes between photoselective laser vaporization of the prostate with a 120 W high performance system and holmium laser enucleation of the prostate. We also determined factors influencing postoperative improvement of storage symptoms in the long term. Included in our study were 266 men, including 165 treated with prostate photoselective laser vaporization using a 120 W high performance system and 101 treated with holmium laser enucleation of the prostate, on whom 60-month followup data were available. Outcomes were assessed serially 6, 12, 24, 36, 48 and 60 months postoperatively using the International Prostate Symptom Score, uroflowmetry and the serum prostate specific antigen level. Postoperative improvement in storage symptoms was defined as a 50% or greater reduction in the subtotal storage symptom score at each followup visit after surgery compared to baseline. Improvements in frequency, urgency, nocturia, subtotal storage symptom scores and the quality of life index were maintained up to 60 months after photoselective laser vaporization or holmium laser enucleation of the prostate. There was no difference in the degree of improvement in storage symptoms or the percent of patients with postoperative improvement in storage symptoms between the 2 groups throughout the long-term followup. However, the holmium laser group showed greater improvement in voiding symptoms and quality of life than the laser vaporization group. On logistic regression analysis a higher baseline subtotal storage symptom score and a higher BOOI (Bladder Outlet Obstruction Index) were the factors influencing the improvement in storage symptoms 5 years after prostate photoselective laser vaporization or holmium laser enucleation. Our serial followup data suggest that storage symptom improvement was maintained throughout the long-term postoperative period for prostate photoselective laser vaporization with a 120 W high performance system and holmium

  1. Retrieval of water vapor mixing ratios from a laser-based sensor

    Science.gov (United States)

    Tucker, George F.

    1995-01-01

    Langley Research Center has developed a novel external path sensor which monitors water vapor along an optical path between an airplane window and reflective material on the plane's engine. An infrared tunable diode laser is wavelength modulated across a water vapor absorption line at a frequency f. The 2f and DC signals are measured by a detector mounted adjacent to the laser. The 2f/DC ratio depends on the amount of wavelength modulation, the water vapor absorption line being observed, and the temperature, pressure, and water vapor content of the atmosphere. The present work concerns efforts to quantify the contributions of these factors and to derive a method for extracting the water vapor mixing ratio from the measurements. A 3 m cell was fabricated in order to perform laboratory tests of the sensor. Measurements of 2f/DC were made for a series of pressures and modulation amplitudes. During my 1994 faculty fellowship, a computer program was created which allowed 2f/DC to be calculated for any combination of the variables which effect it. This code was used to generate 2f/DC values for the conditions measured in the laboratory. The experimental and theoretical values agreed to within a few percent. As a result, the laser modulation amplitude can now be set in the field by comparing the response of the instrument to the calculated response as a function of modulation amplitude. Once the validity of the computer code was established, it was used to investigate possible candidate absorption lines. 2f/DC values were calculated for pressures, temperatures, and water vapor mixing ratios expected to be encountered in future missions. The results have been incorporated into a database which will be used to select the best line for a particular mission. The database will also be used to select a retrieval technique. For examples under some circumstances there is little temperature dependence in 2f/DC so temperature can be neglected. In other cases, there is a dependence

  2. Propagation velocities of laser-produced plasmas from copper wire targets and water droplets

    Science.gov (United States)

    Song, Kyo-Dong; Alexander, Dennis R.

    1994-01-01

    Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.

  3. Nanoscale coatings for erosion and corrosion protection of copper microchannel coolers for high powered laser diodes

    Science.gov (United States)

    Flannery, Matthew; Fan, Angie; Desai, Tapan G.

    2014-03-01

    High powered laser diodes are used in a wide variety of applications ranging from telecommunications to industrial applications. Copper microchannel coolers (MCCs) utilizing high velocity, de-ionized water coolant are used to maintain diode temperatures in the recommended range to produce stable optical power output and control output wavelength. However, aggressive erosion and corrosion attack from the coolant limits the lifetime of the cooler to only 6 months of operation. Currently, gold plating is the industry standard for corrosion and erosion protection in MCCs. However, this technique cannot perform a pin-hole free coating and furthermore cannot uniformly cover the complex geometries of current MCCs involving small diameter primary and secondary channels. Advanced Cooling Technologies, Inc., presents a corrosion and erosion resistant coating (ANCERTM) applied by a vapor phase deposition process for enhanced protection of MCCs. To optimize the coating formation and thickness, coated copper samples were tested in 0.125% NaCl solution and high purity de-ionized (DIW) flow loop. The effects of DIW flow rates and qualities on erosion and corrosion of the ANCERTM coated samples were evaluated in long-term erosion and corrosion testing. The robustness of the coating was also evaluated in thermal cycles between 30°C - 75°C. After 1000 hours flow testing and 30 thermal cycles, the ANCERTM coated copper MCCs showed a corrosion rate 100 times lower than the gold plated ones and furthermore were barely affected by flow rates or temperatures thus demonstrating superior corrosion and erosion protection and long term reliability.

  4. New alternatives for laser vaporization of the prostate: experimental evaluation of a 980-, 1,318- and 1,470-nm diode laser device.

    Science.gov (United States)

    Wezel, Felix; Wendt-Nordahl, Gunnar; Huck, Nina; Bach, Thorsten; Weiss, Christel; Michel, Maurice Stephan; Häcker, Axel

    2010-04-01

    Several diode laser systems were introduced in recent years for the minimal-invasive surgical therapy of benign prostate enlargement. We investigated the ablation capacities, hemostatic properties and extend of tissue necrosis of different diode lasers at wavelengths of 980, 1,318 and 1,470 nm and compared the results to the 120 W GreenLight HPS laser. The laser devices were evaluated in an ex vivo model using isolated porcine kidneys. The weight difference of the porcine kidneys after 10 min of laser vaporization defined the amount of ablated tissue. Blood loss was measured in blood-perfused kidneys following laser vaporization. Histological examination was performed to assess the tissue effects. The side-firing 980 and 1,470 nm diode lasers displayed similar ablative capacities compared to the GreenLight HPS laser (n.s.). The 1,318-nm laser, equipped with a bare-ended fiber, reached a higher ablation rate compared to the other laser devices (each P laser with a bare-ended fiber reached the highest rate compared to the side-firing devices (each P diode lasers showed superior hemostatic properties compared to the GreenLight HPS laser (each P laser), respectively. The diode lasers offered similar ablative capacities and improved hemostatic properties compared to the 120 W GreenLight HPS laser in this experimental ex vivo setting. The higher tissue penetration of the diode lasers compared to the GreenLight HPS laser may explain improved hemostasis.

  5. Laser Spot Welding of Copper-aluminum Joints Using a Pulsed Dual Wavelength Laser at 532 and 1064 nm

    Science.gov (United States)

    Stritt, Peter; Hagenlocher, Christian; Kizler, Christine; Weber, Rudolf; Rüttimann, Christoph; Graf, Thomas

    A modulated pulsed laser source emitting green and infrared laser light is used to join the dissimilar metals copper and aluminum. The resultant dynamic welding process is analyzed using the back reflected laser light and high speed video observations of the interaction zone. Different pulse shapes are applied to influence the melt pool dynamics and thereby the forming grain structure and intermetallic phases. The results of high-speed images and back-reflections prove that a modulation of the pulse shape is transferred to oscillations of the melt pool at the applied frequency. The outcome of the melt pool oscillation is shown by the metallurgically prepared cross-section, which indicates different solidification lines and grain shapes. An energy-dispersivex-ray analysis shows the mixture and the resultant distribution of the two metals, copper and aluminum, within the spot weld. It can be seen that the mixture is homogenized the observed melt pool oscillations.

  6. Optoacoustic measurements of water vapor absorption at selected CO laser wavelengths in the 5-micron region

    Science.gov (United States)

    Menzies, R. T.; Shumate, M. S.

    1976-01-01

    Measurements of water vapor absorption were taken with a resonant optoacoustical detector (cylindrical pyrex detector, two BaF2 windows fitted into end plates at slight tilt to suppress Fabry-Perot resonances), for lack of confidence in existing spectral tabular data for the 5-7 micron region, as line shapes in the wing regions of water vapor lines are difficult to characterize. The measurements are required for air pollution studies using a CO laser, to find the differential absorption at the wavelengths in question due to atmospheric constituents other than water vapor. The design and performance of the optoacoustical detector are presented. Effects of absorption by ambient NO are considered, and the fixed-frequency discretely tunable CO laser is found suitable for monitoring urban NO concentrations in a fairly dry climate, using the water vapor absorption data obtained in the study.

  7. Laser cladding of stainless steel with a copper-silver alloy to generate surfaces of high antimicrobial activity

    Science.gov (United States)

    Hans, Michael; Támara, Juan Carlos; Mathews, Salima; Bax, Benjamin; Hegetschweiler, Andreas; Kautenburger, Ralf; Solioz, Marc; Mücklich, Frank

    2014-11-01

    Copper and silver are used as antimicrobial agents in the healthcare sector in an effort to curb infections caused by bacteria resistant to multiple antibiotics. While the bactericidal potential of copper and silver alone are well documented, not much is known about the antimicrobial properties of copper-silver alloys. This study focuses on the antibacterial activity and material aspects of a copper-silver model alloy with 10 wt% Ag. The alloy was generated as a coating with controlled intermixing of copper and silver on stainless steel by a laser cladding process. The microstructure of the clad was found to be two-phased and in thermal equilibrium with minor Cu2O inclusions. Ion release and killing of Escherichia coli under wet conditions were assessed with the alloy, pure silver, pure copper and stainless steel. It was found that the copper-silver alloy, compared to the pure elements, exhibited enhanced killing of E. coli, which correlated with an up to 28-fold increased release of copper ions. The results show that laser cladding with copper and silver allows the generation of surfaces with enhanced antimicrobial properties. The process is particularly attractive since it can be applied to existing surfaces.

  8. Analysis of copper contamination in transformer insulating material with nanosecond- and femtosecond-laser-induced breakdown spectroscopy

    Science.gov (United States)

    Aparna, N.; Vasa, N. J.; Sarathi, R.

    2018-06-01

    This work examines the oil-impregnated pressboard insulation of high-voltage power transformers, for the determination of copper contamination. Nanosecond- and femtosecond-laser-induced breakdown spectroscopy revealed atomic copper lines and molecular copper monoxide bands due to copper sulphide diffusion. X-ray diffraction studies also indicated the presence of CuO emission. Elemental and molecular mapping compared transformer insulating material ageing in different media—air, N2, He and vacuum.

  9. Drilling of Copper Using a Dual-Pulse Femtosecond Laser

    Directory of Open Access Journals (Sweden)

    Chung-Wei Cheng

    2016-02-01

    Full Text Available The drilling of copper using a dual-pulse femtosecond laser with wavelength of 800 nm, pulse duration of 120 fs and a variable pulse separation time (0.1–150 ps is investigated theoretically. A one-dimensional two-temperature model with temperature-dependent material properties is considered, including dynamic optical properties and the thermal-physical properties. Rapid phase change and phase explosion models are incorporated to simulate the material ablation process. Numerical results show that under the same total laser fluence of 4 J/cm2, a dual-pulse femtosecond laser with a pulse separation time of 30–150 ps can increase the ablation depth, compared to the single pulse. The optimum pulse separation time is 85 ps. It is also demonstrated that a dual pulse with a suitable pulse separation time for different laser fluences can enhance the ablation rate by about 1.6 times.

  10. Study on improvement of laser system performance for uranium isotope separation

    International Nuclear Information System (INIS)

    Fujii, Takashi

    1998-01-01

    For the purpose of reducing the cost of Atomic Vapor Laser Isotope Separation (AVLIS), I developed the following laser technologies. (1) I developed a solid-state pulse power supply, of which output power was the almost highest value achieved for a copper vapor laser in 1989, using a GTO as a switching device and a magnetic pulse compression circuit. (2) I developed a new technique of tuning the laser wavelength to an atomic absorption band using high-speed wavelength shift of a laser diode by direct modulation. (3) I developed a new technique of stabilizing the laser wavelength at an absorption band of a target atom, by locking the sideband generated by phase modulation of a laser beam to a Fabry-Perot interferometer. (4) I proposed the Cr 4+ -doped forsterite laser system as an all solid-state laser system for the AVLIS. I obtained the slope efficiency of 25%, which was the highest value achieved in the case of pulse operation of the Cr 4+ -doped forsterite laser in 1995, using the forsterite with high Cr 4+ -ion concentration. (author)

  11. Laser-induced selective copper plating of polypropylene surface

    Science.gov (United States)

    Ratautas, K.; Gedvilas, M.; Stankevičiene, I.; JagminienÄ--, A.; Norkus, E.; Li Pira, N.; Sinopoli, S.; Emanuele, U.; Račiukaitis, G.

    2016-03-01

    Laser writing for selective plating of electro-conductive lines for electronics has several significant advantages, compared to conventional printed circuit board technology. Firstly, this method is faster and cheaper at the prototyping stage. Secondly, material consumption is reduced, because it works selectively. However, the biggest merit of this method is potentiality to produce moulded interconnect device, enabling to create electronics on complex 3D surfaces, thus saving space, materials and cost of production. There are two basic techniques of laser writing for selective plating on plastics: the laser-induced selective activation (LISA) and laser direct structuring (LDS). In the LISA method, pure plastics without any dopant (filler) can be used. In the LDS method, special fillers are mixed in the polymer matrix. These fillers are activated during laser writing process, and, in the next processing step, the laser modified area can be selectively plated with metals. In this work, both methods of the laser writing for the selective plating of polymers were investigated and compared. For LDS approach, new material: polypropylene with carbon-based additives was tested using picosecond and nanosecond laser pulses. Different laser processing parameters (laser pulse energy, scanning speed, the number of scans, pulse durations, wavelength and overlapping of scanned lines) were applied in order to find out the optimal regime of activation. Areal selectivity tests showed a high plating resolution. The narrowest width of a copper-plated line was less than 23 μm. Finally, our material was applied to the prototype of the electronic circuit board on a 2D surface.

  12. Theoretical analyses of an injection-locked diode-pumped rubidium vapor laser.

    Science.gov (United States)

    Cai, He; Gao, Chunqing; Liu, Xiaoxu; Wang, Shunyan; Yu, Hang; Rong, Kepeng; An, Guofei; Han, Juhong; Zhang, Wei; Wang, Hongyuan; Wang, You

    2018-04-02

    Diode-pumped alkali lasers (DPALs) have drawn much attention since they were proposed in 2001. The narrow-linewidth DPAL can be potentially applied in the fields of coherent communication, laser radar, and atomic spectroscopy. In this study, we propose a novel protocol to narrow the width of one kind of DPAL, diode-pumped rubidium vapor laser (DPRVL), by use of an injection locking technique. A kinetic model is first set up for an injection-locked DPRVL with the end-pumped configuration. The laser tunable duration is also analyzed for a continuous wave (CW) injection-locked DPRVL system. Then, the influences of the pump power, power of a master laser, and reflectance of an output coupler on the output performance are theoretically analyzed. The study should be useful for design of a narrow-linewidth DPAL with the relatively high output.

  13. Theoretical investigation of output features of a diode-pumped rubidium vapor laser

    Science.gov (United States)

    Wang, You; Cai, He; Zhang, Wei; Xue, Liangping; Wang, Hongyuan; Han, Juhong

    2014-02-01

    In the recent years, diode-pumped alkali lasers (DPALs) have been paid many attentions because of their excellent performances. In fact, the characteristics of a DPAL strongly depend on the physical features of buffer gases. In this report, we selected a diode-pumped rubidium vapor laser (DPRVL), which is an important type among three common DPALs, to investigate how the characteristics of a DPRVL are affected by different conditions. The results signify that the population ratio of two excitation energy-levels are close to that corresponding to thermal equilibrium as the pressure of buffer gases and the temperature of a vapor cell become higher. It has been found that quenching of the upper levels cannot be simply ignored especially for the case of weak pump. The conclusions are thought to be helpful for the configuration design of an end-pumped DPAL.

  14. Uniformly Distributed Graphene Domain Grows on Standing Copper via Low-Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Shih-Hao Chan

    2013-01-01

    Full Text Available Uniformly distributed graphene domains were synthesized on standing copper foil by a low-pressure chemical vapor deposition system. This method improved the distribution of the graphene domains at different positions on the same piece of copper foil along the forward direction of the gas flow. Scanning electron microscopy (SEM showed the average size of the graphene domains to be about ~20 m. This results show that the sheet resistance of monolayer graphene on a polyethylene terephthalate (PET substrate is about ~359 /□ whereas that of the four-layer graphene films is about ~178 /□, with a transmittance value of 88.86% at the 550 nm wavelength. Furthermore, the sheet resistance can be reduced with the addition of HNO3 resulting in a value of 84 /□. These values meet the absolute standard for touch sensor applications, so we believe that this method can be a candidate for some transparent conductive electrode applications.

  15. High-frequency strontium vapor laser for biomedical applications

    Science.gov (United States)

    Hvorostovsky, A.; Kolmakov, E.; Kudashev, I.; Redka, D.; Kancer, A.; Kustikova, M.; Bykovskaya, E.; Mayurova, A.; Stupnikov, A.; Ruzankina, J.; Tsvetkov, K.; Lukyanov, N.; Paklinov, N.

    2018-02-01

    Sr-laser with high pulse repetition rate and high peak radiation power is a unique tool for studying rapidly occurring processes in time (plasma diagnostics, photoablation, etc.). In addition, the study of the frequency characteristics of the active medium of the laser helps to reveal the physics of the formation of an inverse medium in metal vapor lasers. In this paper, an experimental study of an Sr-laser with an active volume of 5.8 cm3 in the pulse repetition frequency range from 25 to 200 kHz is carried out, and a comparison with the frequency characteristics of media with large active volumes is given. We considered the frequency characteristics of the active medium in two modes: at a constant energy in the excitation pulse CU2 / 2 and at a constant average power consumed by the rectifier. In the presented work with a small-volume GRT using the TASITR-5/12 TASITRON switch, a laser was generated for Pairs of strontium at a CSF of 200 kHz. The behavior of the characteristics of the generation lines of 6.456 μm, 1 μm, and 3 μm at increased repetition frequencies is considered. Using the example of large-volume GRT, it is shown that tubes with a large active volume increase their energy characteristics with the growth of the CSF. The possibility of laser operation at pulse repetition rates above 200 kHz is shown.

  16. Appearance property and mechanism of plume produced by pulsed ultraviolet laser ablating copper

    International Nuclear Information System (INIS)

    Huang Qingju; Li Fuquan; Wang Honghua

    2008-01-01

    Time-resolved measurements of plume emission spectra by pulsed ultraviolet laser ablating copper in neon were analyzed, and the photographs of plume from laser ablating copper were taken. The experimental results show that plume has different colours in different ranges. At low pressure the centre layer and middle layer colours of plume are mixed colour, and the outer layer colours of plume are yellow and green. At middle pressure the centre layer and middle layer colours of plume are white, and the outer layer colour of plume is pea green. At high pressure the centre layer and middle layer colours of plume are white, and the outer layer colour of plume is faintness green. The plume range is pressed with the rising of ambient gas pressure, and the range colour gets thin with the rising of ambient gas pressure. The plume excitation radiation mechanism in pulsed ultraviolet laser ablating copper was discussed. The primary excitation radiation mechanism in plume is electron collision energy transfer and atom collision energy transfer at low pressure and middle pressure, and it is electrons Bremsstrahlung and recombination excitation radiation of electron and ion at high pressure. The model can be used to explain the experimental result qualitatively. (authors)

  17. The Laser Damage Threshold for Materials and the Relation Between Solid-Melt and Melt-Vapor Interface Velocities

    International Nuclear Information System (INIS)

    Khalil, Osama Mostafa

    2010-01-01

    Numerous experiments have demonstrated and analytic theories have predicted that there is a threshold for pulsed laser ablation of a wide range of materials. Optical surface damage threshold is a very complex and important application of high-power lasers. Optical damage may also be considered to be the initial phase of laser ablation. In this work it was determined the time required and the threshold energy of a layer of thickness to heat up. We used the Finite Difference method to simulate the process of laser-target interaction in three cases. Namely, the case before melting begins using a continuous wave (c.w) laser source and a pulsed laser source, the case after the first change of state (from solid to melt), and the case after the second change of state (from melt to vapor). And also study the relation between the solid-melt and melt-vapor interface velocities to have a commonsense of the laser ablation process.

  18. Contamination spike simulation and measurement in a clean metal vapor laser

    International Nuclear Information System (INIS)

    Lin, C.E.; Yang, C.Y.

    1990-01-01

    This paper describes a new method for the generation of contamination-induced voltage spikes in a clean metal vapor laser. The method facilitates the study of the characteristics of this troublesome phenomenon in laser systems. Analysis of these artificially generated dirt spikes shows that the breakdown time of the laser tube is increased when these spike appear. The concept of a Townsend discharge is used to identify the parameter which changes the breakdown time of the discharges. The residual ionization control method is proposed to generate dirt spikes in a clean laser. Experimental results show that a wide range of dirt spike magnitudes can be obtained by using the proposed method. The method provides easy and accurate control of the magnitude of the dirt spike, and the laser tube does not become polluted. Results based on the measurements can be used in actual laser systems to monitor the appearance of dirt spikes and thus avoid the danger of thyratron failure

  19. Computer modeling of the sensitivity of a laser water vapor sensor to variations in temperature and air speed

    Science.gov (United States)

    Tucker, George F.

    1994-01-01

    Currently, there is disagreement among existing methods of determining atmospheric water vapor concentration at dew-points below -40 C. A major source of error is wall effects which result from the necessity of bringing samples into the instruments. All of these instruments also have response times on the order of seconds. NASA Langley is developing a water vapor sensor which utilizes the absorption of the infrared radiation produced by a diode laser to estimate water vapor concentration. The laser beam is directed through an aircraft window to a retroreflector located on an engine. The reflected beam is detected by an infrared detector located near the laser. To maximize signal to noise, derivative signals are analyzed. By measuring the 2f/DC signal and correcting for ambient temperature, atmospheric pressure and air speed (which results in a Doppler shifting of the laser beam), the water vapor concentration can be retrieved. Since this is an in situ measurement there are no wall effects and measurements can be made at a rate of more than 20 per second. This allows small spatial variations of water vapor to be studied. In order to study the sensitivity of the instrument to variations in temperature and air speed, a computer program which generated the 2f, 3f, 4f, DC and 2f/DC signals of the instrument as a function of temperature, pressure and air speed was written. This model was used to determine the effect of errors in measurement of the temperature and air speed on the measured water vapor concentration. Future studies will quantify the effect of pressure measurement errors, which are expected to be very small. As a result of these studied, a retrieval algorithm has been formulated, and will be applied to data taken during the PEM-West atmospheric science field mission. Spectroscopic studies of the water vapor line used by the instrument will be used to refine this algorithm. To prepare for these studies, several lasers have been studied to determine their

  20. Laser-induced fluorescence line narrowing in atomic vapors

    International Nuclear Information System (INIS)

    Meier, T.; Schuessler, H.A.

    1983-01-01

    The use of highly monochromatic light allows the selective excitation of atoms in vapors if excitation and detection of the fluorescence is carried out collinearly. The atoms capable of absorbing light then form an atomic beam of well defined velocity along the direction of the laser beam, but no velocity selection occurs perpendicular to it. The potential of the technique for Doppler-free atomic spectroscopy and for the study of excited atom collisions is demonstrated using the Na D 1 line as an example

  1. Calibration curves for commercial copper and aluminum alloys using handheld laser-induced breakdown spectroscopy

    Science.gov (United States)

    Bennett, B. N.; Martin, M. Z.; Leonard, D. N.; Garlea, E.

    2018-03-01

    Handheld laser-induced breakdown spectroscopy (HH LIBS) was used to study the elemental composition of four copper alloys and four aluminum alloys to produce calibration curves. The HH LIBS instrument used is a SciAps Z-500, commercially available, that contains a class-1 solid-state laser with an output wavelength of 1532 nm, laser energy of 5 mJ/pulse, and a pulse duration of 5 ns. Test samples were solid specimens comprising copper and aluminum alloys and data were collected from the samples' surface at three different locations, employing a 12-point-grid pattern for each data set. All three data sets of the spectra were averaged, and the intensity, corrected by subtraction of background, was used to produce the elemental calibration curves. Calibration curves are presented for the matrix elements, copper and aluminum, as well as several minor elements. The surface damage produced by the laser was examined by microscopy. The alloys were tested in air and in a glovebox to evaluate the instrument's ability to identify the constituents within materials under different environmental conditions. The main objective of using this HH LIBS technology is to determine its capability to fingerprint the presence of certain elements related to subpercent level within materials in real time and in situ, as a starting point for undertaking future complex material characterization work.

  2. R and D on laser uranium enrichment

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    An AEC Advisory Committee on Uranium Enrichment has completed investigations into the actual condition of laser isotope separation. The working group set up for the purpose has issued a report on the series of investigations made on its development and measures for promoting it. The report says that the development of the process in Japan is at a fundamental stage. Noting that further efforts are needed before its future can be predicted, the report proposes a cource of research and development for the immediate future. For the atomic vapor laser isotope separation (AVLIS), government organizations are engaged in data base buildup and conducting basis engineering tests, and Japan Atomic Energy Research Institute will consider the re-enrichment of uranium recovered from reprocessing. Non-governmental unions of researchers will promote the combination of copper-vapor laser and dye laser. For the molecular laser isotope separation (MLIS), the Institute of Physical and Chemical Research will take up studies with the cooperation of the Power Reactor and Nuclear Fuel Development Corporation. In chapters covering the philosophy of laser uranium enrichment technology development, the report deals with its significance, actual conditions and tasks, and goals and measures for its promotion. (Nogami, K.)

  3. Investigation of the summation of copper-vapour laser frequencies

    International Nuclear Information System (INIS)

    Karpukhin, Vyacheslav T; Konev, Yu B; Malikov, Mikhail M

    1998-01-01

    An investigation was made of the conversion of the copper-vapour laser radiation ( λ 1 = 0.51 μm and λ 2 = 0.578 μm) into UV radiation at the sum frequency (λ 3 = 0.271 μm) in a DKDP crystal. The operation of this frequency converter was compared for two magnifications of the laser cavity: M = 5 and 200. The best results were obtained for M = 200 (average UV radiation power 0.75 W, conversion efficiency 12%). A study was made of the characteristics of the formation of radiation pulses representing the two lines in the laser beam as a whole and in its weakly diverging core. In a low-divergence beam the yellow- and green-line pulses were emitted practically simultaneously with approximately the same peak power, which facilitated the sum-frequency generation. (nonlinear optical phenomena)

  4. High-speed microjet generation using laser-induced vapor bubbles

    Science.gov (United States)

    Oudalov, Nikolai; Tagawa, Yoshiyuki; Peters, Ivo; Visser, Claas-Willem; van der Meer, Devaraj; Prosperetti, Andrea; Sun, Chao; Lohse, Detlef

    2011-11-01

    The generation and evolution of microjets are studied both experimentally and numerically. The jets are generated by focusing a laser pulse into a microscopic capillary tube (~50 μm) filled with water-based red dye. A vapor bubble is created instantly after shooting the laser (<1 μs), sending out a shockwave towards the curved free surface at which the high-speed microjet forms. The process of jet formation is captured using high-speed recordings at 1.0 × 106 fps. The velocity of the microjets can reach speeds of ~850 m/s while maintaining a very sharp geometry. The high-speed recordings enable us to study the effect of several parameters on the jet velocity, e.g. the absorbed energy and the distance between the laser spot and the free surface.The results show a clear dependence on these variables, even for supersonic speeds. Comparisons with numerical simulations confirm the nature of these dependencies.

  5. Metal vapor micro-jet controls material redistribution in laser powder bed fusion additive manufacturing

    OpenAIRE

    Ly, Sonny; Rubenchik, Alexander M.; Khairallah, Saad A.; Guss, Gabe; Matthews, Manyalibo J.

    2017-01-01

    The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas...

  6. Chromatic annuli formation and sample oxidation on copper thin films by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    He, Shutong [Ultrafast Laser Laboratory, Key Laboratory of Opto-Electronic Information Technical Science of Ministry of Education, College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072 (China); Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Amoruso, Salvatore [Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Pang, Dongqing; Wang, Chingyue; Hu, Minglie, E-mail: huminglie@tju.edu.cn [Ultrafast Laser Laboratory, Key Laboratory of Opto-Electronic Information Technical Science of Ministry of Education, College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072 (China)

    2016-04-28

    We report an experimental investigation on the irradiation of copper thin films with high repetition rate femtosecond laser pulses (1040 nm, 50 MHz), in ambient air and liquid water. We observe a novel, striking phenomenon of chromatic copper oxides (CuO and Cu{sub 2}O) annuli generation. The characteristic features of the chromatic copper oxide annuli are studied by exploiting micro-Raman spectroscopy, optical and scanning electron microscopies. In the case of irradiation in water, the seldom investigated effects of the immersion time, t{sub w}, after irradiation with a fixed number of pulses are analyzed, and an intriguing dependence of the color of the chromatic annuli on t{sub w} is observed. This remarkable behavior is explained by proposing an interpretation scenario addressing the various processes involved in the process. Our experimental findings show that Cu{sub 2}O nanoparticles (size of ≈20 nm) and Cu{sub 2}O nanocubes (nanocube edges of ≈30, ≈60 nm) can be effectively generated by exploiting high repetition rate laser-assisted oxidation.

  7. Vertical-cavity surface-emitting laser vapor sensor using swelling polymer reflection modulation

    DEFF Research Database (Denmark)

    Ansbæk, Thor; Nielsen, Claus Højgård; Dohn, Søren

    2012-01-01

    Vapor detection using a low-refractive index polymer for reflection modulation of the top mirror in a vertical-cavity surface-emitting laser (VCSEL) is demonstrated. The VCSEL sensor concept presents a simple method to detect the response of a sensor polymer in the presence of volatile organic...

  8. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    Science.gov (United States)

    Jayakumar, Anupriya; Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep

    2015-07-01

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  9. Dual-axis vapor cell for simultaneous laser frequency stabilization on disparate optical transitions

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Anupriya, E-mail: anupriya@uw.edu; Plotkin-Swing, Benjamin; Jamison, Alan O.; Gupta, Subhadeep [Department of Physics, University of Washington, P.O. Box 351560, Seattle, Washington 98195-1560 (United States)

    2015-07-15

    We have developed a dual-axis ytterbium (Yb) vapor cell and used it to simultaneously address the two laser cooling transitions in Yb at wavelengths 399 nm and 556 nm, featuring the disparate linewidths of 2π × 29 MHz and 2π × 182 KHz, respectively. By utilizing different optical paths for the two wavelengths, we simultaneously obtain comparable optical densities suitable for saturated absorption spectroscopy for both the transitions and keep both the lasers frequency stabilized over several hours. We demonstrate that by appropriate control of the cell temperature profile, two atomic transitions differing in relative strength across a large range of over three orders of magnitude can be simultaneously addressed, making the device adaptable to a variety of spectroscopic needs. We also show that our observations can be understood with a simple theoretical model of the Yb vapor.

  10. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding

    Directory of Open Access Journals (Sweden)

    Ke Wang

    2017-02-01

    Full Text Available A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC, and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  11. Cr13Ni5Si2-Based Composite Coating on Copper Deposited Using Pulse Laser Induction Cladding.

    Science.gov (United States)

    Wang, Ke; Wang, Hailin; Zhu, Guangzhi; Zhu, Xiao

    2017-02-10

    A Cr13Ni5Si2-based composite coating was successfully deposited on copper by pulse laser induction hybrid cladding (PLIC), and its high-temperature wear behavior was investigated. Temperature evolutions associated with crack behaviors in PLIC were analyzed and compared with pulse laser cladding (PLC) using the finite element method. The microstructure and present phases were analyzed using scanning electron microscopy and X-ray diffraction. Compared with continuous laser induction cladding, the higher peak power offered by PLIC ensures metallurgical bonding between highly reflective copper substrate and coating. Compared with a wear test at room temperature, at 500 °C the wear volume of the Cr13Ni5Si2-based composite coating increased by 21%, and increased by 225% for a NiCr/Cr3C2 coating deposited by plasma spray. This novel technology has good prospects for application with respect to the extended service life of copper mold plates for slab continuous casting.

  12. Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.

    2009-01-01

    An improved model for CO 2 laser ablation impulse in polyoxymethylene and similar polymers is presented that describes the transition effects from the onset of vaporization to the plasma regime in a continuous fashion. Several predictions are made for ablation behavior.

  13. Selective LPCVD growth of graphene on patterned copper and its growth mechanism

    Science.gov (United States)

    Zhang, M.; Huang, B.-C.; Wang, Y.; Woo, J. C. S.

    2016-12-01

    Copper-catalyzed graphene low-pressure chemical-vapor deposition (LPCVD) growth has been regarded as a viable solution towards its integration to CMOS technology, and the wafer-bonding method provides a reliable alternative for transferring the selective graphene grown on a patterned metal film for IC manufacturing. In this paper, selective LPCVD graphene growth using patterned copper dots has been studied. The Raman spectra of grown films have demonstrated large dependence on the growth conditions. To explain the results, the growth mechanisms based on surface adsorption and copper-vapor-assisted growth are investigated by the comparison between the blanket copper films with/without the additional copper source. The copper vapor density is found to be critical for high-quality graphene growth. In addition, the copper-vapor-assisted growth is also evidenced by the carbon deposition on the SiO2 substrate of the patterned-copper-dot sample and chamber wall during graphene growth. This growth mechanism explains the correlation between the growth condition and Raman spectrum for films on copper dots. The study on the copper-catalyzed selective graphene growth on the hard substrate paves the way for the synthesis and integration of the 2D material in VLSI.

  14. Growth graphene on silver-copper nanoparticles by chemical vapor deposition for high-performance surface-enhanced Raman scattering

    Science.gov (United States)

    Zhang, Xiumei; Xu, Shicai; Jiang, Shouzhen; Wang, Jihua; Wei, Jie; Xu, Shida; Gao, Shoubao; Liu, Hanping; Qiu, Hengwei; Li, Zhen; Liu, Huilan; Li, Zhenhua; Li, Hongsheng

    2015-10-01

    We present a graphene/silver-copper nanoparticle hybrid system (G/SCNPs) to be used as a high-performance surface-enhanced Raman scattering (SERS) substrate. The silver-copper nanoparticles wrapped by a monolayer graphene layer are directly synthesized on SiO2/Si substrate by chemical vapor deposition in a mixture of methane and hydrogen. The G/SCNPs shows excellent SERS enhancement activity and high reproducibility. The minimum detected concentration of R6G is as low as 10-10 M and the calibration curve shows a good linear response from 10-6 to 10-10 M. The date fluctuations from 20 positions of one SERS substrate are less than 8% and from 20 different substrates are less than 10%. The high reproducibility of the enhanced Raman signals could be due to the presence of an ultrathin graphene layer and uniform morphology of silver-copper nanoparticles. The use of G/SCNPs for detection of nucleosides extracted from human urine demonstrates great potential for the practical applications on a variety of detection in medicine and biotechnology field.

  15. Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime.

    Science.gov (United States)

    Chen, Fei; Xu, Dongdong; Gao, Fei; Zheng, Changbin; Zhang, Kuo; He, Yang; Wang, Chunrui; Guo, Jin

    2015-05-04

    Employing a fiber-coupled diode-laser with a center wavelength of 852.25 nm and a line width of 0.17 nm, experimental investigation on diode-end-pumped cesium (Cs) vapor laser stably operated at continuous-wave (CW) and pulse regime is carried out. A 5 mm long cesium vapor cell filled with 60 kPa helium and 20 kPa ethane is used as laser medium. Using an output coupler with reflectivity of 48.79%, 1.26 W 894.57 nm CW laser is obtained at an incident pump power of 4.76 W, corresponding an optical-optical efficiency of 26.8% and a slope-efficiency of 28.8%, respectively. The threshold temperature is 67.5 °C. Stable pulsed cesium laser with a maximum average output power of 2.6 W is obtained at a repetition rate of 76 Hz, and the pulse repetition rate can be extend to 1 kHz with a pulse width of 18 μs.

  16. Improving adhesion of copper/epoxy joints by pulsed laser ablation

    KAUST Repository

    Hernandez, Edwin

    2015-10-19

    The purpose of the present work is to analyze the effect of pulsed laser ablation on copper substrates (CuZn40) deployed for adhesive bonding. Surface pre-treatment was carried using an Yb-fiber laser beam. Treated surfaces were probed using Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS). The mechanical performance of CuZn40/epoxy bonded joints was assessed using the T-peel test coupon. In order to resolve the mechanisms of failure and adhesive penetration within surface asperities induced by the laser treatment, fracture surfaces were surveyed using SEM. Finite element simulations, based on the use of the cohesive zone model of fracture, were carried out to evaluate the variation of bond toughness. Results indicated that the laser ablation process effectively modifies surface morphology and chemistry and enables enhanced mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy and bond toughness were observed with respect to control samples with sanded substrates.

  17. Improving adhesion of copper/epoxy joints by pulsed laser ablation

    KAUST Repository

    Hernandez, Edwin; Alfano, Marco; Lubineau, Gilles; Buttner, Ulrich

    2015-01-01

    The purpose of the present work is to analyze the effect of pulsed laser ablation on copper substrates (CuZn40) deployed for adhesive bonding. Surface pre-treatment was carried using an Yb-fiber laser beam. Treated surfaces were probed using Scanning Electron Microscopy (SEM) and X-Ray Photoelectron Spectroscopy (XPS). The mechanical performance of CuZn40/epoxy bonded joints was assessed using the T-peel test coupon. In order to resolve the mechanisms of failure and adhesive penetration within surface asperities induced by the laser treatment, fracture surfaces were surveyed using SEM. Finite element simulations, based on the use of the cohesive zone model of fracture, were carried out to evaluate the variation of bond toughness. Results indicated that the laser ablation process effectively modifies surface morphology and chemistry and enables enhanced mechanical interlocking and cohesive failure within the adhesive layer. Remarkable improvements of apparent peel energy and bond toughness were observed with respect to control samples with sanded substrates.

  18. Molecular Models for DSMC Simulations of Metal Vapor Deposition

    OpenAIRE

    Venkattraman, A; Alexeenko, Alina A

    2010-01-01

    The direct simulation Monte Carlo (DSMC) method is applied here to model the electron‐beam (e‐beam) physical vapor deposition of copper thin films. A suitable molecular model for copper‐copper interactions have been determined based on comparisons with experiments for a 2D slit source. The model for atomic copper vapor is then used in axi‐symmetric DSMC simulations for analysis of a typical e‐beam metal deposition system with a cup crucible. The dimensional and non‐dimensional mass fluxes obt...

  19. Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment

    NARCIS (Netherlands)

    Grant-Jacob, J.A.; Mills, B.; Feinaeugle, M.; Sones, C.L.; Oosterhuis, G.; Hoppenbrouwers, M.B.; Eason, R.W.

    2013-01-01

    We demonstrate the use of laser-induced forward transfer (LIFT) in combination with a novel donor replenishment scheme to print continuous copper wires. Wires of mm length, a few microns wide and submicron in height have been printed using a 800 nm, 1 kHz repetition rate, 150 fs pulsed laser. A 120

  20. Time-resolved x-ray laser induced photoelectron spectroscopy of isochoric heated copper

    International Nuclear Information System (INIS)

    Nelson, A.J.; Dunn, J.; Hunter, J.; Widmann, K.

    2005-01-01

    Time-resolved x-ray photoelectron spectroscopy is used to probe the nonsteady-state evolution of the valence band electronic structure of laser heated ultrathin (50 nm) copper. A metastable phase is studied using a 527 nm wavelength 400 fs laser pulse containing 0.1-2.5 mJ laser energy focused in a large 500x700 μm 2 spot to create heated conditions of 0.07-1.8x10 12 W cm -2 intensity. Valence band photoemission spectra are presented showing the changing occupancy of the Cu 3d level with heating are presented. These picosecond x-ray laser induced time-resolved photoemission spectra of laser-heated ultrathin Cu foil show dynamic changes in the electronic structure. The ultrafast nature of this technique lends itself to true single-state measurements of shocked and heated materials

  1. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    International Nuclear Information System (INIS)

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-01-01

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  2. Copper bromide vapour laser with an output pulse duration of up to 320 ns

    International Nuclear Information System (INIS)

    Gubarev, F A; Fedorov, K V; Evtushenko, G S; Fedorov, V F; Shiyanov, D V

    2016-01-01

    We report the development of a copper bromide vapour laser with an output pulse duration of up to 320 ns. To lengthen the pulse, the discharge current was limited using a compound switch comprising a pulsed hydrogen thyratron and a tacitron. This technique permits limiting the excitation of the working levels at the initial stage of the discharge development to lengthen the inversion lifetime. The longest duration of a laser pulse was reached in tubes 25 and 50 mm in diameter for a pulse repetition rate of 2 – 4 kHz. (lasers and laser beams)

  3. A chemically selective laser ion source for the on-line isotope separation

    International Nuclear Information System (INIS)

    Scheerer, F.

    1993-03-01

    In this thesis a laser ion source is presented. In a hot chamber the atoms of the elements to be studied are resonantly by light of pulsed dye lasers, which are pumped by pulsed copper-vapor lasers with extremely high pulse repetition rate (ν rep ∼ 10 kHz), stepwise excited and ionized. By the storage of the atoms in a hot chamber and the high pulse repetition rate of the copper-vapor lasers beyond the required high efficiency (ε ∼ 10%) can be reached. First preparing measurements were performed at the off-line separator at CERN with the rare earth elements ytterbium and thulium. Starting from the results of these measurements further tests of the laser ion source were performed at the on-line separator with in a thick tantalum target produced neutron-deficient ytterbium isotopes. Under application of a time-of-flight mass spectrometer in Mainz an efficient excitation scheme on the resonance ionization of tin was found. This excitation scheme is condition for an experiment at the GSI for the production of the extremely neutron-deficient, short-lived nucleus 102 Sn. In the summer 1993 is as first application of the newly developed laser ion source at the PSB-ISOLDE at CERN an astrophysically relevant experiment for the nuclear spectroscopy of the neutron-rich silver isotopes 124-129 Ag is planned. This experiment can because of the lacking selectivity of conventional ion sources only be performed by means of the here presented laser ion source. The laser ion source shall at the PSB-ISOLDE 1993 also be applied for the selective ionization of manganese. (orig./HSI) [de

  4. High-power CW and long-pulse lasers in the green wavelength regime for copper welding

    Science.gov (United States)

    Pricking, Sebastian; Huber, Rudolf; Klausmann, Konrad; Kaiser, Elke; Stolzenburg, Christian; Killi, Alexander

    2016-03-01

    We report on industrial high-power lasers in the green wavelength regime. By means of a thin disk oscillator and a resonator-internal nonlinear crystal for second harmonic generation we are able to extract up to 8 kW pulse power in the few-millisecond range at a wavelength of 515 nm with a duty cycle of 10%. Careful shaping and stabilization of the polarization and spectral properties leads to a high optical-to-optical efficiency larger than 55%. The beam parameter product is designed and measured to be below 5 mm·mrad which allows the transport by a fiber with a 100 μm core diameter. The fiber and beam guidance optics are adapted to the green wavelength, enabling low transmission losses and stable operation. Application tests show that this laser is perfectly suited for copper welding due to the superior absorption of the green wavelength compared to IR, which allows us to produce weld spots with an unprecedented reproducibility in diameter and welding depth. With an optimized set of parameters we could achieve a splatter-free welding process of copper, which is crucial for welding electronic components. Furthermore, the surface condition does not influence the welding process when the green wavelength is used, which allows to skip any expensive preprocessing steps like tin-coating. With minor changes we could operate the laser in cw mode and achieved up to 1.7 kW of cw power at 515 nm with a beam parameter product of 2.5 mm·mrad. These parameters make the laser perfectly suitable for additional applications such as selective laser melting of copper.

  5. Physics of zinc vaporization and plasma absorption during CO2 laser welding

    International Nuclear Information System (INIS)

    Dasgupta, A. K.; Mazumder, J.; Li, P.

    2007-01-01

    A number of mathematical models have been developed earlier for single-material laser welding processes considering one-, two-, and three-dimensional heat and mass transfers. However, modeling of laser welding of materials with multiple compositions has been a difficult problem. This paper addresses a specific case of this problem where CO 2 laser welding of zinc-coated steel, commonly used in automobile body manufacturing, is mathematically modeled. The physics of a low boiling point material, zinc, is combined with a single-material (steel) welding model, considering multiple physical phenomena such as keyhole formation, capillary and thermocapillary forces, recoil and vapor pressures, etc. The physics of laser beam-plasma interaction is modeled to understand the effect on the quality of laser processing. Also, an adaptive meshing scheme is incorporated in the model for improving the overall computational efficiency. The model, whose results are found to be in close agreement with the experimental observations, can be easily extended for studying zinc-coated steel welding using other high power, continuous wave lasers such as Nd:YAG and Yb:YAG

  6. Formation of periodic structures by laser ablation of metals in liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, P.V. [Wave Research Center of A.M. Prokhorov, General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 119991 Moscow (Russian Federation)]. E-mail: pawel@kapella.gpi.ru; Simakin, A.V. [Wave Research Center of A.M. Prokhorov, General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov, General Physics Institute of the Russian Academy of Sciences, 38, Vavilov street, 119991 Moscow (Russian Federation)

    2006-04-30

    Experimental results are presented on ablation of metals (W, Cu, brass and bronze) in a liquid environment (e.g., ethanol or water) by irradiation with either a pulsed copper vapor laser (0.51 {mu}m) or a pulsed Nd:YAG laser (1.06 {mu}m). The target material is ejected into surrounding liquid in the form of nanoparticles. In a certain range of laser parameters (fluence and number of laser shots) the surface of the solid target is composed of micro-cones having a regular structure. The distance between neighboring micro-cones in the structure depends on the laser spot size. The structures allow the observation of up-conversion of the laser frequency due to generation of the second harmonics in the eye retina.

  7. Phase diagrams of laser-processed nanoparticles of brass

    Energy Technology Data Exchange (ETDEWEB)

    Kazakevich, P.V. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences 38, Vavilov Street, 119991 Moscow (Russian Federation); Simakin, A.V. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences 38, Vavilov Street, 119991 Moscow (Russian Federation); Monteverde, F. [Electron Microscopy Unit, Materia Nova, Avenue Copernic 1, B-7000 Mons (Belgium); Wautelet, M. [Condensed Matter Physics, University of Mons-Hainaut, 23, Avenue Maistriau, B-7000 Mons (Belgium)]. E-mail: michel.wautelet@umh.ac.be

    2007-07-31

    Nanoparticles of brass are prepared by ablation of a brass target in ethanol using radiation of a copper-vapor laser at various laser fluences. The nanoparticles are characterized by TEM and optical spectroscopy. The multipulse laser irradiation leads to formation both the nanoparticles in liquid and well-ordered micro-structures on a surface of a target. It is revealed that both the morphology and absorption spectra of brass nanoparticles depend on presence of the micro-structures. Nanoparticles with the various phase diagrams are formed from a flat brass surface and from the same surface with micro-structures. The results are compared with a model of phase diagrams, in which size and composition effects are taken into account.

  8. Polarization switching detection method using a ferroelectric liquid crystal for dichroic atomic vapor laser lock frequency stabilization techniques.

    Science.gov (United States)

    Dudzik, Grzegorz; Rzepka, Janusz; Abramski, Krzysztof M

    2015-04-01

    We present a concept of the polarization switching detection method implemented for frequency-stabilized lasers, called the polarization switching dichroic atomic vapor laser lock (PSDAVLL) technique. It is a combination of the well-known dichroic atomic vapor laser lock method for laser frequency stabilization with a synchronous detection system based on the surface-stabilized ferroelectric liquid crystal (SSFLC).The SSFLC is a polarization switch and quarter wave-plate component. This technique provides a 9.6 dB better dynamic range ratio (DNR) than the well-known two-photodiode detection configuration known as the balanced polarimeter. This paper describes the proposed method used practically in the VCSEL laser frequency stabilization system. The applied PSDAVLL method has allowed us to obtain a frequency stability of 2.7×10⁻⁹ and a reproducibility of 1.2×10⁻⁸, with a DNR of detected signals of around 81 dB. It has been shown that PSDAVLL might be successfully used as a method for spectra-stable laser sources.

  9. Laser-induced chemical liquid deposition of discontinuous and continuous copper films

    Czech Academy of Sciences Publication Activity Database

    Ouchi, A.; Bastl, Zdeněk; Boháček, Jaroslav; Šubrt, Jan; Pola, Josef

    2007-01-01

    Roč. 201, č. 8 (2007), s. 4728-4733 ISSN 0257-8972 R&D Projects: GA AV ČR 1ET400400413 Institutional research plan: CEZ:AV0Z40400503; CEZ:AV0Z40320502; CEZ:AV0Z40720504 Keywords : copper films * laser photolysis * Cu(II) acetylacetonate * chemical liquid deposition Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.678, year: 2007

  10. Direct analysis of intact biological macromolecules by low-energy, fiber-based femtosecond laser vaporization at 1042 nm wavelength with nanospray postionization mass spectrometry.

    Science.gov (United States)

    Shi, Fengjian; Flanigan, Paul M; Archer, Jieutonne J; Levis, Robert J

    2015-03-17

    A fiber-based laser with a pulse duration of 435 fs and a wavelength of 1042 nm was used to vaporize biological macromolecules intact from the condensed phase into the gas phase for nanospray postionization and mass analysis. Laser vaporization of dried standard protein samples from a glass substrate by 10 Hz bursts of 20 pulses having 10 μs pulse separation and energy resulted in signal comparable to a metal substrate. The protein signal observed from an aqueous droplet on a glass substrate was negligible compared to either a droplet on metal or a thin film on glass. The mass spectra generated from dried and aqueous protein samples by the low-energy, fiber laser were similar to the results from high-energy (500 μJ), 45-fs, 800-nm Ti:sapphire-based femtosecond laser electrospray mass spectrometry (LEMS) experiments, suggesting that the fiber-based femtosecond laser desorption mechanism involves a nonresonant, multiphoton process, rather than thermal- or photoacoustic-induced desorption. Direct analysis of whole blood performed without any pretreatment resulted in features corresponding to hemoglobin subunit-heme complex ions. The observation of intact molecular ions with low charge states from protein, and the tentatively assigned hemoglobin α subunit-heme complex from blood suggests that fiber-based femtosecond laser vaporization is a "soft" desorption source at a laser intensity of 2.39 × 10(12) W/cm(2). The low-energy, turnkey fiber laser demonstrates the potential of a more robust and affordable laser for femtosecond laser vaporization to deliver biological macromolecules into the gas phase for mass analysis.

  11. High power uv metal vapor ion lasers pumped by thermal energy charge exchange

    International Nuclear Information System (INIS)

    Kan, T.

    1975-01-01

    The requirement for efficient and scalable laser sources for laser isotope separation (LIS) has recently been brought into sharp focus. The lack of suitable coherent sources is particularly severe in the uv, a spectral region of interest for more efficient and advanced isotope separation schemes. This report explores the general class of metal vapor ion lasers pumped by thermal energy charge exchange (TECX) as possible scalable coherent sources for LIS with the following potential characteristics: (1) availability of discrete wavelengths spanning the wavelength region between 2000 A less than lambda less than 8000 A, (2) pulsed or cw operation in the multi-kilowatt average power levels, (3) overall device efficiencies approaching one percent, and (4) the engineering of practical laser devices using relatively benign electron beam technology. (U.S.)

  12. Comparisons between a gas-phase model of silane chemical vapor deposition and laser-diagnostic measurements

    International Nuclear Information System (INIS)

    Breiland, W.G.; Coltrin, M.E.; Ho, P.

    1986-01-01

    Theoretical modeling and experimental measurements have been used to study gas-phase chemistry in the chemical vapor deposition (CVD) of silicon from silane. Pulsed laser Raman spectroscopy was used to obtain temperature profiles and to obtain absolute density profiles of silane during deposition at atmospheric and 6-Torr total pressures for temperatures ranging from 500 to 800 0 C. Laser-excited fluorescence was used to obtain relative density profiles of Si 2 during deposition at 740 0 C in helium with 0-12 Torr added hydrogen. These measurements are compared to predictions from the theoretical model of Coltrin, Kee, and Miller. The predictions agree qualitatively with experiment. These studies indicate that fluid mechanics and gas-phase chemical kinetics are important considerations in understanding the chemical vapor deposition process

  13. Description of a laser vaporization source and a supersonic cluster beam apparatus

    International Nuclear Information System (INIS)

    Doverstaal, M.; Lindgren, B.; Sassenberg, U.; Yu, H.

    1993-11-01

    Laser vaporization of an appropriate target and recent developments in molecular beam technology have now made it possible to produce supersonic cluster beams of virtually any element in the periodic table. This paper describes the design and principles of a cluster source combined with a time of flight mass spectrometer built for reaction experiments and spectroscopic investigations at Stockholm University

  14. Molten pool characterization of laser lap welded copper and aluminum

    Science.gov (United States)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  15. Molten pool characterization of laser lap welded copper and aluminum

    International Nuclear Information System (INIS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu Jr

    2013-01-01

    A 3D finite volume simulation model for laser welding of a Cu–Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu–Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint. (paper)

  16. Laser-assisted chemical vapor deposition setup for fast synthesis of graphene patterns

    Science.gov (United States)

    Zhang, Chentao; Zhang, Jianhuan; Lin, Kun; Huang, Yuanqing

    2017-05-01

    An automatic setup based on the laser-assisted chemical vapor deposition method has been developed for the rapid synthesis of graphene patterns. The key components of this setup include a laser beam control and focusing unit, a laser spot monitoring unit, and a vacuum and flow control unit. A laser beam with precision control of laser power is focused on the surface of a nickel foil substrate by the laser beam control and focusing unit for localized heating. A rapid heating and cooling process at the localized region is induced by the relative movement between the focalized laser spot and the nickel foil substrate, which causes the decomposing of gaseous hydrocarbon and the out-diffusing of excess carbon atoms to form graphene patterns on the laser scanning path. All the fabrication parameters that affect the quality and number of graphene layers, such as laser power, laser spot size, laser scanning speed, pressure of vacuum chamber, and flow rates of gases, can be precisely controlled and monitored during the preparation of graphene patterns. A simulation of temperature distribution was carried out via the finite element method, providing a scientific guidance for the regulation of temperature distribution during experiments. A multi-layer graphene ribbon with few defects was synthesized to verify its performance of the rapid growth of high-quality graphene patterns. Furthermore, this setup has potential applications in other laser-based graphene synthesis and processing.

  17. Fabrication and optimization of the copper halide Laser's comparison of the double-discharge (Cu Cl) with the single-pulse operation (Cu Br)

    International Nuclear Information System (INIS)

    Sajad, B.; Behrozinia, S.; Nikzad, P.; Bassam, M. A.

    2009-01-01

    In this paper, the fabrication of a double-pulse copper chloride laser was investigated to study the effect of various parameters such as buffer gas pressure, temperature, and the delay time between two electrical discharge pulses, on laser output power. Moreover, a single-pulse copper bromide laser was fabricated to optimize the laser output power versus temperature, buffer gas pressure, and electrical input power and discharge frequency. The comparison of the results in single-pulse and double-pulse excitation indicates that the former is easier in operation and more power stability can be achieved using single pulse excitation.

  18. A copper bromide vapour laser with a high pulse repetition rate

    International Nuclear Information System (INIS)

    Shiyanov, D V; Evtushenko, Gennadii S; Sukhanov, V B; Fedorov, V F

    2002-01-01

    The results of an experimental study of a copper bromide vapour laser with a discharge-channel diameter above 2.5 cm and a high pump-pulse repetition rate are presented. A TGU1-1000/25 high-power tacitron used as a switch made it possible to obtain for the first time a fairly high output radiation power for pump-pulse repetition rates exceeding 200 kHz. At a maximum pump-pulse repetition rate of 250 kHz achieved in a laser tube 2.6 cm in diameter and 76 cm long, the output power was 1.5 W. The output powers of 3 and 10.5 W were reached for pump-pulse repetition rates of 200 and 100 kHz, respectively. These characteristics were obtained without circulating a buffer gas and (or) low-concentration active impurities through the active volume. (active media. lasers)

  19. Progress towards an Autonomous Field Deployable Diode-Laser-Based Differential Absorption Lidar (DIAL for Profiling Water Vapor in the Lower Troposphere

    Directory of Open Access Journals (Sweden)

    Kevin S. Repasky

    2013-11-01

    Full Text Available A laser transmitter has been developed and incorporated into a micro-pulse differential absorption lidar (DIAL for water vapor profiling in the lower troposphere as an important step towards long-term autonomous field operation. The laser transmitter utilizes two distributed Bragg reflector (DBR diode lasers to injection seed a pulsed tapered semiconductor optical amplifier (TSOA, and is capable of producing up to 10 mJ of pulse energy with a 1 ms pulse duration and a 10 kHz pulse repetition frequency. The on-line wavelength of the laser transmitter can operate anywhere along the water vapor absorption feature centered at 828.187 nm (in vacuum depending on the prevailing atmospheric conditions, while the off-line wavelength operates at 828.287 nm. This laser transmitter has been incorporated into a DIAL instrument utilizing a 35.6 cm Schmidt-Cassegrain telescope and fiber coupled avalanche photodiode (APD operating in the photon counting mode. The performance of the DIAL instrument was demonstrated over a ten-day observation period. During this observation period, data from radiosondes were used to retrieve water vapor number density profiles for comparisons with the number density profiles retrieved from the DIAL data.

  20. Experimental Investigations on Pulsed Nd:YAG Laser Welding of C17300 Copper-Beryllium and 49Ni-Fe Soft Magnetic Alloys

    International Nuclear Information System (INIS)

    Mousavi, S. A. A. Akbari; Ebrahimzadeh, H.

    2011-01-01

    Copper-beryllium and soft magnetic alloys must be joined in electrical and electro-mechanical applications. There is a high difference in melting temperatures of these alloys which cause to make the joining process very difficult. In addition, copper-beryllium alloys are of age hardenable alloys and precipitations can brittle the weld. 49Ni-Fe alloy is very hot crack sensitive. Moreover, these alloys have different heat transfer coefficients and reflection of laser beam in laser welding process. Therefore, the control of welding parameters on the formation of adequate weld puddle composition is very difficult. Laser welding is an advanced technique for joining of dissimilar materials since it can precisely control and adjust the welding parameters. In this study, a 100W Nd:YAG pulsed laser machine was used for joining 49Ni-Fe soft magnetic to C17300 copper-beryllium alloys. Welding of samples was carried out autogenously by changing the pulse duration, diameter of beam, welding speed, voltage and frequency. The spacing between samples was set to almost zero. The ample were butt welded. It was required to apply high voltage in this study due to high reflection coefficient of copper alloys. Metallography, SEM analysis, XRD and microhardness measurement was used for survey of results. The results show that the weld strength depends upon the chemical composition of the joints. To change the wells composition and heat input of the welds, it was attempted to deviate the laser focus away from the weld centerline. The best strength was achieved by deviation of the laser beam away about 0.1mm from the weld centerline. The result shows no intermetallic compounds if the laser beam is deviated away from the joint.

  1. Investigation of pump-to-seed beam matching on output features of Rb and Cs vapor laser amplifiers

    Science.gov (United States)

    Shen, Binglin; Huang, Jinghua; Xu, Xingqi; Xia, Chunsheng; Pan, Bailiang

    2018-05-01

    Taking into account the beam radii of pump light and seed laser along the entire length of the cell and their intensities in the cross section, a physical model with ordinary differential equation methods for alkali vapor amplifiers is established. Applied to the reported optically pumped Rb and diode-pumped Cs vapor amplifiers, the model shows good agreement between the calculated and measured dependence of amplified power on the seed power. A larger width of the spontaneous emission region as compared to the widths of pump absorption and laser emission regions, which will result in very high energy losses, is observed in the cell. Influence of pump and seed beam waists on output performance is calculated, showing that the pump and seed beam should match each other not only in shape but also in size, thus an optimal combination of beam radii is very important for efficient operation of alkali vapor amplifiers.

  2. Fs–ns double-pulse Laser Induced Breakdown Spectroscopy of copper-based-alloys: Generation and elemental analysis of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Guarnaccio, A.; Parisi, G.P.; Mollica, D. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy); De Bonis, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy); Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell' Ateneo Lucano 10, 85100 Potenza (Italy); Teghil, R. [Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell' Ateneo Lucano 10, 85100 Potenza (Italy); Santagata, A. [CNR-ISM, U.O.S. Tito Scalo, Zona Industriale, 85050 Tito Scalo, PZ (Italy)

    2014-11-01

    Evolution of nanoparticles ejected during ultra-short (250 fs) laser ablation of certified copper alloys and relative calibration plots of a fs–ns double-pulse Laser Induced Breakdown Spectroscopy orthogonal configuration is presented. All work was performed in air at atmospheric pressure using certified copper-based-alloy samples irradiated by a fs laser beam and followed by a delayed perpendicular ns laser pulse. In order to evaluate possible compositional changes of the fs induced nanoparticles, it was necessary to consider, for all samples used, comparable features of the detected species. With this purpose the induced nanoparticles black-body-like emission evolution and their relative temperature decay have been studied. These data were exploited for defining the distance between the target surface and the successive ns laser beam to be used. The consequent calibration plots of minor constituents (i.e. Sn, Pb and Zn) of the certified copper-based-alloy samples have been reported by taking into account self-absorption effects. The resulting linear regression coefficients suggest that the method used, for monitoring and ruling the fs laser induced nanoparticles, could provide a valuable approach for establishing the occurrence of potential compositional changes of the detected species. All experimental data reveal that the fs laser induced nanoparticles can be used for providing a coherent composition of the starting target. In the meantime, the fs–ns double-pulse Laser Induced Breakdown Spectroscopy orthogonal configuration here used can be considered as an efficient technique for compositional determination of the nanoparticles ejected during ultra-short laser ablation processes. - Highlights: • Laser induced NP continuum black-body-like emission was used for T determination. • Invariable composition of generated NPs was assumed in the range of 20 μs. • Fs-ns DP-LIBS was employed for the compositional characterization of NPs. • NPs obtained by fs

  3. Theoretical investigation on exciplex pumped alkali vapor lasers with sonic-level gas flow

    Science.gov (United States)

    Xu, Xingqi; Shen, Binglin; Huang, Jinghua; Xia, Chunsheng; Pan, Bailiang

    2017-07-01

    Considering the effects of higher excited and ion energy states and utilizing the methodology in the fluid mechanics, a modified model of exciplex pumped alkali vapor lasers with sonic-level flowing gas is established. A comparison of output characters between subsonic flow and supersonic flow is made. In this model, higher excited and ion energy states are included as well, which modifies the analysis of the kinetic process and introduces larger heat loading in an operating CW exciplex-pumped alkali vapor laser. The results of our calculations predict that subsonic flow has an advantage over supersonic flow under the same fluid parameters, and stimulated emission in the supersonic flow would be quenched while the pump power reaching a threshold value of the fluid choking effect. However, by eliminating the influence of fluid characters, better thermal management and higher optical conversion efficiency can be obtained in supersonic flow. In addition, we make use of the "nozzle-diffuser" to build up the closed-circle flowing experimental device and gather some useful simulated results.

  4. Laser direct writing of thin-film copper structures as a modification of lithographic processes

    International Nuclear Information System (INIS)

    Meyer, F; Ostendorf, A; Stute, U

    2007-01-01

    This paper presents a flexible, mask-free and efficient technique for UV-laser micropatterning of photosensitive resist by laser direct writing (LDW). Photo resist spun on gold sputtered silicon wafers has been laser structured by a scanner guided 266nm DPSSL and electroplated. Ablation behaviour and optimum seed layer preparation in relation to parameters like pulse energy, scanning speed and number of scanned cycles and the electroplating results are discussed. The resulting adhesive strength was measured by a μ-sear device and the gold seed layer-plated copper interface investigated by SEM and EDX to explain correlation to identified bonding behaviour. Improved adhesive strength was observed with higher laser pulse energy and reduced number of cycle

  5. Simulation of the Dynamics of Isothermal Growth of Single-Layer Graphene on a Copper Catalyst in the Process of Chemical Vapor Deposition of Hydrocarbons

    Science.gov (United States)

    Futko, S. I.; Shulitskii, B. G.; Labunov, V. A.; Ermolaeva, E. M.

    2018-01-01

    A new kinetic model of isothermal growth of single-layer graphene on a copper catalyst as a result of the chemical vapor deposition of hydrocarbons on it at a low pressure has been developed on the basis of in situ measurements of the growth of graphene in the process of its synthesis. This model defines the synthesis of graphene with regard for the chemisorption and catalytic decomposition of ethylene on the surface of a copper catalyst, the diffusion of carbon atoms in the radial direction to the nucleation centers within the thin melted near-surface copper layer, and the nucleation and autocatalytic growth of graphene domains. It is shown that the time dependence of the rate of growth of a graphene domain has a characteristic asymmetrical bell-like shape. The dependences of the surface area and size of a graphene domain and the rate of its growth on the time at different synthesis temperatures and ethylene concentrations have been obtained. Time characteristics of the growth of graphene domains depending on the parameters of their synthesis were calculated. The results obtained can be used for determining optimum regimes of synthesis of graphene in the process of chemical vapor deposition of hydrocarbons on different catalysts with a low solubility of carbon.

  6. Graphene synthesis by laser-assisted chemical vapor deposition on Ni plate and the effect of process parameters on uniform graphene growth

    International Nuclear Information System (INIS)

    Jiang, Juan; Lin, Zhe; Ye, Xiaohui; Zhong, Minlin; Huang, Ting; Zhu, Hongwei

    2014-01-01

    A fast, simple technique was developed to fabricate few-layer graphene films at ambient pressure and room temperature by laser-assisted chemical vapor deposition on polycrystalline Ni plates. Laser scanning speed was found as the most important factor in the production of few-layer graphene. The quality of graphene films was controlled by varying the laser power. Uniform graphene ribbons with a width of 1.5 mm and a length of 16 mm were obtained at a scanning speed of 1.3 mm/s and a laser power of 600 W. The developed technique provided a promising application of a high-power laser system to fabricate a graphene film. - Highlights: • Uniform few-layer graphene was fabricated at room temperature and ambient conditions. • Laser-assisted chemical vapor deposition was used to grow the layers in a few seconds. • The effect of process parameters on graphene growth was discussed. • This cost effective method could facilitate the integration of graphene in electronic devices

  7. Damage caused by a nanosecond UV laser on a heated copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Henč-Bartolić, V., E-mail: visnja.henc@fer.hr [University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb (Croatia); Bončina, T. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia); Jakovljević, S., E-mail: suzana.jakovljevic@fsb.hr [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb (Croatia); Panjan, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Zupanič, F. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia)

    2016-08-15

    Highlights: • A Cu-plate was exposed to nanosecond UV laser with max. energy 1.1 J/cm{sup 2}. • Surface topography was studied on the cold and heated copper plate. • At room temperature, a crater formed, the melt was ejected from it. • Capillary waves formed in the vicinity of the crater at 360 °C. - Abstract: This work studied the effect of thin copper plate temperature on its surface morphology after irradiation using a pulsed nanosecond UV laser. The surface characteristics were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, focused ion beam and stylus profilometry. When a target was at room temperature, a crater and the radial flow of molten Cu from the crater was observed. When the thin target was warm (about 360 °C ± 20 °C), a crater was smaller, and quasi-semicircular waves with the periodicity of around 3 μm appeared in its vicinity. The origin of the waves is Marangoni effect, causing thermocapillary waves, which in same occasions had a structure of final states of chaos in Rayleigh–Bénard convection.

  8. Oxidation-assisted graphene heteroepitaxy on copper foil

    OpenAIRE

    Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François

    2016-01-01

    We propose an innovative, easy-to-implement approach to synthesize large-area singlecrystalline graphene sheets by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, f...

  9. High intensity vacuum ultraviolet and extreme ultraviolet production by noncollinear mixing in laser vaporized media

    Energy Technology Data Exchange (ETDEWEB)

    Todt, Michael A.; Albert, Daniel R.; Davis, H. Floyd, E-mail: hfd1@cornell.edu [Baker Laboratory, Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853-1301 (United States)

    2016-06-15

    A method is described for generating intense pulsed vacuum ultraviolet (VUV) and extreme ultraviolet (XUV) laser radiation by resonance enhanced four-wave mixing of commercial pulsed nanosecond lasers in laser vaporized mercury under windowless conditions. By employing noncollinear mixing of the input beams, the need of dispersive elements such as gratings for separating the VUV/XUV from the residual UV and visible beams is eliminated. A number of schemes are described, facilitating access to the 9.9–14.6 eV range. A simple and convenient scheme for generating wavelengths of 125 nm, 112 nm, and 104 nm (10 eV, 11 eV, and 12 eV) using two dye lasers without the need for dye changes is described.

  10. Enhancing the Ductility of Laser-Welded Copper-Aluminum Connections by using Adapted Filler Materials

    Science.gov (United States)

    Weigl, M.; Albert, F.; Schmidt, M.

    Laser micro welding of direct copper-aluminum connections typically leads to the formation of intermetallic phases and an embrittlement of the metal joints. By means of adapted filler materials it is possible to reduce the brittle phases and thereby enhance the ductility of these dissimilar connections. As the element silicon features quite a well compatibility with copper and aluminum, filler materials based on Al-Si and Cu-Si alloys are used in the current research studies. In contrast to direct Cu-Al welds, the aluminum filler alloy AlSi12 effectuates a more uniform element mixture and a significantly enhanced ductility.

  11. Effects of laser power density and initial grain size in laser shock punching of pure copper foil

    Science.gov (United States)

    Zheng, Chao; Zhang, Xiu; Zhang, Yiliang; Ji, Zhong; Luan, Yiguo; Song, Libin

    2018-06-01

    The effects of laser power density and initial grain size on forming quality of holes in laser shock punching process were investigated in the present study. Three different initial grain sizes as well as three levels of laser power densities were provided, and then laser shock punching experiments of T2 copper foil were conducted. Based upon the experimental results, the characteristics of shape accuracy, fracture surface morphology and microstructures of punched holes were examined. It is revealed that the initial grain size has a noticeable effect on forming quality of holes punched by laser shock. The shape accuracy of punched holes degrades with the increase of grain size. As the laser power density is enhanced, the shape accuracy can be improved except for the case in which the ratio of foil thickness to initial grain size is approximately equal to 1. Compared with the fracture surface morphology in the quasistatic loading conditions, the fracture surface after laser shock can be divided into three zones including rollover, shearing and burr. The distribution of the above three zones strongly relates with the initial grain size. When the laser power density is enhanced, the shearing depth is not increased, but even diminishes in some cases. There is no obvious change of microstructures with the enhancement of laser power density. However, while the initial grain size is close to the foil thickness, single-crystal shear deformation may occur, suggesting that the ratio of foil thickness to initial grain size has an important impact on deformation behavior of metal foil in laser shock punching process.

  12. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid

    Science.gov (United States)

    Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.

    2018-05-01

    Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.

  13. LASER RADIATION CHARACTERISTICS (BRIEF COMMUNICATIONS): Conversion of KrCl and XeCl laser radiation to the visible spectral range by stimulated Raman scattering in lead vapor

    Science.gov (United States)

    Evtushenko, Gennadii S.; Mel'chenko, S. V.; Panchenko, Aleksei N.; Tarasenko, Viktor F.

    1990-04-01

    Conversion of KrCl and XeCl laser radiation by stimulated Raman scattering was achieved in lead vapor. The KrCl laser radiation was converted into three lines in the visible region at λ = 406, 590, and 723 nm by transitions from both the ground and first excited levels of the lead atom. The conversion efficiency of XeCl laser radiation of low spatial coherence was found to be limited by the activation of a competing nonlinear process.

  14. Effects of temperature, pressure and pure copper added to source material on the CuGaTe{sub 2} deposition using close spaced vapor transport technique

    Energy Technology Data Exchange (ETDEWEB)

    Abounachit, O. [LP2M2E, Faculté des Sciences et Techniques, Université Cadi Ayyad, Gueliz, BP 549 , Marrakech, Maroc (Morocco); Chehouani, H., E-mail: chehouani@hotmail.fr [LP2M2E, Faculté des Sciences et Techniques, Université Cadi Ayyad, Gueliz, BP 549 , Marrakech, Maroc (Morocco); Djessas, K. [CNRS-PROMES Tecnosud, Rambla de la Thermodynamique, 66100 Perpignan (France)

    2013-07-01

    The quality of CuGaTe{sub 2} (CGT) thin films elaborated by close spaced vapor transport technique has been studied as a function of the source temperature (T{sub S}), iodine pressure (P{sub I2}) and the amount (X{sub Cu}) of pure copper added to the stoichiometric starting material. A thermodynamic model was developed for the Cu–Ga–Te–I system to describe the CGT deposition. The model predicts the solid phase composition with possible impurities for the operating conditions previously mentioned. The conditions of stoichiometric and near-stoichiometric deposition were determined. The value of T{sub S} must range from 450 to 550 °C for P{sub I2} varying between 0.2 and 7 kPa. Adding an amount up to 10% of pure copper to the starting material improves the quality of the deposit layers and lowers the operating interval temperature to 325–550 °C. These optimal conditions were tested experimentally at 480 °C and 500 °C. The X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy have proved that the addition of pure copper to the stoichiometric source material can be considered as a supplementary operating parameter to improve the quality of CGT thin films. - Highlights: • The stoichiometric CuGaTe{sub 2} (CGT) has been deposited by close spaced vapor transport. • The Cu–Ga–Te–I system has been studied theoretically by minimizing the Gibbs energy. • The quality of thin films has been improved by pure copper added to the source CGT. • The temperature, pressure and the amount of copper added to grow CGT are determined. • The thermodynamic predictions are in good agreement with experimental results.

  15. Measurement of the population densities in Gd atomic vapor using diode laser absorption spectroscopy in UV transitions

    International Nuclear Information System (INIS)

    Kwon, Duck Hee; Jung, E. C.; Ko, Kwang Hoon; Kim, Tack Soo

    2003-01-01

    We report on the ultraviolet laser absorption spectroscopy of atomic Gd at 394-554 nm where two transition lines are place very closely by using a frequency-doubled beam of external-cavity diode laser (ECDL). One is from 999.121 to 26337.071 cm -1 and the other from 0 to 25337.755 cm -1 . If two transition lines are placed closely within a continuous fine tuning range, the real-time measurement of the atomic excitation temperature is possible without any significant time consumption because at least two transition lines originating from different low-lying energy levels need to be investigated for the Boltzmann-plot. Since the spectral difference between the two transitions is only about 0.195 cm -1 (5.85 GHz), it is possible to record both the absorption spectra simultaneously as shown in Fig. 1. But the transition probabilities (or oscillator strengths) of these lines have not been measured accurately yet to the best of our knowledge. We report on the newly measured transition probabilities by analyzing their absorption spectra at known vapor density conditions. The simultaneous measurement of the atomic excitation temperature and the vapor density demonstrated. In addition we present another ultraviolet laser absorption spectroscopy of atomic Gd at 403.540 nm by means of a commercial blue diode laser and investigate the characteristics of the blue diode laser as well.

  16. Raman spectral features of single walled carbon nanotubes synthesized by laser vaporization

    CSIR Research Space (South Africa)

    Moodley, MK

    2006-07-05

    Full Text Available synthesized boxshadowdwnSemi-conductor tubes were favoured boxshadowdwnImproved crystallinity as indicated by narrower line- widths. Thank You Acknowledgements to the CSIR NLC for support on carbon nanotube research ... www.csir.co.za Experimental……..cont. Experimental parameters • two laser combined and vaporize a composite target • target in a tube furnace in continuous flow of Argon • temperature kept at 1000 OC • Ar flow of 200 sccm • Pressure at 375 Torr...

  17. Establishing reliable good initial quantum efficiency and in-situ laser cleaning for the copper cathodes in the RF gun

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, F., E-mail: zhoufeng@slac.stanford.edu; Sheppard, J.C.; Vecchione, T.; Jongewaard, E.; Brachmann, A.; Corbett, J.; Gilevich, S.; Weathersby, S.

    2015-05-21

    Establishing good initial quantum efficiency (QE) and reliable in-situ cleaning for copper cathode in the RF gun is of critical importance for the RF gun operations. Recent studies on the SLAC RF gun test bed indicated that the pre-cleaning (plasma cleaning) in the test chamber followed by copper cathode exposure to air for cathode change leads to a very low initial QE in the RF gun, and also demonstrated that without the pre-cleaning good initial QE >4×10{sup −5} can be routinely achieved in the RF gun with the cathodes of QE <1×10{sup −7} measured in the test chamber. QE can decay over the time in the RF gun. The in-situ laser cleaning technique for copper cathodes in the RF gun is established and refined in comparison to previous cleaning at the linac coherent light source, resulting in an improved QE and emittance evolutions. The physics of the laser cleaning process is discussed. It is believed that the reflectivity change is one of the major factors for the QE boost with the laser cleaning.

  18. Evaluation of the laser-induced breakdown spectroscopy technique for determination of the chemical composition of copper concentrates

    International Nuclear Information System (INIS)

    Łazarek, Łukasz; Antończak, Arkadiusz J.; Wójcik, Michał R.; Drzymała, Jan; Abramski, Krzysztof M.

    2014-01-01

    Laser-induced breakdown spectroscopy (LIBS), like many other spectroscopic techniques, is a comparative method. Typically, in qualitative analysis, synthetic certified standard with a well-known elemental composition is used to calibrate the system. Nevertheless, in all laser-induced techniques, such calibration can affect the accuracy through differences in the overall composition of the chosen standard. There are also some intermediate factors, which can cause imprecision in measurements, such as optical absorption, surface structure and thermal conductivity. In this work the calibration performed for the LIBS technique utilizes pellets made directly from the tested materials (old well-characterized samples). This choice produces a considerable improvement in the accuracy of the method. This technique was adopted for the determination of trace elements in industrial copper concentrates, standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for three elements: silver, cobalt and vanadium. We also proposed a method of post-processing the measurement data to minimize matrix effects and permit reliable analysis. It has been shown that the described technique can be used in qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates. It was noted that the final validation of such methodology is limited mainly by the accuracy of the characterization of the standards. - Highlights: • A laser-induced breakdown spectroscopy technique is introduced for composition monitoring in industrial copper concentrates. • Calibration samples consisted of pellets produced from the tested materials. • The proposed method of post-processing significantly minimizes matrix effects. • The possible uses of this technique are limited mainly by accurate characterization of the standard samples

  19. Evaluation of the laser-induced breakdown spectroscopy technique for determination of the chemical composition of copper concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Łazarek, Łukasz, E-mail: lukasz.lazarek@pwr.wroc.pl [Laser and Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Antończak, Arkadiusz J.; Wójcik, Michał R. [Laser and Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Drzymała, Jan [Faculty of Geoengineering, Mining and Geology, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland); Abramski, Krzysztof M. [Laser and Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Technology, Wyb. Wyspianskiego 27, 50-370 Wroclaw (Poland)

    2014-07-01

    Laser-induced breakdown spectroscopy (LIBS), like many other spectroscopic techniques, is a comparative method. Typically, in qualitative analysis, synthetic certified standard with a well-known elemental composition is used to calibrate the system. Nevertheless, in all laser-induced techniques, such calibration can affect the accuracy through differences in the overall composition of the chosen standard. There are also some intermediate factors, which can cause imprecision in measurements, such as optical absorption, surface structure and thermal conductivity. In this work the calibration performed for the LIBS technique utilizes pellets made directly from the tested materials (old well-characterized samples). This choice produces a considerable improvement in the accuracy of the method. This technique was adopted for the determination of trace elements in industrial copper concentrates, standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for three elements: silver, cobalt and vanadium. We also proposed a method of post-processing the measurement data to minimize matrix effects and permit reliable analysis. It has been shown that the described technique can be used in qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates. It was noted that the final validation of such methodology is limited mainly by the accuracy of the characterization of the standards. - Highlights: • A laser-induced breakdown spectroscopy technique is introduced for composition monitoring in industrial copper concentrates. • Calibration samples consisted of pellets produced from the tested materials. • The proposed method of post-processing significantly minimizes matrix effects. • The possible uses of this technique are limited mainly by accurate characterization of the standard samples.

  20. Adsorption site of ammonia on copper-exchanged Y-type zeolite under coexisting water vapor. Temperature-programed desorption and infrared adsorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Kasaoka, S.; Sasaoka, E.; Shiraga, T.; Ono, Y.

    1978-03-01

    Sodium Y zeolites were copper-exchanged with cupric nitrate in water, in aqueous ammonia, and in aqueous ammonia/ammonium chloride, and calcined at 500/sup 0/C. Temperature-programed desorption and IR spectroscopy showed three types of adsorption sites for 0.1-1.0% ammonia gas from nitrogen containing 0-12% water vapor: physisorption, adsorption as tetraamminocopper(II) on copper(II) sites (type 2 site), and adsorption as ammonium ion on hydroxyl sites (type 3 site). Adsorption on type 2 sites occurred only at high ammonia concentration; desorption occurred around 175/sup 0/C. Type 3 sites consisted of Cu(OH)/sup +/ and Al(OH)/sup +/, adsorbed ammonia from low concentrations, and at temperatures above 200/sup 0/C, were probably the active sites for the reduction of nitric oxide by ammonia.

  1. Formation of copper tin sulfide films by pulsed laser deposition at 248 and 355 nm

    DEFF Research Database (Denmark)

    Ettlinger, Rebecca Bolt; Crovetto, Andrea; Canulescu, Stela

    2016-01-01

    The influence of the laser wavelength on the deposition of copper tin sulfide (CTS) and SnS-rich CTS with a 248-nm KrF excimer laser (pulse length τ = 20 ns) and a 355-nm frequency-tripled Nd:YAG laser (τ = 6 ns) was investigated. A comparative study of the two UV wavelengths shows that the CTS...... film growth rate per pulse was three to four times lower with the 248-nm laser than the 355-nm laser. SnS-rich CTS is more efficiently ablated than pure CTS. Films deposited at high fluence have submicron and micrometer size droplets, and the size and area density of the droplets do not vary significantly...

  2. Effect of laser irradiation on the structure and valence states of copper in Cu-phosphate glass by XPS studies

    International Nuclear Information System (INIS)

    Khattak, G.D.; Mekki, A.; Gondal, M.A.

    2010-01-01

    The effect of laser irradiation using three different wavelengths (IR, visible and UV) generated from Nd:YAG laser on the local glass structure as well as on the valence state of the copper ions in copper phosphate glass containing CuO with the nominal composition 0.30(CuO)-(0.70)(P 2 O 5 ), has been investigated by X-ray photoelectron spectroscopy (XPS). The presence of asymmetry and satellite peaks in the Cu 2p spectrum for the unirradiated sample is an indication of the presence of two different valence states, Cu 2+ and Cu + . Hence, the Cu 2p 3/2 spectrum was fitted to two Gaussian-Lorentzian peaks and the corresponding ratio, Cu 2+ /Cu total , determined from these relative areas clearly shows that copper ions exist predominately (>86%) in the Cu 2+ state for the unirradiated glass sample under investigation. For the irradiated samples the symmetry and the absence of satellite peaks in the Cu 2p spectra indicate the existence of the copper ions mostly in Cu + state. The O 1s spectra show slight asymmetry for the irradiated as well as unirradiated glass samples which result from two contributions, one from the presence of oxygen atoms in the P-O-P environment (bridging oxygen BO) and the other from oxygen in an P-O-Cu and P=O environment (non-bridging oxygen NBO). The ratio of NBO to total oxygen was found to increase with laser power.

  3. Runaway electron beam control for longitudinally pumped metal vapor lasers

    Science.gov (United States)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  4. Continuous Water Vapor Mass Flux and Temperature Measurements in a Model Scramjet Combustor Using a Diode Laser Sensor

    National Research Council Canada - National Science Library

    Upschulte, B. L; Miller, M. F; Allen, M. G; Jackson, K; Gruber, M; Mathur, T

    1998-01-01

    A sensor for simultaneous measurements of water vapor density, temperature and velocity has been developed based on absorption techniques using room temperature diode lasers (InGaAsP) operating at 1.31 micrometers...

  5. High quality long-wavelength lasers grown by atmospheric organometallic vapor phase epitaxy using tertiarybutylarsine

    International Nuclear Information System (INIS)

    Miller, B.I.; Young, M.G.; Oron, M.; Koren, U.; Kisker, D.

    1990-01-01

    High quality long-wavelength InGaAsP/InP lasers were grown by atmospheric organometallic vapor phase epitaxy using tertiarybutylarsine (TBA) as a substitute for AsH 3 . Electrical and photoluminescence measurements on InGaAs and InGaAsP showed that TBA-grown material was at least as good as AsH 3 material in terms of suitability for lasers. From two wafers grown by TBA, current thresholds I th as low as 11 mA were obtained for a 2-μm-wide semi-insulating blocking planar buried heterostructure laser lasing near 1.3 μm wavelength. The differential quantum efficiencies η D were as high as 21%/facet with a low internal loss α=21 cm -1 . In addition I th as low as 18 mA and η D as high as 18% have been obtained for multiplequantum well lasers at 1.54 μm wavelength. These results show that TBA might be used to replace AsH 3 without compromising on laser performance

  6. EBSD analysis of plastic deformation of copper foils by flexible pad laser shock forming

    Energy Technology Data Exchange (ETDEWEB)

    Nagarajan, Balasubramanian; Castagne, Sylvie [Nanyang Technological University, SIMTech-NTU Joint Laboratory (Precision Machining), Singapore (Singapore); Nanyang Technological University, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Wang, Zhongke; Zheng, H.Y. [Nanyang Technological University, SIMTech-NTU Joint Laboratory (Precision Machining), Singapore (Singapore); Singapore Institute of Manufacturing Technology, Machining Technology Group, Singapore (Singapore)

    2015-11-15

    Flexible pad laser shock forming (FPLSF) is a new mold-free microforming process that induces high-strain-rate plastic deformation in thin metallic foils using laser-induced shock pressure and a hyperelastic flexible pad. This paper studies the plastic deformation behavior of copper foils formed through FPLSF by investigating surface hardness and microstructure. The microstructure of the foil surface before and after FPLSF is analyzed by electron backscatter diffraction technique using grain size distribution and grain boundary misorientation angle as analysis parameters. The surface hardness of the craters experienced a significant improvement after FPLSF; the top crater surface being harder than the bottom surface. The microstructure of the copper foil surface after FPLSF was found to be dominated by grain elongation, along with minor occurrences of subgrain formation, grain refinement, and high dislocation density regions. The results indicate that the prominent plastic deformation mechanism in FPLSF is strain hardening behavior rather than the typical adiabatic softening effect known to be occurring at high-strain-rates for processes such as electromagnetic forming, explosive forming, and laser shock forming. This significant difference in FPLSF is attributed to the concurrent reduction in plastic strain, strain rate, and the inertia effects, resulting from the FPLSF process configuration. Correspondingly, different deformation behaviors are experienced at top and bottom surfaces of the deformation craters, inducing the change in surface hardness and microstructure profiles. (orig.)

  7. Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 1: a visualization study.

    Science.gov (United States)

    Blanken, Jan; De Moor, Roeland Jozef Gentil; Meire, Maarten; Verdaasdonk, Rudolf

    2009-09-01

    Limited information exists regarding the induction of explosive vapor and cavitation bubbles in an endodontic rinsing solution. It is also not clear whether a fiber has to be moved in the irrigation solution or can be kept stationary. No information is available on safe power settings for the use of cavitation in the root canal. This study investigates the fluid movements and the mechanism of action caused by an Er,Cr:YSGG laser in a transparent root model. Glass models with an artificial root canal (15 mm long, with a 0.06 taper and apical diameter of 400 microm) were used for visualization and registration with a high-speed imaging technique (resolution in the microsecond range) of the creation of explosive vapor bubbles with an Er,Cr:YSGG laser at pulse energies of 75, 125, and 250 mJ at 20 Hz using a 200 microm fiber (Z2 Endolase). Fluid movement was investigated by means of dyes and visualization of the explosive vapor bubbles, and as a function of pulse energy and distance of the fiber tip to the apex. The recordings in the glass model show the creation of expanding and imploding vapor bubbles with secondary cavitation effects. Dye is flushed out of the canal and replaced by surrounding fluid. It seems not necessary to move the fiber close to the apex. Imaging suggests that the working mechanism of an Er,Cr:YSGG laser in root canal treatment in an irrigation solution can be attributed to cavitation effects inducing high-speed fluid motion into and out the canal.

  8. Explosive vaporization induced by high-power CO2-laser target interactions

    International Nuclear Information System (INIS)

    Hugenschmidt, M.; Vollrath, K.

    1976-01-01

    The interactions of high-power laser pulses with targets such as metals or dielectric materials causes a series of optical, thermal, and mechanical processes. Thereby, heating, melting, and vaporization can take place in a short time. At power densities of about 10 7 to several 10 8 W/cm 2 this can even be produced explosively. As compared to continuous ablation, this type of interaction can remove greater masses from the bulk of material. The investigations are performed by using an electron-beam preionized CO 2 -laser acting on different target materials. The energy of the laser pulses is about 30 J, the pulse-half-widths of the long-tail pulses 4 to 6 μs. Optical measurements yield some information on threshold values for these processes, for the formation and expansion of plasmas, and for the ejection of material in form of greater particles. High speed photographic techniques include a rotating mirror- and an image converter camera. Starting from shock-wave theory, gas dynamic equations (in unidimensional approximation) allow for a quantitative determination of the specific internal energies and pressures in the case of optical detonation. (orig.) [de

  9. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics.

    Science.gov (United States)

    Svensson, Tomas; Lewander, Märta; Svanberg, Sune

    2010-08-02

    We demonstrate high-resolution tunable diode laser absorption spectroscopy (TDLAS) of water vapor confined in nanoporous alumina. Strong multiple light scattering results in long photon pathlengths (1 m through a 6 mm sample). We report on strong line broadening due to frequent wall collisions (gas-surface interactions). For the water vapor line at 935.685 nm, the HWHM of confined molecules are about 4.3 GHz as compared to 2.9 GHz for free molecules (atmospheric pressure). Gas diffusion is also investigated, and in contrast to molecular oxygen (that moves rapidly in and out of the alumina), the exchange of water vapor is found very slow.

  10. Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser

    International Nuclear Information System (INIS)

    Gu, E.; Jeon, C.W.; Choi, H.W.; Rice, G.; Dawson, M.D.; Illy, E.K.; Knowles, M.R.H.

    2004-01-01

    Gallium nitride (GaN) and sapphire are important materials for fabricating photonic devices such as high brightness light emitting diodes (LEDs). These materials are strongly resistant to wet chemical etching and also, low etch rates restrict the use of dry etching. Thus, to develop alternative high resolution processing and machining techniques for these materials is important in fabricating novel photonic devices. In this work, a repetitively pulsed UV copper vapour laser (255 nm) has been used to machine and dice sapphire, GaN and micro LED devices. Machining parameters were optimised so as to achieve controllable machining and high resolution. For sapphire, well-defined grooves 30 μm wide and 430 μm deep were machined. For GaN, precision features such as holes on a tens of micron length scale have been fabricated. By using this technique, compact micro LED chips with a die spacing 100 and a 430 μm thick sapphire substrate have been successfully diced. Measurements show that the performances of LED devices are not influenced by the UV laser machining. Our results demonstrate that the pulsed UV copper vapour laser is a powerful tool for micromachining and dicing of photonic materials and devices

  11. Bibliographic study of photophysical and photochemical properties of laser dyes

    International Nuclear Information System (INIS)

    Doizi, D.

    1986-06-01

    Laser isotope separation of uranium requires high power and precise wave length. This report is a bibliographic and experimental study of the photophysical and photochemical properties of seven commercial laser dyes which have an emission wavelength in the range 5500-6500 A: Rhodamine 110 or 560, rhodamine 6G or 590, rhodamine B or 610, rhodamine 101 or 640, sulforhodamine B or kiton red 620, sulforhodamine 101 or 640 and DCM or LC 6500. Absorption and emission cross section values, fluorescence lifetimes and quantum yields in various solvents are indicated. For each dye, a non exhaustive list of laboratory experiments made with two types of pump sources: Nd YAG (532) and copper vapor laser is given. When it is known, the toxicity of the dyes is mentioned [fr

  12. Acceleration of Vaporization, Atomization, and Ionization Efficiencies in Inductively Coupled Plasma by Merging Laser-Ablated Particles with Hydrochloric Acid Gas.

    Science.gov (United States)

    Nakazawa, Takashi; Izumo, Saori; Furuta, Naoki

    2016-01-01

    To accelerate the vaporization, atomization, and ionization efficiencies in laser ablation inductively coupled plasma mass spectrometry, we merged HCl gas with laser-ablated particles before introduction into the plasma, to convert their surface constituents from oxides to lower-melting chlorides. When particles were merged with HCl gas generated from a HCl solution at 200°C, the measured concentrations of elements in the particles were 135% higher on average than the concentrations in particles merged with ultrapure water vapor. Particle corrosion and surface roughness were observed by scanning electron microscopy, and oxide conversion to chlorides was confirmed by X-ray photoelectron spectroscopy. Under the optimum conditions, the recoveries of measured elements improved by 23% on average, and the recoveries of elements with high-melting oxides (Sr, Zr, and Th) improved by as much as 36%. These results indicate that vaporization, atomization, and ionization in the ICP improved when HCl gas was merged with the ablated particles.

  13. Growth of micro-crystals in solution by in-situ heating via continuous wave infrared laser light and an absorber

    Science.gov (United States)

    Pathak, Shashank; Dharmadhikari, Jayashree A.; Thamizhavel, A.; Mathur, Deepak; Dharmadhikari, Aditya K.

    2016-01-01

    We report on growth of micro-crystals such as sodium chloride (NaCl), copper sulphate (CuSO4), potassium di-hydrogen phosphate (KDP) and glycine (NH2CH2COOH) in solution by in-situ heating using continuous wave Nd:YVO4 laser light. Crystals are grown by adding single walled carbon nanotubes (SWNT). The SWNTs absorb 1064 nm light and act as an in-situ heat source that vaporizes the solvent producing microcrystals. The temporal dynamics of micro-crystal growth is investigated by varying experimental parameters such as SWNT bundle size and incident laser power. We also report crystal growth without SWNT in an absorbing medium: copper sulphate in water. Even though the growth dynamics with SWNT and copper sulphate are significantly different, our results indicate that bubble formation is necessary for nucleation. Our simple method may open up new vistas for rapid growth of seed crystals especially for examining the crystallizability of inorganic and organic materials.

  14. Copper vapour laser with an efficient semiconductor pump generator having comparable pump pulse and output pulse durations

    Energy Technology Data Exchange (ETDEWEB)

    Yurkin, A A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2016-03-31

    We report the results of experimental studies of a copper vapour laser with a semiconductor pump generator capable of forming virtually optimal pump pulses with a current rise steepness of about 40 A ns{sup -1} in a KULON LT-1.5CU active element. To maintain the operating temperature of the active element's channel, an additional heating pulsed oscillator is used. High efficiency of the pump generator is demonstrated. (lasers)

  15. Evaluation of a new laser-resistant fabric and copper foil-wrapped endotracheal tube.

    Science.gov (United States)

    Sosis, M B; Braverman, B; Caldarelli, D D

    1996-07-01

    The risk of an endotracheal tube's combustion during laser airway surgery necessitates the use of special anesthetic techniques and equipment to prevent this complication. This study was designed to evaluate the Laser-Trach(TM), a new laser-resistant rubber endotracheal tube for use during laser airway surgery. The Laser-Trach endotracheal tubes that were evaluated were size 6.0 mm internal diameter (ID) red rubber endotracheal tubes which had been commercially wrapped by Kendall-Sheridan (Mansfield, Mass.) with copper foil tape and overwrapped with fabric. The fabric layer was saturated with water prior to our tests, as recommended by the manufacturer. The Laser-Trach endotracheal tubes were compared with plain (bare) size 6.0 mm ID Rusch red rubber endotracheal tubes. The tubes under study were positioned horizontally on wet towels in air and had 5 L x min(-1) of oxygen flowing through them. They were subjected to continuous laser radiation at 40 W from either a CO2 or an Nd-YAG laser. The Nd-YAG laser was propagated via a 600-micron fiber bundle. Each laser was directed perpendicularly at the shaft of the endotracheal tube being studied, and its output was continued until a blowtorch fire occurred or 60 seconds had elapsed. Sixty seconds of CO2 laser fire did not ignite any of the eight Laser-Trach endotracheal tubes tested. However, blowtorch ignition of all eight bare rubber tubes tested occurred after 0.87 +/- 0.21 (mean +/- SD) seconds of CO2 laser fire. Nd-YAG laser contact with the Laser-Trach endotracheal tubes caused the perforation and blowtorch ignition of all eight tubes tested after 18.79 +/- 7.83 seconds. This was a significantly (Presistant to the C02 laser. However, this endotracheal tube is not recommended for use with the Nd-YAG laser.

  16. Fiber Laser Welding Properties of Copper Materials for Secondary Batteries

    Directory of Open Access Journals (Sweden)

    Young-Tae YOU

    2017-11-01

    Full Text Available Secondary battery is composed of four main elements: cathodes, anodes, membranes and electrolyte. The cathodes and the anodes are connected to the poles that allow input and output of the current generated while the battery is being charged or discharged. In this study laser welding is conducted for 40 sheets of pure copper material with thickness of 38μm, which are used in currently manufactured lithium-ion batteries, using pulse-wave fiber laser to compare welded joint to standard bolt joint and to determine optimum process parameters. The parameters, which has significant impact on penetration of the pulse waveform laser to the overlapped thin sheets, is the peak power while the size of the weld zone is mainly affected by the pulse irradiation time and the focal position. It is confirmed that overlapping rate is affected by the pulse repetition rate rather than by the pulse irradiation time. At the cross-section of the weld zone, even with the increased peak power, the width of the front bead weld size does not change significantly, but the cross-sectional area becomes larger. This is because the energy density per pulse increases as the peak power increases.DOI: http://dx.doi.org/10.5755/j01.ms.23.4.16316

  17. Effect of nanosecond UV laser irradiation on luminescence and absorption in silver- and copper-containing phosphate glasses

    Science.gov (United States)

    Murashov, A. A.; Sidorov, A. I.; Stoliarchuk, M. V.

    2018-03-01

    Experimental evidence is presented that nanosecond UV laser irradiation of silver- and copper-containing barium phosphate glasses leads to luminescence quenching in the visible range. Subsequent heat treatment induces an absorption in the range 350–500 nm. These effects are due to the ionisation and fragmentation of subnanometre molecular clusters by laser radiation and subsequent (heat treatment-induced) formation of nanoparticles possessing plasmon resonance. Our numerical modelling results demonstrate the feasibility of producing stable AgnCum hybrid molecular clusters in glass. Local modification of the optical properties of glass by laser light can be used for optical information recording.

  18. Growth and Characterisation of Pulsed-Laser Deposited Tin Thin Films on Cube-Textured Copper at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Szwachta G.

    2016-06-01

    Full Text Available High-quality titanium nitride thin films have been grown on a cube-textured copper surface via pulsed laser deposition. The growth of TiN thin films has been very sensitive to pre-treatment procedure and substrate temperature. It is difficult to grow heteroexpitaxial TiN films directly on copper tape due to large differences in lattice constants, thermal expansion coefficients of the two materials as well as polycrystalline structure of substrate. The X-Ray diffraction measurement revealed presence of high peaks belonged to TiN(200 and TiN(111 thin films, depending on used etcher of copper surface. The electron diffraction patterns of TiN(200/Cu films confirmed the single-crystal nature of the films with cube-on-cube epitaxy. The high-resolution microscopy on our films revealed sharp interfaces between copper and titanium nitride with no presence of interfacial reaction.

  19. Water vapor differential absorption lidar development and evaluation

    Science.gov (United States)

    Browell, E. V.; Wilkerson, T. D.; Mcllrath, T. J.

    1979-01-01

    A ground-based differential absorption lidar (DIAL) system is described which has been developed for vertical range-resolved measurements of water vapor. The laser transmitter consists of a ruby-pumped dye laser, which is operated on a water vapor absorption line at 724.372 nm. Part of the ruby laser output is transmitted simultaneously with the dye laser output to determine atmospheric scattering and attenuation characteristics. The dye and ruby laser backscattered light is collected by a 0.5-m diam telescope, optically separated in the receiver package, and independently detected using photomultiplier tubes. Measurements of vertical water vapor concentration profiles using the DIAL system at night are discussed, and comparisons are made between the water vapor DIAL measurements and data obtained from locally launched rawinsondes. Agreement between these measurements was found to be within the uncertainty of the rawinsonde data to an altitude of 3 km. Theoretical simulations of this measurement were found to give reasonably accurate predictions of the random error of the DIAL measurements. Confidence in these calculations will permit the design of aircraft and Shuttle DIAL systems and experiments using simulation results as the basis for defining lidar system performance requirements

  20. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    International Nuclear Information System (INIS)

    Wu, Y.; Wang, A.H.; Zheng, R.R.; Tang, H.Q.; Qi, X.Y.; Ye, B.

    2014-01-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  1. Laser-drilled micro-hole arrays on polyurethane synthetic leather for improvement of water vapor permeability

    Science.gov (United States)

    Wu, Y.; Wang, A. H.; Zheng, R. R.; Tang, H. Q.; Qi, X. Y.; Ye, B.

    2014-06-01

    Three kinds of lasers at 1064, 532 and 355 nm wavelengths respectively were adopted to construct micro-hole arrays on polyurethane (PU) synthetic leather with an aim to improve water vapor permeability (WVP) of PU synthetic leather. The morphology of the laser-drilled micro-holes was observed to optimize laser parameters. The WVP and slit tear resistance of the laser-drilled leather were measured. Results show that the optimized pulse energy for the 1064, 532 and 355 nm lasers are 0.8, 1.1 and 0.26 mJ, respectively. The diameters of the micro-holes drilled with the optimized laser pulse energy were about 20, 15 and 10 μm, respectively. The depths of the micro-holes drilled with the optimized pulse energy were about 21, 60 and 69 μm, respectively. Compared with the untreated samples, the highest WVP growth ratio was 38.4%, 46.8% and 53.5% achieved by the 1064, 532 and 355 nm lasers, respectively. And the highest decreasing ratio of slit tear resistance was 11.1%, 14.8%, and 22.5% treated by the 1064, 532 and 355 nm lasers, respectively. Analysis of the interaction mechanism between laser beams at three kinds of laser wavelengths and the PU synthetic leather revealed that laser micro-drilling at 355 nm wavelength displayed both photochemical ablation and photothermal ablation, while laser micro-drilling at 1064 and 532 nm wavelengths leaded to photothermal ablation only.

  2. Application of atomic vapor laser isotope separation to the enrichment of mercury

    International Nuclear Information System (INIS)

    Crane, J.K.; Erbert, G.V.; Paisner, J.A.; Chen, H.L.; Chiba, Z.; Beeler, R.G.; Combs, R.; Mostek, S.D.

    1986-09-01

    Workers at GTE/Sylvania have shown that the efficiency of fluorescent lighting may be markedly improved using mercury that has been enriched in the 196 Hg isotope. A 5% improvement in the efficiency of fluorescent lighting in the United States could provide a savings of ∼ 1 billion dollars in the corresponding reduction of electrical power consumption. We will discuss the results of recent work done at our laboratory to develop a process for enriching mercury. The discussion will center around the results of spectroscopic measurements of excited state lifetimes, photoionization cross sections and isotope shifts. In addition, we will discuss the mercury separator and supporting laser mesurements of the flow properties of mercury vapor. We will describe the laser system which will provide the photoionization and finally discuss the economic details of producing enriched mercury at a cost that would be attractive to the lighting industry

  3. Near-infrared diode laser absorption diagnostic for temperature and water vapor in a scramjet combustor

    International Nuclear Information System (INIS)

    Liu, Jonathan T.C.; Rieker, Gregory B.; Jeffries, Jay B.; Gruber, Mark R.; Carter, Campbell D.; Mathur, Tarun; Hanson, Ronald K.

    2005-01-01

    Tunable diode laser absorption measurements of gas temperature and water concentration were made at the exit of a model scramjet combustor fueled on JP-7. Multiplexed, fiber-coupled, near-infrared distributed feedback lasers were used to probe three water vapor absorption features in the 1.34-1.47 μm spectral region (2v1and v1+ v3overtone bands). Ratio thermometry was performed using direct-absorption wavelength scans of isolated features at a 4-kHz repetition rate, as well as 2f wavelength modulation scans at a 2-kHz scan rate. Large signal-to-noise ratios demonstrate the ability of the optimally engineered optical hardware to reject beam steering and vibration noise. Successful measurements were made at full combustion conditions for a variety of fuel/air equivalence ratios and at eight vertical positions in the duct to investigate spatial uniformity. The use of three water vapor absorption features allowed for preliminary estimates of temperature distributions along the line of sight. The improved signal quality afforded by 2f measurements, in the case of weak absorption, demonstrates the utility of a scanned wavelength modulation strategy in such situations

  4. Multiphoton photoemission from a copper cathode illuminated by ultrashort laser pulses in an RF photoinjector.

    Science.gov (United States)

    Musumeci, P; Cultrera, L; Ferrario, M; Filippetto, D; Gatti, G; Gutierrez, M S; Moody, J T; Moore, N; Rosenzweig, J B; Scoby, C M; Travish, G; Vicario, C

    2010-02-26

    In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 microJ, 800 nm pulse focused to a 140 mum rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power.

  5. Multiphoton Photoemission from a Copper Cathode Illuminated by Ultrashort Laser Pulses in an rf Photoinjector

    International Nuclear Information System (INIS)

    Musumeci, P.; Gutierrez, M. S.; Moody, J. T.; Moore, N.; Rosenzweig, J. B.; Scoby, C. M.; Travish, G.; Cultrera, L.; Ferrario, M.; Filippetto, D.; Gatti, G.; Vicario, C.

    2010-01-01

    In this Letter we report on the use of ultrashort infrared laser pulses to generate a copious amount of electrons by a copper cathode in an rf photoinjector. The charge yield verifies the generalized Fowler-Dubridge theory for multiphoton photoemission. The emission is verified to be prompt using a two pulse autocorrelation technique. The thermal emittance associated with the excess kinetic energy from the emission process is comparable with the one measured using frequency tripled uv laser pulses. In the high field of the rf gun, up to 50 pC of charge can be extracted from the cathode using a 80 fs long, 2 μJ, 800 nm pulse focused to a 140 μm rms spot size. Taking into account the efficiency of harmonic conversion, illuminating a cathode directly with ir laser pulses can be the most efficient way to employ the available laser power.

  6. Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell

    International Nuclear Information System (INIS)

    Winter, Shoshana; Zenou, Michael; Kotler, Zvi

    2016-01-01

    We present a study of the morphology and electrical properties of copper structures which are printed by laser induced forward transfer from bulk copper. The percentage of voids and the oxidation levels are too low to account for the high resistivities (∼4 to 14 times the resistivity of bulk monocrystalline copper) of these structures. Transmission electron microscope (TEM) images of slices cut from the printed areas using a focused ion beam (FIB) show nano-sized crystal structures with grain sizes that are smaller than the electron free path length. Scattering from such grain boundaries causes a significant increase in the resistivity and can explain the measured resistivities of the structures. The TEM images also show a nano-amorphous layer (∼5 nm) at the droplet boundaries which also contributes to the overall resistivity. Such morphological characteristics are best explained by the ultrafast cooling rate of the molten copper droplets during printing. (paper)

  7. Laser treatment of cutaneous angiokeratomas: A systematic review.

    Science.gov (United States)

    Nguyen, Jannett; Chapman, Lance W; Korta, Dorota Z; Zachary, Christopher B

    2017-11-01

    Angiokeratomas can present therapeutic challenges, especially in cases of extensive lesions, where traditional surgical methods carry high risks of scarring and hemorrhage. Argon, pulsed dye (PDL), neodymium-doped yttrium aluminum garnet (Nd:YAG), copper vapor, potassium titanyl phosphate, carbon dioxide, and erbium-doped yttrium aluminum garnet (Er:YAG) lasers have emerged as alternative options. To review the use and efficacy of lasers in treating angiokeratomas. A PubMed search identified randomized clinical trials, cohort studies, case series, and case reports involving laser treatment of cutaneous angiokeratomas. Twenty-five studies were included. Quality ratings were assigned using the Oxford Centre for Evidence-Based Medicine scheme. Several laser modalities are effective in treating multiple variants of angiokeratomas. Vascular lasers like PDL, Nd:YAG, and argon are the most studied and of these, PDL offers the safest side effect profile. Nd:YAG may be more effective for hyperkeratotic angiokeratomas. Combination treatment with multiple laser modalities has also demonstrated some success. Lasers are a promising treatment option for angiokeratomas, but current use is limited by the lack of treatment guidelines. There are limited high quality studies comparing laser treatments to each other and to non-laser options. Additional studies are needed to establish guidelines and to optimize laser parameters. © 2017 Wiley Periodicals, Inc.

  8. Thin films of copper oxide and copper grown by atomic layer deposition for applications in metallization systems of microelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Waechtler, Thomas

    2010-05-25

    Copper-based multi-level metallization systems in today's ultralarge-scale integrated electronic circuits require the fabrication of diffusion barriers and conductive seed layers for the electrochemical metal deposition. Such films of only several nanometers in thickness have to be deposited void-free and conformal in patterned dielectrics. The envisaged further reduction of the geometric dimensions of the interconnect system calls for coating techniques that circumvent the drawbacks of the well-established physical vapor deposition. The atomic layer deposition method (ALD) allows depositing films on the nanometer scale conformally both on three-dimensional objects as well as on large-area substrates. The present work therefore is concerned with the development of an ALD process to grow copper oxide films based on the metal-organic precursor bis(trin- butylphosphane)copper(I)acetylacetonate [({sup n}Bu{sub 3}P){sub 2}Cu(acac)]. This liquid, non-fluorinated {beta}-diketonate is brought to react with a mixture of water vapor and oxygen at temperatures from 100 to 160 C. Typical ALD-like growth behavior arises between 100 and 130 C, depending on the respective substrate used. On tantalum nitride and silicon dioxide substrates, smooth films and selfsaturating film growth, typical for ALD, are obtained. On ruthenium substrates, positive deposition results are obtained as well. However, a considerable intermixing of the ALD copper oxide with the underlying films takes place. Tantalum substrates lead to a fast self-decomposition of the copper precursor. As a consequence, isolated nuclei or larger particles are always obtained together with continuous films. The copper oxide films grown by ALD can be reduced to copper by vapor-phase processes. If formic acid is used as the reducing agent, these processes can already be carried out at similar temperatures as the ALD, so that agglomeration of the films is largely avoided. Also for an integration with subsequent

  9. Thin films of copper oxide and copper grown by atomic layer deposition for applications in metallization systems of microelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Waechtler, Thomas

    2010-05-25

    Copper-based multi-level metallization systems in today's ultralarge-scale integrated electronic circuits require the fabrication of diffusion barriers and conductive seed layers for the electrochemical metal deposition. Such films of only several nanometers in thickness have to be deposited void-free and conformal in patterned dielectrics. The envisaged further reduction of the geometric dimensions of the interconnect system calls for coating techniques that circumvent the drawbacks of the well-established physical vapor deposition. The atomic layer deposition method (ALD) allows depositing films on the nanometer scale conformally both on three-dimensional objects as well as on large-area substrates. The present work therefore is concerned with the development of an ALD process to grow copper oxide films based on the metal-organic precursor bis(trin- butylphosphane)copper(I)acetylacetonate [({sup n}Bu{sub 3}P){sub 2}Cu(acac)]. This liquid, non-fluorinated {beta}-diketonate is brought to react with a mixture of water vapor and oxygen at temperatures from 100 to 160 C. Typical ALD-like growth behavior arises between 100 and 130 C, depending on the respective substrate used. On tantalum nitride and silicon dioxide substrates, smooth films and selfsaturating film growth, typical for ALD, are obtained. On ruthenium substrates, positive deposition results are obtained as well. However, a considerable intermixing of the ALD copper oxide with the underlying films takes place. Tantalum substrates lead to a fast self-decomposition of the copper precursor. As a consequence, isolated nuclei or larger particles are always obtained together with continuous films. The copper oxide films grown by ALD can be reduced to copper by vapor-phase processes. If formic acid is used as the reducing agent, these processes can already be carried out at similar temperatures as the ALD, so that agglomeration of the films is largely avoided. Also for an integration with subsequent

  10. Ultratrace determination of lead in whole blood using electrothermal atomization laser-excited atomic fluorescence spectrometry.

    Science.gov (United States)

    Wagner, E P; Smith, B W; Winefordner, J D

    1996-09-15

    Laser-excited atomic fluorescence has been used to detect lead that was electrothermally atomized from whole blood in a graphite furnace. A 9 kHz repetition rate copper vapor laser pumped dye laser was used to excite the lead at 283.3 nm, and the resulting atomic fluorescence was detected at 405.8 nm. No matrix modification was used other than a 1:21 dilution of the whole blood with high-purity water. Using the atomic fluorescence peak area as the analytical measure and a background correction technique based upon a simultaneous measurement of the transmitted laser intensity, excellent agreement for NIST and CDC certified whole blood reference samples was obtained with aqueous standards. A limit of detection in blood of 10 fg/mL (100 ag absolute) was achieved.

  11. Dynamics of vapor plume in transient keyhole during laser welding of stainless steel: Local evaporation, plume swing and gas entrapment into porosity

    Science.gov (United States)

    Pang, Shengyong; Chen, Xin; Shao, Xinyu; Gong, Shuili; Xiao, Jianzhong

    2016-07-01

    In order to better understand the local evaporation phenomena of keyhole wall, vapor plume swing above the keyhole and ambient gas entrapment into the porosity defects, the 3D time-dependent dynamics of the metallic vapor plume in a transient keyhole during fiber laser welding is numerically investigated. The vapor dynamical parameters, including the velocity and pressure, are successfully predicted and obtain good agreements with the experimental and literature data. It is found that the vapor plume flow inside the keyhole has complex multiple directions, and this various directions characteristic of the vapor plume is resulted from the dynamic evaporation phenomena with variable locations and orientations on the keyhole wall. The results also demonstrate that because of this dynamic local evaporation, the ejected vapor plume from the keyhole opening is usually in high frequency swinging. The results further indicate that the oscillation frequency of the plume swing angle is around 2.0-8.0 kHz, which is of the same order of magnitude with that of the keyhole depth (2.0-5.0 kHz). This consistency clearly shows that the swing of the ejected vapor plume is closely associated with the keyhole instability during laser welding. Furthermore, it is learned that there is usually a negative pressure region (several hundred Pa lower than the atmospheric pressure) of the vapor flow around the keyhole opening. This pressure could lead to a strong vortex flow near the rear keyhole wall, especially when the velocity of the ejected metallic vapor from the keyhole opening is high. Under the effect of this flow, the ambient gas is involved into the keyhole, and could finally be entrapped into the bubbles within a very short time (keyhole.

  12. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser.

    Science.gov (United States)

    Link, S M; Maas, D J H C; Waldburger, D; Keller, U

    2017-06-16

    Dual-comb spectroscopy offers the potential for high accuracy combined with fast data acquisition. Applications are often limited, however, by the complexity of optical comb systems. Here we present dual-comb spectroscopy of water vapor using a substantially simplified single-laser system. Very good spectroscopy measurements with fast sampling rates are achieved with a free-running dual-comb mode-locked semiconductor disk laser. The absolute stability of the optical comb modes is characterized both for free-running operation and with simple microwave stabilization. This approach drastically reduces the complexity for dual-comb spectroscopy. Band-gap engineering to tune the center wavelength from the ultraviolet to the mid-infrared could optimize frequency combs for specific gas targets, further enabling dual-comb spectroscopy for a wider range of industrial applications. Copyright © 2017, American Association for the Advancement of Science.

  13. Gold-coated copper cone detector as a new standard detector for F2 laser radiation at 157 nm

    International Nuclear Information System (INIS)

    Kueck, Stefan; Brandt, Friedhelm; Taddeo, Mario

    2005-01-01

    A new standard detector for high-accuracy measurements of F2 laser radiation at 157 nm is presented. This gold-coated copper cone detector permits the measurement of average powers up to 2 W with an uncertainty of ∼1%. To the best of our knowledge, this is the first highly accurate standard detector for F2 laser radiation for this power level. It is fully characterized according to Guide to the Expression of Uncertainty in Measurement of the International Organization for Standardization and is connected to the calibration chain for laser radiation established by the German National Metrology Institute

  14. Effect of Bed Temperature on the Laser Energy Required to Sinter Copper Nanoparticles

    Science.gov (United States)

    Roy, N. K.; Dibua, O. G.; Cullinan, M. A.

    2018-03-01

    Copper nanoparticles (NPs), due to their high electrical conductivity, low cost, and easy availability, provide an excellent alternative to other metal NPs such as gold, silver, and aluminum in applications ranging from direct printing of conductive patterns on metal and flexible substrates for printed electronics applications to making three-dimensional freeform structures for interconnect fabrication for chip-packaging applications. Lack of research on identification of optimum sintering parameters such as fluence/irradiance requirements for sintering of Cu NPs serves as the primary motivation for this study. This article focuses on the identification of a good sintering irradiance window for Cu NPs on an aluminum substrate using a continuous wave (CW) laser. The study also includes the comparison of CW laser sintering irradiance windows obtained with substrates at different initial temperatures. The irradiance requirements for sintering of Cu NPs with the substrate at 150-200°C were found to be 5-17 times smaller than the irradiance requirements for sintering with the substrate at room temperature. These findings were also compared against the results obtained with a nanosecond (ns) laser and a femtosecond (fs) laser.

  15. Parametric Investigation of Diode and CO2 Laser in Direct Metal Deposition of H13 Tool Steel on Copper Substrate

    OpenAIRE

    M. Khalid Imran; Syed Masood; Milan Brandt; Sudip Bhattacharya; Jyotirmoy Mazumder

    2011-01-01

    In the present investigation, H13 tool steel has been deposited on copper alloy substrate using both CO2 and diode laser. A detailed parametric analysis has been carried out in order to find out optimum processing zone for coating defect free H13 tool steel on copper alloy substrate. Followed by parametric optimization, the microstructure and microhardness of the deposited clads have been evaluated. SEM micrographs revealed dendritic microstructure in both clads. However,...

  16. Formation of copper silicides by high dose metal vapor vacuum arc ion implantation

    International Nuclear Information System (INIS)

    Rong Chun; Zhang Jizhong; Li Wenzhi

    2003-01-01

    Si(1 1 1) was implanted by copper ions with different doses and copper distribution in silicon matrix was obtained. The as-implanted samples were annealed at 300 and 540 deg. C, respectively. Formation of copper silicides in as-implanted and annealed samples were studied. Thermodynamics and kinetics of the reaction were found to be different from reaction at copper-silicon interface that was applied in conventional studies of copper-silicon interaction. The defects in silicon induced by implantation and formation of copper silicides were recognized by Si(2 2 2) X-ray diffraction (XRD)

  17. Oxidation-assisted graphene heteroepitaxy on copper foil.

    Science.gov (United States)

    Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François

    2016-11-10

    We propose an innovative, easy-to-implement approach to synthesize aligned large-area single-crystalline graphene flakes by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, favoring the growth of centimeter-sized copper (111) grains through the mechanism of abnormal grain growth. Second, the oxidation of the copper surface also drastically reduces the nucleation density of graphene. This oxidation/reduction sequence leads to the synthesis of aligned millimeter-sized monolayer graphene domains in epitaxial registry with copper (111). The as-grown graphene flakes are demonstrated to be both single-crystalline and of high quality.

  18. Isomer separation of $^{70g}Cu$ and $^{70m}Cu$ with a resonance ionization laser ion source

    CERN Document Server

    Köster, U; Mishin, V I; Weissman, L; Huyse, M; Kruglov, K; Müller, W F; Van Duppen, P; Van Roosbroeck, J; Thirolf, P G; Thomas, H C; Weisshaar, D W; Schulze, W; Borcea, R; La Commara, M; Schatz, H; Schmidt, K; Röttger, S; Huber, G; Sebastian, V; Kratz, K L; Catherall, R; Georg, U; Lettry, Jacques; Oinonen, M; Ravn, H L; Simon, H

    2000-01-01

    Radioactive copper isotopes were ionized with the resonance ionization laser ion source at the on-line isotope separator ISOLDE (CERN). Using the different hyperfine structure in the 3d/sup 10/ 4s /sup 2/S/sub 1/2/-3d/sup 10/ 4p /sup 2/P/sub 1/2//sup 0/ transition the low- and high-spin isomers of /sup 70/Cu were selectively enhanced by tuning the laser wavelength. The light was provided by a narrow-bandwidth dye laser pumped by copper vapor lasers and frequency doubled in a BBO crystal. The ground state to isomeric state intensity ratio could be varied by a factor of 30, allowing to assign gamma transitions unambiguously to the decay of the individual isomers. It is shown that the method can also be used to determine magnetic moments. In a first experiment for the 1/sup +/ ground state of /sup 70/Cu a magnetic moment of (+)1.8(3) mu /sub N/ and for the high-spin isomer of /sup 70/Cu a magnetic moment of (+or-)1.2(3) mu /sub N/ could be deduced. (20 refs).

  19. Melt and vapor characteristics in an electron beam evaporator

    Energy Technology Data Exchange (ETDEWEB)

    Blumenfeld, L.; Fleche, J.L.; Gonella, C.; Soubbaramayer

    1994-12-31

    Two different approaches have been compared for the calculation of the free surface temperature Ts in cerium or copper evaporation experiments: the first method considers properties of the melt: an empirical law is used to take into account turbulent thermal convection, instabilities and characterization of the free surface. The second method considers the vapor flow expansion and connects Ts to the measured terminal temperature and terminal mean parallel velocity of the vapor jet, by direct simulation Monte Carlo calculations including an atom-atom inelastic collision algorithm. The agreement between the two approaches is better for cerium than for copper in the high characterization case. The analysis, from the point of view of the properties of the melt, of the terminal parameters of the vapor jet for the high beam powers shows that Ts and the Knudsen number at the vapour source reach a threshold when the beam power increases. (author). 12 figs., 1 tab., 21 refs.

  20. High temperature vapor pressures of stainless steel type 1.4970 and of some other pure metals from laser evaporation

    International Nuclear Information System (INIS)

    Bober, M.; Singer, J.

    1984-10-01

    For the safety analysis of nuclear reactors vapor pressure data of stainless steel are required up to temperatures exceeding 4000 K. In analogy to the classic boiling point method a new technique was developed to measure the high-temperature vapor pressures of stainless steel and other metals from laser vaporization. A fast pyrometer, an ion current probe and an image converter camera are used to detect incipient boiling from the time-temperature curve. The saturated-vapor pressure curves of stainless steel (Type 1.4970), being a cladding material of the SNR 300 breeder reactor, and of molybdenum are experimentally determined in the temperature ranges of 2800-3900 K and 4500-5200 K, respectively. The normal boiling points of iron, nickel, titanium, vanadium and zirconium are verified. Besides, spectral emissivity values of the liquid metals are measured at the pyrometer wavelengths of 752 nm and/or 940 nm. (orig.) [de

  1. Validity of Dynamic Light Scattering Method to Analyze a Range of Gold and Copper Nanoparticle Sizes Attained by Solids Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Yu. V. Golubenko

    2014-01-01

    Full Text Available Nanoparticles of metals possess a whole series of features, concerned with it’s sizes, this leads to appearing or unusual electromagnetic and optical properties, which are untypical for particulates.An extended method of receiving nanoparticles by means of laser radiation is pulse laser ablation of hard targets in liquid medium.Varying the parameters of laser radiation, such as wavelength of laser radiation, energy density, etc., we can operate the size and shape of the resultant particles.The greatest trend of application in medicine have the nanoparticles of iron, copper, silver, silicon, magnesium, gold and zinc.The subject matter in this work is nanoparticles of copper and gold, received by means of laser ablation of hard targets in liquid medium.The aim of exploration, represented in the article, is the estimation of application of the dynamic light scattering method for determination of the range of nanoparticles sizes in the colloidal solution.For studying of the laser ablation process was chosen the second harmonic of Nd:YAG laser with the wavelength of 532 nm. Special attention was spared for the description of the experiment technique of receiving of nanoparticles.As the liquid medium ethanol and distillation water were used.For exploration of the received colloidal system have been used the next methods: DLS, transmission electron microscopy (TEM and scanning electron microscopy (SEM.The results of measuring by DLS method showed that colloidal solution of the copper in the ethanol is the steady system. Copper nanoparticle’s size reaches 200 nm and is staying in the same size for some time.Received system from the gold’s nanoparticles is polydisperse, unsteady and has a big range of the nanoparticle’s sizes. This fact was confirmed by means of photos, got from the TEM FEI Tecnai G2F20 + GIF and SEM Helios NanoLab 660. The range of the gold nanoparticle’s sizes is from 5 to 60 nm. So, it has been proved that the DLS method is

  2. Evaluation of the laser-induced breakdown spectroscopy technique for determination of the chemical composition of copper concentrates

    Science.gov (United States)

    Łazarek, Łukasz; Antończak, Arkadiusz J.; Wójcik, Michał R.; Drzymała, Jan; Abramski, Krzysztof M.

    2014-07-01

    Laser-induced breakdown spectroscopy (LIBS), like many other spectroscopic techniques, is a comparative method. Typically, in qualitative analysis, synthetic certified standard with a well-known elemental composition is used to calibrate the system. Nevertheless, in all laser-induced techniques, such calibration can affect the accuracy through differences in the overall composition of the chosen standard. There are also some intermediate factors, which can cause imprecision in measurements, such as optical absorption, surface structure and thermal conductivity. In this work the calibration performed for the LIBS technique utilizes pellets made directly from the tested materials (old well-characterized samples). This choice produces a considerable improvement in the accuracy of the method. This technique was adopted for the determination of trace elements in industrial copper concentrates, standardized by conventional atomic absorption spectroscopy with a flame atomizer. A series of copper flotation concentrate samples was analyzed for three elements: silver, cobalt and vanadium. We also proposed a method of post-processing the measurement data to minimize matrix effects and permit reliable analysis. It has been shown that the described technique can be used in qualitative and quantitative analyses of complex inorganic materials, such as copper flotation concentrates. It was noted that the final validation of such methodology is limited mainly by the accuracy of the characterization of the standards.

  3. Plasma vapor deposited n-indium tin oxide/p-copper indium oxide heterojunctions for optoelectronic device applications

    Science.gov (United States)

    Jaya, T. P.; Pradyumnan, P. P.

    2017-12-01

    Transparent crystalline n-indium tin oxide/p-copper indium oxide diode structures were fabricated on quartz substrates by plasma vapor deposition using radio frequency (RF) magnetron sputtering. The p-n heterojunction diodes were highly transparent in the visible region and exhibited rectifying current-voltage (I-V) characteristics with a good ideality factor. The sputter power during fabrication of the p-layer was found to have a profound effect on I-V characteristics, and the diode with the p-type layer deposited at a maximum power of 200 W exhibited the highest value of the diode ideality factor (η value) of 2.162, which suggests its potential use in optoelectronic applications. The ratio of forward current to reverse current exceeded 80 within the range of applied voltages of -1.5 to +1.5 V in all cases. The diode structure possessed an optical transmission of 60-70% in the visible region.

  4. Diode-laser-based water vapor differential absorption lidar (DIAL) profiler evaluation

    Science.gov (United States)

    Spuler, S.; Weckwerth, T.; Repasky, K. S.; Nehrir, A. R.; Carbone, R.

    2012-12-01

    We are in the process of evaluating the performance of an eye-safe, low-cost, diode-laser-based, water vapor differential absorption lidar (DIAL) profiler. This class of instrument may be capable of providing continuous water vapor and aerosol backscatter profiles at high vertical resolution in the atmospheric boundary layer (ABL) for periods of months to years. The technology potentially fills a national long term observing facility gap and could greatly benefit micro- and meso-meteorology, water cycle, carbon cycle and, more generally, biosphere-hydrosphere-atmosphere interaction research at both weather and climate variability time scales. For the evaluation, the Montana State University 3rd generation water vapor DIAL was modified to enable unattended operation for a period of several weeks. The performance of this V3.5 version DIAL was tested at MSU and NCAR in June and July of 2012. Further tests are currently in progress with Howard University at Beltsville, Maryland; and with the National Weather Service and Oklahoma University at Dallas/Fort Worth, Texas. The presentation will include a comparison of DIAL profiles against meteorological "truth" at the aforementioned locations including: radiosondes, Raman lidars, microwave and IR radiometers, AERONET and SUOMINET systems. Instrument reliability, uncertainty, systematic biases, detection height statistics, and environmental complications will be evaluated. Performance will be judged in the context of diverse scientific applications that range from operational weather prediction and seasonal climate variability, to more demanding climate system process studies at the land-canopy-ABL interface. Estimating the extent to which such research and operational applications can be satisfied with a low cost autonomous network of similar instruments is our principal objective.

  5. The ISOLDE RILIS pump laser upgrade and the LARIS Laboratory

    International Nuclear Information System (INIS)

    Marsh, B. A.; Berg, L.-E.; Fedorov, D. V.; Fedosseev, V. N.; Launila, O. J.; Lindroos, M.; Losito, R.; Osterdahl, F. K.; Pauchard, T.; Pohjalainen, I. T.; Sassenberg, U.; Seliverstov, M. D.; Sjoedin, A. M.; Transtroemer, G.

    2010-01-01

    On account of its high efficiency, speed and unmatched selectivity, the Resonance Ionization Laser Ion Source (RILIS) is the preferred method for ionizing the nuclear reaction products at the ISOLDE on-line isotope separator facility. By exploiting the unique electronic energy level 'fingerprint' of a chosen element, the RILIS process of laser step-wise resonance ionization enables an ion beam of high chemical purity to be sent through the mass selective separator magnet. The isobaric purity of a beam of a chosen isotope is therefore greatly increased. The RILIS, comprising of up to three frequency tunable pulsed dye lasers has been upgraded with the installation of a Nd:YAG pump laser as a replacement for the old Copper Vapor Laser (CVL) system. A summary of the current Nd:YAG pumped RILIS performance is given. To accompany the RILIS pump laser upgrade, a new ionization scheme for manganese has been developed at the newly constructed LAser Resonance Ionization Spectroscopy (LARIS) laboratory and successfully applied for on-line RILIS operation. An overview of the LARIS facility is given along with details of the ionization scheme development work for manganese.

  6. Silicothermic reduction of MgO using diode laser: Experimental and kinetic study

    Directory of Open Access Journals (Sweden)

    M.S. Mahmoud

    2017-12-01

    Full Text Available As a step toward realizing magnesium civilization, which needs a sustainable Mg production process, the reduction of MgO to Mg has been investigated. Direct diode laser (DDL produces high power and continuous beam in tiny spots. The laser with energy density up to 83*105 W/cm2 is focused on MgO/Si target inside the vacuum chamber, creating the high temperature zone, which stimulates the Mg production reaction. The vapor is collected on the copper plate; and then, analyzed chemically in terms of Mg production efficiency. The largest reduction and energy efficiencies in Ar atmosphere were 41% and 15.3 mg kJ−1, while in the vacuum, 13.5% and 15.8 mg kJ−1 were attainable. The reactions of MgO and Si have been investigated. Calculations revealed that the MgO reduction with Si proceeds as heterogeneous reaction. The rate of reaction of Si with MgO is faster than the rate of MgO evaporation and Mg vapor deposition.

  7. Microstructural Evolution and Mechanical Property Development of Selective Laser Melted Copper Alloys

    Science.gov (United States)

    Ventura, Anthony Patrick

    Selective Laser Melting (SLM) is an additive manufacturing technology that utilizes a high-power laser to melt metal powder and form a part layer-by-layer. Over the last 25 years, the technology has progressed from prototyping polymer parts to full scale production of metal component. SLM offers several advantages over traditional manufacturing techniques; however, the current alloy systems that are researched and utilized for SLM do not address applications requiring high electrical and thermal conductivity. This work presents a characterization of the microstructural evolution and mechanical property development of two copper alloys fabricated via SLM and post-process heat treated to address this gap in knowledge. Tensile testing, conductivity measurement, and detailed microstructural characterization was carried out on samples in the as-printed and heat treated conditions. A single phase solid solution strengthened binary alloy, Cu-4.3Sn, was the first alloy studied. Components were selectively laser melted from pre-alloyed Cu-4.3Sn powder and heat treated at 873 K (600 °C) and 1173 K (900 °C) for 1 hour. As-printed samples were around 97 percent dense with a yield strength of 274 MPa, an electrical conductivity of 24.1 %IACS, and an elongation of 5.6%. Heat treatment resulted in lower yield strength with significant increases in ductility due to recrystallization and a decrease in dislocation density. Tensile sample geometry and surface finish also showed a significant effect on measured yield strength but a negligible change in measured ductility. Microstructural characterization indicated that grains primarily grow epitaxially with a sub-micron cellular solidification sub-structure. Nanometer scale tin dioxide particles identified via XRD were found throughout the structure in the tin-rich intercellular regions. The second alloy studied was a high-performance precipitation hardening Cu-Ni-Si alloy, C70250. Pre-alloyed powder was selectively laser melted to

  8. Evaporation monitoring and composition control of alloy systems with widely differing vapor pressures

    International Nuclear Information System (INIS)

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; McClelland, M.A.; Meier, T.

    1994-10-01

    Lawrence Livermore National Laboratory is developing sensors and controls to improve and extend electron beam materials processing technology to alloy systems with constituents of widely varying vapor pressure. The approach under development involves using tunable lasers to measure the density and composition of the vapor plume. A laser based vaporizer control system for vaporization of a uranium-iron alloy has been previously demonstrated in multi-hundred hour, high rate vaporization experiments at LLNL. This paper reviews the design and performance of the uranium vaporization sensor and control system and discusses the extension of the technology to monitoring of uranium vaporization. Data is presented from an experiment in which titanium wire was fed into a molten niobium pool. Laser data is compared to deposited film composition and film cross sections. Finally, the potential for using this technique for composition control in melting applications is discussed

  9. Evidence for the direct ejection of clusters from non-metallic solids during laser vaporization

    International Nuclear Information System (INIS)

    Bloomfield, L.A.; Yang, Y.A.; Xia, P.; Junkin, A.L.

    1991-01-01

    This paper reports on the formation of molecular scale particles or clusters of alkali halides and semiconductors during laser vaporization of solids. By measuring the abundances of cluster ions produced in several different source configurations, the authors have determined that clusters are ejected directly from the source sample and do not need to grow from atomic or molecular vapor. Using samples of mixed alkali halide powders, the authors have found that unalloyed clusters are easily produced in a source that prevents growth from occurring after the clusters leave the sample surface. However, melting the sample or encouraging growth after vaporization lead to the production of alloyed cluster species. The sizes of the ejected clusters are initially random, but the population spectrum quickly becomes structured as hot, unstable-sized clusters decay into smaller particles. In carbon, large clusters with odd number of atoms decay almost immediately. The hot even clusters also decay, but much more slowly. The longest lived clusters are the magic C 50 and C 60 fullerenes. The mass spectrum of large carbon clusters evolves in time from structureless, to only the even clusters, to primarily C 50 and C 60 . If cluster growth is encouraged, the odd clusters reappear and the population spectrum again becomes relatively structureless

  10. Thulium fiber laser-induced vapor bubble dynamics using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    Science.gov (United States)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-03-01

    This study characterizes laser-induced vapor bubble dynamics for five different distal fiber optic tip configurations, to provide insight into stone retropulsion commonly experienced during laser ablation of kidney stones. A thulium fiber laser with 1908-nm wavelength delivered 34-mJ energy per pulse at 500-μs pulse duration through five different fibers such as 100-μm-core / 170-μm-OD bare fiber tip, 150- to 300-μm-core tapered fiber tip, 100-μm-core / 300-μm-OD ball tip fiber, 100-μm-core / 340-μm-OD hollow steel tip fiber, and 100-μm-core / 560-μm-OD muzzle brake fiber tip. A high-speed camera with 10-μm-spatial and 9.5-μs-temporal resolution was used to image the vapor bubble dynamics. A needle hydrophone measured pressure transients in the forward (0 deg) and side (90 deg) directions while placed at a 6.8 ± 0.4 mm distance from the distal fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7 / 1.5 mm, for bare, tapered, ball, hollow steel, and muzzle brake fiber tips, respectively (n = 5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n = 5). For the hollow steel tip, forward pressure was 4 × higher than for the bare fiber. For the muzzle brake fiber tip, forward pressure was 5 × lower than the bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle brake fiber tip reduced forward pressure by partially venting vapors through the portholes, which is consistent with the observation of lower stone retropulsion in previous reports.

  11. Properties of thermal air plasma with admixing of copper and carbon

    International Nuclear Information System (INIS)

    Fesenko, S; Veklich, A; Boretskij, V; Cressault, Y; Gleizes, A; Teulet, Ph

    2014-01-01

    This paper deals with investigations of air plasma with admixing of copper and carbon. Model plasma source unit with real breaking arc was used for the simulation of real discharges, which can be occurred during sliding of Cu-C composite electrodes on copper wire at electromotive vehicles. The complex technique of plasma property studies is developed. From one hand, the radial profiles of temperature and electron density in plasma of electric arc discharge in air between Cu-C composite and copper electrodes in air flow were measured by optical spectroscopy techniques. From another hand, the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. It was assumed that the thermal conductivity of air plasma is not depending on copper or carbon vapor admixtures. The electron density is obtained from electric conductivity profiles by calculation in assumption of local thermodynamic equilibrium in plasma. Computed in such way radial profiles of electron density in plasma of electric arc discharge in air between copper electrodes were compared with experimentally measured profiles. It is concluded that developed techniques of plasma diagnostics can be reasonably used in investigations of thermal plasma with copper and carbon vapors

  12. Controlled growth of periodically aligned copper-silicide nanocrystal arrays on silicon directed by laser-induced periodic surface structures (LIPSS)

    Science.gov (United States)

    Nürnberger, Philipp; Reinhardt, Hendrik M.; Rhinow, Daniel; Riedel, René; Werner, Simon; Hampp, Norbert A.

    2017-10-01

    In this paper we introduce a versatile tool for the controlled growth and alignment of copper-silicide nanocrystals. The method takes advantage of a unique self-organization phenomenon denoted as laser-induced periodic surface structures (LIPSS). Copper films (3 ± 0.2 nm) are sputter-deposited onto single crystal silicon (100) substrates with a thin oxide layer (4 ± 0.2 nm), and subsequently exposed to linearly polarized nanosecond laser pulses (τ ≈ 6 ns) at a central wavelength of 532 nm. The irradiation triggers dewetting of the Cu film and simultaneous formation of periodic Cu nanowires (LIPSS), which partially penetrate the oxide layer to the Si substrate. These LIPSS act as nucleation centers for the growth of Cu-Si crystals during thermal processing at 500 °C under forming gas 95/5 atmosphere. Exemplified by our model system Cu/SiO2/Si, LIPSS are demonstrated to facilitate the diffusion reaction between Cu and underlying Si. Moreover, adjustment of the laser polarization allows us to precisely control the nanocrystal alignment with respect to the LIPSS orientation. Potential applications and conceivable alternatives of this process are discussed.

  13. Formation of conical microstructures upon laser evaporation of solids

    Energy Technology Data Exchange (ETDEWEB)

    Dolgaev, S.I.; Lavrishev, S.V.; Lyalin, A.A.; Simakin, A.V.; Voronov, V.V.; Shafeev, G.A. [General Physics Inst., Russian Academy of Sciences, Moscow (Russian Federation)

    2001-08-01

    The formation and development of the large-scale periodic structures on a single crystal Si surface are studied upon its evaporation by pulsed radiation of a copper vapor laser (wavelength of 510.6 nm, pulse duration of 20 ns). The development of structures occurs at a high number of laser shots ({proportional_to}10{sup 4}) at laser fluence of 1-2 J/cm{sup 2} below optical breakdown in a wide pressure range of surrounding atmosphere from 1 to 10{sup 5} Pa. The structures are cones with angles of 25, which grow towards the laser beam and protrude above the initial surface for 20-30 {mu}m. It is suggested that the spatial period of the structures (10-20 {mu}m) is determined by the capillary waves period on the molten surface. The X-ray diffractometry reveals that the modified area of the Si substrate has a polycrystalline structure and consists of Si nanoparticles with a size of 40-70 nm, depending on the pressure of surrounding gas. Similar structures are also observed on Ge and Ti. (orig.)

  14. The processes of vaporization in the porous structures working with the excess of liquid

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2017-01-01

    Full Text Available The processes of vaporization in porous structures, working with the excess of liquid are investigated. With regard to the thermal power plants new porous cooling system is proposed and investigated, in which the supply of coolant is conducted by the combined action of gravity and capillary forces. The cooling surface is made of stainless steel, brass, copper, bronze, nickel, alundum and glass, with wall thickness of (0.05-2•10-3 m. Visualizations of the processes of vaporization were carried out using holographic interferometry with the laser system and high speed camera. The operating conditions of the experiments were: water pressures (0.01-10 MPa, the temperature difference of sub-cooling (0-20°C, an excess of liquid (1-14 of the steam flow, the heat load (1-60•104 W/m2, the temperature difference (1-60°C and orientation of the system (± 0 - ± 90 degrees. Studies have revealed three areas of liquid vaporization process (transitional, developed and crisis. The impact of operating and design parameters on the integrated and thermal hydraulic characteristics was defined. The optimum (minimum flow rate of cooling fluid and the most effective type of mesh porous structure were also defined.

  15. Apparatus and method for removing mercury vapor from a gas stream

    Science.gov (United States)

    Ganesan, Kumar [Butte, MT

    2008-01-01

    A metallic filter effectively removes mercury vapor from gas streams. The filter captures the mercury which then can be released and collected as product. The metallic filter is a copper mesh sponge plated with a six micrometer thickness of gold. The filter removes up to 90% of mercury vapor from a mercury contaminated gas stream.

  16. The impact of hydrogen and oxidizing impurities in chemical vapor deposition of graphene on copper

    Science.gov (United States)

    Choubak, Saman

    Graphene, the single-atom layer of carbon, has attracted scientists and technologists due to its outstanding physical and opto/electronic properties. The use of graphene in practical applications requires a reliable and cost-effective method to produce large area graphene films with low defects and controlled thicknesses. Direct growth of graphene using chemical vapor deposition (CVD) on copper, in which carbonaceous gaseous species react with the metal substrate in the presence of hydrogen at high temperatures (850-1100° C), led to high coverage of high quality graphene, opening up a promising future for methods of this type and a large step towards commercial realization of graphene products. The present thesis deals with the synthesis of graphene via low pressure CVD (LP-CVD) on copper catalyst using methane as the carbon precursor. The focus is mainly on the determination of the role of hydrogen and oxidizing impurities during graphene formation with an ultimate purpose: to elucidate a viable and reproducible method for the production of high quality graphene films compatible with industrial manufacturing processes. The role of molecular hydrogen in graphene CVD is explored in the first part of the thesis. Few studies claimed that molecular hydrogen etches graphene films on copper by conducting annealing experiments. On the other hand, we speculated that this graphene etching reaction is due to the presence of trace amount of oxygen in the furnace atmosphere. Thus, we took another approach and designed systematic annealing experiments to investigate the role of hydrogen in the etching reaction of graphene on copper foils. No evidence of graphene etching on copper was observed when purified ultra high purity (UHP) hydrogen was used at 825 °C and 500 mTorr. Nevertheless, graphene films exposed to the unpurified UHP hydrogen were etched due to the presence of oxidizing impurities. Our results show that hydrogen is not responsible for graphene etching reaction

  17. Differential mobility analysis of nanoparticles generated by laser vaporization and controlled condensation (LVCC)

    International Nuclear Information System (INIS)

    Abdelsayed, Victor; El-Shall, M. Samy; Seto, Takafumi

    2006-01-01

    Silicon and iron aluminide (FeAl) nanoparticles were synthesized by a laser vaporization controlled condensation (LVCC) method. The particles generated by the laser ablation of solid targets were transported and deposited in the presence of well-defined thermal and electric field in a newly designed flow-type LVCC chamber. The deposition process of nanoparticles was controlled by the balance of the external forces; i.e., gas flow, thermophoretic and electrostatic forces. The size distributions of generated nanoparticles were analyzed using a low-pressure differential mobility analyzer (LP-DMA). The effect of synthesis condition on the size distribution was analyzed by changing the pressure of the carrier gas (20-200 Torr), the temperature gradient in the LVCC chamber (ΔT=0-190 deg. C) and the electric field applied between the LVCC chamber plates (E=0-3000 V/m). It was found that electrostatic field was effective to selectively deposit small size nanoparticles (about 10 nm) with expelling large droplet-like particles

  18. Copper substrate as a catalyst for the oxidation of chemical vapor deposition-grown graphene

    International Nuclear Information System (INIS)

    Li, Zhiting; Zhou, Feng; Parobek, David; Shenoy, Ganesh J.; Muldoon, Patrick; Liu, Haitao

    2015-01-01

    We report the catalytic effect of copper substrate on graphene–oxygen reaction at high temperature. Previous studies showed that graphene grown on copper are mostly defect-free with strong oxidation resistance. We found that a freshly prepared copper-supported graphene sample can be completely oxidized in trace amount of oxygen (<3 ppm) at 600 °C within 2 h. Both X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) suggest that upon ambient air exposure, oxygen molecules diffuse into the space between graphene and copper, resulting in the formation of copper oxide which acts as catalytic sites for the graphene-oxygen reaction. This result has important implications for the characterization, processing, and storage of copper-supported graphene samples. - Graphical abstract: The copper substrate enhances the thermel oxidation of single-layer graphene. - Highlights: • A copper-supported graphene can be oxidized in Ar (O 2 <3 ppm, 600 °C, 2 h). • O 2 intercalates between graphene and copper upon exposure to air. • The copper foil should not be considered as an inert substrate

  19. Laser chemical vapor deposition of millimeter scale three-dimensional shapes

    Science.gov (United States)

    Shaarawi, Mohammed Saad

    2001-07-01

    Laser chemical vapor deposition (LCVD) has been successfully developed as a technique to synthesize millimeter-scale components directly from the gas phase. Material deposition occurs when heat generated by the interaction of a laser beam with a substrate thermally decomposes the gas precursor. Selective illumination or scanning the laser beam over portions of a substrate forms the single thin layer of material that is the building block of this process. Sequential scanning of the laser in a pre-defined pattern on the substrate and subsequent deposit causes the layers to accumulate forming the three-dimensional shape. The primary challenge encountered in LCVD shape forming is the synthesis of uniform layers. Three deposition techniques are studied to address this problem. The most successful technique, Active Surface Deposition, is based on the premise that the most uniform deposits are created by measuring the deposition surface topology and actively varying the deposition rate in response to features at the deposition surface. Defects observed in the other techniques were significantly reduced or completely eliminated using Active Surface Deposition. The second technique, Constant Temperature Deposition, maintains deposit uniformity through the use of closed-loop modulation of the laser power to sustain a constant surface temperature during deposition. The technique was successful in depositing high quality graphite tubes >2 mm tall from an acetylene precursor and partially successful in depositing SiC + C composite tubes from tetramethylsilane (TMS). The final technique, Constant Power Deposition, is based on the premise that maintaining a uniform power output throughout deposition would result in the formation of uniform layers. Constant Power Deposition failed to form coherent shapes. Additionally, LCVD is studied using a combination of analytic and numerical models to gain insight into the deposition process. Thermodynamic modeling is used to predict the

  20. Catalytic Activity of Silicon Nanowires Decorated with Gold and Copper Nanoparticles Deposited by Pulsed Laser Ablation

    Directory of Open Access Journals (Sweden)

    Michele Casiello

    2018-01-01

    Full Text Available Silicon nanowires (SiNWs decorated by pulsed laser ablation with gold or copper nanoparticles (labeled as AuNPs@SiNWs and CuNPs@SiNWs were investigated for their catalytic properties. Results demonstrated high catalytic performances in the Caryl–N couplings and subsequent carbonylations for gold and copper catalysts, respectively, that have no precedents in the literature. The excellent activity, attested by the very high turn over number (TON values, was due both to the uniform coverage along the NW length and to the absence of the chemical shell surrounding the metal nanoparticles (MeNPs. A high recyclability was also observed and can be ascribed to the strong covalent interaction at the Me–Si interface by virtue of metal “silicides” formation.

  1. Fabrication and characterization of a cell electrostimulator device combining physical vapor deposition and laser ablation

    Science.gov (United States)

    Aragón, Angel L.; Pérez, Eliseo; Pazos, Antonio; Bao-Varela, Carmen; Nieto, Daniel

    2017-08-01

    In this work we present the process of fabrication and optimization of a prototype of a cell electrostimulator device for medical application combining physical vapor deposition and laser ablation. The fabrication of the first prototype begins with a deposition of a thin layer of 200 nm of aluminium on a borosilicate glass substrate using physical vapor deposition (PVD). In the second stage the geometry design of the electrostimulator is made in a CAD-like software available in a Nd:YVO4 Rofin Power line 20E, operating at the fundamental wavelength of 1064 nm and 20 ns pulse width. Choosing the proper laser parameters the negative of the electrostimulator desing is ablated. After that the glass is assembled between two polycarbonate sheets and a thick sheet of polydimethylsiloxane (PDMS). The PDMS sheet has a round hole in where cells are placed. There is also included a thin soda-lime silicate glass (100 μm) between the electrostimulator and the PMDS to prevent the cells for being in contact with the electric circuit. In order to control the electrical signal applied to the electrostimulator is used a digital I/O device from National Instruments (USB-6501) which provides 5 V at the output monitored by a software programmed in LabVIEW. Finally, the optical and electrical characterization of the cell electrostimulator device is presented.

  2. Analysis of the X-ray emission spectra of copper, germanium and rubidium plasmas produced at the Phelix laser facility

    Science.gov (United States)

    Comet, M.; Pain, J.-C.; Gilleron, F.; Piron, R.; Denis-Petit, D.; Méot, V.; Gosselin, G.; Morel, P.; Hannachi, F.; Gobet, F.; Tarisien, M.; Versteegen, M.

    2017-03-01

    We present the analysis of X-ray emission spectra of copper, germanium and rubidium plasmas measured at the Phelix laser facility. The laser intensity was around 6×1014 W.cm-2. The analysis is based on the hypothesis of an homogeneous plasma in local thermodynamic equilibrium using an effective temperature. This temperature is deduced from hydrodynamic simulations and collisional-radiative computations. Spectra are then calculated using the LTE opacity codes OPAMCDF and SCO-RCG and compared to experimental data.

  3. Laser spectroscopy and laser isotope separation of atomic gadolinium

    International Nuclear Information System (INIS)

    Chen, Y. W.; Yamanaka, C.; Nomaru, K.; Kou, K.; Niki, H.; Izawa, Y.; Nakai, S.

    1994-01-01

    Atomic vapor laser isotope separation (AVLIS) is a process which uses intense pulsed lasers to selectively photoionize one isotopic species of a chemical element, after which these ions are extracted electromagnetically. The AVLIS has several advantages over the traditional methods based on the mass difference, such as high selectivity, low energy consumption, short starting time and versatility to any atoms. The efforts for atomic vapor laser isotope separation at ILT and ILE, Osaka University have been concentrated into the following items: 1) studies on laser spectroscopy and laser isotope separation of atomic gadolinium, 2) studies on interaction processes including coherent dynamics, propagation effects and atom-ion collision in AVLIS system, 3) development of laser systems for AVLIS. In this paper, we present experimental results on the laser spectroscopy and laser isotope separation of atomic gadolinium.

  4. Development of an Airborne Micropulse Water Vapor DIAL

    Science.gov (United States)

    Nehrir, A. R.; Ismail, S.

    2012-12-01

    Water vapor plays a key role in many atmospheric processes affecting both weather and climate. Airborne measurements of tropospheric water vapor profiles have been a longstanding observational need to not only the active remote sensing community but also to the meteorological, weather forecasting, and climate/radiation science communities. Microscale measurements of tropospheric water vapor are important for enhancing near term meteorological forecasting capabilities while mesoscale and synopticscale measurements can lead to an enhanced understanding of the complex coupled feedback mechanisms between water vapor, temperature, aerosols, and clouds. To realize tropospheric measurements of water vapor profiles over the microscale-synopticscale areas of meteorological interest, a compact and cost effective airborne micropulse differential absorption lidar (DIAL) is being investigated using newly emerging semiconductor based laser technology. Ground based micropulse DIAL (MPD) measurements of tropospheric water vapor and aerosol profiles up to 6 km and 15 km, respectively, have been previously demonstrated using an all semiconductor based laser transmitter. The DIAL transmitter utilizes a master oscillator power amplifier (MOPA) configuration where two semiconductor seed lasers are used to seed a single pass traveling wave tapered semiconductor optical amplifier (TSOA), producing up to 7μJ pulse energies over a 1 μs pulse duration at a 10 kHz pulse repetition frequency (PRF). Intercomparisons between the ground based instrument measurements and radiosonde profiles demonstrating the MPD performance under varying atmospheric conditions will be presented. Work is currently ongoing to expand upon the ground based MPD concept and to develop a compact and cost effective system capable of deployment on a mid-low altitude aircraft such as the NASA Langley B200 King Air. Initial lab experiments show that a two-three fold increase in the laser energy compared to the ground

  5. Use of neutron diffraction and laser-induced plasma spectroscopy in integrated authentication methodologies of copper alloy artefacts

    International Nuclear Information System (INIS)

    Siano, S.; Bartol, L.; Mencaglia, A.A.; Agresti, J.; Miccio, M.

    2009-01-01

    The present study approaches the general problem of the authentication of copper alloy artefacts of art and historical interest using non-invasive analytical techniques. It aims to demonstrate that a suitable combination of time-of-flight neutron diffraction and laser-induced plasma spectroscopy in integrated multidisciplinary authentication methodologies can provide crucial data for discriminating between genuine archaeological objects and modern counterfeits. After introducing the methodology, which is dedicated in particular to copper alloy figurines of ancient style, two representative authentication case studies are discussed. The results of the work provide evidence that the combination of multiphase analysis using TOF-N D and elemental depth profiles provided by Lips makes it possible to solve most of the present authentication problems.

  6. Hydrogen isotope correction for laser instrument measurement bias at low water vapor concentration using conventional isotope analyses: application to measurements from Mauna Loa Observatory, Hawaii.

    Science.gov (United States)

    Johnson, L R; Sharp, Z D; Galewsky, J; Strong, M; Van Pelt, A D; Dong, F; Noone, D

    2011-03-15

    The hydrogen and oxygen isotope ratios of water vapor can be measured with commercially available laser spectroscopy analyzers in real time. Operation of the laser systems in relatively dry air is difficult because measurements are non-linear as a function of humidity at low water concentrations. Here we use field-based sampling coupled with traditional mass spectrometry techniques for assessing linearity and calibrating laser spectroscopy systems at low water vapor concentrations. Air samples are collected in an evacuated 2 L glass flask and the water is separated from the non-condensable gases cryogenically. Approximately 2 µL of water are reduced to H(2) gas and measured on an isotope ratio mass spectrometer. In a field experiment at the Mauna Loa Observatory (MLO), we ran Picarro and Los Gatos Research (LGR) laser analyzers for a period of 25 days in addition to periodic sample collection in evacuated flasks. When the two laser systems are corrected to the flask data, they are strongly coincident over the entire 25 days. The δ(2)H values were found to change by over 200‰ over 2.5 min as the boundary layer elevation changed relative to MLO. The δ(2)H values ranged from -106 to -332‰, and the δ(18)O values (uncorrected) ranged from -12 to -50‰. Raw data from laser analyzers in environments with low water vapor concentrations can be normalized to the international V-SMOW scale by calibration to the flask data measured conventionally. Bias correction is especially critical for the accurate determination of deuterium excess in dry air. Copyright © 2011 John Wiley & Sons, Ltd.

  7. Laser-Driven Calorimetry Measurements of Petroleum and Biodiesel Fuels.

    Science.gov (United States)

    Presser, Cary; Nazarian, Ashot; Millo, Amit

    2018-02-01

    Thermochemical characteristics were determined for several National Institute of Standards and Technology standard-reference-material petroleum and biodiesel fuels, using a novel laser-heating calorimetry technique. Measurements focused on the sample thermal behavior, specific heat release rate, and total specific heat release. The experimental apparatus consists of a copper sphere-shaped reactor mounted within a chamber, along with laser-beam-steering optical components, gas-supply manifold, and a computer-controlled data-acquisition system. At the center of the reactor, liquid sample is injected onto a copper pan substrate that rests and is in contact with a fine-wire thermocouple. A second thermocouple is in contact with the inner reactor sphere surface. The reactor is heated from opposing sides by a continuous-wave, near-infrared laser to achieve nearly uniform sample temperature. The change in temperature with time (thermogram) is recorded for both thermocouples, and compared to a baseline thermogram (without liquid in the pan). The thermograms are then processed (using an equation for thermal energy conservation) for the thermochemical information of interest. The results indicated that the energy reaching the pan is dominated by radiative heat transfer processes, while the dominant thermal process for the reactor sphere is the stored (internal) thermal energy within the sphere material. Sufficient laser power is necessary to detect the fuel thermal-related characteristics, and the required power can differ from one fuel to another. With sufficient laser power, one can detect the preferential vaporization of the lighter and heavier fuel fractions. The total specific heat release obtained for the different conventional and biodiesel fuels used in this investigation were similar to the expected values available in the literature.

  8. An evaluation of absorption spectroscopy to monitor YBa2Cu3O7-x precursors for metal organics chemical vapor deposition processing

    International Nuclear Information System (INIS)

    Matthew Edward Thomas

    1999-01-01

    Absorption spectroscopy was evaluated as a technique to monitor the metal organics chemical vapor deposition (MOCVD) process for forming YBa 2 Cu 3 O 7-x superconducting coated conductors. Specifically, this study analyzed the feasibility of using absorption spectroscopy to monitor the MOCVD supply vapor concentrations of the organic ligand 2,2,6,6-tetramethyl-3,5-heptanedionate (TMHD) metal chelates of barium, copper, and yttrium. Ba(TMHD) 2 , Cu(TMHD) 2 , and Y(TMHD) 3 compounds have successfully been vaporized in the MOCVD processing technique to form high temperature superconducting ''coated conductors,'' a promising technology for wire fabrication. The absorption study of the barium, copper, and yttrium (TMHD) precursors was conducted in the ultraviolet wavelength region from 200nm to 400nm. To simulate the MOCVD precursor flows the Ba(TMHD) 2 , Cu(TMHD) 2 , and Y(TMHD) 3 complexes were vaporized at vacuum pressures of (0.03--10)Torr. Spectral absorption scans of each precursor were conducted to examine potential measurement wavelengths for determining vapor concentrations of each precursor via Beer's law. The experimental results show that under vacuum conditions the barium, copper, and yttrium (TMHD) precursors begin to vaporize between 90 C and 135 C, which are considerably lower vaporization temperatures than atmospheric thermal gravimetric analyses indicate. Additionally, complete vaporization of the copper and yttrium (TMHD) precursors occurred during rapid heating at temperatures between 145 C and 195 C and after heating at constant temperatures between 90 C and 125 C for approximately one hour, whereas the Ba(TMHD) 2 precursor did not completely vaporize. At constant temperatures, near constant vaporization levels for each precursor were observed for extended periods of time. Detailed spectroscopic scans at stable vaporization conditions were conducted

  9. [Atomic Vapor Laser Isotope Separation (AVLIS) program

    International Nuclear Information System (INIS)

    1992-01-01

    This report summarizes work performed for the Atomic Vapor Laser Isotope Separation (AVLIS) program from January through July, 1992. Each of the tasks assigned during this period is described, and results are presented. Section I details work on sensitivity matrices for the UDS relay telescope. These matrices show which combination of mirror motions may be performed in order to effect certain changes in beam parameters. In Section II, an analysis is given of transmission through a clipping aperture on the launch telescope deformable mirror. Observed large transmission losses could not be simulated in the analysis. An EXCEL spreadsheet program designed for in situ analysis of UDS optical systems is described in Section III. This spreadsheet permits analysis of changes in beam first-order characteristics due to changes in any optical system parameter, simple optimization to predict mirror motions needed to effect a combination of changes in beam parameters, and plotting of a variety of first-order data. Optical systems may be assembled directly from OSSD data. A CODE V nonsequential model of the UDS optical system is described in Section IV. This uses OSSD data to build the UDS model; mirror coordinates may thus be verified. Section V summarizes observations of relay telescope performance. Possible procedures which allow more accurate assessment of relay telescope performance are given

  10. Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium

    Science.gov (United States)

    Albin, David S.; Noufi, Rommel

    2015-06-09

    Systems and methods for solar cells with CIS and CIGS films made by reacting evaporated copper chlorides with selenium are provided. In one embodiment, a method for fabricating a thin film device comprises: providing a semiconductor film comprising indium (In) and selenium (Se) upon a substrate; heating the substrate and the semiconductor film to a desired temperature; and performing a mass transport through vapor transport of a copper chloride vapor and se vapor to the semiconductor film within a reaction chamber.

  11. Laser-induced breakdown spectroscopy analysis of the copper added to gadolinium (Contract research)

    International Nuclear Information System (INIS)

    Akaoka, Katsuaki; Maruyama, Youichiro; Oba, Masaki; Miyabe, Masabumi; Wakaida, Ikuo

    2008-11-01

    For applying Laser-induced breakdown Spectroscopy (LIBS) to the analysis of nuclear fuel materials, it is very important to investigate the analytical method to identify the emission spectrum and its intensity on impurities intermingled within complex emission spectra of matrix elements such as uranium (U) and plutonium (Pu). Experiments using gadolinium (Gd) as simulated sample, in which several 100 ppm of copper (Cu) was contained, were performed and the analytical performance was estimated. The spectrum was decomposed into each peak of some spectra component on Gd and Cu. And the result, intensity of Cu component intermingled in Gd was determined quantitatively. In order to evaluate the linearity in the impurity analysis, the experiments with various concentration of Cu were carried out. The detection limit was determined to be about 70 ppm from the equivalent noise level which was estimated from the standard deviation in wavelength. The results curried out under the other laser conditions (intensity and wavelength) ware also evaluated. (author)

  12. Adhesion strength of nickel and zinc coatings with copper base electroplated in conditions of external stimulation by laser irradiance

    Directory of Open Access Journals (Sweden)

    V. V. Dudkina

    2013-04-01

    Full Text Available Purpose. The investigation of laser irradiance influence on the adhesion strength of nickel and zinc coatings with copper base and the research of initial stages of crystallization for nickel and zinc films. Methodology. Electrodeposition of nickel and zinc films from the standard sulphate electrolyte solutions was carried out on the laser-electrolytic installations, built on the basis of gas discharge CO2-laser and solid ruby laser KVANT-12. The adhesion strength of metal coatings with copper base are defined not only qualitatively using the method of meshing and by means of multiple bending, but also quantitatively by means of indention of diamond pyramid into the border line between coating and base of the side section. Spectrum microanalysis of the element composition of the border line “film and base” is carried out using the electronic microscope REMMA-102-02. Findings. Laser irradiance application of the cathode region in the process of electroplating of metal coatings enables the adhesion strength improvement of coating with the base. Experimental results of adhesive strength of the films and the spectrum analysis of the element composition for the border line between film and base showed that during laser-assisted electroplating the diffusion interaction between coating elements and the base metal surface takes place. As a result of this interaction the coating metal diffuses into the base metal, forming transition diffused layer, which enhances the improvement of adhesion strength of the coatings with the base. Originality. It is found out that ion energy increase in the double electric layer during interaction with laser irradiance affects cathode supersaturation at the stage of crystallization. Hence, it also affects the penetration depth of electroplated material ions into the base metal, which leads to the adhesion strength enhancement. Practical value. On the basis of research results obtained during the laser

  13. Development of laser application technologies for nuclear industry

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Rhee, Y.; Cha, B. H.

    2004-03-01

    The stable laser isotope facility will supply raw stable isotope material to produce radioisotope elements for medical and industrial applications. The medical stable isotope, Tl-203 was separated by the isotope selective optical pumping (ISOP) method native to the laboratory for quantum optics, KAERI. The extraction rate of 10 mg/hr was achieved from the separation chamber of 80cm x 80cm x 100cm dimension. The Yb-168 separation facility was improved in stability, durability, and efficiency. The old copper vapor pumping laser system was replaced with two 40W green DPSSL's. The tunable dye laser system was also improved in stability. The extraction rate was measured as 1.5 mg/hr in the improved system. The 200W infrared DPSSL system was also developed and used for photoionization of thallium isotopes. The adaptive optics and beam path control system was applied to the isotope separation facilities. Also the beam quality of the lasers was monitored and improved. To maintain constant isotope composition during reaction process, the wavelengths of tunable lasers are locked by being the mass composition information fed back into the oscillator control unit of the lasers. To optimize isotope separation process timely, the extractor surface is directly analyzed by laser irradiation and TOF mass spectrometer. And the final products in high purity is recovered in maximum by solution chemistry

  14. Alkali-vapor laser-excimer pumped alkali laser

    International Nuclear Information System (INIS)

    Yue Desheng; Li Wenyu; Wang Hongyan; Yang Zining; Xu Xiaojun

    2012-01-01

    Based on the research internal and overseas, the principle of the excimer pumped alkali laser (XPAL) is explained, and the advantages and disadvantages of the XPAL are analyzed. Taking into consideration the difficulties that the diode pumped alkali laser (DPAL) meets on its development, the ability to solve or avoid these difficulties of XPAL is also analyzed. By summing up the achievements of the XPAL, the possible further prospect is proposed. The XPAL is of possibility to improve the performance of the DPAL. (authors)

  15. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    International Nuclear Information System (INIS)

    Kruszka, Bartosz; Terzyk, Artur P; Wiśniewski, Marek; Gauden, Piotr A; Szybowicz, Mirosław

    2014-01-01

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices. (paper)

  16. Observation and particle simulation of vaporized W, Mo, and Be in PISCES-B plasma for vapor-shielding studies

    Directory of Open Access Journals (Sweden)

    K. Ibano

    2017-08-01

    Full Text Available Interactions of Tungsten (W, Molybdenum (Mo, and Beryllium (Be vapors with a steady-state plasma were studied by the PISCES-B liner plasma experiments as well as Particle-In-Cell (PIC simulations for the understanding of vapor-shielding phenomena. Effective cooling of the plasma by laser-generated Be vapor was observed in PISCES-B. On the other hand, no apparent cooling was observed for W and Mo vapors. The PIC simulation explains these experimental observations of the difference between low-Z and high-Z vapors. Decrease of electron temperature due to the vapor ejection was observed in case of a simulation of the Be vapor. As for the W vapor, it was found that the plasma cooling is localized only near the wall at a higher electron density plasma (∼1019m−3. On the other hand, the appreciable plasma cooling can be observed in a lower density plasma (∼1018m−3 for the W vapor.

  17. Electrothermal atomization laser-excited atomic fluorescence spectroscopy for the determination of indium

    International Nuclear Information System (INIS)

    Aucelio, R.Q.; Smith, B.W.; Winefordner, J.D.

    1998-01-01

    A dye laser pumped by a high-repetition-rate copper vapor laser was used as the excitation source to determine indium at parts-per-trillion level by electrothermal atomization laser-excited atomic fluorescence spectrometry (ETA-LEAFS). A comparison was made between wall atomization, in pyrolytic and nonpyrolytic graphite tubes, and platform atomization. The influence of several chemical modifiers either in solution or precoated in the graphite tube was evaluated. The influence of several acids and NaOH in the analyte solution was also studied. Optimization of the analytical conditions was carried out to achieve the best signal-to-background ratio and consequently an absolute limit of detection of 1 fg. Some possible interferents of the method were evaluated. The method was evaluated by determining indium in blood, urine, soil, and urban dust samples. Recoveries between 99.17 and 109.17% are reported. A precision of 4.1% at the 10 ng g -1 level in water standards was achieved. copyright 1998 Society for Applied Spectroscopy

  18. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis

    Science.gov (United States)

    Ye, Lanhan; Song, Kunlin; Shen, Tingting

    2018-01-01

    Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS), coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice). For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV). Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R2 more than 0.97. The limit of detection (LOD) was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR) showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR) performed better in both calibration and prediction sets, where Rc2 and Rp2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice. PMID:29495445

  19. The efficiency of photovoltaic cells exposed to pulsed laser light

    Science.gov (United States)

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  20. The Atomic Vapor Laser Isotope Separation Program

    International Nuclear Information System (INIS)

    1992-01-01

    This report provides the finding and recommendations on the audit of the Atomic Vapor Laser Isotope Separation (AVLIS) program. The status of the program was assessed to determine whether the Department was achieving objectives stated in its January 1990 Plan for the Demonstration, Transition and Deployment of AVLIS Technology. Through Fiscal Year 1991, the Department had spent about $1.1 billion to develop AVLIS technology. The January 1990 plan provided for AVLIS to be far enough along by September to enable the Department to make a determination of the technical and economic feasibility of deployment. However, the milestones needed to support that determination were not met. An estimated $550 million would be needed to complete AVLIS engineering development and related testing prior to deployment. The earliest possible deployment date has slipped to beyond the year 2000. It is recommended that the Department reassess the requirement for AVLIS in light of program delays and changes that have taken place in the enrichment market since January 1990. Following the reassessment, a decision should be made to either fully support and promote the actions needed to complete AVLIS development or discontinue support for the program entirely. Management's position is that the Department will successfully complete the AVLIS technology demonstration and that the program should continue until it can be transferred to a Government corporation. Although the auditors recognize that AVLIS may be transferred, there are enough technical and financial uncertainties that a thorough assessment is warranted

  1. Single-photon cesium Rydberg excitation spectroscopy using 318.6-nm UV laser and room-temperature vapor cell.

    Science.gov (United States)

    Wang, Jieying; Bai, Jiandong; He, Jun; Wang, Junmin

    2017-09-18

    We demonstrate a single-photon Rydberg excitation spectroscopy of cesium (Cs) atoms in a room-temperature vapor cell. Cs atoms are excited directly from 6S 1/2 ground state to nP 3/2 (n = 70 - 100) Rydberg states with a 318.6 nm ultraviolet (UV) laser, and Rydberg excitation spectra are obtained by transmission enhancement of a probe beam resonant to Cs 6S 1/2 , F = 4 - 6P 3/2 , F' = 5 transition as partial population on F = 4 ground state are transferred to Rydberg state. Analysis reveals that the observed spectra are velocity-selective spectroscopy of Rydberg state, from which the amplitude and linewidth influenced by lasers' Rabi frequency have been investigated. Fitting to energies of Cs nP 3/2 (n = 70 -100) states, the determined quantum defect is 3.56671(42). The demodulated spectra can also be employed as frequency references to stabilize the UV laser frequency to specific Cs Rydberg transition.

  2. Airborne differential absorption lidar system for water vapor investigations

    Science.gov (United States)

    Browell, E. V.; Carter, A. F.; Wilkerson, T. D.

    1981-01-01

    Range-resolved water vapor measurements using the differential-absorption lidar (DIAL) technique is described in detail. The system uses two independently tunable optically pumped lasers operating in the near infrared with laser pulses of less than 100 microseconds separation, to minimize concentration errors caused by atmospheric scattering. Water vapor concentration profiles are calculated for each measurement by a minicomputer, in real time. The work is needed in the study of atmospheric motion and thermodynamics as well as in forestry and agriculture problems.

  3. Encapsulation of electroless copper patterns into diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Pimenov, S.M.; Shafeev, G.A.; Lavrischev, S.V. [General Physics Institute, Moscow (Russian Federation)] [and others

    1995-12-31

    The results are reported on encapsulating copper lines into diamond films grown by a DC plasma CVD. The process includes the steps of (i) laser activation of diamond for electroless metal plating, (ii) electroless copper deposition selectively onto the activated surface regions, and (iii) diamond regrowth on the Cu-patterned diamond films. The composition and electrical properties of the encapsulated copper lines were examined, revealing high purity and low electrical resistivity of the encapsulated electroless copper.

  4. Controlled assembly of high-order nanoarray metal structures on bulk copper surface by femtosecond laser pulses

    Science.gov (United States)

    Qin, Wanwan; Yang, Jianjun

    2017-07-01

    We report a new one-step maskless method to fabricate high-order nanoarray metal structures comprising periodic grooves and particle chains on a single-crystal Cu surface using femtosecond laser pulses at the central wavelength of 400 nm. Remarkably, when a circularly polarized infrared femtosecond laser pulse (spectrally centered at 800 nm) pre-irradiates the sample surface, the geometric dimensions of the composite structure can be well controlled. With increasing the energy fluence of the infrared laser pulse, both the groove width and particle diameter are observed to reduce, while the measured spacing-to-diameter ratio of the nanoparticles tends to present an increasing tendency. A physical scenario is proposed to elucidate the underlying mechanisms: as the infrared femtosecond laser pulse pre-irradiates the target, the copper surface is triggered to display anomalous transient physical properties, on which the subsequently incident Gaussian blue laser pulse is spatially modulated into fringe-like energy depositions via the excitation of ultrafast surface plasmon. During the following relaxation processes, the periodically heated thin-layer regions can be transferred into the metastable liquid rivulets and then they break up into nanodroplet arrays owing to the modified Rayleigh-like instability. This investigation indicates a simple integrated approach for active designing and large-scale assembly of complexed functional nanostructures on bulk materials.

  5. Photochemical Copper Coating on 3D Printed Thermoplastics

    Science.gov (United States)

    Yung, Winco K. C.; Sun, Bo; Huang, Junfeng; Jin, Yingdi; Meng, Zhengong; Choy, Hang Shan; Cai, Zhixiang; Li, Guijun; Ho, Cheuk Lam; Yang, Jinlong; Wong, Wai Yeung

    2016-08-01

    3D printing using thermoplastics has become very popular in recent years, however, it is challenging to provide a metal coating on 3D objects without using specialized and expensive tools. Herein, a novel acrylic paint containing malachite for coating on 3D printed objects is introduced, which can be transformed to copper via one-step laser treatment. The malachite containing pigment can be used as a commercial acrylic paint, which can be brushed onto 3D printed objects. The material properties and photochemical transformation processes have been comprehensively studied. The underlying physics of the photochemical synthesis of copper was characterized using density functional theory calculations. After laser treatment, the surface coating of the 3D printed objects was transformed to copper, which was experimentally characterized by XRD. 3D printed prototypes, including model of the Statue of Liberty covered with a copper surface coating and a robotic hand with copper interconnections, are demonstrated using this painting method. This composite material can provide a novel solution for coating metals on 3D printed objects. The photochemical reduction analysis indicates that the copper rust in malachite form can be remotely and photo-chemically reduced to pure copper with sufficient photon energy.

  6. Antibacterial effect of silk treated with silver and copper nanoparticles synthesized by pulsed laser ablation in distilled water

    Science.gov (United States)

    Baruah, Prahlad K.; Raman, Moghe A.; Chakrabartty, Ishani; Rangan, Latha; Sharma, Ashwini K.; Khare, Alika

    2018-05-01

    The antibacterial activity of three kinds of silks viz. Eri, Pat and Muga treated with silver and copper nanoparticles is reported in this paper. The nanoparticles have been synthesized by pulsed laser ablation of the respective metal targets in distilled water. Treatment of the silk pellets with the synthesized nanoparticles exhibited definite antibacterial activity whereas no such activity is observed in the untreated silk pellets.

  7. Thulium fiber laser induced vapor bubbles using bare, tapered, ball, hollow steel, and muzzle brake fiber optic tips

    Science.gov (United States)

    Gonzalez, David A.; Hardy, Luke A.; Hutchens, Thomas C.; Irby, Pierce B.; Fried, Nathaniel M.

    2018-02-01

    This study characterizes laser-induced vapor bubbles for five distal fiber optic tip configurations, to provide insight into stone retropulsion experienced during laser ablation of kidney stones. A TFL with 1908-nm wavelength delivered 34 mJ energy per pulse at 500-μs pulse duration through five different fibers: 100-μm-core/170-μm-OD bare fiber tip, 150-μm- to 300-μm-core tapered fiber tip, 100-μm-core/300-μm-OD ball tip fiber, 100-μm-core/340- μm-OD hollow steel tip fiber, and 100-μm-core/560-μm-OD muzzle brake fiber tip. A high speed camera with 10- μm spatial and 9.5-μs temporal resolution imaged vapor bubble dynamics. A needle hydrophone measured pressure transients in forward (0°) and side (90°) directions while placed at a 6.8 +/- 0.4 mm distance from fiber tip. Maximum bubble dimensions (width/length) averaged 0.7/1.5, 1.0/1.6, 0.5/1.1, 0.8/1.9, and 0.7/1.5 mm, for bare, tapered, ball, hollow steel, and muzzle tips, respectively (n=5). The hollow steel tip exhibited the most elongated vapor bubble shape, translating into increased forward pressure in this study and consistent with higher stone retropulsion in previous reports. Relative pressures (a.u.) in (forward/side) directions averaged 1.7/1.6, 2.0/2.0, 1.4/1.2, 6.8/1.1, and 0.3/1.2, for each fiber tip (n=5). For hollow steel tip, forward pressure was 4× higher than for bare fiber. For the muzzle brake fiber tip, forward pressure was 5× lower than for bare fiber. Bubble dimensions and pressure measurements demonstrated that the muzzle tip reduced forward pressure by partially venting vapors through side holes, consistent with lower stone retropulsion observed in previous reports.

  8. Solid state de-wetting observed for vapor deposited copper films on carbon substrates

    International Nuclear Information System (INIS)

    Schrank, C.; Eisenmenger-Sittner, C.; Neubauer, E.; Bangert, H.; Bergauer, A.

    2004-01-01

    Copper-Carbon composites are a good example for novel materials consisting of components with extremely different physical and chemical properties. They have a high potential for an application as heat sinks for electronic components, but the joining of the two materials is a difficult task. To obtain reasonable mechanical and thermal contact between copper and carbon the following route was chosen. First glassy-carbon substrates were subjected to an RF-Nitrogen plasma treatment. Then 300 nm thick copper coatings were sputter-deposited on the plasma treated surface within the same vacuum chamber. Finally, the samples were removed from the deposition chamber and either investigated immediately or thermally annealed at 850 deg. C under high vacuum conditions (10 -4 Pa). While non-annealed copper-coatings were continuous and showed excellent adhesion values of approximately 700 N/cm 2 , the heat treated samples lose their continuity by a de-wetting process. At the beginning holes are formed, then a labyrinth-like morphology develops and finally the coating consists of isolated droplets. All these processes occur well below the melting temperature of copper and were observed by AFM and SEM. The mechanism of this solid-state de-wetting process is investigated in relation to the recent literature on de-wetting and its consequences on the manufacturing of copper-carbon composites are discussed

  9. Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper

    Science.gov (United States)

    Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan

    2018-06-01

    Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.

  10. KTP laser selective vaporization of the prostate in the management of urinary retention due to BPH

    Science.gov (United States)

    Kleeman, M. W.; Nseyo, Unyime O.

    2003-06-01

    High-powered photoselective vaporization of the prostate (PVP) is a relatively new addition in the armamentarium against bladder outlet obstruction due to BPH. With BPH, the prostate undergoes stromal and epithelial hyperplasia, particularly in the transitional zone, mediated by dihydrotestosterone (DHT). This periurethral enlargement can compress the prostatic urethra leading to bladder outlet obstruction and eventually urinary retention. Treatment of uncomplicated symptomatic BPH has evolved from the standard transurethral resection of the prostate (TURP) to multiple medical therapies and the putative minimally invasive surgical procedures. These include microwave ablation, needle ablation, balloon dilation, stents, as well as fluid based thermo-therapy, ultrasound therapy and cryotherapy. Different forms of lasers have been applied to treat BPH with variable short and long term benefits of urinary symptoms. However, the controversy remains about each laser regarding its technical applicability and efficacy.

  11. Comparative study of diode-pumped alkali vapor laser and exciplex-pumped alkali laser systems and selection principal of parameters

    Science.gov (United States)

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Han, Gaoce; Li, Hui

    2017-03-01

    A theoretical model based on common pump structure is proposed to analyze the output characteristics of a diode-pumped alkali vapor laser (DPAL) and XPAL (exciplex-pumped alkali laser). Cs-DPAL and Cs-Ar XPAL systems are used as examples. The model predicts that an optical-to-optical efficiency approaching 80% can be achieved for continuous-wave four- and five-level XPAL systems with broadband pumping, which is several times the pumped linewidth for DPAL. Operation parameters including pumped intensity, temperature, cell's length, mixed gas concentration, pumped linewidth, and output coupler are analyzed for DPAL and XPAL systems based on the kinetic model. In addition, the predictions of selection principal of temperature and cell's length are also presented. The concept of the equivalent "alkali areal density" is proposed. The result shows that the output characteristics with the same alkali areal density but different temperatures turn out to be equal for either the DPAL or the XPAL system. It is the areal density that reflects the potential of DPAL or XPAL systems directly. A more detailed analysis of similar influences of cavity parameters with the same areal density is also presented.

  12. Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser

    Science.gov (United States)

    Chu, Zhiping; Wilkerson, Thomas D.; Singh, Upendra N.

    1993-01-01

    We report water-vapor absorption line measurements that are made by using the first Stokes radiation (930-982 nm) with HWHM 0.015/cm generated by a narrow-linewidth, tunable dye laser. Forty-five absorption line strengths are measured with an uncertainty of 6 percent and among them are fourteen strong lines that are compared with previous measurements for the assessment of spectral purity of the light source. Thirty air-broadened linewidths are measured with 8 percent uncertainty at ambient atmospheric pressure with an average of 0.101/cm. The lines are selected for the purpose of temperature-sensitive or temperature-insensitive lidar measurements. Results for these line strengths and linewidths are corrected for broadband radiation and finite laser linewidth broadening effects and compared with the high-resolution transmission molecular absorption.

  13. An experimental study of the composite CNT/copper coating

    Science.gov (United States)

    Panarin, Valentin Ye.; Svavil‧nyi, Nikolai Ye.; Khominich, Anastasiya I.

    2018-03-01

    This paper presents experimental results on the preparation and investigation of the carbon nanotubes-copper composite material. Carbon nanotubes (CNTs) were synthesized on silicon substrates by the chemical vapor deposition (CVD) method and then filled with copper by evaporation from a melting pot in a vacuum. Copper evenly covered both the surface of the entangled tubes and the free substrate surface between the tubes. To improve the adhesion of tubes and matrix material, a carbon substructure was grown on the surface of tubes by adding working gas plasma to the CNT synthesis area. It is proposed to use a copper coating as a diffusion barrier upon subsequent filling of the reinforcing CNT frame by a carbide-forming materials matrix with predetermined physico-mechanical and tribological properties.

  14. Predicting the heat of vaporization of iron at high temperatures using time-resolved laser-induced incandescence and Bayesian model selection

    Science.gov (United States)

    Sipkens, Timothy A.; Hadwin, Paul J.; Grauer, Samuel J.; Daun, Kyle J.

    2018-03-01

    Competing theories have been proposed to account for how the latent heat of vaporization of liquid iron varies with temperature, but experimental confirmation remains elusive, particularly at high temperatures. We propose time-resolved laser-induced incandescence measurements on iron nanoparticles combined with Bayesian model plausibility, as a novel method for evaluating these relationships. Our approach scores the explanatory power of candidate models, accounting for parameter uncertainty, model complexity, measurement noise, and goodness-of-fit. The approach is first validated with simulated data and then applied to experimental data for iron nanoparticles in argon. Our results justify the use of Román's equation to account for the temperature dependence of the latent heat of vaporization of liquid iron.

  15. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis

    Directory of Open Access Journals (Sweden)

    Fei Liu

    2018-02-01

    Full Text Available Fast detection of heavy metals is very important for ensuring the quality and safety of crops. Laser-induced breakdown spectroscopy (LIBS, coupled with uni- and multivariate analysis, was applied for quantitative analysis of copper in three kinds of rice (Jiangsu rice, regular rice, and Simiao rice. For univariate analysis, three pre-processing methods were applied to reduce fluctuations, including background normalization, the internal standard method, and the standard normal variate (SNV. Linear regression models showed a strong correlation between spectral intensity and Cu content, with an R 2 more than 0.97. The limit of detection (LOD was around 5 ppm, lower than the tolerance limit of copper in foods. For multivariate analysis, partial least squares regression (PLSR showed its advantage in extracting effective information for prediction, and its sensitivity reached 1.95 ppm, while support vector machine regression (SVMR performed better in both calibration and prediction sets, where R c 2 and R p 2 reached 0.9979 and 0.9879, respectively. This study showed that LIBS could be considered as a constructive tool for the quantification of copper contamination in rice.

  16. CO2 laser vaporization in the treatment of cervical human papillomavirus infection in women with abnormal Papanicolaou smears

    DEFF Research Database (Denmark)

    Ruge, S; Felding, C; Skouby, S O

    1992-01-01

    In a randomized study, we have evaluated the treatment of cervical human papillomavirus (HPV) lesions by CO2 laser vaporization. Fifty patients with abnormal Papanicolaou smears and histological evidence of cervical HPV infection associated or not with cervical intraepithelial neoplasia (CIN) grade...... I were randomized to either a treatment or a control group. The cervical swabs were obtained every 3 months in both groups and examined for HPV type 16 DNA by the polymerase chain reaction. After a follow-up period of 12 months no significant differences were found between the laser treatment...... in their cervical smears at 12 months' follow-up was identical in the two groups, supporting the hypothesis that HPV is a persistent infection during which the virus is widespread in the vaginal epithelium....

  17. Power stabilized CO2 gas transport laser

    International Nuclear Information System (INIS)

    Foster, J.D.; Kirk, R.F.; Moreno, F.E.; Ahmed, S.A.

    1975-01-01

    The output power of a high power (1 kW or more) CO 2 gas transport laser is stabilized by flowing the gas mixture over copper plated baffles in the gas channel during operation of the laser. Several other metals may be used instead of copper, for example, nickel, manganese, palladium, platinum, silver and gold. The presence of copper in the laser gas circuit stabilizes output power by what is believed to be a compensation of the chemical changes in the gas due to the cracking action of the electrical discharge which has the effect of diminishing the capactiy of the carbon dioxide gas mixture to maintain the rated power output of the laser. (U.S.)

  18. Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical–chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza; Lee, Namhoon; Wolak, Matthäus A.; Tan, Teng; Welander, Paul B.; Franzi, Matthew; Tantawi, Sami; Kustom, Robert L.

    2017-02-16

    Magnesium diboride (MgB2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB2. MgB2 coating on copper may allow cavity operation near 20–25 K as a result of the high transition temperature (T c) of MgB2 and excellent thermal conductivity of Cu. We have grown MgB2 films on 2 inch diameter Cu discs by hybrid physical–chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB2 coating on top of a Mg–Cu alloy layer with occasional intrusion of Mg–Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm-2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.

  19. Growth of magnesium diboride films on 2 inch diameter copper discs by hybrid physical-chemical vapor deposition

    Science.gov (United States)

    Withanage, Wenura K.; Xi, X. X.; Nassiri, Alireza; Lee, Namhoon; Wolak, Matthäus A.; Tan, Teng; Welander, Paul B.; Franzi, Matthew; Tantawi, Sami; Kustom, Robert L.

    2017-04-01

    Magnesium diboride (MgB2) coating is a potential candidate to replace bulk niobium (Nb) for superconducting radio frequency cavities due to the appealing superconducting properties of MgB2. MgB2 coating on copper may allow cavity operation near 20-25 K as a result of the high transition temperature (T c) of MgB2 and excellent thermal conductivity of Cu. We have grown MgB2 films on 2 inch diameter Cu discs by hybrid physical-chemical vapor deposition for radio frequency characterization. Structural and elemental analyses showed a uniform MgB2 coating on top of a Mg-Cu alloy layer with occasional intrusion of Mg-Cu alloy regions. High T c values of around 37 K and high critical current density (J c) on the order of 107 A cm-2 at zero field were observed. Radio frequency measurements at 11.4 GHz confirmed a high T c and showed a quality factor (Q 0) much higher than for Cu and close to that of Nb.

  20. Laser energy-pooling processes in an optically thick Cs vapor near a dissipative surface

    International Nuclear Information System (INIS)

    Gagne, Jean-Marie; Le Bris, Karine; Gagne, Marie-Claude

    2002-01-01

    We characterize, for the first time to our knowledge, the laser-induced backward fluorescence (retrofluorescence) spectra that result from energy-pooling collisions between Cs atoms near a dissipative thin Cs layer on a glass substrate. We resolve, experimentally and theoretically, the laser spectroscopic problem of energy-pooling processes related to the nature of the glass-metallic vapor interface. Our study focused on the integrated laser-induced retrofluorescence spectra for the 455.5-nm (7 2 P 3/2 -6 2 S 1/2 ) and 852.2-nm (6 2 P 3/2 -6 2 S 1/2 ) lines as a function of laser scanning through pumping resonance at the 852.2-nm line. We experimentally investigate the retrofluorescence from 420 to 930 nm, induced by a diode laser tuned either in the wings or in the center of the pumping resonance line. We present a detailed theoretical model of the retrofluorescence signal based on the radiative transfer equation, taking into account the evanescent wave of the excited atomic dipole strongly coupled with a dissipative surface. Based on theoretical and experimental results, we evaluate the effective nonradiative transfer rate A(bar sign) 6 2 P 3/2 →6 2 S 1/2s f for atoms in the excited 6 2 P 3/2 level located in the near-field region of the surface of the cell. Values extracted from the energy-pooling process analysis are equivalent to those found directly from the 852.2-nm resonance retrofluorescence line. We show that the effective energy-pooling coefficients k-tilde 7 2 P 3/2 and k-tilde 7 2 P 1/2 are approximately equal. The agreement between theory and experiment is remarkably good, considering the simplicity of the model

  1. Observations of high-n transitions in the spectra of near-neon-like copper ions from laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, K.B. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Faenov, A.Ya.; Pikuz, T.A.; Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Moscow (Russian Federation); Flora, F.; Bollanti, S.; Lazzaro, P.Di.; Murra, D. [ENEA, Dipartimento Innovazione, Settore Fisica Applicata, Frascati, Rome (Italy); Grilli, A. [INFN Frascati, Rome (Italy); Reale, A.; Reale, L.; Tomassetti, G.; Ritucci, A. [Dipartimento di Fisica e INFM, INFN g.c. LNGS, Universita dell' Aquila, L' Aquila (Italy); Bellucci, I.; Martellucci, S.; Petrocelli, G. [INFM, Dipartimento di Scienze e Tecnologie Fisiche ed Energetiche, Universita di Roma Tor Vergata, Rome (Italy)

    2002-08-14

    Spectra in the 7.50-8.70 A range from highly charged copper ions are analysed, and line identifications are made for the Na-, Ne-, F- and O-like charge states. The spectra are recorded with a spherically bent crystal spectrometer using either a mica or quartz crystal for moderate ({lambda}/{delta}{lambda}=3000) and high ({lambda}/{delta}{lambda}=8000) energy resolution, respectively. The plasmas from which the spectra are emitted are formed with either a Nd:glass (15 ns pulse) or a XeCl (12 ns pulse) laser. Systematic variations in the observed spectra with pulse energy are studied. Using different laser energies, and defocusing of the laser to reduce the intensity, we create plasmas with different ionization state distributions, which allows us to deconvolve blended lines from different copper ions. Line identifications are made based on relativistic atomic structure calculations that account for configuration interaction in level energies and transition rates. We use full kinetics simulations of ion emissivities, not just calculations of theoretical transition energies, to identify the strong and weak lines in crowded spectral regions. We identify 2p-nl transitions for Ne-like Cu{sup 19+} for 4{<=}n{<=}8 and 2s-np transitions for 4{<=}n{<=}6. We offer the first identification of high-n (n{<=}8) Na-like satellites to Ne-like Rydberg resonance lines. The first and second ionization energies for Cu{sup 19+} are found, at 1689.02 and 1709.16 eV, respectively, based on our observations. (author)

  2. Tissue ablation after 120W greenlight laser vaporization and bipolar plasma vaporization of the prostate: a comparison using transrectal three-dimensional ultrasound volumetry

    Science.gov (United States)

    Kranzbühler, Benedikt; Gross, Oliver; Fankhauser, Christian D.; Hefermehl, Lukas J.; Poyet, Cédric; Largo, Remo; Müntener, Michael; Seifert, Hans-Helge; Zimmermann, Matthias; Sulser, Tullio; Müller, Alexander; Hermanns, Thomas

    2012-02-01

    Introduction and objectives: Greenlight laser vaporization (LV) of the prostate is characterized by simultaneous vaporization and coagulation of prostatic tissue resulting in tissue ablation together with excellent hemostasis during the procedure. It has been reported that bipolar plasma vaporization (BPV) of the prostate might be an alternative for LV. So far, it has not been shown that BPV is as effective as LV in terms of tissue ablation or hemostasis. We performed transrectal three-dimensional ultrasound investigations to compare the efficiency of tissue ablation between LV and BPV. Methods: Between 11.2009 and 5.2011, 50 patients underwent pure BPV in our institution. These patients were matched with regard to the pre-operative prostate volume to 50 LV patients from our existing 3D-volumetry-database. Transrectal 3D ultrasound and planimetric volumetry of the prostate were performed pre-operatively, after catheter removal, 6 weeks and 6 months. Results: Median pre-operative prostate volume was not significantly different between the two groups (45.3ml vs. 45.4ml; p=1.0). After catheter removal, median absolute volume reduction (BPV 12.4ml, LV 6.55ml) as well as relative volume reduction (27.8% vs. 16.4%) were significantly higher in the BPV group (p<0.001). After six weeks (42.9% vs. 33.3%) and six months (47.2% vs. 39.7%), relative volume reduction remained significantly higher in the BPV group (p<0.001). Absolute volume reduction was non-significantly higher in the BPV group after six weeks (18.4ml, 13.8ml; p=0.051) and six months (20.8ml, 18ml; p=0.3). Clinical outcome parameters improved significantly in both groups without relevant differences between the groups. Conclusions: Both vaporization techniques result in efficient tissue ablation with initial prostatic swelling. BPV seems to be superior due to a higher relative volume reduction. This difference had no clinical impact after a follow-up of 6M.

  3. Effects of etchants in the transfer of chemical vapor deposited graphene

    Science.gov (United States)

    Wang, M.; Yang, E. H.; Vajtai, R.; Kono, J.; Ajayan, P. M.

    2018-05-01

    The quality of graphene can be strongly modified during the transfer process following chemical vapor deposition (CVD) growth. Here, we transferred CVD-grown graphene from a copper foil to a SiO2/Si substrate using wet etching with four different etchants: HNO3, FeCl3, (NH4)2S2O8, and a commercial copper etchant. We then compared the quality of graphene after the transfer process in terms of surface modifications, pollutions (residues and contaminations), and electrical properties (mobility and density). Our tests and analyses showed that the commercial copper etchant provides the best structural integrity, the least amount of residues, and the smallest doping carrier concentration.

  4. Electrospun Polymer Fiber Lasers for Applications in Vapor Sensing

    DEFF Research Database (Denmark)

    Krämmer, Sarah; Laye, Fabrice; Friedrich, Felix

    2017-01-01

    of the narrow lasing modes upon uptake of alcohol vapors (model vapors are methanol and ethanol) serves as sensor signal. Thus, the high sensitivity related to the spectral line shifts of cavity-based transducers can be combined with the fiber's large surface to volume ratio. The resulting optical sensors...

  5. The Influence of spot size on the expansion dynamics of nanosecond-laser-produced copper plasmas in atmosphere

    International Nuclear Information System (INIS)

    Li, Xingwen; Wei, Wenfu; Wu, Jian; Jia, Shenli; Qiu, Aici

    2013-01-01

    Laser produced copper plasmas of different spot sizes in air were investigated using fast photography and optical emission spectroscopy (OES). The laser energy was 33 mJ. There were dramatic changes in the plasma plume expansion into the ambient air when spot sizes changed from ∼0.1 mm to ∼0.6 mm. A stream-like structure and a hemispherical structure were, respectively, observed. It appeared that the same spot size resulted in similar expansion dynamics no matter whether the target was located in the front of or behind the focal point, although laser-induced air breakdown sometimes occurred in the latter case. Plasma plume front positions agree well with the classic blast wave model for the large spot-size cases, while an unexpected stagnation of ∼80 ns occurred after the laser pulse ends for the small spot size cases. This stagnation can be understood in terms of the evolution of enhanced plasma shielding effects near the plasma front. Axial distributions of plasma components by OES revealed a good confinement effect. Electron number densities were estimated and interpreted using the recorded Intensified Charge Coupled Device (ICCD) images.

  6. A heated vapor cell unit for DAVLL in atomic rubidium

    OpenAIRE

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L.

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm-long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field...

  7. Metal impurity injection into DIVA plasmas with a Q-switched laser beam

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nagami, Masayuki; Sengoku, Seio; Kumagai, Katsuaki

    1978-08-01

    Metal impurity injection into DIVA plasmas with a Q-switched ruby laser beam is described. Metal materials used are aluminium and gold. The Q-switched laser beam is incident onto a thin metal film thickness about 0.2 μm coated on pyrex glass plate surface. The metal film is vaporized by the laser beam and injected into DIVA plasma. The laser-beam injection method has advantages of sharp profile of vaporized metal, easy control of vaporized metal quantity and injection rate control of metal vapor. (author)

  8. Toughness amplification in copper/epoxy joints through pulsed laser micro-machined interface heterogeneities

    KAUST Repository

    Hernandez Diaz, Edwin

    2017-11-21

    This work addresses the mechanics of debonding along copper/epoxy joints featuring patterned interfaces. Engineered surface heterogeneities with enhanced adhesion properties are generated through pulsed laser irradiation. Peel tests are carried out to ascertain the effect of patterns shape and area fraction on the mechanical response. Experimental results are evaluated with the support of three-dimensional finite element simulations based on the use of cohesive surfaces. Results discussion is largely framed in terms of effective peel force and energy absorbed to sever the samples. It is shown that surface heterogeneities act as sites of potential crack pinning able to trigger crack initiation, propagation and arrest. Surface patterns ultimately enable a remarkable increase in the effective peel force and dissipated energy with respect to baseline homogeneous sanded interface.

  9. Toughness amplification in copper/epoxy joints through pulsed laser micro-machined interface heterogeneities

    KAUST Repository

    Diaz, Edwin Hernandez; Alfano, Marco; Pulungan, Ditho Ardiansyah; Lubineau, Gilles

    2017-01-01

    This work addresses the mechanics of debonding along copper/epoxy joints featuring patterned interfaces. Engineered surface heterogeneities with enhanced adhesion properties are generated through pulsed laser irradiation. Peel tests are carried out to ascertain the effect of patterns shape and area fraction on the mechanical response. Experimental results are evaluated with the support of three-dimensional finite element simulations based on the use of cohesive surfaces. Results discussion is largely framed in terms of effective peel force and energy absorbed to sever the samples. It is shown that surface heterogeneities act as sites of potential crack pinning able to trigger crack initiation, propagation and arrest. Surface patterns ultimately enable a remarkable increase in the effective peel force and dissipated energy with respect to baseline homogeneous sanded interface.

  10. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-01-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  11. Identification of vapor-phase chemical warfare agent simulants and rocket fuels using laser-induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Stearns, Jaime A.; McElman, Sarah E.; Dodd, James A.

    2010-05-01

    Application of laser-induced breakdown spectroscopy (LIBS) to the identification of security threats is a growing area of research. This work presents LIBS spectra of vapor-phase chemical warfare agent simulants and typical rocket fuels. A large dataset of spectra was acquired using a variety of gas mixtures and background pressures and processed using partial least squares analysis. The five compounds studied were identified with a 99% success rate by the best method. The temporal behavior of the emission lines as a function of chamber pressure and gas mixture was also investigated, revealing some interesting trends that merit further study.

  12. Study of Laser Created Metal Vapor Plasmas.

    Science.gov (United States)

    1979-11-16

    Leventhal(1 indicate a value closer to 10-1 cm. might be expected. In the case of’ laser induced penniinf, ionization., wec -,;4-,rit LIP 32 LIP L J where...modified Kramer’s formulae.(25) In figure 11 we demonstrate the impact of associative ionization and laser induced penning ionization upon the temporal...34Laser Induced Fluorescence and Environmental Sensing", Invited paper for Optical Society of America, Topical Mcetixg on "Applications of Laser

  13. Vaporization of irradiated droplets

    International Nuclear Information System (INIS)

    Armstrong, R.L.; O'Rourke, P.J.; Zardecki, A.

    1986-01-01

    The vaporization of a spherically symmetric liquid droplet subject to a high-intensity laser flux is investigated on the basis of a hydrodynamic description of the system composed of the vapor and ambient gas. In the limit of the convective vaporization, the boundary conditions at the fluid--gas interface are formulated by using the notion of a Knudsen layer in which translational equilibrium is established. This leads to approximate jump conditions at the interface. For homogeneous energy deposition, the hydrodynamic equations are solved numerically with the aid of the CON1D computer code (''CON1D: A computer program for calculating spherically symmetric droplet combustion,'' Los Alamos National Laboratory Report No. LA-10269-MS, December, 1984), based on the implict continuous--fluid Eulerian (ICE) [J. Comput. Phys. 8, 197 (1971)] and arbitrary Lagrangian--Eulerian (ALE) [J. Comput. Phys. 14, 1227 (1974)] numerical mehtods. The solutions exhibit the existence of two shock waves propagating in opposite directions with respect to the contact discontinuity surface that separates the ambient gas and vapor

  14. Fabrication of 100 A class, 1 m long coated conductor tapes by metal organic chemical vapor deposition and pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Selvamanickam, V.; Lee, H.G.; Li, Y.; Xiong, X.; Qiao, Y.; Reeves, J.; Xie, Y.; Knoll, A.; Lenseth, K

    2003-10-15

    SuperPower has been scaling up YBa{sub 2}Cu{sub 3}O{sub x}-based second-generation superconducting tapes by techniques such as pulsed laser deposition (PLD) using industrial laser and metal organic chemical vapor deposition (MOCVD). Both techniques offer advantage of high deposition rates, which is important for high throughput. Using highly-polished substrates produced in a reel-to-reel polishing facility and buffer layers deposited in a pilot ion beam assisted deposition facility, meter-long second-generation high temperature superconductor tapes have been produced. 100 A class, meter-long coated conductor tapes have been reproducibly demonstrated in this work by both MOCVD and PLD. The best results to date are 148 A over 1.06 m by MOCVD and 135 A over 1.1 m by PLD using industrial laser.

  15. Multi-Pulse Excitation for Underwater Analysis of Copper-Based Alloys Using a Novel Remote Laser-Induced Breakdown Spectroscopy (LIBS) System.

    Science.gov (United States)

    Guirado, Salvador; Fortes, Francisco J; Laserna, J Javier

    2016-04-01

    In this work, the use of multi-pulse excitation has been evaluated as an effective solution to mitigate the preferential ablation of the most volatile elements, namely Sn, Pb, and Zn, observed during laser-induced breakdown spectroscopy (LIBS) analysis of copper-based alloys. The novel remote LIBS prototype used in this experiments featured both single-pulse (SP-LIBS) and multi-pulse excitation (MP-LIBS). The remote instrument is capable of performing chemical analysis of submersed materials up to a depth of 50 m. Laser-induced breakdown spectroscopy analysis was performed at air pressure settings simulating the conditions during a real subsea analysis. A set of five certified bronze standards with variable concentration of Cu, As, Sn, Pb, and Zn were used. In SP-LIBS, signal emission is strongly sensitive to ambient pressure. In this case, fractionation effect was observed. Multi-pulse excitation circumvents the effect of pressure over the quantitative analysis, thus avoiding the fractionation phenomena observed in single pulse LIBS. The use of copper as internal standard minimizes matrix effects and discrepancies due to variation in ablated mass. © The Author(s) 2016.

  16. Theoretical studies of solar-pumped lasers

    Science.gov (United States)

    Harries, W. L.

    1983-01-01

    Possible types of lasers were surveyed for solar power conversion. The types considered were (1) liquid dye lasers, (2) vapor dye lasers, and (3) nondissociative molecular lasers. These are discussed.

  17. Dermatological laser treatment

    International Nuclear Information System (INIS)

    Moerk, N.J.; Austad, J.; Helland, S.; Thune, P.; Volden, G.; Falk, E.

    1991-01-01

    The article reviews the different lasers used in dermatology. Special emphasis is placed on the treatment of naevus flammeus (''portwine stain'') where lasers are the treatment of choice. Argon laser and pulsed dye laser are the main lasers used in vascular skin diseases, and the article focuses on these two types. Copper-vapour laser, neodymium-YAG laser and CO 2 laser are also presented. Information is provided about the availability of laser technology in the different health regions in Norway. 5 refs., 2 figs

  18. Ablation, surface activation, and electroless metallization of insulating materials by pulsed excimer laser irradiation

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Godbole, M.J.; Pedraza, A.J.

    1993-01-01

    Pulsed-laser irradiation of wide bandgap ceramic substrates, using photons with sub-bandgap energies, activates the ceramic surface for subsequent electroless copper deposition. The copper deposit is confined within the irradiated region when the substrate is subsequently immersed in an electroless copper bath. However, a high laser fluence (typically several j/cm 2 ) and repeated laser shots are needed to obtain uniform copper coverage by this direct-irradiation process. In contrast, by first applying an evaporated SiO x thin film (with x ∼1), laser ablation at quite low energy density (∼0.5 J/cm 2 ) results in re-deposition on the ceramic substrate of material that is catalytic for subsequent electroless copper deposition. Experiments indicate that the re-deposited material is on silicon, on which copper nucleates. Using an SiO x film on a laser-transparent substrate, quite fine (∼12 μm) copper lines can be formed at the boundary of the region that is laser-etched in SiO x . Using SiO x with an absorbing (polycrystalline) ceramic substrate, more-or-less uniform activation and subsequent copper deposition are obtained. In the later case, interactions with the ceramic substrate also may be important for uniform deposition

  19. Fabrication of rectangular cross-sectional microchannels on PMMA with a CO2 laser and underwater fabricated copper mask

    Science.gov (United States)

    Prakash, Shashi; Kumar, Subrata

    2017-09-01

    CO2 lasers are commonly used for fabricating polymer based microfluidic devices. Despite several key advantages like low cost, time effectiveness, easy to operate and no requirement of clean room facility, CO2 lasers suffer from few disadvantages like thermal bulging, improper dimensional control, difficulty to produce microchannels of other than Gaussian cross sectional shapes and inclined surface walls. Many microfluidic devices require square or rectangular cross-sections which are difficult to produce using normal CO2 laser procedures. In this work, a thin copper sheet of 40 μm was used as a mask above the PMMA (Polymethyl-methacrylate) substrate while fabricating the microchannels utilizing the raster scanning feature of the CO2 lasers. Microchannels with different width dimensions were fabricated utilizing a CO2 laser in with mask and without-mask conditions. A comparison of both the fabricating process has been made. It was found that microchannels with U shape cross section and rectangular cross-section can efficiently be produced using the with mask technique. In addition to this, this technique can provide perfect dimensional control and better surface quality of the microchannel walls. Such a microchannel fabrication process do not require any post-processing. The fabrication of mask using a nanosecond fiber laser has been discussed in details. An underwater laser fabrication method was adopted to overcome heat related defects in mask preparation. Overall, the technique was found to be easy to adopt and significant improvements were observed in microchannel fabrication.

  20. Non-equilibrium modeling of UV laser induced plasma on a copper target in the presence of Cu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Ait Oumeziane, Amina, E-mail: a.aitoumeziane@gmail.com; Liani, Bachir [Laboratoire de Physique Théorique, Abou Beker Blekaid University (Algeria); Parisse, Jean-Denis [IUSTI UMR CNRS 7343, Aix-Marseille University (France); French Air School, Salon de Provence (France)

    2016-03-15

    This work is a contribution to the understanding of UV laser ablation of a copper sample in the presence of Cu{sup 2+} species as well as electronic non-equilibrium in the laser induced plasma. This particular study extends a previous paper and develops a 1D hydrodynamic model to describe the behavior of the laser induced plume, including the thermal non-equilibrium between electrons and heavy particles. Incorporating the formation of doubly charged ions (Cu{sup 2+}) in such an approach has not been considered previously. We evaluate the effect of the presence of doubly ionized species on the characteristics of the plume, i.e., temperature, pressure, and expansion velocity, and on the material itself by evaluating the ablation depth and plasma shielding effects. This study evaluates the effects of the doubly charged species using a non-equilibrium hydrodynamic approach which comprises a contribution to the understanding of the governing processes of the interaction of ultraviolet nanosecond laser pulses with metals and the parameter optimization depending on the intended application.

  1. Laser-induced chemical vapor deposition reactions

    International Nuclear Information System (INIS)

    Teslenko, V.V.

    1990-01-01

    The results of investigation of chemical reactions of deposition of different substances from the gas phase when using the energy of pulse quasicontinuous and continuous radiation of lasers in the wave length interval from 0.193 to 10.6 μm are generalized. Main attetion is paid to deposition of inorganic substances including nonmetals (C, Si, Ge and others), metals (Cu, Au, Zn, Cd, Al, Cr, Mo, W, Ni) and some simple compounds. Experimental data on the effect of laser radiation parameters and reagent nature (hydrides, halogenides, carbonyls, alkyl organometallic compounds and others) on the deposition rate and deposit composition are described in detail. Specific features of laser-chemical reactions of deposition and prospects of their application are considered

  2. New laser design for NIR lidar applications

    Science.gov (United States)

    Vogelmann, H.; Trickl, T.; Perfahl, M.; Biggel, S.

    2018-04-01

    Recently, we quantified the very high spatio-temporal short term variability of tropospheric water vapor in a three dimensional study [1]. From a technical point of view this also depicted the general requirement of short integration times for recording water-vapor profiles with lidar. For this purpose, the only suitable technique is the differential absorption lidar (DIAL) working in the near-infrared (NIR) spectral region. The laser emission of most water vapor DIAL systems is generated by Ti:sapphire or alexandrite lasers. The water vapor absorption band at 817 nm is predominated for the use of Ti:sapphire. We present a new concept of transversely pumping in a Ti:Sapphire amplification stage as well as a compact laser design for the generation of single mode NIR pulses with two different DIAL wavelengths inside a single resonator. This laser concept allows for high output power due to repetitions rates up to 100Hz or even more. It is, because of its compactness, also suitable for mobile applications.

  3. Formation of long carbon chain molecules during laser vaporization of graphite

    International Nuclear Information System (INIS)

    Heath, J.R.; Zhang, Q.; O'Brien, S.C.; Curl, R.F.; Kroto, H.W.; Smalley, R.E.

    1987-01-01

    Graphite is laser vaporized into a He carrier gas containing various simple molecules such as H 2 , H 2 O, NH 3 , and CH 3 CN, supersonically expanded, and skimmed into a molecular beam, and the beam is interrogated by photoionization time-of-flight mass spectrometry. Without added reactants in the He carrier gas, C/sub n/ species up to n = 130 are readily observed. Two distributions separated at about n = 40 appear to be present with the low n species the focus of this work. In the presence of added reagents, new species appear as a result of reaction. These are satisfactorily explained on the basis that a significant proportion of the C/sub n/ species initially formed are reactive radicals with linear carbon chain structures which can readily add H, N, or CN at the ends to form relatively stable polyynes or cyanopolyynes. Some of the cyanopolyynes detected have also been observed in the interstellar medium, and circumstellar carbon condensation processes in the atmospheres of carbon-rich stars similar to those studied here are suggested as possible synthetic sources

  4. Laser-solid interaction and dynamics of the laser-ablated materials

    International Nuclear Information System (INIS)

    Chen, K.R.; Leboeuf, J.N.; Geohegan, D.B.; Wood, R.F.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-01-01

    Rapid transformations through the liquid and vapor phases induced by laser-solid interactions are described by the authors' thermal model with the Clausius-Clapeyron equation to determine the vaporization temperature under different surface pressure condition. Hydrodynamic behavior of the vapor during and after ablation is described by gas dynamic equations. These two models are coupled. Modeling results show that lower background pressure results lower laser energy density threshold for vaporization. The ablation rate and the amount of materials removed are proportional to the laser energy density above its threshold. The authors also demonstrate a dynamic source effect that accelerates the unsteady expansion of laser-ablated material in the direction perpendicular to the solid. A dynamic partial ionization effect is studied as well. A self-similar theory shows that the maximum expansion velocity is proportional to c s α, where 1 - α is the slope of the velocity profile. Numerical hydrodynamic modeling is in good agreement with the theory. With these effects, α is reduced. Therefore, the expansion front velocity is significantly higher than that from conventional models. The results are consistent with experiments. They further study how the plume propagates in high background gas condition. Under appropriate conditions, the plume is slowed down, separates with the background, is backward moving, and hits the solid surface. Then, it splits into two parts when it rebounds from the surface. The results from the modeling will be compared with experimental observations where possible

  5. Increase of intrinsic emittance induced by multiphoton photoemission from copper cathodes illuminated by femtosecond laser pulses

    Science.gov (United States)

    An, Chenjie; Zhu, Rui; Xu, Jun; Liu, Yaqi; Hu, Xiaopeng; Zhang, Jiasen; Yu, Dapeng

    2018-05-01

    Electron sources driven by femtosecond laser have important applications in many aspects, and the research about the intrinsic emittance is becoming more and more crucial. The intrinsic emittance of polycrystalline copper cathode, which was illuminated by femtosecond pulses (FWHM of the pulse duration was about 100 fs) with photon energies above and below the work function, was measured with an extremely low bunch charge (single-electron pulses) based on free expansion method. A minimum emittance was obtained at the photon energy very close to the effective work function of the cathode. When the photon energy decreased below the effective work function, emittance increased rather than decreased or flattened out to a constant. By investigating the dependence of photocurrent density on the incident laser intensity, we found the emission excited by pulsed photons with sub-work-function energies contained two-photon photoemission. In addition, the portion of two-photon photoemission current increased with the reduction of photon energy. We attributed the increase of emittance to the effect of two-photon photoemission. This work shows that conventional method of reducing the photon energy of excited light source to approach the room temperature limit of the intrinsic emittance may be infeasible for femtosecond laser. There would be an optimized photon energy value near the work function to obtain the lowest emittance for pulsed laser pumped photocathode.

  6. CdS-based p-i-n diodes using indium and copper doped CdS films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N; Berrellez-Reyes, F; Mizquez-Corona, R; Ramirez-Esquivel, O; Mejia, I; Quevedo-Lopez, M

    2015-01-01

    In this work we report a method to dope cadmium sulfide (CdS) thin films using pulsed laser deposition. Doping is achieved during film growth at substrate temperatures of 100 °C by sequential deposition of the CdS and the dopant material. Indium sulfide and copper disulfide targets were used as the dopant sources for n-type and p-type doping, respectively. Film resistivities as low as 0.2 and 1 Ω cm were achieved for indium and copper doped films, respectively. Hall effect measurements demonstrated the change in conductivity type from n-type to p-type when the copper dopants are incorporated into the film. The controlled incorporation of indium or copper, in the undoped CdS film, results in substitutional defects in the CdS, which increases the electron and hole concentration up to 4 × 10 18 cm −3 and 3 × 10 20 cm −3 , respectively. The results observed with CdS doping can be expanded to other chalcogenides material compounds by just selecting different targets. With the optimized doped films, CdS-based p-i-n diodes were fabricated yielding an ideality factor of 4, a saturation current density of 2 × 10 −6 A cm −2 and a rectification ratio of three orders of magnitude at ±3 V. (paper)

  7. Bartholin's gland cysts: management with carbon-dioxide laser vaporization Cistos da glândula de Bartholin: tratamento com vaporização laser com CO2

    Directory of Open Access Journals (Sweden)

    Ana Cristina Neves Figueiredo

    2012-12-01

    Full Text Available PURPOSE: To evaluate the effectiveness, recurrence rate, and complications of carbon-dioxide laser vaporization in the treatment of Bartholin's gland cysts. METHODS: A retrospective study including 127 patients with symptomatic Bartholin' gland cysts submitted to carbon-dioxide laser vaporization at our institution from January 2005 to June 2011. Patients with Bartholin's gland abscesses and those suspected of having neoplasia were excluded. All procedures were performed in an outpatient setting under local anaesthesia. Clinical records were reviewed for demographic characteristics, anatomic parameters, intraoperative and postoperative complications, and follow-up data. Data were stored and analyzed in Microsoft Excel® 2007 software. A descriptive statistical analysis was performed, and its results were expressed as frequency (percentage or mean±standard deviation. Complication, recurrence, and cure rates were calculated. RESULTS: The mean age of the patients was 37.3±9.5 years-old (range from 18 to 61 years-old. Seventy percent (n=85 of them were multiparous. The most common symptom was pain and 47.2% (n=60 of patients had a history of previous medical and/or surgical treatment for Bartholin's gland abscesses. Mean cyst size was 2.7±0.9 cm. There were three (2.4% cases of minor intraoperative bleeding. Overall, there were 17 (13.4% recurrences within a mean of 14.6 months (range from 1 to 56 months: ten Bartholin's gland abscesses and seven recurrent cysts requiring reintervention. The cure rate after single laser treatment was 86.6%. Among the five patients with recurrent disease that had a second laser procedure, the cure rate was 100%. CONCLUSIONS: At this institution, carbon-dioxide laser vaporization seems to be a safe and effective procedure for the treatment of Bartholin's gland cysts.OBJETIVO: Avaliar a eficácia, a taxa de recorrência e as complicações da vaporização laser com CO2 no tratamento dos cistos da glândula de

  8. Substrate considerations for graphene synthesis on thin copper films

    International Nuclear Information System (INIS)

    Howsare, Casey A; Robinson, Joshua A; Weng Xiaojun; Bojan, Vince; Snyder, David

    2012-01-01

    Chemical vapor deposition on copper substrates is a primary technique for synthesis of high quality graphene films over large areas. While well-developed processes are in place for catalytic growth of graphene on bulk copper substrates, chemical vapor deposition of graphene on thin films could provide a means for simplified device processing through the elimination of the layer transfer process. Recently, it was demonstrated that transfer-free growth and processing is possible on SiO 2 . However, the Cu/SiO 2 /Si material system must be stable at high temperatures for high quality transfer-free graphene. This study identifies the presence of interdiffusion at the Cu/SiO 2 interface and investigates the influence of metal (Ni, Cr, W) and insulating (Si 3 N 4 , Al 2 O 3 , HfO 2 ) diffusion barrier layers on Cu–SiO 2 interdiffusion, as well as graphene structural quality. Regardless of barrier choice, we find the presence of Cu diffusion into the silicon substrate as well as the presence of Cu–Si–O domains on the surface of the copper film. As a result, we investigate the choice of a sapphire substrate and present evidence that it is a robust substrate for synthesis and processing of high quality, transfer-free graphene. (paper)

  9. Minimally-invasive Laser Ablation Inductively Coupled Plasma Mass Spectrometry analysis of model ancient copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walaszek, Damian [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Senn, Marianne; Wichser, Adrian [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Faller, Markus [Laboratory for Jointing Technology and Corrosion, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland); Wagner, Barbara; Bulska, Ewa [University of Warsaw, Faculty of Chemistry, Biological and Chemical Research Centre, Żwirki i Wigury 101, 02-089 Warszawa (Poland); Ulrich, Andrea [Laboratory for Analytical Chemistry, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf (Switzerland)

    2014-09-01

    This work describes an evaluation of a strategy for multi-elemental analysis of typical ancient bronzes (copper, lead bronze and tin bronze) by means of laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).The samples originating from archeological experiments on ancient metal smelting processes using direct reduction in a ‘bloomery’ furnace as well as historical casting techniques were investigated with the use of the previously proposed analytical procedure, including metallurgical observation and preliminary visual estimation of the homogeneity of the samples. The results of LA-ICPMS analysis were compared to the results of bulk composition obtained by X-ray fluorescence spectrometry (XRF) and by inductively coupled plasma mass spectrometry (ICPMS) after acid digestion. These results were coherent for most of the elements confirming the usefulness of the proposed analytical procedure, however the reliability of the quantitative information about the content of the most heterogeneously distributed elements was also discussed in more detail. - Highlights: • The previously proposed procedure was evaluated by analysis of model copper alloys. • The LA-ICPMS results were comparable to the obtained by means of XRF and ICPMS. • LA-ICPMS results indicated the usefulness of the proposed analytical procedure.

  10. Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter.

    Science.gov (United States)

    Sun, Qinqing; Zhuang, Wei; Liu, Zhiwen; Chen, Jingbiao

    2011-12-01

    We report an excited-state Faraday anomalous-dispersion optical filter operating on the rubidium 5P(3/2)-5D(5/2) transition (775.9 nm in vacuum) without the use of a pump laser. An electrodeless discharge vapor lamp is employed to replace the Rb vapor cell in a traditional Faraday anomalous-dispersion optical filter system. Atoms can be excited by power rather than a complex frequency-locked pump laser. A proof-of-concept experimental demonstration with a maximum transmission of 1.9% and a filter bandwidth of 650 MHz is presented. © 2011 Optical Society of America

  11. Modeling CO2 Laser Ablative Impulse with Polymers

    International Nuclear Information System (INIS)

    Sinko, John E.; Phipps, Claude R.; Sasoh, Akihiro

    2010-01-01

    Laser ablation vaporization models have usually ignored the spatial dependence of the laser beam. Here, we consider effects from modeling using a Gaussian beam for both photochemical and photothermal conditions. The modeling results are compared to experimental and literature data for CO 2 laser ablation of the polymer polyoxymethylene under vacuum, and discussed in terms of the ablated mass areal density and momentum coupling coefficient. Extending the scope of discussion, laser ablative impulse generation research has lacked a cohesive strategy for linking the vaporization and plasma regimes. Existing models, mostly formulated for ultraviolet laser systems or metal targets, appear to be inappropriate or impractical for applications requiring CO 2 laser ablation of polymers. A recently proposed method for linking the vaporization and plasma regimes for analytical modeling is addressed here along with the implications of its use. Key control parameters are considered, along with the major propulsion parameters needed for laser ablation propulsion modeling.

  12. NDT studies of laser cladding defects of pure copper on SS316L for in vessel materials for fusion reactor applications

    International Nuclear Information System (INIS)

    Shaikh, S.; Buddu, Ramesh Kumar; Raole, P.M.; Sarkar, B.

    2015-01-01

    The pure thick copper coatings of 1-3 mm are required for the in-vessel materials for the plasma facing components in fusion reactor systems to extract the very high heat flux in shorter durations (like VDEs) and to protect the in vessel components. Laser cladding technique is one of the potential technique for thick coatings on substrate materials. The present study reports the NDT characterization studies carried on samples of pure copper powder cladded on SS316L substrates of thickness 1 mm - 3 mm , fabricated by CO_2 laser system. Process parameters optimization like laser power, laser travel speed, spot size, powder feed rate and shield gas flow show the effect on quality of final cladding on steel substrates. X-ray radiography and Ultrasonic testing has been carried out thoroughly on the fabricated samples and defects are analyzed. Ultrasonic scan tests using different probes are employed as the interface defects are not thoroughly revealed by radiography. The calibration has been carried out by the test sample plate with known defect size created and various process parameters like amplitude, gain and metal velocity, relevant to specimen are chosen for probes calibration. The interface defects of porosity, lack of penetration, cracks or group porosities are observed in few set of samples developed. Radiography examination revealed the porosity at extreme edges and distributed porosity in the middle for thick cladding. Ultrasonic manual A-scanning with TR probe provides qualitative information about flaw and broadly gives its location of the defects. Samples of 1 mm thick cladding have shown relatively less porosity defects at the interface compared to 3 mm thick samples. (author)

  13. Direct Write Processing of Multi-micron Thickness Copper Nano-particle Paste on Flexible Substrates with 532 nm Laser Wavelength

    Science.gov (United States)

    Lopez-Espiricueta, Dunia; Fearon, Eamonn; Edwardson, Stuart; Dearden, Geoffrey

    The Laser Assisted Direct Write (LA-DW) method has been implemented in the development of different markets and material processing, recently also used for creating Printed Circuit Boards (PCB) or electrical circuitry. The process consists in the deposition of metallic nano-particle (NP) inks, which are afterwards cured or sintered by laser irradiation, thus creating conductive pathways; advantages are speed, accuracy and the protection of the heat affected zone (HAZ). This research will study the behaviour of the heat dissipation relatively within the Nano-particle Copper paste after being irradiated with 1064 nm and 532 nm wavelengths, research will be developed on different widths and depths deposited onto flat surfaces such as flexible PET. Comparisons to be made between resistivity results obtained from different wavelengths.

  14. Laser scattering in a hanging drop vapor diffusion apparatus for protein crystal growth in a microgravity environment

    Science.gov (United States)

    Casay, G. A.; Wilson, W. W.

    1992-01-01

    One type of hardware used to grow protein crystals in the microgravity environment aboard the U.S. Space Shuttle is a hanging drop vapor diffusion apparatus (HDVDA). In order to optimize crystal growth conditions, dynamic control of the HDVDA is desirable. A critical component in the dynamically controlled system is a detector for protein nucleation. We have constructed a laser scattering detector for the HDVDA capable of detecting the nucleation stage. The detector was successfully tested for several scatterers differing in size using dynamic light scattering techniques. In addition, the ability to detect protein nucleation using the HDVDA was demonstrated for lysozyme.

  15. Accurate Laser Measurements of the Water Vapor Self-Continuum Absorption in Four Near Infrared Atmospheric Windows. a Test of the MT_CKD Model.

    Science.gov (United States)

    Campargue, Alain; Kassi, Samir; Mondelain, Didier; Romanini, Daniele; Lechevallier, Loïc; Vasilchenko, Semyon

    2017-06-01

    The semi empirical MT_CKD model of the absorption continuum of water vapor is widely used in atmospheric radiative transfer codes of the atmosphere of Earth and exoplanets but lacks of experimental validation in the atmospheric windows. Recent laboratory measurements by Fourier transform Spectroscopy have led to self-continuum cross-sections much larger than the MT_CKD values in the near infrared transparency windows. In the present work, we report on accurate water vapor absorption continuum measurements by Cavity Ring Down Spectroscopy (CRDS) and Optical-Feedback-Cavity Enhanced Laser Spectroscopy (OF-CEAS) at selected spectral points of the transparency windows centered around 4.0, 2.1 and 1.25 μm. The temperature dependence of the absorption continuum at 4.38 μm and 3.32 μm is measured in the 23-39 °C range. The self-continuum water vapor absorption is derived either from the baseline variation of spectra recorded for a series of pressure values over a small spectral interval or from baseline monitoring at fixed laser frequency, during pressure ramps. In order to avoid possible bias approaching the water saturation pressure, the maximum pressure value was limited to about 16 Torr, corresponding to a 75% humidity rate. After subtraction of the local water monomer lines contribution, self-continuum cross-sections, C_{S}, were determined with a few % accuracy from the pressure squared dependence of the spectra base line level. Together with our previous CRDS and OF-CEAS measurements in the 2.1 and 1.6 μm windows, the derived water vapor self-continuum provides a unique set of water vapor self-continuum cross-sections for a test of the MT_CKD model in four transparency windows. Although showing some important deviations of the absolute values (up to a factor of 4 at the center of the 2.1 μm window), our accurate measurements validate the overall frequency dependence of the MT_CKD2.8 model.

  16. Temperature-insensitive laser frequency locking near absorption lines

    International Nuclear Information System (INIS)

    Kostinski, Natalie; Olsen, Ben A.; Marsland, Robert III; McGuyer, Bart H.; Happer, William

    2011-01-01

    Combined magnetically induced circular dichroism and Faraday rotation of an atomic vapor are used to develop a variant of the dichroic atomic vapor laser lock that eliminates lock sensitivity to temperature fluctuations of the cell. Operating conditions that eliminate first-order sensitivity to temperature fluctuations can be determined by low-frequency temperature modulation. This temperature-insensitive gyrotropic laser lock can be accurately understood with a simple model, that is in excellent agreement with observations in potassium vapor at laser frequencies in a 2 GHz range about the 770.1 nm absorption line. The methods can be readily adapted for other absorption lines.

  17. Charging-circuit study for copper-vapor lasers. Final report, 29 June 1981-30 November 1981

    International Nuclear Information System (INIS)

    1981-01-01

    This study is divided into three tasks whose combined purpose is to evaluate methods of charging high PRF pulsed power subsystems required in a proposed laser isotope separation (LIS) plant. The work performed in this program follows directly from designs and experiments carried out in a recently-completed study and, in fact, utilizes much of the same apparatus described previously. The first task required the preparation and vugraph presentation of a review of eight potential charging methods. This review and the associated evaluation criteria are described. Tasks II and III entailed the experimental evaluation of the deQing methods of regulating the charging voltage of a pulse power conditioning module with respect to limitations imposed by continuous operation and the efficiency of recovery of energy diverted by the deQing circuitry. The results of these tasks are described

  18. Infrared 7.6-microm lead-salt diode laser heterodyne radiometry of water vapor in a CH4-air premixed flat flame.

    Science.gov (United States)

    Weidmann, Damien; Courtois, Daniel

    2003-02-20

    We deal with the design of a diode laser heterodyne radiometer and its application in a combustion process. We present some experimental results obtained with a CH4-air premised flat flame as the optical source. The goal is to prove that heterodyne detection techniques are relevant in remote detection and diagnostics of combustion and can have important applications in both civil and military fields. To the best of our knowledge, it is the first time that this demonstration is made. The radiometer, in spite of the low-power lead-salt diode laser used as a local oscillator, enables us to record high-temperature water-vapor emission spectra in the region of 1315 cm(-1).

  19. Differential Absorption Measurements of Atmospheric Water Vapor with a Coherent Lidar at 2050.532 nm

    Science.gov (United States)

    Koch, Grady J.; Dharamsi, Amin; Davis, Richard E.; Petros, Mulugeta; McCarthy, John C.

    1999-01-01

    Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.

  20. Nuclear Spectroscopy with Copper Isotopes of Extreme N/Z Ratios

    CERN Multimedia

    La commara, M; Roeckl, E; Van duppen, P L E; Schmidt, K A; Lettry, J

    2002-01-01

    The collaboration aims to obtain detailed nuclear spectroscopy information on isotopes close to the magic proton number Z=28 Very neutron-rich and neutron-deficient copper isotopes are ionized with the ISOLDE resonance ionization laser ion source (RILIS) to provide beams with low cross contamination.\\\\ \\\\On the neutron-deficient side the high $Q_\\beta$-values of $^{56}$Cu (15~MeV) and $^{57}$Cu (8.8~MeV) allow to study levels at high excitation energies in the doubly magic nucleus $^{56}$Ni and the neighbouring $^{57}$Ni. On the neutron-rich side the spectroscopy with separated copper isotopes allows presently the closest approach to the doubly magic $^{78}$Ni at an ISOL facility. Up to now no suitable target material with a rapid release was found for nickel itself. A slow release behaviour has to be assumed also for the chemically similar elements iron and cobalt.\\\\ \\\\Using a narrow-bandwidth dye laser and tuning of the laser frequency allows to scan the hyperfine splittings of the copper isotopes and isome...

  1. Numerical simulation of transient, incongruent vaporization induced by high power laser

    International Nuclear Information System (INIS)

    Tsai, C.H.

    1981-01-01

    A mathematical model and numerical calculations were developed to solve the heat and mass transfer problems specifically for uranum oxide subject to laser irradiation. It can easily be modified for other heat sources or/and other materials. In the uranium-oxygen system, oxygen is the preferentially vaporizing component, and as a result of the finite mobility of oxygen in the solid, an oxygen deficiency is set up near the surface. Because of the bivariant behavior of uranium oxide, the heat transfer problem and the oxygen diffusion problem are coupled and a numerical method of simultaneously solving the two boundary value problems is studied. The temperature dependence of the thermal properties and oxygen diffusivity, as well as the highly ablative effect on the surface, leads to considerable non-linearities in both the governing differential equations and the boundary conditions. Based on the earlier work done in this laboratory by Olstad and Olander on Iron and on Zirconium hydride, the generality of the problem is expanded and the efficiency of the numerical scheme is improved. The finite difference method, along with some advanced numerical techniques, is found to be an efficient way to solve this problem

  2. MoXy fiber with active cooling cap for bovine prostate vaporization with high power 200W 532 nm laser

    Science.gov (United States)

    Peng, Steven Y.; Kang, Hyun Wook; Pirzadeh, Homa; Stinson, Douglas

    2011-03-01

    A novel MoXyTM fiber delivery device with Active Cooling Cap (ACCTM) is designed to transmit up to 180W of 532 nm laser light to treat benign prostatic hyperplasia (BPH). Under such high power tissue ablation, effective cooling is key to maintaining fiber power transmission and ensuring the reliability of the fiber delivery device To handle high power and reduce fiber degradation, the MoXy fiber features a larger core size (750 micrometer) and an internal fluid channel to ensure better cooling of the fiber tip to prevent the cap from burning, detaching, or shattering during the BPH treatment. The internal cooling channel was created with a metal cap and tubing that surrounds the optical fiber. In this study MoXy fibers were used to investigate the effect of power levels of 120 and 200 W on in-vitro bovine prostate ablation using a 532 nm XPSTM laser system. For procedures requiring more than 100 kJ, the MoXy fiber at 200W removed tissue at twice the rate of the current HPS fiber at 120W. The fiber maintained a constant tissue vaporization rate during the entire tissue ablation process. The coagulation at 200W was about 20% thicker than at 120W. In conclusion, the new fibers at 200W doubled the tissue removal rate, maintained vaporization efficiency throughout delivery of 400kJ energy, and induced similar coagulation to the existing HPS fiber at 120W.

  3. Determination of the solid-liquid-vapor triple point pressure of carbon

    International Nuclear Information System (INIS)

    Haaland, D.M.

    1976-01-01

    A detailed experimental study of the triple point pressure of carbon using laser heating techniques has been completed. Uncertainties and conflict in previous investigations have been addressed and substantial data presented which places the solid-liquid-vapor carbon triple point at 107 +- 2 atmospheres. This is in agreement with most investigations which have located the triple point pressure between 100 and 120 atmospheres, but is in disagreement with recent low pressure carbon experiments. The absence of any significant polymorphs of carbon other than graphite suggests that the graphite-liquid-vapor triple point has been measured. Graphite samples were melted in a pressure vessel using a 400 W Nd:YAG continuous-wave laser focused to a maximum power density of approximately 80 kW/cm 2 . Melt was confirmed by detailed microstructure analysis and x-ray diffraction of the recrystallized graphite. Experiments to determine the minimum melt pressure of carbon were completed as a function of sample size, type of inert gas, and laser power density to asure that laser power densities were sufficient to produce melt at the triple point pressure of carbon, and the pressure of carbon at the surface of the sample was identical to the measured pressure of the inert gas in the pressure vessel. High-speed color cinematography of the carbon heating revealed the presence of a laser-generated vapor or particle plume in front of the sample. The existence of this bright plume pevented the measurement of the carbon triple point temperature

  4. Study of graphene growth on copper foil by pulsed laser deposition at reduced temperature

    Science.gov (United States)

    Abd Elhamid, Abd Elhamid M.; Hafez, Mohamed A.; Aboulfotouh, Abdelnaser M.; Azzouz, Iftitan M.

    2017-01-01

    Graphene has been successfully grown on commercial copper foil at low temperature of 500 °C by pulsed laser deposition (PLD). X-ray diffraction patterns showed that films have been grown in the presence of Cu(111) and Cu(200) facets. Raman spectroscopy was utilized to study the effects of temperature, surface structure, and cooling rate on the graphene growth. Raman spectra indicate that the synthesis of graphene layers rely on the surface quality of the Cu substrate together with the proper cooling profile coupled with graphene growth temperature. PLD-grown graphene film on Cu has been verified by transmission electron microscopy. Surface mediated growth of graphene on Cu foil substrate revealed to have a favorable catalytic effect. High growth rate of graphene and less defects can be derived using fast cooling rate.

  5. Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis

    International Nuclear Information System (INIS)

    Hussain, T; Gondal, M A

    2013-01-01

    Laser induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis based on laser-generated plasma. In this technique, laser pulses are applied for ablation of the sample, resulting in the vaporization and ionization of sample in hot plasma which is finally analyzed by the spectrometer. The elements are identified by their unique spectral signatures. LIBS system was developed for elemental analysis of solid and liquid samples. The developed system was applied for qualitative as well as quantitative measurement of elemental concentration present in iron slag and open pit ore samples. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on test samples to study the capabilities of LIBS as a rapid tool for material analysis. The concentrations of various elements of environmental significance such as cadmium, calcium, magnesium, chromium, manganese, titanium, barium, phosphorus, copper, iron, zinc etc., in these samples were determined. Optimal experimental conditions were evaluated for improving the sensitivity of developed LIBS system through parametric dependence study. The laser-induced breakdown spectroscopy (LIBS) results were compared with the results obtained using standard analytical technique such as inductively couple plasma emission spectroscopy (ICP). Limit of detection (LOD) of our LIBS system were also estimated for the above mentioned elements. This study demonstrates that LIBS could be highly appropriate for rapid online analysis of iron slag and open pit waste.

  6. Laser induced breakdown spectroscopy (LIBS) as a rapid tool for material analysis

    Science.gov (United States)

    Hussain, T.; Gondal, M. A.

    2013-06-01

    Laser induced breakdown spectroscopy (LIBS) is a novel technique for elemental analysis based on laser-generated plasma. In this technique, laser pulses are applied for ablation of the sample, resulting in the vaporization and ionization of sample in hot plasma which is finally analyzed by the spectrometer. The elements are identified by their unique spectral signatures. LIBS system was developed for elemental analysis of solid and liquid samples. The developed system was applied for qualitative as well as quantitative measurement of elemental concentration present in iron slag and open pit ore samples. The plasma was generated by focusing a pulsed Nd:YAG laser at 1064 nm on test samples to study the capabilities of LIBS as a rapid tool for material analysis. The concentrations of various elements of environmental significance such as cadmium, calcium, magnesium, chromium, manganese, titanium, barium, phosphorus, copper, iron, zinc etc., in these samples were determined. Optimal experimental conditions were evaluated for improving the sensitivity of developed LIBS system through parametric dependence study. The laser-induced breakdown spectroscopy (LIBS) results were compared with the results obtained using standard analytical technique such as inductively couple plasma emission spectroscopy (ICP). Limit of detection (LOD) of our LIBS system were also estimated for the above mentioned elements. This study demonstrates that LIBS could be highly appropriate for rapid online analysis of iron slag and open pit waste.

  7. Water-Vapor Raman Lidar System Reaches Higher Altitude

    Science.gov (United States)

    Leblanc, Thierry; McDermid, I. Stewart

    2010-01-01

    A Raman lidar system for measuring the vertical distribution of water vapor in the atmosphere is located at the Table Mountain Facility (TMF) in California. Raman lidar systems for obtaining vertical water-vapor profiles in the troposphere have been in use for some time. The TMF system incorporates a number of improvements over prior such systems that enable extension of the altitude range of measurements through the tropopause into the lower stratosphere. One major obstacle to extension of the altitude range is the fact that the mixing ratio of water vapor in the tropopause and the lower stratosphere is so low that Raman lidar measurements in this region are limited by noise. Therefore, the design of the TMF system incorporates several features intended to maximize the signal-to-noise ratio. These features include (1) the use of 355-nm-wavelength laser pulses having an energy (0.9 J per pulse) that is high relative to the laser-pulse energy levels of prior such systems, (2) a telescope having a large aperture (91 cm in diameter) and a narrow field of view (angular width .0.6 mrad), and (3) narrow-bandpass (wavelength bandwidth 0.6 nm) filters for the water-vapor Raman spectral channels. In addition to the large-aperture telescope, three telescopes having apertures 7.5 cm in diameter are used to collect returns from low altitudes.

  8. Determination Of Optimal Stope Strike Length On Steep Orebodies Through Laser Scanning At Lubambe Copper Zambia

    Directory of Open Access Journals (Sweden)

    Kalume H

    2017-08-01

    Full Text Available Lubambe Copper Mine is located in Chililabombwe Zambia and is a joint copper mining venture with three partners that include African Rainbow Minerals 40 Vale 40 and the Government of Zambia 20. The current mining method utilises Longitudinal Room and Pillar Mining LRP on 70m long panels strike length. However these long panels have resulted in unprecedented levels of dilution mainly from the collapse of hanging wall laminated ore shale OS2 leading to reduced recoveries. Observations made underground show high variability in geological and geotechnical conditions of the rock mass with factors such as weathering on joints lamina spaced joints and stress changes induced by mining all contributing to weakening and early collapse of the hanging wall. Therefore a study was undertaken to establish the optimal stope strike length of steep ore bodies at Lubambe. The exercise involved the use of Faro Laser Scanner every four stope rings blasted with time when the scan was performed noted. The spatial coherence of lasers makes them ideal measuring tools in situations where measurements need to be taken in inaccessible areas. Recent advances in laser scanning coupled with the exponential increase in processing power have greatly improved the methods used to estimate stope tonnages extracted from massive inaccessible stopes. The collected data was then used to construct digital three dimensional models of the stope contents. Sections were cut every metre with deformations taken and analysed with respect to time. Deformation rates from the hanging wall was reducing from 0.14thr to 0.07thr between rings 1 to 8. This reduction was as a result of slot blasting that involved drilling and blasting a number of holes at the same time. Between rings 8 to 25 deformation was constant averaging 0.28thr and between rings 26 and 28 a sharp increase in deformation rate was experienced from as low as 0.16thr to 6.33thr. This sharp increase defines the optimal stope length

  9. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    Science.gov (United States)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-06-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  10. Comparative study of Nd:YAG laser-induced breakdown spectroscopy and transversely excited atmospheric CO2 laser-induced gas plasma spectroscopy on chromated copper arsenate preservative-treated wood.

    Science.gov (United States)

    Khumaeni, Ali; Lie, Zener Sukra; Niki, Hideaki; Lee, Yong Inn; Kurihara, Kazuyoshi; Wakasugi, Motoomi; Takahashi, Touru; Kagawa, Kiichiro

    2012-03-01

    Taking advantage of the specific characteristics of a transversely excited atmospheric (TEA) CO(2) laser, a sophisticated technique for the analysis of chromated copper arsenate (CCA) in wood samples has been developed. In this study, a CCA-treated wood sample with a dimension of 20 mm × 20 mm and a thickness of 2 mm was attached in contact to a nickel plate (20 mm × 20 mm × 0.15 mm), which functions as a subtarget. When the TEA CO(2) laser was successively irradiated onto the wood surface, a hole with a diameter of approximately 2.5 mm was produced inside the sample and the laser beam was directly impinged onto the metal subtarget. Strong and stable gas plasma with a very large diameter of approximately 10 mm was induced once the laser beam had directly struck the metal subtarget. This gas plasma then interacted with the fine particles of the sample inside the hole and finally the particles were effectively dissociated and excited in the gas plasma region. By using this technique, high precision and sensitive analysis of CCA-treated wood sample was realized. A linear calibration curve of Cr was successfully made using the CCA-treated wood sample. The detection limits of Cr, Cu, and As were estimated to be approximately 1, 2, and 15 mg/kg, respectively. In the case of standard LIBS using the Nd:YAG laser, the analytical intensities fluctuate and the detection limit was much lower at approximately one-tenth that of TEA CO(2) laser. © 2012 Optical Society of America

  11. TEM investigations of laser ablated particles

    International Nuclear Information System (INIS)

    Fliegel, D.; Dundas, S.; Kosler, J.; Klementova, M.

    2009-01-01

    Full text: Laser ablation inductively coupled plasma mass spectrometry suffers from fractionation effects hindering a non matrix matched calibration strategy. Different reasons for elemental fractionation that are related to the laser ablation, the transport and the vaporization in the plasma are discussed. One major question to be addressed linked to the vaporization yield in the ICP is in which of mineralogical phase the different ablated particle sizes enter the plasma. This contribution will investigate particles generated by a 213 nm laser from different samples such as minerals and alloys with respect to their chemical and phase compositions using high resolution TEM. (author)

  12. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating

    International Nuclear Information System (INIS)

    Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan

    2016-01-01

    Graphical abstract: - Highlights: • Mechanisms of laser direct writing and electroless plating were studied. • Active seeds in laser-irradiated zone and laser-affected zone were found to be different. • A special chemical cleaning method with aqua regia was taken. • Higher-resolution copper patterns on alumina ceramic were obtained conveniently. - Abstract: How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl_2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.

  13. Solid state solubility of copper oxides in hydroxyapatite

    Science.gov (United States)

    Zykin, Mikhail A.; Vasiliev, Alexander V.; Trusov, Lev A.; Dinnebier, Robert E.; Jansen, Martin; Kazin, Pavel E.

    2018-06-01

    Samples containing copper oxide doped hydroxyapatite with the composition Ca10(PO4)6(CuxOH1-x-δ)2, x = 0.054 - 0.582, in the mixture with CuO/Cu2O were prepared by a solid-state high-temperature treatment at varying annealing temperatures and at different partial water vapor and oxygen pressures. The crystal structures of the apatite compounds were refined using powder X-ray diffraction patterns and the content of copper ions x in the apatite was determined. Copper ions enter exclusively into the apatite trigonal channels formally substituting protons of OH-groups and the hexagonal cell parameters grow approximately linearly with x, the channel volume mostly expanding while the remaining volume of the crystal lattice changing only slightly. The equilibrium copper content in the apatite increases drastically, by almost a factor of 10 with the annealing temperature rising from 800° to 1200°C. The reduction of the water partial pressure leads to a further increase of x, while the dependence of x on the oxygen partial pressure exhibits a maximum. The observed relations are consistent with the proposed chemical reactions implying the copper introduction is followed by the release of a considerable quantity of gaseous products - water and oxygen. The analysis of interatomic distances suggests that the maximum content of copper ions in the channel cannot exceed 2/3.

  14. Laser-induced ionization of Na vapor

    International Nuclear Information System (INIS)

    Wu, R.C.Y.; Judge, D.L.; Roussel, F.; Carre, B.; Breger, P.; Spiess, G.

    1982-01-01

    The production of Na 2 + ions by off-resonant laser excitation in the 5800-6200A region mainly results from two-photon absorption by the Na 2 molecule to highly excited gerade states followed by (a) direct ionization by absorbing a third photon or (b) coupling to the molecular Na 2 D 1 PIμ Rydberg state which is subsequently ionized by absorbing a third photon. This mechanism, i.e., a two-photon resonance three photon ionization process, explains a recent experimental observation of Roussel et al. It is suggested that the very same mechanism is also responsible for a similar observation reported by Polak-Dingels et al in their work using two crossed Na beams. In the latter two studies the laser-induced associative ionization processes were reported to be responsible for producing the Na 2 + ion. From the ratio of molecular to atomic concentration in the crossed beam experiment of Polak-Dingels et al we estimate that the cross section for producing Na 2 + through laser-induced associative ionization is at least four orders of magnitude smaller than ionization through the two-photon resonance three photon ionization process in Na 2 molecules

  15. Performance Improvement of Microcrystalline p-SiC/i-Si/n-Si Thin Film Solar Cells by Using Laser-Assisted Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Hsin-Ying Lee

    2014-01-01

    Full Text Available The microcrystalline p-SiC/i-Si/n-Si thin film solar cells treated with hydrogen plasma were fabricated at low temperature using a CO2 laser-assisted plasma enhanced chemical vapor deposition (LAPECVD system. According to the micro-Raman results, the i-Si films shifted from 482 cm−1 to 512 cm−1 as the assisting laser power increased from 0 W to 80 W, which indicated a gradual transformation from amorphous to crystalline Si. From X-ray diffraction (XRD results, the microcrystalline i-Si films with (111, (220, and (311 diffraction were obtained. Compared with the Si-based thin film solar cells deposited without laser assistance, the short-circuit current density and the power conversion efficiency of the solar cells with assisting laser power of 80 W were improved from 14.38 mA/cm2 to 18.16 mA/cm2 and from 6.89% to 8.58%, respectively.

  16. Thermal contact conductance of metallic coated BiCaSrCuO superconductor/copper interfaces at cryogenic temperatures

    International Nuclear Information System (INIS)

    Ochterbeck, J.M.; Peterson, G.P.; Fletcher, L.S.

    1992-01-01

    The effects of vapor deposited coatings on the thermal contact conductance of cold pressed, normal state BiCaSrCuO superconductor/oxygen-free copper interfaces were experimentally investigated over a pressure range of 200 to 2,000 kPa. Using traditional vapor deposition processes, thin coatings of indium or lead were applied to the superconductor material to determine the effect on the heat transfer occurring at the interface. The test data indicate that the contact conductance can be enhanced using these coatings, with indium providing the greater enhancement. The experimental program revealed the need for a better understanding and control of the vapor deposition process when using soft metallic coatings. Also, the temperature-dependent microhardness of copper was experimentally determined and found to increase by approximately 35 percent as the temperature decreased from 300 to 85 K. An empirical model was developed to predict the effect of soft coatings on the thermal contact conductance of the superconductor/copper interfaces. When applied, the model agreed well with the data obtained in this investigation at low coating thicknesses but overpredicted the data as the thickness increased. In addition, the model agreed very well with data obtained in a previous investigation for silvercoated nickel substrates at all coating thicknesses

  17. Preparation of copper nanoparticles by radiation

    International Nuclear Information System (INIS)

    Liu Yajian; Guo Xiongbin; Li Zhaolong; Fu Junjie; Tan Yuanyuan; Zhou Xinyao; Xu Furong

    2013-01-01

    Copper nanoparticles were successfully synthesized by 60 Co-γ radiation with aqueous solution of cupric sulfate under inert nitrogen-purged conditions. Cu nanoparticles were characterized by using X-ray diffraction (XRD), transmission electron microscopy (TEM), laser particle size distribution analyzer (LSPSDA) and differential scanning calorimeter (DSC) techniques, respectively. The effects of solution system, pH, additive of surfactant and absorbed doses on the particle size and its distribution as well as stored stability of Cu naoparticles were investigated. High resolution TEM pictures showed the formation of homogeneous cubic-structured copper nanoparticles with different sizes depends on the synthetic conditions. This new kind of synthesis method shows the excellent stability, which may provide an efficient way to improve the fine tuning of the structure and size of copper nanoparticles. (authors)

  18. A Microdrop Generator for the Calibration of a Water Vapor Isotope Ratio Spectrometer

    NARCIS (Netherlands)

    Iannone, Rosario Q.; Romanini, Daniele; Kassi, Samir; Meijer, Harro A. J.; Kerstel, Erik R. Th.

    A microdrop generator is described that produces water vapor with a known isotopic composition and volume mixing ratio for the calibration of a near-infrared diode laser water isotope ratio spectrometer. The spectrometer is designed to measure in situ the water vapor deuterium and oxygen ((17)O and

  19. Laser beam absorption study of a 238U(5L60) vapor obtained with a hollow cathode lamp

    International Nuclear Information System (INIS)

    Gagne, J.M.; Leblanc, B.; Mongeau, B.; Carleer, M.; Bertrand, L.

    1979-01-01

    The density of U atoms in the 5 L 0 6 ground state present in a vapor of this element from a hollow cathode lamp has been measured using laser absorption spectroscopy. The influence of the carrier gases (Ar, Kr, Xe) on the density, the absorption coefficient profiles, and on the ratio of U atoms to the dissipated electrical power has been investigated. It has been found that, in our range of operating conditions, the xenon gas is the most efficient. With xenon, a density of 2.2 x 10 12 cm -3 ground-state U atoms is obtained when the lamp dissipates 40 W of electrical power

  20. Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets

    Science.gov (United States)

    Kim, Sangwoo; Kwon, Hyouk-Chon; Lee, Dohyung; Lee, Hyo-Soo

    2017-11-01

    The synthesis of copper-reduced graphene oxide (RGO) sheets was investigated in order to control the agglutination of interfaces and develop a manufacturing process for copper-based composite materials based on spark plasma sintering. To this end, copper-GO (graphene oxide) composites were synthesized using a hydrothermal method, while the copper-reduced graphene oxide composites were made by hydrogen reduction. Graphene oxide-copper oxide was hydrothermally synthesized at 80 °C for 5 h, and then annealed at 800 °C for 5 h in argon and hydrazine rate 9:1 to obtain copper-RGO flakes. The morphology and structure of these copper-RGO sheets were characterized using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and Raman spectroscopy. After vibratory mixing of the synthesized copper-RGO composites (0-2 wt%) with copper powder, they were sintered at 600 °C for 5 min under100 MPa of pressure by spark plasma sintering process. The thermal diffusivity of the resulting sintered composite was characterized by the laser flash method at 150 °C.

  1. Laser-induced shockwave propagation from ablation in a cavity

    International Nuclear Information System (INIS)

    Zeng Xianzhong; Mao Xianglei; Mao, Samuel S.; Wen, S.-B.; Greif, Ralph; Russo, Richard E.

    2006-01-01

    The propagation of laser-induced shockwaves from ablation inside of cavities was determined from time-resolved shadowgraph images. The temperature and electron number density of the laser-induced plasma was determined from spectroscopic measurements. These properties were compared to those for laser ablation on the flat surface under the same energy and background gas condition. A theoretical model was proposed to determine the amount of energy and vaporized mass stored in the vapor plume based on these measurements

  2. Fabrication of friction-reducing texture surface by selective laser melting of ink-printed (SLM-IP) copper (Cu) nanoparticles(NPs)

    Science.gov (United States)

    Wang, Xinjian; Liu, Junyan; Wang, Yang; Fu, Yanan

    2017-02-01

    This paper reports a process of selective laser melting of ink-printed (SLM-IP) copper (Cu) nanoparticles(NPs) for the fabrication of full dense Cu friction-reducing texture on the metallic surface in ambient condition. This technique synthesizes pure Cu by chemical reduction route using an organic solvent during laser melting in the atmosphere environment, and provides a flexible additive manufacture approach to form complex friction-reduction texture on the metallic surface. Microtextures of ring and disc arrays have been fabricated on the stainless steel surface by SLM-IP Cu NPs. The friction coefficient has been measured under the lubricating condition of the oil. Disc texture surface (DTS) has a relatively low friction coefficient compared with ring texture surface (RTS), Cu film surface (Cu-FS) and the untreated substrate. The study suggests a further research on SLM-IP approach for complex microstructure or texture manufacturing, possibly realizing its advantage of flexibility.

  3. Prediction of the critical reduced electric field strength for carbon dioxide and its mixtures with copper vapor from Boltzmann analysis for a gas temperature range of 300 K to 4000 K at 0.4 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xingwen, E-mail: xwli@mail.xjtu.edu.cn; Guo, Xiaoxue; Zhao, Hu; Jia, Shenli [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, No. 28 XianNing West Road, Xi' an, Shaanxi Province 710049 (China); Murphy, Anthony B. [CSIRO Manufacturing Flagship, PO Box 218, Lindfield NSW 2070 (Australia)

    2015-04-14

    The influence of copper vapor mixed in hot CO{sub 2} on dielectric breakdown properties of gas mixture at a fixed pressure of 0.4 MPa for a temperature range of 300 K–4000 K is numerically analyzed. First, the equilibrium composition of hot CO{sub 2} with different copper fractions is calculated using a method based on mass action law. The next stage is devoted to computing the electron energy distribution functions (EEDF) by solving the two-term Boltzmann equation. The reduced ionization coefficient, the reduced attachment coefficient, and the reduced effective ionization coefficient are then obtained based on the EEDF. Finally, the critical reduced electric field (E/N){sub cr} is obtained. The results indicate that an increasing mole fraction of copper markedly reduces (E/N){sub cr} of the CO{sub 2}–Cu gas mixtures because of copper's low ionization potential and large ionization cross section. Additionally, the generation of O{sub 2} from the thermal dissociation of CO{sub 2} contributes to the increase of (E/N){sub cr} of CO{sub 2}–Cu hot gas mixtures from about 2000 K to 3500 K.

  4. Photophysical properties of some xanthylium salts performances under CVL pumping

    International Nuclear Information System (INIS)

    Doizi, D.; Lompre, L.A.; Gazeau, M.C.

    1995-01-01

    We report the photochemical and photophysical performances of some new dyes belonging to the xanthylium salts family. Performances under Copper Vapor Laser (CVL) pumping are described and compared to those of Rhodamine 6G. (author)

  5. Electron emission from a double-layer metal under femtosecond laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuchang; Li, Suyu; Jiang, Yuanfei; Chen, Anmin, E-mail: amchen@jlu.edu.cn; Ding, Dajun; Jin, Mingxing, E-mail: mxjin@jlu.edu.cn

    2015-01-01

    In this paper we theoretically investigate electron emission during femtosecond laser ablation of single-layer metal (copper) and double-layer structures. The double-layer structure is composed of a surface layer (copper) and a substrate layer (gold or chromium). The calculated results indicate that the double-layer structure brings a change to the electron emission from the copper surface. Compared with the ablation of a single-layer, a double-layer structure may be helpful to decrease the relaxation time of the electron temperature, and optimize the electron emission by diminishing the tailing phenomenon under the same absorbed laser fluence. With the increase of the absorbed laser fluence, the effect of optimization becomes significant. This study provides a way to optimize the electron emission which can be beneficial to generate laser induced ultrafast electron pulse sources.

  6. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles: Catalytic, Antibacterial, Cytotoxicity, and Antioxidant Activities

    Science.gov (United States)

    Din, Muhammad Imran; Arshad, Farhan; Hussain, Zaib; Mukhtar, Maria

    2017-12-01

    Copper nanoparticles (CuNPs) are of great interest due to their extraordinary properties such as high surface-to-volume ratio, high yield strength, ductility, hardness, flexibility, and rigidity. CuNPs show catalytic, antibacterial, antioxidant, and antifungal activities along with cytotoxicity and anticancer properties in many different applications. Many physical and chemical methods have been used to synthesize nanoparticles including laser ablation, microwave-assisted process, sol-gel, co-precipitation, pulsed wire discharge, vacuum vapor deposition, high-energy irradiation, lithography, mechanical milling, photochemical reduction, electrochemistry, electrospray synthesis, hydrothermal reaction, microemulsion, and chemical reduction. Phytosynthesis of nanoparticles has been suggested as a valuable alternative to physical and chemical methods due to low cytotoxicity, economic prospects, environment-friendly, enhanced biocompatibility, and high antioxidant and antimicrobial activities. The review explains characterization techniques, their main role, limitations, and sensitivity used in the preparation of CuNPs. An overview of techniques used in the synthesis of CuNPs, synthesis procedure, reaction parameters which affect the properties of synthesized CuNPs, and a screening analysis which is used to identify phytochemicals in different plants is presented from the recent published literature which has been reviewed and summarized. Hypothetical mechanisms of reduction of the copper ion by quercetin, stabilization of copper nanoparticles by santin, antimicrobial activity, and reduction of 4-nitrophenol with diagrammatic illustrations are given. The main purpose of this review was to summarize the data of plants used for the synthesis of CuNPs and open a new pathway for researchers to investigate those plants which have not been used in the past.

  7. Selective gas sensing for photonic crystal lasers

    DEFF Research Database (Denmark)

    Smith, Cameron; Christiansen, Mads Brøkner; Buss, Thomas

    2011-01-01

    We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk.......We facilitate photonic crystal lasers to sense gases via an additional swelling polymer film. We describe the transduction transfer function and experimentally demonstrate an enhanced ethanol vapor sensitivity over 15 dB with low humidity crosstalk....

  8. Laser application of heat pipe technology in energy related programs

    International Nuclear Information System (INIS)

    Carbone, R.J.

    1975-01-01

    The design and operating parameters for a heat pipe laser utilizing metal vapors are proposed. The laser would be applied to laser induced fusion, laser induced chemistry, laser isotope separation, and power transport using optical beams. (U.S.)

  9. Vertically aligned carbon nanotube growth by pulsed laser deposition and thermal chemical vapor deposition methods

    International Nuclear Information System (INIS)

    Sohn, Jung Inn; Nam, Chunghee; Lee, Seonghoon

    2002-01-01

    We have grown vertically aligned carbon nanotubes on the various substrates such as a planar p-type Si(1 0 0) wafer, porous Si wafer, SiO 2 , Si 3 N 4 , Al 2 O 3 , and Cr by thermal chemical vapor deposition (CVD) at 800 deg.C, using C 2 H 2 gas as a carbon source and Fe catalyst films deposited by a pulsed laser on the substrates. The Fe films were deposited for 5 min by pulsed laser deposition (PLD). The advantage of Fe deposition by PLD over other deposition methods lies in the superior adhesion of Fe to a Si substrate due to high kinetic energies of the generated Fe species. Scanning electron microscopy (SEM) images show that vertically well-aligned carbon nanotubes are grown on Fe nanoparticles formed from the thermal annealing of the Fe film deposited by PLD on the various substrates. Atomic force microscopy (AFM) images show that the Fe film annealed at 800 deg.C is broken to Fe nanoparticles of 10-50 nm in size. We show that the appropriate density of Fe nanoparticles formed from the thermal annealing of the film deposited by PLD is crucial in growing vertically aligned carbon nanotubes. Using a PLD and a lift-off method, we developed the selective growth of carbon nanotubes on a patterned Fe-coated Si substrate

  10. Influence of laser-supported detonation waves on metal drilling with pulsed CO2 lasers

    International Nuclear Information System (INIS)

    Stuermer, E.; von Allmen, M.

    1978-01-01

    Drilling of highly reflective metals in an ambient atmosphere with single TEA-CO 2 -laser pulses of fluences between 300 and 6000 J/cm 2 is reported. The drilling process was investigated by measuring the time-resolved laser power reflected specularly from the targets during the interaction and by analyzing the craters produced. Experiments were performed in ambient air, argon, and helium. Target damage was found to be strongly influenced by a laser-supported detonation (LSD) wave in the ambient gas. If the laser fluence exceeded a material-dependent damage threshold (copper: 300 J/cm 2 ), drilling occurred, but the efficiency was inversely related to the duration of the LSD wave. Efficient material removal is possible if the LSD wave can be dissipated within a small fraction of the laser pulse duration. This was achieved by small-F-number focusing of TEM 00 laser pulses of 5-μs duration. Replacing the ambient air at the target by a gas of lower density results in a further significant reduction of LSD-wave lifetime, and a correlated increase of the drilling yield. On copper targets a maximum drilling yield of 10 -5 cm 3 /J was observed in ambient helium at a laser fluence of 1 kJ/cm 2

  11. Investigating the influence of standard staining procedures on the copper distribution and concentration in Wilson's disease liver samples by laser ablation-inductively coupled plasma-mass spectrometry.

    Science.gov (United States)

    Hachmöller, Oliver; Aichler, Michaela; Schwamborn, Kristina; Lutz, Lisa; Werner, Martin; Sperling, Michael; Walch, Axel; Karst, Uwe

    2017-12-01

    The influence of rhodanine and haematoxylin and eosin (HE) staining on the copper distribution and concentration in liver needle biopsy samples originating from patients with Wilson's disease (WD), a rare autosomal recessive inherited disorder of the copper metabolism, is investigated. In contemporary diagnostic of WD, rhodanine staining is used for histopathology, since rhodanine and copper are forming a red to orange-red complex, which can be recognized in the liver tissue using a microscope. In this paper, a laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) method is applied for the analysis of eight different WD liver samples. Apart from a spatially resolved elemental detection as qualitative information, this LA-ICP-MS method offers also quantitative information by external calibration with matrix-matched gelatine standards. The sample set of this work included an unstained and a rhodanine stained section of each WD liver sample. While unstained sections of WD liver samples showed very distinct structures of the copper distribution with high copper concentrations, rhodanine stained sections revealed a blurred copper distribution with significant decreased concentrations in a range from 20 to more than 90%. This implies a copper removal from the liver tissue by complexation during the rhodanine staining. In contrast to this, a further HE stained sample of one WD liver sample did not show a significant decrease in the copper concentration and influence on the copper distribution in comparison to the unstained section. Therefore, HE staining can be combined with the analysis by means of LA-ICP-MS in two successive steps from one thin section of a biopsy specimen. This allows further information to be gained on the elemental distribution by LA-ICP-MS additional to results obtained by histological staining. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Fabrication of sub-micron surface structures on copper, stainless steel and titanium using picosecond laser interference patterning

    Energy Technology Data Exchange (ETDEWEB)

    Bieda, Matthias, E-mail: matthias.bieda@iws.fraunhofer.de [Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, 01277 Dresden (Germany); Siebold, Mathias, E-mail: m.siebold@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Lasagni, Andrés Fabián, E-mail: andres_fabian.lasagni@tu-dresden.de [Fraunhofer-Institut für Werkstoff- und Strahltechnik (IWS), Winterbergstr. 28, 01277 Dresden (Germany); Technische Universität Dresden, Institut für Fertigungstechnik, 01062 Dresden (Germany)

    2016-11-30

    Highlights: • Laser interference patterning is introduced to generate sub-micrometer surface pattern. • The two-temperature model is applied to ps-laser interference patterning of metals. • Line-like structures with a pitch of 0.7 μm were fabricated on SAE 304, Ti and Cu. • The process is governed by a photo-thermal mechanism for a pulse duration of 35 ps. • A “cold”-ablation process for metals requires a pulse duration shorter than 10 ps. - Abstract: Picosecond direct laser interference patterning (ps-DLIP) is investigated theoretically and experimentally for the bulk metals copper, stainless steel and titanium. While surface texturing with nanosecond pulses is limited to feature sizes in the micrometer range, utilizing picosecond pulses can lead to sub-micrometer structures. The modelling and simulation of ps-DLIP are based on the two-temperature model and were carried out for a pulse duration of 35 ps at 515 nm wavelength and a laser fluence of 0.1 J/cm{sup 2}. The subsurface temperature distribution of both electrons and phonons was computed for periodic line-like structures with a pitch of 0.8 μm. The increase in temperature rises for a lower absorption coefficient and a higher thermal conductivity. The distance, at which the maximum subsurface temperature occurs, increases for a small absorption coefficient. High absorption and low thermal conductivity minimize internal heating and give rise to a pronounced surface micro topography with pitches smaller than 1 μm. In order to confirm the computed results, periodic line-like surface structures were produced using two interfering beams of a Yb:YAG-Laser with 515 nm wavelength and a pulse duration of 35 ps. It was possible to obtain a pitch of 0.7 μm on the metallic surfaces.

  13. Alternative applications of atomic vapor laser isotope separation technology

    International Nuclear Information System (INIS)

    1991-01-01

    This report was commissioned by the Secretary of Energy. It summarizes the main features of atomic vapor laser isotope separation (AVLIS) technology and subsystems; evaluates applications, beyond those of uranium enrichment, suggested by Lawrence Livermore National Laboratory (LLNL) and a wide range of US industries and individuals; recommends further work on several applications; recommends the provision of facilities for evaluating potential new applications; and recommends the full involvement of end users from the very beginning in the development of any application. Specifically excluded from this report is an evaluation of the main AVLIS missions, uranium enrichment and purification of plutonium for weapons. In evaluating many of the alternative applications, it became clear that industry should play a greater and earlier role in the definition and development of technologies with the Department of Energy (DOE) if the nation is to derive significant commercial benefit. Applications of AVLIS to the separation of alternate (nonuranium) isotopes were considered. The use of 157 Gd as burnable poison in the nuclear fuel cycle, the use 12 C for isotopically pure diamond, and the use of plutonium isotopes for several nonweapons applications are examples of commercially useful products that might be produced at a cost less than the product value. Separations of other isotopes such as the elemental constituents of semiconductors were suggested; it is recommended that proposed applications be tested by using existing supplies to establish their value before more efficient enrichment processes are developed. Some applications are clear, but their production costs are too high, the window of opportunity in the market has passed, or societal constraints (e.g., on reprocessing of reactor fuel) discourage implementation

  14. Spectrochemical analysis using laser plasma excitation

    International Nuclear Information System (INIS)

    Radziemski, L.J.

    1989-01-01

    This paper reports on analyses of gases, liquids, particles, and surfaces in which laser plasma is used to vaporize and excite a material. The authors present a discussion of the interaction between laser radiation and a solid and some recent analytical results using laser plasma excitation on metals. The use of laser plasmas as an ablation source is also discussed

  15. Water vapor spectroscopy in the 815-nm wavelength region for Differential Absorption Lidar measurements

    Science.gov (United States)

    Ponsardin, Patrick; Browell, Edward V.

    1995-01-01

    The differential absorption lidar (DIAL) technique was first applied to the remote measurement of atmospheric water vapor profiles from airborne platforms in 1981. The successful interpretation of the lidar profiles relies strongly on an accurate knowledge of specific water vapor absorption line parameters: line strength, pressure broadening coefficient, pressure-induced shift coefficient and the respective temperature-dependence factors. NASA Langley Research Center has developed and is currently testing an autonomous airborne water vapor lidar system: LASE (Lidar Atmospheric Sensing Experiment). This DIAL system uses a Nd:YAG-pumped Ti:Sapphire laser seeded by a diode laser as a lidar transmitter. The tunable diode has been selected to operate in the 813-818 nm wavelength region. This 5-nm spectral interval offers a large distribution of strengths for temperature-insensitive water vapor absorption lines. In support of the LASE project, a series of spectroscopic measurements were conducted for the 16 absorption lines that have been identified for use in the LASE measurements. Prior to this work, the experimental data for this water vapor absorption band were limited - to our knowledge - to the line strengths and to the line positions.

  16. Laser surgery for selected small animal soft-tissue conditions

    Science.gov (United States)

    Bartels, Kenneth E.

    1991-05-01

    With the acquisition of a Nd:YAG and a CO2 laser in the College of Veterinary Medicine at Oklahoma State University in 1989, over 100 small animal clinical cases have been managed with these modern modalities for surgical excision and tissue vaporization. Most procedures have been for oncologic problems, but inflammatory, infectious, or congenital conditions including vaporization of acral lick 'granulomas,' excision/vaporization of foreign body induced, infected draining tracts, and resection of elongated soft palates have been successfully accomplished. Laser excision or vaporization of both benign and malignant neoplasms have effectively been performed and include feline nasal squamous cell carcinoma, mast cell tumors, and rectal/anal neoplasms. Results to date have been excellent with animals exhibiting little postoperative pain, swelling, and inflammation. Investigations involving application of laser energy for tissue welding of esophageal lacerations and hepatitic interstitial hyperthermia for metastatic colorectal cancer have also shown potential. A review of cases with an emphasis on survival time and postoperative morbidity suggests that carefully planned laser surgical procedures in clinical veterinary practice done with standardized protocols and techniques offer an acceptable means of treating conditions that were previously considered extremely difficult or virtually impossible to perform.

  17. Quantitative Analysis of Copper Impurity in Silver Jewellery by Laser-Ablation Laser-Induced Breakdown Spectroscopy%银饰品中铜杂质含量的激光剥离-激光诱导击穿光谱定量分析

    Institute of Scientific and Technical Information of China (English)

    陈钰琦; 磨俊宇; 周奇; 楼洋; 李润华

    2015-01-01

    High spectral analysis sensitivity can be achieved with orthogonal dual-wavelength dual-pulse laser-ablation laser-in-duced breakdown spectroscopy under minimal sample ablation.Therefore,the contradiction between spatial resolution and ana-lytical sensitivity existed in single-pulse laser-induced breakdown spectroscopy can be resolved fundamentally in this technique. In order to eliminate the influence of different experimental parameters to the signal intensities and final results of quantitative analysis,the correlation between copper atomic emission and silver atomic emission was studied experimentally in this technique for silver jewellery samples.It was demonstrated that the intensity of atomic emission of copper at 324.75 nm and that of silver at 328.07 nm was linearly correlated with high correlation coefficient.Therefore,it was possible to eliminate the influence of different experimental parameters,such as geometrical arrangement and pulse energy of the ablation laser to the signal of copper atomic emission by selecting 328.07 nm line of silver as internal standard.A quantitative analysis of copper impurity in silver jewellery can be realized by using orthogonal dual-wavelength dual-pulse laser-ablation laser-induced breakdown spectroscopy.A calibration curve of copper was successfully built based on internal standard method while selecting 328.07 nm line of silver as in-ternal standard.The limit of detection of copper in silver matrix was determined to be 44 ppm in this technique when the crater’ s diameter was about 17 μm under current experimental condition.%正交双波长双脉冲的激光剥离—激光诱导击穿光谱技术能够在较少样品烧蚀的前提下获得高的光谱分析灵敏度,因此该技术可以从根本上解决在单脉冲激光诱导击穿光谱技术中空间分辨本

  18. Pulsed hybrid dual wavelength Y-branch-DFB laser-tapered amplifier system suitable for water vapor detection at 965 nm with 16 W peak power

    Science.gov (United States)

    Vu, Thi N.; Klehr, Andreas; Sumpf, Bernd; Hoffmann, Thomas; Liero, Armin; Tränkle, Günther

    2016-03-01

    A master oscillator power amplifier system emitting alternatingly at two neighbored wavelengths around 965 nm is presented. As master oscillator (MO) a Y-branch DFB-laser is used. The two branches, which can be individually controlled, deliver the two wavelengths needed for a differential absorption measurement of water vapor. Adjusting the current through the DFB sections, the wavelength can be adjusted with respect to the targeted either "on" or "off" resonance, respectively wavelength λon or wavelength λoff. The emission of this laser is amplified in a tapered amplifier (TA). The ridge waveguide section of the TA acts as optical gate to generate short pulses with duration of 8 ns at a repetition rate of 25 kHz, the flared section is used for further amplification to reach peak powers up to 16 W suitable for micro-LIDAR (Light Detection and Ranging). The necessary pulse current supply user a GaN-transistor based driver electronics placed close to the power amplifier (PA). The spectral properties of the emission of the MO are preserved by the PA. A spectral line width smaller than 10 pm and a side mode suppression ratio (SMSR) of 37 dB are measured. These values meet the demands for water vapor absorption measurements under atmospheric conditions.

  19. Selection of the optimal combination of water vapor absorption lines for detection of temperature in combustion zones of mixing supersonic gas flows by diode laser absorption spectrometry

    International Nuclear Information System (INIS)

    Mironenko, V.R.; Kuritsyn, Yu.A.; Bolshov, M.A.; Liger, V.V.

    2017-01-01

    Determination of a gas medium temperature by diode laser absorption spectrometry (DLAS) is based on the measurement of integral intensities of the absorption lines of a test molecule (generally water vapor molecule). In case of local thermodynamic equilibrium temperature is inferred from the ratio of the integral intensities of two lines with different low energy levels. For the total gas pressure above 1 atm the absorption lines are broadened and one cannot find isolated well resolved water vapor absorption lines within relatively narrow spectral interval of fast diode laser (DL) tuning range (about 3 cm"−"1). For diagnostics of a gas object in the case of high temperature and pressure DLAS technique can be realized with two diode lasers working in different spectral regions with strong absorption lines. In such situation the criteria of the optimal line selection differs significantly from the case of narrow lines. These criteria are discussed in our work. The software for selection the optimal spectral regions using the HITRAN-2012 and HITEMP data bases is developed. The program selects spectral regions of DL tuning, minimizing the error of temperature determination δT/T, basing on the attainable experimental error of line intensity measurement δS. Two combinations of optimal spectral regions were selected – (1.392 & 1.343 μm) and (1.392 & 1.339 μm). Different algorithms of experimental data processing are discussed.

  20. Analysis of laser ablation: Contribution of ionization energy to the plasma and shock wave properties

    International Nuclear Information System (INIS)

    Wen, S.-B.; Mao Xianglei; Greif, Ralph; Russo, Richard E.

    2007-01-01

    By fitting simulation results with experimentally measured trajectories of the shock wave and the vapor/background gas contact surface, we found that inclusion of ionization energy in the analysis leads to a change in the evolution of the pressure, mass density, electron number density, and temperature of the vapor plume. The contribution of ionization energy to both the plasma and shock wave has been neglected in most studies of laser ablation. Compared to previous simulations, the densities, pressures, and temperatures are lower shortly after the laser pulse ( 50 ns). The predicted laser energy conversion ratio also showed about a 20% increase (from 35% to 45%) when the ionization energy is considered. The changes in the evolution of the physical quantities result from the retention of the ionization energy in the vapor plume, which is then gradually transformed to kinetic and thermal energies. When ionization energy is included in the simulation, the vapor plume attains higher expansion speeds and temperatures for a longer time after the laser pulse. The better determination of the temperature history of the vapor plume not only improves the understanding of the expansion process of the laser induced vapor plume but also is important for chemical analysis. The accurate temperature history provides supplementary information which enhances the accuracy of chemical analysis based on spectral emission measurements (e.g., laser induced breakdown spectroscopy)

  1. A Review of Laser Ablation Propulsion

    International Nuclear Information System (INIS)

    Phipps, Claude; Bohn, Willy; Lippert, Thomas; Sasoh, Akihiro; Schall, Wolfgang; Sinko, John

    2010-01-01

    Laser Ablation Propulsion is a broad field with a wide range of applications. We review the 30-year history of laser ablation propulsion from the transition from earlier pure photon propulsion concepts of Oberth and Saenger through Kantrowitz's original laser ablation propulsion idea to the development of air-breathing 'Lightcraft' and advanced spacecraft propulsion engines. The polymers POM and GAP have played an important role in experiments and liquid ablation fuels show great promise. Some applications use a laser system which is distant from the propelled object, for example, on another spacecraft, the Earth or a planet. Others use a laser that is part of the spacecraft propulsion system on the spacecraft. Propulsion is produced when an intense laser beam strikes a condensed matter surface and produces a vapor or plasma jet. The advantages of this idea are that exhaust velocity of the propulsion engine covers a broader range than is available from chemistry, that it can be varied to meet the instantaneous demands of the particular mission, and that practical realizations give lower mass and greater simplicity for a payload delivery system. We review the underlying theory, buttressed by extensive experimental data. The primary problem in laser space propulsion theory has been the absence of a way to predict thrust and specific impulse over the transition from the vapor to the plasma regimes. We briefly discuss a method for combining two new vapor regime treatments with plasma regime theory, giving a smooth transition from one regime to the other. We conclude with a section on future directions.

  2. Step driven competitive epitaxial and self-limited growth of graphene on copper surface

    Directory of Open Access Journals (Sweden)

    Lili Fan

    2011-09-01

    Full Text Available The existence of surface steps was found to have significant function and influence on the growth of graphene on copper via chemical vapor deposition. The two typical growth modes involved were found to be influenced by the step morphologies on copper surface, which led to our proposed step driven competitive growth mechanism. We also discovered a protective role of graphene in preserving steps on copper surface. Our results showed that wide and high steps promoted epitaxial growth and yielded multilayer graphene domains with regular shape, while dense and low steps favored self-limited growth and led to large-area monolayer graphene films. We have demonstrated that controllable growth of graphene domains of specific shape and large-area continuous graphene films are feasible.

  3. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    International Nuclear Information System (INIS)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H.

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs

  4. Environmental site description for a Uranium Atomic Vapor Laser Isotope Separation (U-AVLIS) production plant at the Paducah Gaseous Diffusion Plant site

    Energy Technology Data Exchange (ETDEWEB)

    Marmer, G.J.; Dunn, C.P.; Moeller, K.L.; Pfingston, J.M.; Policastro, A.J.; Yuen, C.R.; Cleland, J.H. (ed.)

    1991-09-01

    Uranium enrichment in the United States has utilized a diffusion process to preferentially enrich the U-235 isotope in the uranium product. The U-AVLIS process is based on electrostatic extraction of photoionized U-235 atoms from an atomic vapor stream created by electron-beam vaporization of uranium metal alloy. The U-235 atoms are ionized when precisely tuned laser light -- of appropriate power, spectral, and temporal characteristics -- illuminates the uranium vapor and selectively photoionizes the U-235 isotope. A programmatic document for use in screening DOE site to locate a U-AVLIS production plant was developed and implemented in two parts. The first part consisted of a series of screening analyses, based on exclusionary and other criteria, that identified a reasonable number of candidate sites. These sites were subjected to a more rigorous and detailed comparative analysis for the purpose of developing a short list of reasonable alternative sites for later environmental examination. This environmental site description (ESD) provides a detailed description of the PGDP site and vicinity suitable for use in an environmental impact statement (EIS). The report is based on existing literature, data collected at the site, and information collected by Argonne National Laboratory (ANL) staff during a site visit. 65 refs., 15 tabs.

  5. Development laser light facility for uranium isotope separation

    International Nuclear Information System (INIS)

    Dickinson, G.J.

    1992-01-01

    A laser light facility has been built and successfully commissioned as part of a programme to explore the economic potential of Laser Isotope Separation of Uranium. The laser systems are comprised of tunable dye lasers pumped by copper vapour lasers. The requirements for optical beam stability, alignment of lasers in chains, and protection of optical coatings have made challenging demands on the engineering design and operation of the facility. (Author)

  6. Higher-resolution selective metallization on alumina substrate by laser direct writing and electroless plating

    Science.gov (United States)

    Lv, Ming; Liu, Jianguo; Wang, Suhuan; Ai, Jun; Zeng, Xiaoyan

    2016-03-01

    How to fabricate conductive patterns on ceramic boards with higher resolution is a challenge in the past years. The fabrication of copper patterns on alumina substrate by laser direct writing and electroless copper plating is a low cost and high efficiency method. Nevertheless, the lower resolution limits its further industrial applications in many fields. In this report, the mechanisms of laser direct writing and electroless copper plating were studied. The results indicated that as the decomposed products of precursor PdCl2 have different chemical states respectively in laser-irradiated zone (LIZ) and laser-affected zone (LAZ). This phenomenon was utilized and a special chemical cleaning method with aqua regia solution was taken to selectively remove the metallic Pd in LAZ, while kept the PdO in LIZ as the only active seeds. As a result, the resolution of subsequent copper patterns was improved significantly. This technique has a great significance to develop the microelectronics devices.

  7. High temperature measurement of water vapor absorption

    Science.gov (United States)

    Keefer, Dennis; Lewis, J. W. L.; Eskridge, Richard

    1985-01-01

    An investigation was undertaken to measure the absorption coefficient, at a wavelength of 10.6 microns, for mixtures of water vapor and a diluent gas at high temperature and pressure. The experimental concept was to create the desired conditions of temperature and pressure in a laser absorption wave, similar to that which would be created in a laser propulsion system. A simplified numerical model was developed to predict the characteristics of the absorption wave and to estimate the laser intensity threshold for initiation. A non-intrusive method for temperature measurement utilizing optical laser-beam deflection (OLD) and optical spark breakdown produced by an excimer laser, was thoroughly investigated and found suitable for the non-equilibrium conditions expected in the wave. Experiments were performed to verify the temperature measurement technique, to screen possible materials for surface initiation of the laser absorption wave and to attempt to initiate an absorption wave using the 1.5 kW carbon dioxide laser. The OLD technique was proven for air and for argon, but spark breakdown could not be produced in helium. It was not possible to initiate a laser absorption wave in mixtures of water and helium or water and argon using the 1.5 kW laser, a result which was consistent with the model prediction.

  8. High-speed assembly language (80386/80387) programming for laser spectra scan control and data acquisition providing improved resolution water vapor spectroscopy

    Science.gov (United States)

    Allen, Robert J.

    1988-01-01

    An assembly language program using the Intel 80386 CPU and 80387 math co-processor chips was written to increase the speed of data gathering and processing, and provide control of a scanning CW ring dye laser system. This laser system is used in high resolution (better than 0.001 cm-1) water vapor spectroscopy experiments. Laser beam power is sensed at the input and output of white cells and the output of a Fabry-Perot. The assembly language subroutine is called from Basic, acquires the data and performs various calculations at rates greater than 150 faster than could be performed by the higher level language. The width of output control pulses generated in assembly language are 3 to 4 microsecs as compared to 2 to 3.7 millisecs for those generated in Basic (about 500 to 1000 times faster). Included are a block diagram and brief description of the spectroscopy experiment, a flow diagram of the Basic and assembly language programs, listing of the programs, scope photographs of the computer generated 5-volt pulses used for control and timing analysis, and representative water spectrum curves obtained using these programs.

  9. An efficient laser vaporization source for chemically modified metal clusters characterized by thermodynamics and kinetics

    Science.gov (United States)

    Masubuchi, Tsugunosuke; Eckhard, Jan F.; Lange, Kathrin; Visser, Bradley; Tschurl, Martin; Heiz, Ulrich

    2018-02-01

    A laser vaporization cluster source that has a room for cluster aggregation and a reactor volume, each equipped with a pulsed valve, is presented for the efficient gas-phase production of chemically modified metal clusters. The performance of the cluster source is evaluated through the production of Ta and Ta oxide cluster cations, TaxOy+ (y ≥ 0). It is demonstrated that the cluster source produces TaxOy+ over a wide mass range, the metal-to-oxygen ratio of which can easily be controlled by changing the pulse duration that influences the amount of reactant O2 introduced into the cluster source. Reaction kinetic modeling shows that the generation of the oxides takes place under thermalized conditions at less than 300 K, whereas metal cluster cores are presumably created with excess heat. These characteristics are also advantageous to yield "reaction intermediates" of interest via reactions between clusters and reactive molecules in the cluster source, which may subsequently be mass selected for their reactivity measurements.

  10. Characterization of laser doped silicon and overcoming adhesion challenges of solar cells with nickel-copper plated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Christian

    2015-07-01

    The combination of localized laser patterning and metal plating allows to replace conventional silver screen printing with nickel-copper plating to form inexpensive front contacts for crystalline silicon solar cells. In this work, a focus is put on effects that could cause inhomogeneous metal deposition and low metal contact adhesion. A descriptive model of the silicon nitride ablation mechanism is derived from SEM imaging and a precise recombination analysis using QSSPC measurements. Surface sensitive XPS measurements are conducted to prove the existence of a parasitic surface layer, identified as SiO{sub x}N{sub y}. The dense SiO{sub x}N{sub y} layer is an effective diffusion barrier, hindering the formation of a nickel silicide interlayer. After removal of the SiO{sub x}N{sub y} layer, cells show severe degradation caused by metal-induced shunting. These shunts are imaged using reverse biased electroluminescence imaging. A shunting mechanism is proposed and experimentally verified. New laser process sequences are devised and proven to produce cells with adhering Ni-Cu contacts. Conclusively the developed processes are assessed based on their industrial feasibility as well as on their efficiency potential.

  11. [Laservaporization of the prostate: current status of the greenlight and diode laser].

    Science.gov (United States)

    Rieken, M; Bachmann, A; Gratzke, C

    2013-03-01

    In the last decade laser vaporization of the prostate has emerged as a safe and effective alternative to transurethral resection of the prostate (TURP). This was facilitated in particular by the introduction of photoselective vaporization of the prostate (PVP) with a 532 nm 80 W KTP laser in 2002. Prospective randomized trials comparing PVP and TURP with a maximum follow-up of 3 years mostly demonstrated comparable functional results. Cohort studies showed a safe application of PVP in patients under oral anticoagulation and with large prostates. Systems from various manufacturers with different maximum power output and wavelengths are now available for diode laser vaporization of the prostate. Prospective randomized trials comparing diode lasers and TURP are not yet available. In cohort studies and comparative studies PVP diode lasers are characterized by excellent hemostatic properties but functional results vary greatly with some studies reporting high reoperation rates.

  12. Effect of Copper on the Carrier Lifetime in Black Silicon

    DEFF Research Database (Denmark)

    Porte, Henrik; Turchinovich, Dmitry; Persheyev, Saydulla

    2011-01-01

    Black silicon is produced by laser annealing of a-Si:H films. During annealing, silicon microstructures are formed on the surface. We use time-resolved terahertz spectroscopy to study the photoconductivity dynamics in black silicon. We find that when a copper film is deposited on top of the a......-Si:H layer prior to laser annealing, the carrier lifetime of black silicon is significantly reduced....

  13. Lasers: present and future research

    International Nuclear Information System (INIS)

    Philippe, P.

    1981-01-01

    Recent advances in the field of lasers are reviewed in particular in the French laboratories. Different lasers are briefly described related to their applications: rare gas halide, iodine, metal vapor, color center, transition-metal solid state, CO 2 , chemical, blue-green and free electron lasers. Among applications researches on thermonuclear fusion are given p. 125 and researches concerning isotope separation are given p. 126 and 127 [fr

  14. Scalable patterning using laser-induced shock waves

    Science.gov (United States)

    Ilhom, Saidjafarzoda; Kholikov, Khomidkhodza; Li, Peizhen; Ottman, Claire; Sanford, Dylan; Thomas, Zachary; San, Omer; Karaca, Haluk E.; Er, Ali O.

    2018-04-01

    An advanced direct imprinting method with low cost, quick, and minimal environmental impact to create a thermally controllable surface pattern using the laser pulses is reported. Patterned microindents were generated on Ni50Ti50 shape memory alloys and aluminum using an Nd: YAG laser operating at 1064 nm combined with a suitable transparent overlay, a sacrificial layer of graphite, and copper grid. Laser pulses at different energy densities, which generate pressure pulses up to a few GPa on the surface, were focused through the confinement medium, ablating the copper grid to create plasma and transferring the grid pattern onto the surface. Scanning electron microscope and optical microscope images show that various patterns were obtained on the surface with high fidelity. One-dimensional profile analysis indicates that the depth of the patterned sample initially increases with the laser energy and later levels off. Our simulations of laser irradiation process also confirm that high temperature and high pressure could be generated when the laser energy density of 2 J/cm2 is used.

  15. Time-Resolved Quantum Cascade Laser Absorption Spectroscopy of Pulsed Plasma Assisted Chemical Vapor Deposition Processes Containing BCl3

    Science.gov (United States)

    Lang, Norbert; Hempel, Frank; Strämke, Siegfried; Röpcke, Jürgen

    2011-08-01

    In situ measurements are reported giving insight into the plasma chemical conversion of the precursor BCl3 in industrial applications of boriding plasmas. For the online monitoring of its ground state concentration, quantum cascade laser absorption spectroscopy (QCLAS) in the mid-infrared spectral range was applied in a plasma assisted chemical vapor deposition (PACVD) reactor. A compact quantum cascade laser measurement and control system (Q-MACS) was developed to allow a flexible and completely dust-sealed optical coupling to the reactor chamber of an industrial plasma surface modification system. The process under the study was a pulsed DC plasma with periodically injected BCl3 at 200 Pa. A synchronization of the Q-MACS with the process control unit enabled an insight into individual process cycles with a sensitivity of 10-6 cm-1·Hz-1/2. Different fragmentation rates of the precursor were found during an individual process cycle. The detected BCl3 concentrations were in the order of 1014 molecules·cm-3. The reported results of in situ monitoring with QCLAS demonstrate the potential for effective optimization procedures in industrial PACVD processes.

  16. A Laser Induced Breakdown Spectroscopy application based on Local Thermodynamic Equilibrium assumption for the elemental analysis of alexandrite gemstone and copper-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    De Giacomo, A. [Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari (Italy); Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Dell' Aglio, M. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Gaudiuso, R., E-mail: rosalba.gaudiuso@ba.imip.cnr.it [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Santagata, A. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Potenza, Via S. Loja, Zona Ind., 85050 Tito Scalo (PZ) (Italy); Senesi, G.S. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Rossi, M.; Ghiara, M.R. [Department of Earth Sciences, University of Naples ' Federico II' , Via Mezzocannone 8, 80134 Naples (Italy); Capitelli, F. [Institute of Crystallography - CNR, Via Salaria Km 29.300, 00015 Monterotondo (Roma) (Italy); De Pascale, O. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy)

    2012-04-04

    Graphical abstract: Self-calibrated analytical techniques based on the approximation of Local Thermodynamic Equilibrium (LTE) have been employed for the analysis of gemstones and copper-based alloys by LIBS (Laser Induced Breakdown Spectroscopy), with a special focus on LTE conditions in laser induced plasmas. Highlights: Black-Right-Pointing-Pointer Discussion of Local Thermodynamic Equilibrium (LTE) condition in laser-induced plasmas. Black-Right-Pointing-Pointer LIBS enables elemental analysis with self-calibrated LTE-based methods. Black-Right-Pointing-Pointer Be detection in alexandrite gemstone is made possible by LIBS. - Abstract: Laser Induced Breakdown Spectroscopy (LIBS) is an appealing technique to study laser-induced plasmas (LIPs), both from the basic diagnostics point of view and for analytical applications. LIPs are complex dynamic systems, expanding at supersonic velocities and undergoing a transition between different plasma regimes. If the Local Thermodynamic Equilibrium (LTE) condition is valid for such plasmas, several analytical methods can be employed and fast quantitative analyses can be performed on a variety of samples. In the present paper, a discussion about LTE is carried out and an innovative application to the analysis of the alexandrite gemstone is presented. In addition, a study about the influence of plasma parameters on the performance of LTE-based methods is reported for bronze and brass targets.

  17. Theoretical model for a background noise limited laser-excited optical filter for doubled Nd lasers

    Science.gov (United States)

    Shay, Thomas M.; Garcia, Daniel F.

    1990-01-01

    A simple theoretical model for the calculation of the dependence of filter quantum efficiency versus laser pump power in an atomic Rb vapor laser-excited optical filter is reported. Calculations for Rb filter transitions that can be used to detect the practical and important frequency-doubled Nd lasers are presented. The results of these calculations show the filter's quantum efficiency versus the laser pump power. The required laser pump powers required range from 2.4 to 60 mW/sq cm of filter aperture.

  18. Measurement of atmospheric carbon dioxide and water vapor in built-up urban areas in the Gandhinagar-Ahmedabad region in India using a portable tunable diode laser spectroscopy system.

    Science.gov (United States)

    Roy, Anirban; Sharma, Neetesh Kumar; Chakraborty, Arup Lal; Upadhyay, Abhishek

    2017-11-01

    This paper reports open-path in situ measurements of atmospheric carbon dioxide at Gandhinagar (23.2156°N, 72.6369°E) and Ahmedabad (23.0225°N, 72.5714°E) in the heavily industrialized state of Gujarat in western India. Calibration-free second harmonic wavelength modulation spectroscopy (2f WMS) is used to carry out accurate and fully automated measurements. The mean values of the mole fraction of carbon dioxide at four locations were 438 ppm, 495 ppm, 550 ppm, and 740 ppm, respectively. These values are much higher than the current global average of 406.67 ppm. A 1 mW, 2004-nm vertical cavity surface-emitting laser is used to selectively interrogate the R16 transition of carbon dioxide at 2003.5 nm (4991.2585 cm -1 ). The 2f WMS signal corresponding to the gas absorption line shape is simulated using spectroscopic parameters available in the HITRAN database and relevant laser parameters that are extracted in situ from non-absorbing spectral wings of the harmonic signals. The mole fraction of carbon dioxide is extracted in real-time by a MATLAB program from least-squares fit of the simulated 2f WMS signal to the corresponding experimentally obtained signal. A 10-mW, 1392.54-nm distributed feedback laser is used at two of the locations to carry out water vapor measurements using direct absorption spectroscopy. This is the first instance of a portable tunable diode laser spectroscopy system being deployed in an urban location in India to measure atmospheric carbon dioxide and water vapor under varying traffic conditions. The measurements clearly demonstrate the need to adopt tunable diode laser spectroscopy for precise long-term monitoring of greenhouse gases in the Indian subcontinent.

  19. Time-resolved soft x-ray spectra from laser-produced Cu plasma

    International Nuclear Information System (INIS)

    Cone, K.V.; Dunn, J.; Baldis, H.A.; May, M.J.; Purvis, M.A.; Scott, H.A.; Schneider, M.B.

    2012-01-01

    The volumetric heating of a thin copper target has been studied with time resolved x-ray spectroscopy. The copper target was heated from a plasma produced using the Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) laser. A variable spaced grating spectrometer coupled to an x-ray streak camera measured soft x-ray emission (800-1550 eV) from the back of the copper target to characterize the bulk heating of the target. Radiation hydrodynamic simulations were modeled in 2-dimensions using the HYDRA code. The target conditions calculated by HYDRA were post-processed with the atomic kinetics code CRETIN to generate synthetic emission spectra. A comparison between the experimental and simulated spectra indicates the presence of specific ionization states of copper and the corresponding electron temperatures and ion densities throughout the laser-heated copper target.

  20. GaN-based vertical-cavity surface-emitting lasers with tunnel junction contacts grown by metal-organic chemical vapor deposition

    Science.gov (United States)

    Lee, SeungGeun; Forman, Charles A.; Lee, Changmin; Kearns, Jared; Young, Erin C.; Leonard, John T.; Cohen, Daniel A.; Speck, James S.; Nakamura, Shuji; DenBaars, Steven P.

    2018-06-01

    We report the first demonstration of III–nitride vertical-cavity surface-emitting lasers (VCSELs) with tunnel junction (TJ) intracavity contacts grown completely by metal–organic chemical vapor deposition (MOCVD). For the TJs, n++-GaN was grown on in-situ activated p++-GaN after buffered HF surface treatment. The electrical properties and epitaxial morphologies of the TJs were first investigated on TJ LED test samples. A VCSEL with a TJ intracavity contact showed a lasing wavelength of 408 nm, a threshold current of ∼15 mA (10 kA/cm2), a threshold voltage of 7.8 V, a maximum output power of 319 µW, and a differential efficiency of 0.28%.

  1. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  2. Evaporation studies of liquid oxide fuel at very high temperatures using laser beam heating

    International Nuclear Information System (INIS)

    Bober, M.; Breitung, W.; Karow, H.U.; Schretzmann, K.

    1976-11-01

    Evaporation experiments with oxide fuel are carried out based laser beam heating of the fuel specimen surface. The measuring quantities are the recoil momentum of the target, the evaporation area, the evaporation time and the mass and momentum of the supersonic vapor jet expanding into vacuum, and the thermal radiation density of the evaporating surface. From the mechanical measuring quantities we derive the vapor pressure of the target material and, in a first approach, also the evaporation temperature by applying a gas dynamic evaluation model. In a second approach, after having measured the spectral emissivity of liquid UO 2 at 633 nm, we determine the evaporation temperature at the liquid surface also from its thermal radiation. For the determination of the vapor pressure from the measured quantities a gas dynamic evaluation model has been developed. An application limit of the measuring technique is given by onset of plasma interaction of the vapor plume with the incident laser beam at temperatures above 4500 K. Experimental values for the saturated vapor pressure of UO 2 are presented, determined from three series of laser evaporation measurements obtained at temperatures around 3500 K, 3950 K, and 4200 K. The average vapor pressures found are 0.6 bar, 3 bar, and 7 bar, respectively. Laser vapor pressure measurements performed by other authors and theoretical extrapolations of the UO 2 vapor pressure curve known from literature show fairly good agreement within their confidence interval with the vapor pressure measurements reported here. (orig./HR) [de

  3. Multilayer graphene as an effective corrosion protection coating for copper

    Science.gov (United States)

    Ravishankar, Vasumathy; Ramaprabhu, S.; Jaiswal, Manu

    2018-04-01

    Graphene grown by chemical vapor deposition (CVD) has been studied as a protective layer against corrosion of copper. The layer number dependence on the protective nature of graphene has been investigated using techniques such as Tafel analysis and Electroimpedance Spectroscopy. Multiple layers of graphene were achieved by wet transfer above CVD grown graphene. Though this might cause grain boundaries, the sites where corrosion is initiated, to be staggered, wet transfer inherently carries the disadvantage of tearing of graphene, as confirmed by Raman spectroscopy measurements. However, Electroimpedance Spectroscopy (EIS) reflects that graphene protected copper has a layer dependent resistance to corrosion. Decrease in corrosion current (Icorr) for graphene protected copper is presented. There is only small dependence of corrosion current on the layer number, Tafel plots clearly indicate passivation in the presence of graphene, whether it be single layer or multiple layers. Notwithstanding the crystallite size, defect free layers of graphene with staggered grain boundaries combined with passivation could offer good corrosion protection for metals.

  4. Solid State Transmitters for Water Vapor and Ozone DIAL Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We have developed a common architecture for laser transmitters that address requirements for water vapor as well as ground and airborne ozone lidar systems. Our...

  5. Sixteenth International Laser Radar Conference, Part 2

    International Nuclear Information System (INIS)

    Mccormick, M.P.

    1992-07-01

    Given here are extended abstracts of papers presented at the 16th International Laser Radar Conference, held in Cambridge, Massachusetts, July 20-24, 1992. Topics discussed include the Mt. Pinatubo volcanic dust laser observations, global change, ozone measurements, Earth mesospheric measurements, wind measurements, imaging, ranging, water vapor measurements, and laser devices and technology

  6. Mobile vapor recovery and vapor scavenging unit

    International Nuclear Information System (INIS)

    Stokes, C.A.; Steppe, D.E.

    1991-01-01

    This patent describes a mobile anti- pollution apparatus, for the recovery of hydrocarbon emissions. It comprises a mobile platform upon which is mounted a vapor recovery unit for recovering vapors including light hydrocarbons, the vapor recovery unit having an inlet and an outlet end, the inlet end adapted for coupling to an external source of hydrocarbon vapor emissions to recover a portion of the vapors including light hydrocarbons emitted therefrom, and the outlet end adapted for connection to a means for conveying unrecovered vapors to a vapor scavenging unit, the vapor scavenging unit comprising an internal combustion engine adapted for utilizing light hydrocarbon in the unrecovered vapors exiting from the vapor recovery unit as supplemental fuel

  7. Modelling of Ne-like copper X-ray laser driven by 1.2 ps short pulse and 280 ps background pulse configuration

    International Nuclear Information System (INIS)

    Demir, A.; Kenar, N.; Goktas, H.; Tallents, G.J.

    2004-01-01

    Detailed simulations of Ne-like Cu x-ray laser are undertaken using the EHYBRID code. The atomic physics data are obtained using the Cowan code. The optimization calculations are performed in terms of the intensity of background and the time separation between the background and the short pulse. The optimum value is obtained for the conditions of a Nd:glass laser with 1.2 ps pulse at 4.4 x 10 15 W cm -2 irradiance pumping a plasma pre-formed by a 280 ps duration pulse at 5.4 x 10 12 W cm -2 with peak-to-peak pulse separation set at 300 ps. X-ray resonance lines between 6 A and 15 A emitted from copper plasmas have been simulated. Free-free and free-bound emission from the Si-, Al-, Mg-, Na-, Ne- and F-like ions is calculated in the simulation. (author)

  8. Investigation of thermal and hot-wire chemical vapor deposition copper thin films on TiN substrates using CupraSelect as precursor.

    Science.gov (United States)

    Papadimitropoulos, G; Davazoglou, D

    2011-09-01

    Copper films were deposited on oxidized Si substrates covered with TiN using a novel chemical vapor deposition reactor in which reactions were assisted by a heated tungsten filament (hot-wire CVD, HWCVD). Liquid at room temperature hexafluoroacetylacetonate Cu(I) trimethylvinylsilane (CupraSelect) was directly injected into the reactor with the aid of a direct-liquid injection (DLI) system using N2 as carrier gas. The deposition rates of HWCVD Cu films obtained on TiN covered substrates were found to increase with filament temperature (65 and 170 degrees C were tested). The resistivities of HWCVD Cu films were found to be higher than for thermally grown films due to the possible presence of impurities into the Cu films from the incomplete dissociation of the precursor and W impurities caused by the presence of the filament. For HWCVD films grown at a filament temperature of 170 degrees C, smaller grains are formed than at 65 degrees C as shown from the taken SEM micrographs. XRD diffractograms taken on Cu films deposited on TiN could not reveal the presence of W compounds originating from the filament because the relative peak was masked by the TiN [112] peak.

  9. LASER INDUCED SELECTIVE ACTIVATION UTILIZING AUTO-CATALYTIC ELECTROLESS PLATING ON POLYMER SURFACE

    DEFF Research Database (Denmark)

    Zhang, Yang; Nielsen, Jakob Skov; Tang, Peter Torben

    2009-01-01

    . Characterization of the deposited copper layer was used to select and improve laser parameters. Several types of polymers with different melting points were used as substrate. Using the above mentioned laser treatment, standard grades of thermoplastic materials such as ABS, SAN, PE, PC and others have been......This paper presents a new method for selective micro metallization of polymers induced by laser. An Nd: YAG laser was employed to draw patterns on polymer surfaces using a special set-up. After subsequent activation and auto-catalytic electroless plating, copper only deposited on the laser tracks....... Induced by the laser, porous and rough structures are formed on the surface, which favours the palladium attachment during the activation step prior to the metallization. Laser focus detection, scanning electron microscopy (SEM) and other instruments were used to analyze the topography of the laser track...

  10. Determination of HCl and VOC Emission from Thermal Degradation of PVC in the Absence and Presence of Copper, Copper(II Oxide and Copper(II Chloride

    Directory of Open Access Journals (Sweden)

    Ahamad J. Jafari

    2009-01-01

    Full Text Available Polyvinyl chloride (PVC has played a key role in the development of the plastic industry over the past 40 years. Thermal degradation of PVC leads to formation of many toxic pollutants such as HCl, aromatic and volatile organic carbon vapors. Thermal degradation of PVC and PVC in the present of copper, cupric oxide and copper(II chloride were investigated in this study using a laboratory scale electrical furnace. HCl and Cl- ion were analyzed by a Dionex ion chromatograph and VOCs compounds were analyzed using GC or GC-MS. The results showed that HCl plus Cl- ion and benzene formed about 99% and 80% respectively in the first step of thermal degradation under air atmosphere. The presence of cupric oxide increases the percentage of short chain hydrocarbons more than 184% and decreases the amount of the major aromatic hydrocarbon and HCl plus Cl- ion to 90% and 65% respectively. The total aromatic hydrocarbon emitted less than when atmosphere was air and difference was statistically significant (Pvalue<0.000

  11. Assessing the Temperature Dependence of Narrow-Band Raman Water Vapor Lidar Measurements: A Practical Approach

    Science.gov (United States)

    Whiteman, David N.; Venable, Demetrius D.; Walker, Monique; Cardirola, Martin; Sakai, Tetsu; Veselovskii, Igor

    2013-01-01

    Narrow-band detection of the Raman water vapor spectrum using the lidar technique introduces a concern over the temperature dependence of the Raman spectrum. Various groups have addressed this issue either by trying to minimize the temperature dependence to the point where it can be ignored or by correcting for whatever degree of temperature dependence exists. The traditional technique for performing either of these entails accurately measuring both the laser output wavelength and the water vapor spectral passband with combined uncertainty of approximately 0.01 nm. However, uncertainty in interference filter center wavelengths and laser output wavelengths can be this large or larger. These combined uncertainties translate into uncertainties in the magnitude of the temperature dependence of the Raman lidar water vapor measurement of 3% or more. We present here an alternate approach for accurately determining the temperature dependence of the Raman lidar water vapor measurement. This alternate approach entails acquiring sequential atmospheric profiles using the lidar while scanning the channel passband across portions of the Raman water vapor Q-branch. This scanning is accomplished either by tilt-tuning an interference filter or by scanning the output of a spectrometer. Through this process a peak in the transmitted intensity can be discerned in a manner that defines the spectral location of the channel passband with respect to the laser output wavelength to much higher accuracy than that achieved with standard laboratory techniques. Given the peak of the water vapor signal intensity curve, determined using the techniques described here, and an approximate knowledge of atmospheric temperature, the temperature dependence of a given Raman lidar profile can be determined with accuracy of 0.5% or better. A Mathematica notebook that demonstrates the calculations used here is available from the lead author.

  12. Determination of water vapor and aerosol densities in the tropospheric atmosphere from nitrogen and water vapor raman signals

    CERN Document Server

    Kim, D H; Lee, J M; Yeon, K H; Choi, S C

    1998-01-01

    A Raman lidar system has been developed for the measurement of the water-vapor mixing ratio and the aerosol backscatter and extinction coefficients. To suppress the elastic scattering from the XeCl excimer laser, an acetone edge filter and narrow-band interference filters are used. By using independently calculated backscatter and extinction coefficients, we calculate the lidar ratios (extinction coefficient divided by the backscatter coefficient). The obtained ratios between 30 and 50 sr explain the special characteristics of the aerosol existing in the atmosphere. These ratios are also used as important parameters in the lidar inversion program. We have also obtained the water-vapor mixing ratio and find that big differences exist between the ratios inside the boundary layer and those of other regions.

  13. Solid State Transmitters for Water Vapor and Ozone DIAL Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The focus of this Select Phase II program is to build and deliver laser components both for airborne water vapor and ozone DIAL systems. Specifically, Fibertek...

  14. Nitrogen-doped graphene by microwave plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Kumar, A.; Voevodin, A.A.; Paul, R.; Altfeder, I.; Zemlyanov, D.; Zakharov, D.N.; Fisher, T.S.

    2013-01-01

    Rapid synthesis of nitrogen-doped, few-layer graphene films on Cu foil is achieved by microwave plasma chemical vapor deposition. The films are doped during synthesis by introduction of nitrogen gas in the reactor. Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and scanning tunneling microscopy reveal crystal structure and chemical characteristics. Nitrogen concentrations up to 2 at.% are observed, and the limit is linked to the rigidity of graphene films on copper surfaces that impedes further nitrogen substitutions of carbon atoms. The entire growth process requires only a few minutes without supplemental substrate heating and offers a promising path toward large-scale synthesis of nitrogen-doped graphene films. - Highlights: ► Rapid synthesis of nitrogen doped few layer graphene on Cu foil. ► Defect density increment on 2% nitrogen doping. ► Nitrogen doped graphene is a good protection to the copper metallic surface

  15. Nitrogen-doped graphene by microwave plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A., E-mail: kumar50@purdue.edu [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Voevodin, A.A. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States); Paul, R. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Altfeder, I. [Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States); Zemlyanov, D.; Zakharov, D.N. [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Fisher, T.S., E-mail: tsfisher@purdue.edu [Birck Nanotechnolgy Center, Purdue University, West Lafayette, IN 47907 (United States); Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, OH 45433 (United States)

    2013-01-01

    Rapid synthesis of nitrogen-doped, few-layer graphene films on Cu foil is achieved by microwave plasma chemical vapor deposition. The films are doped during synthesis by introduction of nitrogen gas in the reactor. Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy and scanning tunneling microscopy reveal crystal structure and chemical characteristics. Nitrogen concentrations up to 2 at.% are observed, and the limit is linked to the rigidity of graphene films on copper surfaces that impedes further nitrogen substitutions of carbon atoms. The entire growth process requires only a few minutes without supplemental substrate heating and offers a promising path toward large-scale synthesis of nitrogen-doped graphene films. - Highlights: ► Rapid synthesis of nitrogen doped few layer graphene on Cu foil. ► Defect density increment on 2% nitrogen doping. ► Nitrogen doped graphene is a good protection to the copper metallic surface.

  16. Ultraviolet versus infrared: Effects of ablation laser wavelength on the expansion of laser-induced plasma into one-atmosphere argon gas

    International Nuclear Information System (INIS)

    Ma Qianli; Motto-Ros, Vincent; Laye, Fabrice; Yu Jin; Lei Wenqi; Bai Xueshi; Zheng Lijuan; Zeng Heping

    2012-01-01

    Laser-induced plasma from an aluminum target in one-atmosphere argon background has been investigated with ablation using nanosecond ultraviolet (UV: 355 nm) or infrared (IR: 1064 nm) laser pulses. Time- and space-resolved emission spectroscopy was used as a diagnostics tool to have access to the plasma parameters during its propagation into the background, such as optical emission intensity, electron density, and temperature. The specific feature of nanosecond laser ablation is that the pulse duration is significantly longer than the initiation time of the plasma. Laser-supported absorption wave due to post-ablation absorption of the laser radiation by the vapor plume and the shocked background gas plays a dominant role in the propagation and subsequently the behavior of the plasma. We demonstrate that the difference in absorption rate between UV and IR radiations leads to different propagation behaviors of the plasma produced with these radiations. The consequence is that higher electron density and temperature are observed for UV ablation. While for IR ablation, the plasma is found with lower electron density and temperature in a larger and more homogenous axial profile. The difference is also that for UV ablation, the background gas is principally evacuated by the expansion of the vapor plume as predicted by the standard piston model. While for IR ablation, the background gas is effectively mixed to the ejected vapor at least hundreds of nanoseconds after the initiation of the plasma. Our observations suggest a description by laser-supported combustion wave for the propagation of the plasma produced by UV laser, while that by laser-supported detonation wave for the propagation of the plasma produced by IR laser. Finally, practical consequences of specific expansion behavior for UV or IR ablation are discussed in terms of analytical performance promised by corresponding plasmas for application with laser-induced breakdown spectroscopy.

  17. A Two-Line Absorption Instrument for Scramjet Temperature and Water Vapor Concentration Measurement in HYPULSE

    Science.gov (United States)

    Tsai, C. Y.

    1998-01-01

    A three beam water vapor sensor system has been modified to provide for near simultaneous temperature measurement. The system employs a tunable diode laser to scan spectral line of water vapor. The application to measurements in a scramjet combustor environment of a shock tunnel facility is discussed. This report presents and discusses die initial calibration of the measurement system.

  18. Method for laser welding a fin and a tube

    Science.gov (United States)

    Fuerschbach, Phillip W.; Mahoney, A. Roderick; Milewski, John O

    2001-01-01

    A method of laser welding a planar metal surface to a cylindrical metal surface is provided, first placing a planar metal surface into approximate contact with a cylindrical metal surface to form a juncture area to be welded, the planar metal surface and cylindrical metal surface thereby forming an acute angle of contact. A laser beam, produced, for example, by a Nd:YAG pulsed laser, is focused through the acute angle of contact at the juncture area to be welded, with the laser beam heating the juncture area to a welding temperature to cause welding to occur between the planar metal surface and the cylindrical metal surface. Both the planar metal surface and cylindrical metal surface are made from a reflective metal, including copper, copper alloys, stainless steel alloys, aluminum, and aluminum alloys.

  19. Near‐IR laser cleaning of Cu‐ based artefacts: a comprehensive study of the methodology standardization

    DEFF Research Database (Denmark)

    Hrnjic, Mahir

    2015-01-01

    . In this study, laser cleaning was performed with near-IR lasers on artificially aged copper specimens and on two copper coins coming from Bubastis (Egypt) in order to remove the patinas in a totally non invasive way. Different irradiance and different number of passes were utilised and compared. Treated surface...

  20. Femtosecond laser-induced herringbone patterns

    Science.gov (United States)

    Garcell, Erik M.; Lam, Billy; Guo, Chunlei

    2018-06-01

    Femtosecond laser-induced herringbone patterns are formed on copper (Cu). These novel periodic structures are created following s-polarized, large incident angle, femtosecond laser pulses. Forming as slanted and axially symmetric laser-induced periodic surface structures along the side walls of ablated channels, the result is a series of v-shaped structures that resemble a herringbone pattern. Fluence mapping, incident angle studies, as well as polarization studies have been conducted and provide a clear understanding of this new structure.

  1. Superhydrophobic Copper Surfaces with Anticorrosion Properties Fabricated by Solventless CVD Methods.

    Science.gov (United States)

    Vilaró, Ignasi; Yagüe, Jose L; Borrós, Salvador

    2017-01-11

    Due to continuous miniaturization and increasing number of electrical components in electronics, copper interconnections have become critical for the design of 3D integrated circuits. However, corrosion attack on the copper metal can affect the electronic performance of the material. Superhydrophobic coatings are a commonly used strategy to prevent this undesired effect. In this work, a solventless two-steps process was developed to fabricate superhydrophobic copper surfaces using chemical vapor deposition (CVD) methods. The superhydrophobic state was achieved through the design of a hierarchical structure, combining micro-/nanoscale domains. In the first step, O 2 - and Ar-plasma etchings were performed on the copper substrate to generate microroughness. Afterward, a conformal copolymer, 1H,1H,2H,2H-perfluorodecyl acrylate-ethylene glycol diacrylate [p(PFDA-co-EGDA)], was deposited on top of the metal via initiated CVD (iCVD) to lower the surface energy of the surface. The copolymer topography exhibited a very characteristic and unique nanoworm-like structure. The combination of the nanofeatures of the polymer with the microroughness of the copper led to achievement of the superhydrophobic state. AFM, SEM, and XPS were used to characterize the evolution in topography and chemical composition during the CVD processes. The modified copper showed water contact angles as high as 163° and hysteresis as low as 1°. The coating withstood exposure to aggressive media for extended periods of time. Tafel analysis was used to compare the corrosion rates between bare and modified copper. Results indicated that iCVD-coated copper corrodes 3 orders of magnitude slower than untreated copper. The surface modification process yielded repeatable and robust superhydrophobic coatings with remarkable anticorrosion properties.

  2. Laser transurethral resection of the prostate: Safety study of a novel system of photoselective vaporization with high power diode laser in prostates larger than 80mL.

    Science.gov (United States)

    Andrés, G; Arance, I; Gimbernat, H; Redondo, C; García-Tello, A; Angulo, J C

    2015-01-01

    To present the feasibility of photoselective vaporization of the prostate (PVP) with of a new diode laser-resection system. Surgical treatment of benign prostatic hyperplasia (BPH) is constantly evolving. Laser techniques are increasingly used in prostates of large size. A prospective study was performed to evaluate operative data and patient outcomes with PVP using high-power diode laser (HPD) and a novel quartz-head fiber with shovel shape in patients with prostate>80mL. Demographic data, operative time, hemoglobin loss, operative results (IPSS, quality of life (QoL), Qmax, post void residue (PVR), IIEF-5 and micturition diary) and complications following Clavien-Dindo classification are described. Thirty-one patients were included in the study. Sixteen (51.6%) were on active antiplatelet treatment and 12 (38.7%) had received anticoagulants before surgery. All cases were followed at least 6mo. No intraoperative or postoperative major complications occurred. Three patients (9.7%) had minor complications according to Clavien-Dindo classification. Twenty-seven (87.1%) were discharged on postoperative day one without catheter. There were significant improvements in IPSS, QoL, Qmax and PVR, both at 3 and 6mo (Plaser-resection is a safe procedure, achieving excellent results in terms of IPSS, QoL and Qmax in large prostates even in high-risk patients. Longer follow-up, comparative and randomized controlled studies are needed to widespread these results. Copyright © 2014 AEU. Publicado por Elsevier España, S.L.U. All rights reserved.

  3. Vapor phase coatings of metals and organics for laser fusion target applications

    International Nuclear Information System (INIS)

    Simonsic, G.A.; Powell, B.W.

    Techniques for applying a variety of metal and organic coatings to 50- to 500 μm diameter glass micro-balloons are discussed. Coating thicknesses vary from 1- to 10 μm. Physical vapor deposition (PVD), chemical vapor deposition (CVD), and electrolytic and electroless plating are some of the techniques being evaluated for metal deposition. PVD and glow discharge polymerization are being used for the application of organic coatings. (U.S.)

  4. [Atomic Vapor Laser Isotope Separation (AVLIS) program]. Final report, [January--July 1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-04

    This report summarizes work performed for the Atomic Vapor Laser Isotope Separation (AVLIS) program from January through July, 1992. Each of the tasks assigned during this period is described, and results are presented. Section I details work on sensitivity matrices for the UDS relay telescope. These matrices show which combination of mirror motions may be performed in order to effect certain changes in beam parameters. In Section II, an analysis is given of transmission through a clipping aperture on the launch telescope deformable mirror. Observed large transmission losses could not be simulated in the analysis. An EXCEL spreadsheet program designed for in situ analysis of UDS optical systems is described in Section III. This spreadsheet permits analysis of changes in beam first-order characteristics due to changes in any optical system parameter, simple optimization to predict mirror motions needed to effect a combination of changes in beam parameters, and plotting of a variety of first-order data. Optical systems may be assembled directly from OSSD data. A CODE V nonsequential model of the UDS optical system is described in Section IV. This uses OSSD data to build the UDS model; mirror coordinates may thus be verified. Section V summarizes observations of relay telescope performance. Possible procedures which allow more accurate assessment of relay telescope performance are given.

  5. Corrosion of copper-based materials in gamma radiation

    International Nuclear Information System (INIS)

    Yunker, W.H.

    1986-06-01

    The corrosion behaviors of pure copper (CDA 101), 7% aluminum-copper bronze (CDA 613) and 30% nickel-copper (CDA 715) are being studied in a gamma radiation field of 1 x 10 5 R/h. These studies are in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project, by Lawrence Livermore National Laboratory (LLNL), of copper-based materials for possible use in container systems for the permanent geologic burial of nuclear waste. Weight loss, tear drop (stressed), and crevice specimens of the three materials were exposed to water vapor-air atmospheres at 95 0 C and 150 0 C and to liquid water at 95 0 C for periods of one, three, and six months. Longer exposures are in progress. Measurements include: changes in the chemical composition of the gas and water, specimen weight changes, oxide film weights, evidence of microcracking and crevice corrosion, and chemical composition of the oxide films by Auger electron spectroscopy and x-ray diffraction. Interim results show considerable pit and under-film corrosion of alloys CDA 613 and CDA 715. Uniform corrosion rates range from 0.012 mil/yr (0.30 μm/yr) to 0.22 mil/yr (5.6 μm/yr), based on specimen weight losses during six- and seven-month exposures. The time dependencies will be determined as more data become available

  6. Use of the holmium:YAG laser in urology

    Science.gov (United States)

    Mattioli, Stefano

    1997-12-01

    The Holmium-YAG is a versatile laser with multiple soft- tissue applications including tissue incision and vaporization, and pulsed-laser applications such as lithotripsy. At 2140 nanometers, the wavelength is highly absorbed by tissue water. Further, like CO2 laser, the Holmium produces immediate tissue vaporization while minimizing deep thermal damage to surrounding tissues. It is an excellent instrument for endopyelotomy, internal urethrotomy, bladder neck incisions and it can be used to resect the prostate. The Holmium creates an acute TUR defect which gives immediate results like the TURP. More than 50 patients were treated from Jan. 1996 to Jan. 1997 for obstructive symptoms due to benign prostatic hyperplasia, bladder neck stricture, urethral stenosis, and superficial bladder tumors.

  7. Vaporization studies of plasma interactive materials in simulated plasma disruption events

    International Nuclear Information System (INIS)

    Stone, C.A. IV; Croessmann, C.D.; Whitley, J.B.

    1988-03-01

    The melting and vaporization that occur when plasma facing materials are subjected to a plasma disruption will severely limit component lifetime and plasma performance. A series of high heat flux experiments was performed on a group of fusion reactor candidate materials to model material erosion which occurs during plasma disruption events. The Electron Beam Test System was used to simulate single disruption and multiple disruption phenomena. Samples of aluminum, nickel, copper, molybdenum, and 304 stainless steel were subjected to a variety of heat loads, ranging from 100 to 400 msec pulses of 8 to 18 kWcm 2 . It was found that the initial surface temperature of a material strongly influences the vaporization process and that multiple disruptions do not scale linearly with respect to single disruption events. 2 refs., 9 figs., 5 tabs

  8. Optical Properties and Microstructure of Silver-Copper Nanoparticles Synthesized by Pulsed Laser Deposition

    Science.gov (United States)

    Hirai, Makoto; Kumar, Ashok

    2007-12-01

    Utilizing a pulsed laser deposition (PLD) method, silver-copper (Ag-Cu) nanoparticles have been synthesized by changing the surface area ratio of the target ( S R = S Cu/( S Ag + S Cu)) from 0 to 30%. The peak absorption attributed to surface plasmon resonance (SPR) increased when increasing S R up to 15%, above which it decreased. The peak shifts seem to be induced by the changes in the conductivity and morphology of the Ag-Cu nanoparticles. Additionally, the interplanar spacings of the Ag-Cu nanoparticles prepared at S R = 15% corresponded to the Ag {111}, {200}, {220}, and Cu {111} planes. However, since the interplanar spacings attributed to the Cu {200} and {220} planes were not detected, the Ag-Cu nanoparticles were believed to possess a lattice constant ( a) close not to the Cu phase ( a = 3.615 Å) but to the Ag phase ( a = 4.086 Å). Moreover, confirming the presence of Cu atoms in the nanoparticles using energy dispersive X-ray (EDX) spectra, Ag-Cu nanoparticles may be a solid solution in which Cu atoms partially replace Ag atoms in the fcc structure.

  9. Laser research and applications. Semiannual report, October 1980-March 1981

    International Nuclear Information System (INIS)

    1981-06-01

    Research progress during this period is given for each of the following topics: (1) rare-gas halogen laser program; (2) laser-triggered switches; (3) laser-controlled ionization front accelerator; (4) lasers for combustion research; (5) 10-μm interferometer for electron density measurements; (6) Q-switched and free-running stable pulse 1.06 μm laser; (7) Raman spectroscopy; (8) multiphoton ionization; (9) chemical vapor deposition and plasma etching; (10) laser-desorption mass spectrometry; (11) collision broadening and shift of the K 4p-ns and 4p-nd lines by Ar, (12) chemically pumped iodine laser; (13) laser-induced chemical reactions; (14) photolytic pumping of a laser by a moving, hot plasma; (15) laser-based surface spectroscopy; (16) laser-generated low-density channels; (17) radiation-driven density waves in optically pumped gas lasers; (18) propagation of an annular laser beam; (19) theoretical modeling of the chemical vapor deposition process; (20) charge exchange cross sections for C 6+ -H collisions; (21) the stopping power of gold ions for protons; (22) electron ionization cross sections of low-Z ions; (23) electron shielding effects on fusion cross sections and (24) radiation efficiencies from imploding liners

  10. Laser etching of polymer masked leadframes

    Science.gov (United States)

    Ho, C. K.; Man, H. C.; Yue, T. M.; Yuen, C. W.

    1997-02-01

    A typical electroplating production line for the deposition of silver pattern on copper leadframes in the semiconductor industry involves twenty to twenty five steps of cleaning, pickling, plating, stripping etc. This complex production process occupies large floor space and has also a number of problems such as difficulty in the production of rubber masks and alignment, generation of toxic fumes, high cost of water consumption and sometimes uncertainty on the cleanliness of the surfaces to be plated. A novel laser patterning process is proposed in this paper which can replace many steps in the existing electroplating line. The proposed process involves the application of high speed laser etching techniques on leadframes which were protected with polymer coating. The desired pattern for silver electroplating is produced by laser ablation of the polymer coating. Excimer laser was found to be most effective for this process as it can expose a pattern of clean copper substrate which can be silver plated successfully. Previous working of Nd:YAG laser ablation showed that 1.06 μm radiation was not suitable for this etching process because a thin organic and transparent film remained on the laser etched region. The effect of excimer pulse frequency and energy density upon the removal rate of the polymer coating was studied.

  11. Numerical modeling and experimental simulation of vapor shield formation and divertor material erosion for ITER typical plasma disruptions

    International Nuclear Information System (INIS)

    Wuerz, H.; Arkhipov, N.I.; Bakhin, V.P.; Goel, B.; Hoebel, W.; Konkashbaev, I.; Landman, I.; Piazza, G.; Safronov, V.M.; Sherbakov, A.R.; Toporkov, D.A.; Zhitlukhin, A.M.

    1994-01-01

    The high divertor heat load during a tokamak plasma disruption results in sudden evaporation of a thin layer of divertor plate material, which acts as vapor shield and protects the target from further excessive evaporation. Formation and effectiveness of the vapor shield are theoretically modeled and experimentally investigated at the 2MK-200 facility under conditions simulating the thermal quench phase of ITER tokamak plasma disruptions. In the optical wavelength range C II, C III, C IV emission lines for graphite, Cu I, Cu II lines for copper and continuum radiation for tungsten samples are observed in the target plasma. The plasma expands along the magnetic field lines with velocities of (4±1)x10 6 cm/s for graphite and 10 5 cm/s for copper. Modeling was done with a radiation hydrodynamics code in one-dimensional planar geometry. The multifrequency radiation transport is treated in flux limited diffusion and in forward reverse transport approximation. In these first modeling studies the overall shielding efficiency for carbon and tungsten defined as ratio of the incident energy and the vaporization energy for power densities of 10 MW/cm 2 exceeds a factor of 30. The vapor shield is established within 2 μs, the power fraction to the target after 10 μs is below 3% and reaches in the stationary state after about 20 μs a value of around 1.5%. ((orig.))

  12. Comparison of a novel high-power blue diode laser (λ=442 nm) with Ho:YAG (λ=2100 nm), Tm fiber (λ=1940 nm), and KTP (λ=532 nm) lasers for soft tissue ablation

    Science.gov (United States)

    Vinnichenko, Victoriya; Kovalenko, Anastasiya; Arkhipova, Valeriya; Yaroslavsky, Ilya; Altshuler, Gregory; Gapontsev, Valentin

    2018-02-01

    Three lasers were directly compared, including the Ho:YAG laser (λ = 2100 nm), Tm fiber laser (λ = 1940 nm) operating in 3 different modes (CW, regular pulse, and super pulse), and blue diode laser (λ = 442 nm) for vaporization and coagulation efficiency for treating blood-rich soft tissues, ex vivo, in a porcine kidney model at quasi-contact cutting in water. In addition, experimental results were compared with published data on performance of KTP laser (λ = 532 nm) at similar experimental settings (Power = 60 W and cutting speed = 2 mm/s). Tm fiber laser in pulsed mode and blue laser produced highest vaporization rates of 3.7 and 3.4 mm3/s, respectively. Tm fiber laser (in both CW and pulsed modes) also produced the largest coagulation zone among the laser sources tested. A carbonization zone was observed for Tm fiber laser in CW and pulsed modes, as well as for the blue diode laser. Tm fiber laser in super-pulse mode and Ho:YAG laser both resulted in irregular coagulation zones without carbonization. Comparison with known data for KTP laser revealed that tissue effects of the blue laser are similar to that of the KTP laser. These results suggest that the combination of the two lasers (Tm fiber and blue diode) in one system may achieve high cutting efficiency and optimal coagulation for hemostasis during surgical treatment. Ex vivo testing of the combined system revealed feasibility of this approach. The combination of the CW Tm fiber laser (120W) and the blue diode laser (60W) emitting through a combination tip were compared with CW 120 W Tm fiber laser alone and 120 W Ho:YAG laser. Vaporization rates measured 34, 28, and 6 mm3/s, and coagulation zones measured 0.6, 1.3, and 1.7 mm, respectively. A carbonization zone was only observed with CW Tm fiber laser. The vaporization rate of combined CW Tm fiber laser / blue diode laser was comparable to published data for KTP laser for equivalent total power. Thus, high-power blue diode laser, Tm fiber laser, and

  13. Synthesizing photovoltaic thin films of high quality copper-zinc-tin alloy with at least one chalcogen species

    Science.gov (United States)

    Teeter, Glenn; Du, Hui; Young, Matthew

    2013-08-06

    A method for synthesizing a thin film of copper, zinc, tin, and a chalcogen species ("CZTCh" or "CZTSS") with well-controlled properties. The method includes depositing a thin film of precursor materials, e.g., approximately stoichiometric amounts of copper (Cu), zinc (Zn), tin (Sn), and a chalcogen species (Ch). The method then involves re-crystallizing and grain growth at higher temperatures, e.g., between about 725 and 925 degrees K, and annealing the precursor film at relatively lower temperatures, e.g., between 600 and 650 degrees K. The processing of the precursor film takes place in the presence of a quasi-equilibrium vapor, e.g., Sn and chalcogen species. The quasi-equilibrium vapor is used to maintain the precursor film in a quasi-equilibrium condition to reduce and even prevent decomposition of the CZTCh and is provided at a rate to balance desorption fluxes of Sn and chalcogens.

  14. Single-resonance optical pumping spectroscopy and application in dressed-state measurement with atomic vapor cell at room temperature.

    Science.gov (United States)

    Liang, Qiangbing; Yang, Baodong; Zhang, Tiancai; Wang, Junmin

    2010-06-21

    By monitoring the transmission of probe laser beam (also served as coupling laser beam) which is locked to a cycling hyperfine transition of cesium D(2) line, while pumping laser is scanned across cesium D(1) or D(2) lines, the single-resonance optical pumping (SROP) spectra are obtained with atomic vapor cell. The SROP spectra indicate the variation of the zero-velocity atoms population of one hyperfine fold of ground state, which is optically pumped into another hyperfine fold of ground state by pumping laser. With the virtue of Doppler-free linewidth, high signal-to-noise ratio (SNR), flat background and elimination of crossover resonance lines (CRLs), the SROP spectra with atomic vapor cell around room temperature can be employed to measure dressed-state splitting of ground state, which is normally detected with laser-cooled atomic sample only, even if the dressed-state splitting is much smaller than the Doppler-broaden linewidth at room temperature.

  15. Advances in laser isotope separation

    International Nuclear Information System (INIS)

    Herman, I.P.; Bernhardt, A.F.

    1988-01-01

    The physical and chemical concepts required to understand laser isotope separation are presented and discussed. The numerous successful demonstrations of separating isotopes using lasers are reviewed to 1983. Emphasis is placed on the separation of 235-U from 238-U by multi-step selective ioniation of uranium atomic vapor, and on the separation of D and H and of T from D, by pulsed infrared laser multiple-photon dissociation of fluoroform and chloroform, respectively, because they are among the most successful and important examples of laser isotope separation to date. 161 refs.; 7 figs

  16. Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits

    Science.gov (United States)

    Seo, J.; Guillong, M.; Heinrich, C.

    2009-05-01

    Sulfur plays essential roles in hydrothermal ore-forming processes [1], which calls for precise and accurate quantitative sulfur determination in fluid inclusions. Feasibility tests for sulfur quantification by comparing data from both LA-Quadrupole (Q) - ICP-MS and LA-High Resolution (HR) - ICP-MS show that reliable sulfur quantification in fluid inclusions is possible [2], provided that a very careful baseline correction is applied. We investigate the metal transporting capabilities of sulfur by measuring sulfur together with copper and other elements in cogenetic brine and vapor inclusions ('boiling assemblages') in single healed crack hosted by quartz veins. Samples are from high-temperature magmatic-hydrothermal ore deposits and miarolitic cavities of barren granitoid. Clear compositional correlations of sulfur with copper and gold were found. A molar S/Cu ratio commonly close to 2 but never above 2, indicates sulfur-complexed metal transportation in the high-temperature hydrothermal vapor, and probably also in the Na-Fe-K-Cl-enriched brines. Vapor/brine partitioning trends of the S and Cu are shown to be related with the chemistry of the fluids (possibly by various sulfur speciations in varying pH, fO2) and causative magma source. In the boiling hydrothermal environments, higher vapor partitioning of Cu and S is observed at reduced and peraluminous Sn-W granite, whereas oxidized and perakaline porphyry-style deposits have a lower partitioning to the vapor although the total concentration of S, Cu, Au in both fluid phase is higher than in the Sn-W granite [3]. Vapor inclusion in the boiling assemblages from magmatic-hydrothermal ore deposits and granitic intrusions generally contain an excess of sulfur over ore metals such as Cu, Fe, and Mo. This allows efficient sulfide ore precipitation in high-temperature porphyry-type deposits, and complexation of gold by the remaining sulfide down to lower temperatures. The results confirm earlier interpretations [1] and

  17. Measurements of plasma temperature and electron density in laser ...

    Indian Academy of Sciences (India)

    of 6 ns focussed onto a copper solid sample in air at atmospheric pressure is studied spectroscopically. ... Pulsed laser-induced plasmas (LIPs) of metals and alloys formed at laser pulse ir- radiances near the .... fibre-based collection system.

  18. Study on surface properties of gilt-bronze artifacts, after Nd:YAG laser cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeyoun [Division of Restoration Technology, National Research Institute of Cultural Heritage, Daejeon (Korea, Republic of); Cho, Namchul, E-mail: nam1611@hanmail.net [Department of Cultural Heritage Conservation Science, Kongju National University, Gongju, 314-701 (Korea, Republic of); Lee, Jongmyoung [Laser Engineering Group, IMT Co. Ltd, Gyeonggi (Korea, Republic of)

    2013-11-01

    As numerous pores are formed at plating gilt-bronze artifacts, the metal underlying the gold is corroded and corrosion products are formed on layer of gold. Through this study, the surfaces of gilt-bronze are being investigated before and after the laser irradiation to remove corrosion products of copper by using Nd:YAG laser. For gilt-bronze specimens, laser and chemical cleaning were performed, and thereafter, surface analysis with SEM-EDS, AFM, and XPS were used to determine the surface characteristics. Experimental results show that chemical cleaning removes corrosion products of copper through dissolution but it was not removed uniformly and separated the metal substrate and the gold layer. Nevertheless, through laser cleaning, some of the corrosions were removed with some damaged areas due to certain conditions and brown residues remained. Brown residues were copper corrosion products mixed with soil left within the gilt layer. It was due to surface morphology of uneven and rough gilt layer. Hence, they did not react effectively to laser beams, and thus, remained as residues. The surface properties of gilt-bronze should be thoroughly investigated with various surface analyses to succeed in laser cleaning without damages or residues.

  19. Verification of a characterization method of the laser-induced selective activation based on industrial lasers

    DEFF Research Database (Denmark)

    Zhang, Yang; Hansen, Hans Nørgaard; Tang, Peter T.

    2013-01-01

    In this article, laser-induced selective activation (LISA) for subsequent autocatalytic copper plating is performed by several types of industrial scale lasers, including a Nd:YAG laser, a UV laser, a fiber laser, a green laser, and a short pulsed laser. Based on analysis of all the laser......-machined surfaces, normalized bearing area curves and parameters are used to characterize the surface quantitatively. The range of normalized bearing area curve parameters for plate-able surface is suggested. PBT/PET with 40 % glass fiber was used as the substrate material. For all of the studied lasers......, the parameters were varied in a relatively large range, and matrixes of the laser-machined surface were obtained. The topography of those laser-machined surfaces was examined by scanning electronic microscope (SEM). For each sample examined by SEM, there was an identical workpiece plated by for 90 min...

  20. Design challenges for matrix assisted pulsed laser evaporation and infrared resonant laser evaporation equipment

    Science.gov (United States)

    Greer, James A.

    2011-11-01

    Since the development of the Matrix Assisted Pulsed Laser Evaporation (MAPLE) process by the Naval Research Laboratory (NRL) in the late 1990s, MAPLE has become an active area of research for the deposition of a variety of polymer, biological, and organic thin films. As is often the case with advancements in thin-film deposition techniques new technology sometimes evolves by making minor or major adjustments to existing deposition process equipment and techniques. This is usually the quickest and least expensive way to try out new ideas and to "push the envelope" in order to obtain new and unique scientific results as quickly as possible. This process of "tweaking" current equipment usually works to some degree, but once the new process is further refined overall designs for a new deposition tool based on the critical attributes of the new process typically help capitalize more fully on the all the salient features of the new and improved process. This certainly has been true for the MAPLE process. In fact the first MAPLE experiments the polymer/solvent matrix was mixed and poured into a copper holder held at LN2 temperature on a laboratory counter top. The holder was then quickly placed onto a LN2 cooled reservoir in a vacuum deposition chamber and placed in a vertical position on a LN2 cooled stage and pumped down as quickly as possible. If the sample was not placed into the chamber quickly enough the frozen matrix would melt and drip into the bottom of the chamber onto the chambers main gate valve making a bit of a mess. However, skilled and motivated scientists usually worked quickly enough to make this process work most of the time. The initial results from these experiments were encouraging and led to several publications which sparked considerable interest in this newly developed technique Clearly this approach provided the vision that MAPLE was a viable deposition process, but the equipment was not optimal for conducting MAPLE experiments on a regular basis

  1. Photoresonance anode plasma production by KrF lasers

    International Nuclear Information System (INIS)

    Knyazev, B.A.; Melnikov, P.I.; Doroshkin, A.A.; Matveenko, A.N.; Bluhm, H.

    1996-01-01

    The interaction of an intense KrF laser pulse with vapor clouds of different elemental composition has been studied experimentally. The clouds were produced by evaporation of solid targets with a ruby laser. Ionization of the expanding clouds by a KrF laser was observed for clouds containing tantalum atoms. (author). 5 figs., 7 refs

  2. A novel anti-influenza copper oxide containing respiratory face mask.

    Science.gov (United States)

    Borkow, Gadi; Zhou, Steve S; Page, Tom; Gabbay, Jeffrey

    2010-06-25

    Protective respiratory face masks protect the nose and mouth of the wearer from vapor drops carrying viruses or other infectious pathogens. However, incorrect use and disposal may actually increase the risk of pathogen transmission, rather than reduce it, especially when masks are used by non-professionals such as the lay public. Copper oxide displays potent antiviral properties. A platform technology has been developed that permanently introduces copper oxide into polymeric materials, conferring them with potent biocidal properties. We demonstrate that impregnation of copper oxide into respiratory protective face masks endows them with potent biocidal properties in addition to their inherent filtration properties. Both control and copper oxide impregnated masks filtered above 99.85% of aerosolized viruses when challenged with 5.66+/-0.51 and 6.17+/-0.37 log(10)TCID(50) of human influenza A virus (H1N1) and avian influenza virus (H9N2), respectively, under simulated breathing conditions (28.3 L/min). Importantly, no infectious human influenza A viral titers were recovered from the copper oxide containing masks within 30 minutes (masks. Similarly, the infectious avian influenza titers recovered from the copper oxide containing masks were masks 5.03+/-0.54 log(10)TCID(50). The copper oxide containing masks successfully passed Bacterial Filtration Efficacy, Differential Pressure, Latex Particle Challenge, and Resistance to Penetration by Synthetic Blood tests designed to test the filtration properties of face masks in accordance with the European EN 14683:2005 and NIOSH N95 standards. Impregnation of copper oxide into respiratory protective face masks endows them with potent anti-influenza biocidal properties without altering their physical barrier properties. The use of biocidal masks may significantly reduce the risk of hand or environmental contamination, and thereby subsequent infection, due to improper handling and disposal of the masks.

  3. Underwater electrical wire explosion: Shock wave from melting being overtaken by shock wave from vaporization

    Science.gov (United States)

    Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin

    2018-05-01

    The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.

  4. Lithium vapor/aerosol studies. Interim summary report

    International Nuclear Information System (INIS)

    Whitlow, G.A.; Bauerle, J.E.; Down, M.G.; Wilson, W.L.

    1979-04-01

    The temperature/cover gas pressure regime, in which detectable lithium aerosol is formed in a static system has been mapped for argon and helium cover gases using a portable He--Ne laser device. At 538 0 C (1000 0 F), lithium aerosol particles were observed over the range 0.5 to 20 torr and 2 to 10 torr for argon and helium respectively. The experimental conditions in this study were more conducive to aerosol formation than in a fusion reactor. In the real reactor system, very high intensity mechanical and thermal disturbances will be made to the liquid lithium. These disturbances, particularly transient increases in lithium vapor pressure appear to be capable of producing high concentrations of optically-dense aerosol. A more detailed study is, therefore, proposed using the basic information generated in these preliminary experiments, as a starting point. Areas recommended include the kinetics of aerosol formation and the occurrence of supersaturated vapor during rapid vapor pressure transients, and also the effect of lithium agitation (falls, jets, splashing, etc.) on aerosol formation

  5. Possibilities of using pulsed lasers and copper-vapour laser system (CVL and CVLS) in modern technological equipment

    Science.gov (United States)

    Labin, N. A.; Bulychev, N. A.; Kazaryan, M. A.; Grigoryants, A. G.; Shiganov, I. N.; Krasovskii, V. I.; Sachkov, V. I.; Plyaka, P. S.; Feofanov, I. N.

    2015-12-01

    Research on CVL installations with an average power of 20-25 W of cutting and drilling has shown wide range of applications of these lasers for micromachining of metals and a wide range of non-metallic materials up to 1-2 mm. From the analysis indicated that peak power density in the focused light spot of 10-30 μm diameter must be 109 -1012 W/cm2 the productivity and quality micromachining, when the treatment material is preferably in the evaporative mode micro explosions, followed by the expansion of the superheated vapor and the liquid. To achieve such levels of power density, a minimum heat affected zone (5- 10 μm) and a minimum surface roughness of the cut (1-2 μm), the quality of the output beam of radiation should be as high. Ideally, to ensure the quality of the radiation, the structure of CVL output beam must be single-beam, diffraction divergence and have at duration pulses τi = 20-40 ns. The pulse energy should have low values of 0.1-1 mJ at pulse repetition rates of 10-20 kHz. Axis of the radiation beam instability of the pattern to be three orders of magnitude smaller than the diffraction limit of the divergence. The spot of the focused radiation beam must have a circular shape with clear boundary, and a Gaussian intensity distribution.

  6. Dynamics of laser-induced channel formation in water and influence of pulse duration on the ablation of biotissue under water with pulsed erbium-laser radiation

    Science.gov (United States)

    Ith, M.; Pratisto, H.; Altermatt, H. J.; Frenz, M.; Weber, H. P.

    1994-12-01

    The ability to use fiber-delivered erbium-laser radiation for non-contact arthroscopic meniscectomy in a liquid environment was studied. The laser radiation is transmitted through a water-vapor channel created by the leading part of the laser pulse. The dynamics of the channel formation around a submerged fiber tip was investigated with time-resolved flash photography. Strong pressure transients with amplitudes up to a few hundreds of bars measured with a needle hydrophone were found to accompany the channel formation process. Additional pressure transients in the range of kbars were observed after the laser pulse associated with the collapse of the vapor channel. Transmission measurements revealed that the duration the laser-induced channel stays open, and therefore the energy transmittable through it, is substantially determined by the laser pulse duration. The optimum pulse duration was found to be in the range between 250 and 350 µS. This was confirmed by histological evaluations of the laser incisions in meniscus: Increasing the pulse duration from 300 to 800 µs leads to a decrease in the crater depth from 1600 to 300 µm. A comparison of the histological examination after laser treatment through air and through water gave information on the influence of the vapor channel on the ablation efficiency, the cutting quality and the induced thermal damage in the adjacent tissue. The study shows that the erbium laser combined with an adequate fiber delivery system represents an effective surgical instrument liable to become increasingly accepted in orthopedic surgery.

  7. Particularities of interaction of CO sub 2 -laser radiation with oxide materials

    CERN Document Server

    Salikhov, T P

    2002-01-01

    The results of experimental investigation of vapor phase influence on the interaction parameters of the infrared laser radiation with oxide materials (Al sub 2 O sub 3 , ZrO sub 2 , CeO sub 2) have been presented. A phenomenon of laser radiation by the samples investigated under laser heating has been experimentally discovered for the first time. This phenomenon connected with forming of the stable vapor shell above the irradiated samples was expressed as a sharp drop in temperature on the heating curve and called as an absorption flash. (author)

  8. Vapor-cooled lead and stacks thermal performance and design analysis by finite difference techniques

    International Nuclear Information System (INIS)

    Peck, S.D.; Christensen, E.H.; O'Loughlin, J.M.

    1985-01-01

    Investigation of the combined thermal performance of the stacks and vapor cooled leads for the Mirror Fusion Test Facility-''B'' demonstrates considerable interdependency. For instance, the heat transfer to the vapor-cooled lead (VCL) from warm bus heaters, environmental enclosure, and stack is a significant additional heat load to the joule heating in the leads, proportionately higher for the lower current leads that have fewer current-carrying, counter flow coolant copper tubes. Consequently, the specific coolant flow (G/sec-kA-lead pair) increases as the lead current decreases. The definition of this interdependency and the definition of necessary thermal management has required an integrated thermal model for the entire stack/VCL assemblies

  9. Fabricating and strengthening the carbon nanotube/copper composite fibers with high strength and high electrical conductivity

    Science.gov (United States)

    Han, Baoshuai; Guo, Enyu; Xue, Xiang; Zhao, Zhiyong; Li, Tiejun; Xu, Yanjin; Luo, Liangshun; Hou, Hongliang

    2018-05-01

    Combining the excellent properties of carbon nanotube (CNT) and copper, CNT/Cu composite fibers were fabricated by physical vapor deposition (PVD) and rolling treatment. Dense and continuous copper film (∼2 μm) was coated on the surface of the CNT fibers by PVD, and rolling treatment was adopt to strengthen the CNT/Cu composite fibers. After the rolling treatment, the defects between the Cu grains and the CNT bundles were eliminated, and the structure of both the copper film and the core CNT fibers were optimized. The rolled CNT/Cu composite fibers possess high tensile effective strength (1.01 ± 0.13 GPa) and high electrical conductivity ((2.6 ± 0.3) × 107 S/m), and thus, this material may become a promising wire material.

  10. Soft-Bake Purification of SWCNTs Produced by Pulsed Laser Vaporization

    Science.gov (United States)

    Yowell, Leonard; Nikolaev, Pavel; Gorelik, Olga; Allada, Rama Kumar; Sosa, Edward; Arepalli, Sivaram

    2013-01-01

    The "soft-bake" method is a simple and reliable initial purification step first proposed by researchers at Rice University for single-walled carbon nanotubes (SWCNT) produced by high-pressure carbon mon oxide disproportionation (HiPco). Soft-baking consists of annealing as-produced (raw) SWCNT, at low temperatures in humid air, in order to degrade the heavy graphitic shells that surround metal particle impurities. Once these shells are cracked open by the expansion and slow oxidation of the metal particles, the metal impurities can be digested through treatment with hydrochloric acid. The soft-baking of SWCNT produced by pulsed-laser vaporization (PLV) is not straightforward, because the larger average SWCNT diameters (.1.4 nm) and heavier graphitic shells surrounding metal particles call for increased temperatures during soft-bake. A part of the technology development focused on optimizing the temperature so that effective cracking of the graphitic shells is balanced with maintaining a reasonable yield, which was a critical aspect of this study. Once the ideal temperature was determined, a number of samples of raw SWCNT were purified using the soft-bake method. An important benefit to this process is the reduced time and effort required for soft-bake versus the standard purification route for SWCNT. The total time spent purifying samples by soft-bake is one week per batch, which equates to a factor of three reduction in the time required for purification as compared to the standard acid purification method. Reduction of the number of steps also appears to be an important factor in improving reproducibility of yield and purity of SWCNT, as small deviations are likely to get amplified over the course of a complicated multi-step purification process.

  11. Degradation of graphene coated copper in simulated proton exchange membrane fuel cell environment: Electrochemical impedance spectroscopy study

    Science.gov (United States)

    Ren, Y. J.; Anisur, M. R.; Qiu, W.; He, J. J.; Al-Saadi, S.; Singh Raman, R. K.

    2017-09-01

    Metallic materials are most suitable for bipolar plates of proton exchange membrane fuel cell (PEMFC) because they possess the required mechanical strength, durability, gas impermeability, acceptable cost and are suitable for mass production. However, metallic bipolar plates are prone to corrosion or they can passivate under PEMFC environment and interrupt the fuel cell operation. Therefore, it is highly attractive to develop corrosion resistance coating that is also highly conductive. Graphene fits these criteria. Graphene coating is developed on copper by chemical vapor deposition (CVD) with an aim to improving corrosion resistance of copper under PEMFC condition. The Raman Spectroscopy shows the graphene coating to be multilayered. The electrochemical degradation of graphene coated copper is investigated by electrochemical impedance spectroscopy (EIS) in 0.5 M H2SO4 solution at room temperature. After exposure to the electrolyte for up to 720 h, the charge transfer resistance (Rt) of the graphene coated copper is ∼3 times greater than that of the bare copper, indicating graphene coatings could improve the corrosion resistance of copper bipolar plates.

  12. Reactive pulsed laser deposition with gas jet

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.

    2001-01-01

    Different metal (Sn, Al, steel, Cu, W) thin films were synthesized by reactive pulsed laser deposition on steel, copper and glass wafers. In our work pulsed Nd:glass (10 J, 800μs) laser system was used. Jet of gas was created by electromagnetic valve perpendicularly to the laser beam. Nitrogen, oxygen and argon were used. We used several to tens laser shots to obtain visible with the naked eye layers. Thin layers were observed under an optical microscope. (author)

  13. Optimizing the efficiency of femtosecond-laser-written holograms

    DEFF Research Database (Denmark)

    Wædegaard, Kristian Juncher; Hansen, Henrik Dueholm; Balling, Peter

    2013-01-01

    Computer-generated binary holograms are written on a polished copper surface using single 800-nm, 120-fs pulses from a 1-kHz-repetition-rate laser system. The hologram efficiency (i.e. the power in the holographic reconstructed image relative to the incoming laser power) is investigated...

  14. BELINDA: Broadband Emission Lidar with Narrowband Determination of Absorption. A new concept for measuring water vapor and temperature profiles

    Science.gov (United States)

    Theopold, F. A.; Weitkamp, C.; Michaelis, W.

    1992-01-01

    We present a new concept for differential absorption lidar measurements of water vapor and temperature profiles. The idea is to use one broadband emission laser and a narrowband filter system for separation of the 'online' and 'offline' return signals. It is shown that BELINDA offers improvements as to laser emission shape and stability requirements, background suppression, and last and most important a significant reduction of the influence of Rayleigh scattering. A suitably designed system based on this concept is presented, capable of measuring water vapor or temperature profiles throughout the planetary boundary layer.

  15. Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector

    Science.gov (United States)

    Pan, Huang-Wei; Kuo, Ling-Chi; Huang, Shu-Yu; Wu, Meng-Yun; Juang, Yu-Hang; Lee, Chia-Wei; Chen, Hsin-Chieh; Wen, Ting Ting; Chao, Shiuh

    2018-01-01

    Silicon is a potential substrate material for the large-areal-size mirrors of the next-generation laser interferometer gravitational wave detector operated in cryogenics. Silicon nitride thin films uniformly deposited by a chemical vapor deposition method on large-size silicon wafers is a common practice in the silicon integrated circuit industry. We used plasma-enhanced chemical vapor deposition to deposit silicon nitride films on silicon and studied the physical properties of the films that are pertinent to application of mirror coatings for laser interferometer gravitational wave detectors. We measured and analyzed the structure, optical properties, stress, Young's modulus, and mechanical loss of the films, at both room and cryogenic temperatures. Optical extinction coefficients of the films were in the 10-5 range at 1550-nm wavelength. Room-temperature mechanical loss of the films varied in the range from low 10-4 to low 10-5 within the frequency range of interest. The existence of a cryogenic mechanical loss peak depended on the composition of the films. We measured the bond concentrations of N - H , Si - H , Si - N , and Si - Si bonds in the films and analyzed the correlations between bond concentrations and cryogenic mechanical losses. We proposed three possible two-level systems associated with the N - H , Si - H , and Si - N bonds in the film. We inferred that the dominant source of the cryogenic mechanical loss for the silicon nitride films is the two-level system of exchanging position between a H+ and electron lone pair associated with the N - H bond. Under our deposition conditions, superior properties in terms of high refractive index with a large adjustable range, low optical absorption, and low mechanical loss were achieved for films with lower nitrogen content and lower N - H bond concentration. Possible pairing of the silicon nitride films with other materials in the quarter-wave stack is discussed.

  16. Ablation of biological tissues by radiation of strontium vapor laser

    Energy Technology Data Exchange (ETDEWEB)

    Soldatov, A. N., E-mail: general@tic.tsu.ru; Vasilieva, A. V., E-mail: anita-tomsk@mail.ru [National Research Tomsk State University, Lenin ave., 36, 634050, Tomsk (Russian Federation)

    2015-11-17

    A two-stage laser system consisting of a master oscillator and a power amplifier based on sources of self- contained transitions in pairs SrI and SrII has been developed. The radiation spectrum contains 8 laser lines generating in the range of 1 – 6.45 μm, with a generation pulse length of 50 – 150 ns, and pulse energy of ∼ 2.5 mJ. The divergence of the output beam was close to the diffraction and did not exceed 0.5 mrad. The control range of the laser pulse repetition rate varied from 10 to 15 000 Hz. The given laser system has allowed to perform ablation of bone tissue samples without visible thermal damage.

  17. High flux diode packaging using passive microscale liquid-vapor phase change

    Science.gov (United States)

    Bandhauer, Todd; Deri, Robert J.; Elmer, John W.; Kotovsky, Jack; Patra, Susant

    2017-09-19

    A laser diode package includes a heat pipe having a fluid chamber enclosed in part by a heat exchange wall for containing a fluid. Wicking channels in the fluid chamber is adapted to wick a liquid phase of the fluid from a condensing section of the heat pipe to an evaporating section of the heat exchanger, and a laser diode is connected to the heat exchange wall at the evaporating section of the heat exchanger so that heat produced by the laser diode is removed isothermally from the evaporating section to the condensing section by a liquid-to-vapor phase change of the fluid.

  18. Generation of InN nanocrystals in organic solution through laser ablation of high pressure chemical vapor deposition-grown InN thin film

    International Nuclear Information System (INIS)

    Alkis, Sabri; Alevli, Mustafa; Burzhuev, Salamat; Vural, Hüseyin Avni; Okyay, Ali Kemal; Ortaç, Bülend

    2012-01-01

    We report the synthesis of colloidal InN nanocrystals (InN-NCs) in organic solution through nanosecond pulsed laser ablation of high pressure chemical vapor deposition-grown InN thin film on GaN/sapphire template substrate. The size, the structural, the optical, and the chemical characteristics of InN-NCs demonstrate that the colloidal InN crystalline nanostructures in ethanol are synthesized with spherical shape within 5.9–25.3, 5.45–34.8, 3.24–36 nm particle-size distributions, increasing the pulse energy value. The colloidal InN-NCs solutions present strong absorption edge tailoring from NIR region to UV region.

  19. Spectrum diagnoses of laser plasma in 'ablation mode' laser propulsion

    International Nuclear Information System (INIS)

    Zhang Ling; Tang Zhiping; Tong Huifeng; Su Maogen; Xue Simin

    2007-01-01

    The propellant materials (LY12 aluminium, No.45 steel, H62 brass, graphite, polyvinyl chloride, polyoxymethylene) in laser propulsion are ablated by a Nd: YAG laser (1.06 μm, 10 ns). The space-resolved and the power density-depended emission spectrums of aluminum and copper plasma are recorded and analyzed. Under the local thermo equilibrium assumption, the electronic temperature and density as well as the average intensity of ionization from the relative intensity of characteristic spectrum for aluminum are obtained. Their dependence on laser power-density and spatial variation are also investigated. The ablation imagines (the ejected plumes) of the six materials in vacuum are obtained and discussed by using a B shutter camera. (authors)

  20. Ionization mechanism of cesium plasma produced by irradiation of dye laser

    International Nuclear Information System (INIS)

    Yamada, Jun; Shibata, Kohji; Uchida, Yoshiyuki; Hioki, Yoshiaki; Sahashi, Toshio.

    1992-01-01

    When a cesium vapor was irradiated by a dye laser which was tuned to the cesium atomic transition line, the number of charged particles produced by the laser radiation was observed. Several sharp peaks in the number of charged particles were observed, which corresponded to the atomic transition where the lower level was the 6P excited atom. The ionization mechanism of the laser-produced cesium plasma has been discussed. An initial electron is produced by laser absorptions of the cesium dimer. When the cesium density is high, many 6P excited atoms are excited by electron collisions. The 6P excited atom further absorbs the laser photon and is ionized through the higher-energy state. As the cesium vapor pressure increases, the resonance effect becomes observable. The 6P excited atom plays dominant role in the ionization mechanism of the laser-produced cesium plasma. (author)

  1. High quality graphene synthesized by atmospheric pressure CVD on copper foil

    OpenAIRE

    Trinsoutrot, Pierre; Rabot, Caroline; Vergnes, Hugues; Delamoreanu, Alexandru; Zenasni, Aziz; Caussat, Brigitte

    2013-01-01

    International audience; Graphene was synthesized at 1000 °C by Atmospheric Pressure Chemical Vapor Deposition on copper foil from methane diluted in argon and hydrogen. The influence of the main synthesis parameters was studied on 2 × 2 cm2 foils in order to obtain continuous monolayer graphenewithout crystalline defect. The uniformity, crystal quality and number of layers of graphenewere analyzed by Raman spectroscopy and Scanning Electronic Microscopy. First, an increase of the annealing pr...

  2. Laser-driven polarized H/D sources and targets

    International Nuclear Information System (INIS)

    Clasie, B.; Crawford, C.; Dutta, D.; Gao, H.; Seely, J.; Xu, W.

    2005-01-01

    Traditionally, Atomic Beam Sources are used to produce targets of nuclear polarized hydrogen (H) or deuterium (D) for experiments using storage rings. Laser-Driven Sources (LDSs) offer a factor of 20-30 gain in the target thickness (however, with lower polarization) and may produce a higher overall figure of merit. The LDS is based on the technique of spin-exchange optical pumping where alkali vapor is polarized by absorbing circularly polarized laser photons. The H or D atoms are nuclear-polarized through spin-exchange collisions with the polarized alkali vapor and through subsequent hyperfine interactions during frequent H-H or D-D collisions

  3. Ablative Laser Propulsion: An Update, Part I

    International Nuclear Information System (INIS)

    Pakhomov, Andrew V.; Cohen, Timothy; Lin Jun; Thompson, M. Shane; Herren, Kenneth A.

    2004-01-01

    This paper presents an updated review of studies on Ablative Laser Propulsion conducted by the Laser Propulsion Group (LPG) at the University of Alabama in Huntsville. In particular, we describe the newest results of our experimental study of specific impulses and coupling coefficients achieved by double-pulsed ablation of graphite, aluminum, copper and lead targets

  4. Evaporation-induced gas-phase flows at selective laser melting

    Science.gov (United States)

    Zhirnov, I.; Kotoban, D. V.; Gusarov, A. V.

    2018-02-01

    Selective laser melting is the method for 3D printing from metals. A solid part is built from powder layer-by-layer. A continuum-wave laser beam scans every powder layer to fuse powder. The process is studied with a high-speed CCD camera at the frame rate of 104 fps and the resolution up to 5 µm per pixel. Heat transfer and evaporation in the laser-interaction zone are numerically modeled. Droplets are ejected from the melt pool in the direction around the normal to the melt surface and the powder particles move in the horizontal plane toward the melt pool. A vapor jet is observed in the direction of the normal to the melt surface. The velocities of the droplets, the powder particles, and the jet flow and the mass loss due to evaporation are measured. The gas flow around the vapor jet is calculated by Landau's model of submerged jet. The measured velocities of vapor, droplets, and powder particles correlate with the calculated flow field. The obtained results show the importance of evaporation and the flow of the vapor and the ambient gas. These gas-dynamic phenomena can explain the formation of the denudated zones and the instability at high-energy input.

  5. A laser printing based approach for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.; Hu, M.; Guo, Q.; Zhang, W.; Yang, J., E-mail: jyang@eng.uwo.ca [Department of Mechanical and Materials Engineering, Western University, London N6A 3K7 (Canada); Liu, Y.; Lau, W. [Chengdu Green Energy and Green Manufacturing Technology R& D Center, 355 Tengfei Road, 620107 Chengdu (China); Wang, X. [Department of Mechanical and Materials Engineering, Western University, London N6A 3K7 (Canada); Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-03-07

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  6. A laser printing based approach for printed electronics

    International Nuclear Information System (INIS)

    Zhang, T.; Hu, M.; Guo, Q.; Zhang, W.; Yang, J.; Liu, Y.; Lau, W.; Wang, X.

    2016-01-01

    Here we report a study of printing of electronics using an office use laser printer. The proposed method eliminates those critical disadvantages of solvent-based printing techniques by taking the advantages of electroless deposition and laser printing. The synthesized toner acts as a catalyst for the electroless copper deposition as well as an adhesion-promoting buffer layer between the substrate and deposited copper. The easy metallization of printed patterns and strong metal-substrate adhesion make it an especially effective method for massive production of flexible printed circuits. The proposed process is a high throughput, low cost, efficient, and environmentally benign method for flexible electronics manufacturing.

  7. Laser lithotripsy with the Ho:YAG laser: fragmentation process revealed by time-resolved imaging

    Science.gov (United States)

    Schmidlin, Franz R.; Beghuin, Didier; Delacretaz, Guy P.; Venzi, Giordano; Jichlinski, Patrice; Rink, Klaus; Leisinger, Hans-Juerg; Graber, Peter

    1998-07-01

    Improvements of endoscopic techniques have renewed the interest of urologists in laser lithotripsy in recent years. Laser energy can be easily transmitted through flexible fibers thereby enabling different surgical procedures such as cutting, coagulating and lithotripsy. The Ho:YAG laser offers multiple medical applications in Urology, among them stone fragmentation. However, the present knowledge of its fragmentation mechanism is incomplete. The objective was therefore to analyze the fragmentation process and to discuss the clinical implications related to the underlying fragmentation mechanism. The stone fragmentation process during Ho:YAG laser lithotripsy was observed by time resolved flash video imaging. Possible acoustic transient occurrence was simultaneously monitored with a PVDF-needle hydrophone. Fragmentation was performed on artificial and cystine kidney stones in water. We observed that though the fragmentation process is accompanied with the formation of a cavitation bubble, cavitation has only a minimal effect on stone fragmentation. Fragment ejection is mainly due to direct laser stone heating leading to vaporization of organic stone constituents and interstitial water. The minimal effect of the cavitation bubble is confirmed by acoustic transients measurements, which reveal weak pressure transients. Stone fragmentation with the Holmium laser is the result of vaporization of interstitial (stone) water and organic stone constituents. It is not due to the acoustic effects of a cavitation bubble or plasma formation. The fragmentation process is strongly related with heat production thereby harboring the risk of undesired thermal damage. Therefore, a solid comprehension of the fragmentation process is needed when using the different clinically available laser types of lithotripsy.

  8. Engineering Copper Carboxylate Functionalities on Water Stable Metal–Organic Frameworks for Enhancement of Ammonia Removal Capacities

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Jayraj N.; Garcia-Gutierrez, Erika Y.; Moran, Colton M.; Deneff, Jacob I.; Walton, Krista S.

    2017-02-02

    Functionalization of copper carboxylate groups on a series of UiO-66 metal organic framework (MOF) analogues and their corresponding impact on humid and dry ammonia adsorption behavior were studied. Relative locations of possible carboxylic acid binding sites for copper on the MOF analogues were varied on ligand and missing linker defect sites. Materials after copper incorporation exhibited increased water vapor and ammonia affinity during isothermal adsorption and breakthrough experiments, respectively. The introduction of copper markedly increased ammonia adsorption capacities for all adsorbents possessing carboxyl binding sites. In particular, the new MOF UiO-66-(COOCu)2 displayed the highest ammonia breakthrough capacities of 6.38 and 6.84 mmol g–1 under dry and humid conditions, respectively, while retaining crystallinity and porosity. Relative carboxylic acid site locations were also found to impact sorbent stability, as missing linker defect functionalized materials degraded under humid conditions after copper incorporation. Postsynthetic metal insertion provides a method for adding sites that are analogous to open metal sites while maintaining good structural stability.

  9. Effect of volatile compounds on excimer laser power delivery.

    Science.gov (United States)

    Van Horn, Stewart D; Hovanesian, John A; Maloney, Robert K

    2002-01-01

    To determine whether vapors from perfume, hairspray, oil-based paint, or water-based paint affect excimer laser beam power delivery at the corneal surface. We measured the power delivery of an Apex Plus laser before, during, and after exposure to vapors from the following volatile compounds: three types of perfume, hair spray, an oil-based paint, and a water-based paint. A digital calorimeter was used to measure the steady-state beam power of the laser during laser discharge at the corneal plane. Multiple trials were run with each compound, and the change in laser energy over time was examined to determine if any of the compounds caused degradation of the laser optics. The presence of a volatile compound in the room caused no change in mean laser energy in comparison to before and after the compound was present. However, perfumes caused a progressive decline in laser beam power throughout the trials. Controlling for this progressive decline, there was no significant difference from perfume to perfume. None of the compounds tested caused a decline in laser beam power while present in the room. However, the presence of any perfume caused a deterioration in beam power over time, suggesting a degradation of the laser optics for all perfumes. Laser centers should consider advising their patients and staff to not wear perfumes in the laser suite.

  10. Use of pre-pulse in laser spot welding of materials with high optical reflection

    Science.gov (United States)

    Mys, Ihor; Geiger, Manfred

    2003-11-01

    Laser micro welding has become a standard manufacturing technique, particularly in industry sectors, such as automotive and aerospace electronics or medical devices, where the requirements for strength, miniaturization and temperature resistance are constantly rising. So far the use of laser micro welding is limited due to the fluctuation of the quality of the welded joints, because the welding results for material with high optical reflection and thermal conductivity, such as copper and copper alloys, depend very strongly on the condition of the material surface. This paper presents investigations on the use of a laser pre-pulse in spot welding of electronic materials with Nd:YAG laser. In order to achieve reproducible joining results two strategies are followed-up. The first one utilizes a reflection-based process control for measuring the reflection during the short pre-pulse. The intensity of the reflected light is used to calculate an appropriated welding pulse power, which corresponds to the measured relative absorption. Adjustment of laser parameters according to the condition of the surface is done in real time before laser main pulse. A second possibility for the stabilization of copper welding is the employment of a short and powerful laser pre-pulse before laser main pulse. This pre-pulse affects the workpiece surface and creates more reproducible absorption conditions for the main pulse, independent from the initial situation on material surface.

  11. Multistage plasma initiation process by pulsed CO2 laser irradiation of a Ti sample in an ambient gas (He, Ar, or N2)

    Science.gov (United States)

    Hermann, J.; Boulmer-Leborgne, C.; Mihailescu, I. N.; Dubreuil, B.

    1993-02-01

    New experimental results are reported on plasma initiation in front of a titanium sample irradiated by ir (λ=10.6 μm) laser pulses in an ambient gas (He, Ar, and N2) at pressures ranging from several Torr up to the atmosphere. The plasma is studied by space- and time-resolved emission spectroscopy, while sample vaporization is probed by laser-induced fluorescence spectroscopy. Threshold laser intensities leading to the formation of a plasma in the vapor and in the ambient gases are determined. Experimental results support the model of a vaporization mechanism for the plasma initiation (vaporization-initiated plasma breakdown). The plasma initiation is described by simple numerical criteria based on a two-stage process. Theoretical predictions are found to be in a reasonable agreement with the experiment. This study provides also a clear explanation of the influence of the ambient gas on the laser beam-metal surface energy transfer. Laser irradiation always causes an important vaporization when performed in He, while in the case of Ar or N2, the interaction is reduced in heating and vaporization of some surface defects and impurities.

  12. Compact Integrated DBR Laser Source for Absorption Lidar Instruments, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate a compact integrated laser module that addresses the requirements of the laser source in a water vapor differential absorption lidar (DIAL)...

  13. Effects of the copper vapour laser radiation in the root canal wall dentine: in vitro experiment using scanning electron microscopy and stereoscopy; Efeitos da radiacao laser de vapor de cobre na parede de dentina de canais radiculares: estudo in vitro por meio de microscopia eletronica de varredura e microscopio estereoscopico

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, Maria Claudia Garcia da

    2001-07-01

    Ten human uniradicular teeth had their crown removed along the cement-enamel junction and right away a proper chemical-surgical preparation of the radicular canals was done; the roots were longitudinally sectioned in order to allow the irradiation of the surfaces of the root canals wall dentine. The hemi-roots were separated in two groups: group I (control), with four hemi-roots, not irradiated; and group II, with 16 hemi-roots, subdivided in four sub-groups submitted to the following exposition time: 0,02 s; 0,05 s; 0,1 s and 0,5 s. A copper vapour laser was used with a 510,6 nm wavelength, total average power of 11 W in green and yellow emissions; average power of 6,5 W in green emission; pulse repetition rate of 16.000 Hz and pulse duration of 30 ns. The pulse energy (green line) is 0,4 mJ and the peak power 13,5 W. The laser cavity is unstable type (R{sub 1}=3.900 mm and R{sub 2}-250 mm). The focusing have focal length lens f{sub 1}=250 mm and f{sub 2}=150 mm. The beam quality is of the M{sup 2}=5. The results obtained by scanning electron microscopy analysis showed the appearance of a cavity in the region of the laser beam incidence in the edges of this cavity, dentin was melt and resolidified presenting also cracks due to heat diffusion. Based on these results, we concluded that the size of the cavity formed in the dentin is directly proportional to the rate of exposure and, the more laser emission in the same area, more damage in the root canals wall dentin occurs. More studies need to be done with different exposition's time in order to obtain a safety protocol that does not cause injury in dental and support tissue. (author)

  14. Impedance-match experiments using high intensity lasers

    International Nuclear Information System (INIS)

    Holmes, N.C.; Trainor, R.J.; Anderson, R.A.; Veeser, L.R.; Reeves, G.A.

    1981-01-01

    The results of a series of impedance-match experiments using copper-aluminum targets irradiated using the Janus Laser Facility are discussed. The results are compared to extrapolations of data obtained at lower pressures using impact techniques. The sources of errors are described and evaluated. The potential of lasers for high accuracy equation of state investigations are discussed

  15. Metal components analysis of metallothionein-III in the brain sections of metallothionein-I and metallothionein-II null mice exposed to mercury vapor with HPLC/ICP-MS

    Energy Technology Data Exchange (ETDEWEB)

    Kameo, Satomi; Nakai, Kunihiko; Kurokawa, Naoyuki; Satoh, Hiroshi [Tohoku University, Graduate School of Medicine, Aoba-ku, Sendai (Japan); Kanehisa, Tomokazu; Naganuma, Akira [Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai (Japan)

    2005-04-01

    Mercury vapor is effectively absorbed via inhalation and easily passes through the blood-brain barrier; therefore, mercury poisoning with primarily central nervous system symptoms occurs. Metallothionein (MT) is a cysteine-rich metal-binding protein and plays a protective role in heavy-metal poisoning and it is associated with the metabolism of trace elements. Two MT isoforms, MT-I and MT-II, are expressed coordinately in all mammalian tissues, whereas MT-III is a brain-specific member of the MT family. MT-III binds zinc and copper physiologically and is seemed to have important neurophysiological and neuromodulatory functions. The MT functions and metal components of MTs in the brain after mercury vapor exposure are of much interest; however, until now they have not been fully examined. In this study, the influences of the lack of MT-I and MT-II on mercury accumulation in the brain and the changes of zinc and copper concentrations and metal components of MTs were examined after mercury vapor exposure by using MT-I, II null mice and 129/Sv (wild-type) mice as experimental animals. MT-I, II null mice and wild-type mice were exposed to mercury vapor or an air stream for 2 h and were killed 24 h later. The brain was dissected into the cerebral cortex, the cerebellum, and the hippocampus. The concentrations of mercury in each brain section were determined by cold vapor atomic absorption spectrometry. The concentrations of mercury, copper, and zinc in each brain section were determined by inductively coupled plasma mass spectrometry (ICP-MS). The mercury accumulated in brains after mercury vapor exposure for MT-I, II null mice and wild-type mice. The mercury levels of MT-I, II null mice in each brain section were significantly higher than those of wild-type mice after mercury vapor exposure. A significant change of zinc concentrations with the following mercury vapor exposure for MT-I, II null mice was observed only in the cerebellum analyzed by two-way analysis of

  16. What makes for a successful laser application

    DEFF Research Database (Denmark)

    Olsen, Flemmming Ove

    1997-01-01

    Industrial application of lasers are within several different niches. A few of these niches are so large that standard equipment are on the market. However, most applications are more or less custom designed.The industrial laser market is new, the market size is small, and therefore the systems...... suppliers do normally not pocess internal ressources for efficient application development, except for their key market segments.The industrial laser market is further characterized by the large divertisement in products: Is the optimum laser for a certain job a CO2- or a ND-YAG-laser? Ore perhaps a Copper...

  17. Study of laser plasma emission from doped targets

    Czech Academy of Sciences Publication Activity Database

    Velardi, L.; Krása, Josef; Velyhan, Andriy; Nassisi, V.

    2012-01-01

    Roč. 83, č. 2 (2012), , "02B911-1"-"02B911-3" ISSN 0034-6748 R&D Projects: GA MŠk(CZ) 7E09092; GA MŠk(CZ) LC528 EU Projects: European Commission(XE) 228334 - LASERLAB-EUROPE Institutional research plan: CEZ:AV0Z10100523 Keywords : copper * excimer lasers * ion mobility * krypton compounds * laser ablation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.602, year: 2012

  18. Improving hemocompatibility and accelerating endothelialization of vascular stents by a copper-titanium film

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hengquan, E-mail: 99xyxy@163.com [College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Pan, Changjiang [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaiyin 223033 (China); Zhou, Shijie; Li, Junfeng [College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Huang, Nan [Key Laboratory for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031 (China); Dong, Lihua [Department of Research & Development, Lifetech Scientific (Shenzhen) Co., Ltd, Shenzhen 518057 (China)

    2016-12-01

    Bio-inorganic films and drug-eluting coatings are usually used to improve the hemocompatibility and inhibit restenosis of vascular stent; however, above bio-performances couldn't combine together with single materials. In the present study, we reported a simple approach to fabricate a metal film with the aim of imparting the stent with good blood compatibility and accelerating endothelialization. The films with various ratios of Cu and Ti were prepared through the physical vapor deposition. Phase structure and element composition were investigated by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), respectively. The releasing volume of copper ion in Cu/Ti film was determined by immersing test. The hemolysis ratio, platelet adhesion and clotting time were applied to evaluate the hemocompatibility. The proliferative behaviors of endothelial cells and smooth muscle cells under certain copper concentration were investigated in vitro and in vivo. Results indicated that copper-titanium films exhibited good hemocompatibility in vitro; however, the increase of Cu/Ti ratio could lead to increasing hemolysis ratio. Endothelial cells displayed more proliferative than smooth muscle cells when the copper concentration was < 7.5 μg/ml, however both cells tended to apoptosis to some degree when the copper concentration was increased. The complete endothelialization of the film with low copper in vivo was observed at the 2nd week, indicating that the copper-titanium film with the lower copper concentration could promote endothelialization. Therefore, the inorganic copper-titanium film could be potential biomaterials to improve blood compatibility and accelerating endothelialization of vascular stents. - Highlight: • The Cu/Ti film with regulating the various responses of ECs and SMCs has been prepared. • The hemocompatibility of Cu/Ti film is favorable and regulatable. • The volume of copper ion released from film could be designed.

  19. Vapor pressures and enthalpies of vaporization of azides

    International Nuclear Information System (INIS)

    Verevkin, Sergey P.; Emel'yanenko, Vladimir N.; Algarra, Manuel; Manuel Lopez-Romero, J.; Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G.

    2011-01-01

    Highlights: → We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. → We examined consistency of new and available in the literature data. → Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization Δ l g H m of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  20. Simulations of longitudinally pumped dye laser amplifier

    International Nuclear Information System (INIS)

    Takehisa, Kiwamu; Takemori, Satoshi

    1995-01-01

    Simulations of a copper laser pumped dye laser amplifier and new designs of the longitudinally pumped dye laser amplifier are presented. The simulations take the consideration of the amplified spontaneous emission (ASE). The new designs utilize a center-hole reflector instead of a dichroic mirror. The simulation results indicate that the poor spatial overlap between the pump beam and the dye beam in the transverse pumping not only reduces the laser output power, but also generates ASE strongly. The results also indicate that the longitudinal pumping is as efficient as the transverse pumping. (author)