WorldWideScience

Sample records for copper target downstream

  1. Energy deposition in a thin copper target downstream and off-axis of a proton-radiography target

    International Nuclear Information System (INIS)

    Greene, G.A.; Finfrock, C.C.; Snead, C.L.; Hanson, A.L.; Murray, M.M.

    2002-01-01

    A series of proton energy-deposition experiments was conducted to measure the energy deposited in a copper target located downstream and off-axis of a high-energy proton-radiography target. The proton/target interactions involved low-intensity bunches of protons at 24 GeV/c onto a spherical target consisting of concentric shells of tungsten and copper. The energy-deposition target was placed at five locations downstream of the proton-radiography target, off-axis of the primary beam transport, and was either unshielded or shielded by 5 or 10 cm of lead. Maximum temperature rises measured in the energy-deposition target due to single bunches of 5x10 10 protons on the proton-radiography target were approximately 20 mK per bunch. The data indicated that the scattered radiation was concentrated close to the primary transport axis of the beam line. The energy deposited in the energy-deposition target was reduced by moving the target radially away from the primary transport axis. Placing lead shielding in front of the target further reduced the energy deposition. The measured temperature rises of the energy-deposition target were empirically correlated with the distance from the source, the number of protons incident on the proton-radiography target, the thickness of the lead shielding, and the angle of the energy-deposition target off-axis of the beam line from the proton-radiography target. The correlation of the experimental data that was developed provides a starting point for the evaluation of the shielding requirements for devices downstream of proton-radiography targets such as superconducting magnets

  2. Electroforming copper targets for RTNS-II

    International Nuclear Information System (INIS)

    Kelley, W.K.; Dini, J.W.; Logan, C.M.

    1981-01-01

    Copper targets used in RTNS II, which is the world's most intense 14-MeV neutron source, contain water cooling channels for temperature control. There are two methods for fabricating these targets: (1) diffusion bonding a copper panel containing photoetched channels to another copper panel, and (2) an electroforming technique which involves filling the photoetched channels with wax, plating thick copper to seal over the channels and then removing the wax. Development of this latter process and results obtained with it are described

  3. Hypoxia targeting copper complexes

    International Nuclear Information System (INIS)

    Dearling, J.L.

    1998-11-01

    The importance and incidence of tumour hypoxia, its measurement and current treatments available, including pharmacological and radiopharmacological methods of targeting hypoxia, are discussed. A variety of in vitro and in vivo methods for imposing hypoxia have been developed and are reviewed. Copper, its chemistry, biochemistry and radiochemistry, the potential for use of copper radionuclides and its use to date in this field is considered with particular reference to the thiosemicarbazones. Their biological activity, metal chelation, in vitro and in vivo studies of their radiocopper complexes and the potential for their use as hypoxia targeting radiopharmaceuticals is described. The reduction of the copper(II) complex to copper(l), its pivotal importance in their biological behaviour, and the potential for manipulation of this to effect hypoxia selectivity are described. An in vitro method for assessing the hypoxia selectivity of radiopharmaceuticals is reported. The rapid deoxygenation and high viability of a mammalian cell culture in this system is discussed and factors which may affect the cellular uptake of a radiopharmaceutical are described. The design, synthesis and complexation with copper and radiocopper of a range of bis(thiosemicarbazones) is reported. Synthesis of these compounds is simple giving high yields of pure products. The characteristics of the radiocopper complexes ( 64 Cu) including lipophilicity and redox activity are reported (reduction potentials in the range -0.314 - -0.590 V). High cellular uptakes of the radiocopper complexes of the ligands, in hypoxic and normoxic EMT6 and CHO320 cells, were observed. Extremes of selectivity are shown ranging from the hypoxia selective 64 Cu(II)ATSM to normoxic cell selective 64 Cu(II)GTS. The selectivities observed are compared with the physico chemical characteristics of the complexes. A good correlation exists between selectivity of the complex and its Cu(II)/Cu(I) reduction potential, with hypoxia

  4. Influence of Copper Ore Comminution in HPGR on Downstream Minerallurgical Processes

    Directory of Open Access Journals (Sweden)

    Saramak D.

    2017-09-01

    Full Text Available Crushing processes taking place in high-pressure grinding rolls devices (HPGR are currently one of the most efficient methods of hard ore size reduction in terms of the energy consumption. The HPGR products are characterized by a fine particle size and the micro-cracks formation in individual particles, which appears in downstream grinding processes, decreasing their energy consumption. The purpose of the paper was to analyze the effectiveness of a ball mill grinding process and flotation operations depending on the changeable conditions of run of the HPGR crushing process. The research programme carried out included crushing tests in the laboratory scale HPGR device at various settings of the operating pressure volume and selected qualitative properties of the feed material (i.e. particle size distribution. On the basis of obtained results the models, defining the grinding process effectiveness as a function of changeable conditions of HPGR process run, were determined. Based on these models the optimal grinding time in a ball mill was specified which is, in turn, the basis for optimization of operation the technological comminution circuits for a given material type. The obtained results proved that the application of HPGR devices in given copper ore comminution circuit may improve the effectiveness of downstream grinding process what leads to improvement of the entire circuit work efficiency through decreasing the process energy consumption and enhancing the product size reduction.

  5. Identification of target organs of copper nanoparticles with ICP-MS technique

    International Nuclear Information System (INIS)

    Zhen Chen; Huan Meng; Yun Wang; Chengcheng Zhang; Yuliang Zhao

    2007-01-01

    Nanosized copper particles are widely used in fields of lubricants, polymers/plastic, metallic coating and ink. Recently, we found that copper particles in different sizes can lead to different toxicological effects. To clarify the target organs of copper particles of different sizes, the inductively coupled plasma mass spectroscopy (ICP-MS) was employed to evaluate the distribution of copper in different organs of mice after a single dose oral exposure. The results suggest that the main target organs for copper nanoparticles are kidney, liver and blood. Liver is the main damaged organ. (author)

  6. Copper-coated laser-fusion targets using molecular-beam levitation

    International Nuclear Information System (INIS)

    Rocke, M.J.

    1981-01-01

    A series of diagnostic experiments at the Shiva laser fusion facility required targets of glass microspheres coated with 1.5 to 3.0 μm of copper. Previous batch coating efforts using vibration techniques gave poor results due to microsphere sticking and vacuum welding. Molecular Beam Levitation (MBL) represented a noncontact method to produce a sputtered copper coating on a single glassmicrosphere. The coating specifications that were achieved resulted in a copper layer up to 3 μm thick with the allowance of a maximum variation of 10 nm in surface finish and thickness. These techniques developed with the MBL may be applied to sputter coat many soft metals for fusion target applications

  7. The Presence of Algae Mitigates the Toxicity of Copper-Based Algaecides to a Non-Target Organism.

    Science.gov (United States)

    Bishop, West M; Willis, Ben E; Richardson, Robert J; Cope, W Gregory

    2018-05-07

    Copper-based algaecides are routinely applied to target noxious algal blooms in freshwaters. Standard toxicity testing data with copper suggest typical concentrations used to control algae can cause deleterious acute impacts to non-target organisms. These "clean" water experiments lack algae, which are specifically targeted in field applications of algaecides and contain competing ligands. This research measured the influence of algae on algaecide exposure and subsequent response of the non-target species Daphnia magna to copper sulfate and an ethanolamine-chelated copper algaecide (Captain®). Significant shifts (Palgae were present in exposures along with a copper salt or chelated copper formulation. Copper sulfate 48-h LC50 values shifted from 75.3 to 317.8 and 517.8 µg Cu/L whereas Captain increased from 353.8 to 414.2 and 588.5 µg Cu/L in no algae, 5 × 10 5 and 5 × 10 6 cells/mL algae treatments, respectively. Larger shifts were measured with copper sulfate exposures, although Captain was less toxic to Daphnia magna in all corresponding treatments. Captain was more effective at controlling Scenedesmus dimorphus at most concentrations, and control was inversely proportional to toxicity to D. magna. Overall, incorporating target competing ligands (i.e., algae) into standard toxicity testing is important for accurate risk assessment, and copper formulation can significantly alter algaecidal efficacy and risks to non-target organisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yelin [Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Hu, Chen; Cheng, Jun [Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Chen, Binquan [Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Ke, Qinghong; Lv, Zhen; Wu, Jian [Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Key Laboratory of Combined Multi-organ Transplantation, Ministry of Public Health, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China); Zhou, Yanfeng, E-mail: zyfhdj@yahoo.com [Department of Anesthesiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou (China)

    2014-04-18

    Highlights: • MiR-145 expression is down-regulated in HCC tissues and inversely related with IRS1 levels. • MiR-145 directly targets IRS1 in HCC cells. • Restored expression of miR-145 suppressed HCC cell proliferation and growth. • MiR-145 induced IRS1 under-expression potentially reduced downstream AKT signaling. - Abstract: Accumulating evidences have proved that dysregulation of microRNAs (miRNAs) is involved in cancer initiation and progression. In this study, we showed that miRNA-145 level was significantly decreased in hepatocellular cancer (HCC) tissues and cell lines, and its low expression was inversely associated with the abundance of insulin receptor substrate 1 (IRS1), a key mediator in oncogenic insulin-like growth factor (IGF) signaling. We verified IRS1 as a direct target of miR-145 using Western blotting and luciferase reporter assay. Further, the restoration of miR-145 in HCC cell lines suppressed cancer cell growth, owing to down-regulated IRS1 expression and its downstream Akt/FOXO1 signaling. Our results demonstrated that miR-145 could inhibit HCC through targeting IRS1 and its downstream signaling, implicating the loss of miR-145 regulation may be a potential molecular mechanism causing aberrant oncogenic signaling in HCC.

  9. Human muscle fibre type-specific regulation of AMPK and downstream targets by exercise

    DEFF Research Database (Denmark)

    Kristensen, Dorte Enggaard; Albers, Peter Hjorth; Prats, Clara

    2015-01-01

    are expressed in a fibre type-dependent manner and that fibre type-specific activation of AMPK and downstream targets is dependent on exercise intensity. Pools of type I and II fibres were prepared from biopsies of m. vastus lateralis from healthy men before and after two exercise trials; A) continuous cycling......AMP-activated protein kinase (AMPK) is a regulator of energy homeostasis during exercise. Studies suggest muscle fibre type-specific AMPK expression. However, fibre type-specific regulation of AMPK and downstream targets during exercise has not been proven. We hypothesized that AMPK subunits...... (CON) 30 min at 69 ± 1% VO2peak or B) interval cycling (INT) 30 min with 6 × 1.5 min high-intense bouts peaking at 95 ± 2% VO2peak . In type I vs. II fibres a higher β1 AMPK (+215%) and lower γ3 AMPK expression (-71%) was found. α1 , α2 , β2 and γ1 AMPK expression was similar between fibre types...

  10. A radiation hard dipole magnet coils using aluminum clad copper conductors

    International Nuclear Information System (INIS)

    Leonhardt, W.J.

    1989-01-01

    A C-type septum dipole magnet is located 600 mm downstream of the primary target in an external beam line of the AGS. Conventional use of fiber glass/epoxy electrical insulation for the magnet coils results in their failure after a relatively short running period, therefore a radiation hard insulation system is required. This is accomplished by replacing the existing copper conductor with a copper conductor having a thin aluminum skin which is anodized to provide the electrical insulation. Since the copper supports a current density of 59 A/mm 2 , no reduction in cross sectional area can be tolerated. Design considerations, manufacturing techniques, and operating experience of a prototype dipole is presented. 3 refs., 4 figs

  11. Substrate heating and cooling during magnetron sputtering of copper target

    Energy Technology Data Exchange (ETDEWEB)

    Shapovalov, Viktor I.; Komlev, Andrey E.; Bondarenko, Anastasia S., E-mail: stopnastia@gmail.com; Baykov, Pavel B.; Karzin, Vitaliy V.

    2016-02-22

    Heating and cooling processes of the substrate during the DC magnetron sputtering of the copper target were investigated. The sensitive element of a thermocouple was used as a substrate. It was found, that the heat outflow rate from the substrate is lower when the magnetron is turned off rather than when it is turned on. Furthermore, the heating rate, the ultimate temperature, and the heat outflow rate related to the deposition of copper atoms are directly proportional to the discharge current density. - Highlights: • New effect of heat outflow from substrate when magnetron is on was discovered. • This new effect is linear in terms of heat outflow rate to target current ratio. • Kinetic equation for heating process additively considers this effect.

  12. Pharmacological therapeutics targeting the secondary defects and downstream pathology of Duchenne muscular dystrophy

    Science.gov (United States)

    Spinazzola, Janelle M.; Kunkel, Louis M.

    2016-01-01

    Introduction Since the identification of the dystrophin gene in 1986, a cure for Duchenne muscular dystrophy (DMD) has yet to be discovered. Presently, there are a number of genetic-based therapies in development aimed at restoration and/or repair of the primary defect. However, growing understanding of the pathophysiological consequences of dystrophin absence has revealed several promising downstream targets for the development of therapeutics. Areas covered In this review, we discuss various strategies for DMD therapy targeting downstream consequences of dystrophin absence including loss of muscle mass, inflammation, fibrosis, calcium overload, oxidative stress, and ischemia. The rationale of each approach and the efficacy of drugs in preclinical and clinical studies are discussed. Expert opinion For the last 30 years, effective DMD drug therapy has been limited to corticosteroids, which are associated with a number of negative side effects. Our knowledge of the consequences of dystrophin absence that contribute to DMD pathology has revealed several potential therapeutic targets. Some of these approaches may have potential to improve or slow disease progression independently or in combination with genetic-based approaches. The applicability of these pharmacological therapies to DMD patients irrespective of their genetic mutation, as well as the potential benefits even for advanced stage patients warrants their continued investigation. PMID:28670506

  13. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    International Nuclear Information System (INIS)

    Bambic, Dustin G.; Alpers, Charles N.; Green, Peter G.; Fanelli, Eileen; Silk, Wendy K.

    2006-01-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage. - Seasonal hydrology and benthic sediments control copper and zinc concentrations in a stream through a restored mine site

  14. Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S [Evergreen, CO; Leisch, Jennifer [Denver, CO; Taylor, Matthew [West Simsbury, CT; Stanbery, Billy J [Austin, TX

    2011-09-20

    Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

  15. The Drosophila FoxA ortholog Fork head regulates growth and gene expression downstream of Target of rapamycin.

    Directory of Open Access Journals (Sweden)

    Margret H Bülow

    2010-12-01

    Full Text Available Forkhead transcription factors of the FoxO subfamily regulate gene expression programs downstream of the insulin signaling network. It is less clear which proteins mediate transcriptional control exerted by Target of rapamycin (TOR signaling, but recent studies in nematodes suggest a role for FoxA transcription factors downstream of TOR. In this study we present evidence that outlines a similar connection in Drosophila, in which the FoxA protein Fork head (FKH regulates cellular and organismal size downstream of TOR. We find that ectopic expression and targeted knockdown of FKH in larval tissues elicits different size phenotypes depending on nutrient state and TOR signaling levels. FKH overexpression has a negative effect on growth under fed conditions, and this phenotype is not further exacerbated by inhibition of TOR via rapamycin feeding. Under conditions of starvation or low TOR signaling levels, knockdown of FKH attenuates the size reduction associated with these conditions. Subcellular localization of endogenous FKH protein is shifted from predominantly cytoplasmic on a high-protein diet to a pronounced nuclear accumulation in animals with reduced levels of TOR or fed with rapamycin. Two putative FKH target genes, CG6770 and cabut, are transcriptionally induced by rapamycin or FKH expression, and silenced by FKH knockdown. Induction of both target genes in heterozygous TOR mutant animals is suppressed by mutations in fkh. Furthermore, TOR signaling levels and FKH impact on transcription of the dFOXO target gene d4E-BP, implying a point of crosstalk with the insulin pathway. In summary, our observations show that an alteration of FKH levels has an effect on cellular and organismal size, and that FKH function is required for the growth inhibition and target gene induction caused by low TOR signaling levels.

  16. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    Science.gov (United States)

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  17. Measured radionuclide production from copper, gold and lead spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Parish, T.A.; Belian, A.P. [Texas A & M Univ., College Station, TX (United States)

    1995-10-01

    Spallation target materials are chosen so as to produce large numbers of neutrons while at the same time avoiding the creation of long-lived radioactive wastes. While there has been considerable research to determine the number of neutrons produced per incident particle for various target materials, there has been less effort to precisely quantify the types and amounts of radionuclides produced. Accurate knowledge of the radioactive species produced by spallation reactions is important for specifying waste disposal criteria for targets. In order to verify the production rates calculated by LAHET, a study has been conducted using the Texas A&M University (TAMU) Cyclotron to measure radionuclide yields from copper, gold, and lead targets.

  18. Excimer laser produced plasmas in copper wire targets and water droplets

    Science.gov (United States)

    Song, Kyo-Dong; Alexander, D. R.

    1994-01-01

    Elastically scattered incident radiation (ESIR) from a copper wire target illuminated by a KrF laser pulse at lambda = 248 nm shows a dinstinct two-peak structure which is dependent on the incident energy. The time required to reach the critical electron density (n(sub c) approximately = 1.8 x 10(exp 22) electrons/cu cm) is estimated at 11 ns based on experimental results. Detailed ESIR characteristics for water have been reported previously by the authors. Initiation of the broadband emission for copper plasma begins at 6.5 +/- 1.45 ns after the arrival of the laser pulse. However, the broadband emission occurs at 11 +/- 0.36 ns for water. For a diatomic substance such as water, the electron energy rapidly dissipates due to dissociation of water molecules, which is absent in a monatomic species such as copper. When the energy falls below the excitation energy of the lowest electron state for water, it becomes a subexcitation electron. Lifetimes of the subexcited electrons to the vibrational states are estimated to be of the order of 10(exp -9) s. In addition, the ionization potential of copper (440-530 nm) is approximately 6 eV, which is about two times smaller than the 13 eV ionization potential reported for water. The higher ionization potential contributes to the longer observed delay time for plasma formation in water. After initiation, a longer time is required for copper plasma to reach its peak value. This time delay in reaching the maximum intensity is attributed to the energy loss during the interband transition in copper.

  19. Expression of hypoxia-inducible factor 1 alpha and its downstream targets in fibroepithelial tumors of the breast

    NARCIS (Netherlands)

    Kuijper, Arno; Groep, P. van der; Wall, E. van der; Diest, P.J. van

    2005-01-01

    INTRODUCTION Hypoxia-inducible factor 1 (HIF-1) alpha and its downstream targets carbonic anhydrase IX (CAIX) and vascular endothelial growth factor (VEGF) are key factors in the survival of proliferating tumor cells in a hypoxic microenvironment. We studied the expression and prognostic relevance

  20. Target surface condition during reactive glow discharge sputtering of copper

    International Nuclear Information System (INIS)

    Depla, D; Haemers, J; Gryse, R De

    2002-01-01

    During reactive glow discharge sputtering of copper in an argon/nitrogen plasma, we noticed an abrupt change of the target voltage and the deposition rate when the nitrogen concentration in the plasma exceeds a critical value. To explain this behaviour, the target surface after reactive glow discharge sputtering was examined by x-ray photoelectron spectroscopy (XPS). An experimental arrangement was constructed that allows direct transfer of the glow discharge cathode to the XPS analysis chamber without air exposure. These XPS measurements revealed that several different chemical states of nitrogen are present in the layer that forms on the target surface. The relative concentration of these different states changes when the critical nitrogen concentration in the plasma is exceeded

  1. Identification of downstream metastasis-associated target genes regulated by LSD1 in colon cancer cells.

    Science.gov (United States)

    Chen, Jiang; Ding, Jie; Wang, Ziwei; Zhu, Jian; Wang, Xuejian; Du, Jiyi

    2017-03-21

    This study aims to identify downstream target genes regulated by lysine-specific demethylase 1 (LSD1) in colon cancer cells and investigate the molecular mechanisms of LSD1 influencing invasion and metastasis of colon cancer. We obtained the expression changes of downstream target genes regulated by small-interfering RNA-LSD1 and LSD1-overexpression via gene expression profiling in two human colon cancer cell lines. An Affymetrix Human Transcriptome Array 2.0 was used to identify differentially expressed genes (DEGs). We screened out LSD1-target gene associated with proliferation, metastasis, and invasion from DEGs via Gene Ontology and Pathway Studio. Subsequently, four key genes (CABYR, FOXF2, TLE4, and CDH1) were computationally predicted as metastasis-related LSD1-target genes. ChIp-PCR was applied after RT-PCR and Western blot validations to detect the occupancy of LSD1-target gene promoter-bound LSD1. A total of 3633 DEGs were significantly upregulated, and 4642 DEGs were downregulated in LSD1-silenced SW620 cells. A total of 4047 DEGs and 4240 DEGs were upregulated and downregulated in LSD1-overexpressed HT-29 cells, respectively. RT-PCR and Western blot validated the microarray analysis results. ChIP assay results demonstrated that LSD1 might be negative regulators for target genes CABYR and CDH1. The expression level of LSD1 is negatively correlated with mono- and dimethylation of histone H3 lysine4(H3K4) at LSD1- target gene promoter region. No significant mono-methylation and dimethylation of H3 lysine9 methylation was detected at the promoter region of CABYR and CDH1. LSD1- depletion contributed to the upregulation of CABYR and CDH1 through enhancing the dimethylation of H3K4 at the LSD1-target genes promoter. LSD1- overexpression mediated the downregulation of CABYR and CDH1expression through decreasing the mono- and dimethylation of H3K4 at LSD1-target gene promoter in colon cancer cells. CABYR and CDH1 might be potential LSD1-target genes in colon

  2. Dextran-Catechin: An anticancer chemically-modified natural compound targeting copper that attenuates neuroblastoma growth

    Science.gov (United States)

    Vittorio, Orazio; Brandl, Miriam; Cirillo, Giuseppe; Kimpton, Kathleen; Hinde, Elizabeth; Gaus, Katharina; Yee, Eugene; Kumar, Naresh; Duong, Hien; Fleming, Claudia; Haber, Michelle; Norris, Murray; Boyer, Cyrille; Kavallaris, Maria

    2016-01-01

    Neuroblastoma is frequently diagnosed at advanced stage disease and treatment includes high dose chemotherapy and surgery. Despite the use of aggressive therapy survival rates are poor and children that survive their disease experience long term side effects from their treatment, highlighting the need for effective and less toxic therapies. Catechin is a natural polyphenol with anti-cancer properties and limited side effects, however its mechanism of action is unknown. Here we report that Dextran-Catechin, a conjugated form of catechin that increases serum stability, is preferentially and markedly active against neuroblastoma cells having high levels of intracellular copper, without affecting non-malignant cells. Copper transporter 1 (CTR1) is the main transporter of copper in mammalian cells and it is upregulated in neuroblastoma. Functional studies showed that depletion of CTR1 expression reduced intracellular copper levels and led to a decrease in neuroblastoma cell sensitivity to Dextran-Catechin, implicating copper in the activity of this compound. Mechanistically, Dextran-Catechin was found to react with copper, inducing oxidative stress and decreasing glutathione levels, an intracellular antioxidant and regulator of copper homeostasis. In vivo, Dextran-Catechin significantly attenuated tumour growth in human xenograft and syngeneic models of neuroblastoma. Thus, Dextran-Catechin targets copper, inhibits tumour growth, and may be valuable in the treatment of aggressive neuroblastoma and other cancers dependent on copper for their growth. PMID:27374085

  3. Propagation velocities of laser-produced plasmas from copper wire targets and water droplets

    Science.gov (United States)

    Song, Kyo-Dong; Alexander, Dennis R.

    1994-01-01

    Experiments were performed to determine the plasma propagation velocities resulting from KrF laser irradiation of copper wire target (75 microns diameter) and water droplets (75 microns diameter) at irradiance levels ranging from 25 to 150 GW/sq cm. Plasma propagation velocities were measured using a streak camera system oriented orthogonally to the high-energy laser propagation axis. Plasma velocities were studied as a function of position in the focused beam. Results show that both the shape of the plasma formation and material removal from the copper wire are different and depend on whether the targets are focused or slightly defocused (approximately = 0.5 mm movement in the beam axis). Plasma formation and its position relative to the target is an important factor in determining the practical focal point during high-energy laser interaction with materials. At irradiance of 100 GW/sq cm, the air plasma has two weak-velocity components which propagate toward and away from the incident laser while a strong-velocity component propagates away from the laser beam as a detonation wave. Comparison of the measured breakdown velocities (in the range of 2.22-2.27 x 10(exp 5) m/s) for air and the value calculated by the nonlinear breakdown wave theory at irradiance of 100 GW/sq cm showed a quantitative agreement within approximately 50% while the linear theory and Gaussian pulse theory failed. The detonation wave velocities of plasma generated from water droplets and copper wire targets for different focused cases were measured and analyzed theoretically. The propagation velocities of laser-induced plasma liquid droplets obtained by previous research are compared with current work.

  4. The chemistry of Magela Creek. A baseline for assessing change downstream of Ranger. Supervising Scientist report 151

    International Nuclear Information System (INIS)

    Klessa, D.A.

    2000-01-01

    The compositions of waters in Magela Creek upstream and downstream of Ranger uranium mine were reviewed. The water quality parameters examined were pH, electrical conductivity (EC) and turbidity, and dissolved calcium, magnesium, sodium, potassium, chloride, sulphate, ammonium, nitrate, copper, lead, manganese, zinc, uranium and radium-226. The frequency distributions of each of these parameters in waters upstream of the mine were characterised and statistically described to provide a baseline which allows a change in water chemistry downstream of the mine to be assessed. With the exception of pH, EC, turbidity, magnesium, calcium, sodium and manganese, data that comprise the baseline are not normally distributed. The frequency distributions of copper, lead, zinc, uranium and radium-226 forming the baseline are characterised by a large proportion of values at or near analytical detection limits and contamination in a relatively large proportion of the remainder. A comparison of upstream and downstream data shows that there is good conformity in pH, EC, turbidity, sodium, potassium and chloride. For calcium, nitrate, ammonium, lead, uranium, radium and zinc less than 40% of the downstream data fall outside the 20th and 80th baseline percentiles but in the ease of U, data are biased towards relatively high values. More than 40% of downstream magnesium and sulphate data are outside these percentile boundaries and are skewed towards relatively high concentrations. Copper, lead and zinc in mine waters (characterised by the composition of waters contained in the former RP4) do not appear to pose a risk as contaminants based upon the results of toxicity testing and water quality guideline trigger levels with risk minimised for greater than 1 in 20 dilution

  5. Neutron energy spectrum from 120 GeV protons on a thick copper target

    Energy Technology Data Exchange (ETDEWEB)

    Shigyo, Nobuhiro; /Kyushu U.; Sanami, Toshiya; /KEK, Tsukuba; Kajimoto, Tsuyoshi; /Kyushu U.; Iwamoto, Yosuke; /JAEA, Ibaraki; Hagiwara, Masayuki; Saito, Kiwamu; /KEK, Tsukuba; Ishibashi, Kenji; /Kyushu U.; Nakashima, Hiroshi; Sakamoto, Yukio; /JAEA, Ibaraki; Lee, Hee-Seock; /Pohang Accelerator Lab.; Ramberg, Erik; /Fermilab

    2010-08-01

    Neutron energy spectrum from 120 GeV protons on a thick copper target was measured at the Meson Test Beam Facility (MTBF) at Fermi National Accelerator Laboratory. The data allows for evaluation of neutron production process implemented in theoretical simulation codes. It also helps exploring the reasons for some disagreement between calculation results and shielding benchmark data taken at high energy accelerator facilities, since it is evaluated separately from neutron transport. The experiment was carried out using a 120 GeV proton beam of 3E5 protons/spill. Since the spill duration was 4 seconds, protoninduced events were counted pulse by pulse. The intensity was maintained using diffusers and collimators installed in the beam line to MTBF. The protons hit a copper block target the size of which is 5cm x 5cm x 60 cm long. The neutrons produced in the target were measured using NE213 liquid scintillator detectors, placed about 5.5 m away from the target at 30{sup o} and 5 m 90{sup o} with respect to the proton beam axis. The neutron energy was determined by time-of-flight technique using timing difference between the NE213 and a plastic scintillator located just before the target. Neutron detection efficiency of NE213 was determined on basis of experimental data from the high energy neutron beam line at Los Alamos National Laboratory. The neutron spectrum was compared with the results of multiparticle transport codes to validate the implemented theoretical models. The apparatus would be applied to future measurements to obtain a systematic data set for secondary particle production on various target materials.

  6. A Multistage Sulphidisation Flotation Procedure for a Low Grade Malachite Copper Ore

    OpenAIRE

    Tebogo P. Phetla; Edison Muzenda

    2010-01-01

    This study was carried out to develop a flotation procedure for an oxide copper ore from a Region in Central Africa for producing an 18% copper concentrate for downstream processing at maximum recovery from a 4% copper feed grade. The copper recoveries achieved from the test work were less than 50% despite changes in reagent conditions (multistage sulphidisation, use of RCA emulsion and mixture, use of AM 2, etc). The poor recoveries were attributed to the mineralogy of t...

  7. Chronic copper exposure causes spatial memory impairment, selective loss of hippocampal synaptic proteins, and activation of PKR/eIF2α pathway in mice.

    Science.gov (United States)

    Ma, Quan; Ying, Ming; Sui, Xiaojing; Zhang, Huimin; Huang, Haiyan; Yang, Linqing; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun; Yang, Xifei

    2015-01-01

    Copper is an essential element for human growth and development; however, excessive intake of copper could contribute to neurotoxicity. Here we show that chronic exposure to copper in drinking water impaired spatial memory with simultaneous selective loss of hippocampal pre-synaptic protein synapsin 1, and post-synaptic density protein (PSD)-93/95 in mice. Copper exposure was shown to elevate the levels of nitrotyrosine and 8-hydroxydeoxyguanosine (8-OHdG) in hippocampus, two markers of oxidative stress. Concurrently, we also found that copper exposure activated double stranded RNA-dependent protein kinase (PKR) as evidenced by increased ratio of phosphorylated PKR at Thr451 and total PKR and increased the phosphorylation of its downstream signaling molecule eukaryotic initiation factor 2α (eIF2α) at Ser51 in hippocampus. Consistent with activation of PKR/eIF2α signaling pathway which was shown to mediate synaptic deficit and cognitive impairment, the levels of activating transcription factor 4 (ATF-4), a downstream signaling molecule of eIF2α and a repressor of CREB-mediated gene expression, were significantly increased, while the activity of cAMP response elements binding protein (CREB) was inactivated as suggested by decreased phosphorylation of CREB at Ser133 by copper exposure. In addition, the expression of the pro-apoptotic target molecule C/EBP homology protein (CHOP) of ATF-4 was upregulated and hippocampal neuronal apoptosis was induced by copper exposure. Taken together, we propose that chronic copper exposure might cause spatial memory impairment, selective loss of synaptic proteins, and neuronal apoptosis through the mechanisms involving activation of PKR/eIF2α signaling pathway.

  8. Effect of target-fixture geometry on shock-wave compacted copper powders

    Science.gov (United States)

    Kim, Wooyeol; Ahn, Dong-Hyun; Yoon, Jae Ik; Park, Lee Ju; Kim, Hyoung Seop

    2018-01-01

    In shock compaction with a single gas gun system, a target fixture is used to safely recover a powder compact processed by shock-wave dynamic impact. However, no standard fixture geometry exists, and its effect on the processed compact is not well studied. In this study, two types of fixture are used for the dynamic compaction of hydrogen-reduced copper powders, and the mechanical properties and microstructures are investigated using the Vickers microhardness test and electron backscatter diffraction, respectively. With the assistance of finite element method simulations, we analyze several shock parameters that are experimentally hard to control. The results of the simulations indicate that the target geometry clearly affects the characteristics of incident and reflected shock waves. The hardness distribution and the microstructure of the compacts also show their dependence on the geometry. With the results of the simulations and the experiment, it is concluded that the target geometry affects the shock wave propagation and wave interaction in the specimen.

  9. DARHT-II Downstream Transport Beamline

    International Nuclear Information System (INIS)

    Westenskow, G A; Bertolini, L R; Duffy, P T; Paul, A C

    2001-01-01

    This paper describes the mechanical design of the downstream beam transport line for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT II) Facility. The DARHT-II project is a collaboration between LANL, LBNL and LLNL. DARHT II is a 18.4-MeV, 2000-Amperes, 2-(micro)sec linear induction accelerator designed to generate short bursts of x-rays for the purpose of radiographing dense objects. The downstream beam transport line is approximately 22-meter long region extending from the end of the accelerator to the bremsstrahlung target. Within this proposed transport line there are 12 conventional solenoid, quadrupole and dipole magnets; as well as several specialty magnets, which transport and focus the beam to the target and to the beam dumps. There are two high power beam dumps, which are designed to absorb 80-kJ per pulse during accelerator start-up and operation. Aspects of the mechanical design of these elements are presented

  10. Downstream targets of WRKY33

    DEFF Research Database (Denmark)

    Petersen, Klaus; Fiil, Berthe Katrine; Mundy, John

    2008-01-01

    Innate immunity signaling pathways in both animals and plants are regulated by mitogen-activated protein kinase (MAPK) cascades. In a recent publication we show that MPK4 and its substrate MKS1 interact with WRKY33 in vivo, and that WRKY33 is released from complexes with MPK4 upon infection....... Transcriptome analysis of a wrky33 loss-of-function mutant identified a subset of defense-related genes as putative targets of WRKY33. These genes include PAD3 and CYP71A13, which encode cytochrome P450 monoxygenases required for synthesis of the antimicrobial phytoalexin camalexin. Chromatin...... immunoprecipitation confirmed that WRKY33 bound the promoter of PAD3 when plants were inoculated with pathogens. Here we further discuss the involvement of two other targets of WRKY33, NUDT6 and ROF2 in defense responses against invading pathogens....

  11. A comparative study of stream water and stream sediment as geochemical exploration media in the Rio Tanama porphyry copper district, Puerto Rico

    Science.gov (United States)

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    To test the relative effectiveness of stream water and sediment as geochemical exploration media in the Rio Tanama porphyry copper district of Puerto Rico, we collected and subsequently analyzed samples of water and sediment from 29 sites in the rivers and tributaries of the district. Copper, Mo, Pb, Zn, SO42-, and pH were determined in the waters; Cu, Mo, Pb, and Zn were determined in the sediments. In addition, copper in five partial extractions from the sediments was determined. Geochemical contrast (anomaly-to-background quotient) was the principal criterion by which the effectiveness of the two media and the five extractions were judged. Among the distribution patterns of metals in stream water, that of copper most clearly delineates the known porphyry copper deposits and yields the longest discernable dispersion train. The distribution patterns of Mo, Pb, and Zn in water show little relationship to the known mineralization. The distribution of SO42- in water delineates the copper deposits and also the more extensive pyrite alteration in the district; its recognizable downstream dispersion train is substantially longer than those of the metals, either in water or sediment. Low pH values in small tributaries delineate areas of known sulfide mineralization. The distribution patterns of copper in sediments clearly delineate the known deposits, and the dispersion trains are longer than those of copper in water. The partial determinations of copper related to secondary iron and manganese oxides yield the strongest geochemical contrasts and longest recognizable dispersion trains. Significantly high concentrations of molybdenum in sediments were found at only three sites, all within one-half km downstream of the known copper deposits. The distribution patterns of lead and zinc in sediments are clearly related to the known primary lead-zinc haloes around the copper deposits. The recognizable downstream dispersion trains of lead and zinc are shorter than those of

  12. High Transverse Momentum Direct Photon Production at Fermilab Fixed-Target Energies

    International Nuclear Information System (INIS)

    Apanasevich, Leonard

    2005-01-01

    This thesis describes a study of the production of high transverse momentum direct photons and π 0 mesons by proton beams at 530 and 800 GeV/c and π - beams at 515 GeV/c incident on beryllium, copper, and liquid hydrogen targets. The data were collected by Fermilab experiment E706 during the 1990 and 1991-92 fixed target runs. The apparatus included a large, finely segmented lead and liquid argon electromagnetic calorimeter and a charged particle spectrometer featuring silicon strip detectors in the target region and proportional wire chambers and drift tubes downstream of a large aperture analysis magnet. The inclusive cross sections are presented as functions of transverse momentum and rapidity. The measurements are compared with next-to-leading order perturbative QCD calculations and to results from previous experiments

  13. Strain-promoted copper free click chemistry for 64Cu radiolabeling of integrin-αvβ6 targeted peptide

    International Nuclear Information System (INIS)

    Satpati, Drishty; Bauer, Nadine; Hausner, Sven H.; Sutcliffe, Julie L.

    2014-01-01

    Strain promoted copper free click chemistry offers a fast and efficient method for preparation of radio labeled molecular probes and pre-targeted imaging in vivo. The fast reaction kinetics, driven by the release of strain energy ranging from 10-19 kcal/mol for cyclooctynes, precludes the need for toxic copper catalyst for chemical ligation between alkynes and azides. In particular this catalyst free approach provides a favorable platform for synthesis of radiometalated probes requiring macrocycle chelates for formation of stable and kinetically inert complexes where Cu(I) can interfere with metal chelates. In present studies DOTA-ADIBO (azadibenzocyclooctyne amine), a strained chelate-alkyne system has been constructed for bioconjugation with the azide-modified PEGylated peptide, N 3 -Ala-PEG 28 -A20FMDV2 and radiolabeled with ( 64 Cu) Cu for assessment as a integrin-α v β 6 , targeting molecular probe

  14. Impact of the 7 TeV/c Large Hadron Collider proton beam on a copper target

    CERN Document Server

    Tahir, N A; Goddard, B; Hoffmann, Dieter H H; Kain, V; Lomonosov, I V; Piriz, A R; Schmidt, R; Shutov, A; Temporal, M

    2005-01-01

    The Large Hadron Collider (LHC) will allow for collision between two 7 TeV/c proton beams, each comprising 2808 bunches with 1.1*10/sup 11 / protons per bunch, traveling in opposite direction. The bunch length is 0.5 ns and two neighboring bunches are separated by 25 ns so that the duration of the entire beam is about 89 mu s. The beam power profile in the transverse direction is a Gaussian with a standard deviation of 0.2 mm. The energy stored in each beam is about 350 MJ that is sufficient to melt 500 kg of copper. In case of a failure in the machine protection systems, the entire beam could impact directly onto an accelerator equipment. A first estimate of the scale of damage resulting from such a failure has been assessed for a solid copper target hit by the beam by carrying out three- dimensional energy deposition calculations and two-dimensional numerical simulations of the hydrodynamic and thermodynamic response of the target. This work has shown that the penetration depth of the LHC protons will be be...

  15. Nuclear cereblon modulates transcriptional activity of Ikaros and regulates its downstream target, enkephalin, in human neuroblastoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Takeyoshi [Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Asahi, Toru [Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Sawamura, Naoya, E-mail: naoya.sawamura@gmail.com [Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan); Research Organization for Nano & Life Innovation, Waseda University #03C309, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo, 162-8480 (Japan)

    2016-08-26

    The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as a thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. - Highlights: • We found that CRBN is a nucleocytoplasmic shutting protein and identified the key domain for nucleocytoplasmic shuttling. • CRBN associates with the transcription factor Ikaros via the N-terminal domain. • CRBN modulates Ikaros-mediated transcriptional regulation and its downstream target, enkephalin.

  16. Nuclear cereblon modulates transcriptional activity of Ikaros and regulates its downstream target, enkephalin, in human neuroblastoma cells

    International Nuclear Information System (INIS)

    Wada, Takeyoshi; Asahi, Toru; Sawamura, Naoya

    2016-01-01

    The gene coding cereblon (CRBN) was originally identified in genetic linkage analysis of mild autosomal recessive nonsyndromic intellectual disability. CRBN has broad localization in both the cytoplasm and nucleus. However, the significance of nuclear CRBN remains unknown. In the present study, we aimed to elucidate the role of CRBN in the nucleus. First, we generated a series of CRBN deletion mutants and determined the regions responsible for the nuclear localization. Only CRBN protein lacking the N-terminal region was localized outside of the nucleus, suggesting that the N-terminal region is important for its nuclear localization. CRBN was also identified as a thalidomide-binding protein and component of the cullin-4-containing E3 ubiquitin ligase complex. Thalidomide has been reported to be involved in the regulation of the transcription factor Ikaros by CRBN-mediated degradation. To investigate the nuclear functions of CRBN, we performed co-immunoprecipitation experiments and evaluated the binding of CRBN to Ikaros. As a result, we found that CRBN was associated with Ikaros protein, and the N-terminal region of CRBN was required for Ikaros binding. In luciferase reporter gene experiments, CRBN modulated transcriptional activity of Ikaros. Furthermore, we found that CRBN modulated Ikaros-mediated transcriptional repression of the proenkephalin gene by binding to its promoter region. These results suggest that CRBN binds to Ikaros via its N-terminal region and regulates transcriptional activities of Ikaros and its downstream target, enkephalin. - Highlights: • We found that CRBN is a nucleocytoplasmic shutting protein and identified the key domain for nucleocytoplasmic shuttling. • CRBN associates with the transcription factor Ikaros via the N-terminal domain. • CRBN modulates Ikaros-mediated transcriptional regulation and its downstream target, enkephalin.

  17. High energy density matter issues related to future circular collider. Simulations of full beam impact with a solid copper cylindrical target

    Energy Technology Data Exchange (ETDEWEB)

    Tahir, N.A. [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Burkart, F.; Schmidt, R.; Wollmann, D. [CERN-AB, Geneva (Switzerland); Shutov, A. [Institute of Problems of Chemical Physics, Chernogolovka (Russian Federation); Piriz, A.R. [E.T.S.I. Industrials, University of Castilla-La Mancha, Ciudad Real (Spain)

    2017-11-15

    This paper presents numerical simulations of the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is subjected to the full impact of one future circular collider (FCC) ultra-relativistic proton beam. The target is facially irradiated so that the beam axis coincides with the cylinder axis. The simulations have been carried out employing an energy deposition code, FLUKA, and a 2D hydrodynamic code, BIG2, iteratively. The simulations show that, although the static range of a single FCC proton and its shower in solid copper is ∝1.5 m, the full beam may penetrate up to 350 m into the target as a result of hydrodynamic tunnelling. Moreover, simulations also show that a major part of the target is converted into high energy density (HED) matter, including warm dense matter (WDM) and strongly coupled plasma. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Anomalons, recent copper-target experiments and the first law of thermodynamics

    International Nuclear Information System (INIS)

    Brandt, R.; Khan, H.A.; Krivopustov, M.I.

    1991-01-01

    A reanalysis of the old Alexander experiment, reporting on the anomalous behavior of pie in K-decays indicates that this anomalous behavior may be connected to a state of lower entropy or in other words to 'anomalous information', considering the well-known relation: negative entropy information. Now, recent copper-target experiments from the Synchrophasotron entail, that the wide-angle emission of hadrons in the reaction (44 GeV/sup 12/c + Cu) cannot be understood with concepts of physics, as known to the authors. However, this could be understood with 'anomalous information'. Further effects of this 'anomalous information' may be obtained in future studies with very massive heavy element targets irradiated with relativistic ions. The total production of neutrons in such a system could both be measured experimentally and calculated theoretically. As the calculations are based on the 1st Law of Thermodynamic, a significant excess of neutron fluxes beyond calculations may indicate the effete of anomalous information, even on the expense of the 1st law of Thermodynamics. (Orig./A.B.)

  19. Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma

    International Nuclear Information System (INIS)

    Shahi, Mehdi H; Afzal, Mohammad; Sinha, Subrata; Eberhart, Charles G; Rey, Juan A; Fan, Xing; Castresana, Javier S

    2010-01-01

    The Sonic hedgehog (Shh) signaling pathway is critical for cell growth and differentiation. Impairment of this pathway can result in both birth defects and cancer. Despite its importance in cancer development, the Shh pathway has not been thoroughly investigated in tumorigenesis of brain tumors. In this study, we sought to understand the regulatory roles of GLI1, the immediate downstream activator of the Shh signaling pathway on its downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6 in medulloblastoma and astrocytic tumors. We silenced GLI1 expression in medulloblastoma and astrocytic cell lines by transfection of siRNA against GLI1. Subsequently, we performed RT-PCR and quantitative real time RT-PCR (qRT-PCR) to assay the expression of downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6. We also attempted to correlate the pattern of expression of GLI1 and its regulated genes in 14 cell lines and 41 primary medulloblastoma and astrocytoma tumor samples. We also assessed the methylation status of the Cyclin D2 and PTCH1 promoters in these 14 cell lines and 58 primary tumor samples. Silencing expression of GLI1 resulted up-regulation of all target genes in the medulloblastoma cell line, while only PTCH1 was up-regulated in astrocytoma. We also observed methylation of the cyclin D2 promoter in a significant number of astrocytoma cell lines (63%) and primary astrocytoma tumor samples (32%), but not at all in any medulloblastoma samples. PTCH1 promoter methylation was less frequently observed than Cyclin D2 promoter methylation in astrocytomas, and not at all in medulloblastomas. Our results demonstrate different regulatory mechanisms of Shh-GLI1 signaling. These differences vary according to the downstream target gene affected, the origin of the tissue, as well as epigenetic regulation of some of these genes

  20. Copper matrix composites as heat sink materials for water-cooled divertor target

    Directory of Open Access Journals (Sweden)

    Jeong-Ha You

    2015-12-01

    Full Text Available According to the recent high heat flux (HHF qualification tests of ITER divertor target mock-ups and the preliminary design studies of DEMO divertor target, the performance of CuCrZr alloy, the baseline heat sink material for DEMO divertor, seems to only marginally cover the envisaged operation regime. The structural integrity of the CuCrZr heat sink was shown to be affected by plastic fatigue at 20 MW/m². The relatively high neutron irradiation dose expected for the DEMO divertor target is another serious concern, as it would cause significant embrittlement below 250 °C or irradiation creep above 350 °C. Hence, an advanced design concept of the divertor target needs to be devised for DEMO in order to enhance the HHF performance so that the structural design criteria are fulfilled for full operation scenarios including slow transients. The biggest potential lies in copper-matrix composite materials for the heat sink. In this article, three promising Cu-matrix composite materials are reviewed in terms of thermal, mechanical and HHF performance as structural heat sink materials. The considered candidates are W particle-reinforced, W wire-reinforced and SiC fiber-reinforced Cu matrix composites. The comprehensive results of recent studies on fabrication technology, design concepts, materials properties and the HHF performance of mock-ups are presented. Limitations and challenges are discussed.

  1. Brassinosteriod Insensitive 2 (BIN2) acts as a downstream effector of the Target of Rapamycin (TOR) signaling pathway to regulate photoautotrophic growth in Arabidopsis.

    Science.gov (United States)

    Xiong, Fangjie; Zhang, Rui; Meng, Zhigang; Deng, Kexuan; Que, Yumei; Zhuo, Fengping; Feng, Li; Guo, Sundui; Datla, Raju; Ren, Maozhi

    2017-01-01

    The components of the target of rapamycin (TOR) signaling pathway have been well characterized in heterotrophic organisms from yeast to humans. However, because of rapamycin insensitivity, embryonic lethality in tor null mutants and a lack of reliable ways of detecting TOR protein kinase in higher plants, the key players upstream and downstream of TOR remain largely unknown in plants. Using engineered rapamycin-sensitive Binding Protein 12-2 (BP12-2) plants, the present study showed that combined treatment with rapamycin and active-site TOR inhibitors (asTORis) results in synergistic inhibition of TOR activity and plant growth in Arabidopsis. Based on this system, we revealed that TOR signaling plays a crucial role in modulating the transition from heterotrophic to photoautotrophic growth in Arabidopsis. Ribosomal protein S6 kinase 2 (S6K2) was identified as a direct downstream target of TOR, and the growth of TOR-suppressed plants could be rescued by up-regulating S6K2. Systems, genetic, and biochemical analyses revealed that Brassinosteriod Insensitive 2 (BIN2) acts as a novel downstream effector of S6K2, and the phosphorylation of BIN2 depends on TOR-S6K2 signaling in Arabidopsis. By combining pharmacological with genetic and biochemical approaches, we determined that the TOR-S6K2-BIN2 signaling pathway plays important roles in regulating the photoautotrophic growth of Arabidopsis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. The target preparation of "2"3"2Th plated on the nickel with copper as substrate and "2"3"0Pa generation

    International Nuclear Information System (INIS)

    Shen Hua; Geng Junxia; Gao Size; Zhang Guoxin; Zhang Lan; Li Wenxin; Li Qingnuan; Wu Guozhong

    2014-01-01

    The electrochemical parameters on nickel plating on the copper have been studied using aqueous electroplating technique. And thorium is plated on the nickel flake using molecular plating technique. The better experimental parameters are obtained. According to these optimized parameters, the "2"3"2Th target which is suitable for Cyclone-30 accelerator is prepared. The proton beam with energy of 21 MeV bombed the "2"3"2Th target (total beam time 20 μAh). The results showed that the better range of plating current density of nickel plated on copper is l.30∼1.68 A/dm"2. The thickness of nickel plating layer can reach more than 10 μm. The current density is 3∼5 mA/cm"2, and the thickness of plated thorium layer is up to micrometer scale. The binding force of as-prepared "2"3"2Th target is very well. There is "2"3"0Pa appeared after the target is bombed by the proton beam. (authors)

  3. Lateral and vertical distribution of downstream migrating juvenile sea lamprey

    Science.gov (United States)

    Sotola, V. Alex; Miehls, Scott M.; Simard, Lee G.; Marsden, J. Ellen

    2018-01-01

    Sea lamprey is considered an invasive and nuisance species in the Laurentian Great Lakes, Lake Champlain, and the Finger Lakes of New York and is a major focus of control efforts. Currently, management practices focus on limiting the area of infestation using barriers to block migratory adults, and lampricides to kill ammocoetes in infested tributaries. No control efforts currently target the downstream-migrating post-metamorphic life stage which could provide another management opportunity. In order to apply control methods to this life stage, a better understanding of their downstream movement patterns is needed. To quantify spatial distribution of downstream migrants, we deployed fyke and drift nets laterally and vertically across the stream channel in two tributaries of Lake Champlain. Sea lamprey was not randomly distributed across the stream width and lateral distribution showed a significant association with discharge. Results indicated that juvenile sea lamprey is most likely to be present in the thalweg and at midwater depths of the stream channel. Further, a majority of the catch occurred during high flow events, suggesting an increase in downstream movement activity when water levels are higher than base flow. Discharge and flow are strong predictors of the distribution of out-migrating sea lamprey, thus managers will need to either target capture efforts in high discharge areas of streams or develop means to guide sea lamprey away from these areas.

  4. Upstream-downstream cooperation approach in Guanting Reservoir watershed.

    Science.gov (United States)

    Yang, Zhi-Feng; Zhang, Wen-Guo

    2005-01-01

    A case study is introduced and discussed concerning water dispute of misuse and pollution between up- and down-stream parts. The relations between water usage and local industrial structures are analyzed. Results show it is important to change industrial structures of the target region along with controlling water pollution by technical and engineering methods. Three manners of upstream-downstream cooperation are presented and discussed based on the actual conditions of Guangting Reservoir watershed. Two typical scenarios are supposed and studied along with the local plan on water resources development. The best solution for this cooperation presents a good way to help the upstream developing in a new pattern of eco-economy.

  5. Regulation of the copper chaperone CCS by XIAP-mediated ubiquitination.

    Science.gov (United States)

    Brady, Graham F; Galbán, Stefanie; Liu, Xuwen; Basrur, Venkatesha; Gitlin, Jonathan D; Elenitoba-Johnson, Kojo S J; Wilson, Thomas E; Duckett, Colin S

    2010-04-01

    In order to balance the cellular requirements for copper with its toxic properties, an elegant set of mechanisms has evolved to regulate and buffer intracellular copper. The X-linked inhibitor of apoptosis (XIAP) protein was recently identified as a copper-binding protein and regulator of copper homeostasis, although the mechanism by which XIAP binds copper in the cytosol is unclear. Here we describe the identification of the copper chaperone for superoxide dismutase (CCS) as a mediator of copper delivery to XIAP in cells. We also find that CCS is a target of the E3 ubiquitin ligase activity of XIAP, although interestingly, ubiquitination of CCS by XIAP was found to lead to enhancement of its chaperone activity toward its physiologic target, superoxide dismutase 1, rather than proteasomal degradation. Collectively, our results reveal novel links among apoptosis, copper metabolism, and redox regulation through the XIAP-CCS complex.

  6. Experimental and numerical study on the flow pattern of the ADS windowless spallation target with a second free surface downstream using model fluid water

    International Nuclear Information System (INIS)

    Xiong, Zhenqin; Gu, Hanyang; Gong, Shenjie

    2015-01-01

    Highlights: • A windowless spallation target with a buffer tank is tested. • Shape of the main free surface is recorded. • Streamline is obtained with the planar laser induced fluorescence method. • Stability of free surface is improved by the buffer tank. • Flow structure is simulated using RNG k-e turbulence model and VOF model. - Abstract: The windowless spallation targets are a promising design solution for accelerator driven system (ADS) due to their extended life compared to the spallation targets with a window. Keeping the stability of the free surface and reducing the recirculation zone is one of the key tasks for the design of a windowless spallation target. A windowless spallation target with a second free surface downstream (which is a buffer used to stabilize the main free surface of the flow) is studied experimentally and numerically using water at atmospheric pressure. By using planar laser induced fluorescence technique (LIF), the flow pattern inside the target zone is visualized for Reynolds numbers varying between 3.5 × 10 4 and 7.0 × 10 4 and pressure differences from 100 to 804 Pa. The experimental results reveal that the stability of the free surface is improved by adding a buffer in the downstream thus making it easier to control the height of the surface. The effect of the pressure difference between the void above the second free surface (high pressure side) and beam pipe (low pressure side) on the flow pattern is analyzed, as well as the inlet flow rate. The height of the surface length decreases with an increase in the pressure difference. The formation of the spallation zone is simulated with Fluent using the LES turbulence model and VOF model. The interface predicted agrees well with the experimental results

  7. Aquatic assessment of the Pike Hill Copper Mine Superfund site, Corinth, Vermont

    Science.gov (United States)

    Piatak, Nadine M.; Argue, Denise M.; Seal, Robert R.; Kiah, Richard G.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.

    2013-01-01

    The Pike Hill Copper Mine Superfund site in Corinth, Orange County, Vermont, includes the Eureka, Union, and Smith mines along with areas of downstream aquatic ecosystem impairment. The site was placed on the U.S. Environmental Protection Agency (USEPA) National Priorities List in 2004. The mines, which operated from about 1847 to 1919, contain underground workings, foundations from historical structures, several waste-rock piles, and some flotation tailings. The mine site is drained to the northeast by Pike Hill Brook, which includes several wetland areas, and to the southeast by an unnamed tributary that flows to the south and enters Cookville Brook. Both brooks eventually drain into the Waits River, which flows into the Connecticut River. The aquatic ecosystem at the site was assessed using a variety of approaches that investigated surface-water quality, sediment quality, and various ecological indicators of stream-ecosystem health. The degradation of surface-water quality is caused by elevated concentrations of copper, and to a lesser extent cadmium, with localized effects caused by aluminum, iron, and zinc. Copper concentrations in surface waters reached or exceeded the USEPA national recommended chronic water-quality criteria for the protection of aquatic life in all of the Pike Hill Brook sampling locations except for the location farthest downstream, in half of the locations sampled in the tributary to Cookville Brook, and in about half of the locations in one wetland area located in Pike Hill Brook. Most of these same locations also contained concentrations of cadmium that exceeded the chronic water-quality criteria. In contrast, surface waters at background sampling locations were below these criteria for copper and cadmium. Comparison of hardness-based and Biotic Ligand Model (BLM)-based criteria for copper yields similar results with respect to the extent or number of stations impaired for surface waters in the affected area. However, the BLM

  8. Effect of high fat diet on pulmonary expression of parathyroid hormone-related protein and its downstream targets

    Directory of Open Access Journals (Sweden)

    Learta Oruqaj

    2016-10-01

    Full Text Available Aims: Parathyroid hormone-related protein (PTHrP is involved in lung development and surfactant production. The latter one requires a paracrine interaction between type II alveolar cells and lipofibroblasts in which leptin triggers PTHrP-induced effects. Whether increased plasma leptin levels, as they occur in high fat diet, modify the expression of PTHrP remains unclear. Furthermore, the effect of high fat diet under conditions of forced pulmonary remodelling such as response to post myocardial infarction remains to be defined. Materials and methods: C57 bl/6 mice were randomized to either normal diet or high fat diet at an age of 6 weeks. Seven months later, the mice were euthanized and the lung was removed and frozen in fluid nitrogen until use. Samples were analyzed by real-time RT-PCR and western blot. Leptin deficient mice were used to investigate the effect of leptin on pulmonary expression of PTHrP more directly. A subgroup of mice with and without high fat diet underwent in vivo ischemia (45 min and reperfusion (4 weeks. Finally, experiments were repeated with prolonged high-fat diet. Key findings: High fat diet increased plasma leptin levels by 30.4% and the pulmonary mRNA expression of PTHrP (1,447-fold, PTH-1 receptor (4.21-fold, and PTHrP-downstream targets ADRP (7.54-fold and PPARγ (5.27-fold. Pulmonary PTHrP expression was reduced in leptin deficient mice by 88% indicating leptin dependent regulation. High fat diet further improved changes in pulmonary adaptation caused by ischemia/reperfusion (1.48-fold increased PTH-1 receptor protein expression. These effects were lost during prolonged high fat diet. Significance: This study established that physiological regulation of leptin plasma levels by high fat diet affects the pulmonary PTHrP expression and of PTHrP downstream targets. Modification of pulmonary expression of PTH-1 receptors by high fat diet after myocardial infarction suggests that the identified interaction may

  9. Regulation of sonic hedgehog-GLI1 downstream target genes PTCH1, Cyclin D2, Plakoglobin, PAX6 and NKX2.2 and their epigenetic status in medulloblastoma and astrocytoma

    Directory of Open Access Journals (Sweden)

    Eberhart Charles G

    2010-11-01

    Full Text Available Abstract Background The Sonic hedgehog (Shh signaling pathway is critical for cell growth and differentiation. Impairment of this pathway can result in both birth defects and cancer. Despite its importance in cancer development, the Shh pathway has not been thoroughly investigated in tumorigenesis of brain tumors. In this study, we sought to understand the regulatory roles of GLI1, the immediate downstream activator of the Shh signaling pathway on its downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6 in medulloblastoma and astrocytic tumors. Methods We silenced GLI1 expression in medulloblastoma and astrocytic cell lines by transfection of siRNA against GLI1. Subsequently, we performed RT-PCR and quantitative real time RT-PCR (qRT-PCR to assay the expression of downstream target genes PTCH1, Cyclin D2, Plakoglobin, NKX2.2 and PAX6. We also attempted to correlate the pattern of expression of GLI1 and its regulated genes in 14 cell lines and 41 primary medulloblastoma and astrocytoma tumor samples. We also assessed the methylation status of the Cyclin D2 and PTCH1 promoters in these 14 cell lines and 58 primary tumor samples. Results Silencing expression of GLI1 resulted up-regulation of all target genes in the medulloblastoma cell line, while only PTCH1 was up-regulated in astrocytoma. We also observed methylation of the cyclin D2 promoter in a significant number of astrocytoma cell lines (63% and primary astrocytoma tumor samples (32%, but not at all in any medulloblastoma samples. PTCH1 promoter methylation was less frequently observed than Cyclin D2 promoter methylation in astrocytomas, and not at all in medulloblastomas. Conclusions Our results demonstrate different regulatory mechanisms of Shh-GLI1 signaling. These differences vary according to the downstream target gene affected, the origin of the tissue, as well as epigenetic regulation of some of these genes.

  10. Neutron production from 158 GeV/c per nucleon lead ions on thin copper and lead targets in the angular range 30-135 deg

    CERN Document Server

    Agosteo, S; Foglio-Para, A; Gini, L; Mitaroff, W A; Silari, Marco; Ulrici, L

    2002-01-01

    The neutron emission from 5, 10 and 20 mm thick lead and 10 and 20 mm thick copper targets bombarded by a lead ion beam with momentum of 158 GeV/c per nucleon were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident ion on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 deg. with respect to beam direction. Monte Carlo simulations with the FLUKA code were performed to establish a guess spectrum for the unfolding of the experimental data. The results have shown that, lacking Monte Carlo radiation transport codes dealing with ions with masses larger than 1 amu, a reasonable prediction can be carried out by scaling the result of a Monte Carlo calculation for protons by the projectile mass number to the power of 0.85-0.95 for a lead target and 0.88-1.03 for a copper target.

  11. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59.

    Science.gov (United States)

    Van der Does, Dieuwertje; Leon-Reyes, Antonio; Koornneef, Annemart; Van Verk, Marcel C; Rodenburg, Nicole; Pauwels, Laurens; Goossens, Alain; Körbes, Ana P; Memelink, Johan; Ritsema, Tita; Van Wees, Saskia C M; Pieterse, Corné M J

    2013-02-01

    Antagonism between the defense hormones salicylic acid (SA) and jasmonic acid (JA) plays a central role in the modulation of the plant immune signaling network, but the molecular mechanisms underlying this phenomenon are largely unknown. Here, we demonstrate that suppression of the JA pathway by SA functions downstream of the E3 ubiquitin-ligase Skip-Cullin-F-box complex SCF(COI1), which targets JASMONATE ZIM-domain transcriptional repressor proteins (JAZs) for proteasome-mediated degradation. In addition, neither the stability nor the JA-induced degradation of JAZs was affected by SA. In silico promoter analysis of the SA/JA crosstalk transcriptome revealed that the 1-kb promoter regions of JA-responsive genes that are suppressed by SA are significantly enriched in the JA-responsive GCC-box motifs. Using GCC:GUS lines carrying four copies of the GCC-box fused to the β-glucuronidase reporter gene, we showed that the GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Using plants overexpressing the GCC-box binding APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors ERF1 or ORA59, we found that SA strongly reduces the accumulation of ORA59 but not that of ERF1. Collectively, these data indicate that the SA pathway inhibits JA signaling downstream of the SCF(COI1)-JAZ complex by targeting GCC-box motifs in JA-responsive promoters via a negative effect on the transcriptional activator ORA59.

  12. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site.

    Science.gov (United States)

    Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B; Kim, Hee Jong; Wohlschlegel, James A; Blackburn, Ninian J; Hart, P John; Winge, Dennis R; Winkler, Duane D

    2017-07-21

    Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Anaerobic Copper Toxicity and Iron-Sulfur Cluster Biogenesis in Escherichia coli.

    Science.gov (United States)

    Tan, Guoqiang; Yang, Jing; Li, Tang; Zhao, Jin; Sun, Shujuan; Li, Xiaokang; Lin, Chuxian; Li, Jianghui; Zhou, Huaibin; Lyu, Jianxin; Ding, Huangen

    2017-08-15

    While copper is an essential trace element in biology, pollution of groundwater from copper has become a threat to all living organisms. Cellular mechanisms underlying copper toxicity, however, are still not fully understood. Previous studies have shown that iron-sulfur proteins are among the primary targets of copper toxicity in Escherichia coli under aerobic conditions. Here, we report that, under anaerobic conditions, iron-sulfur proteins in E. coli cells are even more susceptible to copper in medium. Whereas addition of 0.2 mM copper(II) chloride to LB (Luria-Bertani) medium has very little or no effect on iron-sulfur proteins in wild-type E. coli cells under aerobic conditions, the same copper treatment largely inactivates iron-sulfur proteins by blocking iron-sulfur cluster biogenesis in the cells under anaerobic conditions. Importantly, proteins that do not have iron-sulfur clusters (e.g., fumarase C and cysteine desulfurase) in E. coli cells are not significantly affected by copper treatment under aerobic or anaerobic conditions, indicating that copper may specifically target iron-sulfur proteins in cells. Additional studies revealed that E. coli cells accumulate more intracellular copper under anaerobic conditions than under aerobic conditions and that the elevated copper content binds to the iron-sulfur cluster assembly proteins IscU and IscA, which effectively inhibits iron-sulfur cluster biogenesis. The results suggest that the copper-mediated inhibition of iron-sulfur proteins does not require oxygen and that iron-sulfur cluster biogenesis is the primary target of anaerobic copper toxicity in cells. IMPORTANCE Copper contamination in groundwater has become a threat to all living organisms. However, cellular mechanisms underlying copper toxicity have not been fully understood up to now. The work described here reveals that iron-sulfur proteins in Escherichia coli cells are much more susceptible to copper in medium under anaerobic conditions than they

  14. Thick-target Pixe analysis of chromium, copper and arsenic impregnated lumber

    International Nuclear Information System (INIS)

    Saarela, K-E.; Harju, L.; Lill, J-O.; Rajander, J.; Lindroos, A.; Heselius, S-J.

    1999-01-01

    Chromium, copper and arsenic (CCA) have for decades been used for wood preservation. Of these elements especially arsenic is very toxic. As CCA impregnated wood is still today used for many construction purposes, a monitoring of these metal ions is of great environmental importance. Thick-target PIXE is a powerful method for the determination of trace metals in wood. The TTPIXE method enabled study of variations of the elemental concentrations in lumber treated with CCA impregnation solution. Distribution patterns were obtained for both naturally occurring elements and elements introduced in the treatment process. During the impregnation process a desorption of e.g. alkali metal ions takes place from the wood. The sensitivity of the method is improved by dry ashing of the samples prior to PIXE analysis. The TTPIXE method was calibrated and validated using international certified reference materials (CRM) based on wood material

  15. Copper mobilization affected by weather conditions in a stormwater detention system receiving runoff waters from vineyard soils (Champagne, France)

    Energy Technology Data Exchange (ETDEWEB)

    Banas, D., E-mail: damien.banas@u-psud.f [Univ. Reims Champagne-Ardenne, Lab. Eco-Toxicologie, BP 1039, F-51687 Reims Cedex 2 (France); Univ. Nancy, UR-AFPA, INRA, 2 Av. Foret Haye, F-54505 Vandoeuvre-les-Nancy (France); Marin, B., E-mail: beatrice.marin@univ-reims.f [Univ. Reims Champagne-Ardenne, EA3795 GEGENA, 2 Esplanade Roland Garros, F-51100 Reims (France); Skraber, S., E-mail: skraber@lippmann.l [Centre de Recherche Public, Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41 rue du Brill, L-4422 Belvaux (Luxembourg); Chopin, E.I.B., E-mail: chopin@oakland.ed [Oakland University, Department of Chemistry, Rochester, MI 48309 (United States); Zanella, A., E-mail: augusto.zanella@unipd.i [Univ. Padova, Facolta di Agraria, Viale dell' Universita 16, I-35020 Legnaro (Italy)

    2010-02-15

    Copper, a priority substance on the EU-Water Framework Directive list, is widely used to protect grapevines against fungus diseases. Many vineyards being located on steep slopes, large amounts of Cu could be discharged in downstream systems by runoff water. The efficiency of stormwater detention basins to retain copper in a vineyard catchment was estimated. Suspended solids, dissolved (Cu{sub diss}) and total Cu (Cu{sub tot}) concentrations were monitored in runoff water, upstream, into and downstream from a detention pond. Mean Cu{sub tot} concentrations in entering water was 53.6 mug/L whereas it never exceeded 2.4 mug/L in seepage. Cu{sub tot} concentrations in basin water (>100 mug/L in 24% of the samples) exceeded LC{sub 50} values for several aquatic animals. Copper was principally sequestered by reduced compounds in the basin sediments (2/3 of Cu{sub tot}). Metal sequestration was reversible since sediment resuspension resulted in Cu remobilization. Wind velocity controlled resuspension, explained 70% of Cu{sub diss} variability and could help predicting Cu mobilization. - Copper in stormwater basin is efficiently retained but can be released during windy events or after dredging.

  16. Copper mobilization affected by weather conditions in a stormwater detention system receiving runoff waters from vineyard soils (Champagne, France)

    International Nuclear Information System (INIS)

    Banas, D.; Marin, B.; Skraber, S.; Chopin, E.I.B.; Zanella, A.

    2010-01-01

    Copper, a priority substance on the EU-Water Framework Directive list, is widely used to protect grapevines against fungus diseases. Many vineyards being located on steep slopes, large amounts of Cu could be discharged in downstream systems by runoff water. The efficiency of stormwater detention basins to retain copper in a vineyard catchment was estimated. Suspended solids, dissolved (Cu diss ) and total Cu (Cu tot ) concentrations were monitored in runoff water, upstream, into and downstream from a detention pond. Mean Cu tot concentrations in entering water was 53.6 μg/L whereas it never exceeded 2.4 μg/L in seepage. Cu tot concentrations in basin water (>100 μg/L in 24% of the samples) exceeded LC 50 values for several aquatic animals. Copper was principally sequestered by reduced compounds in the basin sediments (2/3 of Cu tot ). Metal sequestration was reversible since sediment resuspension resulted in Cu remobilization. Wind velocity controlled resuspension, explained 70% of Cu diss variability and could help predicting Cu mobilization. - Copper in stormwater basin is efficiently retained but can be released during windy events or after dredging.

  17. Site-specific antibody-liposome conjugation through copper-free click chemistry: a molecular biology approach for targeted photodynamic therapy (Conference Presentation)

    Science.gov (United States)

    Obaid, Girgis; Wang, Yucheng; Kuriakose, Jerrin; Broekgaarden, Mans; Alkhateeb, Ahmed; Bulin, Anne-Laure; Hui, James; Tsourkas, Andrew; Hasan, Tayyaba

    2016-03-01

    Nanocarriers, such as liposomes, have the ability to potentiate photodynamic therapy (PDT) treatment regimens by the encapsulation of high payloads of photosensitizers and enhance their passive delivery to tumors through the enhanced permeability and retention effect. By conjugating targeting moieties to the surface of the liposomal nanoconstructs, cellular selectivity is imparted on them and PDT-based therapies can be performed with significantly higher dose tolerances, as off-target toxicity is simultaneously reduced.1 However, the maximal benefits of conventional targeted nanocarriers, including liposomes, are hindered by practical limitations including chemical instability, non-selective conjugation chemistry, poor control over ligand orientation, and loss of ligand functionality following conjugation, amongst others.2 We have developed a robust, physically and chemically stable liposomal nanoplatform containing benzoporphyrin derivative photosensitizer molecules within the phospholipid bilayer and an optimized surface density of strained cyclooctyne moieties for `click' conjugation to azido-functionalized antibodies.3 The clinical chimeric anti-EGFR antibody Cetuximab is site-specifically photocrosslinked to a recombinant bioengineered that recognizes the antibody's Fc region, containing a terminal azide.4 The copper-free click conjugation of the bioengineered Cetuximab derivative to the optimized photosensitizing liposome provides exceptional control over the antibody's optimal orientation for cellular antigen binding. Importantly, the reaction occurs rapidly under physiological conditions, bioorthogonally (selectively in the presence of other biomolecules) and without the need for toxic copper catalysis.3 Such state-of-the-art conjugation strategies push the boundaries of targeted photodynamic therapy beyond the limitations of traditional chemical coupling techniques to produce more robust and effective targeted therapeutics with applications beyond

  18. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    Science.gov (United States)

    Nie, Y.; Schmidt, R.; Chetvertkova, V.; Rosell-Tarragó, G.; Burkart, F.; Wollmann, D.

    2017-08-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post-Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV-50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.

  19. Preparing a suitable solid target for generating copper-64 using a biomedical cyclotron

    International Nuclear Information System (INIS)

    Jeffery, Charmaine; Cryer, David; Chan, Sun; Asad, Ali; Fleming, Adam; Hubble, Lee

    2009-01-01

    Full text: Radiopharmaceutical research at SCGH has been advancing in the production of copper-64, a promising radionuclide for PET. Production has commenced using a self-manufactured solid target with alBA 18/9 cyclotron, via the 6 4 N i(p,n) 6 4 C u reaction pathway. One aspect of the project has been the preparation of a suitable solid target for irradiation. The chosen production method involves electrolysis of a solution of nickel ammonium sulphate in a self-manufactured electroplating cell, using a gold disk as the cathode for deposition of nickel metal. Various defects in the nickel surface were observed ∼ including cracks, formation of pits and inclusions, loose powder-like plating, lack of metallic lustre and lifting of the plated nickel. Several variables were investigated - including adjustment of the anode-cathode distance, anode composition, solution composition, and voltage/current settings. A suitable method that produced acceptable plating was achieved - the surface was then analysed to ensure there were no underlying defects. Three analytical techniques were used - AFM, SEM and optical profilometry. Two disks were ana lysed (approx. 3 0 m g of natNi plated). The depth of plating, evenness of plating and surface uniformity were of particular interest. Conclusions: Analysis revealed that the surface was not completely uniform (thinner at edges, 'well' in centre, with inclusions on the surface more prevalent than pitting), and required more nickel to be plated to reach optimum thickness. Final target specifications are still being optimised, however test irradiation of a solid target ( 3 1 n ickel, I l0 m g) proved that a sound solid target can be reliably produced and irradiated.

  20. Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense

    Directory of Open Access Journals (Sweden)

    Philipp Wiemann

    2017-05-01

    Full Text Available The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs, and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically or enhancement of copper-exporting activity (CrpA in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses.

  1. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Directory of Open Access Journals (Sweden)

    Sarah Triboulet

    Full Text Available Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide or of their biocidal properties (copper oxide, increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  2. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  3. The influence of ion energy, target temperature, dose rate and crystal order on the shape of bombardment induced pyramids on copper crystals

    International Nuclear Information System (INIS)

    Tanovic, L.; Whitton, J.L.; Kofod, S.

    1978-01-01

    Following recent studies of energetic ion bombardment of copper, which established the conditions necessary for the production of cones/pyramids, investigations have been extended to include the effects of change in ion energy, target temperature and dose rate. In addition, the authors have attempted a detailed analysis of the influence of sample crystal orientation on the final form of pyramids and have investigated the stability of the pyramids as a function of the total dose. These experiments, as in earlier work, have been done using very pure copper, mass-analyzed ion beams and free of any metal contamination from, for example, defining apertures. (Auth.)

  4. Discovery of Fungal Denitrification Inhibitors by Targeting Copper Nitrite Reductase from Fusarium oxysporum.

    Science.gov (United States)

    Matsuoka, Masaki; Kumar, Ashutosh; Muddassar, Muhammad; Matsuyama, Akihisa; Yoshida, Minoru; Zhang, Kam Y J

    2017-02-27

    The efficient application of nitrogenous fertilizers is urgently required, as their excessive and inefficient use is causing substantial economic loss and environmental pollution. A significant amount of applied nitrogen in agricultural soils is lost as nitrous oxide (N 2 O) in the environment due to the microbial denitrification process. The widely distributed fungus Fusarium oxysporum is a major denitrifier in agricultural soils and its denitrification activity could be targeted to reduce nitrogen loss in the form of N 2 O from agricultural soils. Here, we report the discovery of first small molecule inhibitors of copper nitrite reductase (NirK) from F. oxysporum, which is a key enzyme in the fungal denitrification process. The inhibitors were discovered by a hierarchical in silico screening approach consisting of pharmacophore modeling and molecular docking. In vitro evaluation of F. oxysporum NirK activity revealed several pyrimidone and triazinone based compounds with potency in the low micromolar range. Some of these compounds suppressed the fungal denitrification in vivo as well. The compounds reported here could be used as starting points for the development of nitrogenous fertilizer supplements and coatings as a means to prevent nitrogen loss by targeting fungal denitrification.

  5. The chemistry of copper chalcogenides in waste glasses

    International Nuclear Information System (INIS)

    Schreiber, H.D.; Lambert, H.W.

    1994-01-01

    The solubilities of copper chalcogenides (CuS, CuSe, CuTe) were measured in a glass melt which is representative of those proposed for nuclear waste immobilization and circuit board vitrification. CuTe is more soluble than CuS and CuSe in the glass melt under relatively oxidizing conditions. However, the solubilities of all the copper chalcogenides in the glass melt are virtually identical at reducing conditions, probably a result of the redox-controlled solubility of copper metal in all cases. The redox chemistry of a glass melt coexisting with an immiscible copper chalcogenide depends primarily on the prevailing oxygen fugacity, not on the identity of the chalcogenide. The target concentration of less than 0.3 to 0.5 wt% copper in the waste glass should eliminate the precipitation of copper chalcogenides during processing

  6. Salicylic Acid Suppresses Jasmonic Acid Signaling Downstream of SCFCOI1-JAZ by Targeting GCC Promoter Motifs via Transcription Factor ORA59[C][W][OA

    Science.gov (United States)

    Van der Does, Dieuwertje; Leon-Reyes, Antonio; Koornneef, Annemart; Van Verk, Marcel C.; Rodenburg, Nicole; Pauwels, Laurens; Goossens, Alain; Körbes, Ana P.; Memelink, Johan; Ritsema, Tita; Van Wees, Saskia C.M.; Pieterse, Corné M.J.

    2013-01-01

    Antagonism between the defense hormones salicylic acid (SA) and jasmonic acid (JA) plays a central role in the modulation of the plant immune signaling network, but the molecular mechanisms underlying this phenomenon are largely unknown. Here, we demonstrate that suppression of the JA pathway by SA functions downstream of the E3 ubiquitin-ligase Skip-Cullin-F-box complex SCFCOI1, which targets JASMONATE ZIM-domain transcriptional repressor proteins (JAZs) for proteasome-mediated degradation. In addition, neither the stability nor the JA-induced degradation of JAZs was affected by SA. In silico promoter analysis of the SA/JA crosstalk transcriptome revealed that the 1-kb promoter regions of JA-responsive genes that are suppressed by SA are significantly enriched in the JA-responsive GCC-box motifs. Using GCC:GUS lines carrying four copies of the GCC-box fused to the β-glucuronidase reporter gene, we showed that the GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Using plants overexpressing the GCC-box binding APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors ERF1 or ORA59, we found that SA strongly reduces the accumulation of ORA59 but not that of ERF1. Collectively, these data indicate that the SA pathway inhibits JA signaling downstream of the SCFCOI1-JAZ complex by targeting GCC-box motifs in JA-responsive promoters via a negative effect on the transcriptional activator ORA59. PMID:23435661

  7. The effect of carbon nanotube chirality on the spiral flow of copper atoms in their cores

    International Nuclear Information System (INIS)

    Lim, M.C.G.; Zhong, Z.W.

    2012-01-01

    The effect of carbon nanotube (CNT) chirality on the flow of copper atoms along its core has been investigated using molecular dynamics simulations. The investigation is conducted using CNTs of different chirality, and different flow conditions such as temperatures, bias voltages and the initial positions of the copper atoms. The results show that the atoms flow in a spiral fashion along the CNT channels. The effect is most evident in the CNT channel with zigzag CNTs. The movement of the copper atoms is more erratic when the temperature is increased at a low biased voltage, regardless of the types of channel used. The initial positions of the copper atoms affect the way they converge as they move downstream along the channel. A bias voltage of 4 V favours the initiation of a spiral flow, especially when the position of the copper atoms is far from the central axis of the channel. -- Highlights: ► We model the transportation of copper atoms in armchair and zigzag CNT channels. ► The spiral flow of copper atoms occurs in a semiconductor–semiconductor CNT. ► The compact copper mass is predicted to occur at 673 K with a 4 V bias voltage.

  8. Elongation factor 1 alpha1 and genes associated with Usher syndromes are downstream targets of GBX2.

    Directory of Open Access Journals (Sweden)

    David A Roeseler

    Full Text Available Gbx2 encodes a DNA-binding transcription factor that plays pivotal roles during embryogenesis. Gain-and loss-of-function studies in several vertebrate species have demonstrated a requirement for Gbx2 in development of the anterior hindbrain, spinal cord, inner ear, heart, and neural crest cells. However, the target genes through which GBX2 exerts its effects remain obscure. Using chromatin immunoprecipitation coupled with direct sequencing (ChIP-Seq analysis in a human prostate cancer cell line, we identified cis-regulatory elements bound by GBX2 to provide insight into its direct downstream targets. The analysis revealed more than 286 highly significant candidate target genes, falling into various functional groups, of which 51% are expressed in the nervous system. Several of the top candidate genes include EEF1A1, ROBO1, PLXNA4, SLIT3, NRP1, and NOTCH2, as well as genes associated with the Usher syndrome, PCDH15 and USH2A, and are plausible candidates contributing to the developmental defects in Gbx2(-/- mice. We show through gel shift analyses that sequences within the promoter or introns of EEF1A1, ROBO1, PCDH15, USH2A and NOTCH2, are directly bound by GBX2. Consistent with these in vitro results, analyses of Gbx2(-/- embryos indicate that Gbx2 function is required for migration of Robo1-expressing neural crest cells out of the hindbrain. Furthermore, we show that GBX2 activates transcriptional activity through the promoter of EEF1A1, suggesting that GBX2 could also regulate gene expression indirectly via EEF1A. Taken together, our studies show that GBX2 plays a dynamic role in development and diseases.

  9. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  10. Determination of intensity and energy spectrum of neutrons by bombardment of thallium-203 thick target and its copper substrate with 28.5 MeV protons

    International Nuclear Information System (INIS)

    Hajiloo, N.; Raisali, Gh.; Hamidi, S.; Aslani, Gh.

    2007-01-01

    In this research we have determined neutrons spectrum and the intensity that produced from thallium target bombardment. We have applied SRIM and ALICE computer codes to thallium target and its copper substrate for 145 μA of 28.5 MeV incident proton beam from cyclotron Cyclone30. Because of the energy degradation of protons while passing through the thallium target and its copper substrate, the average energy of protons in different depths has been calculated by using SRIM computer code. Then, by applying ALICE computer code for each sub-layer, the neutron production cross sections and their energy spectrum have been calculated to determine the total neutron intensity and spectrum. Using the calculated neutron intensity of 1.22x10 13 n/s as the source, the equivalent dose rate at the distance 6 meters from the target has been calculated by MCNP computer code and the result has been compared with the measured value. The Pb 201 activity has also been calculated as 13.5 Curies. The measured Pb 201 activity by Curie meter CAPINTEC CRC-712 is 13.1 Ci which is in reasonable agreement with the calculated value, bearing in mind the uncertainties in the proposed models and the measurements

  11. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    Directory of Open Access Journals (Sweden)

    Y. Nie

    2017-08-01

    Full Text Available The conceptual design of the Future Circular Collider (FCC is being carried out actively in an international collaboration hosted by CERN, for the post–Large Hadron Collider (LHC era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV–50 TeV. Three beam sizes were studied for each energy, corresponding to typical values of the betatron function. Specifically for thin targets, comparisons between fluka simulations and analytical Bethe equation calculations were carried out, which showed that the damage potential of a few-millimeter-thick graphite target and submillimeter-thick copper foil can be well estimated directly by the Bethe equation. The paper provides a valuable reference for the quick evaluation of potential damage to accelerator elements over a large range of beam parameters when beam loss occurs.

  12. Potential downstream target genes of aberrant ETS transcription factors are differentially affected in Ewing's sarcoma and prostate carcinoma.

    Directory of Open Access Journals (Sweden)

    Maria J Camões

    Full Text Available FLI1 and ERG, the major ETS transcription factors involved in rearrangements in the Ewing's sarcoma family of tumors (ESFT and in prostate carcinomas (PCa, respectively, belong to the same subfamily, having 98% sequence identity in the DNA binding domain. We therefore decided to investigate whether the aberrant transcription factors in both malignancies have some common downstream targets. We crossed a publicly available list of all putative EWSR1-FLI1 target genes in ESFT with our microarray expression data on 24 PCa and 6 non-malignant prostate tissues (NPT and choose four genes among the top-most differentially expressed between PCa with (PCa ERG+ and without (PCa ETS- ETS fusion genes (HIST1H4L, KCNN2, ECRG4 and LDOC1, as well as four well-validated direct targets of the EWSR1-FLI1 chimeric protein in ESFT (NR0B1, CAV1, IGFBP3 and TGFBR2. Using quantitative expression analysis in 16 ESFT and seven alveolar rhabdomyosarcomas (ARMS, we were able to validate the four genes previously described as direct targets of the EWSR1-FLI1 oncoprotein, showing overexpression of CAV1 and NR0B1 and underexpression of IGFBP3 and TGFBR2 in ESFT as compared to ARMS. Although none of these four genes showed significant expression differences between PCa ERG+ and PCa ETS-, CAV1, IGFBP3 and TGFBR2 were less expressed in PCa in an independent series of 56 PCa and 15 NPT, as also observed for ECRG4 and LDOC1, suggesting a role in prostate carcinogenesis in general. On the other hand, we demonstrate for the first time that both HIST1H4L and KCNN2 are significantly overexpressed in PCa ERG+ and that ERG binds to the promoter of these genes. Conversely, KCNN2 was found underexpressed in ESFT relative to ARMS, suggesting that the EWSR1-ETS oncoprotein may have the opposite effect of ERG rearrangements in PCa. We conclude that aberrant ETS transcription factors modulate target genes differently in ESFT and PCa.

  13. Targets downstream of Cdk8 in Dictyostelium development

    Directory of Open Access Journals (Sweden)

    Skelton Jason

    2011-01-01

    Full Text Available Abstract Background Cdk8 is a component of the mediator complex which facilitates transcription by RNA polymerase II and has been shown to play an important role in development of Dictyostelium discoideum. This eukaryote feeds as single cells but starvation triggers the formation of a multicellular organism in response to extracellular pulses of cAMP and the eventual generation of spores. Strains in which the gene encoding Cdk8 have been disrupted fail to form multicellular aggregates unless supplied with exogenous pulses of cAMP and later in development, cdk8- cells show a defect in spore production. Results Microarray analysis revealed that the cdk8- strain previously described (cdk8-HL contained genome duplications. Regeneration of the strain in a background lacking detectable gene duplication generated strains (cdk8-2 with identical defects in growth and early development, but a milder defect in spore generation, suggesting that the severity of this defect depends on the genetic background. The failure of cdk8- cells to aggregate unless rescued by exogenous pulses of cAMP is consistent with a failure to express the catalytic subunit of protein kinase A. However, overexpression of the gene encoding this protein was not sufficient to rescue the defect, suggesting that this is not the only important target for Cdk8 at this stage of development. Proteomic analysis revealed two potential targets for Cdk8 regulation, one regulated post-transcriptionally (4-hydroxyphenylpyruvate dioxygenase (HPD and one transcriptionally (short chain dehydrogenase/reductase (SDR1. Conclusions This analysis has confirmed the importance of Cdk8 at multiple stages of Dictyostelium development, although the severity of the defect in spore production depends on the genetic background. Potential targets of Cdk8-mediated gene regulation have been identified in Dictyostelium which will allow the mechanism of Cdk8 action and its role in development to be determined.

  14. Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in Arabidopsis.

    Science.gov (United States)

    Gao, Chenhao; Li, Dong; Jin, Changyu; Duan, Shaowei; Qi, Shuanghui; Liu, Kaige; Wang, Hanchen; Ma, Haoli; Hai, Jiangbo; Chen, Mingxun

    2017-04-01

    GLABRA3 (GL3), a bHLH transcription factor, has previously proved to be involved in anthocyanin biosynthesis and trichome formation in Arabidopsis, however, its downstream targeted genes are still largely unknown. Here, we found that GL3 was widely present in Arabidopsis vegetative and reproductive organs. New downstream targeted genes of GL3 for anthocyanin biosynthesis and trichome formation were identified in young shoots and expanding true leaves by RNA sequencing. GL3-mediated gene expression was tissue specific in the two biological processes. This study provides new clues to further understand the GL3-mediated regulatory network of anthocyanin biosynthesis and trichome formation in Arabidopsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Evaluation of Intracellular Signaling Downstream Chimeric Antigen Receptors.

    Directory of Open Access Journals (Sweden)

    Hannah Karlsson

    Full Text Available CD19-targeting CAR T cells have shown potency in clinical trials targeting B cell leukemia. Although mainly second generation (2G CARs carrying CD28 or 4-1BB have been investigated in patients, preclinical studies suggest that third generation (3G CARs with both CD28 and 4-1BB have enhanced capacity. However, little is known about the intracellular signaling pathways downstream of CARs. In the present work, we have analyzed the signaling capacity post antigen stimulation in both 2G and 3G CARs. 3G CAR T cells expanded better than 2G CAR T cells upon repeated stimulation with IL-2 and autologous B cells. An antigen-driven accumulation of CAR+ cells was evident post antigen stimulation. The cytotoxicity of both 2G and 3G CAR T cells was maintained by repeated stimulation. The phosphorylation status of intracellular signaling proteins post antigen stimulation showed that 3G CAR T cells had a higher activation status than 2G. Several proteins involved in signaling downstream the TCR were activated, as were proteins involved in the cell cycle, cell adhesion and exocytosis. In conclusion, 3G CAR T cells had a higher degree of intracellular signaling activity than 2G CARs which may explain the increased proliferative capacity seen in 3G CAR T cells. The study also indicates that there may be other signaling pathways to consider when designing or evaluating new generations of CARs.

  16. VARIABILITY OF COORDINATION COMPLEXES OF COPPER ACCUMULATED WITHIN FUNGAL COLONY IN THE PRESENCE OF COPPER-CONTAINING MINERALS

    Directory of Open Access Journals (Sweden)

    M. O. Fomina

    2014-04-01

    Full Text Available The aim of work was to elucidate the mechanisms of bioaccumulation of copper leached from minerals by fungus Aspergillus niger with great bioremedial potential due to its ability to produce chelating metabolites and transform toxic metals and minerals. The special attention was paid to the chemical speciation of copper bioaccumulated within fungal colony in the process of fungal transformation of copper-containing minerals. Chemical speciation of copper within different parts of the fungal colony was studied using solid-state chemistry methods such as synchrotron-based X-ray absorption spectroscopy providing information about the oxidation state of the target element, and its coordination environment. The analysis of the obtained X-ray absorption spectroscopy spectra was carried out using Fourier transforms of Extended X-ray Absorption Fine Structure regions, which correspond to the oscillating part of the spectrum to the right of the absorption edge. Results of this study showed that fungus A. niger was involved in the process of solubilization of copper-containing minerals resulted in leaching of mobile copper and its further immobilization by fungal biomass with variable coordination of accumulated copper within fungal colony which depended on the age and physiological/reproductive state of fungal mycelium. X-ray absorption spectroscopy data demonstrated that copper accumulated within outer zone of fungal colony with immature vegetative mycelium was coordinated with sulphur–containing ligands, in contrast to copper coordination with phosphate ligands within mature mycelium with profuse conidia in the central zone of the colony. The findings of this study not only broaden our understanding of the biogeochemical role of fungi but can also be used in the development of various fungal-based biometallurgy technologies such as bioremediation, bioaccumulation and bioleaching and in the assessment of their reliability. The main conclusion is that

  17. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  18. Copper is an endogenous modulator of neural circuit spontaneous activity.

    Science.gov (United States)

    Dodani, Sheel C; Firl, Alana; Chan, Jefferson; Nam, Christine I; Aron, Allegra T; Onak, Carl S; Ramos-Torres, Karla M; Paek, Jaeho; Webster, Corey M; Feller, Marla B; Chang, Christopher J

    2014-11-18

    For reasons that remain insufficiently understood, the brain requires among the highest levels of metals in the body for normal function. The traditional paradigm for this organ and others is that fluxes of alkali and alkaline earth metals are required for signaling, but transition metals are maintained in static, tightly bound reservoirs for metabolism and protection against oxidative stress. Here we show that copper is an endogenous modulator of spontaneous activity, a property of functional neural circuitry. Using Copper Fluor-3 (CF3), a new fluorescent Cu(+) sensor for one- and two-photon imaging, we show that neurons and neural tissue maintain basal stores of loosely bound copper that can be attenuated by chelation, which define a labile copper pool. Targeted disruption of these labile copper stores by acute chelation or genetic knockdown of the CTR1 (copper transporter 1) copper channel alters the spatiotemporal properties of spontaneous activity in developing hippocampal and retinal circuits. The data identify an essential role for copper neuronal function and suggest broader contributions of this transition metal to cell signaling.

  19. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  20. Copper Resistance of the Emerging Pathogen Acinetobacter baumannii

    Science.gov (United States)

    Williams, Caitlin L.; Neu, Heather M.; Gilbreath, Jeremy J.; Michel, Sarah L. J.; Zurawski, Daniel V.

    2016-01-01

    , and treatment options are incredibly limited. Copper is an essential nutrient but becomes toxic at high concentrations. The inherent antimicrobial properties of copper give it potential for use in novel therapeutics against drug-resistant pathogens. We show that A. baumannii clinical isolates are sensitive to copper in vitro, both in liquid and on solid metal surfaces. Since bacterial resistance to copper is mediated though mechanisms of efflux and detoxification, we identified genes encoding putative copper-related proteins in A. baumannii and showed that expression of some of these genes is regulated by the copper concentration. We propose that the antimicrobial effects of copper may be beneficial in the development of future therapeutics that target multidrug-resistant bacteria. PMID:27520808

  1. Copper Resistance of the Emerging Pathogen Acinetobacter baumannii.

    Science.gov (United States)

    Williams, Caitlin L; Neu, Heather M; Gilbreath, Jeremy J; Michel, Sarah L J; Zurawski, Daniel V; Merrell, D Scott

    2016-10-15

    are incredibly limited. Copper is an essential nutrient but becomes toxic at high concentrations. The inherent antimicrobial properties of copper give it potential for use in novel therapeutics against drug-resistant pathogens. We show that A. baumannii clinical isolates are sensitive to copper in vitro, both in liquid and on solid metal surfaces. Since bacterial resistance to copper is mediated though mechanisms of efflux and detoxification, we identified genes encoding putative copper-related proteins in A. baumannii and showed that expression of some of these genes is regulated by the copper concentration. We propose that the antimicrobial effects of copper may be beneficial in the development of future therapeutics that target multidrug-resistant bacteria. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Information Extraction and Interpretation Analysis of Mineral Potential Targets Based on ETM+ Data and GIS technology: A Case Study of Copper and Gold Mineralization in Burma

    International Nuclear Information System (INIS)

    Wenhui, Du; Yongqing, Chen; Nana, Guo; Yinglong, Hao; Pengfei, Zhao; Gongwen, Wang

    2014-01-01

    Mineralization-alteration and structure information extraction plays important roles in mineral resource prospecting and assessment using remote sensing data and the Geographical Information System (GIS) technology. Choosing copper and gold mines in Burma as example, the authors adopt band ratio, threshold segmentation and principal component analysis (PCA) to extract the hydroxyl alteration information using ETM+ remote sensing images. Digital elevation model (DEM) (30m spatial resolution) and ETM+ data was used to extract linear and circular faults that are associated with copper and gold mineralization. Combining geological data and the above information, the weights of evidence method and the C-A fractal model was used to integrate and identify the ore-forming favourable zones in this area. Research results show that the high grade potential targets are located with the known copper and gold deposits, and the integrated information can be used to the next exploration for the mineral resource decision-making

  3. Differential developmental expression of transcription factors GATA-4 and GATA-6, their cofactor FOG-2 and downstream target genes in testicular carcinoma in situ and germ cell tumors

    DEFF Research Database (Denmark)

    Salonen, Jonna; Rajpert-De Meyts, E; Mannisto, Susanna

    2010-01-01

    Testicular germ cell cancer is the most common malignancy among young males. The pre-invasive precursor, carcinoma in situ testis (CIS), presumably originates from arrested and transformed fetal gonocytes. Given that GATA transcription factors have essential roles in embryonic and testicular deve...... development, we explored the expression of GATA-4, GATA-6, cofactor friend of GATA (FOG)-2, and downstream target genes during human testis development and addressed the question whether changes in this pathway may contribute to germ cell neoplasms....

  4. Responses of Lyngbya wollei to exposures of copper-based algaecides: the critical burden concept.

    Science.gov (United States)

    Bishop, W M; Rodgers, J H

    2012-04-01

    The formulation of a specific algaecide can greatly influence the bioavailability, uptake, and consequent control of the targeted alga. In this research, three copper-based algaecide formulations were evaluated in terms of copper sorption to a specific problematic alga and amount of copper required to achieve control. The objectives of this study were (1) to compare the masses of copper required to achieve control of Lyngbya wollei using the algaecide formulations Algimycin-PWF, Clearigate, and copper sulfate pentahydrate in laboratory toxicity experiments; (2) to relate the responses of L. wollei to the masses of copper adsorbed and absorbed (i.e., dose) as well as the concentrations of copper in the exposure water; and (3) to discern the relation between the mass of copper required to achieve control of a certain mass of L. wollei among different algaecide formulations. The critical burden of copper (i.e., threshold algaecide concentration that must be absorbed or adsorbed to achieve control) for L. wollei averaged 3.3 and 1.9 mg Cu/g algae for Algimycin-PWF and Clearigate, respectively, in experiments with a series of aqueous copper concentrations, water volumes, and masses of algae. With reasonable exposures in these experiments, control was not achieved with single applications of copper sulfate despite copper sorption >13 mg Cu/g algae in one experiment. Factors governing the critical burden of copper required for control of problematic cyanobacteria include algaecide formulation and concentration, volume of water, and mass of algae. By measuring the critical burden of copper from an algaecide formulation necessary to achieve control of the targeted algae, selection of an effective product and treatment rate can be calculated at a given field site.

  5. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  6. Surface films and corrosion of copper

    International Nuclear Information System (INIS)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M.

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  7. Persistence of Metal-rich Particles Downstream Zones of Acid Drainage Mixing in Andean Rivers

    Science.gov (United States)

    Pasten, P.; Montecinos, M.; Guerra, P. A.; Bonilla, C. A.; Escauriaza, C. R.; Dabrin, A.; Coquery, M.

    2016-12-01

    The Andes mountain range provides the setting for watersheds with high natural background of metals and for mining operations that enhance contaminant mobilization, notably in Northern and Central Chile. Dissolved and solid metal species are actively transported by streams to the Pacific Ocean from area and point sources, like acid drainage. We examine the response of metal rich particle suspensions downstream zones of mixing where shifts in the chemical environment occur. We propose a conceptual model which is used to analyze the fate of copper in the upper Mapocho watershed. The main source of copper is the Yerba Loca river, a naturally impacted stream with pH ranging from 3 to 7 and high concentrations of Cu (0.8 - 6.3 mg/L), Al (1.3 - 7.6 mg/L) and Fe (0.4 - 4.2 mg/L). Steep chemical shifts occur after the confluences with the San Francisco and the Molina rivers. We characterized stream chemistry, hydrological variables and suspended particles, including particle size distribution (PSD), turbidity, and total suspended solids. A marked seasonal behavior was observed, with a higher total Cu flux during smelting periods and a shift towards the dissolved phase during summer. When acid drainage is discharged into a receiving stream, incomplete mixing occurs thereby promoting the formation of a range of metal-rich solids with a characteristic PSD. Similarly, areas of chemical heterogeneity control the partition of metals associated to suspended geomaterials coming from bank and slope erosion. A highly dynamic process ensues where metastable phases shift to new equilibria as fully mixed conditions are reached. Depending on the reaction kinetics, some particles persist despite being exposed to thermodynamically unfavorable chemical environments. The persistence of metal-rich particles downstream zones of acid drainage mixing is important because it ultimately controls the flux of metals being delivered to the ocean by watersheds impacted by acid drainage. Funding from

  8. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  9. Study of bremsstrahlung photons in bulk target using MCNP code

    Directory of Open Access Journals (Sweden)

    S. Sangaroon

    2017-11-01

    Full Text Available The aim of this research was to study the feasibility of bremsstrahlung photon production in target bombarded by 1 GeV electrons. The calculations were performed by the Monte Carlo code MCNP. Six target materials with densities between 2 and 20 g/cm3 were studied. The bremsstrahlung photon flux is high for the target density above 8 g/cm3. Copper is the best target for 1 GeV electron beam due to high bremsstrahlung photon production, low scattering and low transmission electron flux. The copper target was altered to have different thicknesses between 0.01 and 2.5 cm. The results showed that the bremsstrahlung photon flux significantly increased when the target thickness increased from 0.01 to 1.5 cm. The angular distribution of the bremsstrahlung photons with angles between 0 and 120 degrees was determined for copper target. The maximum angle of the photon scattering was about 20 degree.

  10. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  11. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  12. Eta Production at High Transverse Momentum by Negative 520 GeV/c Pions Incident on Beryllium and Copper Targets

    Energy Technology Data Exchange (ETDEWEB)

    Roser, Robert Martin [Univ. of Rochester, NY (United States)

    1994-01-01

    This thesis presents a measurement of the production of high transverse momentum 17 mesons by a 520 GeV /c $\\sqrt{s}$ = 31.2) $\\pi^-$ beam using data collected during the 1990 fixed target run of Fermilab experiment E706. E706 is a second generation fixed target experiment designed to measure direct-photon production in hadron-nucleus collisions. These data provide a clean test of perturbative QCD and serve as a valuable tool for probing hadronic structure. The $\\gamma\\gamma$ decay mode of the $\\eta$ meson was studied using data from a highly segmented electromagnetic lead liquid argon sampling calorimeter. Results are presented for inclusive $\\eta$ production by $\\pi^-$ beams on both beryllium and copper targets. The $\\eta$ to $\\pi^0$ production ratio and the nuclear dependence of the $\\eta$ production cross section are also reported. These results are for $\\eta$'s in the transverse momentum range 3.5 to 9 Ge V / c and the center of mass rapidity range -0.75 to 0.75, and are the highest energy results ever obtained for inclusive $\\eta$ production using a $\\pi^-$ beam.

  13. Elevated YAP and its downstream targets CCN1 and CCN2 in basal cell carcinoma: impact on keratinocyte proliferation and stromal cell activation.

    Science.gov (United States)

    Quan, Taihao; Xu, Yiru; Qin, Zhaoping; Robichaud, Patrick; Betcher, Stephanie; Calderone, Ken; He, Tianyuan; Johnson, Timothy M; Voorhees, John J; Fisher, Gary J

    2014-04-01

    Yes-associated protein (YAP) is a transcriptional co-activator of hippo signaling pathway, which plays an important role in organ size control and tumorigenesis. Here we report that YAP and its downstream transcriptional targets CCN1 and CCN2 are markedly elevated in keratinocytes in human skin basal cell carcinoma tumor islands. In human keratinocytes, knockdown of YAP significantly reduced expression of CCN1 and CCN2, and repressed proliferation and survival. This inhibition of proliferation and survival was rescued by restoration of CCN1 expression, but not by CCN2 expression. In basal cell carcinoma stroma, CCN2-regulated genes type I collagen, fibronectin, and α-smooth muscle actin were highly expressed. Furthermore, atomic force microscopy revealed increased tissue stiffness in basal cell carcinoma stroma compared to normal dermis. These data provide evidence that up-regulation of YAP in basal cell carcinoma impacts both aberrant keratinocyte proliferation, via CCN1, and tumor stroma cell activation and stroma remodeling, via CCN2. Targeting YAP and/or CCN1 and CCN2 may provide clinical benefit in basal cell carcinoma. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Subsequent to suppression: Downstream comprehension consequences of noun/verb ambiguity in natural reading

    Science.gov (United States)

    Stites, Mallory C.; Federmeier, Kara D.

    2015-01-01

    We used eye-tracking to investigate the downstream processing consequences of encountering noun/verb (NV) homographs (i.e., park) in semantically neutral but syntactically constraining contexts. Target words were followed by a prepositional phrase containing a noun that was plausible for only one meaning of the homograph. Replicating previous work, we found increased first fixation durations on NV homographs compared to unambiguous words, which persisted into the next sentence region. At the downstream noun, we found plausibility effects following ambiguous words that were correlated with the size of a reader's first fixation effect, suggesting that this effect reflects the recruitment of processing resources necessary to suppress the homograph's context-inappropriate meaning. Using these same stimuli, Lee and Federmeier (2012) found a sustained frontal negativity to the NV homographs, and, on the downstream noun, found a plausibility effect that was also positively correlated with the size of a reader's ambiguity effect. Together, these findings suggest that when only syntactic constraints are available, meaning selection recruits inhibitory mechanisms that can be measured in both first fixation slowdown and ERP ambiguity effects. PMID:25961358

  15. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  16. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    Science.gov (United States)

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  17. The role of microRNAs in copper and cadmium homeostasis

    International Nuclear Information System (INIS)

    Ding, Yan-Fei; Zhu, Cheng

    2009-01-01

    Essential heavy metals (e.g., copper) and non-essential metals (e.g., cadmium) are both toxic to plants at high concentrations. Recently, microRNAs (miRNAs) have emerged as important modulators of plants adaptive response to heavy metal stress. Plant miRNAs negatively regulate target mRNAs by post-transcriptional cleavage. miR398 regulates copper homeostasis via down-regulating the expression of Cu,Zn-superoxide dismutase (CSD), a scavenger of superoxide radicals. miR393 and miR171 play an important role in cadmium stress mediation. This review focuses on the recent advance in the involvement of miRNAs in copper and cadmium stress regulatory networks in plants.

  18. Deposition and characterisation of copper for high density interconnects

    International Nuclear Information System (INIS)

    McCusker, N.

    1999-09-01

    Copper has been deposited by sputtering and investigated for application as high density interconnects, with a view to maximising its performance and reliability. A sputter deposition process using gettering has been developed, which produces consistently pure, low resistivity films. A relationship between film thickness and resistivity has been explained by studying the grain growth process in copper films using atomic force microscopy. The Maydas-Shatzkes model has been used to separate the contributions of grain boundary and surface scattering to thin film resistivity, in copper and gold. Stress and texture in copper film have been studied. Annealing has been used to promote grain growth and texture development. Electromigration has been studied in copper and aluminium interconnects using a multi-line accelerated test set-up. A difference in failure distributions and void morphologies has been explained by an entirely different damage mechanism. The importance of surface/interface migration in electromigration damage of copper lines has been established and explained using a grain boundary-grooving model. A tantalum overlayer was found to extend the lifetime of copper lines. A composite sputtering target has been used to deposit copper/zirconium alloy films. The composition of the alloys was studied by Rutherford backscattering, Auger and secondary neutral mass spectrometry. The alloy films had an improved electromigration lifetime. A surface controlled mechanism is proposed to explain the advantage. A metal oxide semiconductor (MOS) capacitor technique is used to investigate barrier reliability. Tungsten is shown to be an effective diffusion barrier for copper, up to 700 deg. C. (author)

  19. Determination of fluorine in copper concentrate via high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis - Comparison of three target molecules.

    Science.gov (United States)

    Cadorim, Heloisa R; de Gois, Jefferson S; Borges, Aline R; Vale, Maria Goreti R; Welz, Bernhard; Gleisner, Heike; Ott, Christina

    2018-01-01

    The chemical composition of complex inorganic materials, such as copper concentrate, may influence the economics of their further processing because most smelters, and particularly the producers of high-purity electrolyte copper, have strict limitations for the permissible concentration of impurities. These components might be harmful to the quality of the products, impair the production process and be hazardous to the environment. The goal of the present work is the development of a method for the determination of fluorine in copper concentrate using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis. The molecular absorption of the diatomic molecule CaF was measured at 606.440nm. The molecule CaF was generated by the addition of 200µg Ca as the molecule-forming reagent; the optimized pyrolysis and vaporization temperatures were 900°C and 2400°C, respectively. The characteristic mass and limit of detection were 0.5ng and 3ng, respectively. Calibration curves were established using aqueous standard solutions containing the major components Cu, Fe, S and the minor component Ag in optimized concentrations. The accuracy of the method was verified using certified reference materials. Fourteen copper concentrate samples from Chile and Australia were analyzed to confirm the applicability of the method to real samples; the concentration of fluorine ranged from 34 to 5676mgkg -1 . The samples were also analyzed independently at Analytik Jena by different operators, using the same equipment, but different target molecules, InF and GaF, and different operating conditions; but with a few exceptions, the results agreed quite well. The results obtained at Analytik Jena using the GaF molecule and our results obtained with CaF, with one exception, were also in agreement with the values informed by the supplier of the samples, which were obtained using ion selective electrode potentiometry after alkaline fusion. A comparison will

  20. Aquatic assessment of the Ely Copper Mine Superfund site, Vershire, Vermont

    Science.gov (United States)

    Seal, Robert R.; Kiah, Richard G.; Piatak, Nadine M.; Besser, John M.; Coles, James F.; Hammarstrom, Jane M.; Argue, Denise M.; Levitan, Denise M.; Deacon, Jeffrey R.; Ingersoll, Christopher G.

    2010-01-01

    The Ely Mine, which operated from 1821 to 1905, and its area of downstream impact constitute the Ely Copper Mine Superfund site. The site was placed on the National Priorities List in 2001. The mine comprises underground workings, foundations from historical structures, several waste-rock piles, roast beds associated with the smelting operation, and slag piles resulting from the smelting. The mine site is drained by Ely Brook, which includes several tributaries, one of which drains a series of six ponds. Ely Brook empties into Schoolhouse Brook, which flows 3.3 kilometers and joins the Ompompanoosuc River.

  1. Native copper as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1989-12-01

    This paper discusses the occurrence of native copper as found in geological formations as a stability analogue of copper canisters that are planned to be used for the disposal of spent nuclear fuel in the Finnish bedrock. A summary of several publications on native copper occurrences is presented. The present geochemical and geohydrological conditions in which copper is met with in its metallic state show that metallic copper is stable in a wide range of temperatures. At low temperatures native copper is found to be stable where groundwater has moderate pH (about 7), low Eh (< +100 mV), and low total dissolved solids, especially chloride. Microscopical and microanalytical studies were carried out on a dozen of rock samples containing native copper. The results reveal that the metal shows no significant alteration. Only the surface of copper grains is locally coated. In the oldest samples there exist small corrosion cracks; the age of the oldest samples is over 1,000 million years. A review of several Finnish groundwater studies suggests that there are places in Finland where the geohydrological conditions are favourable for native copper stability. (orig.)

  2. Improved Algorithms for Blending Dam Releases to Meet Downstream Water-Temperature Targets in the CE-QUAL-W2 Water-Quality Model

    Science.gov (United States)

    Rounds, S. A.; Buccola, N. L.

    2014-12-01

    The two-dimensional (longitudinal, vertical) water-quality model CE-QUAL-W2, version 3.7, was enhanced with new features to help dam operators and managers efficiently explore and optimize potential solutions for temperature management downstream of thermally stratified reservoirs. Such temperature management often is accomplished by blending releases from multiple dam outlets that access water of different temperatures at different depths in the reservoir. The original blending algorithm in this version of the model was limited to mixing releases from two outlets at a time, and few constraints could be imposed. The new enhanced blending algorithm allows the user to (1) specify a time-series of target release temperatures, (2) designate from 2 to 10 floating or fixed-elevation outlets for blending, (3) impose maximum head constraints as well as minimum and maximum flow constraints for any blended outlet, and (4) set a priority designation for each outlet that allows the model to choose which outlets to use and how to balance releases among them. The modified model was tested against a previously calibrated model of Detroit Lake on the North Santiam River in northwestern Oregon, and the results compared well. The enhanced model code is being used to evaluate operational and structural scenarios at multiple dam/reservoir systems in the Willamette River basin in Oregon, where downstream temperature management for endangered fish is a high priority for resource managers and dam operators. These updates to the CE-QUAL-W2 blending algorithm allow scenarios involving complicated dam operations and/or hypothetical outlet structures to be evaluated more efficiently with the model, with decreased need for multiple/iterative model runs or preprocessing of model inputs to fully characterize the operational constraints.

  3. Deposition of copper coatings in a magnetron with liquid target

    Energy Technology Data Exchange (ETDEWEB)

    Tumarkin, A. V., E-mail: sanyahrustal@mail.ru; Kaziev, A. V.; Kolodko, D. V.; Pisarev, A. A.; Kharkov, M. M.; Khodachenko, G. V. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) (Russian Federation)

    2015-12-15

    Copper coatings were deposited on monocrystalline Si substrates using a magnetron discharge with a liquid cathode in the metal vapour plasma. During the deposition, the bias voltage in the range from 0 V to–400 V was applied to the substrate. The prepared films were investigated by a scanning electron microscope, and their adhesive properties were studied using a scratch tester. It was demonstrated that the adhesion of the deposited films strongly depends on the bias voltage and varies in a wide range.

  4. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  5. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  6. Fluorescence Imaging Analysis of Upstream Regulators and Downstream Targets of STAT3 in Melanoma Precursor Lesions Obtained from Patients Before and After Systemic Low-Dose Interferon-α Treatment

    Directory of Open Access Journals (Sweden)

    Amanda Pfaff Smith

    2003-01-01

    Full Text Available Atypical nevi are the precursors and risk markers of melanoma. Apart from persistently monitoring these nevocytic lesions and resecting them at the earliest signs of clinical changes, there is as yet no systemic clinical treatment available to interfere with their progression to melanoma. To explore clinical treatments that might interfere with and possibly prevent atypical nevus progression, a previous study documented that 3 months systemic low-dose interferon-α (IFN-α treatment of patients with a clinical history of melanoma and numerous atypical nevi, led to inactivation of the STAT1 and STAT3 transcription factors in atypical nevi. Based upon this finding, we initiated a second study to determine whether systemic low-dose IFN-α treatment also impairs the expression of upstream regulators and downstream targets of STAT1 and STAT3 in atypical nevi. Using cyanine dye-conjugated antibodies, fluorescence imaging analysis revealed expression of JAK2, JNK1, AKT1, NF-κB, and IFN-αβ receptor in benign and atypical nevi, and early- and advanced-stage melanomas. To determine possible changes in the level of expression of these molecules in atypical nevi, excised before and after 3 months of systemic low-dose IFN-α treatment, newly designed optical imaging software was used to quantitate the captured fluorescent hybridization signals on a cell-by-cell basis and across an entire nevus section. The results of this analysis did not provide evidence that systemic low-dose IFN-α treatment alters the level of expression of upstream regulators or downstream targets of STAT1 and STAT3.

  7. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species.

    Science.gov (United States)

    Levy, Jacqueline L; Angel, Brad M; Stauber, Jennifer L; Poon, Wing L; Simpson, Stuart L; Cheng, Shuk Han; Jolley, Dianne F

    2008-08-29

    Although it has been well established that different species of marine algae have different sensitivities to metals, our understanding of the physiological and biochemical basis for these differences is limited. This study investigated copper adsorption and internalisation in three algal species with differing sensitivities to copper. The diatom Phaeodactylum tricornutum was particularly sensitive to copper, with a 72-h IC50 (concentration of copper to inhibit growth rate by 50%) of 8.0 microg Cu L(-1), compared to the green algae Tetraselmis sp. (72-h IC50 47 microg Cu L(-1)) and Dunaliella tertiolecta (72-h IC50 530 microg Cu L(-1)). At these IC50 concentrations, Tetraselmis sp. had much higher intracellular copper (1.97+/-0.01 x 10(-13)g Cu cell(-1)) than P. tricornutum (0.23+/-0.19 x 10(-13)g Cu cell(-1)) and D. tertiolecta (0.59+/-0.05 x 10(-13)g Cu cell(-1)), suggesting that Tetraselmis sp. effectively detoxifies copper within the cell. By contrast, at the same external copper concentration (50 microg L(-1)), D. tertiolecta appears to better exclude copper than Tetraselmis sp. by having a slower copper internalisation rate and lower internal copper concentrations at equivalent extracellular concentrations. The results suggest that the use of internal copper concentrations and net uptake rates alone cannot explain differences in species-sensitivity for different algal species. Model prediction of copper toxicity to marine biota and understanding fundamental differences in species-sensitivity will require, not just an understanding of water quality parameters and copper-cell binding, but also further knowledge of cellular detoxification mechanisms.

  8. Laser ablated copper plasmas in liquid and gas ambient

    Science.gov (United States)

    Kumar, Bhupesh; Thareja, Raj K.

    2013-05-01

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (ne) determined using Stark broadening of the Cu I (3d104d1 2D3/2-3d104p1 2P3/2 at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (Te) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ˜590 nm.

  9. Perturbation biology nominates upstream-downstream drug combinations in RAF inhibitor resistant melanoma cells.

    Science.gov (United States)

    Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris

    2015-08-18

    Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs.

  10. Target of rapamycin complex 2 signals to downstream effector yeast protein kinase 2 (Ypk2) through adheres-voraciously-to-target-of-rapamycin-2 protein 1 (Avo1) in Saccharomyces cerevisiae.

    Science.gov (United States)

    Liao, Hsien-Ching; Chen, Mei-Yu

    2012-02-24

    The conserved Ser/Thr kinase target of rapamycin (TOR) serves as a central regulator in controlling cell growth-related functions. There exist two distinct TOR complexes, TORC1 and TORC2, each coupling to specific downstream effectors and signaling pathways. In Saccharomyces cerevisiae, TORC2 is involved in regulating actin organization and maintaining cell wall integrity. Ypk2 (yeast protein kinase 2), a member of the cAMP-dependent, cGMP-dependent, and PKC (AGC) kinase family, is a TORC2 substrate known to participate in actin and cell wall regulation. Employing avo3(ts) mutants with defects in TORC2 functions that are suppressible by active Ypk2, we investigated the molecular interactions involved in mediating TORC2 signaling to Ypk2. GST pulldown assays in yeast lysates demonstrated physical interactions between Ypk2 and components of TORC2. In vitro binding assays revealed that Avo1 directly binds to Ypk2. In avo3(ts) mutants, the TORC2-Ypk2 interaction was reduced and could be restored by AVO1 overexpression, highlighting the important role of Avo1 in coupling TORC2 to Ypk2. The interaction was mapped to an internal region (amino acids 600-840) of Avo1 and a C-terminal region of Ypk2. Ypk2(334-677), a truncated form of Ypk2 containing the Avo1-interacting region, was able to interfere with Avo1-Ypk2 interaction in vitro. Overexpressing Ypk2(334-677) in yeast cells resulted in a perturbation of TORC2 functions, causing defective cell wall integrity, aberrant actin organization, and diminished TORC2-dependent Ypk2 phosphorylation evidenced by the loss of an electrophoretic mobility shift. Together, our data support the conclusion that the direct Avo1-Ypk2 interaction is crucial for TORC2 signaling to the downstream Ypk2 pathway.

  11. Electrical conduction in composites containing copper core-copper

    Indian Academy of Sciences (India)

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  12. Reagent conditions of the flotation of copper, copper - molybdenum and copper -zinc ores in foreing countries

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1983-01-01

    Reagents-collectors and frothers, used abroad in reagent regimes of flotation of copper, copper-molybdenum and copper zinc ores, have been considered. Xanthogenates, aerofloats, xanthogenformiates, thionocarbamates are mainly used as reagents-collectors. Methylizobutylcarbinol and Daufros are used as reagents-frothers

  13. Retention of ferrofluid aggregates at the target site during magnetic drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    Asfer, Mohammed, E-mail: asfer786@gmail.com [School of Engineering and Technology, BML Munjal University, Haryana (India); Saroj, Sunil Kumar [Department of Mechanical Engineering, IIT Kanpur, Kanpur (India); Panigrahi, Pradipta Kumar, E-mail: panig@iitk.ac.in [Department of Mechanical Engineering, IIT Kanpur, Kanpur (India)

    2017-08-15

    Highlights: • The present in vitro work reports the retention dynamics of ferrofluid aggregates at the target site against a bulk flow of DI water inside a micro capillary during magnetic drug targeting. • The recirculation zone at the downstream of the aggregate is found to be a function of aggregate height, Reynolds number and the degree of surface roughness of the outer boundary of the aggregate. • The reported results of the present work can be used as a guideline for the better design of MDT technique for in vivo applications. - Abstract: The present study reports the retention dynamics of a ferrofluid aggregate localized at the target site inside a glass capillary (500 × 500 µm{sup 2} square cross section) against a bulk flow of DI water (Re = 0.16 and 0.016) during the process of magnetic drug targeting (MDT). The dispersion dynamics of iron oxide nanoparticles (IONPs) into bulk flow for different initial size of aggregate at the target site is reported using the brightfield visualization technique. The flow field around the aggregate during the retention is evaluated using the µPIV technique. IONPs at the outer boundary experience a higher shear force as compared to the magnetic force, resulting in dispersion of IONPs into the bulk flow downstream to the aggregate. The blockage effect and the roughness of the outer boundary of the aggregate resulting from chain like clustering of IONPs contribute to the flow recirculation at the downstream region of the aggregate. The entrapment of seeding particles inside the chain like clusters of IONPs at the outer boundary of the aggregate reduces the degree of roughness resulting in a streamlined aggregate at the target site at later time. The effect of blockage, structure of the aggregate, and disturbed flow such as recirculation around the aggregate are the primary factors, which must be investigated for the effectiveness of the MDT process for in vivo applications.

  14. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  15. Laser ablated copper plasmas in liquid and gas ambient

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Bhupesh; Thareja, Raj K. [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2013-05-15

    The dynamics of copper ablated plasma plumes generated using laser ablation of copper targets in both liquid (de-ionized water) and gas (air) ambients is reported. Using time and space resolved visible emission spectroscopy (450-650 nm), the plasma plumes parameters are investigated. The electron density (n{sub e}) determined using Stark broadening of the Cu I (3d{sup 10}4d{sup 1} {sup 2}D{sub 3/2}-3d{sup 10}4p{sup 1} {sup 2}P{sub 3/2} at 521.8 nm) line is estimated and compared for both plasma plumes. The electron temperature (T{sub e}) was estimated using the relative line emission intensities of the neutral copper transitions. Field emission scanning electron microscopy and energy dispersive x-ray spectral analysis of the ablated copper surface indicated abundance of spherical nanoparticles in liquid while those in air are amalgamates of irregular shapes. The nanoparticles suspended in the confining liquid form aggregates and exhibit a surface plasmon resonance at ∼590 nm.

  16. Inhibition of human copper trafficking by a small molecule significantly attenuates cancer cell proliferation

    Science.gov (United States)

    Wang, Jing; Luo, Cheng; Shan, Changliang; You, Qiancheng; Lu, Junyan; Elf, Shannon; Zhou, Yu; Wen, Yi; Vinkenborg, Jan L.; Fan, Jun; Kang, Heebum; Lin, Ruiting; Han, Dali; Xie, Yuxin; Karpus, Jason; Chen, Shijie; Ouyang, Shisheng; Luan, Chihao; Zhang, Naixia; Ding, Hong; Merkx, Maarten; Liu, Hong; Chen, Jing; Jiang, Hualiang; He, Chuan

    2015-12-01

    Copper is a transition metal that plays critical roles in many life processes. Controlling the cellular concentration and trafficking of copper offers a route to disrupt these processes. Here we report small molecules that inhibit the human copper-trafficking proteins Atox1 and CCS, and so provide a selective approach to disrupt cellular copper transport. The knockdown of Atox1 and CCS or their inhibition leads to a significantly reduced proliferation of cancer cells, but not of normal cells, as well as to attenuated tumour growth in mouse models. We show that blocking copper trafficking induces cellular oxidative stress and reduces levels of cellular ATP. The reduced level of ATP results in activation of the AMP-activated protein kinase that leads to reduced lipogenesis. Both effects contribute to the inhibition of cancer cell proliferation. Our results establish copper chaperones as new targets for future developments in anticancer therapies.

  17. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color...

  18. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and...

  19. Perturbation biology nominates upstream–downstream drug combinations in RAF inhibitor resistant melanoma cells

    Science.gov (United States)

    Korkut, Anil; Wang, Weiqing; Demir, Emek; Aksoy, Bülent Arman; Jing, Xiaohong; Molinelli, Evan J; Babur, Özgün; Bemis, Debra L; Onur Sumer, Selcuk; Solit, David B; Pratilas, Christine A; Sander, Chris

    2015-01-01

    Resistance to targeted cancer therapies is an important clinical problem. The discovery of anti-resistance drug combinations is challenging as resistance can arise by diverse escape mechanisms. To address this challenge, we improved and applied the experimental-computational perturbation biology method. Using statistical inference, we build network models from high-throughput measurements of molecular and phenotypic responses to combinatorial targeted perturbations. The models are computationally executed to predict the effects of thousands of untested perturbations. In RAF-inhibitor resistant melanoma cells, we measured 143 proteomic/phenotypic entities under 89 perturbation conditions and predicted c-Myc as an effective therapeutic co-target with BRAF or MEK. Experiments using the BET bromodomain inhibitor JQ1 affecting the level of c-Myc protein and protein kinase inhibitors targeting the ERK pathway confirmed the prediction. In conclusion, we propose an anti-cancer strategy of co-targeting a specific upstream alteration and a general downstream point of vulnerability to prevent or overcome resistance to targeted drugs. DOI: http://dx.doi.org/10.7554/eLife.04640.001 PMID:26284497

  20. Downstream-based Scheduling for Energy Conservation in Green EPONs

    KAUST Repository

    Chen, Shen

    2012-05-01

    Maximizing the optical network unit’s (ONU) sleep time is an effective approach for achieving maximum energy conservation in green Ethernet passive optical networks (EPONs). While overlapping downstream and upstream ONU transmissions can maximize the ONU sleep time, it jeopardizes the quality of service (QoS) performance of the network, especially for downstream traffic in case the overlapping is based on the upstream time slot. In this paper, we study the downstream traffic performance in green EPONs under the limited service discipline and the upstream-based overlapped time window. Specifically, we first derive the expected mean packet delay, and then present a closed-form expression of the ONU sleep time, setting identical upstream/downstream transmission cycle times based on a maximum downstream traffic delay re-quirement. With the proposed system model, we present a novel downstream bandwidth allocation scheme for energy conservation in green EPONs. Simulation results verify the proposed model and highlight the advantages of our scheme over conventional approaches.

  1. Damage of copper by low energy xenon ions

    International Nuclear Information System (INIS)

    Babad-Zakhryapin, A.A.; Popenko, V.A.

    1988-01-01

    Changes in the copper crystal structure bombarded by xenon ions with 30-150 eV energy are studied. Foils of MOb copper mark, 10 mm in diameter and 100 μm thickness, are irradiated. The initial specimens are annealed in vacuum during 1 h at 900 K temperature. The specimens are bombarded by xenon ions in a water-cooled holder. A TE-O type accelerator serves as a xenon ion source. The ion energy varies within 30 to 150 eV range. The ion flux density is 8x10 16 ion/(cm 2 xs). It is shown that crystal structure variations at deep depths are observed not only at high (>1 keV), but at low ion energies down to several dozens of electronvolt as well. The crystal structure variation on copper irradiation by xenon ions with 30-150 eV energy is followed by formation of defects like dislocation loops, point defects in the irradiated target bulk

  2. Numerical simulations of energy deposition caused by 50 MeV—50 TeV proton beams in copper and graphite targets

    CERN Document Server

    Nie, Y; Chetvertkova, V; Rosell-Tarrago, G; Burkart, F; Wollmann, D

    2017-01-01

    The conceptual design of the Future Circular Collider (FCC) is being carried out actively in an international collaboration hosted by CERN, for the post–Large Hadron Collider (LHC) era. The target center-of-mass energy of proton-proton collisions for the FCC is 100 TeV, nearly an order of magnitude higher than for LHC. The existing CERN accelerators will be used to prepare the beams for FCC. Concerning beam-related machine protection of the whole accelerator chain, it is critical to assess the consequences of beam impact on various accelerator components in the cases of controlled and uncontrolled beam losses. In this paper, we study the energy deposition of protons in solid copper and graphite targets, since the two materials are widely used in magnets, beam screens, collimators, and beam absorbers. Nominal injection and extraction energies in the hadron accelerator complex at CERN were selected in the range of 50 MeV–50 TeV. Three beam sizes were studied for each energy, corresponding to typical values ...

  3. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  4. Quantifying fish swimming behavior in response to acute exposure of aqueous copper using computer assisted video and digital image analysis

    Science.gov (United States)

    Calfee, Robin D.; Puglis, Holly J.; Little, Edward E.; Brumbaugh, William G.; Mebane, Christopher A.

    2016-01-01

    Behavioral responses of aquatic organisms to environmental contaminants can be precursors of other effects such as survival, growth, or reproduction. However, these responses may be subtle, and measurement can be challenging. Using juvenile white sturgeon (Acipenser transmontanus) with copper exposures, this paper illustrates techniques used for quantifying behavioral responses using computer assisted video and digital image analysis. In previous studies severe impairments in swimming behavior were observed among early life stage white sturgeon during acute and chronic exposures to copper. Sturgeon behavior was rapidly impaired and to the extent that survival in the field would be jeopardized, as fish would be swept downstream, or readily captured by predators. The objectives of this investigation were to illustrate protocols to quantify swimming activity during a series of acute copper exposures to determine time to effect during early lifestage development, and to understand the significance of these responses relative to survival of these vulnerable early lifestage fish. With mortality being on a time continuum, determining when copper first affects swimming ability helps us to understand the implications for population level effects. The techniques used are readily adaptable to experimental designs with other organisms and stressors.

  5. Geology, geochemistry, and geophysics of the Fry Canyon uranium/copper project site, southeastern Utah - Indications of contaminant migration

    Science.gov (United States)

    Otton, James K.; Zielinski, Robert A.; Horton, Robert J.

    2010-01-01

    well field suggest that the paleochannel persists at least 900 m to the north of the heap leach and pond sites. Contamination of groundwater beneath the stream terraces may extend at least that far. Fry Creek surface water (six samples), seeps and springs (six samples), and wells (eight samples) were collected during a dry period of April 16-19, 2007. The most uranium-rich (18.7 milligrams per liter) well water on the site displays distinctive Ca-Mg-SO4-dominant chemistry indicating the legacy of heap leaching copper-uranium ores with sulfuric acid. This same water has strongly negative d34S of sulfate (-13.3 per mil) compared to most local waters of -2.4 to -5.4 per mil. Dissolved uranium species in all sampled waters are dominantly U(VI)-carbonate complexes. All waters are undersaturated with respect to U(VI) minerals. The average 234U/238U activity ratio (AR) in four well waters from the site (0.939 + or ? 0.011) is different from that of seven upstream waters (1.235 + or ? 0.069). This isotopic contrast permits quantitative estimates of mixing of site-derived uranium with natural uranium in waters collected downstream. At the time of sampling, uranium in downstream surface water was mostly (about 67 percent) site-derived and subject to further concentration by evaporation. Three monitoring wells located approximately 0.4 kilometer downstream contained dominantly (78-87 percent) site-derived uranium. Distinctive particles of chalcopyrite (CuFeS) and variably weathered pyrite (FeS2) are present in tailings at the stream edge on the site and are identified in stream sediments 1.3 kilometers downstream, based on inspection of polished grain mounts of magnetic mineral separates.

  6. Simulating potential structural and operational changes for Detroit Dam on the North Santiam River, Oregon, for downstream temperature management

    Science.gov (United States)

    Buccola, Norman L.; Rounds, Stewart A.; Sullivan, Annett B.; Risley, John C.

    2012-01-01

    structural options were explored with the model scenarios. Multiple downstream temperature targets were used along with three sets of environmental forcing conditions representing cool/wet, normal, and hot/dry conditions. Five structural options at Detroit Dam were modeled, including the use of existing outlets, one hypothetical variable-elevation outlet such as a sliding gate, a hypothetical combination of a floating outlet and a fixed-elevation outlet, and a hypothetical combination of a floating outlet and a sliding gate. Finally, 14 sets of operational guidelines for Detroit Dam were explored to gain an understanding of the effects of imposing different downstream minimum streamflows, imposing minimum outflow rules to specific outlets, and managing the level of the lake with different timelines through the year. Selected subsets of these combinations of operational and structural scenarios were run through the downstream models of Big Cliff Reservoir and the North Santiam and Santiam Rivers to explore how hypothetical changes at Detroit Dam might provide improved temperatures for endangered salmonids downstream of the Detroit-Big Cliff Dam complex. Conclusions that can be drawn from these model scenarios include: *The water-temperature targets set by the U.S. Army Corps of Engineers for releases from Detroit Dam can be met through a combination of new dam outlets or a delayed drawdown of the lake in autumn. *Spring and summer dam operations greatly affect the available release temperatures and operational flexibility later in the autumn. Releasing warm water during midsummer tends to keep more cool water available for release in autumn. *The ability to meet downstream temperature targets during spring depends on the characteristics of the available outlets. Under existing conditions, although warm water sometimes is present at the lake surface in spring and early summer, such water may not be available for release if the lake level is either well below or well above the

  7. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  8. Design of hypoxia-targeting radiopharmaceuticals: selective uptake of copper-64 complexes in hypoxic cells in vitro

    International Nuclear Information System (INIS)

    Dearling, J.L.J.; Lewis, J.S.; Mullen, G.E.D.; Rae, M.T.; Zweit, J.; Blower, P.J.

    1998-01-01

    The well-known perfusion tracer CuPTSM, labelled with 62 Cu or 64 Cu, is believed to be trapped in cells non-selectively by a bioreductive mechanism. It is proposed that by modifying the ligand to increase its electron donor strength (for example by adding alkyl functionality or replacing sulphur ligands with oxygen ligands), the copper complexes will become less easily reduced and tracers with selectivity for hypoxic tissues could thus be developed. The aim of this work was to prepare 64 Cu-labelled complexes of two series of ligands, based on the bis(thiosemicarbazone) (13 ligands) and bis(salicylaldimine) (3 ligands) skeletons, and to evaluate the hypoxia dependence of their uptake in cells. The complexes were incubated with Chinese hamster ovary cells under normoxic and hypoxic conditions, and the cells isolated by centrifugation to determine radioactivity uptake at various time points up to 90 min. Several members of both series demonstrated significant (P 60 Cu, 61 Cu, 62 Cu, 64 Cu) and targeted radiotherapy ( 64 Cu, 67 Cu). (orig.)

  9. Copper-gold nanoparticles: Fabrication, characteristic and application as drug carriers

    Energy Technology Data Exchange (ETDEWEB)

    Woźniak-Budych, Marta J., E-mail: marta.budych@amu.edu.pl; Langer, Krzysztof; Peplińska, Barbara; Przysiecka, Łucja; Jarek, Marcin; Jarzębski, Maciej; Jurga, Stefan

    2016-08-15

    In this investigation, the fabrication of porous core/shell nanostructures consisting of copper (core) and copper-gold nanoalloy (shell) for medical applications is presented. As a core triangular-shaped copper nanoparticles were used. The porous bimetallic nanoshell was prepared via galvanic reaction in the presence of oil-in water emulsion. It was proved that porous nanoalloy layer can be prepared at pH 7 and in the presence 0.1% and 0.5% oil-in water emulsion. The porous structure fabrication was mainly determined by volume fraction of hexadecane to acetone in the oil-in water emulsion and Zeta-potential of emulsion droplets (pH of emulsion). The influence of emulsion droplets size before galvanic reaction on porous structure preparation was negligible. It was found that doxorubicin could be easily introduced and released from porous core/shell nanostructures, due to spontaneous adsorption on the copper-gold nanoporous surface. The in vitro test showed that cytotoxic effect was more prominent once the doxorubicin was adsorbed on the porous copper-gold nanocarriers. It was demonstrated, that doxorubicin-loaded copper-gold nanostructures caused inhibition cell proliferation and viability of cancer cells, in a concentration-dependent manner. The results indicates that presented coper-gold nanocarrier have potential to be used in targeted cancer therapy, due to its porous structure and cytotoxic effect in cancer cells. - Highlights: • Porous copper-gold nanostructure as a cytostatic drug carrier was prepared. • Kinetics and thermodynamics of drug adsorption were studied. • DOX-loaded copper-gold nanoparticles showed a pH-controlled release rate. • DOX-loaded copper-gold NPs caused inhibition cell proliferation of cancer cells. • The Cu-Au NPs could serve as a theranostic platform for biomedical applications.

  10. Speciation and leachability of copper in mine tailings from porphyry copper mining

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Yianatos, Juan B; Ottosen, Lisbeth M.

    2005-01-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150mgkg^-^1 dry...... matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212@mm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order...... to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles...

  11. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    International Nuclear Information System (INIS)

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  12. Copper and Anesthesia: Clinical Relevance and Management of Copper Related Disorders

    OpenAIRE

    Langley, Adrian; Dameron, Charles T.

    2013-01-01

    Recent research has implicated abnormal copper homeostasis in the underlying pathophysiology of several clinically important disorders, some of which may be encountered by the anesthetist in daily clinical practice. The purpose of this narrative review is to summarize the physiology and pharmacology of copper, the clinical implications of abnormal copper metabolism, and the subsequent influence of altered copper homeostasis on anesthetic management.

  13. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  14. Inhibition of microRNA-500 has anti-cancer effect through its conditional downstream target of TFPI in human prostate cancer.

    Science.gov (United States)

    Cai, Bing; Chen, Wei; Pan, Yue; Chen, Hongde; Zhang, Yirong; Weng, Zhiliang; Li, Yeping

    2017-07-01

    We investigated the prognostic potential and regulatory mechanism of microRNA-500 (miR-500), and human gene of tissue factor pathway inhibitor (TFPI) in prostate cancer. MiR-500 expression was assessed by qRT-PCR in prostate cancer cell lines and primary tumors. Cancer patients' clinicopathological factors and overall survival were analyzed according to endogenous miR-500 level. MiR-500 was downregulated in DU145 and VCaP cells. Its effect on prostate cancer proliferation, invasion in vitro, and tumorigenicity in vivo, were probed. Possible downstream target of miR-500, TFPI was assessed by luciferase assay and qRT-PCR in prostate cancer cells. In miR-500-downregulated DU145 and VCaP cells, TFPI was silenced to see whether it was directly involved in the regulation of miR-500 in prostate cancer. TFPI alone was either upregulated or downregulated in DU145 and VCaP cells. Their effect on prostate cancer development was further evaluated. MiR-500 is upregulated in both prostate cancer cells and primary tumors. In prostate cancer patients, high miR-500 expression is associated with poor prognosis and overall survival. In DU145 and VCaP cells, miR-500 downregulation inhibited cancer proliferation, invasion in vitro, and explant growth in vivo. TFPI was verified to be associated with miR-500 in prostate cancer. Downregulation of TFPI reversed anti-cancer effects of miR-500 downregulation in prostate cancer cells. However, neither TFPI upregulation nor downregulation alone had any functional impact on prostate cancer development. MiR-500 may be a potential biomarker and molecular target in prostate cancer. TFPI may conditionally regulate prostate cancer in miR-500-downregualted prostate cancer cells. © 2017 Wiley Periodicals, Inc.

  15. First experimental evidence of hydrodynamic tunneling of ultra-relativistic protons in extended solid copper target at the CERN HiRadMat facility

    Science.gov (United States)

    Schmidt, R.; Blanco Sancho, J.; Burkart, F.; Grenier, D.; Wollmann, D.; Tahir, N. A.; Shutov, A.; Piriz, A. R.

    2014-08-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  16. First experimental evidence of hydrodynamic tunneling of ultra–relativistic protons in extended solid copper target at the CERN HiRadMat facility

    CERN Document Server

    Schmidt, R; Sancho, J Blanco; Burkart, F; Grenier, D; Wollmann, D; Tahir, N A; Shutov, A; Piriz, A R

    2014-01-01

    A novel experiment has been performed at the CERN HiRadMat test facility to study the impact of the 440 GeV proton beam generated by the Super Proton Synchrotron on extended solid copper cylindrical targets. Substantial hydrodynamic tunneling of the protons in the target material has been observed that leads to significant lengthening of the projectile range, which confirms our previous theoretical predictions [N. A. Tahir et al., Phys. Rev. Spec. Top.-Accel. Beams 15, 051003 (2012)]. Simulation results show very good agreement with the experimental measurements. These results have very important implications on the machine protection design for powerful machines like the Large Hadron Collider (LHC), the future High Luminosity LHC, and the proposed huge 80 km circumference Future Circular Collider, which is currently being discussed at CERN. Another very interesting outcome of this work is that one may also study the field of High Energy Density Physics at this test facility.

  17. Gold-Copper alloy “nano-dumplings” with tunable compositions and plasmonic properties

    International Nuclear Information System (INIS)

    Verma, Manoj; Kedia, Abhitosh; Kumar, P. Senthil

    2016-01-01

    The unique yet tunable optical properties of plasmonic metal nanoparticles have made them attractive targets for a wide range of applications including nanophotonics, molecular sensing, catalysis etc. Such diverse applications that require precisely stable / reproducible plasmonic properties depend sensitively on the particle morphology ie. the shape, size and constituents. Herein, we systematically study the size / shape controlled synthesis of gold-copper “dumpling” shaped alloy nanoparticles by simultaneous reduction of gold and copper salts in the PVP-methanol solute-solvent system, by effectively utilizing the efficient but mild reduction as well as capping abilities of Poly (N-vinylpyrrolidone). Introduction of copper salts not only yielded the alloy nanoparticles, but also slowed down the growth process to maintain high mono-dispersity of the new shapes evolved. Copper and gold has different lattice constants (0.361 and 0.408 nm respectively) and hence doping/addition/replacement of copper atoms to gold FCC unit cell introduces strain into the lattice which is key parameter to the shape evolution in anisotropic nanoparticles. Synthesized alloy nanoparticles were characterized by UV-visible absorption spectroscopy, XRD and TEM imaging.

  18. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts

    NARCIS (Netherlands)

    Munnik, P.|info:eu-repo/dai/nl/328228524; Wolters, M.|info:eu-repo/dai/nl/304829560; Gabrielsson, A.; Pollington, S.D.; Headdock, G.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2011-01-01

    In order to obtain copper catalysts with high dispersions at high copper loadings, the gas flow rate and gas composition was varied during calcination of silica gel impregnated with copper nitrate to a loading of 18 wt % of copper. Analysis by X-ray diffraction (XRD), N2O chemisorption, and

  19. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    Science.gov (United States)

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  20. Determination of copper in geological materials by X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1981-01-01

    X-ray fluorescence has been applied to the determination of copper content of geological materials in the concentration range of 0.01 to % CuO. A molybdenum target tube Is used, samples being presented in finely-ground powder form. Various methods for the correction for background and Instrumental copper interferences have been considered. To correct for matrix effects different tube scattered primary radiations have been tested as references or internal standards. MoK(41 - (C) provides the most suitable results. The use of influence empirical coefficients for the effect of iron on copper and of mass absorption coefficients has also been considered. For samples with a high content of lead, several procedures to correct for I t s influence have been investigated. Comparison between data obtained by X-ray fluorescence and wet-chemical techniques indicated good agreement. (Author) 6 refs

  1. Investigation of Industrial Polyurethane Foams Modified with Antimicrobial Copper Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maria Chiara Sportelli

    2016-07-01

    Full Text Available Antimicrobial copper nanoparticles (CuNPs were electrosynthetized and applied to the controlled impregnation of industrial polyurethane foams used as padding in the textile production or as filters for air conditioning systems. CuNP-modified materials were investigated and characterized morphologically and spectroscopically, by means of Transmission Electron Microscopy (TEM, and X-ray Photoelectron Spectroscopy (XPS. The release of copper ions in solution was studied by Electro-Thermal Atomic Absorption Spectroscopy (ETAAS. Finally, the antimicrobial activity of freshly prepared, as well as aged samples—stored for two months—was demonstrated towards different target microorganisms.

  2. DNA Source Selection for Downstream Applications Based on DNA Quality Indicators Analysis

    Science.gov (United States)

    Lucena-Aguilar, Gema; Sánchez-López, Ana María; Barberán-Aceituno, Cristina; Carrillo-Ávila, José Antonio; López-Guerrero, José Antonio

    2016-01-01

    High-quality human DNA samples and associated information of individuals are necessary for biomedical research. Biobanks act as a support infrastructure for the scientific community by providing a large number of high-quality biological samples for specific downstream applications. For this purpose, biobank methods for sample preparation must ensure the usefulness and long-term functionality of the products obtained. Quality indicators are the tool to measure these parameters, the purity and integrity determination being those specifically used for DNA. This study analyzes the quality indicators in DNA samples derived from 118 frozen human tissues in optimal cutting temperature (OCT) reactive, 68 formalin-fixed paraffin-embedded (FFPE) tissues, 119 frozen blood samples, and 26 saliva samples. The results obtained for DNA quality are discussed in association with the usefulness for downstream applications and availability of the DNA source in the target study. In brief, if any material is valid, blood is the most approachable option of prospective collection of samples providing high-quality DNA. However, if diseased tissue is a requisite or samples are available, the recommended source of DNA would be frozen tissue. These conclusions will determine the best source of DNA, according to the planned downstream application. Furthermore our results support the conclusion that a complete procedure of DNA quantification and qualification is necessary to guarantee the appropriate management of the samples, avoiding low confidence results, high costs, and a waste of samples. PMID:27158753

  3. Canine Copper-Associated Hepatitis

    NARCIS (Netherlands)

    Dirksen, Karen; Fieten, Hille

    2017-01-01

    Copper-associated hepatitis is recognized with increasing frequency in dogs. The disease is characterized by centrolobular hepatic copper accumulation, leading to hepatitis and eventually cirrhosis. The only way to establish the diagnosis is by histologic assessment of copper distribution and copper

  4. Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits

    Science.gov (United States)

    Kesler, Stephen E.; Wilkinson, Bruce H.

    2008-03-01

    Improved estimates of global mineral endowments are relevantto issues ranging from strategic planning to global geochemicalcycling. We have used a time-space model for the tectonic migrationof porphyry copper deposits vertically through the crust tocalculate Earth's endowment of copper in mineral deposits. Themodel relies only on knowledge of numbers and ages of porphyrycopper deposits, Earth's most widespread and important sourceof copper, in order to estimate numbers of eroded and preserveddeposits in the crust. Model results indicate that 125,895 porphyrycopper deposits were formed during Phanerozoic time, that only47,789 of these remain at various crustal depths, and that thesecontain 1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus, 0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.

  5. Control of Delta Avulsion by Downstream Sediment Sinks

    Science.gov (United States)

    Salter, Gerard; Paola, Chris; Voller, Vaughan R.

    2018-01-01

    Understanding how fluxes are partitioned at delta bifurcations is critical for predicting patterns of land loss and gain in deltas worldwide. Although the dynamics of river deltas are influenced from both upstream and downstream, previous studies of bifurcations have focused on upstream controls. Using a quasi-1-D bifurcation model, we show that flow switching in bifurcations is strongly influenced by downstream sediment sinks. We find that coupling between upstream and downstream feedbacks can lead to oscillations in water and sediment flux partitioning. The frequency and initial rate of growth/decay of the oscillations depend on both upstream and downstream conditions, with dimensionless bifurcate length and bypass fraction emerging as key downstream parameters. With a strong offshore sink, causing bypass in the bifurcate branches, we find that bifurcation dynamics become "frozen"; that is, the bifurcation settles on a permanent discharge ratio. In contrast, under depositional conditions, we identify three dynamical regimes: symmetric; soft avulsion, where both branches remain open but the dominant branch switches; and full avulsion. Finally, we show that differential subsidence alters these regimes, with the difference in average sediment supply to each branch exactly compensating for the difference in accommodation generation. Additionally, the model predicts that bifurcations with shorter branches are less asymmetric than bifurcations with longer branches, all else equal, providing a possible explanation for the difference between backwater length distributaries, which tend to be avulsive, and relatively stable mouth-bar-scale networks. We conclude that bifurcations are sensitive both quantitatively and qualitatively to downstream sinks.

  6. Receptor-targeted metalloradiopharmaceuticals. Final technical report

    International Nuclear Information System (INIS)

    Green, Mark A.

    2000-01-01

    Copper (II) and platinum (II) coordination complexes were prepared and characterized. These complexes were designed to afford structural homology with steroidal and non-steroidal estrogens for possible use as receptor-targeted radiopharmaceuticals. While weak affinity for the estrogen receptor was detectable, none would appear to have sufficient receptor-affinity for estrogen-receptor-targeted imaging or therapy

  7. Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake.

    Science.gov (United States)

    Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N

    2017-08-01

    The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Direct separation of 67Ga citrate from zinc and copper target materials by an ion exchange

    International Nuclear Information System (INIS)

    El-Azony, K.M.; Ferieg, Kh.; Saleh, Z.A.

    2004-01-01

    The separation of 6 7G a from zinc and copper target materials using an anion- f:exchanger (Dowex21K) and 0.1 M citrate buffer at pH 6 is described. The gallium-67 was separated in citrate solution and can be directly used for medical applications. Gallium-67 with a half-life of 78.3 h and gamma-rays with energies of 93, 185 and 300 keV is a cyclotron produced radioisotope for which a considerable demand exists. 6 7G a is frequently produced through proton or deuteron bombardment of natural or enriched Zn targets (Helus and Maier-Borst, 1973). It is usually separated from Zn by ion exchange chromatography (Helus and Maier-Borst, 1973; van der Walt and Strelow, 1983) or by liquid extraction Helus and Maier-Borst, 1973; Hupf and Beaver, 1970). The isotope is usually supplied in citrate solution which is widely used as 6 7G a Gallium citrate which is a well-established radiopharmaceutical for imaging soft tissue tumors and abscesses. Several routes for large scale production of 6 7G a and the development of medical applications have been reported (Silvester and Thakur, 1970; Dahl and Tilbury, 1972; Steyn and Meyer,1973; Vlatkovic et al., 1975; Neirinckx, 1976; Thakur, 1977). Various attempts were carried out to separate gallium-67 by using different ion exchange methods (Strelow et al., 1971; Das and Ramamoorthy, 1995; Boothe et al.,1991) through the labelling of citrate by using 6 7G a was carried out for medical applications

  9. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  10. Estimating the Causal Impact of Proximity to Gold and Copper Mines on Respiratory Diseases in Chilean Children: An Application of Targeted Maximum Likelihood Estimation.

    Science.gov (United States)

    Herrera, Ronald; Berger, Ursula; von Ehrenstein, Ondine S; Díaz, Iván; Huber, Stella; Moraga Muñoz, Daniel; Radon, Katja

    2017-12-27

    In a town located in a desert area of Northern Chile, gold and copper open-pit mining is carried out involving explosive processes. These processes are associated with increased dust exposure, which might affect children's respiratory health. Therefore, we aimed to quantify the causal attributable risk of living close to the mines on asthma or allergic rhinoconjunctivitis risk burden in children. Data on the prevalence of respiratory diseases and potential confounders were available from a cross-sectional survey carried out in 2009 among 288 (response: 69 % ) children living in the community. The proximity of the children's home addresses to the local gold and copper mine was calculated using geographical positioning systems. We applied targeted maximum likelihood estimation to obtain the causal attributable risk (CAR) for asthma, rhinoconjunctivitis and both outcomes combined. Children living more than the first quartile away from the mines were used as the unexposed group. Based on the estimated CAR, a hypothetical intervention in which all children lived at least one quartile away from the copper mine would decrease the risk of rhinoconjunctivitis by 4.7 percentage points (CAR: - 4.7 ; 95 % confidence interval ( 95 % CI): - 8.4 ; - 0.11 ); and 4.2 percentage points (CAR: - 4.2 ; 95 % CI: - 7.9 ; - 0.05 ) for both outcomes combined. Overall, our results suggest that a hypothetical intervention intended to increase the distance between the place of residence of the highest exposed children would reduce the prevalence of respiratory disease in the community by around four percentage points. This approach could help local policymakers in the development of efficient public health strategies.

  11. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  12. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  13. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    International Nuclear Information System (INIS)

    McCormick, Stephen F.

    2016-01-01

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/

  14. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

    2016-03-25

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  15. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  16. Nearly 60% Copper Rod & Wire Companies Neutral about Future Copper Price

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>How about the trend of copper price recently? According to the survey result of Shanghai Metals Market, amongst 21 domestic copper rod & wire companies, 57% of the companies are neutral about the future copper price, while 14% and 19% of the companies consider that

  17. SWATH2stats: An R/Bioconductor Package to Process and Convert Quantitative SWATH-MS Proteomics Data for Downstream Analysis Tools.

    Science.gov (United States)

    Blattmann, Peter; Heusel, Moritz; Aebersold, Ruedi

    2016-01-01

    SWATH-MS is an acquisition and analysis technique of targeted proteomics that enables measuring several thousand proteins with high reproducibility and accuracy across many samples. OpenSWATH is popular open-source software for peptide identification and quantification from SWATH-MS data. For downstream statistical and quantitative analysis there exist different tools such as MSstats, mapDIA and aLFQ. However, the transfer of data from OpenSWATH to the downstream statistical tools is currently technically challenging. Here we introduce the R/Bioconductor package SWATH2stats, which allows convenient processing of the data into a format directly readable by the downstream analysis tools. In addition, SWATH2stats allows annotation, analyzing the variation and the reproducibility of the measurements, FDR estimation, and advanced filtering before submitting the processed data to downstream tools. These functionalities are important to quickly analyze the quality of the SWATH-MS data. Hence, SWATH2stats is a new open-source tool that summarizes several practical functionalities for analyzing, processing, and converting SWATH-MS data and thus facilitates the efficient analysis of large-scale SWATH/DIA datasets.

  18. Transcriptional regulatory networks downstream of TAL1/SCL in T-cell acute lymphoblastic leukemia

    OpenAIRE

    Palomero, Teresa; Odom, Duncan T.; O'Neil, Jennifer; Ferrando, Adolfo A.; Margolin, Adam; Neuberg, Donna S.; Winter, Stuart S.; Larson, Richard S.; Li, Wei; Liu, X. Shirley; Young, Richard A.; Look, A. Thomas

    2006-01-01

    Aberrant expression of 1 or more transcription factor oncogenes is a critical component of the molecular pathogenesis of human T-cell acute lymphoblastic leukemia (T-ALL); however, oncogenic transcriptional programs downstream of T-ALL oncogenes are mostly unknown. TAL1/SCL is a basic helix-loop-helix (bHLH) transcription factor oncogene aberrantly expressed in 60% of human T-ALLs. We used chromatin immunoprecipitation (ChIP) on chip to identify 71 direct transcriptional targets of TAL1/SCL. ...

  19. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.

    Science.gov (United States)

    Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal

    2018-02-01

    Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of

  20. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    International Nuclear Information System (INIS)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload

  1. Gene expression profiling identifies HOXB4 as a direct downstream target of GATA-2 in human CD34+ hematopoietic cells.

    Directory of Open Access Journals (Sweden)

    Tohru Fujiwara

    Full Text Available Aplastic anemia is characterized by a reduced hematopoietic stem cell number. Although GATA-2 expression was reported to be decreased in CD34-positive cells in aplastic anemia, many questions remain regarding the intrinsic characteristics of hematopoietic stem cells in this disease. In this study, we identified HOXB4 as a downstream target of GATA-2 based on expression profiling with human cord blood-derived CD34-positive cells infected with control or GATA-2 lentiviral shRNA. To confirm the functional link between GATA-2 and HOXB4, we conducted GATA-2 gain-of-function and loss-of-function experiments, and HOXB4 promoter analysis, including luciferase assay, in vitro DNA binding analysis and quantitative ChIP analysis, using K562 and CD34-positive cells. The analyses suggested that GATA-2 directly regulates HOXB4 expression through the GATA sequence in the promoter region. Furthermore, we assessed GATA-2 and HOXB4 expression in CD34-positive cells from patients with aplastic anemia (n = 10 and idiopathic thrombocytopenic purpura (n = 13, and demonstrated that the expression levels of HOXB4 and GATA-2 were correlated in these populations (r = 0.6573, p<0.01. Our results suggested that GATA-2 directly regulates HOXB4 expression in hematopoietic stem cells, which may play an important role in the development and/or progression of aplastic anemia.

  2. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  3. Philippines' downstream sector poised for growth

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that the Philippines' downstream sector is poised for sharp growth. Despite a slip in refined products demand in recent years, Philippines products demand will rebound sharply by 2000, East-West Center (EWC), Honolulu, predicts. Philippines planned refinery expansions are expected to meet that added demand, EWC Director Fereidun Fesharaki says. Like the rest of the Asia-Pacific region, product specifications are changing, but major refiners in the area expect to meet the changes without major case outlays. At the same time, Fesharaki says, push toward deregulation will further bolster the outlook for the Philippines downstream sector

  4. OCT4 and downstream factors are expressed in human somatic urogenital epithelia and in culture of epididymal spheres

    DEFF Research Database (Denmark)

    Audouze, Karine Marie Laure; Brunak, Søren; Kristensen, DM

    2010-01-01

    and microdissected tissues, in situ hybridisation, immunohistochemistry, and Western blotting to show that OCT4 and SOX2 together with downstream targets, UTF1 and REX1, are expressed in the human male urogenital tract. We further supported these results by analysis of DNA methylation of a region in the OCT4...

  5. Prediction of target genes for miR-140-5p in pulmonary arterial hypertension using bioinformatics methods.

    Science.gov (United States)

    Li, Fangwei; Shi, Wenhua; Wan, Yixin; Wang, Qingting; Feng, Wei; Yan, Xin; Wang, Jian; Chai, Limin; Zhang, Qianqian; Li, Manxiang

    2017-12-01

    The expression of microRNA (miR)-140-5p is known to be reduced in both pulmonary arterial hypertension (PAH) patients and monocrotaline-induced PAH models in rat. Identification of target genes for miR-140-5p with bioinformatics analysis may reveal new pathways and connections in PAH. This study aimed to explore downstream target genes and relevant signaling pathways regulated by miR-140-5p to provide theoretical evidences for further researches on role of miR-140-5p in PAH. Multiple downstream target genes and upstream transcription factors (TFs) of miR-140-5p were predicted in the analysis. Gene ontology (GO) enrichment analysis indicated that downstream target genes of miR-140-5p were enriched in many biological processes, such as biological regulation, signal transduction, response to chemical stimulus, stem cell proliferation, cell surface receptor signaling pathways. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway analysis found that downstream target genes were mainly located in Notch, TGF-beta, PI3K/Akt, and Hippo signaling pathway. According to TF-miRNA-mRNA network, the important downstream target genes of miR-140-5p were PPI, TGF-betaR1, smad4, JAG1, ADAM10, FGF9, PDGFRA, VEGFA, LAMC1, TLR4, and CREB. After thoroughly reviewing published literature, we found that 23 target genes and seven signaling pathways were truly inhibited by miR-140-5p in various tissues or cells; most of these verified targets were in accordance with our present prediction. Other predicted targets still need further verification in vivo and in vitro .

  6. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  7. Continuous downstream processing of biopharmaceuticals.

    Science.gov (United States)

    Jungbauer, Alois

    2013-08-01

    Continuous manufacturing has been applied in many different industries but has been pursued reluctantly in biotechnology where the batchwise process is still the standard. A shift to continuous operation can improve productivity of a process and substantially reduce the footprint. Continuous operation also allows robust purification of labile biomolecules. A full set of unit operations is available to design continuous downstream processing of biopharmaceuticals. Chromatography, the central unit operation, is most advanced in respect to continuous operation. Here, the problem of 'batch' definition has been solved. This has also paved the way for implementation of continuous downstream processing from a regulatory viewpoint. Economic pressure, flexibility, and parametric release considerations will be the driving force to implement continuous manufacturing strategies in future. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. A floating trap for sampling downstream migrant fishes.

    Science.gov (United States)

    Carl E. McLemore; Fred H. Everest; William R. Humphreys; Mario F. Solazzi

    1989-01-01

    Fishery scientists and managers are interested in obtaining information about downstream movements of fish species for biological and economic reasons. Different types of nets and traps have been used for this purpose with only partial success. The floating, self-cleaning downstream migrant trap described here proved successful for sampling several salmoniform and...

  9. Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.

    Science.gov (United States)

    Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger

    2014-01-01

    This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.

  10. Antiproton Target

    CERN Multimedia

    1980-01-01

    Antiproton target used for the AA (antiproton accumulator). The first type of antiproton production target used from 1980 to 1982 comprised a rod of copper 3mm diameter and 120mm long embedded in a graphite cylinder that was itself pressed into a finned aluminium container. This assembly was air-cooled and it was used in conjunction with the Van der Meer magnetic horn. In 1983 Fermilab provided us with lithium lenses to replace the horn with a view to increasing the antiproton yield by about 30%. These lenses needed a much shorter target made of heavy metal - iridium was chosen for this purpose. The 50 mm iridium rod was housed in an extension to the original finned target container so that it could be brought very close to the entrance to the lithium lens. Picture 1 shows this target assembly and Picture 2 shows it mounted together with the lithium lens. These target containers had a short lifetime due to a combination of beam heating and radiation damage. This led to the design of the water-cooled target in...

  11. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  12. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Science.gov (United States)

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  13. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  14. Combining -Omics to Unravel the Impact of Copper Nutrition on Alfalfa (Medicago sativa) Stem Metabolism.

    Science.gov (United States)

    Printz, Bruno; Guerriero, Gea; Sergeant, Kjell; Audinot, Jean-Nicolas; Guignard, Cédric; Renaut, Jenny; Lutts, Stanley; Hausman, Jean-Francois

    2016-02-01

    Copper can be found in the environment at concentrations ranging from a shortage up to the threshold of toxicity for plants, with optimal growth conditions situated in between. The plant stem plays a central role in transferring and distributing minerals, water and other solutes throughout the plant. In this study, alfalfa is exposed to different levels of copper availability, from deficiency to slight excess, and the impact on the metabolism of the stem is assessed by a non-targeted proteomics study and by the expression analysis of key genes controlling plant stem development. Under copper deficiency, the plant stem accumulates specific copper chaperones, the expression of genes involved in stem development is decreased and the concentrations of zinc and molybdenum are increased in comparison with the optimum copper level. At the optimal copper level, the expression of cell wall-related genes increases and proteins playing a role in cell wall deposition and in methionine metabolism accumulate, whereas copper excess imposes a reduction in the concentration of iron in the stem and a reduced abundance of ferritins. Secondary ion mass spectrometry (SIMS) analysis suggests a role for the apoplasm as a copper storage site in the case of copper toxicity. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  15. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.

    OpenAIRE

    Midander, Klara; Cronholm, Pontus; Karlsson, Hanna L.; Elihn, Karine; Moller, Lennart; Leygraf, Christofer; Wallinder, Inger Odnevall

    2009-01-01

    An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered ...

  16. Defective Connective Tissue Remodeling in Smad3 Mice Leads to Accelerated Aneurysmal Growth Through Disturbed Downstream TGF-β Signaling

    Directory of Open Access Journals (Sweden)

    I. van der Pluijm, PhD

    2016-10-01

    Smad3 deficiency leads to imbalanced activation of downstream genes, no activation of MMPs in VSMCs, and immune responses resulting in rapid aortic wall dilatation and rupture. Our findings uncover new possibilities for treatment of SMAD3 patients; instead of targeting TGF-β signaling, immune suppression may be more beneficial.

  17. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  18. Estimating the Causal Impact of Proximity to Gold and Copper Mines on Respiratory Diseases in Chilean Children: An Application of Targeted Maximum Likelihood Estimation

    Directory of Open Access Journals (Sweden)

    Ronald Herrera

    2017-12-01

    Full Text Available In a town located in a desert area of Northern Chile, gold and copper open-pit mining is carried out involving explosive processes. These processes are associated with increased dust exposure, which might affect children’s respiratory health. Therefore, we aimed to quantify the causal attributable risk of living close to the mines on asthma or allergic rhinoconjunctivitis risk burden in children. Data on the prevalence of respiratory diseases and potential confounders were available from a cross-sectional survey carried out in 2009 among 288 (response: 69 % children living in the community. The proximity of the children’s home addresses to the local gold and copper mine was calculated using geographical positioning systems. We applied targeted maximum likelihood estimation to obtain the causal attributable risk (CAR for asthma, rhinoconjunctivitis and both outcomes combined. Children living more than the first quartile away from the mines were used as the unexposed group. Based on the estimated CAR, a hypothetical intervention in which all children lived at least one quartile away from the copper mine would decrease the risk of rhinoconjunctivitis by 4.7 percentage points (CAR: − 4.7 ; 95 % confidence interval ( 95 % CI: − 8.4 ; − 0.11 ; and 4.2 percentage points (CAR: − 4.2 ; 95 % CI: − 7.9 ; − 0.05 for both outcomes combined. Overall, our results suggest that a hypothetical intervention intended to increase the distance between the place of residence of the highest exposed children would reduce the prevalence of respiratory disease in the community by around four percentage points. This approach could help local policymakers in the development of efficient public health strategies.

  19. [Resistance to target-based therapy and its circumvention].

    Science.gov (United States)

    Nishio, Kazuto

    2004-07-01

    Intrinsic and acquired resistance to molecular target therapy critically limits the outcome of cancer treatments. Target levels including quantitative and gene alteration should be determinants for the resistance. Downstream of the target molecules, drug metabolism, and drug transport influences the tumor sensitivity to molecular target therapy. The mechanisms of resistance to antibody therapy have not been fully clarified. Correlative clinical studies using these biomarkers of resistance are extremely important for circumvention of clinical resistance to target based therapy.

  20. Wave and particle evolution downstream of quasi-perpendicular shocks

    Science.gov (United States)

    Mckean, M. E.; Omidi, N.; Krauss-Varban, D.; Karimabadi, H.

    1995-01-01

    Distributions of ions heated in quasi-perpendicular bow shocks have large perpendicular temperature anisotropies that provide free energy for the growth of Alfven ion cyclotron (AIC) and mirror waves. These modes are often obsreved in the Earth's magnetosheath. Using two-dimensional hybrid simulations, we show that these waves are produced near the shock front and convected downstream rather than being produced locally downstream. The wave activity reduces the proton anisotropy to magnetosheath levels within a few tens of gyroradii of the shock but takes significantly longer to reduce the anisotropy of He(++) ions. The waves are primarily driven by proton anisotropy and the dynamics of the helium ions is controlled by the proton waves. Downstream of high Mach number shocks, mirror waves compete effectively with AIC waves. Downstream of low Mach number shocks, AIC waves dominate.

  1. Copper Leaching from Copper-ethanolamine Treated Wood: Comparison of Field Test Studies and Laboratory Standard Procedures

    OpenAIRE

    Nejc Thaler; Miha Humar

    2014-01-01

    Copper-based compounds are some of the most important biocides for the protection of wood in heavy duty applications. In the past, copper was combined with chromium compounds to reduce copper leaching, but a recent generation of copper-based preservatives uses ethanolamine as a fixative. To elucidate the leaching of copper biocides from wood, Norway spruce (Picea abies) wood was treated with a commercial copper-ethanolamine solution with two different copper concentrations (cCu = 0.125% and 0...

  2. Surface modification of an epoxy resin with polyamines and polydopamine: Adhesion toward electroless deposited copper

    Energy Technology Data Exchange (ETDEWEB)

    Schaubroeck, David, E-mail: David.Schaubroeck@elis.ugent.be [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Mader, Lothar [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium); Dubruel, Peter [Polymer Chemistry and Biomaterials Research Group, Ghent University, Krijgslaan 281 S4 bis, B-9000 Ghent (Belgium); Vanfleteren, Jan [Center for Microsystems Technology (CMST), IMEC and Ghent University, Technologiepark 914A, B-9052 Ghent (Belgium)

    2015-10-30

    Highlights: • Surface modifications of epoxy resins with polydopamine and grafted polyamines can significantly increase the adhesion toward electroless deposited copper. • A clear characterization of the copper/epoxy interphase is provided by SEM analyses of cross sections. • Tailored conditions such as etching time (roughness) and electroless deposition temperature are needed to increase the adhesion of the modified surfaces. - Abstract: In this paper the influence of the epoxy roughness, surface modifications and ELD (electroless copper deposition) temperatures on the adhesive strength of the copper is studied. Good adhesion at low roughness values is targeted due to their applicability in high density electronic circuits. Roughened epoxy surfaces are modified with adsorbed polyamines, polydopamine and polyamines grafted to polydopamine. Next the, adhesive strength of ELD copper is determined with peel strength measurements and the interphases are examined with SEM (scanning electron microscopy). Polydopamine and polyamines grafted to polydopamine can lead to increased adhesive strength at lower roughness values compared to the non-modified samples at specific plating temperatures.

  3. Unexpected role of the copper transporter ATP7A in PDGF-induced vascular smooth

    Energy Technology Data Exchange (ETDEWEB)

    Ashino, T.; Varadarajan, S.; Urao, N.; Oshikawa, J.; Chen, G. -F.; Wang, H.; Huo, Y.; Finney, L.; Vogt, S.; McKinney, R. D.; Maryon, E. B.; Kaplan, J. H.; Ushio-Fukai, M.; Fukai, T. (Biosciences Division); ( XSD); ( PSC-USR); (Univ. of Illinois at Chicago); (Univ. of Minnesota)

    2010-09-09

    Copper, an essential nutrient, has been implicated in vascular remodeling and atherosclerosis with unknown mechanism. Bioavailability of intracellular copper is regulated not only by the copper importer CTR1 (copper transporter 1) but also by the copper exporter ATP7A (Menkes ATPase), whose function is achieved through copper-dependent translocation from trans-Golgi network (TGN). Platelet-derived growth factor (PDGF) promotes vascular smooth muscle cell (VSMC) migration, a key component of neointimal formation. To determine the role of copper transporter ATP7A in PDGF-induced VSMC migration. Depletion of ATP7A inhibited VSMC migration in response to PDGF or wound scratch in a CTR1/copper-dependent manner. PDGF stimulation promoted ATP7A translocation from the TGN to lipid rafts, which localized at the leading edge, where it colocalized with PDGF receptor and Rac1, in migrating VSMCs. Mechanistically, ATP7A small interfering RNA or CTR small interfering RNA prevented PDGF-induced Rac1 translocation to the leading edge, thereby inhibiting lamellipodia formation. In addition, ATP7A depletion prevented a PDGF-induced decrease in copper level and secretory copper enzyme precursor prolysyl oxidase (Pro-LOX) in lipid raft fraction, as well as PDGF-induced increase in LOX activity. In vivo, ATP7A expression was markedly increased and copper accumulation was observed by synchrotron-based x-ray fluorescence microscopy at neointimal VSMCs in wire injury model. These findings suggest that ATP7A plays an important role in copper-dependent PDGF-stimulated VSMC migration via recruiting Rac1 to lipid rafts at the leading edge, as well as regulating LOX activity. This may contribute to neointimal formation after vascular injury. Our findings provide insight into ATP7A as a novel therapeutic target for vascular remodeling and atherosclerosis.

  4. Copper metabolism: a multicompartmental model of copper kinetics in the rat

    International Nuclear Information System (INIS)

    Dunn, M.A.

    1985-01-01

    A qualitative multicompartmental model was developed that describes the whole-body kinetics of copper metabolism in the adult rat. The model was developed from radiocopper percent dose vs. time data measured over a three day period in plasma, liver, skin, skeletal muscle, bile and feces after the intravenous injection of 10 μg copper labeled with 64 Cu. Plasma radiocopper was separated into ceruloplasmin (Cp) and nonceruloplasmin (NCp) fractions. Liver cytosolic radiocopper was fractionated into void volume superoxide dismutase (SOD) containing and metallothionein fractions by gel filtration. Liver particulate fractions were isolated by differential centrifugation. The SAAM and CONSAM modeling programs were used to develop the model. The sizes of compartments, fractional rate constants and mass transfer rates between compartments were evaluated. The intracellular metabolism of copper was similar in hepatic and extrahepatic tissues being comprised of a faster turning over compartment (FTC) exchanging copper with NCp and a slower turning over compartment (STC) with input from Cp. Output from the STC was into the FTC. In the liver the STC was postulated to represent SOD copper which unlike the extrahepatic tissues received much of its input from the FTC. A small amount of biliary copper (9%) was postulated to return to plasma NCp by enterohepatic recycling. The model developed was contrasted and compared with two previous models of copper metabolism

  5. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O

    2011-12-01

    This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.

  6. Potent and selective chemical probe of hypoxic signalling downstream of HIF-α hydroxylation via VHL inhibition

    Science.gov (United States)

    Frost, Julianty; Galdeano, Carles; Soares, Pedro; Gadd, Morgan S.; Grzes, Katarzyna M.; Ellis, Lucy; Epemolu, Ola; Shimamura, Satoko; Bantscheff, Marcus; Grandi, Paola; Read, Kevin D.; Cantrell, Doreen A.; Rocha, Sonia; Ciulli, Alessio

    2016-11-01

    Chemical strategies to using small molecules to stimulate hypoxia inducible factors (HIFs) activity and trigger a hypoxic response under normoxic conditions, such as iron chelators and inhibitors of prolyl hydroxylase domain (PHD) enzymes, have broad-spectrum activities and off-target effects. Here we disclose VH298, a potent VHL inhibitor that stabilizes HIF-α and elicits a hypoxic response via a different mechanism, that is the blockade of the VHL:HIF-α protein-protein interaction downstream of HIF-α hydroxylation by PHD enzymes. We show that VH298 engages with high affinity and specificity with VHL as its only major cellular target, leading to selective on-target accumulation of hydroxylated HIF-α in a concentration- and time-dependent fashion in different cell lines, with subsequent upregulation of HIF-target genes at both mRNA and protein levels. VH298 represents a high-quality chemical probe of the HIF signalling cascade and an attractive starting point to the development of potential new therapeutics targeting hypoxia signalling.

  7. Renal cortex copper concentration in acute copper poisoning in calves

    Directory of Open Access Journals (Sweden)

    Luis E. Fazzio

    2012-01-01

    Full Text Available The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu concentration in clinical cases of acute copper poisoning (ACP. A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.

  8. Preparation of copper and silicon/copper powders by a gas ...

    Indian Academy of Sciences (India)

    Administrator

    aCentre for Materials Research, Department of Imaging and Applied Physics, ... Copper powder; Si/Cu composite particle; gas evaporation–condensation method; characteriza- tion. .... from the liquid metal surface, the mixed vapour of copper.

  9. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level.

  10. Monitoring production target thickness

    International Nuclear Information System (INIS)

    Oothoudt, M.A.

    1993-01-01

    Pion and muon production targets at the Clinton P. Anderson Meson Physics Facility consist of rotating graphite wheels. The previous target thickness monitoring Procedure scanned the target across a reduced intensity beam to determine beam center. The fractional loss in current across the centered target gave a measure of target thickness. This procedure, however, required interruption of beam delivery to experiments and frequently indicated a different fractional loss than at normal beam currents. The new monitoring Procedure compares integrated ups and downs toroid current monitor readings. The current monitors are read once per minute and the integral of readings are logged once per eight-hour shift. Changes in the upstream to downstream fractional difference provide a nonintrusive continuous measurement of target thickness under nominal operational conditions. Target scans are now done only when new targets are installed or when unexplained changes in the current monitor data are observed

  11. RECYCLING OF SCRAP AND WASTE OF COPPER AND COPPER ALLOYS IN BELARUS

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2017-01-01

    Full Text Available The construction of a new casting and mechanical shop of unitary enterprise «Tsvetmet» in December 2015 has allowed to solve the complex problem of processing and utilization of scrap and wastes of copper and copper alloys in the Republic of Belarus. The technological processes of fire refinement of copper and manufacturing of copper rod from scrap and production of brass rod by hot pressing (extrusion of the continuously casted round billet have been mastered for the first time in the Republic of Belarus.

  12. Downstream-based Scheduling for Energy Conservation in Green EPONs

    KAUST Repository

    Chen, Shen; Dhaini, Ahmad R.; Ho, Pin-Han; Shihada, Basem; Shen, Gangxiang; Lin, Chih-Hao

    2012-01-01

    the ONU sleep time, it jeopardizes the quality of service (QoS) performance of the network, especially for downstream traffic in case the overlapping is based on the upstream time slot. In this paper, we study the downstream traffic performance in green

  13. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  14. Copper Bioleaching in Chile

    OpenAIRE

    Juan Carlos Gentina; Fernando Acevedo

    2016-01-01

    Chile has a great tradition of producing and exporting copper. Over the last several decades, it has become the first producer on an international level. Its copper reserves are also the most important on the planet. However, after years of mineral exploitation, the ease of extracting copper oxides and ore copper content has diminished. To keep the production level high, the introduction of new technologies has become necessary. One that has been successful is bioleaching. Chile had the first...

  15. The structural flexibility of the human copper chaperone Atox1: Insights from combined pulsed EPR studies and computations.

    Science.gov (United States)

    Levy, Ariel R; Turgeman, Meital; Gevorkyan-Aiapetov, Lada; Ruthstein, Sharon

    2017-08-01

    Metallochaperones are responsible for shuttling metal ions to target proteins. Thus, a metallochaperone's structure must be sufficiently flexible both to hold onto its ion while traversing the cytoplasm and to transfer the ion to or from a partner protein. Here, we sought to shed light on the structure of Atox1, a metallochaperone involved in the human copper regulation system. Atox1 shuttles copper ions from the main copper transporter, Ctr1, to the ATP7b transporter in the Golgi apparatus. Conventional biophysical tools such as X-ray or NMR cannot always target the various conformational states of metallochaperones, owing to a requirement for crystallography or low sensitivity and resolution. Electron paramagnetic resonance (EPR) spectroscopy has recently emerged as a powerful tool for resolving biological reactions and mechanisms in solution. When coupled with computational methods, EPR with site-directed spin labeling and nanoscale distance measurements can provide structural information on a protein or protein complex in solution. We use these methods to show that Atox1 can accommodate at least four different conformations in the apo state (unbound to copper), and two different conformations in the holo state (bound to copper). We also demonstrate that the structure of Atox1 in the holo form is more compact than in the apo form. Our data provide insight regarding the structural mechanisms through which Atox1 can fulfill its dual role of copper binding and transfer. © 2017 The Protein Society.

  16. Investigation of wall mass transfer characteristics downstream of an orifice

    International Nuclear Information System (INIS)

    El-Gammal, M.; Ahmed, W.H.; Ching, C.Y.

    2012-01-01

    Highlights: ► Numerical simulations were performed for the mass transfer downstream of an orifice. ► The Low Reynolds Number K-ε turbulence model was used. ► The numerical results were in good agreement with existing experimental results. ► The maximum Sherwood number downstream of the orifice was significantly affected by the Reynolds number. ► The Sherwood number profile was well correlated with the turbulence kinetic energy profile close to the wall. - Abstract: Numerical simulations were performed to determine the effect of Reynolds number and orifice to pipe diameter ratio (d o /d) on the wall mass transfer rate downstream of an orifice. The simulations were performed for d o /d of 0.475 for Reynolds number up to 70,000. The effect of d o /d was determined by performing simulations at a Reynolds number of 70,000 for d o /d of 0.375, 0.475 and 0.575. The momentum and mass transport equations were solved using the Low Reynolds Number (LRN) K-ε turbulence model. The Sherwood number (Sh) profile downstream of the orifice was in relatively good agreement with existing experimental results. The Sh increases sharply downstream of the orifice, reaching a maximum within 1–2 diameters downstream of the orifice, before relaxing back to the fully developed pipe flow value. The Sh number well downstream of the orifice was in good agreement with results for fully developed pipe flow estimated from the correlation of . The peak Sh numbers from the simulations were higher than that predicted from and .

  17. The copper-transporting ATPase pump and its potential role in copper-tolerance

    Science.gov (United States)

    Katie Ohno; C.A. Clausen; Frederick Green; G. Stanosz

    2016-01-01

    Copper-tolerant brown-rot decay fungi exploit intricate mechanisms to neutralize the efficacy of copper-containing preservative formulations. The production and accumulation oxalate is the most widely recognized theory regarding the mechanism of copper-tolerance in these fungi. The role of oxalate, however, may be only one part of a series of necessary components...

  18. Neutron activation analysis of copper traces: a study for sodium correction factor

    International Nuclear Information System (INIS)

    Tripathi, A.B.R.; Bhadkambekar, C.A.; Basu, A.K.; Chattopadhyay, N.

    2007-01-01

    Peak ratio correction factors for accurate quantitative determination of copper by NAA via 64 Cu radioisotope in presence of high 24 Na radioactivities has been established. Copper is the principal element as a marker of bullet residues on targets in connection to forensic ballistics cases. Reliable and precise estimation of copper by NAA either via non-destructive way or by resorting to radiochemical separation is of importance in forensic analysis for arriving at definitive inferences. However, majority of samples originating from wearing apparels, paper, leather, skin, glass or any other metal exhibit matrices contain high levels of sodium. The NAA scheme for determination of copper rests on measurements of net counts at 511 KeV which is the positron annihilation peak of 64 Cu. 24 Na also contributes significantly exactly at 511 KeV of gamma energy albeit by different mechanism i.e., by pair production. Therefore, total signal at 511 KeV is contributed by both. The easiest approach for correct estimation of copper traces has been established by the peak ratio correction factor. This has significance as both 64 Cu and 24 Na have comparable half lives, hence, as such time gap measurements cannot improve the situation. The consistency of peak ratio correction factor could be established for a particular geometry. (author)

  19. Use of copper radioisotopes in investigating disorders of copper metabolism

    International Nuclear Information System (INIS)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M.; Smith, S.; Mercer, J.

    1998-01-01

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes 64 Cu (t 1/2 = 12.8 hr) and 67 Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  20. Recovery of Copper from Copper Slag by Hydrometallurgy Method, from Iraqi Factories Waste

    Directory of Open Access Journals (Sweden)

    Bahaa Sami Mahdi

    2018-05-01

    Full Text Available   In this research, the recovery of copper from copper slag is investigated using hydrometallurgy method. Slag samples were taken from Al-Shaheed State Company. The results of the chemical analysis showed that the slag contained 11.4% of copper. The recovery process included two stages; the first stage is leaching using diluted sulfuric acid. The most important variables that effect on the leaching process was studied, such as acid concentration, hydrogen peroxide adding, particle size, liquid to solid, stirring speed and leaching time by changing the condition and the stabilizing of other factors at room temperature.               The second stage is precipitation of copper from leaching solution by zinc powder with different weights and times, at room temperature and 1.5 PH value. The results of the first stage manifested that about 99.7% of the copper have been dissolved at the following operational conditions: 50% acid concentration, 5 ml hydrogen peroxide adding, particle size (-75+53 micron, 1:10 liquid to solid, 500 rpm stirring speed and 25 min of leaching time. The highest percentage of copper precipitation in the second stage was 99.8% when added 3gm zinc powder at 20 min. The XRD result revealed that the predominant phase was pure copper. The results of EDS exhibited that a few percentage of oxygen appeared with copper powder. The final of copper recovery ratio was 99.3% with 99.2% purity.

  1. Bacterial Killing by Dry Metallic Copper Surfaces▿

    OpenAIRE

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2010-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important fir...

  2. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O

    2012-04-01

    Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4

  3. Current trends in copper theft prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mastrofrancesco, A. [Electrical Safety Authority, ON (Canada)

    2009-07-01

    Copper is used in electrical wiring, water and gas piping, currency, and in household items. An increase in the price and demand for copper has made copper theft a profitable venture for some thieves. Copper consumed in North America is typically supplied by recycling. Scrap dealers may pay near-market prices for pure copper wires. However, copper theft poses a serious threat to the safety of utility workers and the public. Power outages caused by copper theft are now affecting grid reliability. This paper examined technologies and techniques used to prevent copper theft as part of a security strategy for utilities. Attempts to steal copper can leave utility substations unsecured and accessible to children. The theft of neutral grounds will cause the local distribution company (LDC) to malfunction and may cause power surges in homes as well as appliance fires. Utilities are now looking at using a hybrid steel and copper alternative to prevent copper theft. Asset identification techniques are also being used to identify the original owners of the copper and more easily prosecute thieves. Automated monitoring techniques are also being used to increase substation security. Utilities are also partnering with law enforcement agencies and pressuring governments to require scrap dealers to record who they buy from. It was concluded that strategies to prevent copper theft should be considered as part of an overall security strategy for utilities. tabs., figs.

  4. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation

    Science.gov (United States)

    Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei

    2017-09-01

    A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.

  5. Preparation of graphite dispersed copper composite on copper plate with CO2 laser

    Science.gov (United States)

    Yokoyama, S.; Ishikawa, Y.; Muizz, M. N. A.; Hisyamudin, M. N. N.; Nishiyama, K.; Sasano, J.; Izaki, M.

    2018-01-01

    It was tried in this work to prepare the graphite dispersed copper composite locally on a copper plate with a CO2 laser. The objectives of this study were to clear whether copper graphite composite was prepared on a copper plate and how the composite was prepared. The carbon content at the laser spot decreased with the laser irradiation time. This mainly resulted from the elimination by the laser trapping. The carbon content at the outside of the laser spot increased with time. Both the laser ablation and the laser trapping did not act on the graphite particles at the outside of the laser spot. Because the copper at the outside of the laser spot melted by the heat conduction from the laser spot, the particles were fixed by the wetting. However, the graphite particles were half-floated on the copper plate. The Vickers hardness decreased with an increase with laser irradiation time because of annealing.

  6. Antimicrobial Properties of Copper Nanoparticles and Amino Acid Chelated Copper Nanoparticles Produced by Using a Soya Extract

    Science.gov (United States)

    DeAlba-Montero, I.; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene

    2017-01-01

    This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used. PMID:28286459

  7. India's Downstream Petroleum Sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This study provides a holistic examination of pricing and investment dynamics in India's downstream petroleum sector. It analyses the current pricing practices, highlights the tremendous fiscal cost of current pricing and regulatory arrangements, and examines the sectoral investment dynamics. It also looks at potential paths towards market-based reform along which the Indian government may move, while at the same time protecting energy market access for India's large poor population.

  8. Integrative analysis of RUNX1 downstream pathways and target genes

    Directory of Open Access Journals (Sweden)

    Liu Marjorie

    2008-07-01

    Full Text Available Abstract Background The RUNX1 transcription factor gene is frequently mutated in sporadic myeloid and lymphoid leukemia through translocation, point mutation or amplification. It is also responsible for a familial platelet disorder with predisposition to acute myeloid leukemia (FPD-AML. The disruption of the largely unknown biological pathways controlled by RUNX1 is likely to be responsible for the development of leukemia. We have used multiple microarray platforms and bioinformatic techniques to help identify these biological pathways to aid in the understanding of why RUNX1 mutations lead to leukemia. Results Here we report genes regulated either directly or indirectly by RUNX1 based on the study of gene expression profiles generated from 3 different human and mouse platforms. The platforms used were global gene expression profiling of: 1 cell lines with RUNX1 mutations from FPD-AML patients, 2 over-expression of RUNX1 and CBFβ, and 3 Runx1 knockout mouse embryos using either cDNA or Affymetrix microarrays. We observe that our datasets (lists of differentially expressed genes significantly correlate with published microarray data from sporadic AML patients with mutations in either RUNX1 or its cofactor, CBFβ. A number of biological processes were identified among the differentially expressed genes and functional assays suggest that heterozygous RUNX1 point mutations in patients with FPD-AML impair cell proliferation, microtubule dynamics and possibly genetic stability. In addition, analysis of the regulatory regions of the differentially expressed genes has for the first time systematically identified numerous potential novel RUNX1 target genes. Conclusion This work is the first large-scale study attempting to identify the genetic networks regulated by RUNX1, a master regulator in the development of the hematopoietic system and leukemia. The biological pathways and target genes controlled by RUNX1 will have considerable importance in disease

  9. The Hyrkkoelae native copper mineralization as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1996-10-01

    The Hyrkkoelae U-Cu mineralization is located in southwestern Finland, near the Palmottu analogue site. The age of the mineralization is estimated to be between 1.8 and 1.7 Ga. Petrological and mineralogical studies have demonstrated that this mineralization has many geological features that parallel those of the sites being considered for nuclear waste disposal in Finland. A particular feature is the existence of native copper and copper sulfides in open fractures in the near-surface zone. This allows us to study the native copper corrosion process in analogous conditions as expected to dominate in the nuclear fuel waste repository. The occurrence of uranyl compounds at these fractures permits also considerations about the sorption properties of the engineered barrier material (metallic copper) and its corrosion products. From the study of mineral assemblages or paragenesis, it appears that the formation of copper sulfide (djurleite, Cu 1.934 ) after native copper (Cu 0 ) under anoxic (reducing) conditions is enhanced by the availability of dissolved HS - in the groundwater circulating in open fractures in the near-surface zone. The minimum concentration of HS - in the groundwater is estimated to be of the order of 10 -5 M (∼ 10 -4 g/l) and the minimum pH value not lower than about 7.8 as indicated by the presence of calcite crystals in the same fracture. The present study is the first one that has been performed on findings of native copper in reducing, neutral to slightly alkaline groundwaters. Thus, the data obtained is of most relevance in improving models of anoxic corrosion of copper canisters. (orig.)

  10. In vitro thermodynamic dissection of human copper transfer from chaperone to target protein.

    Science.gov (United States)

    Niemiec, Moritz S; Weise, Christoph F; Wittung-Stafshede, Pernilla

    2012-01-01

    Transient protein-protein and protein-ligand interactions are fundamental components of biological activity. To understand biological activity, not only the structures of the involved proteins are important but also the energetics of the individual steps of a reaction. Here we use in vitro biophysical methods to deduce thermodynamic parameters of copper (Cu) transfer from the human copper chaperone Atox1 to the fourth metal-binding domain of the Wilson disease protein (WD4). Atox1 and WD4 have the same fold (ferredoxin-like fold) and Cu-binding site (two surface exposed cysteine residues) and thus it is not clear what drives metal transfer from one protein to the other. Cu transfer is a two-step reaction involving a metal-dependent ternary complex in which the metal is coordinated by cysteines from both proteins (i.e., Atox1-Cu-WD4). We employ size exclusion chromatography to estimate individual equilibrium constants for the two steps. This information together with calorimetric titration data are used to reveal enthalpic and entropic contributions of each step in the transfer process. Upon combining the equilibrium constants for both steps, a metal exchange factor (from Atox1 to WD4) of 10 is calculated, governed by a negative net enthalpy change of ∼10 kJ/mol. Thus, small variations in interaction energies, not always obvious upon comparing protein structures alone, may fuel vectorial metal transfer.

  11. Spectrographic determination of impurities in copper and copper oxide

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  12. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria

    DEFF Research Database (Denmark)

    Elguindi, J; Moffitt, S; Hasman, Henrik

    2010-01-01

    of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper...... on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells, which contributed directly to bacterial killing....

  13. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Directory of Open Access Journals (Sweden)

    Rebeca Ortega-Amaya

    2016-07-01

    Full Text Available This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs on the surface of a copper foil supporting graphene oxide (GO at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure.

  14. Geochemical Characteristics of TP3 Mine Wastes at the Elizabeth Copper Mine Superfund Site, Orange County, Vermont

    Science.gov (United States)

    Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R.; Briggs, Paul H.; Meier, Allen L.; Muzik, Timothy L.

    2003-01-01

    Remediation of the Elizabeth mine Superfund site in the Vermont copper belt poses challenges for balancing environmental restoration goals with issues of historic preservation while adopting cost-effective strategies for site cleanup and long-term maintenance. The waste-rock pile known as TP3, at the headwaters of Copperas Brook, is especially noteworthy in this regard because it is the worst source of surface- and ground-water contamination identified to date, while also being the area of greatest historical significance. The U.S. Geological Survey (USGS) conducted a study of the historic mine-waste piles known as TP3 at the Elizabeth mine Superfund site near South Strafford, Orange County, VT. TP3 is a 12.3-acre (49,780 m2) subarea of the Elizabeth mine site. It is a focus area for historic preservation because it encompasses an early 19th century copperas works as well as waste from late 19th- and 20th century copper mining (Kierstead, 2001). Surface runoff and seeps from TP3 form the headwaters of Copperas Brook. The stream flows down a valley onto flotation tailings from 20th century copper mining operations and enters the West Branch of the Ompompanoosuc River approximately 1 kilometer downstream from the mine site. Shallow drinking water wells down gradient from TP3 exceed drinking water standards for copper and cadmium (Hathaway and others, 2001). The Elizabeth mine was listed as a Superfund site in 2001, mainly because of impacts of acid-mine drainage on the Ompompanoosuc River.

  15. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis

    NARCIS (Netherlands)

    Fedoseienko, Alina; Bartuzi, Paulina; van de Sluis, Bart

    2014-01-01

    Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in

  16. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Science.gov (United States)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-09-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  17. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-01-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10 -5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  18. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, Yu. M., E-mail: chumakov.xray@phys.asm.md [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Tsapkov, V. I. [State University of Moldova (Moldova, Republic of); Jeanneau, E. [Universite Claude Bernard, Laboratoire des Multimateriaux et Interfaces (France); Bairac, N. N. [State University of Moldova (Moldova, Republic of); Bocelli, G. [National Research Council (IMEM-CNR), Institute of Materials for Electronics and Magnetism (Italy); Poirier, D.; Roy, J. [Centre Hospitalier Universitaire de Quebec (CHUQ) (Canada); Gulea, A. P. [State University of Moldova (Moldova, Republic of)

    2008-09-15

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10{sup -5} mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  19. Nuclear Spectroscopy with Copper Isotopes of Extreme N/Z Ratios

    CERN Multimedia

    La commara, M; Roeckl, E; Van duppen, P L E; Schmidt, K A; Lettry, J

    2002-01-01

    The collaboration aims to obtain detailed nuclear spectroscopy information on isotopes close to the magic proton number Z=28 Very neutron-rich and neutron-deficient copper isotopes are ionized with the ISOLDE resonance ionization laser ion source (RILIS) to provide beams with low cross contamination.\\\\ \\\\On the neutron-deficient side the high $Q_\\beta$-values of $^{56}$Cu (15~MeV) and $^{57}$Cu (8.8~MeV) allow to study levels at high excitation energies in the doubly magic nucleus $^{56}$Ni and the neighbouring $^{57}$Ni. On the neutron-rich side the spectroscopy with separated copper isotopes allows presently the closest approach to the doubly magic $^{78}$Ni at an ISOL facility. Up to now no suitable target material with a rapid release was found for nickel itself. A slow release behaviour has to be assumed also for the chemically similar elements iron and cobalt.\\\\ \\\\Using a narrow-bandwidth dye laser and tuning of the laser frequency allows to scan the hyperfine splittings of the copper isotopes and isome...

  20. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  1. Pulsed-DC selfsputtering of copper

    International Nuclear Information System (INIS)

    Wiatrowski, A; Posadowski, W M; Radzimski, Z J

    2008-01-01

    At standard magnetron sputtering conditions (argon pressure ∼0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (∼550W/cm 2 ). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%

  2. Pulsed-DC selfsputtering of copper

    Science.gov (United States)

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-03-01

    At standard magnetron sputtering conditions (argon pressure ~0.5 Pa) inert gas particles are often entrapped in the formed films. Inert gas contamination can be eliminated by using the self-sustained magnetron sputtering process because it is done in the absence of the inert gas atmosphere. The self-sustained sputtering (SSS) gives also a unique condition during the transport of sputtered particles to the substrate. It is especially useful for filling high aspect ratio submicron scale structures for microelectronics. So far it has been shown that the self-sputtering process can be sustained in the DC operation mode (DC-SSS) only. The main disadvantage of DC-SSS process is instability related to possible arc formation. Usage of pulsed sputtering, similarly to reactive pulsed magnetron sputtering, could eliminate this problem. In this paper results of pulsed-DC self-sustained magnetron sputtering (pulsed DC-SSS) of copper are presented for the first time. The planar magnetron equipped with a 50 mm in diameter and 6 mm thick copper target was powered by DC-power supply modulated by power switch. The maximum target power was about 11 kW (~550W/cm2). The magnetron operation was investigated as a function of pulsing frequency (20-100 kHz) and duty factor (50-90%). The discharge extinction pressure was determined for these conditions. The plasma emission spectra (400-410nm range) and deposition rates were observed for both DC and pulsed DC sustained self-sputtering processes. The presented results illustrate that stable pulsed DC-SSS process can be obtained at pulsing frequency in the range of 60-100 kHz and duty factor of 70-90%.

  3. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives

    Science.gov (United States)

    Carol A. Clausen; Frederick Green

    2003-01-01

    Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...

  4. The role of headwater streams in downstream water quality

    Science.gov (United States)

    Alexander, R.B.; Boyer, E.W.; Smith, R.A.; Schwarz, G.E.; Moore, R.B.

    2007-01-01

    Knowledge of headwater influences on the water-quality and flow conditions of downstream waters is essential to water-resource management at all governmental levels; this includes recent court decisions on the jurisdiction of the Federal Clean Water Act (CWA) over upland areas that contribute to larger downstream water bodies. We review current watershed research and use a water-quality model to investigate headwater influences on downstream receiving waters. Our evaluations demonstrate the intrinsic connections of headwaters to landscape processes and downstream waters through their influence on the supply, transport, and fate of water and solutes in watersheds. Hydrological processes in headwater catchments control the recharge of subsurface water stores, flow paths, and residence times of water throughout landscapes. The dynamic coupling of hydrological and biogeochemical processes in upland streams further controls the chemical form, timing, and longitudinal distances of solute transport to downstream waters. We apply the spatially explicit, mass-balance watershed model SPARROW to consider transport and transformations of water and nutrients throughout stream networks in the northeastern United States. We simulate fluxes of nitrogen, a primary nutrient that is a water-quality concern for acidification of streams and lakes and eutrophication of coastal waters, and refine the model structure to include literature observations of nitrogen removal in streams and lakes. We quantify nitrogen transport from headwaters to downstream navigable waters, where headwaters are defined within the model as first-order, perennial streams that include flow and nitrogen contributions from smaller, intermittent and ephemeral streams. We find that first-order headwaters contribute approximately 70% of the mean-annual water volume and 65% of the nitrogen flux in second-order streams. Their contributions to mean water volume and nitrogen flux decline only marginally to about 55% and

  5. Copper complexes as 'radiation recovery' agents

    International Nuclear Information System (INIS)

    Sorenson, J.R.J.

    1989-01-01

    Copper and its compounds have been used for their remedial effects since the beginning of recorded history. As early as 3000 BC the Egyptians used copper as an antiseptic for healing wounds and to sterilise drinking water; and later, ca 1550 BC, the Ebers Papyrus reports the use of copper acetate, copper sulphate and pulverised metallic copper for the treatment of eye infections. These historical uses of copper and its compounds are particularly interesting in the light of modern evidence concerning the use of certain copper complexes for the treatment of radiation sickness and more recently as an adjunct to radiotherapy for cancer patients. (author)

  6. Neutron activation analysis with a deuteron accelerator. Application to the determination of copper in a Cu-Sn mixture

    International Nuclear Information System (INIS)

    Kodia, A.A.

    1976-01-01

    Neutron activation analysis allows a rapid determination of trace elements. It has many applications in vegetal biology, agronomy, animal biology, medicine and industry. This report presents the different devices used (deuteron accelerator, 3 H-Ti/Zr target, NaI(Tl) scintillation counter, Li-drifted Ge detector), the theory of the method and an application to the determination of copper in a copper-mixture [fr

  7. Copper: From neurotransmission to neuroproteostasis

    Directory of Open Access Journals (Sweden)

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  8. Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives.

    Science.gov (United States)

    Pérez, Miriam; García, Mónica; Blustein, Guillermo

    2015-08-01

    Cuprous oxide is the most commonly used biocide in antifouling paints. However, copper has harmful effects not only on the fouling community but also on non-target species. In the current study, we investigated the use of thymol, eugenol and guaiacol in this role combined with small quantities of copper. Phenolic compounds were tested for anti-settlement activity against cyprid larvae of the barnacle Balanus amphitrite and for their toxicity to nauplius larvae. Thymol, eugenol and guaiacol were active for anti-settlement but guaiacol had the disadvantage of being toxic to nauplius larvae. However, all of them showed therapeutic ratio>1. Antifouling paints with thymol (low copper content/thymol, LCP/T), eugenol (low copper content/eugenol, LCP/E) and guaiacol (low copper content/guaiacol, LCP/G) combined with small copper content were formulated for field trials. After 12 months exposure in the sea, statistical analysis revealed that LCP/T and LCP/E paints were the most effective combinations and had similar performances to control paints with high copper content (traditional cuprous oxide based paints). In contrast, LCP/G paint was only partially effective in preventing and inhibiting biofouling and was colonized by some hard and soft foulers. However, this antifouling paint was effective against calcareous tubeworm Hydroides elegans. In the light of various potential applications, thymol, eugenol and guaiacol have thus to be considered in future antifouling formulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. New developments in cryo-targets for the external COSY experiments

    CERN Document Server

    Abdel-Samad, S; Kilian, K

    2002-01-01

    For cooling the liquid hydrogen/deuterium target from room temperature to the operating temperature (15 K/19 K) until recently a long solid copper heat conductor and a short heat pipe was used between cooling machine and the target cell. Recently, a new target version with metallic heat conductor of minimal length and a long gravity-assisted heat pipe section was constructed. The target material is used as a heat transport medium and high heat transfer is achieved by liquid-gas circulation. This design drastically reduces the weight of the system to less than 10 g in the 32 cm long standard geometry as compared with the previous copper heat conductors of 600 g. Uncontrollable secondary interactions are thus avoided. The cycle time of cooling down or heating up is reduced. The characteristics at steady-state operating conditions of the new 32 cm heat pipe-target system have been measured for hydrogen, deuterium, nitrogen and methane as the working fluids. Also successful was the development of a 2 m long heat ...

  10. Downstream Yangtze River levels impacted by Three Gorges Dam

    International Nuclear Information System (INIS)

    Wang, Jida; Sheng, Yongwei; Gleason, Colin J; Wada, Yoshihide

    2013-01-01

    Changes in the Yangtze River level induced by large-scale human water regulation have profound implications on the inundation dynamics of surrounding lakes/wetlands and the integrity of related ecosystems. Using in situ measurements and hydrological simulation, this study reveals an altered Yangtze level regime downstream from the Three Gorges Dam (TGD) to the Yangtze estuary in the East China Sea as a combined result of (i) TGD’s flow regulation and (ii) Yangtze channel erosion due to reduced sediment load. During the average annual cycle of TGD’s regular flow control in 2009–2012, downstream Yangtze level variations were estimated to have been reduced by 3.9–13.5% at 15 studied gauging stations, manifested as evident level decrease in fall and increase in winter and spring. The impacts on Yangtze levels generally diminished in a longitudinal direction from the TGD to the estuary, with a total time lag of ∼9–12 days. Chronic Yangtze channel erosion since the TGD closure has lowered water levels in relation to flows at most downstream stations, which in turn counteracts the anticipated level increase by nearly or over 50% in winter and spring while reinforcing the anticipated level decrease by over 20% in fall. Continuous downstream channel erosion in the near future may further counteract the benefit of increased Yangtze levels during TGD’s water supplement in winter and accelerate the receding of inundation areas/levels of downstream lakes in fall. (letter)

  11. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    Science.gov (United States)

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.

  12. DENSITY FLUCTUATIONS UPSTREAM AND DOWNSTREAM OF INTERPLANETARY SHOCKS

    Energy Technology Data Exchange (ETDEWEB)

    Pitňa, A.; Šafránková, J.; Němeček, Z.; Goncharov, O.; Němec, F.; Přech, L. [Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00 Prague 8 (Czech Republic); Chen, C. H. K. [Department of Physics, Imperial College London, London SW7 2AZ (United Kingdom); Zastenker, G. N., E-mail: jana.safrankova@mff.cuni.cz [Space Research Institute of Russian Academy of Sciences, Moscow, Russia, Profsoyuznaya ul. 84/32, Moscow 117997 (Russian Federation)

    2016-03-01

    Interplanetary (IP) shocks as typical large-scale disturbances arising from processes such as stream–stream interactions or Interplanetary Coronal Mass Ejection (ICME) launching play a significant role in the energy redistribution, dissipation, particle heating, acceleration, etc. They can change the properties of the turbulent cascade on shorter scales. We focus on changes of the level and spectral properties of ion flux fluctuations upstream and downstream of fast forward oblique shocks. Although the fluctuation level increases by an order of magnitude across the shock, the spectral slope in the magnetohydrodynamic range is conserved. The frequency spectra upstream of IP shocks are the same as those in the solar wind (if not spoiled by foreshock waves). The spectral slopes downstream are roughly proportional to the corresponding slopes upstream, suggesting that the properties of the turbulent cascade are conserved across the shock; thus, the shock does not destroy the shape of the spectrum as turbulence passes through it. Frequency spectra downstream of IP shocks often exhibit “an exponential decay” in the ion kinetic range that was earlier reported at electron scales in the solar wind or at ion scales in the interstellar medium. We suggest that the exponential shape of ion flux spectra in this range is caused by stronger damping of the fluctuations in the downstream region.

  13. Hepatic copper content, urinary copper excretion, and serum ceruloplasmin in liver disease. [Activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ritland, S; Skrede, S [Rikshospitalet, Oslo (Norway); Steinnes, E [Institutt for Atomenergi, Kjeller (Norway)

    1977-01-01

    Liver copper content, urinary copper output and plasma ceruloplasmin have been evaluated in a variety of liver disorders. An activation analysis procedure for the determination of liver copper content is described. Dried biopsy samples were irradiated for two days at a thermal neutron flux of 1.5x10/sup 13/ ncm/sup -2/sec/sup -1/. After one day's delay the samples were dissolved in an acid mixture with copper carrier, and separated on an anion exchange column. The /sup 64/Cu activity in the separated fractions was recorded by gamma spectrometry using a Ge(Li) solid detector. The urinary copper excretion and the serum ceruloplasmin were determined by conventional laboratory methods.

  14. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135 deg

    Energy Technology Data Exchange (ETDEWEB)

    Agosteo, S. [Dipartimento di Ingegneria Nucleare, Politecnico di Milano, via Ponzio 34/3, 20133 Milan (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milan (Italy); Birattari, C. [Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, 20133 Milan (Italy); Universita degli Studi di Milano, Dipartimento di Fisica, via Celoria 16, 20133 Milan (Italy); Dimovasili, E. [CERN, 1211 Geneva 23 (Switzerland); Foglio Para, A. [Dipartimento di Ingegneria Nucleare, Politecnico di Milano, via Ponzio 34/3, 20133 Milan (Italy); Silari, M. [CERN, 1211 Geneva 23 (Switzerland)]. E-mail: marco.silari@cern.ch; Ulrici, L. [CERN, 1211 Geneva 23 (Switzerland); Vincke, H. [CERN, 1211 Geneva 23 (Switzerland)

    2005-02-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 deg with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: <100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normalization factor. Analytic expressions are given for the variation of the integral yield as a function of emission angle and of target mass number.

  15. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135 deg

    International Nuclear Information System (INIS)

    Agosteo, S.; Birattari, C.; Dimovasili, E.; Foglio Para, A.; Silari, M.; Ulrici, L.; Vincke, H.

    2005-01-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 deg with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: <100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normalization factor. Analytic expressions are given for the variation of the integral yield as a function of emission angle and of target mass number

  16. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135°

    Science.gov (United States)

    Agosteo, S.; Birattari, C.; Dimovasili, E.; Foglio Para, A.; Silari, M.; Ulrici, L.; Vincke, H.

    2005-02-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135° with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: <100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normalization factor. Analytic expressions are given for the variation of the integral yield as a function of emission angle and of target mass number.

  17. Cell density dependence of Microcystis aeruginosa responses to copper algaecide concentrations: Implications for microcystin-LR release.

    Science.gov (United States)

    Kinley, Ciera M; Iwinski, Kyla J; Hendrikse, Maas; Geer, Tyler D; Rodgers, John H

    2017-11-01

    Along with mechanistic models, predictions of exposure-response relationships for copper are often derived from laboratory toxicity experiments with standardized experimental exposures and conditions. For predictions of copper toxicity to algae, cell density is a critical factor often overlooked. For pulse exposures of copper-based algaecides in aquatic systems, cell density can significantly influence copper sorbed by the algal population, and consequent responses. A cyanobacterium, Microcystis aeruginosa, was exposed to a copper-based algaecide over a range of cell densities to model the density-dependence of exposures, and effects on microcystin-LR (MC-LR) release. Copper exposure concentrations were arrayed to result in a gradient of MC-LR release, and masses of copper sorbed to algal populations were measured following exposures. While copper exposure concentrations eliciting comparable MC-LR release ranged an order of magnitude (24-h EC50s 0.03-0.3mg Cu/L) among cell densities of 10 6 through 10 7 cells/mL, copper doses (mg Cu/mg algae) were similar (24-h EC50s 0.005-0.006mg Cu/mg algae). Comparisons of MC-LR release as a function of copper exposure concentrations and doses provided a metric of the density dependence of algal responses in the context of copper-based algaecide applications. Combined with estimates of other site-specific factors (e.g. water characteristics) and fate processes (e.g. dilution and dispersion, sorption to organic matter and sediments), measuring exposure-response relationships for specific cell densities can refine predictions for in situ exposures and algal responses. These measurements can in turn decrease the likelihood of amending unnecessary copper concentrations to aquatic systems, and minimize risks for non-target aquatic organisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake

    NARCIS (Netherlands)

    Berghe, van den P.V.E; Folmer, D.E.; Malingré, H.E.M.; Beurden, van E.; Klomp, A.E.M.; Sluis, van de B.; Merkx, M.; Berger, R.J.; Klomp, L.W.J.

    2007-01-01

    High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis,

  19. Msx genes are important apoptosis effectors downstream of the Shh/Gli3 pathway in the limb.

    Science.gov (United States)

    Lallemand, Yvan; Bensoussan, Vardina; Cloment, Cécile Saint; Robert, Benoît

    2009-07-15

    In tetrapods, the anteroposterior (AP) patterning of the limb is under the control of the antagonistic activities of the secreted factor Sonic hedgehog (Shh) and Gli3R, the truncated repressor form of the transcription factor Gli3. In this report, we show that Msx1 and Msx2 are targets and downstream effectors of Gli3R. Consequently, in Shh null mutants, Msx genes are overexpressed and, furthermore, partially responsible for the limb phenotype. This is exemplified by the fact that reducing Msx activity in Shh mutants partially restores a normal limb development. Finally, we show that the main action of the Msx genes, in both normal and Shh(-/-) limb development, is to control cell death in the mesenchyme. We propose that, in the limb, Msx genes act downstream of the Shh/Gli3 pathway by transducing BMP signaling and that, in the absence of Shh signaling, their deregulation contributes to the extensive apoptosis that impairs limb development.

  20. miR-342-5p Regulates Neural Stem Cell Proliferation and Differentiation Downstream to Notch Signaling in Mice

    Directory of Open Access Journals (Sweden)

    Fang Gao

    2017-04-01

    Full Text Available Summary: Notch signaling is critically involved in neural development, but the downstream effectors remain incompletely understood. In this study, we cultured neurospheres from Nestin-Cre-mediated conditional Rbp-j knockout (Rbp-j cKO and control embryos and compared their miRNA expression profiles using microarray. Among differentially expressed miRNAs, miR-342-5p showed upregulated expression as Notch signaling was genetically or pharmaceutically interrupted. Consistently, the promoter of the miR-342-5p host gene, the Ena-vasodilator stimulated phosphoprotein-like (Evl, was negatively regulated by Notch signaling, probably through HES5. Transfection of miR-342-5p promoted the differentiation of neural stem cells (NSCs into intermediate neural progenitors (INPs in vitro and reduced the stemness of NSCs in vivo. Furthermore, miR-342-5p inhibited the differentiation of neural stem/intermediate progenitor cells into astrocytes, likely mediated by targeting GFAP directly. Our results indicated that miR-342-5p could function as a downstream effector of Notch signaling to regulate the differentiation of NSCs into INPs and astrocytes commitment. : In this article, Han and colleagues show that miR-342-5p acts as a downstream effector of Notch signaling in the mouse CNS. Notch signal inhibits miR-342-5p expression by regulating its host gene Evl. And with attenuated Notch signal in NSCs, miR-342-5p is upregulated to promote NSCs transition into INPs, and to inhibit astrocyte commitment by targeting GFAP. Keywords: neural stem cells, intermediate neural progenitors, Notch, RBP-J, neuron, glia, miR-342-5p

  1. Molecular Characterization of CTR-type Copper Transporters in an Oceanic Diatom, Thalassiosira oceanica 1005

    Science.gov (United States)

    Kong, L.; Price, N. M.

    2016-02-01

    Copper is an essential micronutrient for phytoplankton growth because of its role as a redox cofactor in electron transfer proteins in photosynthesis and respiration, and a potentially limiting resource in parts of the open sea. Thalassiosira oceanica 1005 can grow at inorganic copper concentrations varying from 10 fmol/L to 10 nmol/L by regulating copper uptake across plasma membrane. Four putative CTR-type copper transporter genes (ToCTR1, ToCTR2, ToCTR3.1 and ToCTR3.2) were identified by BLASTP search against the T. oceanica genome. Predicted gene models were revised by assembled mRNA sequencing transcripts and updated gene models contained all conserved features of characterized CTR-type copper transporters. ToCTR3.1 and ToCTR3.2 may arise from one another by gene duplication as they shared a sequence similarity of 97.6% with a peptide insertion of 5 amino acids at N-terminus of ToCTR3.1. The expression of ToCTR1, ToCTR2 and ToCTR3.1/3.2 was upregulated in low copper concentrations, but only ToCTR3.1/3.2 showed a significant increase (2.5 fold) in copper-starved cells. Both ToCTR3.1 and ToCTR3.2 restored growth of a yeast double mutant, Saccharomyces cerevisiae ctr1Δctr3Δ, in copper deficient medium. GFP-fused ToCTR expression showed that some ToCTR3.1 localized to the plasma membrane but a large portion was retained in the endoplasmic reticulum. Inefficient targeting of ToCTR3.1 to the yeast outer membrane may explain poorer growth compared to the Saccharomyces native ScCTR1 transformant. Thus, diatom CTR genes encoding CTR-type copper transporters show high-affinity copper uptake and their regulation may enable diatoms to survive in ocean environments containing a wide range of copper concentrations.

  2. Critical effects of downstream boundary conditions on vortex breakdown

    Science.gov (United States)

    Kandil, Osama; Kandil, Hamdy A.; Liu, C. H.

    1992-01-01

    The unsteady, compressible, full Navier-Stokes (NS) equations are used to study the critical effects of the downstream boundary conditions on the supersonic vortex breakdown. The present study is applied to two supersonic vortex breakdown cases. In the first case, quasi-axisymmetric supersonic swirling flow is considered in a configured circular duct, and in the second case, quasi-axisymmetric supersonic swirling jet, that is issued from a nozzle into a supersonic jet of lower Mach number, is considered. For the configured duct flow, four different types of downstream boundary conditions are used, and for the swirling jet flow from the nozzle, two types of downstream boundary conditions are used. The solutions are time accurate which are obtained using an implicit, upwind, flux-difference splitting, finite-volume scheme.

  3. Optogenetic analysis of a nociceptor neuron and network reveals ion channels acting downstream of primary sensors

    Science.gov (United States)

    Husson, Steven J.; Costa, Wagner Steuer; Wabnig, Sebastian; Stirman, Jeffrey N.; Watson, Joseph D.; Spencer, W. Clay; Akerboom, Jasper; Looger, Loren L.; Treinin, Millet; Miller, David M.; Lu, Hang; Gottschalk, Alexander

    2012-01-01

    Summary Background Nociception generally evokes rapid withdrawal behavior in order to protect the tissue from harmful insults. Most nociceptive neurons responding to mechanical insults display highly branched dendrites, an anatomy shared by Caenorhabditis elegans FLP and PVD neurons, which mediate harsh touch responses. Although several primary molecular nociceptive sensors have been characterized, less is known about modulation and amplification of noxious signals within nociceptor neurons. First, we analyzed the FLP/PVD network by optogenetics and studied integration of signals from these cells in downstream interneurons. Second, we investigated which genes modulate PVD function, based on prior single neuron mRNA profiling of PVD. Results Selectively photoactivating PVD, FLP and downstream interneurons using Channelrhodopsin-2 (ChR2) enabled functionally dissecting this nociceptive network, without interfering signals by other mechanoreceptors. Forward or reverse escape behaviors were determined by PVD and FLP, via integration by command interneurons. To identify mediators of PVD function, acting downstream of primary nocisensor molecules, we knocked down PVD-specific transcripts by RNAi and quantified light-evoked PVD-dependent behavior. Cell-specific disruption of synaptobrevin or voltage-gated Ca2+-channels (VGCCs) showed that PVD signals chemically to command interneurons. Knocking down the DEG/ENaC channel ASIC-1 and the TRPM channel GTL-1 indicated that ASIC-1 may extend PVD’s dynamic range and that GTL-1 may amplify its signals. These channels act cell-autonomously in PVD, downstream of primary mechanosensory molecules. Conclusions Our work implicates TRPM channels in modifying excitability of, and DEG/ENaCs in potentiating signal output from a mechano-nociceptor neuron. ASIC-1 and GTL-1 homologues, if functionally conserved, may denote valid targets for novel analgesics. PMID:22483941

  4. Cu,Zn-superoxide dismutase is lower and copper chaperone CCS is higher in erythrocytes of copper-deficient rats and mice.

    Science.gov (United States)

    West, Elizabeth C; Prohaska, Joseph R

    2004-09-01

    Discovery of a sensitive blood biochemical marker of copper status would be valuable for assessing marginal copper intakes. Rodent models were used to investigate whether erythrocyte concentrations of copper,zinc-superoxide dismutase (SOD), and the copper metallochaperone for SOD (CCS) were sensitive to dietary copper changes. Several models of copper deficiency were studied in postweanling male Holtzman rats, male Swiss Webster mice offspring, and both rat and mouse dams. Treatment resulted in variable but significantly altered copper status as evaluated by the presence of anemia, and lower liver copper and higher liver iron concentrations in copper-deficient compared with copper-adequate animals. Associated with this copper deficiency were consistent reductions in immunoreactive SOD and robust enhancements in CCS. In most cases, the ratio of CCS:SOD was several-fold higher in red blood cell extracts from copper-deficient compared with copper-adequate rodents. Determination of red cell CCS:SOD may be useful for assessing copper status of humans.

  5. Gibbs energy calculation of electrolytic plasma channel with inclusions of copper and copper oxide with Al-base

    Science.gov (United States)

    Posuvailo, V. M.; Klapkiv, M. D.; Student, M. M.; Sirak, Y. Y.; Pokhmurska, H. V.

    2017-03-01

    The oxide ceramic coating with copper inclusions was synthesized by the method of plasma electrolytic oxidation (PEO). Calculations of the Gibbs energies of reactions between the plasma channel elements with inclusions of copper and copper oxide were carried out. Two methods of forming the oxide-ceramic coatings on aluminum base in electrolytic plasma with copper inclusions were established. The first method - consist in the introduction of copper into the aluminum matrix, the second - copper oxide. During the synthesis of oxide ceramic coatings plasma channel does not react with copper and copper oxide-ceramic included in the coating. In the second case is reduction of copper oxide in interaction with elements of the plasma channel. The content of oxide-ceramic layer was investigated by X-ray and X-ray microelement analysis. The inclusions of copper, CuAl2, Cu9Al4 in the oxide-ceramic coatings were found. It was established that in the spark plasma channels alongside with the oxidation reaction occurs also the reaction aluminothermic reduction of the metal that allows us to dope the oxide-ceramic coating by metal the isobaric-isothermal potential oxidation of which is less negative than the potential of the aluminum oxide.

  6. Effects of vacuum processing erbium dideuteride/ditritide films deposited on chromium underlays on copper substrates

    International Nuclear Information System (INIS)

    Provo, J.L.

    1978-01-01

    Thin films of erbium dideuteride/ditritide were experimentally produced on chromium underlays deposited on copper substrates. The chromium underlay is required to prevent erbium occluder/copper substrate alloying which inhibits hydriding. Data taken has shown that vacuum processing affects the erbium/chromium/copper interaction. With an in situ process in which underlay/occluder films are vacuum deposited onto copper substrates and hydrided with no air exposure between these steps, data indicates a minimum of 1500A of chromium is required for optimum hydriding. If films are vacuum deposited as above and air-exposed before hydriding, a minimum of 3000A of chromium was shown to be required for equivalent hydriding. Data suggests that the activation step (600 0 C for 1 hour) required for hydriding the film of the second type is responsible for the difference observed. Such underlay thickness parameters are important, with regard to heat transfer considerations in thin hydride targets used for neutron generation

  7. Solid state impact welding of BMG and copper by vaporizing foil actuator welding

    Energy Technology Data Exchange (ETDEWEB)

    Vivek, Anupam, E-mail: vivek.4@osu.edu [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Presley, Michael [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Flores, Katharine M. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States); Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University, One Brookings Drive, St. Louis, MO 63130 (United States); Hutchinson, Nicholas H.; Daehn, Glenn S. [Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 (United States)

    2015-05-14

    The objective of this study was to create impact welds between a Zr-based Bulk Metallic Glass (BMG) and copper at a laboratory scale and subsequently investigate the relationship between interfacial structure and mechanical properties. Vaporizing Foil Actuator (VFA) has recently been demonstrated as a versatile tool for metalworking applications: impact welding of dissimilar materials being one of them. Its implementation for welding is termed as VFA Welding or VFAW. With 8 kJ input energy into an aluminum foil actuator, a 0.5 mm thick Cu110 alloy sheet was launched toward a BMG target resulting in an impact at a velocity of nearly 600 m/s. For this experiment, the welded interface was straight with a few BMG fragments embedded in the copper sheet in some regions. Hardness tests across the interface showed increase in strength on the copper side. Instrumented peel test resulted in failure in the parent copper sheet. A slower impact velocity during a separate experiment resulted in a weld, which had wavy regions along the interface and in peel failure again happened in the parent copper sheet. Some through-thickness cracks were observed in the BMG plate and there was some spall damage in the copper flyers. TEM electron diffraction on a sample, cut out from the wavy weld interface region using a focused ion beam, showed that devitrification of the BMG was completely avoided in this welding process.

  8. Cladding Heatup Prediction between Spacer Grids for the Downstream Effect Evaluation

    International Nuclear Information System (INIS)

    Park, J. Y.; Kim, M. W.

    2009-01-01

    Since a recirculation sump clogging issue by debris generated from high energy pipe line break had been invoked as GSI-191 in the US, many researches on this issue have been undertaken. Previous researches on this topic are well summarized in Bang et al. Due to comprehensive nature of the issue, it includes many area of research and one of them is the area of downstream effect evaluation. The downstream effect is involved with adverse effects of debris passing the sump screen on the downstream systems, components and piping including core and it can be further divided into an ex-vessel downstream effect and an in-vessel downstream effect. In the ex-vessel downstream effect, focus is laid on plugging of spray nozzle, wearing and abrasion of moving parts of pump and valve and etc. Otherwise, a debris effect on reactor core is focused in the in-vessel downstream effect. Since debris can be ingested in the core or the systems of downstream of sump screen during recirculation, basically the downstream effect influences long-term core cooling phase. With respect to the in-vessel downstream effect, an up-to-date evaluation methodology is well summarized in a topical report submitted to the US nuclear regulatory commission by the pressurized water reactor owners group (PWROG). The report evaluates various aspects of debris ingestion in the core such as blockage at the core inlet, collection of debris on fuel grids, plating-out of fuel, chemical precipitants, protective coatings effect and etc. Most of them are evaluated qualitative manner based on previous research results and geometrical consideration on fuel rod bundles but some of them are also backed up by quantitative calculations to corroborate the qualitative decisions. One of them is a cladding heatup calculation between spacer grids. This is done to demonstrate that the cladding temperature of a fuel rod between grids with debris deposited on the clad surface in a post- LOCA recirculation environment is below

  9. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  10. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  11. Mortality of zebra mussel, Dreissena polymorpha, veligers during downstream transport

    Science.gov (United States)

    Horvath, T.G.; Lamberti, G.A.

    1999-01-01

    1. Streams flowing from lakes which contain zebra mussels, Dreissena polymorpha, provide apparently suitable habitats for mussel colonization and downstream range expansion, yet most such streams contain few adult mussels. We postulated that mussel veligers experience high mortality during dispersal via downstream transport. They tested this hypothesis in Christiana Creek, a lake-outlet stream in south-western Michigan, U.S.A., in which adult mussel density declined exponentially with distance downstream. 2. A staining technique using neutral red was developed and tested to distinguish quickly live and dead veligers. Live and dead veligers were distinguishable after an exposure of fresh samples to 13.3 mg L-1 of neutral red for 3 h. 3. Neutral red was used to determine the proportion of live veligers in samples taken longitudinally along Christiana Creek. The proportion of live veligers (mean ?? SE) declined from 90 ?? 3% at the lake outlet to 40 ?? 8% 18 km downstream. 4. Veligers appear to be highly susceptible to damage by physical forces (e.g. shear), and therefore, mortality in turbulent streams could be an important mechanism limiting zebra mussel dispersal to downstream reaches. Predictions of zebra mussel spread and population growth should consider lake-stream linkages and high mortality in running waters.

  12. Mercury exposure in terrestrial birds far downstream of an historical point source

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Allyson K., E-mail: allyson.jackson@briloon.org [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); Institute for Integrative Bird Behavior Studies, Department of Biology, College of William and Mary, PO Box 8795, Williamsburg, VA 23187 (United States); Evers, David C.; Folsom, Sarah B. [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); Condon, Anne M. [U.S. Fish and Wildlife Service, 6669 Short Lane, Gloucester, VA 23061 (United States); Diener, John; Goodrick, Lizzie F. [Biodiversity Research Institute, 19 Flaggy Meadow Road, Gorham, ME 04038 (United States); McGann, Andrew J. [Institute for Integrative Bird Behavior Studies, Department of Biology, College of William and Mary, PO Box 8795, Williamsburg, VA 23187 (United States); Schmerfeld, John [U.S. Fish and Wildlife Service, 6669 Short Lane, Gloucester, VA 23061 (United States); Cristol, Daniel A. [Institute for Integrative Bird Behavior Studies, Department of Biology, College of William and Mary, PO Box 8795, Williamsburg, VA 23187 (United States)

    2011-12-15

    Mercury (Hg) is a persistent environmental contaminant found in many freshwater and marine ecosystems. Historical Hg contamination in rivers can impact the surrounding terrestrial ecosystem, but there is little known about how far downstream this contamination persists. In 2009, we sampled terrestrial forest songbirds at five floodplain sites up to 137 km downstream of an historical source of Hg along the South and South Fork Shenandoah Rivers (Virginia, USA). We found that blood total Hg concentrations remained elevated over the entire sampling area and there was little evidence of decline with distance. While it is well known that Hg is a pervasive and long-lasting aquatic contaminant, it has only been recently recognized that it also biomagnifies effectively in floodplain forest food webs. This study extends the area of concern for terrestrial habitats near contaminated rivers for more than 100 km downstream from a waterborne Hg point source. - Highlights: > We report blood mercury levels for terrestrial songbirds downstream of contamination. > Blood mercury levels remain elevated above reference for at least 137 km downstream. > Trends vary based on foraging guild and migration strategy. > Mercury affects terrestrial biota farther downstream than previously documented. - Blood mercury levels of forest songbirds remain elevated above reference levels for at least 137 km downstream of historical point source.

  13. Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films

    Science.gov (United States)

    Fredj, Narjes; Burleigh, T. David; New Mexico Tech Team

    2014-03-01

    This investigation describes an electrochemical technique for growing adhesive copper oxide films on copper with attractive colors ranging from gold-brown to pearl with intermediate colors from red violet to gold green. The technique consists of anodically dissolving copper at transpassive potentials in hot sodium hydroxide, and then depositing brilliant color films of Cu2O onto the surface of copper after the anodic potential has been turned off. The color of the copper oxide film depends on the temperature, the anodic potential, the time t1 of polarization, and the time t2, which is the time of immersion after potential has been turned off. The brilliant colored films were characterized using glancing angle x-ray diffraction, and the film was found to be primarily Cu2O. Cyclic voltammetry, chronopotentiometry, scanning electron microscopy, and x-ray photoelectron spectroscopy were also used to characterize these films.

  14. Thermal conductivity of glass copper-composite

    International Nuclear Information System (INIS)

    Kinoshita, Makoto; Terai, Ryohei; Haidai, Haruki

    1980-01-01

    Glass-metal composites are to be one of the answers for promoting thermal conduction in the glassy solids containing high-level radioactive wastes. In order to investigate the effect of metal addition on thermal conductivity of glasses, glass-copper composites were selected, and the conductivities of the composites were measured and discussed in regards to copper content and microstructure. Fully densified composites were successfully prepared by pressure sintering of the powder mixtures of glass and copper at temperatures above the yield points of the constituent glasses if the copper content was not so much. The conductivity was measured by means of a comparative method, in which the thermal gradient of the specimen was compared with that of quartz glass as standard under thermally steady state. Measurements were carried out at around 50 0 C. The thermal conductivity increased with increasing content of copper depending on the kind of copper powder used. The conductivities of the composites of the same copper content differed considerably each another. Fine copper powder was effective on increasing conductivity, and the conductivity became about threefold of that of glass by mixing the fine copper powder about 10 vol%. For the composites containing the fine copper powder less than 5 vol%, the conductivity obeyed so-called logarithmic rule, one of the mixture rules of conductivity, whereas for composites containing more than 5 vol%, the conductivity remarkably increased apart from the rule. This fact suggests that copper becomes continuous in the composite when the copper content increased beyond 5 vol%. For the composites containing coarse copper powder, the conductivity was increased not significantly, and obeyed an equation derived from the model in which conductive material dispersed in less conductive one. (author)

  15. Effects of organic matters coming from Chinese tea on soluble copper release from copper teapot

    International Nuclear Information System (INIS)

    Ni Lixiao; Li Shiyin

    2008-01-01

    The morphology and elemental composition of the corrosion products of copper teapot's inner-surface were characterized by the scanning electron microscopy and energy dispersive X-ray surface analysis (SEM/EDS), X-ray powder diffraction (XRD) and X-ray photon spectroscopy (XPS) analysis. It was revealed that Cu, Fe, Ca, P, Si and Al were the main elements of corrosion by-products, and the α-SiO 2 , Cu 2 O and CaCO 3 as the main mineral components on the inner-surface of copper teapot. The effects of organic matters coming from Chinese tea on soluble copper release from copper teapots in tap water were also investigated. The results showed that the doses of organic matter (as TOC), temperate and stagnation time have significant effects on the concentration of soluble copper released from copper teapots in tap water

  16. Synthesis of cytochrome c oxidase 1 (SCO1) inhibits insulin sensitivity by decreasing copper levels in adipocytes.

    Science.gov (United States)

    Wei, Xiang-Bo; Guo, Liang; Liu, Yang; Zhou, Shui-Rong; Liu, Yuan; Dou, Xin; Du, Shao-Yue; Ding, Meng; Peng, Wan-Qiu; Qian, Shu-Wen; Huang, Hai-Yan; Tang, Qi-Qun

    2017-09-23

    Dysregulation of insulin signaling leads to type 2 diabetes mellitus (T2DM) and other metabolic disorders. Obesity is an important contributor to insulin resistance, and although the understanding of this relationship has improved in recent years, the mechanism of obesity-induced insulin resistance is not completely understood. Disorders of copper metabolism tend to accompany the development of obesity, which increases the risk of insulin resistance. Synthesis of cytochrome c oxidase 1 (SCO1) functions in the assembly of cytochrome c oxidase (COX) and cellular copper homeostasis. However, the role of SCO1 in the regulation of metabolism remains unknown. Here, we found that obese mice had higher expression of SCO1 and lower levels of copper in white adipose tissue (WAT) than did the control mice. Overexpression of SCO1 in adipocytes was associated with copper deficiency. Copper increased insulin sensitivity by decreasing the level of phosphatase and tensin homolog (PTEN) protein. Ectopic expression of SCO1 led to insulin resistance and was accompanied by a decrease in intracellular copper level, and addition of copper abolished the inhibitory effect of SCO1 on insulin sensitivity. Our results demonstrated a novel role of SCO1 in modulating insulin sensitivity via the regulation of copper concentration in WAT and suggested a potential therapeutic target for T2DM. Copyright © 2017. Published by Elsevier Inc.

  17. Hydrothermally treated chitosan hydrogel loaded with copper and zinc particles as a potential micro-nutrient based antimicrobial feed additive

    Directory of Open Access Journals (Sweden)

    Parthiban eRajasekaran

    2015-11-01

    Full Text Available Large-scale use of antibiotics in food animal farms as growth promoters is considered as one of the driving factors behind increasing incidence of microbial resistance. Several alternatives are under investigation to reduce the amount of total antibiotics used in order to avoid any potential transmission of drug resistant microbes to humans through food chain. Copper sulfate and zinc oxide salts are used as feed supplement as they exhibit antimicrobial properties in addition to being micronutrients. However, higher dosage of copper and zinc (often needed for growth promoting effect to animals is not advisable because of potential environmental toxicity arising from excreta. Innovative strategies are needed to utilize the complete potential of trace minerals as growth promoting feed supplements. To this end, we describe here the development and preliminary characterization of hydrothermally treated chitosan as a delivery vehicle for copper and zinc nanoparticles that could act as a micronutrient based antimicrobial feed supplement. Material characterization studies showed that hydrothermal treatment makes a chitosan hydrogel that re-arranged to capture the copper and zinc metal particles. Systemic antimicrobial assays showed that this chitosan biopolymer matrix embedded with copper (57.6 μg/ml and zinc (800 μg/ml reduced the load of model gut-bacteria (target organisms of growth promoting antibiotics such as Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and Lactobacillus fermentum under in vitro conditions. Particularly, the chitosan/copper/zinc hydrogel exhibited significantly higher antimicrobial effect against L. fermentum, one of the primary targets of antibiotic growth promoters. Additionally, the chitosan matrix ameliorated the cytotoxicity levels of metal supplements when screened against a murine macrophage cell line RAW 264.7 and in TE-71, a murine thymic epithelial cell line. In this proof of concept study, we show

  18. Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions

    International Nuclear Information System (INIS)

    Puigdomenech, I.; Taxen, C.

    2000-08-01

    The stability of copper canisters has a central role in the safety concept for the planned nuclear spent fuel repository in Sweden. The corrosion of copper canisters will be influenced by the chemical and physical environment in the near-field of the repository, and thermodynamic equilibrium calculations provide the basis for understanding this system. Thermodynamic data have been selected in this work for solids and aqueous species in the system: Cu - H 2 O - H + - H 2 - F - - Cl - - S 2- - SO 4 2- - NO 3 - - NO 2 - - NH 4 + PO 4 3- - CO 3 2+ . For some reactions and compounds, for which no experimental information on temperature effects was available, entropy and heat capacity values have been estimated. The compiled data were used to calculate thermodynamic equilibria for copper systems up to 100 deg C. The stability of copper in contact with granitic groundwaters has been illustrated using chemical equilibrium diagrams, with he following main conclusions: Dissolved sulphide and O 2 in groundwater are the most damaging components for copper corrosion. If available, HS - will react quantitatively with copper to form a variety of sulphides. However, sulphide concentrations in natural waters are usually low, because it forms sparingly soluble solids with transition metals, including Fe(II), which is wide-spread in reducing environments. Chloride can affect negatively copper corrosion. High concentrations (e.g., [Cl - ]TOT > 60 g/l) may be unfavourable for the general corrosion of copper in combination with in the following circumstances: Low pH ( + . The negative effects of Cl - are emphasised at higher temperatures. The chloride-enhancement of general corrosion may be beneficial for localised corrosion: pitting and stress corrosion cracking. The concept of redox potential, E H , has been found to be inadequate to describe copper corrosion in a nuclear repository. The available amounts of oxidants/reductants, and the stoichiometry of the corrosion reactions are

  19. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    2008-01-01

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  20. Tritium-target performance at RTNS-II

    International Nuclear Information System (INIS)

    Heikkinen, D.W.; Logan, C.M.

    1982-01-01

    The Rotating Target Neutron Source (RTNS-II) uses a 360-keV deuteron beam and the 3 He(d,n) 4 He reaction to generate 14-MeV neutrons. The neutrons are used for fusion materials damage studies. The tritium target consists of a band of titanium tritide on copper alloy substrates of 23- or 50-cm diameter. During operation, the substrates are internally cooled and rotated at approx. 4000 rpm to withstand beam intensities in excess of 100 mA. Neutron production data have been accumulated for fifty-eight 23-cm and five 50-cm targets. From these data, using a non-linear least-squares fitting procedure, target performance parameters have been obtained which permit a quantitative comparison of individual targets. Average parameters are obtained for the 23- and 50-cm targets

  1. 21 CFR 73.1647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper. It...

  2. Mercury exposure in terrestrial birds far downstream of an historical point source

    International Nuclear Information System (INIS)

    Jackson, Allyson K.; Evers, David C.; Folsom, Sarah B.; Condon, Anne M.; Diener, John; Goodrick, Lizzie F.; McGann, Andrew J.; Schmerfeld, John; Cristol, Daniel A.

    2011-01-01

    Mercury (Hg) is a persistent environmental contaminant found in many freshwater and marine ecosystems. Historical Hg contamination in rivers can impact the surrounding terrestrial ecosystem, but there is little known about how far downstream this contamination persists. In 2009, we sampled terrestrial forest songbirds at five floodplain sites up to 137 km downstream of an historical source of Hg along the South and South Fork Shenandoah Rivers (Virginia, USA). We found that blood total Hg concentrations remained elevated over the entire sampling area and there was little evidence of decline with distance. While it is well known that Hg is a pervasive and long-lasting aquatic contaminant, it has only been recently recognized that it also biomagnifies effectively in floodplain forest food webs. This study extends the area of concern for terrestrial habitats near contaminated rivers for more than 100 km downstream from a waterborne Hg point source. - Highlights: → We report blood mercury levels for terrestrial songbirds downstream of contamination. → Blood mercury levels remain elevated above reference for at least 137 km downstream. → Trends vary based on foraging guild and migration strategy. → Mercury affects terrestrial biota farther downstream than previously documented. - Blood mercury levels of forest songbirds remain elevated above reference levels for at least 137 km downstream of historical point source.

  3. Induction of ceruloplasmin synthesis by interleukin-1 in copper deficient and copper sufficient rats

    International Nuclear Information System (INIS)

    Barber, E.F.; Cousins, R.J.

    1986-01-01

    Ceruloplasmin (Cp) is a copper-containing plasma protein important in the body's acute phase defense system. In copper sufficient rats given two injections of interleukin-1 (IL-1) at 0 and 8 h, ceruloplasmin activity began to significantly increase within 6 h, but did not peak until at least 24 h. The 24 h stimulated activity was 84 +/- 2 umole p-phenylene diamine (pPD) oxidized x min -1 x L -1 compared to a control of 43 +/- 5. These rats were injected with 100uCi 3 H-leucine (ip) 2 h before sacrifice to label newly synthesized proteins. When the 3 H immunoprecipitated by rabbit anti-rat Cp serum is expressed as a percent of the 3 H precipitated by trichloroacetic acid (TCA), the basal Cp synthesis rate was 3% of the total serum protein synthesis. The rate of Cp synthesis peaked 12 h after IL-1 injection at 7% of total serum protein synthesis and by 24 h was back to the basal rate. In copper deficient rats, IL-1 given with copper induced pPD oxidase activity, while IL-1 given alone did not stimulate activity. The basal Cp synthesis rate in these rats was 3%, the same as in the copper sufficient rats. In copper deficient rats, the Cp synthesis rate was induced by IL-1 with or without an injection of copper. Therefore, if dietary copper is in short supply, then although Cp synthesis is induced by this mediator of host defense mechanisms, Cp cannot carry out its functions

  4. Leach-SX-EW copper revalorization from overburden of abandoned copper mine Cerovo, Eastern Serbia

    Directory of Open Access Journals (Sweden)

    Stevanović Z.

    2009-01-01

    Full Text Available Hydrometallurgical processes for copper revalorization from overburden of abandoned mine Cerovo in Eastern Serbia were studied. Paper contain results of percolation leaching tests, performed with acidic mine waters accumulated in the bottom of the former open pit, followed by solvent extraction (SX and electrowinning (EW processes on achieved copper pregnant leach solutions. Usage of accumulated waste waters was objected to minimizing the environmental hazard due to uncontrolled leaking of these waters in nearby creeks and rivers. Chemical composition of acidic mine waters used for leaching tests was: (g/dm3: Cu - 0.201; Fe - 0.095; Mn - 0.041; Zn - 0.026; Ni - 0.0004; pH value - 3.3. Copper content in overburden sample used for leaching tests was 0.21% from which 64% were oxide copper minerals. In scope of leaching tests were examined influence of leaching solution pH values and iron (III concentration on copper recovery. It was established that for 120 hours of leaching on pH=1.5 without oxidant agents, copper concentration in pregnant leach solutions enriched up to 1.08g/dm3 which was enough for copper extraction from solution with SX-EW treatment. As extraction reagent in SX circuit was used LIX-984N in a kerosene diluent. Cathode current density in electrowinning cell was 220Am-2 while electrolyte temperature was kept on 50±2oC. Produced cathode copper at the end of SX-EW process has purity of 99.95% Cu.

  5. Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Samreen; Goddard, Russell H.; Bielmyer-Fraser, Gretchen K., E-mail: gkbielmyer@valdosta.edu

    2015-03-15

    Highlights: • Differences between CuO NP and CuCl{sub 2} exposure were characterized. • Copper accumulation in E. pallida was concentration-dependent. • E. pallida exposed to CuCl{sub 2} accumulated higher copper tissue burdens. • The oxidative stress response was greater in E. pallida exposed to CuO NP. • Both forms of copper inhibited CA activity in E. pallida. - Abstract: Increasing use of metal oxide nanoparticles (NP) by various industries has resulted in substantial output of these NP into aquatic systems. At elevated concentrations, NP may interact with and potentially affect aquatic organisms. Environmental implications of increased NP use are largely unknown, particularly in marine systems. This research investigated and compared the effects of copper oxide (CuO) NP and dissolved copper, as copper chloride (CuCl{sub 2}), on the sea anemone, Exaiptasia pallida. Sea anemones were collected over 21 days and tissue copper accumulation and activities of the enzymes: catalase, glutathione peroxidase, glutathione reductase, and carbonic anhydrase were quantified. The size and shape of CuO NP were observed using a ecanning electron microscope (SEM) and the presence of copper was confirmed by using Oxford energy dispersive spectroscopy systems (EDS/EDX). E. pallida accumulated copper in their tissues in a concentration- and time-dependent manner, with the animals exposed to CuCl{sub 2} accumulating higher tissue copper burdens than those exposed to CuO NP. As a consequence of increased copper exposure, as CuO NP or CuCl{sub 2}, anemones increased activities of all of the antioxidant enzymes measured to some degree, and decreased the activity of carbonic anhydrase. Anemones exposed to CuO NP generally had higher anti-oxidant enzyme activities than those exposed to the same concentrations of CuCl{sub 2}. This study is useful in discerning differences between CuO NP and dissolved copper exposure and the findings have implications for exposure of aquatic

  6. Proposed industrial recovered materials utilization targets for the metals and metal products industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-05-01

    Set targets for increased utilization of energy-saving recovered materials in the metals and metal products industries (ferrous, aluminium, copper, zinc, and lead) are discussed. Data preparation and methodology development and analysis of the technological and economic factors in order to prepare draft targets for the use of recovered materials are covered. Chapter 2 provides an introductory discussion of the factors that affect the recovery and reuse of secondary materials and the competition between the primary and secondary metals industries. Chapter 3 presents general profiles for the major industrial segments comprising SIC 33, including industry structure, process technology, materials and recycling flow, and future trends for the 5 industries: ferrous, aluminium, copper, zinc, and lead. Chapter 4 presents the evaluation of recycling targets for those industries. (MCW)

  7. Chemistry of the copper silicon interface

    International Nuclear Information System (INIS)

    Ford, M.J.; Sashin, V.A.; Nixon, K.

    2002-01-01

    Full text: Copper and silicon readily interdiffuse, even at room temperature, to form an interface which can be several nanometers thick. Over the years considerable effort has gone into investigating the diffusion process and chemical nature of the interface formed. Photoemission measurements give evidence for the formation of a stable suicide with a definite stoichiometry, Cu 3 Si. This is evidenced by splitting of the Si LVV Auger line and slight shifts and change in shape of the copper valence band density of states as measured by ultra-violet photoemission. In this paper we present calculations of the electronic structure of copper suicide, bulk copper and silicon, and preliminary measurements of the interface by electron momentum spectroscopy. Densities of states for copper and copper suicide are dominated by the copper 3d bands, and difference between the two compounds are relatively small. By contrast, the full band structures are quite distinct. Hence, experimental measurements of the full band structure of the copper on silicon interface, for example by EMS, have the potential to reveal the chemistry of the interface in a detailed way

  8. The insulin receptor substrate (IRS)-1 pleckstrin homology domain functions in downstream signaling.

    Science.gov (United States)

    Vainshtein, I; Kovacina, K S; Roth, R A

    2001-03-16

    The pleckstrin homology (PH) domain of the insulin receptor substrate-1 (IRS-1) plays a role in directing this molecule to the insulin receptor, thereby regulating its tyrosine phosphorylation. In this work, the role of the PH domain in subsequent signaling was studied by constructing constitutively active forms of IRS-1 in which the inter-SH2 domain of the p85 subunit of phosphatidylinositol 3-kinase was fused to portions of the IRS-1 molecule. Chimeric molecules containing the PH domain were found to activate the downstream response of stimulating the Ser/Thr kinase Akt. A chimera containing point mutations in the PH domain that abolished the ability of this domain to bind phosphatidylinositol 4,5-bisphosphate prevented these molecules from activating Akt. These mutations also decreased by about 70% the amount of the constructs present in a particulate fraction of the cells. These results indicate that the PH domain of IRS-1, in addition to directing this protein to the receptor for tyrosine phosphorylation, functions in the ability of this molecule to stimulate subsequent responses. Thus, compromising the function of the PH domain, e.g. in insulin-resistant states, could decrease both the ability of IRS-1 to be tyrosine phosphorylated by the insulin receptor and to link to subsequent downstream targets.

  9. Accumulation and hyperaccumulation of copper in plants

    Science.gov (United States)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  10. Involvement of PI3K/Akt Signaling Pathway and Its Downstream Intracellular Targets in the Antidepressant-Like Effect of Creatine.

    Science.gov (United States)

    Cunha, Mauricio P; Budni, Josiane; Ludka, Fabiana K; Pazini, Francis L; Rosa, Julia Macedo; Oliveira, Ágatha; Lopes, Mark W; Tasca, Carla I; Leal, Rodrigo B; Rodrigues, Ana Lúcia S

    2016-07-01

    Creatine has been proposed to exert beneficial effects in the management of depression, but the cell signaling pathways implicated in its antidepressant effects are not well established. This study investigated the involvement of PI3K/Akt signaling pathway and its downstream intracellular targets in the antidepressant-like effect of creatine. The acute treatment of mice with creatine (1 mg/kg, po) increased the Akt and P70S6K phosphorylation, and HO-1, GPx and PSD95 immunocontents. The pretreatment of mice with LY294002 (10 nmol/mouse, icv, PI3K inhibitor), wortmannin (0.1 μg/mouse, icv, PI3K inhibitor), ZnPP (10 μg/mouse, icv, HO-1 inhibitor), or rapamycin (0.2 nmol/mouse, icv, mTOR inhibitor) prevented the antidepressant-like effect of creatine (1 mg/kg, po) in the TST. In addition, the administration of subeffective dose of either the selective GSK3 inhibitor AR-A014418 (0.01 μg/mouse, icv), the nonselective GSK3 inhibitor lithium chloride (10 mg/kg, po), or the HO-1 inductor CoPP (0.01 μg/mouse, icv), in combination with a subeffective dose of creatine (0.01 mg/kg, po) reduced the immobility time in the TST as compared with either drug alone. No treatment caused significant changes in the locomotor activity of mice. These results indicate that the antidepressant-like effect of creatine in the TST depends on the activation of Akt, Nrf2/HO-1, GPx, and mTOR, and GSK3 inhibition.

  11. Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink.

    Science.gov (United States)

    Draper, Gabriel L; Dharmadasa, Ruvini; Staats, Meghan E; Lavery, Brandon W; Druffel, Thad

    2015-08-05

    Printed electronics and renewable energy technologies have shown a growing demand for scalable copper and copper precursor inks. An alternative copper precursor ink of copper nitrate hydroxide, Cu2(OH)3NO3, was aqueously synthesized under ambient conditions with copper nitrate and potassium hydroxide reagents. Films were deposited by screen-printing and subsequently processed with intense pulsed light. The Cu2(OH)3NO3 quickly transformed in less than 100 s using 40 (2 ms, 12.8 J cm(-2)) pulses into CuO. At higher energy densities, the sintering improved the bulk film quality. The direct formation of Cu from the Cu2(OH)3NO3 requires a reducing agent; therefore, fructose and glucose were added to the inks. Rather than oxidizing, the thermal decomposition of the sugars led to a reducing environment and direct conversion of the films into elemental copper. The chemical and physical transformations were studied with XRD, SEM, FTIR and UV-vis.

  12. A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR

    Science.gov (United States)

    Stanojlović, Rodoljub D.; Sokolović, Jovica M.

    2014-10-01

    In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.

  13. Unraveling the Amycolatopsis tucumanensis copper-resistome.

    Science.gov (United States)

    Dávila Costa, José Sebastián; Kothe, Erika; Abate, Carlos Mauricio; Amoroso, María Julia

    2012-10-01

    Heavy metal pollution is widespread causing serious ecological problems in many parts of the world; especially in developing countries where a budget for remediation technology is not affordable. Therefore, screening for microbes with high accumulation capacities and studying their stable resistance characteristics is advisable to define cost-effective any remediation strategies. Herein, the copper-resistome of the novel copper-resistant strain Amycolatopsis tucumanensis was studied using several approaches. Two dimensional gel electrophoresis revealed that proteins of the central metabolism, energy production, transcriptional regulators, two-component system, antioxidants and protective metabolites increased their abundance upon copper-stress conditions. Transcriptome analysis revealed that in presence of copper, superoxide dismutase, alkyl hydroperoxide reductase and mycothiol reductase genes were markedly induced in expression. The oxidative damage of protein and lipid from A. tucumanensis was negligible compared with that observed in the copper-sensitive strain Amycolatopsis eurytherma. Thus, we provide evidence that A. tucumamensis shows a high adaptation towards copper, the sum of which is proposed as the copper-resistome. This adaptation allows the strain to accumulate copper and survive this stress; besides, it constitutes the first report in which the copper-resistome of a strain of the genus Amycolatopsis with bioremediation potential has been evaluated.

  14. Influence of Upstream and Downstream Compressor Stators on Rotor Exit Flow Field

    Directory of Open Access Journals (Sweden)

    Nicole L. Key

    2014-01-01

    Full Text Available Measurements acquired at the rotor exit plane illuminate the interaction of the rotor with the upstream vane row and the downstream vane row. The relative phase of the upstream and downstream vane rows is adjusted using vane clocking so that the effect of the upstream propagating potential field from the downstream stator can be distinguished from the effects associated with the wakes shed from the upstream stator. Unsteady absolute flow angle information shows that the downstream potential field causes the absolute flow angle to increase in the vicinity of the downstream stator leading edge. The presence of Stator 1 wake is also detected at this measurement plane using unsteady total pressure data. The rotor wakes are measured at different circumferential locations across the vane passage, and the influence of Stator 1 wake on the suction side of the rotor wake is evident. Also, the influence of the downstream stator is detected on the pressure side of the rotor wake for a particular clocking configuration. Understanding the role of the surrounding vane rows on rotor wake development will lead to improved comparison between experimental data and results from computational models.

  15. Further evidences for enhanced nuclear cross-sections observed in 44 GeV carbon ion interactions with copper

    International Nuclear Information System (INIS)

    Brandt, R.; Abdullaev, I.G.; Adloff, J.C.

    1995-01-01

    The work of enhanced nuclear cross-sections of secondary fragments produced in the interaction of 44 GeV 12 C with copper has been deepened and extended. The earlier experiment on the emission of secondary fragments into large angles producing enhanced amounts of 24 Na in copper (Phys. Rev. C, 45, 1194(1992)) was confirmed and refined both experimentally and theoretically. In this context, one looked for another signature of such enhanced production, namely for enhanced neutron production. In order to search for this, a 20 cm thick massive copper target was irradiated with 18 and 44 GeV 12 C-ions. Secondary fragments already described could interact again with copper. Outside the metallic target, secondary neutrons got moderated and low energy nuclear reactions were studied in La and U radiochemically via (n,γ)-reactions and also with various solid state nuclear track detectors. One observed an indication, however not yet significant, of enhanced production rates for low energy nuclear reactions only with 44 GeV 12 C, when compared to 18 GeV 12 C-ions. Besides some proton irradiations at SATURNE, Saclay (France) at 2.6 GeV and at PSI, Villigen (Switzerland) at 0.6 GeV all other irradiations were carried out at the Synchrophasotron, LHE, JINR, Dubna (Russia). 46 refs., 14 figs., 8 tabs

  16. Interesting properties of some iron(II), copper(I) and copper(II ...

    Indian Academy of Sciences (India)

    Administrator

    Tridendate ligands with nitrogen centers, generally well-known as the tripod ligands, have been of considerable interest to inorganic chemists dealing with the preparation of model compounds for hemocyanin, tyrosinase etc. We have found that such ligands when complexed with iron(II) and copper(II) and copper(I) ions ...

  17. Copper Powder and Chemicals: edited proceedings of a seminar

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Various papers are presented covering the following topics: Status of Copper Chemical Industry in India, Copper Powder from Industrial Wastes, Manufacture of Copper Hydroxide and High Grade Cement Copper from Low Grade Copper Ore, Manufacture of Copper Sulphate as a By-Product, Hydrometallurgical Treatments of Copper Converter and Smelter Slage for Recovering Copper and other Non-Ferrous Metals, Recovery of Copper from Dilute Solutions, Use of Copper Compounds as Fungicides in India, Copper in Animal Husbandry, and Use of Copper Powder and Chemicals for Marine Applications. The keynote paper given at the Seminar was on Conservation of Copper for Better Use.

  18. Downstream anastomotic hyperplasia. A mechanism of failure in Dacron arterial grafts.

    Science.gov (United States)

    LoGerfo, F W; Quist, W C; Nowak, M D; Crawshaw, H M; Haudenschild, C C

    1983-01-01

    The precise location and progression of anastomotic hyperplasia and its possible relationship to flow disturbances was investigated in femoro-femoral Dacron grafts in 28 dogs. In 13 grafts, the outflow from the end-to-side downstream anastomosis was bidirectional (BDO), and in 15 it was unidirectional (UDO) (distally). Grafts were electively removed at intervals of two to 196 days or at the time of thrombosis. Each anastomosis and adjacent artery was perfusion-fixed and sectioned sagittally. The mean sagittal section was projected onto a digitized pad, and the total area of hyperplasia internal to the arterial internal elastic lamina and within the adjacent graft was integrated by computer. The location of the hyperplasia was compared with previously established sites of flow separation and stagnation. The observation was made that hyperplasia is significantly greater at the downstream, as compared with the upstream, anastomosis in both groups (BDO = p less than 0.001 and UDO = p less than 0.001) (analysis of variance for independent groups). Furthermore, this downstream hyperplasia was progressive with time (BDO p less than 0.01) (UDO p less than 0.01); Spearman Rank Correlation. There was no significant increase in the extent of downstream hyperplasia where flow separation was known to be greater (BDO). Five grafts failed (three BDO, two UDO), as a result of complete occlusion of the downstream anastomosis by fibrous hyperplasia. Transmission electron microscopy showed the hyperplasia to consist of collagen-producing smooth muscle cells. Anastomotic hyperplasia is significantly greater at the downstream anastomosis, is progressive with time, and is the primary cause of failure of Dacron arterial grafts in this model. Quantitative analysis of downstream anastomotic hyperplasia may be a valuable measure of the biocompatibility of Dacron grafts. Images Fig. 2. Fig. 3. Fig. 5. Fig. 6. Fig. 7. Fig. 8. PMID:6219641

  19. Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Puigdomenech, I. [Royal Inst. of Tech., Stockholm (Sweden); Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden)

    2000-08-01

    The stability of copper canisters has a central role in the safety concept for the planned nuclear spent fuel repository in Sweden. The corrosion of copper canisters will be influenced by the chemical and physical environment in the near-field of the repository, and thermodynamic equilibrium calculations provide the basis for understanding this system. Thermodynamic data have been selected in this work for solids and aqueous species in the system: Cu - H{sub 2}O - H{sup +} - H{sub 2} - F{sup -} - Cl{sup -} - S{sup 2-} - SO{sub 4}{sup 2-} - NO{sub 3}{sup -} - NO{sub 2}{sup -} - NH{sub 4}{sup +} PO{sub 4}{sup 3-} - CO{sub 3}{sup 2+} . For some reactions and compounds, for which no experimental information on temperature effects was available, entropy and heat capacity values have been estimated. The compiled data were used to calculate thermodynamic equilibria for copper systems up to 100 deg C. The stability of copper in contact with granitic groundwaters has been illustrated using chemical equilibrium diagrams, with he following main conclusions: Dissolved sulphide and O{sub 2} in groundwater are the most damaging components for copper corrosion. If available, HS{sup -} will react quantitatively with copper to form a variety of sulphides. However, sulphide concentrations in natural waters are usually low, because it forms sparingly soluble solids with transition metals, including Fe(II), which is wide-spread in reducing environments. Chloride can affect negatively copper corrosion. High concentrations (e.g., [Cl{sup -}]TOT > 60 g/l) may be unfavourable for the general corrosion of copper in combination with in the following circumstances: Low pH (< 4 at 25 deg C, or < 5 at 100 deg C). The presence of other oxidants than H{sup +}. The negative effects of Cl{sup -} are emphasised at higher temperatures. The chloride-enhancement of general corrosion may be beneficial for localised corrosion: pitting and stress corrosion cracking. The concept of redox potential, E

  20. The future of copper in China--A perspective based on analysis of copper flows and stocks.

    Science.gov (United States)

    Zhang, Ling; Cai, Zhijian; Yang, Jiameng; Yuan, Zengwei; Chen, Yan

    2015-12-01

    This study attempts to speculate on the future of copper metabolism in China based on dynamic substance flow analysis. Based on tremendous growth of copper consumption over the past 63 years, China will depict a substantially increasing trend of copper in-use stocks for the next 30 years. The highest peak will be possibly achieved in 2050, with the maximum ranging between 163 Mt and 171 Mt. After that, total stocks are expected to slowly decline 147-154 Mt by the year 2080. Owing to the increasing demand of in-use stocks, China will continue to have a profound impact on global copper consumption with its high import dependence until around 2020, and the peak demand for imported copper are expected to approach 5.5 Mt/year. Thereafter, old scrap generated by domestic society will occupy an increasingly important role in copper supply. In around 2060, approximately 80% of copper resources could come from domestic recycling of old scrap, implying a major shift from primary production to secondary production. With regard to the effect of lifetime distribution uncertainties in different end-use sectors of copper stocks on the predict results, uncertainty evaluation was performed and found the model was relatively robust to these changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. 21 CFR 184.1261 - Copper sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a...

  2. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    Science.gov (United States)

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively.

  3. Aquatic Life Criteria - Copper

    Science.gov (United States)

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  4. Native copper in Permian Mudstones from South Devon: A natural analogue of copper canisters for high-level radioactive waste

    International Nuclear Information System (INIS)

    Milodowski, A.E.; Styles, M.T.; Werme, L.; Oversby, V.M.

    2001-01-01

    Native copper (>99.9% Cu) sheets associated with complex uraniferous and vanadiferous concretions in Upper Permian Mudstones from south Devon (United Kingdom) have been studied as a 'natural analogue' for copper canisters designed to be used in the isolation of spent fuel and high-level radioactive wastes (HLW) for deep geological disposal. Detailed analysis demonstrates that the copper formed before the mudstones were compacted. The copper displays complex corrosion and alteration. The earliest alteration was to copper oxides, followed sequentially by the formation of copper arsenides, nickel arsenide and copper sulphide, and finally nickel arsenide accompanied by nickel-copper arsenide, copper arsenide and uranium silicates. Petrographic observations demonstrate that these alteration products also formed prior to compaction. Consideration of the published history for the region indicates that maximum compaction of the rocks will have occurred by at least the Lower Jurassic (i.e. over 176 Ma ago). Since that time the copper sheets have remained isolated by the compacted mudstones and were unaffected by further corrosion until uplift and exposure to present-day surface weathering

  5. Reactivity test between beryllium and copper

    International Nuclear Information System (INIS)

    Kawamura, H.; Kato, M.

    1995-01-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700 degrees C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper)

  6. Towards a selective adsorbent for arsenate and selenite in the presence of phosphate: Assessment of adsorption efficiency, mechanism, and binary separation factors of the chitosan-copper complex.

    Science.gov (United States)

    Yamani, Jamila S; Lounsbury, Amanda W; Zimmerman, Julie B

    2016-01-01

    The potential for a chitosan-copper polymer complex to select for the target contaminants in the presence of their respective competitive ions was evaluated by synthesizing chitosan-copper beads (CCB) for the treatment of (arsenate:phosphate), (selenite:phosphate), and (selenate:sulfate). Based on work by Rhazi et al., copper (II) binds to the amine moiety on the chitosan backbone as a monodentate complex (Type I) and as a bidentate complex crosslinking two polymer chains (Type II), depending on pH and copper loading. In general, the Type I complex exists alone; however, beyond threshold conditions of pH 5.5 during synthesis and a copper loading of 0.25 mol Cu(II)/mol chitosan monomer, the Type I and Type II complexes coexist. Subsequent chelation of this chitosan-copper ligand to oxyanions results in enhanced and selective adsorption of the target contaminants in complex matrices with high background ion concentrations. With differing affinities for arsenate, selenite, and phosphate, the Type I complex favors phosphate chelation while the Type II complex favors arsenate chelation due to electrostatic considerations and selenite chelation due to steric effects. No trend was exhibited for the selenate:sulfate system possibly due to the high Ksp of the corresponding copper salts. Binary separation factors, α12, were calculated for the arsenate-phosphate and selenite-phosphate systems, supporting the mechanistic hypothesis. While, further research is needed to develop a synthesis method for the independent formation of the Type II complexes to select for target contaminants in complex matrices, this work can provide initial steps in the development of a selective adsorbent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Simulations on Nickel target preparation and separation of Ni(II)-Cu(II) matrix for production of radioisotope "6"4Cu

    International Nuclear Information System (INIS)

    Sunarhadijoso Soenarjo; Wira Y Rahman; Sriyono; Triyanto

    2011-01-01

    The simulations on Nickel target preparation and separation of Ni(II)-Cu(II) matrix has been carried out as a preliminary study for production of medical radioisotope Cu-64 based on nuclear reaction of "6"4Ni (p,n) "6"4Cu. The nickel target preparation was performed by means of electroplating method using acidic solution of nickel chloride - boric acid mixture and basic solution of nickel sulphate - nickel chloride mixture on a silver - surfaced-target holder. The simulated solution of Ni(II) - Cu(II) matrix was considered as the solution of post-proton-irradiated nickel target containing both irradiated nickel and radioactive copper, but in the presented work the proton irradiation of nickel target was omitted, while the radioactive copper was originally obtained from neutron irradiation of CuO target. The separation of radioactive copper from the nickel target matrix was based on anion exchange column chromatography in which the radiocopper was conditioned to form anion complex CuCl_4"2"- and retained on the column while the nickel was kept in the form of Ni"2"+ cation and eluted off from the column. The retained radioactive copper was then eluted out the column in the condition of dilute HCl changing back the copper anion complex into Cu"2"+ cation. It was found that the electroplating result from the acidic solution was more satisfied than that from the basic solution. By conditioning the matrix solution at HCl 6 M, the radioactive copper was found in the forms of Cu"2"+ and CuCl_4"2"- while the nickel was totally in the form of Ni"2"+. In the condition of HCl 9 M, the radioactive copper was mostly in the form of CuCl_4"2"- while the nickel was found as both Ni"2"+ and NiCl_4"2"-. The best condition of separation was in HCl 8 M in which the radioactive copper was mostly in the form of CuCl_4"2"- while the nickel was mostly in the form of Ni"2"+. The retained CuCl_4"2"- was then changed back into Cu_2_+ cation form and eluted out the column by using HCl 0.05 M

  8. Novel strategies for ultrahigh specific activity targeted nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong

    2012-12-13

    We have developed novel strategies optimized for preparing high specific activity radiolabeled nanoparticles, targeting nuclear imaging of low abundance biomarkers. Several compounds have been labeled with F-18 and Cu-64 for radiolabeling of SCK-nanoparticles via Copper(I) catalyzed or copper-free alkyne-azide cyclolization. Novel strategies have been developed to achieve ultrahigh specific activity with administrable amount of dose for human study using copper-free chemistry. Ligands for carbonic anhydrase 12 (CA12), a low abundance extracellular biomarker for the responsiveness of breast cancer to endocrine therapie, have been labeled with F-18 and Cu-64, and one of them has been evaluated in animal models. The results of this project will lead to major improvements in the use of nanoparticles in nuclear imaging and will significantly advance their potential for detecting low abundance biomarkers of medical importance.

  9. Eukaryotic initiation factor 2α--a downstream effector of mammalian target of rapamycin--modulates DNA repair and cancer response to treatment.

    Directory of Open Access Journals (Sweden)

    Liron Tuval-Kochen

    Full Text Available In an effort to circumvent resistance to rapamycin--an mTOR inhibitor--we searched for novel rapamycin-downstream-targets that may be key players in the response of cancer cells to therapy. We found that rapamycin, at nM concentrations, increased phosphorylation of eukaryotic initiation factor (eIF 2α in rapamycin-sensitive and estrogen-dependent MCF-7 cells, but had only a minimal effect on eIF2α phosphorylation in the rapamycin-insensitive triple-negative MDA-MB-231 cells. Addition of salubrinal--an inhibitor of eIF2α dephosphorylation--decreased expression of a surface marker associated with capacity for self renewal, increased senescence and induced clonogenic cell death, suggesting that excessive phosphorylation of eIF2α is detrimental to the cells' survival. Treating cells with salubrinal enhanced radiation-induced increase in eIF2α phosphorylation and clonogenic death and showed that irradiated cells are more sensitive to increased eIF2α phosphorylation than non-irradiated ones. Similar to salubrinal--the phosphomimetic eIF2α variant--S51D--increased sensitivity to radiation, and both abrogated radiation-induced increase in breast cancer type 1 susceptibility gene, thus implicating enhanced phosphorylation of eIF2α in modulation of DNA repair. Indeed, salubrinal inhibited non-homologous end joining as well as homologous recombination repair of double strand breaks that were induced by I-SceI in green fluorescent protein reporter plasmids. In addition to its effect on radiation, salubrinal enhanced eIF2α phosphorylation and clonogenic death in response to the histone deacetylase inhibitor--vorinostat. Finally, the catalytic competitive inhibitor of mTOR--Ku-0063794--increased phosphorylation of eIF2α demonstrating further the involvement of mTOR activity in modulating eIF2α phosphorylation. These experiments suggest that excessive phosphorylation of eIF2α decreases survival of cancer cells; making eIF2α a worthy target for

  10. Thermal conductivity of tungsten–copper composites

    International Nuclear Information System (INIS)

    Lee, Sang Hyun; Kwon, Su Yong; Ham, Hye Jeong

    2012-01-01

    Highlights: ► We present the temperature dependence of the thermophysical properties for tungsten–copper composite from room temperature to 400 °C. The powders of tungsten–copper were produced by the spray conversion method and the W–Cu alloys were fabricated by the metal injection molding. Thermal conductivity and thermal expansion of tungsten–copper composite was controllable by volume fraction copper. - Abstract: As the speed and degree of integration of semiconductor devices increases, more heat is generated, and the performance and lifetime of semiconductor devices depend on the dissipation of the generated heat. Tungsten–copper alloys have high electrical and thermal conductivities, low contact resistances, and low coefficients of thermal expansion, thus allowing them to be used as a shielding material for microwave packages, and heat sinks for high power integrated circuits (ICs). In this study, the thermal conductivity and thermal expansion of several types of tungsten–copper (W–Cu) composites are investigated, using compositions of 5–30 wt.% copper balanced with tungsten. The tungsten–copper powders were produced using the spray conversion method, and the W–Cu alloys were fabricated via the metal injection molding. The tungsten–copper composite particles were nanosized, and the thermal conductivity of the W–Cu alloys gradually decreases with temperature increases. The thermal conductivity of the W–30 wt.% Cu composite was 238 W/(m K) at room temperature.

  11. Chronic copper poisoning in lambs

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D B

    1964-08-08

    This communication presented evidence of the elevation of plasma GOT (glutamic oxaloacetic transaminase or aspartate transaminase) concentration during the development of copper toxicity in some experimental lambs, and also demonstrated that plasma GOT concentration can be used to assess the course of the disease during treatment. A group of Kerry Hill lambs were fed 1 1/2 lb per day of a proprietary concentrate containing 40 parts of copper per million on a dry-matter basis in addition to hay and water ad lib. Data was included for the plasma GOT concentrations of the lambs, bled weekly after weaning from pasture to this diet. There was some variation between the individual lambs, and in one there was no increase in plasma GOT by the 20th week when all the surviving lambs were slaughtered. The concentrations of copper found in the caudate lobe of the liver and in the kidney cortex post mortem were given. The overall findings showed that the liver gave a reliable indication of the copper status of an animal whereas the kidney cortex copper concentration was a better criterion for the diagnosis of copper poisoning and was in agreement with the results of Eden, Todd, and Grocey and Thompson. Observations demonstrated the benefits resulting from the early diagnosis of chronic copper poisoning in lambs, when treatment of affected animals may be commenced before the haemolytic crisis develops. Treatment included reducing the copper intake and dosing with ammonium molybdate and sodium sulfate, and the plasma GOT concentration may be used to assess the rate of recovery. 4 references, 3 tables.

  12. Study of underwater laser propulsion using different target materials.

    Science.gov (United States)

    Qiang, Hao; Chen, Jun; Han, Bing; Shen, Zhong-Hua; Lu, Jian; Ni, Xiao-Wu

    2014-07-14

    In order to investigate the influence of target materials, including aluminum (Al), titanium (Ti) and copper (Cu), on underwater laser propulsion, the analytical formula of the target momentum IT is deduced from the enhanced coupling theory of laser propulsion in atmosphere with transparent overlay metal target. The high-speed photography method and numerical simulation are employed to verify the IT model. It is shown that the enhanced coupling theory, which was developed originally for laser propulsion in atmosphere, is also applicable to underwater laser propulsion with metal targets.

  13. High temperature oxidation of copper and copper aluminium alloys: Impact on furnace side wall cooling systems

    Science.gov (United States)

    Plascencia Barrera, Gabriel

    The high temperature oxidation behaviours of copper and dilute Cu-Al alloys were investigated. Experiments were carried out by: (i) Oxidizing under various oxygen potentials at different temperatures using a combined TG-DTA apparatus. (ii) Oxidizing in a muffle furnace (in air) at different temperatures for extended periods of time. The oxidation mechanisms were evaluated based upon the kinetic data obtained as well as by X-ray diffraction and microscopical (SEM and optical) analyses. It was found that oxidation of copper strongly depends on the temperature. Two distinct mechanisms were encountered. Between 300 and 500°C, the oxidation rate is controlled by lateral growth of the oxide on the metal surface, whereas between 600 and 1000°C oxidation is controlled by lattice diffusion of copper ions through the oxide scale. On the other hand, the partial pressure of oxygen only has a small effect on the oxidation of copper. Alloy oxidation is also dependent on the temperature. As temperature increases, more aluminium is required to protect copper from being oxidized. It was shown that if the amount of oxygen that dissolves in the alloy exceeds the solubility limit of oxygen in copper, an internal oxidation layer will develop, leading to the formation of a tarnishing scale. On the other hand if the oxygen content in the alloy lies below the solubility limit of oxygen in copper, no oxidation products will form since a tight protective alumina layer will form on the alloy surface. Surface phenomena may affect the oxidation behaviour of dilute Cu-Al alloys. Immersion tests in molten copper matte and copper converting slag, using laboratory scale cooling elements with various copper based materials, were conducted. Results from these tests showed that alloying copper with 3 to 4 wt% Al decreases the oxidation rate of pure copper by 4 orders of magnitude; however due to a significant drop in thermal conductivity, the ability to extract heat is compromised, leading to

  14. Copper toxicity in housed lambs

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, A H; Valks, D A; Appleton, M A; Shaw, W B

    1969-09-27

    Copper toxicity among 170 lambs artificially reared indoors at High Mowthorpe NAAS Experimental Husbandry Farm is reported. Although only three lambs were lost it is not unreasonable to suggest that the liver copper levels of the lambs which were slaughtered would have been high and losses could have been much heavier had there been any further copper supplementation. Even a copper level of 20 ppm in lamb concentrates given to lambs reared artificially indoors is dangerous, and intakes of much less than 38 mg per lamb per day can be fatal if given of a prolonged period. 5 references, 1 table.

  15. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  16. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  17. Chalcopyrite—bearer of a precious, non-precious metal

    Science.gov (United States)

    Kimball, Bryn E.

    2013-01-01

    The mineral chalcopyrite (CuFeS2) is the world's most abundant source of copper, a metal component in virtually every piece of electrical equipment. It is the main copper mineral in several different ore deposit types, the most important of which are porphyry deposits. Chalcopyrite is unstable at the Earth's surface, so it weathers from sulphide outcrops and mine waste piles, contributing acid and dissolved copper to what is known as acid rock drainage. If not prevented, dissolved copper from chalcopyrite weathering will be transported downstream, potentially harming ecosystems along the way. Pristine areas are becoming targets for future copper supply as we strive to meet ever-increasing demands for copper by developed and developing nations. Additionally, our uses for copper are expanding to include technology such as solar energy production. This has lead to the processing of increasingly lower grade ores, which is possible, in part, due to advances in bio-leaching (i.e. metal extraction catalysed by micro-organisms). Although copper is plentiful, it is still a nonrenewable resource. Future copper supply promises to fall short of demand and the volatility of the copper market may continue if we do not prioritize copper use and improve copper recycling and ore extraction efficiency.

  18. Kennecott Utah Copper Corporation: Facility Utilizes Energy Assessments to Identify $930,000 in Potential Annual Savings

    Energy Technology Data Exchange (ETDEWEB)

    2004-07-01

    Kennecott Utah Copper Corporation (KUCC) used targeted energy assessments in the smelter and refinery at its Bingham Canyon Mine, near Salt Lake City, Utah. The assessment focused mainly on the energy-intensive processes of copper smelting and refining. By implementing the projects identified, KUCC could realize annual cost savings of $930,000 and annual energy savings of 452,000 MMBtu. The projects would also reduce maintenance, repair costs, waste, and environmental emissions. One project would use methane gas from an adjacent municipal dump to replace natural gas currently used to heat the refinery electrolyte.

  19. Copper Recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).

  20. Neutron production from 40 GeV/c mixed proton/pion beam on copper, silver and lead targets in the angular range 30-135 degree

    CERN Document Server

    Agosteo, S; Dimovasili, E; Foglio-Para, A; Silari, M; Ulrici, L; Vincke, H

    2005-01-01

    The neutron emission from 50 mm thick copper, silver and lead targets bombarded by a mixed proton/pion beam with momentum of 40 GeV/c were measured at the CERN Super Proton Synchrotron. The neutron yield and spectral fluence per incident particle on target were measured with an extended range Bonner sphere spectrometer in the angular range 30-135 degree with respect to the beam direction. Monte Carlo simulations with the FLUKA code were performed to provide a priori information for the unfolding of the experimental data. The spectral fluences show two peaks, an isotropic evaporation component centred at 3 MeV and a high-energy peak sitting around 100-150 MeV. The experimental neutron yields are given in four energy bins: less than 100 keV, 0.1-20 MeV, 20-500 MeV and 0.5-2 GeV. The total yields show a systematic discrepancy of 30-50%, with a peak of 70% at the largest angles, with respect to the results of the Monte Carlo simulations, which it is believed to be mainly due to uncertainties in the beam normaliza...

  1. Properties of targeted preamplification in DNA and cDNA quantification.

    Science.gov (United States)

    Andersson, Daniel; Akrap, Nina; Svec, David; Godfrey, Tony E; Kubista, Mikael; Landberg, Göran; Ståhlberg, Anders

    2015-01-01

    Quantification of small molecule numbers often requires preamplification to generate enough copies for accurate downstream enumerations. Here, we studied experimental parameters in targeted preamplification and their effects on downstream quantitative real-time PCR (qPCR). To evaluate different strategies, we monitored the preamplification reaction in real-time using SYBR Green detection chemistry followed by melting curve analysis. Furthermore, individual targets were evaluated by qPCR. The preamplification reaction performed best when a large number of primer pairs was included in the primer pool. In addition, preamplification efficiency, reproducibility and specificity were found to depend on the number of template molecules present, primer concentration, annealing time and annealing temperature. The amount of nonspecific PCR products could also be reduced about 1000-fold using bovine serum albumin, glycerol and formamide in the preamplification. On the basis of our findings, we provide recommendations how to perform robust and highly accurate targeted preamplification in combination with qPCR or next-generation sequencing.

  2. “Pulling the plug” on cellular copper: The role of mitochondria in copper export

    OpenAIRE

    Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.

    2008-01-01

    Mitochondria contain two enzymes, Cu, Zn superoxide dismutase (Sod1) and cytochrome c oxidase (CcO), that require copper as a cofactor for their biological activity. The copper used for their metallation originates from a conserved, bioactive pool contained within the mitochondrial matrix, the size of which changes in response to either genetic or pharmacological manipulation of cellular copper status. Its dynamic nature implies molecular mechanisms exist that functionally couple mitochondria...

  3. High pressure deuterium-tritium gas target vessels for muon-catalyzed fusion experiments

    International Nuclear Information System (INIS)

    Caffrey, A.J.; Spaletta, H.W.; Ware, A.G.; Zabriskie, J.M.; Hardwick, D.A.; Maltrud, H.R.; Paciotti, M.A.

    1989-01-01

    In experimental studies of muon-catalyzed fusion, the density of the hydrogen gas mixture is an important parameter. Catalysis of up to 150 fusions per muon has been observed in deuterium-tritium gas mixtures at liquid hydrogen density; at room temperature, such densities require a target gas pressure of the order of 1000 atmospheres (100 MPa, 15,000 psi). We report here the design considerations for hydrogen gas target vessels for muon-catalyzed fusion experiments that operate at 1000 and 10,000 atmospheres. The 1000 atmosphere high pressure target vessels are fabricated of Type A-286 stainless steel and lined with oxygen-free, high-conductivity (OFHC) copper to provide a barrier to hydrogen permeation of the stainless steel. The 10,000 atmosphere ultrahigh pressure target vessels are made from 18Ni (200 grade) maraging steel and are lined with OFHC copper, again to prevent hydrogen permeation of the steel. In addition to target design features, operating requirements, fabrication procedures, and secondary containment are discussed. 13 refs., 3 figs., 1 tab

  4. Remote sensing and GIS-based prediction and assessment of copper-gold resources in Thailand

    International Nuclear Information System (INIS)

    Yang, Shasha; Wang, Gongwen; Du, Wenhui; Huang, Luxiong

    2014-01-01

    Quantitative integration of geological information is a frontier and hotspot of prospecting decision research in the world. The forming process of large scale Cu-Au deposits is influenced by complicated geological events and restricted by various geological factors (stratum, structure and alteration). In this paper, using Thailand's copper-gold deposit district as a case study, geological anomaly theory is used along with the typical copper and gold metallogenic model, ETM+ remote sensing images, geological maps and mineral geology database in study area are combined with GIS technique. These techniques create ore-forming information such as geological information (strata, line-ring faults, intrusion), remote sensing information (hydroxyl alteration, iron alteration, linear-ring structure) and the Cu-Au prospect targets. These targets were identified using weights of evidence model. The research results show that the remote sensing and geological data can be combined to quickly predict and assess for exploration of mineral resources in a regional metallogenic belt

  5. Photoperiod control of downstream movements of Atlantic salmon Salmo salar smolts

    Science.gov (United States)

    Zydlewski, Gayle B.; Stich, Daniel S.; McCormick, Stephen D.

    2014-01-01

    This study provides the first direct observations that photoperiod controls the initiation of downstream movement in Atlantic salmon Salmo salar smolts. Under simulated natural day length (LDN) conditions and seasonal increases in temperature, smolts increased their downstream movements five-fold for a period of 1 month in late spring. Under the same conditions, parr did not show changes in downstream movement behaviour. When given a shortened day length (10L:14D) beginning in late winter, smolts did not increase the number of downstream movements. An early increase in day length (16L:8D) in late winter resulted in earlier initiation and termination of downstream movements compared to the LDN group. Physiological status and behaviour were related but not completely coincident: gill Na+/K+-ATPase activity increased in all treatments and thyroid hormone was elevated prior to movement in 16L:8D treatment. The most parsimonious model describing downstream movement of smolts included synergistic effects of photoperiod treatment and temperature, indicating that peak movements occurred at colder temperatures in the 16L:8D treatment than in LDN, and temperature did not influence movement of smolts in the 10L:14D treatment. The complicated interactions of photoperiod and temperature are not surprising since many organisms have evolved to rely on correlations among environmental cues and windows of opportunity to time behaviours associated with life-history transitions. These complicated interactions, however, have serious implications for phenological adjustments and persistence ofS. salar populations in response to climate change.

  6. Operational optimization in the downstream; Otimizacao operacional no downstream

    Energy Technology Data Exchange (ETDEWEB)

    Silberman, Luis; Cunha, Filipe Silveira Ramos da [Petroleo Ipiranga, Porto Alegre, RS (Brazil)

    2004-07-01

    On the present competitive down stream's market, there is a great necessity of optimization aiming to guarantee the best price and quality of our clients. Our goal is to attend these expectations while we guarantee an efficient operation. The greatest question is how far we are from the ideal model. This way, a lot of projects have been executed during the last years aiming the operational optimization of all our activities. We divide the projects in 4 areas: Logistic (new modals distribution), Transport (transport optimization - quality and more deliveries with less trucks), Client Support (Internet Ipiranga and Support Center), Distribution Terminals Productivity (automation and environment). This work intend to present our ideal, perfect and complete Downstream Operation model. We will talk about how close we are of this ideal model and we will present the projects that we had already developed and implanted on the automation of the terminals and the logistics area. (author)

  7. Downstream Processability of Crystal Habit-Modified Active Pharmaceutical Ingredient

    DEFF Research Database (Denmark)

    Pudasaini, Nawin; Upadhyay, Pratik Pankaj; Parker, Christian Richard

    2017-01-01

    Efficient downstream processing of active pharmaceutical ingredients (APIs) can depend strongly on their particulate properties, such as size and shape distributions. Especially in drug products with high API content, needle-like crystal habit of an API may show compromised flowability and tablet......Efficient downstream processing of active pharmaceutical ingredients (APIs) can depend strongly on their particulate properties, such as size and shape distributions. Especially in drug products with high API content, needle-like crystal habit of an API may show compromised flowability...

  8. Nanoscale Copper and Copper Compounds for Advanced Device Applications

    Science.gov (United States)

    Chen, Lih-Juann

    2016-12-01

    Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

  9. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Bhansali, S.; Sood, D.K.; Zmood, R.B. [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1993-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  10. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Bhansali, S; Sood, D K; Zmood, R B [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1994-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  11. Seeding of silicon by copper ion implantation for selective electroless copper plating

    International Nuclear Information System (INIS)

    Bhansali, S.; Sood, D.K.; Zmood, R.B.

    1993-01-01

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm 2 using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm 2 for 'seed' formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by 'scotch tape test'. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs

  12. COPPER RESISTANT STRAIN CANDIDA TROPICALIS RomCu5 INTERACTION WITH SOLUBLE AND INSOLUBLE COPPER COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Ie. P. Prekrasna

    2015-10-01

    Full Text Available The focus of the study was interaction of Candida tropicalis RomCu5 isolated from highland Ecuador ecosystem with soluble and insoluble copper compounds. Strain C. tropicalis RomCu5 was cultured in a liquid medium of Hiss in the presence of soluble (copper citrate and CuCl2 and insoluble (CuO and CuCO3 copper compounds. The biomass growth was determined by change in optical density of culture liquid, composition of the gas phase was measured on gas chromatograph, redox potential and pH of the culture fluid was defined potentiometrically. The concentration of soluble copper compounds was determined colorimetrically. Maximal permissible concentration of Cu2+ for C. tropicalis RomCu5 was 30 000 ppm of Cu2+ in form of copper citrate and 500 ppm of Cu2+ in form of CuCl2. C. tropicalis was metabolically active at super high concentrations of Cu2+, despite the inhibitory effect of Cu2+. C. tropicalis immobilized Cu2+ in the form of copper citrate and CuCl2 by it accumulation in the biomass. Due to medium acidification C. tropicalis dissolved CuO and CuCO3. High resistance of C. tropicalis to Cu2+ and ability to interact with soluble and insoluble copper compounds makes it biotechnologically perspective.

  13. Colloidal and electrochemical aspects of copper-CMP

    Science.gov (United States)

    Sun, Yuxia

    Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.

  14. Theft in Price-Volatile Markets: On the Relationship between Copper Price and Copper Theft

    OpenAIRE

    Sidebottom, A.; Belur, J.; Bowers, K.; Tompson, L.; Johnson, S. D.

    2011-01-01

    Recently, against a backdrop of general reductions in acquisitive crime, increases have been observed in the frequency of metal theft offences. This is generally attributed to increases in metal prices in response to global demand exceeding supply. The main objective of this article was to examine the relationship between the price of copper and levels of copper theft, focusing specifically on copper cable theft from the British railway network. Results indicated a significant positive correl...

  15. Analysis of Petroleum Downstream Industry Potential in Riau Province

    Directory of Open Access Journals (Sweden)

    Tomi Erfando

    2017-06-01

    Full Text Available Petroleum downstream industry in Riau Province is still not optimal. The data shows that from 98,892,755 barrels lifting oil each year only 62,050,000 barrels could be processed in refinery unit II Dumai operated by PT Pertamina. There is a potential of 35-40% of downstream industry. Indonesian Government through The Ministry of Energy and Mineral Resources declared the construction of a mini refinery to boost oil processing output in the downstream sector. A feasibility study of development plan mini refinery is needed. The study includes production capacity analysis, product analysis, development & operational refinery  analysis and economic analysis. The results obtained by the mini refinery capacity is planned to process crude oil 6000 BOPD with the products produced are gasoline, kerosene, diesel and oil. Investment cost consist of is capital cost US $ 104419784 and operating cost US $ 13766734 each year with net profit earned US $ 12330063/year and rate of return from investment 11.63%

  16. Adsorption of copper from the sulphate solution of low copper contents using the cationic resin Amberlite IR 120

    International Nuclear Information System (INIS)

    Jha, Manis Kumar; Nghiem Van Nguyen; Lee, Jae-chun; Jeong, Jinki; Yoo, Jae-Min

    2009-01-01

    In view of the increasing importance of the waste processing and recycling to meet the strict environmental regulations, the present investigation reports an adsorption process using the cationic exchanger Amberlite IR 120 for the recovery/removal of copper from the synthetic sulphate solution containing copper ≤0.7 mg/mL similar to the CMP waste effluent of electronic industry. Various process parameters, viz. contact time, solution pH, resin dose, and acid concentration of eluant were investigated for the adsorption of copper from the effluents. The 99.99% copper was found to be adsorbed from the sulphate solution containing copper 0.3-0.7 mg/mL of solution (feed pH 5) at A/R ratio 100 and eq. pH 2.5 in contact time 14 min. The mechanism for the adsorption of copper was found to follow Langmuir isotherm and second order rate. From the loaded organic, copper was eluted effectively by 1.8 M sulphuric acid at A/R ratio 25. The raffinate obtained after the recovery copper could be disposed safely without affecting the environment.

  17. Real-time oxide evolution of copper protected by graphene and boron nitride barriers

    DEFF Research Database (Denmark)

    Galbiati, Miriam; Stoot, Adam Carsten; Mackenzie, David

    2017-01-01

    and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real......-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.......Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion...

  18. Real-time oxide evolution of copper protected by graphene and boron nitride barriers.

    Science.gov (United States)

    Galbiati, M; Stoot, A C; Mackenzie, D M A; Bøggild, P; Camilli, L

    2017-01-09

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.

  19. Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.

    Science.gov (United States)

    Románszki, Loránd; Datsenko, Iaryna; May, Zoltán; Telegdi, Judit; Nyikos, Lajos; Sand, Wolfgang

    2014-06-01

    Dip-coated polystyrene layers of sub-micrometre thickness (85-500nm) have been applied on copper and copper alloys (aluminium brass, copper-nickel 70/30), as well as on stainless steel 304, and produced an effective barrier against corrosion and adhesion of corrosion-relevant microorganisms. According to the dynamic wettability measurements, the coatings exhibited high advancing (103°), receding (79°) and equilibrium (87°) contact angles, low contact angle hysteresis (6°) and surface free energy (31mJ/m(2)). The corrosion rate of copper-nickel 70/30 alloy samples in 3.5% NaCl was as low as 3.2μm/a (44% of that of the uncoated samples), and in artificial seawater was only 0.9μm/a (29% of that of the uncoated samples). Cell adhesion was studied by fluorescence microscopy, using monoculture of Desulfovibrio alaskensis. The coatings not only decreased the corrosion rate but also markedly reduced the number of bacterial cells adhered to the coated surfaces. The PS coating on copper gave the best result, 2×10(3)cells/cm(2) (1% of that of the uncoated control). © 2013 Elsevier B.V. All rights reserved.

  20. E2F target genes: unraveling the biology

    DEFF Research Database (Denmark)

    Bracken, Adrian P; Ciro, Marco; Cocito, Andrea

    2004-01-01

    The E2F transcription factors are downstream effectors of the retinoblastoma protein (pRB) pathway and are required for the timely regulation of numerous genes essential for DNA replication and cell cycle progression. Several laboratories have used genome-wide approaches to discover novel target...

  1. Hydrodynamic properties and distribution of bait downstream of a zooplankton trap

    DEFF Research Database (Denmark)

    Selander, Erik; Heuschele, Jan; Larsson, Ann I.

    2017-01-01

    The flow regime around a chemically baited trap is crucial for the trapping process and distribution of bait downstream of traps. We measured the flow field downstream of a trap prototype in flume experiments and mapped the distribution of bait using laser induced fluorescence. The trap produced ...

  2. Reparatory adaptation to copper-induced injury and occurrence of a copper-binding protein in the polycheate, Eudistylia vancouveri

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.S.; Roesijadi, G.

    1983-01-01

    Chemically injured branchial pinnae of copper-treated polychaetes, Eudistylia vancouveri, regenerated while still exposed to copper. The first observations of pinna regeneration coincided with the apparent induction of a low molecular weight (approx.5000 daltons) copper-binding protein. This protein may play a role in the detoxification of copper and subsequent tissue regeneration. 7 references, 5 figures.

  3. Pathogenic adaptations to host-derived antibacterial copper

    Science.gov (United States)

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  4. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  5. The Integrin-Regulated Kinase PYK-2: A Therapeutic Target for Prostate Cancer

    National Research Council Canada - National Science Library

    Edlund, Magnus

    2001-01-01

    ...) . A number of promising therapeutic targets for androgen-independent and metastatic prostate cancers are contained within the signaling cascades downstream of the ECM-binding Integrin molecules...

  6. Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets

    CERN Document Server

    Catanesi, M.G.; Ellis, Malcolm; Robbins, S.; Soler, F.J.P.; Gossling, C.; Bunyatov, S.; Krasnoperov, A.; Popov, B.; Serdiouk, V.; Tereschenko, V.; Di Capua, E.; Vidal-Sitjes, G.; Artamonov, A.; Arce, P.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Gruber, P.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Pasternak, J.; Tcherniaev, E.; Tsukerman, I.; Veenhof, R.; Wiebusch, C.; Zucchelli, P.; Blondel, A.; Borghi, S.; Campanelli, M.; Morone, M.C.; Prior, G.; Schroeter, R.; Engel, R.; Meurer, C.; Kato, I.; Gastaldi, U.; Mills, G.B.; Graulich, J.S.; Gregoire, G.; Bonesini, M.; Ferri, F.; Paganoni, M.; Paleari, F.; Kirsanov, M.; Bagulya, A.; Grichine, V.; Polukhina, M.; Palladino, V.; Coney, L.; Schmitz, D.; Barr, G.; De Santo, A.; Pattison, C.; Zuber, K.; Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M.; Dumarchez, J.; Vannucci, F.; Dore, U.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Booth, C.; Buttar, C.; Hodgson, P.; howlett, L.; Bogomilov, M.; Chizhov, M.; Kolev, D.; Tsenov, R.; Piperov, Stefan; Temnikov, P.; Apollonio, M.; Chimenti, P.; Giannini, G.; Santin, G.; Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Martin-Albo, J.; Novella, P.; Sorel, M.; Tornero, A.

    2008-01-01

    A measurement of the double-differential $\\pi^{\\pm}$ production cross-section in proton--carbon, proton--copper and proton--tin collisions in the range of pion momentum $100 \\MeVc \\leq p < 800 \\MeVc$ and angle $0.35 \\rad \\le \\theta <2.15 \\rad$ is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \\GeVc to 12 \\GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections at four incident proton beam momenta (3 \\GeVc, 5 \\GeVc, 8 \\GeVc and 12 \\GeVc).

  7. Pituitary adenylate cyclase activating polypeptide (PACAP signalling exerts chondrogenesis promoting and protecting effects: implication of calcineurin as a downstream target.

    Directory of Open Access Journals (Sweden)

    Tamás Juhász

    Full Text Available Pituitary adenylate cyclase activating polypeptide (PACAP is an important neurotrophic factor influencing differentiation of neuronal elements and exerting protecting role during traumatic injuries or inflammatory processes of the central nervous system. Although increasing evidence is available on its presence and protecting function in various peripheral tissues, little is known about the role of PACAP in formation of skeletal components. To this end, we aimed to map elements of PACAP signalling in developing cartilage under physiological conditions and during oxidative stress. mRNAs of PACAP and its receptors (PAC1,VPAC1, VPAC2 were detectable during differentiation of chicken limb bud-derived chondrogenic cells in micromass cell cultures. Expression of PAC1 protein showed a peak on days of final commitment of chondrogenic cells. Administration of either the PAC1 receptor agonist PACAP 1-38, or PACAP 6-38 that is generally used as a PAC1 antagonist, augmented cartilage formation, stimulated cell proliferation and enhanced PAC1 and Sox9 protein expression. Both variants of PACAP elevated the protein expression and activity of the Ca-calmodulin dependent Ser/Thr protein phosphatase calcineurin. Application of PACAPs failed to rescue cartilage formation when the activity of calcineurin was pharmacologically inhibited with cyclosporine A. Moreover, exogenous PACAPs prevented diminishing of cartilage formation and decrease of calcineurin activity during oxidative stress. As an unexpected phenomenon, PACAP 6-38 elicited similar effects to those of PACAP 1-38, although to a different extent. On the basis of the above results, we propose calcineurin as a downstream target of PACAP signalling in differentiating chondrocytes either in normal or pathophysiological conditions. Our observations imply the therapeutical perspective that PACAP can be applied as a natural agent that may have protecting effect during joint inflammation and/or may promote

  8. The downstream externalities of harvesting rainwater in semi-arid watersheds: an Indian case study

    NARCIS (Netherlands)

    Bouma, J.A.; Biggs, T.W.; Bouwer, L.M.

    2011-01-01

    Water-related investment projects affect downstream water availability, and therefore should account for these externalities. Few projects do, however, owing to lack of awareness, lack of data and difficulty in linking upstream investments to downstream effects. This article assesses the downstream

  9. The trade-off of availability and growth inhibition through copper for the production of copper-dependent enzymes by Pichia pastoris.

    Science.gov (United States)

    Balakumaran, Palanisamy Athiyaman; Förster, Jan; Zimmermann, Martin; Charumathi, Jayachandran; Schmitz, Andreas; Czarnotta, Eik; Lehnen, Mathias; Sudarsan, Suresh; Ebert, Birgitta E; Blank, Lars Mathias; Meenakshisundaram, Sankaranarayanan

    2016-02-20

    Copper is an essential chemical element for life as it is a part of prosthetic groups of enzymes including super oxide dismutase and cytochrome c oxidase; however, it is also toxic at high concentrations. Here, we present the trade-off of copper availability and growth inhibition of a common host used for copper-dependent protein production, Pichia pastoris. At copper concentrations ranging from 0.1 mM (6.35 mg/L) to 2 mM (127 mg/L), growth rates of 0.25 h(-1) to 0.16 h(-1) were observed with copper uptake of as high as 20 mgcopper/gCDW. The intracellular copper content was estimated by subtracting the copper adsorbed on the cell wall from the total copper concentration in the biomass. Higher copper concentrations led to stronger cell growth retardation and, at 10 mM (635 mg/L) and above, to growth inhibition. To test the determined copper concentration range for optimal recombinant protein production, a laccase gene from Aspergillus clavatus [EMBL: EAW07265.1] was cloned under the control of the constitutive glyceraldehyde-3-phosphate (GAP) dehydrogenase promoter for expression in P. pastoris. Notably, in the presence of copper, laccase expression improved the specific growth rate of P. pastoris. Although copper concentrations of 0.1 mM and 0.2 mM augmented laccase expression 4 times up to 3 U/mL compared to the control (0.75 U/mL), while higher copper concentrations resulted in reduced laccase production. An intracellular copper content between 1 and 2 mgcopper/gCDW was sufficient for increased laccase activity. The physiology of the yeast could be excluded as a reason for the stop of laccase production at moderate copper concentrations as no flux redistribution could be observed by (13)C-metabolic flux analysis. Copper and its pivotal role to sustain cellular functions is noteworthy. However, knowledge on its cellular accumulation, availability and distribution for recombinant protein production is limited. This study attempts to address one such challenge

  10. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  11. Methylation of Hg downstream from the Bonanza Hg mine, Oregon

    Science.gov (United States)

    Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn

    2012-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream

  12. Constitutive phosphorylation of ATM in lymphoblastoid cell lines from patients with ICF syndrome without downstream kinase activity.

    Science.gov (United States)

    Goldstine, Jimena V; Nahas, Shareef; Gamo, Kristin; Gartler, Stanley M; Hansen, R Scott; Roelfsema, Jeroen H; Gatti, Richard A; Marahrens, York

    2006-04-08

    Double strand DNA breaks in the genome lead to the activation of the ataxia-telangiectasia mutated (ATM) kinase in a process that requires ATM autophosphorylation at serine-1981. ATM autophosphorylation only occurs if ATM is previously acetylated by Tip60. The activated ATM kinase phosphorylates proteins involved in arresting the cell cycle, including p53, and in repairing the DNA breaks. Chloroquine treatment and other manipulations that produce chromatin defects in the absence of detectable double strand breaks also trigger ATM phosphorylation and the phosphorylation of p53 in primary human fibroblasts, while other downstream substrates of ATM that are involved in the repair of DNA double strand breaks remain unphosphorylated. This raises the issue of whether ATM is constitutively activated in patients with genetic diseases that display chromatin defects. We examined lymphoblastoid cell lines (LCLs) generated from patients with different types of chromatin disorders: Immunodeficiency, Centromeric instability, Facial anomalies (ICF) syndrome, Coffin Lowry syndrome, Rubinstein Taybi syndrome and Fascioscapulohumeral Muscular Dystrophy. We show that ATM is phosphorylated on serine-1981 in LCLs derived from ICF patients but not from the other syndromes. The phosphorylated ATM in ICF cells did not phosphorylate the downstream targets NBS1, SMC1 and H2AX, all of which require the presence of double strand breaks. We demonstrate that ICF cells respond normally to ionizing radiation, ruling out the possibility that genetic deficiency in ICF cells renders activated ATM incapable of phosphorylating its downstream substrates. Surprisingly, p53 was also not phosphorylated in ICF cells or in chloroquine-treated wild type LCLs. In this regard the response to chromatin-altering agents differs between primary fibroblasts and LCLs. Our findings indicate that although phosphorylation at serine-1981 is essential in the activation of the ATM kinase, serine-1981 phosphorylation is

  13. Tritium target manufacturing for use in accelerators

    Science.gov (United States)

    Bach, P.; Monnin, C.; Van Rompay, M.; Ballanger, A.

    2001-07-01

    As a neutron tube manufacturer, SODERN is now in charge of manufacturing tritium targets for accelerators, in cooperation with CEA/DAM/DTMN in Valduc. Specific deuterium and tritium targets are manufactured on request, according to the requirements of the users, starting from titanium target on copper substrate, and going to more sophisticated devices. A wide range of possible uses is covered, including thin targets for neutron calibration, thick targets with controlled loading of deuterium and tritium, rotating targets for higher lifetimes, or large size rotating targets for accelerators used in boron neutron therapy. Activity of targets lies in the 1 to 1000 Curie, diameter of targets being up to 30 cm. Special targets are also considered, including surface layer targets for lowering tritium desorption under irradiation, or those made from different kinds of occluders such as titanium, zirconium, erbium, scandium, with different substrates. It is then possible to optimize either neutron output, or lifetime and stability, or thermal behavior.

  14. Activation determination of copper in food

    International Nuclear Information System (INIS)

    Jiranek, V.; Bludovsky, R.

    1982-01-01

    Neutron activation analysis was used for determining copper content in food. Analyzed were dried milk, flour, coffee, tea, husked rice, and liver. Bowen's kale powder with a guaranteed copper content of 3.6 to 6.5 ppm was used as a reference biological material. The instruments, chemicals and solutions used are reported. The method is described of copper separation with α-benzoinoxime and pyridine as is the procedure for the destructive activation analysis of samples. The copper concentrations in the foods under analysis were found to range within usual limits. The copper concentration determined in the reference material agreed with the measured value. The analysis confirms that the method yields reliable results. (J.B.)

  15. Chronic copper poisoning. III. Effects of copper acetate injected into the bloodstream of sheep

    Energy Technology Data Exchange (ETDEWEB)

    Todd, J R; Thompson, R H

    1964-01-01

    A study was made of the clinical and biochemical effects of injections of copper (as acetate) into the bloodstream of sheep of 100 to 130 lb. liveweight. Copper in a dose of 160 mg. caused death in 3 sheep in a few hours, and 80 mg. caused death in 3 out of 4 sheep, 2 after 2 days and 1 after 11 days. Symptoms, biochemical lesions and post-mortem appearances did not resemble those of chronic copper poisoning, but rather those of gastro-enteritis. Blood glutathione concentrations were not markedly reduced, but haemoconcentration was a prominent feature. Post-mortem examination showed gross congestion of blood vessels and marked inflammatory reactions in the abomasum and small intestine. Single injections of smaller amounts (25 to 40 mg. copper) were tolerated without effect, but repeated injections, twice daily for 2 to 3 days, caused haemolytic episodes in 3 sheep similar to the crisis of chronic copper poisoning in that a marked reduction in blood glutathione concentration and accumulation of methaemoglobin occurred. No other clinical effects were produced, however, and all three animals recovered uneventfully.

  16. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  17. The downstream industry compared to market

    International Nuclear Information System (INIS)

    Chevallier, B.

    2010-01-01

    J.L. Schilansky introduces here the difficult question of the downstream industry compared to market in recalling the recent structural changes (behaviour of customers, behaviour of the USA- and China-governments), the increase of the European and French regulations, the climatic change and the conjectural impact of the crisis on the refining industry. (O.M.)

  18. The murine cytomegalovirus M35 protein antagonizes type I IFN induction downstream of pattern recognition receptors by targeting NF-κB mediated transcription.

    Directory of Open Access Journals (Sweden)

    Baca Chan

    2017-05-01

    Full Text Available The type I interferon (IFN response is imperative for the establishment of the early antiviral immune response. Here we report the identification of the first type I IFN antagonist encoded by murine cytomegalovirus (MCMV that shuts down signaling following pattern recognition receptor (PRR sensing. Screening of an MCMV open reading frame (ORF library identified M35 as a novel and strong negative modulator of IFNβ promoter induction following activation of both RNA and DNA cytoplasmic PRR. Additionally, M35 inhibits the proinflammatory cytokine response downstream of Toll-like receptors (TLR. Using a series of luciferase-based reporters with specific transcription factor binding sites, we determined that M35 targets NF-κB-, but not IRF-mediated, transcription. Expression of M35 upon retroviral transduction of immortalized bone marrow-derived macrophages (iBMDM led to reduced IFNβ transcription and secretion upon activation of stimulator of IFN genes (STING-dependent signaling. On the other hand, M35 does not antagonize interferon-stimulated gene (ISG 56 promoter induction or ISG transcription upon exogenous stimulation of the type I IFN receptor (IFNAR. M35 is present in the viral particle and, upon MCMV infection of fibroblasts, is immediately shuttled to the nucleus where it exerts its immunomodulatory effects. Deletion of M35 from the MCMV genome and hence from the viral particle resulted in elevated type I IFN transcription and secretion in vitro and in vivo. In the absence of M35, lower viral titers are observed during acute infection of the host, and productive infection in the salivary glands was not detected. In conclusion, the M35 protein is released by MCMV immediately upon infection in order to deftly inhibit the antiviral type I IFN response by targeting NF-κB-mediated transcription. The identification of this novel viral protein reinforces the importance of timely countermeasures in the complex relationship between virus and host.

  19. Biomass Demand-Resources Value Targeting

    International Nuclear Information System (INIS)

    Lim, Chun Hsion; Lam, Hon Loong

    2014-01-01

    Highlights: • Introduce DRVT supply chain modelling approach to consider underutilised biomass. • Advantages of the novel DRVT biomass supply chain approach. • A case study is presented to demonstrate the improvement of the system. - Abstract: With the global awareness towards sustainability, biomass industry becomes one of the main focuses in the search of alternative renewable resources for energy and downstream product. However, the efficiency of the biomass management, especially in supply chain is still questionable. Even though many researches and integrations of supply chain network have been conducted, less has considered underutilised biomass. This leads to the ignorance of potential value in particular biomass species. A new Demand-Resources Value Targeting (DRVT) approach is introduced in this study to investigate the value of each biomass available in order to fully utilise the biomass in respective applications. With systematic biomass value classification, integration of supply chain based on biomass value from biomass resources-to-downstream product can be developed. DRVT model allows better understanding of biomass and their potential downstream application. A simple demonstration of DRVT approach is conducted based on biomass resources in Malaysia

  20. Mesophilic leaching of copper sulphide sludge

    Directory of Open Access Journals (Sweden)

    VLADIMIR B. CVETKOVSKI

    2009-02-01

    Full Text Available Copper was precipitated using a sodium sulphide solution as the precipitation agent from an acid solution containing 17 g/l copper and 350 g/l sulphuric acid. The particle size of nearly 1 µm in the sulphide sludge sample was detected by optical microscopy. Based on chemical and X-ray diffraction analyses, covellite was detected as the major sulphide mineral. The batch bioleach amenability test was performed at 32 °C on the Tk31 mine mesophilic mixed culture using a residence time of 28 days. The dissolution of copper sulphide by direct catalytic leaching of the sulphides with bacteria attached to the particles was found to be worthy, although a small quantity of ferrous ions had to be added to raise the activity of the bacteria and the redox potential of the culture medium. Throughout the 22-day period of the bioleach test, copper recovery based on residue analysis indicated a copper extraction of 95 %, with copper concentration in the bioleach solution of 15 g/l. The slope of the straight line tangential to the exponential part of the extraction curve gave a copper solubilisation rate of 1.1 g/l per day. This suggests that a copper extraction of 95 % for the period of bioleach test of 13.6 days may be attained in a three-stage bioreactor system.

  1. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    International Nuclear Information System (INIS)

    Brune, D.; Gjerdet, N.; Paulsen, G.

    1983-01-01

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied. (author)

  2. Attenuation of shock waves in copper and stainless steel

    International Nuclear Information System (INIS)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs

  3. Attenuation of shock waves in copper and stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, W.B.

    1986-06-01

    By using shock pins, data were gathered on the trajectories of shock waves in stainless steel (SS-304L) and oxygen-free-high-conductivity copper (OFHC-Cu). Shock pressures were generated in these materials by impacting the appropriate target with thin (approx.1.5 mm) flying plates. The flying plates in these experiments were accelerated to high velocities (approx.4 km/s) by high explosives. Six experiments were conducted, three using SS-304L as the target material and three experiments using OFHC-Cu as the target material. Peak shock pressures generated in the steel experiments were approximately 109, 130, and 147 GPa and in the copper experiments, the peak shock pressures were approximately 111, 132, and 143 GPa. In each experiment, an attenuation of the shock wave by a following release wave was clearly observed. An extensive effort using two characteristic codes (described in this work) to theoretically calculate the attenuation of the shock waves was made. The efficacy of several different constitutive equations to successfully model the experiments was studied by comparing the calculated shock trajectories to the experimental data. Based on such comparisons, the conclusion can be drawn that OFHC-Cu enters a melt phase at about 130 GPa on the principal Hugoniot. There was no sign of phase changes in the stainless-steel experiments. In order to match the observed attenuation of the shock waves in the SS-304L experiments, it was necessary to include strength effects in the calculations. It was found that the values for the parameters in the strength equations were dependent on the equation of state used in the modeling of the experiments. 66 refs., 194 figs., 77 tabs.

  4. 21 CFR 74.3045 - [Phthalocyaninato(2-)] copper.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false [Phthalocyaninato(2-)] copper. 74.3045 Section 74...-)] copper. (a) Identity. The color additive is [phthalocyaninato(2-)] copper (CAS Reg. No. 147-14-8) having... [phthalocyaninato(2-)] copper shall conform to the following specifications and shall be free from impurities other...

  5. Oxidation-assisted graphene heteroepitaxy on copper foil.

    Science.gov (United States)

    Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François

    2016-11-10

    We propose an innovative, easy-to-implement approach to synthesize aligned large-area single-crystalline graphene flakes by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, favoring the growth of centimeter-sized copper (111) grains through the mechanism of abnormal grain growth. Second, the oxidation of the copper surface also drastically reduces the nucleation density of graphene. This oxidation/reduction sequence leads to the synthesis of aligned millimeter-sized monolayer graphene domains in epitaxial registry with copper (111). The as-grown graphene flakes are demonstrated to be both single-crystalline and of high quality.

  6. Effects of a copper-tolerant grass (Agrostis capillaris) on the ecosystem of a copper-contaminated arable soil

    Energy Technology Data Exchange (ETDEWEB)

    Boon, G.T. [State Univ. Groningen (Netherlands); Bouwman, L.A.; Bloem, J.; Roemkens, P.F.A.M. [Research Inst. for Agrobiology and Soil Fertility, Haren (Netherlands)

    1998-10-01

    To test how a dysfunctioning ecosystem of a severely metal-polluted soil responds to renewed plant growth, a pot experiment was conducted with soil from an experimental arable field with pH and copper gradients imposed 13 years ago. In this experiment, four pH/copper combinations from this field were either planted with a pH- and copper-resistant grass cultivar or remained fallow. During a 10-week period, the dynamics of the microbial activity and of the abundances of bacteria, protozoa. and nematodes were measured, as were the dynamics of several chemical soil parameters. After 13 years of copper, which had resulted in severely reduced crop growth, no effects were observed on bacterial numbers, respiration, or protozoan numbers, but bacterial growth was strongly reduced in the low pH plots, and even more so in low pH plots enriched with copper. Of the organisms, only nematodes were negatively affected under conditions of high copper load at low pH. In these plots, numbers belonging to all feeding categories were strongly reduced. Planting of a copper-tolerant grass variety, Agrostis capillaris L. var. Parys Mountain, resulted within 10 weeks in faster bacterial growth and more protozoa and bacterivorous nematodes in comparison with fallow controls; these effects were markedly strongest in the acidic, copper-enriched soils. During incubation, fungivorous nematodes increased in all treatments, in fallow and in planted pots and in the pots with high-copper, low-pH soil. The results of this experiment suggest that introduction of plant growth is one of the major causes of increased biological activity in acidic contaminated soils. Planting such soils with metal-tolerant plant species can reestablish the necessary food base to support soil organism growth, and this can lead to numerous positive effects, reversing the loss of soil functions due to the high copper levels under acidic conditions.

  7. From gravel to sand. Downstream fining of bed sediments in the lower river Rhine

    NARCIS (Netherlands)

    Frings, R.M.

    2007-01-01

    A common characteristic of many rivers is the tendency for bed sediments to become finer in downstream direction. This phenomenon, which is generally known as downstream fining, has a strong effect on the morphologic and hydrodynamic behaviour of a river. The fundamental causes of downstream

  8. Stromal progesterone receptors mediate induction of Indian Hedgehog (IHH) in uterine epithelium and its downstream targets in uterine stroma.

    Science.gov (United States)

    Simon, Liz; Spiewak, Kerry A; Ekman, Gail C; Kim, Jaeyeon; Lydon, John P; Bagchi, Milan K; Bagchi, Indrani C; DeMayo, Francesco J; Cooke, Paul S

    2009-08-01

    Uterine receptivity to embryo implantation depends on appropriate progesterone (P4) and estrogen stimulation. P4 rapidly stimulates production of the morphogen Indian hedgehog (IHH) in murine uterine epithelium as well as downstream molecules in the hedgehog pathway such as Patched homolog 1 (PTCH1) and nuclear receptor subfamily 2, group F, member 2 (NR2F2) in uterine stroma. Studies using IHH-null mice indicate that IHH is obligatory for the normal P4 response in the uterus. To determine whether IHH induction in uterine epithelium is mediated through P4 receptor (PR) in epithelium (E) and/or stroma (S), we produced tissue recombinants using uteri from neonatal PR knockout (ko) mice and wild-type (wt) mice containing PR in S and/or E or lacking PR altogether using a tissue recombinant methodology and assessed their response to P4. In tissue recombinants containing wt-S (wt-S + wt-E and wt-S + ko-E), P4 induced Ihh mRNA expression at 6 h that was 6-fold greater than in oil-treated controls (P Ihh mRNA expression was unaffected by P4 in ko-S + ko-E and ko-S + wt-E grafts despite epithelial PR expression in the latter. Nr2f2 and Ptch1 mRNA expression was similar in that it was stimulated by P4 only in recombinants containing stromal PR. These results indicate that stromal PR is both necessary and sufficient for P4 stimulation of epithelial IHH as well as downstream events such as PTCH1 and NR2F2 increases in stroma.

  9. Carbohydrate metabolism in erythrocytes of copper deficient rats.

    Science.gov (United States)

    Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J

    2003-11-01

    Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.

  10. Ion energy characteristics downstream of a high power helicon

    International Nuclear Information System (INIS)

    Prager, James; Winglee, Robert; Ziemba, Tim; Roberson, B Race; Quetin, Gregory

    2008-01-01

    The High Power Helicon eXperiment operates at higher powers (37 kW) and lower background neutral pressure than other helicon experiments. The ion velocity distribution function (IVDF) has been measured at multiple locations downstream of the helicon source and a mach 3-6 flowing plasma was observed. The helicon antenna has a direct effect in accelerating the plasma downstream of the source. Also, the IVDF is affected by the cloud of neutrals from the initial gas puff, which keeps the plasma speed low at early times near the source.

  11. Ion energy characteristics downstream of a high power helicon

    Energy Technology Data Exchange (ETDEWEB)

    Prager, James; Winglee, Robert; Ziemba, Tim; Roberson, B Race; Quetin, Gregory [University of Washington, Johnson Hall 070, Box 351310, 4000 15th Avenue NE, Seattle, WA 98195-1310 (United States)], E-mail: jprager@u.washington.edu

    2008-05-01

    The High Power Helicon eXperiment operates at higher powers (37 kW) and lower background neutral pressure than other helicon experiments. The ion velocity distribution function (IVDF) has been measured at multiple locations downstream of the helicon source and a mach 3-6 flowing plasma was observed. The helicon antenna has a direct effect in accelerating the plasma downstream of the source. Also, the IVDF is affected by the cloud of neutrals from the initial gas puff, which keeps the plasma speed low at early times near the source.

  12. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    Directory of Open Access Journals (Sweden)

    H. Kokes

    2014-03-01

    Full Text Available The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III hydroxide was precipitated by adjusting the pH level of the solution. Subsequently, copper sulfate pentahydrate was obtained by using various precipitants (i.e. ethanol, methanol and sulfuric acid.

  13. Effect of Copper and Iron Ions on the Sulphidizing Flotation of Copper Oxide in Copper Smelting Slag

    OpenAIRE

    Qing-qing Pan; Hui-qing Peng

    2018-01-01

    The treatment of smelting slag has attracted much attention nowadays. This study investigates the influence of Na2S, CuSO4, and FeCl3 on sulphidizing flotation of copper oxide. The results show that a proper Cu2+ concentration can increase the sulphidizing effect of copper oxide, while Fe3+ inhibits the sulphidizing effect. Further analysis shows that Cu2+ ions can reduce the surface potential, increase the S2− adsorption, then generate more polysulfide, and therefore promote the sulphidizing...

  14. Laser plasma focus produced in a ring target

    International Nuclear Information System (INIS)

    Saint-Hilaire, G.; Szili, Z.

    1976-01-01

    A new geometry for generating a laser-produced plasma is presented. A toroidal mirror is used to focus a CO 2 laser beam on the inside wall of a copper ring target. The plasma produced converges at the center of the ring where an axial plasma focus is formed. High-speed photography shows details of a plasma generated at a distance from the target surface. This new geometry could have important applications in the field of x-ray lasers

  15. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  16. Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction

    Science.gov (United States)

    Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi

    2016-11-01

    The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.

  17. A novel virtual hub approach for multisource downstream service integration

    Science.gov (United States)

    Previtali, Mattia; Cuca, Branka; Barazzetti, Luigi

    2016-08-01

    A large development of downstream services is expected to be stimulated starting from earth observations (EO) datasets acquired by Copernicus satellites. An important challenge connected with the availability of downstream services is the possibility for their integration in order to create innovative applications with added values for users of different categories level. At the moment, the world of geo-information (GI) is extremely heterogeneous in terms of standards and formats used, thus preventing a facilitated access and integration of downstream services. Indeed, different users and data providers have also different requirements in terms of communication protocols and technology advancement. In recent years, many important programs and initiatives have tried to address this issue even on trans-regional and international level (e.g. INSPIRE Directive, GEOSS, Eye on Earth and SEIS). However, a lack of interoperability between systems and services still exists. In order to facilitate the interaction between different downstream services, a new architectural approach (developed within the European project ENERGIC OD) is proposed in this paper. The brokering-oriented architecture introduces a new mediation layer (the Virtual Hub) which works as an intermediary to bridge the gaps linked to interoperability issues. This intermediation layer de-couples the server and the client allowing a facilitated access to multiple downstream services and also Open Data provided by national and local SDIs. In particular, in this paper an application is presented integrating four services on the topic of agriculture: (i) the service given by Space4Agri (providing services based on MODIS and Landsat data); (ii) Gicarus Lab (providing sample services based on Landsat datasets) and (iii) FRESHMON (providing sample services for water quality) and services from a several regional SDIs.

  18. Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex

    Science.gov (United States)

    Truong, Quang Duc; Kakihana, Masato

    2012-06-01

    A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.

  19. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    Science.gov (United States)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-06-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  20. CdS-based p-i-n diodes using indium and copper doped CdS films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Hernandez-Como, N; Berrellez-Reyes, F; Mizquez-Corona, R; Ramirez-Esquivel, O; Mejia, I; Quevedo-Lopez, M

    2015-01-01

    In this work we report a method to dope cadmium sulfide (CdS) thin films using pulsed laser deposition. Doping is achieved during film growth at substrate temperatures of 100 °C by sequential deposition of the CdS and the dopant material. Indium sulfide and copper disulfide targets were used as the dopant sources for n-type and p-type doping, respectively. Film resistivities as low as 0.2 and 1 Ω cm were achieved for indium and copper doped films, respectively. Hall effect measurements demonstrated the change in conductivity type from n-type to p-type when the copper dopants are incorporated into the film. The controlled incorporation of indium or copper, in the undoped CdS film, results in substitutional defects in the CdS, which increases the electron and hole concentration up to 4 × 10 18 cm −3 and 3 × 10 20 cm −3 , respectively. The results observed with CdS doping can be expanded to other chalcogenides material compounds by just selecting different targets. With the optimized doped films, CdS-based p-i-n diodes were fabricated yielding an ideality factor of 4, a saturation current density of 2 × 10 −6 A cm −2 and a rectification ratio of three orders of magnitude at ±3 V. (paper)

  1. Experimental evaluation of multiple Compton backscattering of gamma rays in copper

    International Nuclear Information System (INIS)

    Sabharwal, Arvind D.; Singh, Manpreet; Singh, Bhajan; Sandhu, B.S.

    2009-01-01

    The gamma ray photons continue to soften in energy as the number of scatterings increases in thick target, and results in the generation of singly and multiply scattered events. The number of these multiply scattered events increases with an increase in target thickness and saturates beyond a particular target thickness known as saturation depth. The present experiment is undertaken to study the saturation depth for 279 and 320 keV incident gamma ray photons multiply backscattered from copper targets of varying thickness. The backscattered photons are detected by a Nal(Tl) gamma detector whose pulse-height distribution is converted into a photon spectrum with the help of an inverse matrix approach. To extract the contribution of multiply backscattered photons only, the spectrum of singly scattered photon is reconstructed analytically. We observe that the numbers of multiply scattered events increases with an increase in target thickness and then saturate. The saturation depth is found to be decreasing with increase in incident gamma energy. (author)

  2. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  3. Atmospheric pollution with copper around the copper mine and flotation, 'Buchim', Republic of Macedonia, using biomonitoring moss and lichen technique

    International Nuclear Information System (INIS)

    Balabanova, Biljana; Bacheva, Katerina; Shajn, Robert; Stafilov, Trajche

    2009-01-01

    This paper has studied the atmospheric pollution with copper due to copper mining and flotation 'Buchim' near Radovish, Republic of Macedonia. The copper ore and ore tailings continually are exposed to open air, which occur winds carry out the fine particles in to atmosphere. Moss (Hyloconium splendens and Pleurozium schrebery) and lichen (Hypogymnia physodes and Parmelia sulcata) samples were used for biomonitoring the possible atmospheric pollution with copper in the mine vicinity. Moss and lichen samples were digested by using of microwave digestion system and copper was analyzed by atomic emission spectrometry with inductively coupled plasma (ICPAES). The obtained values for the content of copper in moss and lichen samples were statistically processed using the nonparametric and parametric analysis. Maps of areal deposition of copper show an increase content of copper in the vicinity of mine, but long distance distribution of this element is not established yet.

  4. Damage caused by a nanosecond UV laser on a heated copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Henč-Bartolić, V., E-mail: visnja.henc@fer.hr [University of Zagreb, Faculty of Electrical Engineering and Computing, Unska 3, 10000 Zagreb (Croatia); Bončina, T. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia); Jakovljević, S., E-mail: suzana.jakovljevic@fsb.hr [University of Zagreb, Faculty of Mechanical Engineering and Naval Architecture, Ivana Lučića 5, 10002 Zagreb (Croatia); Panjan, P. [Jožef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Zupanič, F. [University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, 2000 Maribor (Slovenia)

    2016-08-15

    Highlights: • A Cu-plate was exposed to nanosecond UV laser with max. energy 1.1 J/cm{sup 2}. • Surface topography was studied on the cold and heated copper plate. • At room temperature, a crater formed, the melt was ejected from it. • Capillary waves formed in the vicinity of the crater at 360 °C. - Abstract: This work studied the effect of thin copper plate temperature on its surface morphology after irradiation using a pulsed nanosecond UV laser. The surface characteristics were investigated using scanning electron microscopy, energy dispersive X-ray spectroscopy, focused ion beam and stylus profilometry. When a target was at room temperature, a crater and the radial flow of molten Cu from the crater was observed. When the thin target was warm (about 360 °C ± 20 °C), a crater was smaller, and quasi-semicircular waves with the periodicity of around 3 μm appeared in its vicinity. The origin of the waves is Marangoni effect, causing thermocapillary waves, which in same occasions had a structure of final states of chaos in Rayleigh–Bénard convection.

  5. Photoelectrochemistry of copper(I) acetylide films electrodeposited onto copper electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G.; Cattarin, S.; Mengoli, G.; Fleischmann, M.; Peter, L.M.

    1986-01-01

    Films of copper acetylide (Cu/sub 2/C/sub 2/) were grown electrochemically on copper and characterized by transmittance and reflectance techniques. The photoelectrochemical properties of the filmed electrodes in alkaline solution indicate that Cu/sub 2/C/sub 2/ behaves as a p-type semiconducting material (1.5 eV band gap). The photocurrents depend on film thickness and aging and high resistivity or recombination losses limit the quantum yield to some 4% for thicknesses of practical importance (250 nm).

  6. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    OpenAIRE

    H. Kokes; M.H. Morcali; E. Acma

    2014-01-01

    The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III) hydroxide was precipitated by...

  7. Rate and Regulation of Copper Transport by Human Copper Transporter 1 (hCTR1)*

    Science.gov (United States)

    Maryon, Edward B.; Molloy, Shannon A.; Ivy, Kristin; Yu, Huijun; Kaplan, Jack H.

    2013-01-01

    Human copper transporter 1 (hCTR1) is a homotrimer of a 190-amino acid monomer having three transmembrane domains believed to form a pore for copper permeation through the plasma membrane. The hCTR1-mediated copper transport mechanism is not well understood, nor has any measurement been made of the rate at which copper ions are transported by hCTR1. In this study, we estimated the rate of copper transport by the hCTR1 trimer in cultured cells using 64Cu uptake assays and quantification of plasma membrane hCTR1. For endogenous hCTR1, we estimated a turnover number of about 10 ions/trimer/s. When overexpressed in HEK293 cells, a second transmembrane domain mutant of hCTR1 (H139R) had a 3-fold higher Km value and a 4-fold higher turnover number than WT. Truncations of the intracellular C-terminal tail and an AAA substitution of the putative metal-binding HCH C-terminal tripeptide (thought to be required for transport) also exhibited elevated transport rates and Km values when compared with WT hCTR1. Unlike WT hCTR1, H139R and the C-terminal mutants did not undergo regulatory endocytosis in elevated copper. hCTR1 mutants combining methionine substitutions that block transport (M150L,M154L) on the extracellular side of the pore and the high transport H139R or AAA intracellular side mutations exhibited the blocked transport of M150L,M154L, confirming that Cu+ first interacts with the methionines during permeation. Our results show that hCTR1 elements on the intracellular side of the hCTR1 pore, including the carboxyl tail, are not essential for permeation, but serve to regulate the rate of copper entry. PMID:23658018

  8. 21 CFR 73.2647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.2647 Section 73.2647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The color additive copper powder shall conform in identity and specifications to the requirements of § 73...

  9. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: a new canine model for copper-metabolism disorders

    Directory of Open Access Journals (Sweden)

    Hille Fieten

    2016-01-01

    Full Text Available The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional

  10. Beamed Energy Propulsion by Means of Target Ablation

    International Nuclear Information System (INIS)

    Rosenberg, Benjamin A.

    2004-01-01

    This paper describes hundreds of pendulum tests examining the beamed energy conversion efficiency of different metal targets coated with multiple liquid enhancers. Preliminary testing used a local laser with photographic paper targets, with no liquid, water, canola oil, or methanol additives. Laboratory experimentation was completed at Wright-Patterson AFB using a high-powered laser, and ballistic pendulums of aluminum, titanium, or copper. Dry targets, and those coated with water, methanol and oil were repeatedly tested in laboratory conditions. Results were recorded on several high-speed digital video cameras, and the conversion efficiency was calculated. Paper airplanes successfully launched using BEP were likewise recorded

  11. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    International Nuclear Information System (INIS)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui

    2014-01-01

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m −1 K −1 and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m −1 K −1 and 8 to 5 ppm K −1 , respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials

  12. Studies on the copper-poisoned soils. Part 2. Actual condition of the copper-poison in the soils and the rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Koshiba, N.; Sano, Y.

    1968-01-01

    Copper contents of soils and rice plants in paddylands were correlated with growth. The results were as follows: available copper content in paddies was 181.8 ppm where the rice plants grew poorly, and was more than 4 times the value of the soil where rice plants grew favorably. The difference growth was obviously caused by available copper. The copper content of the rice plants showing poor growth was the same as those which grew well. Plants were poisoned by available copper of more than 100 ppm. The available copper contents were increased by drying processes of the paddyland soils distributed in the copper-poisoned area. 8 references, 6 tables.

  13. CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803

    Science.gov (United States)

    Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J

    2015-01-01

    Copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803 comprises two operons, copMRS and copBAC, which are expressed in response to copper in the media. copBAC codes for a heavy-metal efflux–resistance nodulation and division (HME-RND) system, while copMRS codes for a protein of unknown function, CopM, and a two-component system CopRS, which controls the expression of these two operons. Here, we report that CopM is a periplasmic protein able to bind Cu(I) with high affinity (KD ∼3 × 10−16). Mutants lacking copM showed a sensitive copper phenotype similar to mutants affected in copB, but lower than mutants of the two-component system CopRS, suggesting that CopBAC and CopM constitute two independent resistance mechanisms. Moreover, constitutive expression of copM is able to partially suppress the copper sensitivity of the copR mutant strain, pointing out that CopM per se is able to confer copper resistance. Furthermore, constitutive expression of copM was able to reduce total cellular copper content of the copR mutant to the levels determined in the wild-type (WT) strain. Finally, CopM was localized not only in the periplasm but also in the extracellular space, suggesting that CopM can also prevent copper accumulation probably by direct copper binding outside the cell. PMID:25545960

  14. Metagenomic exploration of microbial community in mine tailings of Malanjkhand copper project, India

    Directory of Open Access Journals (Sweden)

    Abhishek Gupta

    2017-06-01

    Full Text Available Mine tailings from copper mines are considered as one of the sources of highly hazardous acid mine drainage (AMD due to bio-oxidation of its sulfidic constituents. This study was designed to understand microbial community composition and potential for acid generation using samples from mine tailings of Malanjkhand copper project (MCP, India through 16S rRNA gene based amplicon sequencing approach (targeting V4 region. Three tailings samples (T1, T2 and T3 with varied physiochemical properties selected for the study revealed distinct microbial assemblages. Sample (T3 with most extreme nature (pH 3.0 exhibited abundance of Proteobacteria, Fimicutes, Actinobacteria and/or Nitrospirae. Metagenomic sequences are available under the BioProject ID PRJNA361456.

  15. Mass spectrum of secondary ions knocked-out from copper surface by argon ion beam

    International Nuclear Information System (INIS)

    Koval', A.G.; Bobkov, V.V.; Klimovskij, Yu.A.; Fogel', Ya.M.

    1976-01-01

    The mass-spectrum of secondary ions was studied within a mass range of 1-400. The ions were knocked-out by the beam of ions Ar + from the copper surface with different content of oxygen and sulphur solved in the volume. The studies were conducted at three temperatures of the target. The atomic and molecular ions of the metal matrix, volumetric impurities of metal and ions of chemical compounds molecules of the metal under study with gas particles adsorbed on its surface and atoms of the metal volumetric admixtures may be observed in the mass spectrum. Detection of secondary ions of the copper multi-atomic complexes and ions of these complexes compounds with the adsorbed molecules is of interest

  16. Copper-Based Aquatic Algaecide Adsorption and Accumulation Kinetics: Influence of Exposure Concentration and Duration for Controlling the Cyanobacterium Lyngbya wollei.

    Science.gov (United States)

    Bishop, West M; Lynch, Clayton L; Willis, Ben E; Cope, W Gregory

    2017-09-01

    Filamentous mat-forming cyanobacteria are increasingly impairing uses of freshwater resources. To effectively manage, a better understanding of control measures is needed. Copper (Cu)-based algaecide formulations are often applied to reactively control nuisance cyanobacterial blooms. This laboratory research assessed typical field exposure scenarios for the ability of Cu to partition to, and accumulate in Lyngbya wollei. Exposure factors (Cu concentration × duration) of 4, 8, 16, 24, 32 h were tested across three aqueous Cu concentrations (1, 2, 4 ppm). Results indicated that internally accumulated copper correlated with control of L. wollei, independent of adsorbed copper. L. wollei control was determined by filament viability and chlorophyll a concentrations. Similar exposure factors elicited similar internalized copper levels and consequent responses of L. wollei. Ultimately, a "concentration-exposure-time" (CET) model was created to assist water resource managers in selecting an appropriate treatment regime for a specific in-water infestation. By assessing the exposure concentration and duration required to achieve the internal threshold of copper (i.e., critical burden) that elicits control, water management objectives can be achieved while simultaneously decreasing the environmental loading of copper and potential for non-target species risks.

  17. Corrosion of copper and copper alloys in a basaltic repository environment

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1990-01-01

    Corrosion testing done on copper and copper alloys in support of the basalt repository program is discussed. Tests were performed under anoxic conditions at 50C, 100C, 150C and 200C in the presence of a saturated basalt-bentonite packing. Tests were also performed in an air/steam mixture at temperatures between 150C and 200C. Some tests, particularly those in air/steam mixtures, were done in the presence of radiation fields of 10 2 , 10 3 or 10 4 rad/h. Exposure periods were up to 28 months. A synthetic groundwater, Grande Ronde ≠4, was used. The materials studied were ASTM B402μm·a for copper and 17 μm·a for cupronickel, but the average rates were muμm·a was obtained. The rates at longer times were less than a third of this value. Corrosion increased monotonically with time and temperature. Chalcocite (Cu 2 S) was the corrosion product at 200C. There was no detectable radiation effect, and no pitting was observed. In air/steam corrosion was uniform with no pitting. Linear corrosion was observed for pure copper. The maximum corrosion penetration after 25 months was 0.13 mm at 300C; cupronickel corroded more slowly, with a maximum penetration of 0.045mm after 25 months. Cuprite (Cu 2 O) and tenorite (CuO) were identified on cupronickel, but only Cu 2 O on copper. A pronounced radiation effect was seen at 250C, but not at 150C; the surface film morphology was different under irradiation. In the short term the presence of packing increased the corrosion rate. 5 refs

  18. Multimodal LA-ICP-MS and nanoSIMS imaging enables copper mapping within photoreceptor megamitochondria in a zebrafish model of Menkes disease.

    Science.gov (United States)

    Ackerman, Cheri M; Weber, Peter K; Xiao, Tong; Thai, Bao; Kuo, Tiffani J; Zhang, Emily; Pett-Ridge, Jennifer; Chang, Christopher J

    2018-03-01

    Copper is essential for eukaryotic life, and animals must acquire this nutrient through the diet and distribute it to cells and organelles for proper function of biological targets. Indeed, mutations in the central copper exporter ATP7A contribute to a spectrum of diseases, including Menkes disease, with symptoms ranging from neurodegeneration to lax connective tissue. As such, a better understanding of the fundamental impacts of ATP7A mutations on in vivo copper distributions is of relevance to those affected by these diseases. Here we combine metal imaging and optical imaging techniques at a variety of spatial resolutions to identify tissues and structures with altered copper levels in the Calamity gw71 zebrafish model of Menkes disease. Rapid profiling of tissue slices with LA-ICP-MS identified reduced copper levels in the brain, neuroretina, and liver of Menkes fish compared to control specimens. High resolution nanoSIMS imaging of the neuroretina, combined with electron and confocal microscopies, identified the megamitochondria of photoreceptors as loci of copper accumulation in wildtype fish, with lower levels of megamitochondrial copper observed in Calamity gw71 zebrafish. Interestingly, this localized copper decrease does not result in impaired photoreceptor development or altered megamitochondrial morphology, suggesting the prioritization of copper at sufficient levels for maintaining essential mitochondrial functions. Together, these data establish the Calamity gw71 zebrafish as an optically transparent in vivo model for the study of neural copper misregulation, illuminate a role for the ATP7A copper exporter in trafficking copper to the neuroretina, and highlight the utility of combining multiple imaging techniques for studying metals in whole organism settings with spatial resolution.

  19. Copper sulphate poisoning in horses

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, M

    1975-01-01

    In the archives of the Clinic for Internal Diseases of Domestic Animals at the Veterinary Faculty of Zagreb University some thirty cases of horse disease diagnosed as copper sulphate poisoning were noted. The data correspond in many respects to the clinical findings of copper sulphate poisoning in other domestic animals. A series of experimental horse poisonings were undertaken in order to determine the toxicity of copper sulphate. The research results are as follows: Horses are sensitive to copper sulphate. Even a single application of 0.125 g/kg body weight in 1% concentration by means of incubation into the stomach causes stomach and gut disturbances and other poisoning symptoms. Poisoning occurs in two types: acute and chronic. The former appears after one to three applications of copper sulphate solution and is characterized by gastroenteritis, haemolysis, jaundice and haemoglobinuria with signs of consecutive damage of kidney, liver and other organs. The disease, from the first application to death lasts for two weeks. Chronic poisoning is caused by ingestion of dry copper sulphate in food (1% solution dried on hay or clover) for two or more months. There are chronic disturbances of stomach and gut and loss of weight, and consecutive (three to four) haemolytic crises similar to those of acute poisoning. From the beginning of poisoning to death six or more months can elapse.

  20. The effect of primary copper slag cooling rate on the copper valorization in the flotation process

    Directory of Open Access Journals (Sweden)

    Aleksandar Mihajlović

    2015-06-01

    Full Text Available Technological procedure of slow cooling slag from primary copper production is applied in the purpose of copper recovery in the level of 98.5% to blister. This technological procedure is divided into two phases, first slow cooling of slag on the air for 24 hours, and then accelerated cooling with water for 48 hours. Within the research following methods were used: calculation of nonstationary slag cooling, verification of the calculation using computer simulation of slag cooling in the software package COMSOL Multiphysics and experimental verification of simulation results. After testing of the experimentally gained samples of slowly cooled slag it was found that this technological procedure gives the best results in promoting growth or coagulation of dispersed particles of copper sulfide and copper in the slag, thereby increasing the utilization of the flotation process with a decrease of copper losses through very fine particles.

  1. MiR-223 suppresses cell proliferation by targeting IGF-1R.

    Directory of Open Access Journals (Sweden)

    Cheng You Jia

    Full Text Available To study the roles of microRNA-223 (miR-223 in regulation of cell growth, we established a miR-223 over-expression model in HeLa cells infected with miR-223 by Lentivirus pLL3.7 system. We observed in this model that miR-223 significantly suppressed the proliferation, growth rate, colony formation of HeLa cells in vitro, and in vivo tumorigenicity or tumor formation in nude mice. To investigate the mechanisms involved, we scanned and examined the potential and putative target molecules of miR-223 by informatics, quantitative PCR and Western blot, and found that insulin-like growth factor-1 receptor (IGF-1R was the functional target of miR-223 inhibition of cell proliferation. Targeting IGF-1R by miR-223 was not only seen in HeLa cells, but also in leukemia and hepatoma cells. The downstream pathway, Akt/mTOR/p70S6K, to which the signal was mediated by IGF-1R, was inhibited as well. The relative luciferase activity of the reporter containing wild-type 3'UTR(3'untranslated region of IGF-1R was significantly suppressed, but the mutant not. Silence of IGF-1R expression by vector-based short hairpin RNA resulted in the similar inhibition with miR-223. Contrarily, rescued IGF-1R expression in the cells that over-expressed miR-223, reversed the inhibition caused by miR-223 via introducing IGF-1R cDNA that didn't contain the 3'UTR. Meanwhile, we also noted that miR-223 targeted Rasa1, but the downstream molecules mediated by Rasa1 was neither targeted nor regulated. Therefore we believed that IGF-1R was the functional target for miR-223 suppression of cell proliferation and its downstream PI3K/Akt/mTOR/p70S6K pathway suppressed by miR-223 was by targeting IGF-1R.

  2. Temperature and Copper Concentration Effects on the Formation of Graphene-Encapsulated Copper Nanoparticles from Kraft Lignin

    Directory of Open Access Journals (Sweden)

    Weiqi Leng

    2017-06-01

    Full Text Available The effects of temperature and copper catalyst concentration on the formation of graphene-encapsulated copper nanoparticles (GECNs were investigated by means of X-ray diffraction, Fourier transform infrared spectroscopy-attenuated total reflectance, and transmission electron microscopy. Results showed that higher amounts of copper atoms facilitated the growth of more graphene islands and formed smaller size GECNs. A copper catalyst facilitated the decomposition of lignin at the lowest temperature studied (600 °C. Increasing the temperature up to 1000 °C retarded the degradation process, while assisting the reconfiguration of the defective sites of the graphene layers, thus producing higher-quality GECNs.

  3. Use of Fatty Acid Methyl Ester Profiles to Compare Copper-Tolerant and Copper-Sensitive Strains of Pantoea ananatis.

    Science.gov (United States)

    Nischwitz, C; Gitaitis, R; Sanders, H; Langston, D; Mullinix, B; Torrance, R; Boyhan, G; Zolobowska, L

    2007-10-01

    ABSTRACT A survey was conducted to evaluate differences in fatty acid methyl ester (FAME) profiles among strains of Pantoea ananatis, causal agent of center rot of onion (Allium cepa), isolated from 15 different onion cultivars in three different sites in Georgia. Differences in FAME composition were determined by plotting principal components (PCs) in two-dimensional plots. Euclidean distance squared (ED(2)) values indicated a high degree of similarity among strains. Plotting of PCs calculated from P. ananatis strains capable of growing on media amended with copper sulfate pentahydrate (200 mug/ml) indicated that copper-tolerant strains grouped into tight clusters separate from clusters formed by wild-type strains. However, unlike copper-sensitive strains, the copper-tolerant strains tended to cluster by location. A total of 80, 60, and 73% of the strains from Tift1, Tift2, and Tattnall, respectively, exhibited either confluent growth or partial growth on copper-amended medium. However, all strains were sensitive to a mixture of copper sulfate pentahydrate (200 mug/ml) and maneb (40 mug/ml). When copper-tolerant clones were analyzed and compared with their wild-type parents, in all cases the plotting of PCs developed from copper-tolerant clones formed tight clusters separate from clusters formed by the parents. Eigenvalues generated from these tests indicated that two components provided a good summary of the data, accounting for 98, 98, and 96% of the standardized variance for strains Pna 1-15B, Pna 1-12B, and Pna 2-5A, respectively. Furthermore, feature 4 (cis-9-hexadecenoic acid/2-hydroxy-13-methyltetradecanoic acid) and feature 7 (cis-9/trans-12/cis-7-octadecenoic acid) were the highest or second highest absolute values for PC1 in all three strains of the parents versus copper-tolerant clones, and hexadecanoic acid was the highest absolute value for PC2 in all three strains. Along with those fatty acids, dodecanoic acid and feature 3 (3-hydroxytetradecanoic

  4. Studies on Cementation of Tin on Copper and Tin Stripping from Copper Substrate

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2016-06-01

    Full Text Available Cementation of tin on copper in acid chloride-thiourea solutions leads to the formation of porous layers with a thickness dependent on the immersion time. The process occurs via Sn(II-Cu(I mechanism. Chemical stripping of tin was carried out in alkaline and acid solutions in the presence of oxidizing agents. It resulted in the dissolution of metallic tin, but refractory Cu3Sn phase remained on the copper surface. Electrochemical tin stripping allows complete tin removal from the copper substrate, but porosity and complex phase composition of the tin coating do not allow monitoring the process in unambiguous way.

  5. Electrochemical remediation of copper contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Mitojan, R.A. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study objective focused on electrochemical remediation copper polluted soils in the presence of adjuvant substances and conditions that are more effective for the treatment. Some of these substances were studied in different researches. Moreover, authors obtained a result of extraction copper rate higher than 90%. In this connection the following problems were set: - Influence organic and inorganic substances on copper mobility in soil under the DC current. - Moisture effect on copper migration in clay. - Electrochemical remediation soils different mineralogical composition. - A washing conditions contribution to electrochemical remediation of soil from copper. - Accuracy rating experimental dates. (orig.)

  6. A Study of Protection of Copper Alloys

    International Nuclear Information System (INIS)

    Kim, E. A.; Kim, S. H.; Kim, C. R.

    1974-01-01

    Volatile treatment of high capacity boiler water with hydrazine and ammonia is studied. Ammonia comes from the decomposition of excess hydrazine injected to treat dissolved oxygen. Ammonia is also injected for the control of pH. To find an effect of such ammonia on the copper alloy, the relations between pH and iron, and ammonia and copper are studied. Since the dependence of corrosion of iron on pH differs from that of copper, a range of pH was selected experimentally to minimize the corrosion rates of both copper and iron. Corrosion rates of various copper alloys are also compared

  7. Effectiveness acidic pre-cleaning for copper-gold ore

    Directory of Open Access Journals (Sweden)

    Antonio Clareti Pereira

    Full Text Available Abstract The presence of copper-bearing minerals is known to bring on many challenges during the cyanidation of gold ore, like high consumption of cyanide and low extraction of metal, which are undesirable impacts on the auriferous recovery in the subsequent process step. The high copper solubility in cyanide prevents the direct use of classical hydrometallurgical processes for the extraction of gold by cyanidation. Additionally, the application of a conventional flotation process to extract copper is further complicated when it is oxidized. As a result, an acid pre-leaching process was applied in order to clean the ore of these copper minerals that are cyanide consumers. The objective was to evaluate the amount of soluble copper in cyanide before and after acidic cleaning. From a gold ore containing copper, the study selected four samples containing 0.22%, 0.55%, 1.00% and 1.36% of copper. For direct cyanidation of the ore without pre-treatment, copper extraction by cyanide complexing ranged from 8 to 83%. In contrast, the pre-treatment carried out with sulfuric acid extracted 24% to 99% of initial copper and subsequent cyanidation extracted 0.13 to 1.54% of initial copper. The study also showed that the copper contained in the secondary minerals is more easily extracted by cyanide (83%, being followed by the copper oxy-hydroxide minerals (60%, while the copper contained in the manganese oxide is less complexed by cyanide (8% a 12%. It was possible to observe that minerals with low acid solubility also have low solubility in cyanide. Cyanide consumption decreased by about 2.5 times and gold recovery increased to above 94% after acidic pre-cleaning.

  8. Copper tolerance in Becium homblei

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, C; Stone, J

    1971-04-09

    Analyses show that Becium homblei has apparently no mechanism for limiting copper uptake. As growth proceeds, the concentration of metal increases in leaves and stems. Much of the copper is bound to structural material of the cells. There is a significant difference between the amount of extractable material in root and leaf tissues. These differences, in conjunction with the extrinsic factor of regular bush fires, were important factors in the evolution of this copper-resistant species of Becium. 9 references.

  9. Occurrence and removal of antibiotics and the corresponding resistance genes in wastewater treatment plants: effluents' influence to downstream water environment.

    Science.gov (United States)

    Li, Jianan; Cheng, Weixiao; Xu, Like; Jiao, Yanan; Baig, Shams Ali; Chen, Hong

    2016-04-01

    In this study, the occurrence of 8 antibiotics [3 tetracyclines (TCs), 4 sulfonamides, and 1 trimethoprim (TMP)], 12 antibiotic resistance genes (ARGs) (10 tet, 2 sul), 4 types of bacteria [no antibiotics, anti-TC, anti-sulfamethoxazole (SMX), and anti-double], and intI1 in two wastewater treatment plants (WWTPs) were assessed and their influences in downstream lake were investigated. Both WWTPs' effluent demonstrated some similarities, but the abundance and removal rate varied significantly. Results revealed that biological treatment mainly removed antibiotics and ARGs, whereas physical techniques were found to eliminate antibiotic resistance bacteria (ARBs) abundance (about 1 log for each one). UV disinfection did not significantly enhance the removal efficiency, and the release of the abundantly available target contaminants from the excess sludge may pose threats to human and the environment. Different antibiotics showed diverse influences on the downstream lake, and the concentrations of sulfamethazine (SM2) and SMX were observed to increase enormously. The total ARG abundance ascended about 0.1 log and some ARGs (e.g., tetC, intI1, tetA) increased due to the high input of the effluent. In addition, the abundance of ARB variation in the lake also changed, but the abundance of four types of bacteria remained stable in the downstream sampling sites.

  10. Grape berry bacterial inhibition by different copper fungicides

    Directory of Open Access Journals (Sweden)

    Martins Guilherme

    2016-01-01

    Full Text Available Copper fungicides are widely used in viticulture. Due to its large spectrum of action, copper provides an efficient control over a great number of vine pathogens. Previous studies showed that, high levels of cupric residues can impact grape-berry microbiota, in terms of the size and population structure, reducing the diversity and the abundance. Due to the importance of grape-berry bacterial in crop health, and the potential impact of copper fungicides over the microbiota, we determined Minimum Inhibitory Concentration (MIC of different copper formulations for bacterial species isolated from grape berries. We study the Minimum Inhibitory Concentration (MIC of different copper formulations (copper sulphate (CuSO4 pure, Bordeaux mixture (CuSO4 + Ca(OH2, copper oxide (Cu2O, copper hydroxide (Cu(OH2 over 92 bacterial strains isolated from grape berries in different stages of the ripening process. The results of MIC measurements revealed that the different copper formulations have a variable inhibitory effect and among the different isolates, some species are the most resistant to all copper formulations than others. This study confirm that usage of cupric phytosanitary products should be reasonable independently of the farming system; they also provide evidence of the importance of the choice of which copper formulations are to be used regarding their impact on the grape berry bacterial microbiota.

  11. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  12. Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated Pseudomonas putida CZ1 Biofilm.

    Science.gov (United States)

    Chen, Guangcun; Lin, Huirong; Chen, Xincai

    2016-12-28

    Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a 75 μm thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling Cu₃(PO₄)₂ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were Cu₃(PO₄)₂-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% Cu₃(PO₄)₂, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.

  13. Arsenic, copper and zinc occurrence at the Wangaloa coal mine, southeast Otago, New Zealand

    International Nuclear Information System (INIS)

    Black, A.; Craw, D.

    2001-01-01

    Waste piles, created from open cast coal mining activities at the abandoned Wangaloa mine in SE Otago, have exposed pyrite (FeS 2 ) to atmospheric conditions. This has led to the acidification of the surface tailings and nearby drainage waters (acid mine drainage, AMD). Mobilisation of trace metals arsenic (As), copper (Cu), and zinc (Zn) has occurred, partly as a result of the low pH levels (ca. pH 2-4), leading to elevated concentrations of these metals in receiving waters. Authigenic pyrite deposited in a marginal marine coal-forming environment is enriched in As with levels reaching up to 100 ppm. Copper and Zn in solid solution are not elevated above background levels in either coal measures or associated pyrite. Water discharges, sediments, waste rock and background samples were sampled and analysed during the driest (summer) and wettest (winter) seasons of 1998 and 1999. During the winter season, water discharging from the waste piles contained up to 0.7 ppm (mg/kg) As, as measured in 1998. During the 1999 wettest season, no such levels of As were observed, with the highest level attaining 0.07 ppm As. Copper and Zn were locally elevated in waters, with Zn concentrations reaching 1 ppm. During the summer season of 1999, only one sampling site recorded elevated metal concentrations. Adverse effects from the remnant waste piles appear to be highly localised due to downstream natural remediation processes occurring in a wetland area. The absence of strongly elevated metal concentrations during the drier season is a result of strongly depressed water levels within the waste piles. Flushing of acid and metals occurs when the water levels increase with the onset of the winter season. During the summer season, pyrite within the waste piles has been readily decomposing from the increased availability and transport of atmospheric oxygen

  14. Oxidation-assisted graphene heteroepitaxy on copper foil

    OpenAIRE

    Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François

    2016-01-01

    We propose an innovative, easy-to-implement approach to synthesize large-area singlecrystalline graphene sheets by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, f...

  15. Uranium accompanying recovery from copper ores

    International Nuclear Information System (INIS)

    Golynko, Z.Sh.; Laskorin, B.N.

    1981-01-01

    In the search for new raw material sources for nuclear power engineering a review of the technique of uranium accompaning recovery from copper ores reprocessing products in some countries is presented. In the USA a sorption method of uranium extraction by means of strongly basic ion exchange resins from solutions upon copper case- hardening with subsequent extraction from eluates by solutions of tertiary amines is realized. Elution is realized with sulphuric acid. In South Africa an extraction reprocessing of gravitational concentrate extracted from copper sulphide flotation tailings is organized. In India the uranium extraction from copper ores flotation enrichment tailings is organized on a commerical scale. Presented are data on the scale of uranium recovery, various conditions of its recovery as well as block diagrams of the processes. It is shown that copper ores become an additional source of uranium recovery [ru

  16. Identification of Pou5f1, Sox2, and Nanog downstream target genes with statistical confidence by applying a novel algorithm to time course microarray and genome-wide chromatin immunoprecipitation data

    Directory of Open Access Journals (Sweden)

    Xin Li

    2008-06-01

    Full Text Available Abstract Background Target genes of a transcription factor (TF Pou5f1 (Oct3/4 or Oct4, which is essential for pluripotency maintenance and self-renewal of embryonic stem (ES cells, have previously been identified based on their response to Pou5f1 manipulation and occurrence of Chromatin-immunoprecipitation (ChIP-binding sites in promoters. However, many responding genes with binding sites may not be direct targets because response may be mediated by other genes and ChIP-binding site may not be functional in terms of transcription regulation. Results To reduce the number of false positives, we propose to separate responding genes into groups according to direction, magnitude, and time of response, and to apply the false discovery rate (FDR criterion to each group individually. Using this novel algorithm with stringent statistical criteria (FDR Pou5f1 suppression and published ChIP data, we identified 420 tentative target genes (TTGs for Pou5f1. The majority of TTGs (372 were down-regulated after Pou5f1 suppression, indicating that the Pou5f1 functions as an activator of gene expression when it binds to promoters. Interestingly, many activated genes are potent suppressors of transcription, which include polycomb genes, zinc finger TFs, chromatin remodeling factors, and suppressors of signaling. Similar analysis showed that Sox2 and Nanog also function mostly as transcription activators in cooperation with Pou5f1. Conclusion We have identified the most reliable sets of direct target genes for key pluripotency genes – Pou5f1, Sox2, and Nanog, and found that they predominantly function as activators of downstream gene expression. Thus, most genes related to cell differentiation are suppressed indirectly.

  17. Influence of copper volume fraction on tensile strain/stress tolerances of critical current in a copper-plated DyBCO-coated conductor

    International Nuclear Information System (INIS)

    Ochiai, Shojiro; Okuda, Hiroshi; Arai, Takahiro; Sugano, Michinaka; Osamura, Kozo; Prusseit, Werner

    2013-01-01

    The influence of the volume fraction (V f ) of copper, plated at room temperature over a DyBa 2 Cu 3 O 7-δ -coated conductor, on the tensile strain tolerance and stress tolerance of critical current at 77 K was studied over a wide range of copper V f values. The copper plating exerts a tensile stress during cooling because copper has a higher coefficient of thermal expansion than the substrate conductor. Before application of tensile strain, the copper plated at room temperature yielded at 77 K when the copper V f was lower than a critical value, and was in an elastic state at 77 K when the copper V f was higher than the critical value. The strain tolerance of critical current increased with increasing copper V f due to an increase in thermally induced compressive strain in the substrate tape. The stress tolerance of critical current decreased with increasing copper V f because copper is softer than the substrate tape. These results, together with the trade-off between strain tolerance and stress tolerance (i.e., stress tolerance decreases with increasing strain tolerance), were analyzed by modeling. The results show that the restriction imposed by the trade-off, which limits the ability to simultaneously obtain a high strain tolerance and a high stress tolerance, can be relaxed by strengthening the copper. (author)

  18. In long-term bedridden elderly patients with dietary copper deficiency, biochemical markers of bone resorption are increased with copper supplementation during 12 weeks.

    Science.gov (United States)

    Kawada, Etsuo; Moridaira, Kazuaki; Itoh, Katsuhiko; Hoshino, Ayami; Tamura, Jun'ichi; Morita, Toyoho

    2006-01-01

    Although the effect of copper on bone has been tested in animals and healthy subjects, no studies concerning the effect of copper supplementation on bone metabolism in patients with copper deficiency have been reported because of the rarity of these patients. This study was conducted to investigate the effect of copper supplementation on bone metabolism in copper-deficient patients. This study included 10 patients (83.7 +/- 8.3 years) with dietary copper deficiency under long-term bed rest for more than 12 months. They had their diets supplemented with copper sulfate (3 mg/day) over 12 weeks in addition to their diet of only one kind of enteral food with a low concentration of copper. Serum copper and ceruloplasmin, urinary deoxypyridinoline (DPD) and collagen-type 1 N-telopeptide (NTX) (biomarkers of bone resorption), serum osteocalcin (OC) and bone-specific alkaline phosphatase (Bone ALP) (biomarkers of bone formation) were analyzed at baseline, 4 and 12 weeks after copper supplementation. DPD and NTX excretion were significantly increased 4 weeks after copper supplementation (p = 0.009 and p = 0.013, respectively). Serum bone ALP and OC were not significantly changed 12 weeks after copper supplementation (p = 0.051 and p = 0.594). In patients with nutritional copper deficiency, bone resorption markers are increased with copper supplementation. Copyright (c) 2006 S. Karger AG, Basel.

  19. Comparison and analysis of the efficiency of heat exchange of copper rod and copper wires current lead

    International Nuclear Information System (INIS)

    Fang, J.; Yu, T.; Li, Z.M.; Wei, B.; Qiu, M.; Zhang, H.J.

    2013-01-01

    Highlights: •An optimized design of HTS binary current leads is proposed. •Temperature distributions of two different current leads are calculated. •Experiments are done to certify the calculated temperature distributions. •The experiments proved that the copper wires increase security margins. -- Abstract: Current leads are the key components that connect the low-temperature and high temperature parts of the cryogenic system. Owing to the wide range of temperatures, current leads are the main sources of heat leakage. Since the HTS tapes have no resistance and the generated Joule heat is almost zero, HTS binary current leads can reduce heat leakage compared to the conventional leads. However, heat will still be generated and conducted to the cryogenic system through the copper parts of the HTS current leads. In order to reduce heat leakage by the copper parts of the HTS current leads, this paper presents an optimized design of the copper parts of HTS binary current leads. Inside the leads, the copper wires were applied as an alternative to the copper rod without changing the overall dimensions. Firstly, the differential function of heat transfer was derived. By solving the function, the optimum number of the copper wires and the temperature distribution of two different current leads were gotten. Then the experiment of the temperature distribution was done, and the experimental results were basically the same with the calculative results. The simulation and related experiments proved that the copper wire can increase security margins and reduce maximum temperatures under the same shunt current

  20. Comparison and analysis of the efficiency of heat exchange of copper rod and copper wires current lead

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J., E-mail: fangseer@sina.com [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Yu, T. [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); Li, Z.M.; Wei, B.; Qiu, M.; Zhang, H.J. [China Electric Power Research Institute, Haidian District, Beijing (China)

    2013-11-15

    Highlights: •An optimized design of HTS binary current leads is proposed. •Temperature distributions of two different current leads are calculated. •Experiments are done to certify the calculated temperature distributions. •The experiments proved that the copper wires increase security margins. -- Abstract: Current leads are the key components that connect the low-temperature and high temperature parts of the cryogenic system. Owing to the wide range of temperatures, current leads are the main sources of heat leakage. Since the HTS tapes have no resistance and the generated Joule heat is almost zero, HTS binary current leads can reduce heat leakage compared to the conventional leads. However, heat will still be generated and conducted to the cryogenic system through the copper parts of the HTS current leads. In order to reduce heat leakage by the copper parts of the HTS current leads, this paper presents an optimized design of the copper parts of HTS binary current leads. Inside the leads, the copper wires were applied as an alternative to the copper rod without changing the overall dimensions. Firstly, the differential function of heat transfer was derived. By solving the function, the optimum number of the copper wires and the temperature distribution of two different current leads were gotten. Then the experiment of the temperature distribution was done, and the experimental results were basically the same with the calculative results. The simulation and related experiments proved that the copper wire can increase security margins and reduce maximum temperatures under the same shunt current.

  1. Synthesis of Commercial Products from Copper Wire-Drawing Waste

    Science.gov (United States)

    Ayala, J.; Fernández, B.

    2014-06-01

    Copper powder and copper sulfate pentahydrate were obtained from copper wire-drawing scale. The hydrometallurgical recycling process proposed in this article yields a high-purity copper powder and analytical grade copper sulfate pentahydrate. In the first stage of this process, the copper is dissolved in sulfuric acid media via dismutation of the scale. In the second stage, copper sulfate pentahydrate is precipitated using ethanol. Effects such as pH, reaction times, stirring speed, initial copper concentration, and ethanol/solution volume ratio were studied during the precipitation from solution reaction. The proposed method is technically straightforward and provides efficient recovery of Cu from wire-drawing scale.

  2. Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials.

    Science.gov (United States)

    Tang, Yuanyuan; Chan, Siu-Wai; Shih, Kaimin

    2014-06-01

    A promising strategy for effectively incorporating metal-containing waste materials into a variety of ceramic products was devised in this study. Elemental analysis confirmed that copper was the predominant metal component in the collected electroplating sludge, and aluminum was the predominant constituent of waterworks sludge collected in Hong Kong. The use of waterworks sludge as an aluminum-rich precursor material to facilitate copper stabilization under thermal conditions provides a promising waste-to-resource strategy. When sintering the mixture of copper sludge and the 900 °C calcined waterworks sludge, the CuAl2O4 spinel phase was first detected at 650 °C and became the predominant product phase at temperatures higher than 850 °C. Quantification of the XRD pattern using the Rietveld refinement method revealed that the weight of the CuAl2O4 spinel phase reached over 50% at 850 °C. The strong signals of the CuAl2O4 phase continued until the temperature reached 1150 °C, and further sintering initiated the generation of the other copper-hosting phases (CuAlO2, Cu2O, and CuO). The copper stabilization effect was evaluated by the copper leachability of the CuAl2O4 and CuO via the prolonged leaching experiments at a pH value of 4.9. The leaching results showed that the CuAl2O4 phase was superior to the CuAlO2 and CuO phases for immobilizing hazardous copper over longer leaching periods. The findings clearly indicate that spinel formation is the most crucial metal stabilization mechanism when sintering multiphase copper sludge with aluminum-rich waterworks sludge, and suggest a promising and reliable technique for reusing both types of sludge waste for ceramic materials. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Analytical prediction of the unsteady lift on a rotor caused by downstream struts

    Science.gov (United States)

    Taylor, A. C., III; Ng, W. F.

    1987-01-01

    A two-dimensional, inviscid, incompressible procedure is presented for predicting the unsteady lift on turbomachinery blades caused by the upstream potential disturbance of downstream flow obstructions. Using the Douglas-Neumann singularity superposition potential flow computer program to model the downstream flow obstructions, classical equations of thin airfoil theory are then employed, to compute the unsteady lift on the upstream rotor blades. The method is applied to a particular geometry which consists of a rotor, a downstream stator, and downstream struts which support the engine casing. Very good agreement between the Douglas-Neumann program and experimental measurements was obtained for the downstream stator-strut flow field. The calculations for the unsteady lift due to the struts were in good agreement with the experiments in showing that the unsteady lift due to the struts decays exponentially with increased axial separation of the rotor and the struts. An application of the method showed that for a given axial spacing between the rotor and the strut, strut-induced unsteady lift is a very weak function of the axial or circumferential position of the stator.

  4. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: current advances.

    Science.gov (United States)

    Vicente, Tiago; Mota, José P B; Peixoto, Cristina; Alves, Paula M; Carrondo, Manuel J T

    2011-01-01

    The advent of advanced therapies in the pharmaceutical industry has moved the spotlight into virus-like particles and viral vectors produced in cell culture holding great promise in a myriad of clinical targets, including cancer prophylaxis and treatment. Even though a couple of cases have reached the clinic, these products have yet to overcome a number of biological and technological challenges before broad utilization. Concerning the manufacturing processes, there is significant research focusing on the optimization of current cell culture systems and, more recently, on developing scalable downstream processes to generate material for pre-clinical and clinical trials. We review the current options for downstream processing of these complex biopharmaceuticals and underline current advances on knowledge-based toolboxes proposed for rational optimization of their processing. Rational tools developed to increase the yet scarce knowledge on the purification processes of complex biologicals are discussed as alternative to empirical, "black-boxed" based strategies classically used for process development. Innovative methodologies based on surface plasmon resonance, dynamic light scattering, scale-down high-throughput screening and mathematical modeling for supporting ion-exchange chromatography show great potential for a more efficient and cost-effective process design, optimization and equipment prototyping. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. 40 CFR 80.220 - What are the downstream standards for GPA gasoline?

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false What are the downstream standards for GPA gasoline? 80.220 Section 80.220 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... downstream location other than at a retail outlet or wholesale purchaser-consumer facility, and during the...

  6. Crystallization and preliminary crystallographic studies of the copper-binding domain of the amyloid precursor protein of Alzheimer’s disease

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Geoffrey K.-W. [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); Galatis, Denise; Barnham, Kevin J. [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Polekhina, Galina; Adams, Julian J. [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia); Masters, Colin L. [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Cappai, Roberto [Department of Pathology, The University of Melbourne, Victoria 3010 (Australia); The Mental Health Research Institute of Victoria, Parkville, Victoria 3052 (Australia); Centre for Neuroscience, The University of Melbourne, Victoria 3010 (Australia); Parker, Michael W.; McKinstry, William J., E-mail: wmckinstry@svi.edu.au [Biota Structural Biology Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy, Victoria 3065 (Australia)

    2005-01-01

    The binding of Cu{sup 2+} ions to the copper-binding domain of the amyloid precursor protein of Alzheimer’s disease reduces the production of the amyloid β peptide, which is centrally involved in Alzheimer’s disease. Structural studies of the copper-binding domain will provide a basis for structure-based drug design that might prove useful in treating this devastating disease. Alzheimer’s disease is thought to be triggered by production of the amyloid β (Aβ) peptide through proteolytic cleavage of the amyloid precursor protein (APP). The binding of Cu{sup 2+} to the copper-binding domain (CuBD) of APP reduces the production of Aβ in cell-culture and animal studies. It is expected that structural studies of the CuBD will lead to a better understanding of how copper binding causes Aβ depletion and will define a potential drug target. The crystallization of CuBD in two different forms suitable for structure determination is reported here.

  7. Method for providing uranium with a protective copper coating

    Science.gov (United States)

    Waldrop, Forrest B.; Jones, Edward

    1981-01-01

    The present invention is directed to a method for providing uranium metal with a protective coating of copper. Uranium metal is subjected to a conventional cleaning operation wherein oxides and other surface contaminants are removed, followed by etching and pickling operations. The copper coating is provided by first electrodepositing a thin and relatively porous flash layer of copper on the uranium in a copper cyanide bath. The resulting copper-layered article is then heated in an air or inert atmosphere to volatilize and drive off the volatile material underlying the copper flash layer. After the heating step an adherent and essentially non-porous layer of copper is electro-deposited on the flash layer of copper to provide an adherent, multi-layer copper coating which is essentially impervious to corrosion by most gases.

  8. Investigation on the intense fringe formation phenomenon downstream hot-image plane.

    Science.gov (United States)

    Hu, Yonghua; Li, Guohui; Zhang, Lifu; Huang, Wenti; Chen, Shuming

    2015-11-30

    The propagation of a high-power flat-topped Gaussian beam, which is modulated by three parallel wirelike scatterers, passing through a downstream Kerr medium slab and free spaces is investigated. A new phenomenon is found that a kind of intense fringe with intensity several times that of the incident beam can be formed in a plane downstream the Kerr medium. This kind of intense fringe is another result in the propagation process of nonlinear imaging and it locates scores of centimeters downstream the predicted hot image plane. Moreover, the intensity of this fringe can achieve the magnitude of that of hot image in corresponding single-scatterer case, and this phenomenon can arise only under certain conditions. As for the corresponding hot images, they are also formed but largely suppressed. The cause of the formation of such an intense fringe is analyzed and found related to interference in the free space downstream the Kerr medium. Moreover, the ways it is influenced by some important factors such as the wavelength of incident beam and the properties of scatterers and Kerr medium are discussed, and some important properties and relations are revealed.

  9. Refining processes in the copper casting technology

    OpenAIRE

    Rzadkosz, S.; Kranc, M.; Garbacz-Klempka, A.; Kozana, J.; Piękoś, M.

    2015-01-01

    The paper presents the analysis of technology of copper and alloyed copper destined for power engineering casts. The casts quality was assessed based on microstructure, chemical content analysis and strength properties tests. Characteristic deoxidising (Logas, Cup) and modifying (ODM2, Kupmod2) formulas were used for the copper where high electrical conductivity was required. Chosen examples of alloyed copper with varied Cr and Zr content were studied, and the optimal heat treatment parameter...

  10. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui, E-mail: quxh@ustb.edu.cn

    2014-02-25

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m{sup −1} K{sup −1} and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m{sup −1} K{sup −1} and 8 to 5 ppm K{sup −1}, respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials.

  11. Comparison of finite-element stress analysis with experimental copper sphere impacts

    International Nuclear Information System (INIS)

    Frantz, C.E.; Hecker, S.S.; Stout, M.G.; Browning, R.V.

    1980-07-01

    Three copper spheres were impacted on targets of varying surface finishes at 100 m/s. Impact face friction was varied for each test and the impact was photographed with a high-speed camera. Postimpact strains and deformation were measured. A finite-element computer code, NONSAP, was used to model the impact. The best agreement between computer prediction and experiment was obtained using isoparametric elements, a graded mesh, and actual high-strain-rate copper stress-strain data. Frictional conditions at the impact face were also modeled by altering the standard NONSAP code. The most critical test of NONSAP was accurate prediction of experimental impact strains. The best agreement we could obtain had a maximum point-to-point error of 20%, although in general, the comparison was much better. Results of this research indicate that we must know more about material and impact interface friction in order to obtain reliable numerical predictions

  12. Copper : recession and recovery

    International Nuclear Information System (INIS)

    Warwick-Ching, T.

    2002-01-01

    In 2002, the world output for copper will fall for the first time in nearly a decade because of financial pressure and voluntary constraints. Cutbacks at copper mines amount to 760,000 tonnes per year. These cutbacks have occurred mostly in the United States which holds the largest share of high cost mines. This paper discussed recent developments in both copper supply and demand. The United States is unique as both a large consumer and producer of copper. At 1.35 million tonnes, US mine output in 2001 was at its lowest since 1987. The cutbacks in mining in general were described in this paper with particular reference to the huge loss of mining and metallurgical activity in the United States during a prolonged period of low prices in the mid 1980s. The author noted that this period was followed by an exceptional decade when much of the industry rebounded. Only 8 mines closed outright in the United States and a handful in Canada since the recession of the 1980s, but that is partly because mines got bigger and there are fewer small mines in North America. There are only 4 electrolytic refineries and 3 smelters still active in the entire United States, of which 2 are operating at a fraction of capacity. It was noted that only the buoyancy of China prevented a much bigger decline in copper demand on a global scale

  13. Cosmogenic activation of xenon and copper

    Energy Technology Data Exchange (ETDEWEB)

    Baudis, Laura; Kish, Alexander; Piastra, Francesco [University of Zuerich, Department of Physics, Zuerich (Switzerland); Schumann, Marc [University of Bern, Albert Einstein Center for Fundamental Physics, Bern (Switzerland)

    2015-10-15

    Rare event search experiments using liquid xenon as target and detection medium require ultra-low background levels to fully exploit their physics potential. Cosmic ray induced activation of the detector components and, even more importantly, of the xenon itself during production, transportation and storage at the Earth's surface, might result in the production of radioactive isotopes with long half-lives, with a possible impact on the expected background. We present the first dedicated study on the cosmogenic activation of xenon after 345 days of exposure to cosmic rays at the Jungfraujoch research station at 3470 m above sea level, complemented by a study of copper which has been activated simultaneously. We have directly observed the production of {sup 7}Be, {sup 101}Rh, {sup 125}Sb, {sup 126}I and {sup 127}Xe in xenon, out of which only {sup 125}Sb could potentially lead to background for a multi-ton scale dark matter search. The production rates for five out of eight studied radioactive isotopes in copper are in agreement with the only existing dedicated activation measurement, while we observe lower rates for the remaining ones. The specific saturation activities for both samples are also compared to predictions obtained with commonly used software packages, where we observe some underpredictions, especially for xenon activation. (orig.)

  14. Routine production of copper-64 using 11.7MeV protons

    Energy Technology Data Exchange (ETDEWEB)

    Jeffery, C. M.; Smith, S. V.; Asad, A. H.; Chan, S.; Price, R. I. [Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, 6009 (Australia); Centre for Forensic Science, University of Western Australia, Nedlands, Western Australia, 6009 (Australia) and ARC Centre of Excellence in A (Australia); ARC Centre of Excellence in Antimatter-Matter Studies, Australian National University, Canberra, ACT 0200 (Australia) and Collider-Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, 6009 (Australia); ARC Centre of Excellence in Antimatter-Matter Studies, Australian National University, Canberra, ACT 0200 (Australia) and Imaging and Applied (Australia); Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, 6009 (Australia); Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, Western Australia, 6009 (Australia) and School of Physics, University of Western Australia, Nedlands, Western Australia, 6009 (Australia)

    2012-12-19

    Reliable production of copper-64 ({sup 64}Cu) was achieved by irradiating enriched nickel-64 ({sup 64}Ni, >94.8%) in an IBA 18/9 cyclotron. Nickel-64 (19.1 {+-} 3.0 mg) was electroplated onto an Au disc (125{mu}m Multiplication-Sign 15mm). Targets were irradiated with 11.7 MeV protons for 2 hours at 40{mu}A. Copper isotopes ({sup 60,61,62,64}Cu) were separated from target nickel and cobalt isotopes ({sup 55,57,61}Co) using a single ion exchange column, eluted with varying concentration of low HCl alcohol solutions. The {sup 64}Ni target material was recovered and reused. The {sup 64}Cu production rate was 1.46{+-}0.3MBq/{mu}A.hr/mg{sup 64}Ni(n = 10) (with a maximum of 2.6GBq of {sup 64}Cu isolated after 2hr irradiation at 40uA. Radionuclidic purity of the {sup 64}Cu was 98.7 {+-} 1.6 % at end of separation. Cu content was < 6mg/L (n = 21). The specific activity of {sup 64}Cu was determined by ICP-MS and by titration with Diamsar to be 28.9{+-}13.0GBq/{mu}mol[0.70{+-}0.35Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n = 10) and 13.1{+-}12.0GBq/{mu}mol[0.35{+-}0.32Ci/{mu}mol]/({mu}A.hr/mg{sup 64}Ni)(n 9), respectively; which are in agreement, however, further work is required.

  15. Ligand-Doped Copper Oxo-hydroxide Nanoparticles are Effective Antimicrobials

    Science.gov (United States)

    Bastos, Carlos A. P.; Faria, Nuno; Ivask, Angela; Bondarenko, Olesja M.; Kahru, Anne; Powell, Jonathan

    2018-04-01

    Bacterial resistance to antimicrobial therapies is an increasing clinical problem. This is as true for topical applications as it is for systemic therapy. Topically, copper ions may be effective and cheap antimicrobials that act through multiple pathways thereby limiting opportunities to bacteria for resistance. However, the chemistry of copper does not lend itself to facile formulations that will readily release copper ions at biologically compatible pHs. Here, we have developed nanoparticulate copper hydroxide adipate tartrate (CHAT) as a cheap, safe, and readily synthesised material that should enable antimicrobial copper ion release in an infected wound environment. First, we synthesised CHAT and showed that this had disperse aquated particle sizes of 2-5 nm and a mean zeta potential of - 40 mV. Next, when diluted into bacterial medium, CHAT demonstrated similar efficacy to copper chloride against Escherichia coli and Staphylococcus aureus, with dose-dependent activity occurring mostly around 12.5-50 mg/L of copper. Indeed, at these levels, CHAT very rapidly dissolved and, as confirmed by a bacterial copper biosensor, showed identical intracellular loading to copper ions derived from copper chloride. However, when formulated at 250 mg/L in a topically applied matrix, namely hydroxyethyl cellulose, the benefit of CHAT over copper chloride was apparent. The former yielded rapid sustained release of copper within the bactericidal range, but the copper chloride, which formed insoluble precipitates at such concentration and pH, achieved a maximum release of 10 ± 7 mg/L copper by 24 h. We provide a practical formulation for topical copper-based antimicrobial therapy. Further studies, especially in vivo, are merited.

  16. A copper-induced quinone degradation pathway provides protection against combined copper/quinone stress in Lactococcus lactis IL1403.

    Science.gov (United States)

    Mancini, Stefano; Abicht, Helge K; Gonskikh, Yulia; Solioz, Marc

    2015-02-01

    Quinones are ubiquitous in the environment. They occur naturally but are also in widespread use in human and industrial activities. Quinones alone are relatively benign to bacteria, but in combination with copper, they become toxic by a mechanism that leads to intracellular thiol depletion. Here, it was shown that the yahCD-yaiAB operon of Lactococcus lactis IL1403 provides resistance to combined copper/quinone stress. The operon is under the control of CopR, which also regulates expression of the copRZA copper resistance operon as well as other L. lactis genes. Expression of the yahCD-yaiAB operon is induced by copper but not by quinones. Two of the proteins encoded by the operon appear to play key roles in alleviating quinone/copper stress: YaiB is a flavoprotein that converts p-benzoquinones to less toxic hydroquinones, using reduced nicotinamide adenine dinucleotide phosphate (NADPH) as reductant; YaiA is a hydroquinone dioxygenase that converts hydroquinone putatively to 4-hydroxymuconic semialdehyde in an oxygen-consuming reaction. Hydroquinone and methylhydroquinone are both substrates of YaiA. Deletion of yaiB causes increased sensitivity of L. lactis to quinones and complete growth arrest under combined quinone and copper stress. Copper induction of the yahCD-yaiAB operon offers protection to copper/quinone toxicity and could provide a growth advantage to L. lactis in some environments. © 2014 John Wiley & Sons Ltd.

  17. What is the Potential for More Copper Fabrication in Zambia?

    OpenAIRE

    World Bank

    2011-01-01

    The copper fabrication industry lies between: (1) the industry that produces copper (as a commodity metal from mined ores as well as from recycling), and (2) the users of copper in finished products such as electronic goods. Copper fabrication involves the manufacture of products such as copper wire, wire rod, low-voltage cable, and other copper based semi-manufactures. Copper is clearly a...

  18. LHC Asynchronous Beam Dump: Study of new TCDQ model and effects on downstream magnets

    CERN Document Server

    Versaci, R; Vlachoudis, V

    2012-01-01

    An asynchronous beam dump is one of the most critical accidents the LHC could face. In the effort to have a better protection of the machine, and to increase the robustness of the protection device itself, new models for the TCDQ (Target Collimator Dump Quadrupole) have been proposed and are under evaluation. Within this frame we have performed FLUKA evaluation of the energy deposition on one of the proposed models and on the downstream quadrupoles, MQY.4R6 and MQY.5R6, in order to evaluate the protection provided by the proposed model. The results of our study are compared to a similar one for a different proposed model and are input for the evaluation of the heat load on the proposed collimator.

  19. Copper intoxication in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Gazaryan, V.S.; Sogoyan, I.S.; Agabalov, G.A.; Mesropyan, V.V.

    1966-01-01

    Of 950 sheep fed hay from a vineyard sprayed regularly with copper sulfate, 143 developed clinical copper poisoning and 103 died. The Cu content of the hay was 10.23 mg%, of the liver of dead sheep 17-52 mg%, and of the blood serum of affected sheep 0.86 mg%. The symptoms and the histological findings in kidneys and liver are described.

  20. Testing the Underlying Chemical Principles of the Biotic Ligand Model (BLM) to Marine Copper Systems: Measuring Copper Speciation Using Fluorescence Quenching.

    Science.gov (United States)

    Tait, Tara N; McGeer, James C; Smith, D Scott

    2018-01-01

    Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability constants and binding capacities were consistent with literature values of marine NOM, showing strong binding with [Formula: see text] values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmol mg [Formula: see text] Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the biotic ligand model approach for bioavailability-based metals risk assessment.

  1. Leaching of copper concentrates using NaCl and soluble copper contributed by the own concentrate

    International Nuclear Information System (INIS)

    Herrero, O.; Bernal, N.; Quiroz, R.; Fuentes, G.; Vinals, J.

    2005-01-01

    Leaching of copper concentrates using cupric chloro complexes, generated in situ by the reaction between Cu(II), aported by the soluble copper content of the concentrate, and sodium chloride in acid media was studied. The concentrate samples were obtained from mineral processing plants from Antofagasta, Chile. Chemical and mineralogical characterization from original concentrates was made. Typical variable such as a chloride concentration, soluble copper concentration, leaching time, solid percentage and temperature were studied. DRX and EDS analyzed some of the residues. the experimental results indicated that it is possible to obtain solutions having high copper content (15 to 35 g/L) and 2 to 5 g/L free acid in order to submit this solution directly to a solvent extraction stage. The leaching tests use common reactive and low cost such as sodium chloride and sulfuric acid. (Author) 16 refs

  2. Beryllium-copper reactivity in an ITER joining environment

    International Nuclear Information System (INIS)

    Odegard, B.C.; Cadden, C.H.; Yang, N.Y.C.

    1998-01-01

    Beryllium-copper reactivity was studied using test parameters being considered for use in the ITER reactor. In this application, beryllium-copper tiles are produced using a low-temperature copper-copper diffusion bonding technique. Beryllium is joined to copper by first plating the beryllium with copper followed by diffusion bonding the electrodeposited (ED) copper to a wrought copper alloy (CuNiBe) at 450 C, 1-3 h using a hot isostatic press (HIP). In this bonded assembly, beryllium is the armor material and the CuNiBe alloy is the heat sink material. Interface temperatures in service are not expected to exceed 350 C. For this study, an ED copper-beryllium interface was subjected to diffusion bonding temperatures and times to study the reaction products. Beryllium-copper assemblies were subjected to 350, 450 and 550 C for times up to 200 h. Both BeCu and Be 2 Cu intermetallic phases were detected using scanning electron microscopy and quantitative microprobe analysis. Growth rates were determined experimentally for each phase and activation energies for formation were calculated. The activation energies were 66 mol and 62 kJ mol -1 for the BeCu and Be 2 Cu, respectively. Tensile bars were produced from assemblies consisting of coated beryllium (both sides) sandwiched between two blocks of Hycon-3. Tensile tests were conducted to evaluate the influence of these intermetallics on the bond strength. Failure occurred at the beryllium-copper interface at fracture strengths greater than 300 MPa for the room-temperature tests. (orig.)

  3. The effect of target materials on the propagation of atmospheric-pressure plasma jets

    Science.gov (United States)

    Ji, Longfei; Yan, Wen; Xia, Yang; Liu, Dongping

    2018-05-01

    The current study is focused on the effect of target materials (quartz plate, copper sheet, and quartz plate with a grounded copper sheet on the back) on the propagation of atmospheric-pressure helium plasma jets. The dynamics of ionization waves (IWs) and the relative amount of reactive oxygen species (OH and O) in the IW front were compared by using spatial and temporal images and relative optical emission spectroscopy. Our measurements show that the targets can significantly affect the propagation and intensity of the IWs. In addition, strong OH emission lines were detected when the IWs impinged upon the damp surface. Numerical simulations have been carried out to explain the experimental observation. The propagation velocity of IWs predicted by the simulation was in good agreement with the experimental results. Simulation results suggest that the density and velocity of IWs mainly depend on the electric field between the high voltage electrode tip and the target. Analysis indicates that the targets could change the electric field distribution between the high voltage electrode and targets and thus affect the dynamics and the density of the IWs, the generation of reactive oxygen species, and the corresponding sterilization efficiency.

  4. Biokinetics of copper in black-banded rainbowfish (Melanotaenia nigrans) tolerant to elevated copper concentrations, using the radioisotope 64Cu

    International Nuclear Information System (INIS)

    Gale, S.; Jeffree, R.; Smith, S.; Lim, R.

    2000-01-01

    Full text: For over 40 years black-banded rainbowfish (Melanotaenia nigrans) living in the East Branch of the Finniss River, Northern Territory have been exposed to elevated copper concentrations due to mine waste from the Rum Jungle uranium/copper mine. In the 1970s prior to remediation of the mine, fish kills were observed along the length of the East Branch. While copper concentrations remain comparatively high (up to 2000 μg/L) in the East Branch since remediation of the mine site, M. nigrans have been observed in the area. It was, therefore, hypothesised that due to selective pressure of lethal exposure, the population of black-banded rainbowfish in the East Branch have developed a tolerance to elevated copper concentrations. This project aimed to demonstrate copper tolerance and evaluate possible mechanism(s). In May 2000, fish were collected from the East Branch (exposed fish) and from a catchment previously unexposed to elevated metal concentrations (reference fish). The 96-hour EC 50 , fish imbalance (i.e. the concentration of copper that affects 50% of fish over 96 hours) for the exposed fish was over 8 times higher than the reference fish. Using the radioisotope, 64 Cu, the biokinetics of newly accumulated copper was traced in exposed and reference fish at low and elevated copper concentrations. The uptake rate, and therefore body burden, were significantly (p=0.000) lower in exposed fish, at both low and elevated copper concentrations compared to reference fish. Possible mechanisms of reducing copper uptake will be discussed. Tolerance was not lost when fish were maintained in relatively low copper concentrations in the laboratory. Also, the two populations of fish were genetically dissimilar based on allozyme analysis, which suggests that the mechanism is genetically mediated. The outcome of this project will be important in assisting accurate risk assessment and the development of environmental management strategies for the conservation of biota. The

  5. Aberrations and Emittance Growth in the DARHT 2nd Axis Downstream Transport

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, Martin E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-24

    The emittance of the DARHT 2nd Axis has been inferred from solenoid scans performed in the downstream transport (DST) region using a short kicked pulse. The beam spot size is measured by viewing optical transition radiation (OTR) in the near field as a function of the field (current) of a solenoid magnet (S4). The imaging station containing the OTR target is located about 100 cm downstream of the solenoid magnet. The emittance is then inferred using a beam optics code such as LAMDA or XTR by fitting the data to initial conditions upstream of the S4 solenoid magnet. The initial conditions are the beam size, beam convergence and emittance. The beam energy and current are measured. In preparation for a solenoid scan, the magnets upstream of the solenoid are adjusted to produce a round beam with no beam losses due to scraping in the beam tube. This is different from the standard tune in which the beam tune is adjusted to suppress the effects of ions and rf in the septum dump. In this standard tune, approximately 10% of the beam is lost due to scraping as the beam enters the small 3.75” ID beam tube after the septum. The normalized emittance inferred from recent solenoid scans typically ranges from 600 to 800 π(mm-mrad). This larger beam size increases the sensitivity to any non-linear fields in the Collins quadrupoles that are mounted along the small diameter beam tube. The primary magnet used to adjust the beam size in this region is the S3 solenoid magnet. Measurements made of the beam shape as the beam size was decreased showed significant structure consistent with non-linear fields. Using the measured magnetic fields in the Collins quadrupoles including higher order multipoles, the beam transport through the Collins quadrupoles is simulated and compared to the observed OTR images. The simulations are performed using the beam optics codes TRANSPORT [1] and TURTLE [2]. Estimates of the emittance growth and beam losses are made as a function of the S3

  6. Measurements of secondary neutrons producted from thick targets bombarded by heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Kurosawa, T.; Nakamura, T. [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center; Nakao, N.; Shibata, T.; Uwamino, Y.; Nakanishi, N.; Fukumura, A.; Kumamoto, Y.

    1997-03-01

    We measured neutron angular and energy distributions from high energy heavy ions stopping in targets of carbon, aluminum, copper and lead at HIMAC. These spectra are much harder for the lighter target nucleus like carbon. This means that the momentum transfer in the forward direction from heavy ion beam to lighter nuclei is much higher than that to heavier nuclei. (author)

  7. Role of copper oxides in contact killing of bacteria.

    Science.gov (United States)

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  8. 49 CFR 192.125 - Design of copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Design of copper pipe. 192.125 Section 192.125... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Pipe Design § 192.125 Design of copper pipe. (a) Copper... hard drawn. (b) Copper pipe used in service lines must have wall thickness not less than that indicated...

  9. Extra-Hepatic Storage of Copper

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else; Horn, N.

    1975-01-01

    The distribution of copper among the organs of an aborted, male foetus, expected to develop Menkes' syndrome, was entirely different from the distribution in 4 normal foetuses. Copper concentrations determined by neutron activation analysis showed a considerably reduced content in the liver...

  10. Relationship among aqueous copper half-lives and responses of Pimephales promelas to a series of copper sulfate pentahydrate concentrations.

    Science.gov (United States)

    Calomeni, Alyssa J; Kinley, Ciera M; Geer, Tyler D; Iwinski, Kyla J; Hendrikse, Maas; Rodgers, John H

    2018-04-01

    Copper algaecide exposures in situ are often of shorter duration than exposures for static toxicity experiments because aqueous concentrations in situ dissipate as a function of site-specific fate processes. Consequently, responses of organisms to static copper exposures may overestimate effects following in situ exposures. To understand the role of exposure duration for altering responses, Pimephales promelas survival was compared following static (96 h) and pulse (1.5, 4, 8, and 15 h half-lives) exposures of CuSO 4 •5H 2 O. Copper concentrations sorbed by fry indicated a consequence of different exposures. Responses of P. promelas to static exposures resulted in 96 h LC 50 s of 166 µgCu/L (95% confidence interval [CI], 142-189 µgCu/L) as soluble copper and 162 µgCu/L (CI, 140-183 µgCu/L) as acid soluble copper. Relative to static 96 h LC 50 s, exposures with half-lives of 1.5, 4 and 8 h resulted in LC 50 s 10, 3 and 2 times greater, respectively, for responses measured 96 h after exposure initiation. Copper concentrations extracted from fry exposed for 1.5, 4 and 8 h half-lives were less than the static experiment. However, copper sorbed by fry in the 15 h half-life experiment was not different than the static experiment. The relationship between 96 h LC 50 and 1/half-life was expressed using the equations y = 116 + 1360 × (R 2  = 0.97) for soluble copper and y = 147 + 1620 × (R 2  = 0.98) for acid soluble copper. Incorporation of exposure duration for predictions of P. promelas responses to copper pulse exposures increases prediction accuracy by an order of magnitude.

  11. Serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin concentrations in infants receiving intravenous zinc and copper supplementation.

    Science.gov (United States)

    Lockitch, G; Godolphin, W; Pendray, M R; Riddell, D; Quigley, G

    1983-02-01

    One hundred twenty-seven newborn infants requiring parenteral nutrition were randomly assigned to receive differing amounts of zinc (40 to 400 micrograms/kg/day) and copper (20 or 40 micrograms/kg/day) supplementation within five birth weight groups (600 to 2,500 gm). The serum zinc concentration remained relatively constant in the group receiving the most zinc supplementation after two weeks of therapy, but declined sharply in the groups receiving less supplementation. No effect of increased copper intake was noted on ceruloplasmin values, but a difference in serum copper concentrations was noted at two weeks. No correlation was noted between serum zinc and copper values or among those for serum zinc, retinol-binding protein, and prealbumin. Reference ranges were defined for serum zinc, copper, retinol-binding protein, prealbumin, and ceruloplasmin in the preterm infant.

  12. [Biohydrometallurgical technology of a complex copper concentrate process].

    Science.gov (United States)

    Murav'ev, M I; Fomchenko, N V; Kondrat'eva, T F

    2011-01-01

    Leaching of sulfide-oxidized copper concentrate of the Udokan deposit ore with a copper content of 37.4% was studied. In the course of treatment in a sulfuric acid solution with pH 1.2, a copper leaching rate was 6.9 g/kg h for 22 h, which allowed extraction of 40.6% of copper. As a result of subsequent chemical leaching at 80 degrees C during 7 h with a solution of sulphate ferric iron obtained after bio-oxidation by an association of microorganisms, the rate of copper recovery was 52.7 g/kg h. The total copper recovery was 94.5% (over 29 h). Regeneration of the Fe3+ ions was carried out by an association of moderately thermophilic microorganisms, including bacteria of genus Sulfobacillus and archaea of genus Ferroplasma acidiphilum, at 1.0 g/l h at 40 degrees C in the presence of 3% solids obtained by chemical leaching of copper concentrate. A technological scheme of a complex copper concentrate process with the use of bacterial-chemical leaching is proposed.

  13. Evidence for organic complexed copper in sea water

    Energy Technology Data Exchange (ETDEWEB)

    Slowey, J F; Jeffrey, L M; Hood, D W

    1967-04-22

    A few attempts have been made to characterize the chemical components contributing to the copper content of seawater. About 0.3 mu/liter of particulate copper in 2 stations in the English Channel and 15 mu/liter of ultrafilterable (10 mu) but non-dialyzable copper in a sample from Texas Bay has been reported. Also the evidence has been shown for copper in the organic form in waters of the Florida Current. The occasional presence of non- dialyzable copper for many samples from the Gulf of Mexico suggests that strongly complexed copper-organic compounds are present in seawater. This communication presents evidence for such complexes that are extractable into a nonpolar solvent in the absence of any added chelating agent. Preliminary results have shown that the copper- organic complex isolated by chloroform extraction occurs in the eighth fraction of the Hirsch and Ahrens lipid separation method using silica gel chromatography. This would indicate that copper complex is associated with the phospholipid, amino lipid, or porphyrin fraction of the lipids.

  14. Copper in the sea: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.L.

    1977-04-01

    Life in the sea is vulnerable to the influx of trace metals resulting from man's activities. Although many pollutants introduced to the sea eventually degrade to less harmful forms, trace metals accumulate in sediments and have a continued potential for effect on biota. Copper has a toxic potential exceeding all other metals due to the quantity discharged and its toxicological effect. Fortunately, copper in the oceans is rendered less bioavailable or less toxic by its ready interaction with the complex chemical components of seawater. This bibliography was prepared to illustrate the status of current knowledge of the biogeochemistry of copper and to aid the development of research programs to define the effects of copper discharged to the marine environment. The references are categorized to aid the reader to locate literature concerning specific aspects of the biogeochemistry of copper. A brief comment describing the important findings in each category is given. Although this bibliography is not exhaustive, the listed references are likely representative of current knowledge.

  15. Engineering kinetic barriers in copper metallization

    International Nuclear Information System (INIS)

    Huang Hanchen; Wei, H.L.; Woo, C.H.; Zhang, X.X.

    2002-01-01

    In metallization processes of integrated circuits, it is desirable to deposit the metal lines (aluminum or copper) fast and at low temperatures. However, the lines (films) usually consist of undesirable columns and voids, because of the absence of sufficient diffusion--a direct result of large kinetic barriers. Following the proposal and realization of the three-dimensional Ehrlich-Schwoebel (3D ES) barrier, we present here a method to engineer this kinetic barrier so as to improve quality of deposited copper films. We deposit copper films by magnetron sputtering, characterize the film structure and texture by using the scanning electron microscope and the x-ray diffraction, respectively. Taking indium as surfactant during copper deposition, we have achieved much better density and bottom coverage of copper filled trenches. The characterizations show that the improvement is the result of the 3D ES barrier reduction caused by indium addition. Engineering the 3D ES barrier therefore leads to improved film quality

  16. A horizontal dilution refrigerator for polarized target

    International Nuclear Information System (INIS)

    Isagawa, S.; Ishimoto, S.; Masaike, A.; Morimoto, K.

    1978-01-01

    A horizontal dilution refrigerator was constructed with a view to the spin frozen target and the deuteron polarized target. High cooling power at high temperature such as 3.7 mW at 400 mK serves for overcoming a heat load of microwave to polarize the nuclear spins in the target material. The cooling power at 50 mK was 50 μW, which is sufficient to hold the high nuclear polarization for long time. The lowest temperature reached was 26 mK. The refrigerator has rather simple heat exchangers, a long stainless steel double tube heat exchanger and two coaxial type heat exchangers with sintered copper. The mixing chamber is made of polytetrafluoroethylene (TFE) and demountable so that the target material can be easily put into it. (Auth.)

  17. Testing candidate interlayers for an enhanced water-cooled divertor target

    International Nuclear Information System (INIS)

    Hancock, David; Barrett, Tom; Foster, James; Fursdon, Mike; Keech, Gregory; McIntosh, Simon; Timmis, William; Rieth, Michael; Reiser, Jens

    2015-01-01

    Highlights: • We introduce an optimised divertor target concept: the “Thermal Break”. • We suggest a candidate interlayer material for this concept: FeltMetal. • We describe a bespoke rig for testing the thermal conductivity of this material. • We present preliminary results for a number of samples. - Abstract: The design of a divertor target for DEMO remains one of the most challenging engineering tasks to be overcome on the path to fusion power. Under the European DEMO programme, a promising concept known as Thermal Break has been developed at CCFE. This concept is a variation of the ITER tungsten divertor in which the pure Copper interlayer between Copper Chrome Zirconium coolant pipe and Tungsten monoblock armour is replaced with a low thermal conductivity compliant interlayer, with the aim of reducing the thermal mismatch stress between the armour and structure. One candidate material for this interlayer is FeltMetal™ (Technetics Group, USA). This material consists of an amorphous matrix of fine copper wires which are sintered onto a thin copper foil, creating a sheet of approximately 1 mm thickness. FeltMetal has been successfully used for many years to provide compliant sliding electrical contacts for the MAST TF coils and on ALCATOR C-Mod and extensive material testing has therefore been undertaken to quantify thermal and mechanical properties. These tests, however, have not been performed under vacuum or DEMO-relevant conditions. A bespoke experimental test rig has therefore been designed and constructed with which to measure the interlayer thermal conductance as a function of temperature and pressure under vacuum conditions. The design of this apparatus and the results of experiments on FeltMetal as well as other candidate interlayers are presented here. In parallel, joint mockups using the candidate interlayers have been prepared and Thermal Break divertor target mockups have been manufactured, requiring the development of a dedicated

  18. Testing candidate interlayers for an enhanced water-cooled divertor target

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, David, E-mail: david.hancock@ccfe.ac.uk [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Barrett, Tom; Foster, James; Fursdon, Mike; Keech, Gregory; McIntosh, Simon; Timmis, William [CCFE, Culham Science Centre, Oxfordshire OX14 3DB (United Kingdom); Rieth, Michael; Reiser, Jens [Karlsruhe Institute of Technology, IAM-AWP, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2015-10-15

    Highlights: • We introduce an optimised divertor target concept: the “Thermal Break”. • We suggest a candidate interlayer material for this concept: FeltMetal. • We describe a bespoke rig for testing the thermal conductivity of this material. • We present preliminary results for a number of samples. - Abstract: The design of a divertor target for DEMO remains one of the most challenging engineering tasks to be overcome on the path to fusion power. Under the European DEMO programme, a promising concept known as Thermal Break has been developed at CCFE. This concept is a variation of the ITER tungsten divertor in which the pure Copper interlayer between Copper Chrome Zirconium coolant pipe and Tungsten monoblock armour is replaced with a low thermal conductivity compliant interlayer, with the aim of reducing the thermal mismatch stress between the armour and structure. One candidate material for this interlayer is FeltMetal™ (Technetics Group, USA). This material consists of an amorphous matrix of fine copper wires which are sintered onto a thin copper foil, creating a sheet of approximately 1 mm thickness. FeltMetal has been successfully used for many years to provide compliant sliding electrical contacts for the MAST TF coils and on ALCATOR C-Mod and extensive material testing has therefore been undertaken to quantify thermal and mechanical properties. These tests, however, have not been performed under vacuum or DEMO-relevant conditions. A bespoke experimental test rig has therefore been designed and constructed with which to measure the interlayer thermal conductance as a function of temperature and pressure under vacuum conditions. The design of this apparatus and the results of experiments on FeltMetal as well as other candidate interlayers are presented here. In parallel, joint mockups using the candidate interlayers have been prepared and Thermal Break divertor target mockups have been manufactured, requiring the development of a dedicated

  19. Copper tailings in stucco mortars

    Directory of Open Access Journals (Sweden)

    Osvaldo Pavez

    Full Text Available Abstract This investigation addressed the evaluation of the use of copper tailings in the construction industry in order to reduce the impact on the environment. The evaluation was performed by a technical comparison between stucco mortars prepared with crushed conventional sand and with copper tailings sand. The best results were achieved with the stucco mortars containing tailings. The tailings presented a fine particles size distribution curve different from that suggested by the standard. The values of compressive strength, retentivity, and adherence in the stucco mortars prepared with copper tailings were much higher than those obtained with crushed sand. According to the results from this study, it can be concluded that the preparation of stucco mortars using copper tailings replacing conventional sand is a technically feasible alternative for the construction industry, presenting the benefit of mitigating the impact of disposal to the environment.

  20. Evaluation of biocidal efficacy of copper alloy coatings in comparison with solid metal surfaces: generation of organic copper phosphate nanoflowers.

    Science.gov (United States)

    Gutierrez, H; Portman, T; Pershin, V; Ringuette, M

    2013-03-01

    To analyse the biocidal efficacy of thermal sprayed copper surfaces. Copper alloy sheet metals containing >60% copper have been shown to exhibit potent biocidal activity. Surface biocidal activity was assessed by epifluorescence microscopy. After 2-h exposure at 20 °C in phosphate-buffered saline (PBS), contact killing of Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis by brass sheet metal and phosphor bronze was 3-4-times higher than that by stainless steel. SEM observations revealed that the surface membranes of both bacterial strains were slightly more irregular when exposed to brass sheet metal than stainless steel. However, when exposed to phosphor bronze coating, E. coli were 3-4 times larger with irregular membrane morphology. In addition, the majority of the cells were associated with spherical carbon-copper-phosphate crystalline nanostructures characteristic of nanoflowers. The membranes of many of the S. epidermidis exhibited blebbing, and a small subset was also associated with nanoflowers. Our data indicate that increasing the surface roughness of copper alloys had a pronounced impact on the membrane integrity of Gram-positive and, to a lesser degree, Gram-negative bacteria. In the presence of PBS, carbon-copper-phosphate-containing nanoflowers were formed, likely nucleated by components derived from killed bacteria. The intimate association of the bacteria with the nanoflowers and phosphor bronze coating likely contributed to their nonreversible adhesion. Thermal spraying of copper alloys provides a strategy for the rapid coating of three-dimensional organic and inorganic surfaces with biocidal copper alloys. Our study demonstrates that the macroscale surface roughness generated by the thermal spray process enhances the biocidal activity of copper alloys compared with the nanoscale surface roughness of copper sheet metals. Moreover, the coating surface topography provides conditions for the rapid formation of organic copper

  1. Bioleaching of copper from old flotation tailings samples (Copper Mine Bor, Serbia

    Directory of Open Access Journals (Sweden)

    Stanković Srđan

    2015-01-01

    Full Text Available Bioleaching of samples taken from depths of 10, 15, and 20 meters from old flotation tailings of the Copper Mine Bor was conducted in shaken flasks using extremely acidic water of Lake Robuleas lixiviant. Yield of copper after five weeks of the bioleaching experiment was 68.34±1.21% for 15 m sample, 72.57±0.57% for 20 m sample and 97.78±5.50% for 10 m sample. The obtained results were compared to the results of acid leaching of the same samples and it was concluded that bioleaching was generally more efficient for the treatment of samples taken from depths of 10 m and 20 m. The content of pyrite in the 20 m sample, which contained the highest amount of this mineral, was reduced after bioleaching. Benefits of this approach are: recovery of substantial amounts of copper, reducing the environmental impact of flotation tailings and the application of abundant and free water from the Robule acidic lake as lixiviant. Results of the experiment showed that bioleaching can be more efficient than acid leaching for copper extraction from flotation tailings with higher sulfide contents. [Projekat Ministarstva nauke Republike Srbije, br. 176016 i br. 173048

  2. World Copper Market Outlook: 2003-2014

    OpenAIRE

    Florela Stoian

    2015-01-01

    This paper presents synthetically the copper market outlook (demand, supply, and prices) during 2003-2014, highlighting the impact of economic crisis of 2008-2009 on the world copper market. During the crisis, the decline in demand caused increases in excess supply of metal, as the supply has followed an upward trend, contributing to the imbalances of the copper market and putting pressure on stock prices at LME London Metal Exchange.

  3. 49 CFR 192.377 - Service lines: Copper.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Service lines: Copper. 192.377 Section 192.377 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... § 192.377 Service lines: Copper. Each copper service line installed within a building must be protected...

  4. Divalent Copper as a Major Triggering Agent in Alzheimer's Disease.

    Science.gov (United States)

    Brewer, George J

    2015-01-01

    Alzheimer's disease (AD) is at epidemic proportions in developed countries, with a steady increase in the early 1900 s, and then exploding over the last 50 years. This epidemiology points to something causative in the environment of developed countries. This paper will review the considerable evidence that that something could be inorganic copper ingestion. The epidemic parallels closely the spread of copper plumbing, with copper leached from the plumbing into drinking water being a main causal feature, aided by the increasingly common use of supplement pills containing copper. Inorganic copper is divalent copper, or copper-2, while we now know that organic copper, or copper in foods, is primarily monovalent copper, or copper-1. The intestinal transport system, Ctr1, absorbs copper-1 and the copper moves to the liver, where it is put into safe channels. Copper-2 is not absorbed by Ctr1, and some of it bypasses the liver and goes directly into the blood, where it appears to be exquisitely toxic to brain cognition. Thus, while aggregation of amyloid-β has been postulated to be the cause of AD under current dogma, the great increase in prevalence over the last century appears to be due to ingestion of copper-2, which may be causing the aggregation, and/or increasing the oxidant toxicity of the aggregates. An alternative hypothesis proposes that oxidant stress is the primary injuring agent, and under this hypothesis, copper-2 accumulation in the brain may be a causal factor of the oxidant injury. Thus, irrespective of which hypothesis is correct, AD can be classified, at least in part, as a copper-2 toxicity disease. It is relatively easy to avoid copper-2 ingestion, as discussed in this review. If most people begin avoiding copper-2 ingestion, perhaps the epidemic of this serious disease can be aborted.

  5. Water requirements of the copper industry

    Science.gov (United States)

    Mussey, Orville Durey

    1961-01-01

    The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration

  6. Recovery of copper and water from copper-electroplating wastewater by the combination process of electrolysis and electrodialysis.

    Science.gov (United States)

    Peng, Changsheng; Liu, Yanyan; Bi, Jingjing; Xu, Huizhen; Ahmed, Abou-Shady

    2011-05-30

    In this paper, a laboratory-scale process which combined electrolysis (EL) and electrodialysis (ED) was developed to treat copper-containing wastewater. The feasibility of such process for copper recovery as well as water reuse was determined. Effects of three operating parameters, voltage, initial Cu(2+) concentration and water flux on the recovery of copper and water were investigated and optimized. The results showed that about 82% of copper could be recovered from high concentration wastewater (HCW, >400mg/L) by EL, at the optimal conditions of voltage 2.5 V/cm and water flux 4 L/h; while 50% of diluted water could be recycled from low concentration wastewater (LCW, water flux 4 L/h. However, because of the limitation of energy consumption (EC), LCW for EL and HCW for ED could not be treated effectively, and the effluent water of EL and concentrated water of ED should be further treated before discharged. Therefore, the combination process of EL and ED was developed to realize the recovery of copper and water simultaneously from both HCW and LCW. The results of the EL-ED process showed that almost 99.5% of copper and 100% of water could be recovered, with the energy consumption of EL ≈ 3 kW h/kg and ED ≈ 2 kW h/m(3). According to SEM and EDX analysis, the purity of recovered copper was as high as 97.9%. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Direct patterning of highly-conductive graphene@copper composites using copper naphthenate as a resist for graphene device applications.

    Science.gov (United States)

    Bi, Kaixi; Xiang, Quan; Chen, Yiqin; Shi, Huimin; Li, Zhiqin; Lin, Jun; Zhang, Yongzhe; Wan, Qiang; Zhang, Guanhua; Qin, Shiqiao; Zhang, Xueao; Duan, Huigao

    2017-11-09

    We report an electron-beam lithography process to directly fabricate graphene@copper composite patterns without involving metal deposition, lift-off and etching processes using copper naphthenate as a high-resolution negative-tone resist. As a commonly used industrial painting product, copper naphthenate is extremely cheap with a long shelf time but demonstrates an unexpected patterning resolution better than 10 nm. With appropriate annealing under a hydrogen atmosphere, the produced graphene@copper composite patterns show high conductivity of ∼400 S cm -1 . X-ray diffraction, conformal Raman spectroscopy and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the final patterns. With the properties of high resolution and high conductivity, the patterned graphene@copper composites could be used as conductive pads and interconnects for graphene electronic devices with ohmic contacts. Compared to common fabrication processes involving metal evaporation and lift-off steps, this pattern-transfer-free fabrication process using copper naphthenate resist is direct and simple but allows comparable device performance in practical device applications.

  8. Copper imbalances in ruminants and humans: unexpected common ground.

    Science.gov (United States)

    Suttle, Neville F

    2012-09-01

    Ruminants are more vulnerable to copper deficiency than humans because rumen sulfide generation lowers copper availability from forage, increasing the risk of conditions such as swayback in lambs. Molybdenum-rich pastures promote thiomolybdate (TM) synthesis and formation of unabsorbable Cu-TM complexes, turning risk to clinical reality (hypocuprosis). Selection pressures created ruminant species with tolerance of deficiency but vulnerability to copper toxicity in alien environments, such as specific pathogen-free units. By contrast, cases of copper imbalance in humans seemed confined to rare genetic aberrations of copper metabolism. Recent descriptions of human swayback and the exploratory use of TM for the treatment of Wilson's disease, tumor growth, inflammatory diseases, and Alzheimer's disease have created unexpected common ground. The incidence of pre-hemolytic copper poisoning in specific pathogen-free lambs was reduced by an infection with Mycobacterium avium that left them more responsive to treatment with TM but vulnerable to long-term copper depletion. Copper requirements in ruminants and humans may need an extra allowance for the "copper cost" of immunity to infection. Residual cuproenzyme inhibition in TM-treated lambs and anomalies in plasma copper composition that appeared to depend on liver copper status raise this question "can chelating capacity be harnessed without inducing copper-deficiency in ruminants or humans?" A model of equilibria between exogenous (TM) and endogenous chelators (e.g., albumin, metallothionein) is used to predict risk of exposure and hypocuprosis; although risk of natural exposure in humans is remote, vulnerability to TM-induced copper deficiency may be high. Biomarkers of TM impact are needed, and copper chaperones for inhibited cuproenzymes are prime candidates.

  9. Early clinical development of epidermal growth factor receptor targeted therapy in breast cancer.

    Science.gov (United States)

    Matsuda, Naoko; Lim, Bora; Wang, Xiaoping; Ueno, Naoto T

    2017-04-01

    Epidermal growth factor receptor (EGFR) targeted treatment has been evaluated but has not shown a clear clinical benefit for breast cancer. This review article aims to consider the knowledge of the biological background of EGFR pathways in dissecting clinical studies of EGFR targeted treatment in breast cancer. Areas covered: This review focuses on the role of the EGFR pathway and the investigational drugs that target EGFR for breast cancer. Expert opinion: Recent studies have indicated that EGFR targeted therapy for breast cancer has some promising effects for patients with triple-negative breast cancer, basal-like breast cancer, and inflammatory breast cancer. However, predictive and prognostic biomarkers for EGFR targeted therapy have not been identified. The overexpression or amplification of EGFR itself may not be the true factor of induction of the canonical pathway as an oncogenic driver of breast cancer. Instead, downstream, non-canonical pathways related to EGFR may contribute to some aspects of the biological behavior of breast cancer; therefore, the blockade of the receptor could result in sufficient suppression of downstream pathways to inhibit the aggressive behavior of breast cancer. Mechanistic studies to investigate the dynamic interaction between the EGFR pathway and non-canonical pathways are warranted.

  10. A natural analogue for copper waste canisters: The copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom

    International Nuclear Information System (INIS)

    Milodowski, A.E.; Styles, M.T.; Hards, V.L.

    2000-08-01

    This report presents the results of a small-scale pilot study of the mineralogy and alteration characteristics of unusual sheet-like native copper occurring together with uraniferous and vanadiferous concretions in mudstones and siltstones of the Permian Littleham Mudstone Formation, at Littleham Cove, south Devon, England. The host mudstones and siltstones are smectitic and have been compacted through deep Mesozoic burial. The occurrence of native copper within these rocks represents a natural analogue for the long-term behaviour of copper canisters, sealed in a compacted clay (bentonite) backfill, that will be used for the deep geological disposal of high-level radioactive waste by the SKB. The study was undertaken by the British Geological Survey (BGS) on behalf of SKB between November 1999 and June 2000. The study was based primarily on archived reference material collected by the BGS during regional geological and mineralogical surveys of the area in the 1970's and 1980's. However, a brief visit was made to Littleham Cove in January 2000 to try to examine the native copper in situ and to collect additional material. Unfortunately, recent landslips and mudflows obscured much of the outcrop, and only one new sample of native copper could be collected. The native copper occurs as thin plates, up to 160 mm in diameter, which occur parallel to bedding in the Permian Littleham Mudstone Formation at Littleham Cove (near Budleigh Salterton) in south Devon. Each plate is made up of composite stacks of individual thin copper sheets each 1-2 mm thick. The copper is very pure (>99.4% Cu) but is accompanied by minor amounts of native silver (also pure - >99%) which occurs as small inclusions within the native copper. Detailed mineralogical and petrological studies of the native copper sheets, using optical petrography, backscattered scanning electron microscopy, X-ray diffraction analysis and electron probe microanalytical techniques, reveal a complex history of

  11. A natural analogue for copper waste canisters: The copper-uranium mineralised concretions in the Permian mudrocks of south Devon, United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Milodowski, A.E.; Styles, M.T.; Hards, V.L. [Natural Environment Research Council (United Kingdom). British Geological Survey

    2000-08-01

    This report presents the results of a small-scale pilot study of the mineralogy and alteration characteristics of unusual sheet-like native copper occurring together with uraniferous and vanadiferous concretions in mudstones and siltstones of the Permian Littleham Mudstone Formation, at Littleham Cove, south Devon, England. The host mudstones and siltstones are smectitic and have been compacted through deep Mesozoic burial. The occurrence of native copper within these rocks represents a natural analogue for the long-term behaviour of copper canisters, sealed in a compacted clay (bentonite) backfill, that will be used for the deep geological disposal of high-level radioactive waste by the SKB. The study was undertaken by the British Geological Survey (BGS) on behalf of SKB between November 1999 and June 2000. The study was based primarily on archived reference material collected by the BGS during regional geological and mineralogical surveys of the area in the 1970's and 1980's. However, a brief visit was made to Littleham Cove in January 2000 to try to examine the native copper in situ and to collect additional material. Unfortunately, recent landslips and mudflows obscured much of the outcrop, and only one new sample of native copper could be collected. The native copper occurs as thin plates, up to 160 mm in diameter, which occur parallel to bedding in the Permian Littleham Mudstone Formation at Littleham Cove (near Budleigh Salterton) in south Devon. Each plate is made up of composite stacks of individual thin copper sheets each 1-2 mm thick. The copper is very pure (>99.4% Cu) but is accompanied by minor amounts of native silver (also pure - >99%) which occurs as small inclusions within the native copper. Detailed mineralogical and petrological studies of the native copper sheets, using optical petrography, backscattered scanning electron microscopy, X-ray diffraction analysis and electron probe microanalytical techniques, reveal a complex history of

  12. Estimating the waiting time of multi-priority emergency patients with downstream blocking.

    Science.gov (United States)

    Lin, Di; Patrick, Jonathan; Labeau, Fabrice

    2014-03-01

    To characterize the coupling effect between patient flow to access the emergency department (ED) and that to access the inpatient unit (IU), we develop a model with two connected queues: one upstream queue for the patient flow to access the ED and one downstream queue for the patient flow to access the IU. Building on this patient flow model, we employ queueing theory to estimate the average waiting time across patients. Using priority specific wait time targets, we further estimate the necessary number of ED and IU resources. Finally, we investigate how an alternative way of accessing ED (Fast Track) impacts the average waiting time of patients as well as the necessary number of ED/IU resources. This model as well as the analysis on patient flow can help the designer or manager of a hospital make decisions on the allocation of ED/IU resources in a hospital.

  13. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    Science.gov (United States)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  14. Utilization of Copper Alloys for Marine Applications

    Science.gov (United States)

    Drach, Andrew

    Utilization of copper alloy components in systems deployed in marine environment presents potential improvements by reducing maintenance costs, prolonging service life, and increasing reliability. However, integration of these materials faces technological challenges, which are discussed and addressed in this work, including characterization of material performance in seawater environment, hydrodynamics of copper alloy components, and design procedures for systems with copper alloys. To characterize the hydrodynamic behavior of copper alloy nets, mesh geometry of the major types of copper nets currently used in the marine aquaculture are analyzed and formulae for the solidity and strand length are proposed. Experimental studies of drag forces on copper alloy net panels are described. Based on these studies, empirical values for normal drag coefficients are proposed for various types of copper netting. These findings are compared to the previously published data on polymer nets. It is shown that copper nets exhibit significantly lower resistance to normal currents, which corresponds to lower values of normal drag coefficient. The seawater performance (corrosion and biofouling) of copper alloys is studied through the field trials of tensioned and untensioned specimens in a one-year deployment in the North Atlantic Ocean. The corrosion behavior is characterized by weight loss, optical microscopy, and SEM/EDX analyses. The biofouling performance is quantified in terms of the biomass accumulation. To estimate the effects of stray electrical currents on the seawater corrosion measurements, a low cost three-axis stray electric current monitoring device is designed and tested both in the lab and in the 30-day field deployment. The system consists of a remotely operated PC with a set of pseudo-electrodes and a digital compass. The collected data is processed to determine magnitudes of AC and DC components of electric field and dominant AC frequencies. Mechanical behavior of

  15. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  16. Bonding and structure of copper nitrenes.

    Science.gov (United States)

    Cundari, Thomas R; Dinescu, Adriana; Kazi, Abul B

    2008-11-03

    Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.

  17. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-01-01

    Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared and can be consulted for a more in-depth treatment of this topic

  18. C, N, P export regimes from headwater catchments to downstream reaches

    Science.gov (United States)

    Dupas, R.; Musolff, A.; Jawitz, J. W.; Rao, P. S.; Jaeger, C. G.; Fleckenstein, J. H.; Rode, M.; Borchardt, D.

    2017-12-01

    Excessive amounts of nutrients and dissolved organic matter in freshwater bodies affect aquatic ecosystems. In this study, the spatial and temporal variability in nitrate (NO3), dissolved organic carbon (DOC) and soluble reactive phosphorus (SRP) was analyzed in the Selke river continuum from headwaters draining 1 - 3 km² catchments to downstream reaches representing spatially integrated signals from 184 - 456 km² catchments (part of TERENO - Terrestrial Environmental Observatories, in Germany). Three headwater catchments were selected as archetypes of the main landscape units (land use x lithology) present in the Selke catchment. Export regimes in headwater catchments were interpreted in terms of NO3, DOC and SRP land-to-stream transfer processes. Headwater signals were subtracted from downstream signals, with the differences interpreted in terms of in-stream processes and contribution of point-source emissions. The seasonal dynamics for NO3 were opposite those of DOC and SRP in all three headwater catchments, and spatial differences also showed NO3 contrasting with DOC and SRP. These dynamics were interpreted as the result of the interplay of hydrological and biogeochemical processes, for which riparian zones were hypothesized to play a determining role. In the two downstream reaches, NO3 was transported almost conservatively, whereas DOC was consumed and produced in the upper and lower river sections, respectively. The natural export regime of SRP in the three headwater catchments mimicked a point-source signal, which may lead to overestimation of domestic contributions in the downstream reaches. Monitoring the river continuum from headwaters to downstream reaches proved effective to investigate jointly land-to-stream and in-stream transport and transformation processes.

  19. Microbial leaching of low grade copper ores

    International Nuclear Information System (INIS)

    Rauf, A.; Ashfaq, M.

    1991-01-01

    Biotechnology is regarded as one of the most promising and revolutionary solution to various problems which are generally faced in the extraction of metals from their ores such as high energy, capital costs and environmental pollution. The paper deals with the study of low grade copper ores for their beneficiation and extraction of copper. The ores used were chalcopyrite and oxidized copper ores. Microorganisms play a vital role in the solubilization of valuable contents from ores such as copper and other metals. Studies have been conducted on the indigenous copper ores by using thiobacillus ferro oxidans and thiobacillus thio oxidans. For comparison purpose some experiments have also been conducted by chemical leaching. The results of bacterial leaching are encouraging. (author)

  20. Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion

    NARCIS (Netherlands)

    Roelofsen, H; Wolters, H; Van Luyn, MJA; Miura, N; Kuipers, F; Vonk, RJ

    Background & Aims: Mutations in the ATP7B gene, encoding a copper-transporting P-type adenosine triphosphatase, lead to excessive hepatic copper accumulation because of impaired biliary copper excretion in Wilson's disease. In human liver, ATP7B is predominantly localized to the trans-Golgi network,

  1. Calibration equations for energy-dispersive XRF determination of copper, iron and lead in copper ore slurries

    International Nuclear Information System (INIS)

    Lakosz, M.

    1976-01-01

    Calibration equations for the X-ray fluorescence analysis determination of copper, iron and lead in copper ore slurries have been derived and tested. The measurement of Ksub(α) lines of copper and iron and Lsub(α) line of lead excited by rays from 238 Pu source have been used. Si/Li detector coupled to multichannel analyzer and minicomputer have been applied in measurements. The matrix and density effect have been eliminated by additional measurement of back-scattered primary radiation. (author)

  2. Transcription Factors Expressed in Lateral Organ Boundaries: Identification of Downstream Targets

    Energy Technology Data Exchange (ETDEWEB)

    Springer, Patricia S

    2010-07-12

    The processes of lateral organ initiation and patterning are central to the generation of mature plant form. Characterization of the molecular mechanisms underlying these processes is essential to our understanding of plant development. Communication between the shoot apical meristem and initiating organ primordia is important both for functioning of the meristem and for proper organ patterning, and very little is known about this process. In particular, the boundary between meristem and leaf is emerging as a critical region that is important for SAM maintenance and regulation of organogenesis. The goal of this project was to characterize three boundary-expressed genes that encode predicted transcription factors. Specifically, we have studied LATERAL ORGAN BOUNDARIES (LOB), LATERAL ORGAN FUSION1 (LOF1), and LATERAL ORGAN FUSION2 (LOF2). LOB encodes the founding member of the LOB-DOMAIN (LBD) plant-specific DNA binding transcription factor family and LOF1 and LOF2 encode paralogous MYB-domain transcription factors. We characterized the genetic relationship between these three genes and other boundary and meristem genes. We also used an ectopic inducible expression system to identify direct targets of LOB.

  3. Modelling the role of transmission companies in the downstream European gas market

    International Nuclear Information System (INIS)

    Boots, M.A.; Rijkers, F.A.M.

    2000-07-01

    This paper describes the empirical model GASTALE and shows several analyses of the European gas market using this model. These analyses are mainly focused on the role of the downstream transmission companies. Producers of natural gas are assumed to form an oligopoly throughout the paper. Considering an oligopolistic transmission structure our model results show that the level of transmitters' profits strongly depends on the possibilities of discrimination on the border prices. If price discrimination by producers is allowed, these producers collect the main part of the margins on end-use prices. Without price discrimination the transmission companies collect most of the margins. Assuming an oligopolistic downstream structure, end-use prices converge to prices corresponding to perfect competition when the number of transmitters increases. Given the oligopolistic structure of the upstream industry, it is of importance to prevent (or abolish) monopolistic structures in the downstream gas market. In the case where oligopolistic competition between downstream gas companies cannot be prevented, vertical integration should be supported (or at least not be discouraged). 14 refs

  4. The cardiac copper chaperone proteins Sco1 and CCS are up-regulated, but Cox 1 and Cox4 are down-regulated, by copper deficiency.

    Science.gov (United States)

    Getz, Jean; Lin, Dingbo; Medeiros, Denis M

    2011-10-01

    Copper is ferried in a cell complexed to chaperone proteins, and in the heart much copper is required for cytochrome c oxidase (Cox). It is not completely understood how copper status affects the levels of these proteins. Here we determined if dietary copper deficiency could up- or down-regulate select copper chaperone proteins and Cox subunits 1 and 4 in cardiac tissue of rats. Sixteen weanling male Long-Evans rats were randomized into treatment groups, one group receiving a copper-deficient diet (CCS, Sco1, Ctr1, Cox17, Cox1, and Cox4 by SDS-PAGE and Western blotting. No changes were observed in the concentrations of CTR1 and Cox17 between copper-adequate and copper-deficient rats. CCS and Sco1 were up-regulated and Cox1 and Cox4 were both down-regulated as a result of copper deficiency. These data suggest that select chaperone proteins and may be up-regulated, and Cox1 and 4 down-regulated, by a dietary copper deficiency, whereas others appear not to be affected by copper status.

  5. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    Science.gov (United States)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-07-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm2) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  6. Fabrication of free-standing copper foils covered with highly-ordered copper nanowire arrays

    International Nuclear Information System (INIS)

    Zaraska, Leszek; Sulka, Grzegorz D.; Jaskuła, Marian

    2012-01-01

    The through-hole nanoporous anodic aluminum oxide (AAO) membranes with relatively large surface area (ca. 2 cm 2 ) were employed for fabrication of free-standing and mechanically stable copper foils covered with close-packed and highly-ordered copper nanowire arrays. The home-made AAO membranes with different pore diameters and interpore distances were fabricated via a two-step self-organized anodization of aluminum performed in sulfuric acid, oxalic acid and phosphoric acid followed by the pore opening/widening procedure. The direct current (DC) electrodeposition of copper was performed efficiently on both sides of AAO templates. The bottom side of the AAO templates was not insulated and consequently Cu nanowire arrays on thick Cu layers were obtained. The proposed template-assisted fabrication of free-standing copper nanowire array electrodes is a promising method for synthesis of nanostructured current collectors. The composition of Cu nanowires was confirmed by energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analyses. The structural features of nanowires were evaluated from field emission scanning electron microscopy (FE-SEM) images and compared with the characteristic parameters of anodic alumina membranes.

  7. Involvement of purinergic system in inflammation and toxicity induced by copper in zebrafish larvae

    Energy Technology Data Exchange (ETDEWEB)

    Leite, Carlos Eduardo, E-mail: carlos.leite@pucrs.br [Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Programa de Pós-Graduação em Medicina: Ciências Médicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, CEP 90035-003 (Brazil); Maboni, Lucas de Oliveira [Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Cruz, Fernanda Fernandes [Instituto de Toxicologia e Farmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Faculdade de Farmácia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, CEP 90619-900 (Brazil); Rosemberg, Denis Broock [Programa de Pós-graduação em Ciências Ambientais, Universidade Comunitária da Região de Chapecó, Chapecó, CEP 89809-000 (Brazil); and others

    2013-11-01

    The use of zebrafish (Danio rerio) is increasing as an intermediate preclinical model, to prioritize drug candidates for mammalian testing. As the immune system of the zebrafish is quite similar to that of mammals, models of inflammation are being developed for the screening of new drugs. The characterization of these models is crucial for studies that seek for mechanisms of action and specific pharmacological targets. It is well known that copper is a metal that induces damage and cell migration to hair cells of lateral line of zebrafish. Extracellular nucleotides/nucleosides, as ATP and adenosine (ADO), act as endogenous signaling molecules during tissue damage by exerting effects on inflammatory and immune responses. The present study aimed to characterize the inflammatory status, and to investigate the involvement of the purinergic system in copper-induced inflammation in zebrafish larvae. Fishes of 7 days post-fertilization were exposed to 10 μM of copper for a period of 24 h. The grade of oxidative stress, inflammatory status, copper uptake, the activity and the gene expression of the enzymes responsible for controlling the levels of nucleotides and adenosine were evaluated. Due to the copper accumulation in zebrafish larvae tissues, the damage and oxidative stress were exacerbated over time, resulting in an inflammatory process involving IL-1β, TNF-α, COX-2 and PGE{sub 2}. Within the purinergic system, the mechanisms that control the ADO levels were the most involved, mainly the reactions performed by the isoenzyme ADA 2. In conclusion, our data shed new lights on the mechanisms related to copper-induced inflammation in zebrafish larvae. - Graphical abstract: This scheme provides a chronological proposition for the biochemical events induced by copper in zebrafish larvae. The dashed line shows the absorption of copper over the exposure time. After 1 h of exposure to copper, the release of PGE{sub 2} occurs, followed by an increase of MPO (as a consequence

  8. Involvement of purinergic system in inflammation and toxicity induced by copper in zebrafish larvae

    International Nuclear Information System (INIS)

    Leite, Carlos Eduardo; Maboni, Lucas de Oliveira; Cruz, Fernanda Fernandes; Rosemberg, Denis Broock

    2013-01-01

    The use of zebrafish (Danio rerio) is increasing as an intermediate preclinical model, to prioritize drug candidates for mammalian testing. As the immune system of the zebrafish is quite similar to that of mammals, models of inflammation are being developed for the screening of new drugs. The characterization of these models is crucial for studies that seek for mechanisms of action and specific pharmacological targets. It is well known that copper is a metal that induces damage and cell migration to hair cells of lateral line of zebrafish. Extracellular nucleotides/nucleosides, as ATP and adenosine (ADO), act as endogenous signaling molecules during tissue damage by exerting effects on inflammatory and immune responses. The present study aimed to characterize the inflammatory status, and to investigate the involvement of the purinergic system in copper-induced inflammation in zebrafish larvae. Fishes of 7 days post-fertilization were exposed to 10 μM of copper for a period of 24 h. The grade of oxidative stress, inflammatory status, copper uptake, the activity and the gene expression of the enzymes responsible for controlling the levels of nucleotides and adenosine were evaluated. Due to the copper accumulation in zebrafish larvae tissues, the damage and oxidative stress were exacerbated over time, resulting in an inflammatory process involving IL-1β, TNF-α, COX-2 and PGE 2 . Within the purinergic system, the mechanisms that control the ADO levels were the most involved, mainly the reactions performed by the isoenzyme ADA 2. In conclusion, our data shed new lights on the mechanisms related to copper-induced inflammation in zebrafish larvae. - Graphical abstract: This scheme provides a chronological proposition for the biochemical events induced by copper in zebrafish larvae. The dashed line shows the absorption of copper over the exposure time. After 1 h of exposure to copper, the release of PGE 2 occurs, followed by an increase of MPO (as a consequence of

  9. Potassium sorbate-A new aqueous copper corrosion inhibitor

    International Nuclear Information System (INIS)

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-01-01

    This work presents the novel nature of 2,4-hexadienoic acid potassium salt (potassium sorbate (KCH 3 CH=CHCH=CHCO 2 )) as an effective copper aqueous corrosion inhibitor. The influence of pH and potassium sorbate concentration on copper corrosion in aerated sulfate and chloride solutions is reported. Degree of copper protection was found to increase with an increase in potassium sorbate concentration; an optimum concentration of this inhibitor in sulfate solutions was found to be 10 g/L. Copper is highly resistant to corrosion attacks by chloride ions in the presence of potassium sorbate. X-ray photoelectron spectroscopy (XPS) studies suggest that copper protection is achieved via the formation of a mixed layer of cuprous oxide, cupric hydroxide and copper(II)-sorbate at the metal surface

  10. 21 CFR 73.2120 - Disodium EDTA-copper.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Disodium EDTA-copper. 73.2120 Section 73.2120 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2120 Disodium EDTA-copper. (a) Identity. The color additive disodium EDTA-copper is disodium [[N,N′- 1,2- ethanediylbis[N - (carboxymethyl) glycinato...

  11. A PEG/copper(i) halide cluster as an eco-friendly catalytic system for C-N bond formation.

    Science.gov (United States)

    Li, Cheng-An; Ji, Wei; Qu, Jian; Jing, Su; Gao, Fei; Zhu, Dun-Ru

    2018-05-22

    The catalytic activities of eight copper(i) halide clusters assembled from copper(i) halide and ferrocenyltelluroethers, 1-8, were investigated in C-N formation under various conditions. A catalytic procedure using poly(ethylene glycol) (PEG-400) as a greener alternative organic solvent has been developed. The PEG-400/5 system can achieve 99% targeted yield with a mild reaction temperature and short reaction time. After the isolation of the products by extraction with diethyl ether, this PEG-400/cluster system could be easily recycled. Spectroscopic studies elucidate a stepwise mechanism: firstly, proton-coupled electron transfer (PCET) involving the transfer of an electron from Cu+ and a proton from imidazole results in the formation of a labile penta-coordinated Cu2+ and aryl radical; the following effective electron transfer from the ferrocene unit reduces Cu2+ and forms the target product; finally, the ferrocenium unit is reduced by the I- anion. The merits of this eco-friendly synthesis are the efficient utilization of reagents and easy recyclability.

  12. Functional recovery of biofilm bacterial communities after copper exposure

    International Nuclear Information System (INIS)

    Boivin, Marie-Elene Y.; Massieux, Boris; Breure, Anton M.; Greve, Gerdit D.; Rutgers, Michiel; Admiraal, Wim

    2006-01-01

    Potential of bacterial communities in biofilms to recover after copper exposure was investigated. Biofilms grown outdoor in shallow water on glass dishes were exposed in the laboratory to 0.6, 2.1, 6.8 μmol/l copper amended surface water and a reference and subsequently to un-amended surface water. Transitions of bacterial communities were characterised with denaturing gradient gel electrophoresis (DGGE) and community-level physiological profiles (CLPP). Exposure to 6.8 μmol/l copper provoked distinct changes in DGGE profiles of bacterial consortia, which did not reverse upon copper depuration. Exposure to 2.1 and 6.8 μmol/l copper was found to induce marked changes in CLPP of bacterial communities that proved to be reversible during copper depuration. Furthermore, copper exposure induced the development of copper-tolerance, which was partially lost during depuration. It is concluded that bacterial communities exposed to copper contaminated water for a period of 26 days are capable to restore their metabolic attributes after introduction of unpolluted water in aquaria for 28 days. - Genetically different bacterial communities can have similar functions and tolerance to copper

  13. India's Downstream Petroleum Sector

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This study provides a holistic examination of pricing and investment dynamics in India's downstream petroleum sector. It analyses the current pricing practices, highlights the tremendous fiscal cost of current pricing and regulatory arrangements, and examines the sectoral investment dynamics. It also looks at potential paths towards market-based reform along which the Indian government may move, while at the same time protecting energy market access for India's large poor population.

  14. Fatigue performance of copper and copper alloys before and after irradiation with fission neutrons

    International Nuclear Information System (INIS)

    Singh, B.N.; Toft, P.; Stubbins, J.F.

    1997-05-01

    The fatigue performance of pure copper of the oxygen free, high conductivity (OFHC) grade and two copper alloys (CuCrZr and CuAl-25) was investigated. Mechanical testing and microstructural analysis were carried out to establish the fatigue life of these materials in the unirradiated and irradiated states. The present report provides the first information on the ability of these copper alloys to perform under cyclic loading conditions when they have undergone significant irradiation exposure. Fatigue specimens of OFHC-Cu, CuCrZr and CuAl-25 were irradiated with fission neutrons in the DR-3 reactor at Risoe with a flux of ∼2.5 x 10 17 n/m 2 s (E > 1 MeV) to fluence levels of 1.5 - 2.5 x 10 24 n/m 2 s (E > 1 MeV) at ∼47 and 100 deg. C. Specimens irradiated at 47 deg. C were fatigue tested at 22 deg. C, whereas those irradiated at 100 deg. C were tested at the irradiation temperature. The major conclusion of the present work is that although irradiation causes significant hardening of copper and copper alloys, it does not appear to be a problem for the fatigue life of these materials. In fact, the present experimental results clearly demonstrate that the fatigue performance of the irradiated CuAl-25 alloy is considerably better in the irradiated than that in the unirradiated state tested both at 22 and 100 deg. C. This improvement, however, is not so significant in the case of the irradiated OFHC-copper and CuCrZr alloy tested at 22 deg. C. These conclusions are supported by the microstructural observations and cyclic hardening experiments. (au) 4 tabs., 26 ills., 10 refs

  15. Copper metallurgy at the crossroads

    Directory of Open Access Journals (Sweden)

    Habashi F.

    2007-01-01

    Full Text Available Copper technology changed from the vertical to the horizontal furnace and from the roast reaction to converting towards the end of the last century. However, the horizontal furnace proved to be an inefficient and polluting reactor. As a result many attempts were made to replace it. In the past 50 years new successful melting processes were introduced on an industrial scale that were more energy efficient and less polluting. In addition, smelting and converting were conducted in a single reactor in which the concentrate was fed and the raw copper was produced. The standing problem in many countries, however, is marketing 3 tonnes of sulfuric acid per tonne of copper produced as well as emitting large amounts of excess SO2 in the atmosphere. Pressure hydrometallurgy offers the possibility of liberating the copper industry from SO2 problem. Heap leaching technology has become a gigantic operation. Combined with solvent extraction and electrowinning it contributes today to about 20% of copper production and is expected to grow. Pressure leaching offers the possibility of liberating the copper industry from SO2 problem. The technology is over hundred years old. It is applied for leaching a variety of ores and concentrates. Hydrothermal oxidation of sulfide concentrates has the enormous advantage of producing elemental sulfur, hence solving the SO2 and sulfuric acid problems found in smelters. Precipitation of metals such as nickel and cobalt under hydrothermal conditions has been used for over 50 years. It has the advantage of a compact plant but the disadvantage of producing ammonium sulfate as a co-product. In case of copper, however, precipitation takes place without the need of neutralizing the acid, which is a great advantage and could be an excellent substitute for electrowinning which is energy intensive and occupies extensive space. Recent advances in the engineering aspects of pressure equipment design open the door widely for increased

  16. Imaging for monitoring downstream processing of fermentation broths

    DEFF Research Database (Denmark)

    Moiseyenko, Rayisa; Baum, Andreas; Jørgensen, Thomas Martini

    In relation to downstream processing of a fermentation broth coagulation/flocculation is a typical pretreatment method for separating undesirable particles/impurities from the wanted product. In the coagulation process the negatively charged impurities are destabilized by adding of a clarifying...

  17. Possibilities of radioisotopic fluorescence analysis application in copper industry

    International Nuclear Information System (INIS)

    Parus, J.; Kierzek, J.

    1983-01-01

    The main applications of X-ray fluorescence analysis in copper industry such as: copper ores and other materials from flotation analysis, lead and silver determination in blister copper, analysis of metallurgic dusts and copper base alloys analysis are presented. (A.S.)

  18. Associations of mRNA:microRNA for the shared downstream molecules of EGFR and alternative tyrosine kinase receptors in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Fengfeng Wang

    2016-10-01

    Full Text Available Lung cancer is the top cancer killer worldwide with high mortality rate. Majority belong to non-small cell lung cancers (NSCLCs. The epidermal growth factor receptor (EGFR has been broadly explored as a drug target for therapy. However, the drug responses are not durable due to the acquired resistance. MicroRNAs (miRNAs are small noncoding and endogenous molecules that can inhibit mRNA translation initiation and degrade mRNAs. We wonder if some downstream molecules shared by EGFR and the other tyrosine kinase receptors (TKRs further transduce the signals alternatively, and some miRNAs play the key roles in affecting the expression of these downstream molecules. In this study, we investigated the mRNA:miRNA associations for the direct EGFR downstream molecules in the EGFR signaling pathway shared with the other TKRs, including c-MET (hepatocyte growth factor receptor, Ron (a protein tyrosine kinase related to c-MET, PDGFR (platelet-derived growth factor receptor, and IGF-1R (insulin-like growth factor receptor-1. The multiple linear regression and support vector regression (SVR models were used to discover the statistically significant and the best weighted miRNAs regulating the mRNAs of these downstream molecules. These two models revealed the similar mRNA:miRNA associations. It was found that the miRNAs significantly affecting the mRNA expressions in the multiple regression model were also those with the largest weights in the SVR model. To conclude, we effectively identified a list of meaningful mRNA:miRNA associations: phospholipase C, gamma 1 (PLCG1 with miR-34a, phosphoinositide-3-kinase, regulatory subunit 2 (PIK3R2 with miR-30a-5p, growth factor receptor-bound protein 2 (GRB2 with miR-27a, and Janus kinase 1 (JAK1 with miR-302b and miR-520e. These associations could make great contributions to explore new mechanism in NSCLCs. These candidate miRNAs may be regarded as the potential drug targets for treating NSCLCs with acquired drug

  19. Copper Homeostasis in Escherichia coli and Other Enterobacteriaceae.

    Science.gov (United States)

    Rensing, Christopher; Franke, Sylvia

    2007-04-01

    An interesting model for studying environmental influences shaping microbial evolution is provided by a multitude of copper resistance and copper homeostasis determinants in enteric bacteria. This review describes these determinants and tries to relate their presence to the habitat of the respective organism, as a current hypothesis predicts that the environment should determine an organism's genetic makeup. In Escherichia coli there are four regulons that are induced in the presence of copper. Two, the CueR and the CusR regulons, are described in detail. A central component regulating intracellular copper levels, present in all free-living enteric bacteria whose genomes have so far been sequenced, is a Cu(I)translocating P-type ATPase. The P-type ATPase superfamily is a ubiquitous group of proteins involved in the transport of charged substrates across biological membranes. Whereas some components involved in copper homeostasis can be found in both anaerobes and aerobes, multi-copper oxidases (MCOs) implicated in copper tolerance in E. coli, such as CueO and the plasmid-based PcoA, can be found only in aerobic organisms. Several features indicate that CueO, PcoA, and other related MCOs are specifically adapted to combat copper-mediated oxidative damage. In addition to these well-characterized resistance operons, there are numerous other genes that appear to be involved in copper binding and trafficking that have not been studied in great detail. SilE and its homologue PcoE, for example, are thought to effect the periplasmic binding and sequestration of silver and copper, respectively.

  20. Rapid and Direct VHH and Target Identification by Staphylococcal Surface Display Libraries

    Directory of Open Access Journals (Sweden)

    Marco Cavallari

    2017-07-01

    Full Text Available Unbiased and simultaneous identification of a specific antibody and its target antigen has been difficult without prior knowledge of at least one interaction partner. Immunization with complex mixtures of antigens such as whole organisms and tissue extracts including tumoral ones evokes a highly diverse immune response. During such a response, antibodies are generated against a variety of epitopes in the mixture. Here, we propose a surface display design that is suited to simultaneously identify camelid single domain antibodies and their targets. Immune libraries of single-domain antigen recognition fragments from camelid heavy chain-only antibodies (VHH were attached to the peptidoglycan of Gram-positive Staphylococcus aureus employing its endogenous housekeeping sortase enzyme. The sortase transpeptidation reaction covalently attached the VHH to the bacterial peptidoglycan. The reversible nature of the reaction allowed the recovery of the VHH from the bacterial surface and the use of the VHH in downstream applications. These staphylococcal surface display libraries were used to rapidly identify VHH as well as their targets by immunoprecipitation (IP. Our novel bacterial surface display platform was stable under harsh screening conditions, allowed fast target identification, and readily permitted the recovery of the displayed VHH for downstream analysis.

  1. Modification of polycrystalline copper by proton irradiation

    International Nuclear Information System (INIS)

    Garcia S, F.; Cabral P, A.; Saniger B, J.M.; Banuelos, J.G.; Barragan V, A.

    1997-01-01

    Polished copper samples were irradiated with proton beams of 300 and 700 keV at room temperature and at -150 Centigrade. In this work the obtained results are reported when such copper irradiated samples are analysed with Sem, Tem, AFM. The Sem micrographs showed evident changes in surface of these copper samples, therefore an EDAX microanalysis was done for its characterization. additionally, the Tem micrographs showed heaps formation until 200 nm. Its electron diffraction spectra indicated that these heaps consist of a copper compound. Finally with AFM were observed changes in coloration of the irradiated sample surface, as well as changes in texture and rugosity of them. These results show in general that irradiation process with protons which is known as an innocuo process produces changes in the copper properties. (Author)

  2. Grain boundary corrosion of copper canister weld material

    International Nuclear Information System (INIS)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes

    2006-01-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository

  3. Grain boundary corrosion of copper canister weld material

    Energy Technology Data Exchange (ETDEWEB)

    Gubner, Rolf; Andersson, Urban; Linder, Mats; Nazarov, Andrej; Taxen, Claes [Corrosion and Metals Research Inst. (KIMAB), Stockholm (Sweden)

    2006-01-15

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow, they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister, based on the recommendations of the report SKB-TR--01-09 (INIS ref. 32025363). Grain boundary corrosion of copper is not expected to be a problem for the copper canisters in a repository. However, as one step in the experimental verification it is necessary to study grain boundary corrosion of copper in an environment where it may occur. A literature study aimed to find one or several solutions that are aggressive with respect to grain boundary corrosion of copper. Copper specimens cut from welds of real copper canisters where exposed to aerated ammonium hydroxide solution for a period of 14 days at 80 degrees C and 10 bar pressure. The samples were investigated prior to exposure using the scanning Kelvin probe technique to characterize anodic and cathodic areas on the samples. The degree of corrosion was determined by optical microscopy. No grain boundary corrosion could be observed in the autoclave experiments, however, a higher rate of corrosion was observed for the weld material compared to the base material. The work suggests that grain boundary corrosion of copper weld material is most unlikely to adversely affect SKB's copper canisters under the conditions in the repository.

  4. [Use of copper oxide wire particles (Copinox) for the prevention of congenital copper deficiency in a herd of German Improved Fawn breed of goat].

    Science.gov (United States)

    Winter, P; Hochsteiner, W; Chizzola, R

    2004-10-01

    In a herd of German Improved Fawn breed of goat in the year 2000 neonatal kid losses due to congenital copper deficiencies were observed. To clarify the problems and to prevent losses in the next breeding season serum copper levels of 10 dams and four control Boer goats were investigated at four time points during one year. Additionally ten kids of the following year were sampled and the serum copper levels were studied. Immediatly after parturition and 8 weeks later the dams showed low serum copper levels (10.4 +/- 11.1 micromol/l, 5.7 +/- 2.9 micromol/l resp.). At the end of the pasture season an increase of serum copper could be measured (19.3 +/- 16.0 micromol/l). To prevent enzootic ataxia due to congenital copper deficiency, the dams were treated with copper oxide wire particles in the next late gestation. At this time point serum copper concentrations started to decrease (18.5 +/- 8.4 micromol/l). The re-examination 3 month later demonstrated an increase of the serum mean copper concentrations up to 23.4 micromol/l in the dams and to 16.2 micromol/l in the kids. The serum copper levels were significantly higher compared to the levels the year before. Big variation of the serum copper levels in the control Boer goats occurred during the year, but no clinical symptoms of copper deficiency could be observed. The copper levels in the grass and soil samples were 6.8 mg/kg and 0.2 mg/kg dry substance, respectively. A secondary copper deficiency based on cadmium could be excluded through the low levels of soil samples. The contents of sulphur and molybdenum were not determined. The results indicate that the German Improved Fawn breed of goats suffered from a primary copper deficiency due to the inefficient mineral supplementation. The administration of Copinox in the last third of the gestation leads to a continious raising of the copper concentrations in the serum and is suited to prevent ataxia due to congential copper deficiency in neonatal kids.

  5. Electrical characterization of copper related defect reactions in silicon

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, T. [Centre National de la Recherche Scientifique, 67 - Strasbourg (France). Lab. PHASE; Istratov, A.A.; Flink, C.; Weber, E.R. [Department of Material Science and Mineral Engineering, University of California at Berkeley, 577 Evans Hall, Berkeley, CA 94720 (United States)

    1999-02-12

    Defect reactions involving interstitial copper impurities (Cu{sub i}) in silicon are reviewed. The influence of the Coulomb interaction between positively charged copper and negatively charged defects, such as acceptor states of transition metals and lattice defects, on the complex formation rate is discussed in detail. The diffusivity of interstitial copper and the dissociation kinetics of copper-acceptor pairs are studied using the recently introduced transient ion drift (TID) method. TID results reveal that most interstitial copper impurities remain dissolved immediately after the quench and form pairs with shallow acceptors. It is shown that in moderately and heavily doped silicon the diffusivity of copper is trap limited, while in low B-doped silicon the interstitial copper-acceptor pairing is weak enough to allow the assessment of the copper intrinsic diffusion coefficient. The intrinsic diffusion barrier is estimated to be 0.18{+-}0.01 eV. It is concluded that the Coulomb potential used in previous publications underestimated considerably the acceptor-copper interaction. In light of these results, a general discussion on Cu related defect reactions is given. (orig.) 44 refs.

  6. A Case of Isolated Elevated Copper Levels during Pregnancy

    Directory of Open Access Journals (Sweden)

    LaToya R. Walker

    2011-01-01

    Full Text Available Introduction. Outside of Wilson's Disease, abnormal copper metabolism is a rare condition. In pregnancy, excess copper levels can be associated with intrauterine growth restriction, preeclampsia and neurological disease. Case Report. A 32 year old Gravida 4 para 2012 with an obstetrical history complicated by elevated copper levels presented for routine prenatal care. Her children had elevated copper levels at birth, with her firstborn child being diagnosed with autism and suffering three myocardial infarctions and being treated for elevated copper levels. During her prior pregnancies, she declined treatment for her elevated copper levels. During this pregnancy, she had declined chelation therapy and instead choose zinc therapy. She delivered a healthy infant with normal copper levels. Conclusion. Alterations in copper metabolism are rare, the consequences in pregnancy can be devastating. While isolated elevations of copper in pregnancy is exceedingly rare, it is treated the same as Wilson's disease. The goal is to prevent fetal growth restricting and neurological sequelae in the newborn and preeclampsia in the mother. Counseling, along with treatment options and timely delivery can greatly improve neonatal and maternal outcome.

  7. Copper accumulation by stickleback nests containing spiggin.

    Science.gov (United States)

    Pinho, G L L; Martins, C M G; Barber, I

    2016-07-01

    The three-spined stickleback is a ubiquitous fish of marine, brackish and freshwater ecosystems across the Northern hemisphere that presents intermediate sensitivity to copper. Male sticklebacks display a range of elaborate reproductive behaviours that include nest construction. To build the nests, each male binds nesting material together using an endogenous glycoprotein nesting glue, known as 'spiggin'. Spiggin is a cysteine-rich protein and, therefore, potentially binds heavy metals present in the environment. The aim of this study was to investigate the capacity of stickleback nests to accumulate copper from environmental sources. Newly built nests, constructed by male fish from polyester threads in laboratory aquaria, were immersed in copper solutions ranging in concentration from 21.1-626.6 μg Cu L(-1). Bundles of polyester threads from aquaria without male fish were also immersed in the same copper solutions. After immersion, nests presented higher amounts of copper than the thread bundles, indicating a higher capacity of nests to bind this metal. A significant, positive correlation between the concentration of copper in the exposure solution and in the exposed nests was identified, but there was no such relationship for thread bundles. Since both spiggin synthesis and male courtship behaviour are under the control of circulating androgens, we predicted that males with high courtship scores would produce and secrete high levels of the spiggin protein. In the present study, nests built by high courtship score males accumulated more copper than those built by low courtship score males. Considering the potential of spiggin to bind metals, the positive relationship between fish courtship and spiggin secretion seems to explain the higher amount of copper on the nests from the fish showing high behaviour scores. Further work is now needed to determine the consequences of the copper binding potential of spiggin in stickleback nests for the health and survival of

  8. Scleroglucan: Fermentative Production, Downstream Processing and Applications

    Directory of Open Access Journals (Sweden)

    Shrikant A. Survase

    2007-01-01

    Full Text Available Exopolysaccharides produced by a variety of microorganisms find multifarious industrial applications in foods, pharmaceutical and other industries as emulsifiers, stabilizers, binders, gelling agents, lubricants, and thickening agents. One such exopolysaccharide is scleroglucan, produced by pure culture fermentation from filamentous fungi of genus Sclerotium. The review discusses the properties, fermentative production, downstream processing and applications of scleroglucan.

  9. Study on copper kinetics in processing sulphide ore mixed with copper and zinc with sulfuric acid leaching under pressure

    Science.gov (United States)

    Wen-bo, LUO; Ji-kun, WANG; Yin, GAN

    2018-01-01

    Sulphide ore mixed with copper and zinc is processed with pressure acid leaching. Research is conducted on the copper kinetic. The stirring rate is set at 600 rpm which could eliminate the influence of external diffusions. Research is conducted on the factors affecting the copper leaching kinetic are temperature, pressure, concentration of sulfuric acid, particle size. The result shows that the apparent activity energy is 50.7 KJ/mol. We could determine that the copper leaching process is shrinking core model of chemical reaction control and work out the leaching equation.

  10. Incorporation of copper ions into crystals of T2 copper-depleted laccase from Botrytis aclada

    International Nuclear Information System (INIS)

    Osipov, E. M.; Polyakov, K. M.; Tikhonova, T. V.; Kittl, R.; Dorovatovskii, P.V.; Shleev, S. V.; Popov, V. O.; Ludwig, R.

    2015-01-01

    The restoration of the native form of laccase from B. aclada from the type 2 copper-depleted form of the enzyme was investigated. Copper ions were found to be incorporated into the active site after soaking the depleted enzyme in a Cu + -containing solution. Laccases belong to the class of multicopper oxidases catalyzing the oxidation of phenols accompanied by the reduction of molecular oxygen to water without the formation of hydrogen peroxide. The activity of laccases depends on the number of Cu atoms per enzyme molecule. The structure of type 2 copper-depleted laccase from Botrytis aclada has been solved previously. With the aim of obtaining the structure of the native form of the enzyme, crystals of the depleted laccase were soaked in Cu + - and Cu 2+ -containing solutions. Copper ions were found to be incorporated into the active site only when Cu + was used. A comparative analysis of the native and depleted forms of the enzymes was performed

  11. Copper tolerance in Frankia sp. strain EuI1c involves surface binding and copper transport.

    Science.gov (United States)

    Rehan, Medhat; Furnholm, Teal; Finethy, Ryan H; Chu, Feixia; El-Fadly, Gomaah; Tisa, Louis S

    2014-09-01

    Several Frankia strains have been shown to be copper-tolerant. The mechanism of their copper tolerance was investigated for Frankia sp. strain EuI1c. Copper binding was shown by binding studies. Unusual globular structures were observed on the surface of the bacterium. These globular structures were composed of aggregates containing many relatively smaller "leaf-like" structures. Scanning electron microscopy with energy-dispersive X-ray (SEM-EDAX) analysis of these structures indicated elevated copper and phosphate levels compared to the control cells. Fourier transform infrared spectroscopy (FTIR) analysis indicated an increase in extracellular phosphate on the cell surface of copper-stressed cells. Bioinformatics' analysis of the Frankia sp. strain EuI1c genome revealed five potential cop genes: copA, copZ, copC, copCD, and copD. Experiments with Frankia sp. strain EuI1c using qRT-PCR indicated an increase in messenger RNA (mRNA) levels of the five cop genes upon Cu(2+) stress. After 5 days of Cu(2+) stress, the copA, copZ, copC, copCD, and copD mRNA levels increased 25-, 8-, 18-, 18-, and 25-fold, respectively. The protein profile of Cu(2+)-stressed Frankia sp. strain EuI1c cells revealed the upregulation of a 36.7 kDa protein that was identified as FraEuI1c_1092 (sulfate-binding periplasmic transport protein). Homologues of this gene were only present in the genomes of the Cu(2+)-resistant Frankia strains (EuI1c, DC12, and CN3). These data indicate that copper tolerance by Frankia sp. strain EuI1c involved the binding of copper to the cell surface and transport proteins.

  12. Corrosion mechanism of copper in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Corrosion of copper in biodiesel increases with the increase of immersion time. ► The corrosion patina is found to be composed of CuO, Cu 2 O, CuCO 3 and Cu(OH) 2 . ► Green CuCO 3 was found as the major corrosion product. ► The mechanisms governing corrosion of copper in palm biodiesel are discussed. - Abstract: Biodiesel is a promising alternative fuel. However, it causes enhanced corrosion of automotive materials, especially of copper based components. In the present study, corrosion mechanism of copper was investigated by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Compositional change of biodiesel due to the exposure of copper was also investigated. Corrosion patina on copper is found to be composed of Cu 2 O, CuO, Cu(OH) 2 and CuCO 3. Dissolved O 2 , H 2 O, CO 2 and RCOO − radical in biodiesel seem to be the leading factors in enhancing the corrosiveness of biodiesel.

  13. Biochar and compost as amendments in copper-enriched vineyard soils - stabilization or mobilization of copper?

    Science.gov (United States)

    Soja, Gerhard; Fristak, Vladimir; Wimmer, Bernhard; Bell, Stephen; Chamier Glisczinski, Julia; Pardeller, Georg; Dersch, Georg; Rosner, Franz; Wenzel, Walter; Zehetner, Franz

    2016-04-01

    Copper is an important ingredient for several fungicides that have been used in agriculture. For organic viticulture, several diseases as e.g. downy mildew (Plasmopara viticola) can only be antagonized with Cu-containing fungicides. This long-lasting dependence on Cu-fungicides has led to a gradual Cu enrichment of vineyard soils in traditional wine-growing areas, occasionally exceeding 300 mg/kg. Although these concentrations do not affect the vines or wine quality, they may impair soil microbiological functions in the top soil layer or the root growth of green cover plants. Therefore measures are demanded that reduce the bioavailability of copper, thereby reducing the ecotoxicological effects. The use of biochar and compost as soil amendment has been suggested as a strategy to immobilize Cu and reduce the exchangeable fractions. This study consisted of lab and greenhouse experiments that were designed to test the sorption and desorption behavior of copper in vineyard soils with or without biochar and/or compost as soil amendment. Slightly acidic soils (pHeffects were more evident for a reduction of the ionic form Cu2+ than for total soluble copper, even in alkaline soils. Biochar modified with citric or tartaric acid did not significantly decrease the solubility of copper based on total dissolved concentrations although CEC was higher than in unmodified biochar. Treatments consisting of compost only or that had an equal amount of compost and biochar rather had a mobilizing effect on biochar. Sorption experiments with different DOC concentrations and biochar, however, showed a positive effect on copper sorption. Apparently in vineyard soils the predisposition to form organic-Cu-complexes may outbalance the binding possibilities of these complexes to biochar, occasionally resulting in enhanced mobilization. Presumably immobilization of copper with biochar would work best in acidic soils low in organic carbon and with low or no compost addition although this might

  14. Downstream Antisense Transcription Predicts Genomic Features That Define the Specific Chromatin Environment at Mammalian Promoters.

    Directory of Open Access Journals (Sweden)

    Christopher A Lavender

    2016-08-01

    Full Text Available Antisense transcription is a prevalent feature at mammalian promoters. Previous studies have primarily focused on antisense transcription initiating upstream of genes. Here, we characterize promoter-proximal antisense transcription downstream of gene transcription starts sites in human breast cancer cells, investigating the genomic context of downstream antisense transcription. We find extensive correlations between antisense transcription and features associated with the chromatin environment at gene promoters. Antisense transcription downstream of promoters is widespread, with antisense transcription initiation observed within 2 kb of 28% of gene transcription start sites. Antisense transcription initiates between nucleosomes regularly positioned downstream of these promoters. The nucleosomes between gene and downstream antisense transcription start sites carry histone modifications associated with active promoters, such as H3K4me3 and H3K27ac. This region is bound by chromatin remodeling and histone modifying complexes including SWI/SNF subunits and HDACs, suggesting that antisense transcription or resulting RNA transcripts contribute to the creation and maintenance of a promoter-associated chromatin environment. Downstream antisense transcription overlays additional regulatory features, such as transcription factor binding, DNA accessibility, and the downstream edge of promoter-associated CpG islands. These features suggest an important role for antisense transcription in the regulation of gene expression and the maintenance of a promoter-associated chromatin environment.

  15. Impact of chromated copper arsenate (CCA) in wood mulch.

    Science.gov (United States)

    Townsend, Timothy G; Solo-Gabriele, Helena; Tolaymat, Thabet; Stook, Kristin

    2003-06-20

    The production of landscape mulch is a major market for the recycling of yard trash and waste wood. When wood recovered from construction and demolition (C&D) debris is used as mulch, it sometimes contains chromated copper arsenate (CCA)-treated wood. The presence of CCA-treated wood may cause some potential environmental problems as a result of the chromium, copper, and arsenic present. Research was performed to examine the leachability of the three metals from a variety of processed wood mixtures in Florida. The mixtures tested included mixed wood from C&D debris recycling facilities and mulch purchased from retail outlets. The synthetic precipitation leaching procedure (SPLP) was performed to examine the leaching of chromium, copper and arsenic. Results were compared to Florida's groundwater cleanup target levels (GWCTLs). Eighteen of the 22 samples collected from C&D debris processing facilities leached arsenic at concentrations greater than Florida's GWCTL of 50 microg/l. The mean leachable arsenic concentration for the C&D debris samples was 153 microg/l with a maximum of 558 microg/l. One of the colored mulch samples purchased from a retail outlet leached arsenic above 50 microg/l, while purchased mulch samples derived from virgin materials did not leach detectable arsenic (<5 microg/l). A mass balance approach was used to compute the potential metal concentrations (mg/kg) that would result from CCA-treated wood being present in wood mulch. Less than 0.1% CCA-treated wood would cause a mulch to exceed Florida's residential clean soil guideline for arsenic (0.8 mg/kg).

  16. A brief review of cavity swelling and hardening in irradiated copper and copper alloys

    International Nuclear Information System (INIS)

    Zinkle, S.J.

    1990-01-01

    The literature on radiation-induced swelling and hardening in copper and its alloy is reviewed. Void formation does not occur during irradiation of copper unless suitable impurity atoms such as oxygen or helium are present. Void formation occurs for neutron irradiation temperatures of 180 to 550 degree C, with peak swelling occurring at ∼320 degree C for irradiation at a damage rate of 2 x 10 -7 dpa/s. The post-transient swelling rate has been measured to be ∼0.5%/dpa at temperatures near 400 degree C. Dispersion-strengthened copper has been found to be very resistant to void swelling due to the high sink density associated with the dispersion-stabilized dislocation structure. Irradiation of copper at temperatures below 400 degree C generally causes an increase in strength due to the formation of defect clusters which inhibit dislocation motion. The radiation hardening can be adequately described by Seeger's dispersed barrier model, with a barrier strength for small defect clusters of α ∼ 0.2. The radiation hardening apparently saturates for fluences greater than ∼10 24 n/m 2 during irradiation at room temperature due to a saturation of the defect cluster density. Grain boundaries can modify the hardening behavior by blocking the transmission of dislocation slip bands, leading to a radiation- modified Hall-Petch relation between yield strength and grain size. Radiation-enhanced recrystallization can lead to softening of cold-worked copper alloys at temperatures above 300 degree C

  17. COPT6 is a plasma membrane transporter that functions in copper homeostasis in Arabidopsis and is a novel target of SQUAMOSA promoter binding protein-like 7

    Science.gov (United States)

    Among the mechanisms controlling copper homeostasis in plants is the regulation of its uptake and tissue partitioning. Here we characterized a newly identified member of the conserved CTR/COPT family of copper transporters in Arabidopsis thaliana, COPT6. We showed that COPT6 resides at the plasma me...

  18. Effects of sputtering power on properties of copper oxides thin films deposited on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, P. K.; Ng, S. S.; Abdullah, M. J. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-24

    Copper oxides are deposited by radio frequency sputtering using copper target in the mixture of argon and oxygen gasses. The structural and optical properties of the copper oxides deposited at different sputtering powers have been investigated. All the films are single phase polycrystalline. At low RF power (100 W), the film is monoclinic structure of cupric oxide (CuO). Meanwhile, the films are cubic structure of cuprous oxide (Cu2O) at higher RF power. Field emission scanning electron microscopy images show the films have different morphologies with small grain size and consist of a lot of voids. The analysis of energy dispersive X-ray spectroscopy shows that the ratio of Cu to O is increased as the RF power increased. From the ultraviolet–visible spectroscopy, the films have a broad absorption edge in the range of 300–500 nm. The band gap of the films grown at RF power of 100 W, and 120 W and above, were 1.18 eV and 2.16 eV, respectively.

  19. Improved dust handling at Inco's Copper Cliff smelter

    International Nuclear Information System (INIS)

    Dutton, A.; Warner, A.E.M.; Humphris, M.J.

    1989-01-01

    The Cooper Cliff Smelter Complex comprises three major production departments - a Nickel Smelter for the processing of nickel concentrated to a low iron, nickel - copper sulphide (Bessemer) matte; a Matte Processing plant for the separation of matte sulphides and the production of market nickel oxides and refinery feeds and a Copper Smelter to process copper concentrates to blister copper. Annual production is currently -114,000 tonnes of copper as blister and -110,000 tonnes of nickel. The nickel concentrate (11-13% Ni, 2-3% Cu) is roasted in multi-hearth roasters, smelted in oxy-fuel fired reverberatory furnaces to a 30-35% CuNiCo matte and converted to Bessemer matte (75% CuNiCo) in Peirce-Smith converters. The Bessemer matte is slow cooled and crushed for subsequent separation by mineral dressing techniques in the Matte Processing plant into nickel (sulphide and metallic) concentrates and a copper (chalcocite) concentrate. Nickel sulphides are further processed in fluid bed reactors to oxide market product or refinery feedstock. The copper concentrate (29-30% Cu, 0.9% No.) is dried in fluid bed driers, smelted to a 40-50% copper matte in an Inco oxygen flash furnace and converted to blister copper in Peirce-Smith converters. The chalcocite concentrate from the matte separation stage is flash converted to a semi-blister (3-4% S, 4-5% Ni) and then finished to lighter conventionally. A schematic process flowsheet of the Smelter Complex is shown in this paper

  20. Feeding by whiteflies suppresses downstream jasmonic acid signaling by eliciting salicylic acid signaling.

    Science.gov (United States)

    Zhang, Peng-Jun; Li, Wei-Di; Huang, Fang; Zhang, Jin-Ming; Xu, Fang-Cheng; Lu, Yao-Bin

    2013-05-01

    Phloem-feeding whiteflies in the species complex Bemisia tabaci cause extensive crop damage worldwide. One of the reasons for their "success" is their ability to suppress the effectual jasmonic acid (JA) defenses of the host plant. However, little is understood about the mechanisms underlying whitefly suppression of JA-regulated defenses. Here, we showed that the expression of salicylic acid (SA)-responsive genes (EDS1 and PR1) in Arabidopsis thaliana was significantly enhanced during feeding by whitefly nymphs. Whereas upstream JA-responsive genes (LOX2 and OPR3) also were induced, the downstream JA-responsive gene (VSP1) was repressed, i.e., whiteflies only suppressed downstream JA signaling. Gene-expression analyses with various Arabidopsis mutants, including NahG, npr-1, ein2-1, and dde2-2, revealed that SA signaling plays a key role in the suppression of downstream JA defenses by whitefly feeding. Assays confirmed that SA activation enhanced whitefly performance by suppressing downstream JA defenses.