WorldWideScience

Sample records for copper silicides

  1. Carbon mediated reduction of silicon dioxide and growth of copper silicide particles in uniform width channels

    DEFF Research Database (Denmark)

    Pizzocchero, Filippo; Bøggild, Peter; Booth, Tim

    2013-01-01

    channels, which are aligned with the intersections of the (100) surface of the wafer and the {110} planes on an oxidized silicon wafer, as well as endotaxial copper silicide nanoparticles within the wafer bulk. We apply energy dispersive x-ray spectroscopy, in combination with scanning and transmission......We show that surface arc-discharge deposited carbon plays a critical intermediary role in the breakdown of thermally grown oxide diffusion barriers of 90 nm on a silicon wafer at 1035°C in an Ar/H2 atmosphere, resulting in the formation of epitaxial copper silicide particles in ≈ 10 μm wide...

  2. Solution synthesis of metal silicide nanoparticles.

    Science.gov (United States)

    McEnaney, Joshua M; Schaak, Raymond E

    2015-02-01

    Transition-metal silicides are part of an important family of intermetallic compounds, but the high-temperature reactions that are generally required to synthesize them preclude the formation of colloidal nanoparticles. Here, we show that palladium, copper, and nickel nanoparticles react with monophenylsilane in trioctylamine and squalane at 375 °C to form colloidal Pd(2)Si, Cu(3)Si, and Ni(2)Si nanoparticles, respectively. These metal silicide nanoparticles were screened as electrocatalysts for the hydrogen evolution reaction, and Pd(2)Si and Ni(2)Si were identified as active catalysts that require overpotentials of -192 and -243 mV, respectively, to produce cathodic current densities of -10 mA cm(-2).

  3. Optical properties of beta-iron silicide, ruthenium silicide and osmium silicide: Semiconducting transition metal silicides

    Science.gov (United States)

    Birdwell, Anthony Glen

    2001-09-01

    Various optical techniques were used to study the semiconducting transition metal silicides of β- FeSi2, Ru2Si3, and OsSi2. The Raman spectra of ion beam synthesized (IBS) β-FeSi 2 were shown to provide evidence of a net tensile stress in these IBS materials. Possible origins of the observed stress were suggested and a simple model was proposed in order to calculate a value of the observed stress. A correlation between the tensile stress, the nature of the band gap, and the resulting light emitting properties of IBS β-FeSi2 was suggested. The photoreflectance (PR) spectra of IBS β- FeSi2 reveals a direct gap at 0.815 eV and were shown to agree with the band gap value obtained by photoluminescence (PL) once the adjustments for the temperature difference and trap related recombination effects were made. This provides very convincing evidence for intrinsic light emission from IBS β- FeSi2. Furthermore, a model was developed that helps to clarify the variety of inconsistent results obtained by optical absorption measurements. When the results of PL and PR were inserted into this model, a good agreement was obtained with our measured optical absorption results. We also obtained PR spectra of β-FeSi 2 thin films grown by molecular beam epitaxy. These spectra reveal the multiple direct transitions near the fundamental absorption edge of β-FeSi 2 that were predicted by theory. We suggest an order of these critical point transitions following the trends reported in the theoretical investigations. Doping these β-FeSi2 thin films with small amounts of chromium was shown to have a measurable effect on the interband optical spectra. We also report on the effects of alloying β- FeSi2 with cobalt. A decrease in the critical point transitions nearest the fundamental absorption edge was observed as the cobalt concentration increased. Finally, Raman spectroscopy was used to study the vibrational properties of β-FeSi2. The measured Raman spectra agreed very well with the

  4. Synthesis and design of silicide intermetallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Hollis, K.J.; Kung, H.H.

    1998-11-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries.

  5. On Silicides in High Temperature Titanium Alloys

    Directory of Open Access Journals (Sweden)

    C. Ramachandra

    1986-04-01

    Full Text Available High temperature titanium alloys like IMI 685 contain small amounts of silicon (~ 0.25 wt. per cent to improve creep resistance. Different types of silicides, namely Ti5Si3 (TiZr5Si3(S1 and (TiZr6 Si3 (S2, have been observed to precipitate in various silicon-bearing titanium alloys depending upon their composition and heat treatment. The precipitation of silicides, their orientation relationship with the matrix in different alloys, and the beneficial influence of thermo-mechanical treatment on the distribution of silicides have been pointed out. The effect of silicides on mechanical properties and fracture of the commercial alloy IMI 685 is also indicated.

  6. Metrology Of Silicide Contacts For Future CMOS

    Science.gov (United States)

    Zollner, Stefan; Gregory, Richard B.; Kottke, M. L.; Vartanian, Victor; Wang, Xiang-Dong; Theodore, David; Fejes, P. L.; Conner, J. R.; Raymond, Mark; Zhu, Xiaoyan; Denning, Dean; Bolton, Scott; Chang, Kyuhwan; Noble, Ross; Jahanbani, Mohamad; Rossow, Marc; Goedeke, Darren; Filipiak, Stan; Garcia, Ricardo; Jawarani, Dharmesh; Taylor, Bill; Nguyen, Bich-Yen; Crabtree, P. E.; Thean, Aaron

    2007-09-01

    Silicide materials (NiSi, CoSi2, TiSi2, etc) are used to form low-resistance contacts between the back-end (W plugs and Cu interconnects) and front-end portions (silicon source, drain, and gate regions) of integrated CMOS circuits. At the 65 nm node, a transition from CoSi2 to NiSi was necessary because of the unique capability of NiSi to form narrow silicide nanowires on active (monocrystalline) and gate (polycrystalline) lines. Like its predecessors TiSi2 and CoSi2, NiSi is a mid-gap silicide, i.e., the Fermi level of the NiSi metal is pinned half-way between the conduction and valence band edges in silicon. This leads to a Schottky barrier between the silicide and silicon source-drain regions, which creates undesirable parasitic resistances. For future CMOS generations, band-edge silicides, such as PtSi for contacts to p-type or rare earth silicides for contacts to n-type Si will be needed. This paper reviews metrology and characterization techniques for NiSi process control for development and manufacturing, with special emphasis on x-ray reflectance and x-ray fluorescence. We also report measurement methods useful for development of a PtSi PMOS module.

  7. Monitoring silicide formation via in situ resistance measurements

    NARCIS (Netherlands)

    Faber, Erik J.; Wolters, Rob A.M.; Rajasekharan, Bijoy; Salm, Cora; Schmitz, Jurriaan

    2009-01-01

    Silicide formation as a result of the reaction of metals with silicon is a widely studied topic in semiconductor industry since silicides form an essential part of modern day Integrated Circuits (ICs). In most situations the fundamental kinetics of silicide formation are analyzed using elaborate tec

  8. Synthesis and design of silicide intermetallic materials

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P. [Los Alamos National Lab., NM (United States)] [and others

    1997-04-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the U.S. processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive U.S. processing industries. The program presently has a number of developing industrial connections, including a CRADA with Schuller International Inc. targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. Current experimental emphasis is on the development and characterization of MoSi{sub 2}-Si{sub 3}N{sub 4} and MoSi{sub 2}-SiC composites, the plasma spraying of MoSi{sub 2}-based materials, and the joining of MoSi{sub 2} materials to metals.

  9. Microwave absorption properties of Ni/(C, silicides) nanocapsules

    Science.gov (United States)

    Jiang, Jingjing; Wang, Han; Guo, Huaihong; Yang, Teng; Tang, Wen-Shu; Li, Da; Ma, Song; Geng, Dianyu; Liu, Wei; Zhang, Zhidong

    2012-05-01

    The microwave absorption properties of Ni/(C, silicides) nanocapsules prepared by an arc discharge method have been studied. The composition and the microstructure of the Ni/(C, silicides) nanocapsules were determined by means of X-ray diffraction, X-ray photoelectric spectroscopy, and transmission electron microscope observations. Silicides, in the forms of SiOx and SiC, mainly exist in the shells of the nanocapsules and result in a large amount of defects at the `core/shell' interfaces as well as in the shells. The complex permittivity and microwave absorption properties of the Ni/(C, silicides) nanocapsules are improved by the doped silicides. Compared with those of Ni/C nanocapsules, the positions of maximum absorption peaks of the Ni/(C, silicides) nanocapsules exhibit large red shifts. An electric dipole model is proposed to explain this red shift phenomenon.

  10. Electronic properties of epitaxial erbium silicide

    Science.gov (United States)

    Veuillen, J. Y.; Tan, T. A. Nguyen; Lollman, D. B. B.; Guerfi, N.; Cinti, R.

    1991-07-01

    The electronic properties of erbium silicide thin films epitaxially grown on Si(111) have been investigated by X-ray and UV photoemission. The crystalline quality has been checked by low-energy electron diffraction. XPS indicates very weak charge transfer and metallic bonding in the silicide phase. The Si 2p core-level and the Auger transition Si KLL present double structures revealing two types of Si sites, the first one attributed to Si atoms in normal sites in the silicide and the second one to Si atoms in the vicinity of the vacancies and (or) the Si substrate portions seen through the holes of the film. The UPS valence band of about 4 eV width and formed of Er(6s5d)-Si(3s3p) hybridized states disperses weakly in the direction perpendicular to the surface and strongly in the surface plane. This valence band is compared to the ones already measured on YSi-1.7 and GdSi-1.7 and to the calculations made for YSi2

  11. Raman scattering from rapid thermally annealed tungsten silicide

    Science.gov (United States)

    Kumar, Sandeep; Dasgupta, Samhita; Jackson, Howard E.; Boyd, Joseph T.

    1987-01-01

    Raman scattering as a technique for studying the formation of tungsten silicide is presented. The tungsten silicide films have been formed by rapid thermal annealing of thin tungsten films sputter deposited on silicon substrates. The Raman data are interpreted by using data from resistivity measurements, Auger and Rutherford backscattering measurements, and scanning electron microscopy.

  12. The growth and applications of silicides for nanoscale devices.

    Science.gov (United States)

    Lin, Yung-Chen; Chen, Yu; Huang, Yu

    2012-03-01

    Metal silicides have been used in silicon technology as contacts to achieve high device performance and desired device functions. The growth and applications of silicide materials have recently attracted increasing interest for nanoscale device applications. Nanoscale silicide materials have been demonstrated with various synthetic approaches. Solid state reaction wherein high quality silicides form through diffusion of metal atoms into silicon nano-templates and the subsequent phase transformation caught significant attention for the fabrication of nanoscale Si devices. Very interestingly, studies on the diffusion and phase transformation processes at the nanoscale have indicated possible deviations from the bulk and the thin film system. Here we present a review of fabrication, growth kinetics, electronic properties and device applications of nanoscale silicides formed through solid state reaction.

  13. Thermal Stability of Magnesium Silicide/Nickel Contacts

    Science.gov (United States)

    de Boor, J.; Droste, D.; Schneider, C.; Janek, J.; Mueller, E.

    2016-10-01

    Magnesium silicide-based materials are a very promising class of thermoelectric materials with excellent potential for thermoelectric waste heat recovery. For the successful application of magnesium silicide-based thermoelectric generators, the development of long-term stable contacts with low contact resistance is as important as material optimization. We have therefore studied the suitability of Ni as a contact material for magnesium silicide. Co-sintering of magnesium silicide and Ni leads to the formation of a stable reaction layer with low electrical resistance. In this paper we show that the contacts retain their low electrical contact resistance after annealing at temperatures up to 823 K for up to 168 h. By employing scanning electron microscope analysis and time-of-flight (ToF)-secondary ion mass spectrometry, we can further show that elemental diffusion is occurring to a very limited extent. This indicates long-term stability under practical operation conditions for magnesium silicide/nickel contacts.

  14. Thermoelectric properties of higher manganese silicides

    Science.gov (United States)

    Tseng, Yu-Chih; Venkataraman, Vijay Shankar; Kee, Hae-Young

    2015-03-01

    Higher manganese silicides (HMS) are promising thermoelectric materials that may be broadly deployable because of the abundance of the constituent elements and their non-toxic nature. We study the thermoelectric properties of HMS using density functional theory calculations and tight-binding models to fit these calculations. We estimate charge carrier density and mobility, and compare with experimental data. Theoretically obtained thermal and electrical conductivities, and the Seebeck coefficients are presented. Possible scattering mechanisms and relations to figure of merit are also discussed. NSERC CREATE - HEATER Program.

  15. Joule-assisted silicidation for short-channel silicon nanowire devices.

    Science.gov (United States)

    Mongillo, Massimo; Spathis, Panayotis; Katsaros, Georgios; Gentile, Pascal; Sanquer, Marc; De Franceschi, Silvano

    2011-09-27

    We report on a technique enabling electrical control of the contact silicidation process in silicon nanowire devices. Undoped silicon nanowires were contacted by pairs of nickel electrodes, and each contact was selectively silicided by means of the Joule effect. By a real-time monitoring of the nanowire electrical resistance during the contact silicidation process we were able to fabricate nickel-silicide/silicon/nickel-silicide devices with controlled silicon channel length down to 8 nm.

  16. Silicide precipitation strengthened TiAl

    Energy Technology Data Exchange (ETDEWEB)

    Noda, T. [Special Steel Research Laboratory, Daido Steel Co. Ltd., 2-30 Daido-cho, Minami-ku, Nagoya 457 (Japan); Okabe, M. [Special Steel Research Laboratory, Daido Steel Co. Ltd., 2-30 Daido-cho, Minami-ku, Nagoya 457 (Japan); Isobe, S. [Special Steel Research Laboratory, Daido Steel Co. Ltd., 2-30 Daido-cho, Minami-ku, Nagoya 457 (Japan); Sayashi, M. [Materials Research Laboratory, Nissan Research Center, Nissan Motor Co. Ltd., 1 Natushima-cho, Yokosuka 237 (Japan)

    1995-02-28

    Precipitation of a titanium silicide Ti{sub 5}Si{sub 3} was found to be beneficial to improvement of the creep resistance of a fully lamellar Ti-48Al-1.5Cr cast alloy without the sacrifice of tensile properties. The addition of 0.26-0.65 mol% Si generates fine precipitates less than 200 nm in size during aging at 900 C for 5 h. The precipitates are effective obstacles to dislocation motion and raise the stress exponents of power law creep significantly. The specific creep strength of Si-containing alloys is better than that of a conventional Ni-base cast superalloy Inconel 713C at 800 C for 10000 h. ((orig.))

  17. A study of nickel silicide in a conventional furnace for Ni/Cu contact monocrystalline-silicon solar cells

    Science.gov (United States)

    Min, Seon Kyu; Lee, Soo Hong

    2013-01-01

    High-conductivity contacts in place of screen-printed contacts are in demand for commercial solar cells. Also, simplifying the process steps is required for commercial solar cells. In addition, very expensive metals are necessary improved efficiency without using scarce. In this research, we replaced screen-printed contacts with Ni/Cu contacts in passivated emitter solar cells. A layer of nickel was used as the seed and the adhesion layer. The main contact was formed by plating with copper. Firing conditions in a conventional furnace were varied so as to form nickel silicide. The best cell showed a solar cell efficiency of 18.76%.

  18. Rare earth silicide nanowires on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wanke, Martina

    2008-11-10

    The growth, structure and electronic properties of rare earth silicide nanowires are investigated on planar and vicinal Si(001) und Si(111) surfaces with scanning tunneling microscopy (STM), low energy electron diffraction (LEED) and angle-resolved photoelectron spectroscopy (ARPES). On all surfaces investigated within this work hexagonal disilicides are grown epitaxially with a lattice mismatch of -2.55% up to +0.83% along the hexagonal a-axis. Along the hexagonal c-axis the lattice mismatch is essentially larger with 6.5%. On the Si(001)2 x 1 surface two types of nanowires are grown epitaxially. The socalled broad wires show a one-dimensional metallic valence band structure with states crossing the Fermi level. Along the nanowires two strongly dispersing states at the anti J point and a strongly dispersing state at the anti {gamma} point can be observed. Along the thin nanowires dispersing states could not be observed. Merely in the direction perpendicular to the wires an intensity variation could be observed, which corresponds to the observed spacial structure of the thin nanowires. The electronic properties of the broad erbium silicide nanowires are very similar to the broad dysprosium silicide nanowires. The electronic properties of the DySi{sub 2}-monolayer and the Dy{sub 3}Si{sub 5}-multilayer on the Si(111) surface are investigated in comparison to the known ErSi{sub 2}/Si(111) and Er{sub 3}Si{sub 5}/Si(111) system. The positions and the energetic locations of the observed band in the surface Brillouin zone will be confirmed for dysprosium. The shape of the electron pockets in the (vector)k {sub parallel} space is elliptical at the anti M points, while the hole pocket at the anti {gamma} point is showing a hexagonal symmetry. On the Si(557) surface the structural and electronic properties depend strongly on the different preparation conditions likewise, in particular on the rare earth coverage. At submonolayer coverage the thin nanowires grow in wide areas

  19. Silicide Nanowires for Low-Resistance CMOS Transistor Contacts.

    Science.gov (United States)

    Zollner, Stefan

    2007-03-01

    Transition metal (TM) silicide nanowires are used as contacts for modern CMOS transistors. (Our smallest wires are ˜20 nm thick and ˜50 nm wide.) While much research on thick TM silicides was conducted long ago, materials perform differently at the nanoscale. For example, the usual phase transformation sequences (e.g., Ni, Ni2Si, NiSi, NiSi2) for the reaction of thick metal films on Si no longer apply to nanostructures, because the surface and interface energies compete with the bulk energy of a given crystal structure. Therefore, a NiSi film will agglomerate into hemispherical droplets of NiSi by annealing before it reaches the lowest-energy (NiSi2) crystalline structure. These dynamics can be tuned by addition of impurities (such as Pt in Ni). The Si surface preparation is also a more important factor for nanowires than for silicidation of thick TM films. Ni nanowires formed on Si surfaces that were cleaned and amorphized by sputtering with Ar ions have a tendency to form NiSi2 pyramids (``spikes'') even at moderate temperatures (˜400^oC), while similar Ni films formed on atomically clean or hydrogen-terminated Si form uniform NiSi nanowires. Another issue affecting TM silicides is the barrier height between the silicide contact and the silicon transistor. For most TM silicides, the Fermi level of the silicide is aligned with the center of the Si band gap. Therefore, silicide contacts experience Schottky barrier heights of around 0.5 eV for both n-type and p-type Si. The resulting contact resistance becomes a significant term for the overall resistance of modern CMOS transistors. Lowering this contact resistance is an important goal in CMOS research. New materials are under investigation (for example PtSi, which has a barrier height of only 0.3 eV to p-type Si). This talk will describe recent results, with special emphasis on characterization techniques and electrical testing useful for the development of silicide nanowires for CMOS contacts. In collaboration

  20. Evaluation of Transmission Line Model Structures for Silicide-to-Silicon Specific Contact Resistance Extraction

    NARCIS (Netherlands)

    Stavitski, Natalie; Dal, van Mark J.H.; Lauwers, Anne; Vrancken, Christa; Kovalgin, Alexey Y.; Wolters, Rob A.M.

    2008-01-01

    In order to measure silicide-to-silicon specific contact resistance ρc, transmission line model (TLM) structures were proposed as attractive candidates for embedding in CMOS processes. We optimized TLM structures for nickel silicide and platinum silicide and evaluated them for various doping levels

  1. Formation of Silicide Coating layer on U-Mo Powder

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ji Min; Kim, Sunghwan; Lee, Kyu Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    High-density U-Mo alloys are regarded as promising candidates for advanced research reactor fuel as they have shown stable irradiation performance when compared to other uranium alloys and compounds. However, interaction layer formation between the U-Mo alloys and Al matrix degrades the irradiation performance of U-Mo Dispersion fuel. Therefore, the addition of Ti in U-Mo alloys, the addition of Si in a Al matrix, and silicide or nitride coating on the surface of U-Mo particles have been proposed to inhibit the interaction layer growth. In this study, U-Mo alloy powder was produced using a centrifugal atomization method. In addition, silicide coating layers were fabricated by several mixing process changes on the surface of the U-Mo particles. The coated powders were characterized by using scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDAX). Decreased annealing duration did not affect the forming of silicide coating layers on the surface of U-7wt%Mo powders. The variation in the mixing ratio between U-7wt%Mo and Si powders had an effect on the quality of silicide coating on the U-7wt%Mo powders. The weight of Si powders should be smaller than that of U-7wt%Mo powders for better silicide coating when it comes to the mixing ratio.

  2. Silicide/Silicon Hetero-Junction Structure for Thermoelectric Applications.

    Science.gov (United States)

    Jun, Dongsuk; Kim, Soojung; Choi, Wonchul; Kim, Junsoo; Zyung, Taehyoung; Jang, Moongyu

    2015-10-01

    We fabricated silicide/silicon hetero-junction structured thermoelectric device by CMOS process for the reduction of thermal conductivity with the scatterings of phonons at silicide/silicon interfaces. Electrical conductivities, Seebeck coefficients, power factors, and temperature differences are evaluated using the steady state analysis method. Platinum silicide/silicon multilayered structure showed an enhanced Seebeck coefficient and power factor characteristics, which was considered for p-leg element. Also, erbium silicide/silicon structure showed an enhanced Seebeck coefficient, which was considered for an n-leg element. Silicide/silicon multilayered structure is promising for thermoelectric applications by reducing thermal conductivity with an enhanced Seebeck coefficient. However, because of the high thermal conductivity of the silicon packing during thermal gradient is not a problem any temperature difference. Therefore, requires more testing and analysis in order to overcome this problem. Thermoelectric generators are devices that based on the Seebeck effect, convert temperature differences into electrical energy. Although thermoelectric phenomena have been used for heating and cooling applications quite extensively, it is only in recent years that interest has increased in energy generation.

  3. Submicron Features in Higher Manganese Silicide

    Directory of Open Access Journals (Sweden)

    Yatir Sadia

    2013-01-01

    Full Text Available The world energy crisis had increased the demand for alternative energy sources and as such is one of the topics at the forefront of research. One way for reducing energy consumption is by thermoelectricity. Thermoelectric effects enable direct conversion of thermal into electrical energy. Higher manganese silicide (HMS, MnSi1.75 is one of the promising materials for applications in the field of thermoelectricity. The abundance and low cost of the elements, combined with good thermoelectric properties and high mechanical and chemical stability at high temperatures, make it very attractive for thermoelectric applications. Recent studies have shown that Si-rich HMS has improved thermoelectric properties. The most interesting of which is the unusual reduction in thermal conductivity. In the current research, transmission (TEM and scanning (SEM electron microscopy as well as X-ray diffraction methods were applied for investigation of the govern mechanisms resulting in very low thermal conductivity values of an Si-rich HMS composition, following arc melting and hot-pressing procedures. In this paper, it is shown that there is a presence of sub-micron dislocations walls, stacking faults, and silicon and HMS precipitates inside each other apparent in the matrix, following a high temperature (0.9 Tm hot pressing for an hour. These are not just responsible for the low thermal conductivity values observed but also indicate the ability to create complicate nano-structures that will last during the production process and possibly during the application.

  4. Formation of cobalt silicide by ion beam mixing

    Science.gov (United States)

    Min, Ye; Burte, Edmund P.; Ryssel, Heiner

    1991-07-01

    The formation of cobalt silicides by arsenic ion implantation through a cobalt film which causes a mixing of the metal with the silicon substrate was investigated. Furthermore, cobalt suicides were formed by rapid thermal annealing (RTA). Sheet resistance and silicide phases of implanted Co/Si samples depend on the As dose. Ion beam mixing at doses higher than 5 × 10 15 cm -2 and RTA at temperatures T ⩾ 900° C result in almost equal values of Rs. RBS and XRD spectra of these samples illustrate the formation of a homogeneous CoSi 2 layer. Significant lateral growth of cobalt silicide beyond the edge of patterned SiO 2 was observed in samples which were only subjected to an RTA process ( T ⩾ 900 ° C), while this lateral suicide growth could be reduced efficiently by As implantation prior to RTA.

  5. Si-Ge Nano-Structured with Tungsten Silicide Inclusions

    Science.gov (United States)

    Mackey, Jon; Sehirlioglu, Alp; Dynys, Fred

    2014-01-01

    Traditional silicon germanium high temperature thermoelectrics have potential for improvements in figure of merit via nano-structuring with a silicide phase. A second phase of nano-sized silicides can theoretically reduce the lattice component of thermal conductivity without significantly reducing the electrical conductivity. However, experimentally achieving such improvements in line with the theory is complicated by factors such as control of silicide size during sintering, dopant segregation, matrix homogeneity, and sintering kinetics. Samples are prepared using powder metallurgy techniques; including mechanochemical alloying via ball milling and spark plasma sintering for densification. In addition to microstructural development, thermal stability of thermoelectric transport properties are reported, as well as couple and device level characterization.

  6. Mo SILICIDE SYNTHISIS BY DUAL ION BEAM DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    T.H. Zhang; Z.Z. Yi; X.Y. Wu; S.J. Zhang; Y.G. Wu; X. Zhang; H.X. Zhang; A.D. Liu; X.J. Zhang

    2002-01-01

    Mo silicides MosSi3 with high quality were prepared using ion beam deposition equip-ment with two Filter Metal Vacuum Arc Deposition (FMEVAD). When the numberof alternant deposition times was 198, total thickness of the coating is 40nm. Thecoatings with droplet free can be readily obtained, so the surface is smooth. TEMobservation shows that Mo and Si alternant deposition coating is conpact structure.The fine Mo silicide grains densely distributed in the coating. The coating adherenceon silicon is excellent.

  7. Spin, Charge, and Bonding in Transition Metal Mono Silicides

    NARCIS (Netherlands)

    Marel, D. van der; Damascelli, A.; Schulte, K.; Menovsky, A. A.

    1997-01-01

    Published in: Physica B 244 (1998) 138-147 citations recorded in [Science Citation Index] Abstract: We review some of the relevant physical properties of the transition metal mono-silicides with the FeSi structure (CrSi, MnSi, FeSi, CoSi, NiSi, etc) and explore the relation between their structural

  8. Neutronic design of the RSG-GAS silicide core

    Energy Technology Data Exchange (ETDEWEB)

    Sembiring, T.M.; Kuntoro, I.; Hastowo, H. [Center for Development of Research Reactor Technology National Nuclear Energy Agency BATAN, PUSPIPTEK Serpong Tangerang, 15310 (Indonesia)

    2002-07-01

    The objective of core conversion program of the RSG-GAS multipurpose reactor is to convert the fuel from oxide, U{sub 3}O{sub 8}-Al to silicide, U{sub 3}Si{sub 2}-Al. The aim of the program is to gain longer operation cycle by having, which is technically possible for silicide fuel, a higher density. Upon constraints of the existing reactor system and utilization, an optimal fuel density in amount of 3.55 g U/cc was found. This paper describes the neutronic parameter design of the silicide equilibrium core and the design of its transition cores as well. From reactivity control point of view, a modification of control rod system is also discussed. All calculations are carried out by means of diffusion codes, Batan-EQUIL-2D, Batan-2DIFF and -3DIFF. The silicide core shows that longer operation cycle of 32 full power days can be achieved without decreasing the safety criteria and utilization capabilities. (author)

  9. Silicide Schottky Contacts to Silicon: Screened Pinning at Defect Levels

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, T.J.

    1999-03-11

    Silicide Schottky contacts can be as large as 0.955 eV (E{sub v} + 0.165 eV) on n-type silicon and as large as 1.05 eV (E{sub c} {minus} 0.07 eV) on p-type silicon. Current models of Schottky barrier formation do not provide a satisfactory explanation of occurrence of this wide variation. A model for understanding Schottky contacts via screened pinning at defect levels is presented. In the present paper it is shown that most transition metal silicides are pinned approximately 0.48 eV above the valence band by interstitial Si clusters. Rare earth disilicides pin close to the divacancy acceptor level 0.41 eV below the conduction band edge while high work function silicides of Ir and Pt pin close to the divacancy donor level 0.21 eV above the valence band edge. Selection of a particular defect pinning level depends strongly on the relative positions of the silicide work function and the defect energy level on an absolute energy scale.

  10. Study of nickel silicide formation by physical vapor deposition techniques

    Science.gov (United States)

    Pancharatnam, Shanti

    Metal silicides are used as contacts to the highly n-doped emitter in photovoltaic devices. Thin films of nickel silicide (NiSi) are of particular interest for Si-based solar cells, as they form at lower temperature and consume less silicon. However, interfacial oxide limits the reduction in sheet resistance. Hence, different diffusion barriers were investigated with regard to optimizing the conductivity and thermal stability. The formation of NiSi, and if it can be doped to have good contact with the n-side of a p-n junction were studied. Reduction of the interfacial oxide by the interfacial Ti layer to allow the formation of NiSi was observed. Silicon was treated in dilute hydrofluoric acid for removing the surface oxide layer. Ni and a Ti diffusion barrier were deposited on Si by physical vapor deposition (PVD) methods - electron beam evaporation and sputtering. The annealing temperature and time were varied to observe the stability of the deposited film. The films were then etched to observe the retention of the silicide. Characterization was done using scanning electron microscopy (SEM), Auger electron spectroscopy (AES) and Rutherford back scattering (RBS). Sheet resistance was measured using the four-point probe technique. Annealing temperatures from 300°C showed films began to agglomerate indicating some diffusion between Ni and Si in the Ti layer, also supported by the compositional analysis in the Auger spectra. Films obtained by evaporation and sputtering were of high quality in terms of coverage over substrate area and uniformity. Thicknesses of Ni and Ti were optimized to 20 nm and 10 nm respectively. Resistivity was low at these thicknesses, and reduced by about half post annealing at 300°C for 8 hours. Thus a low resistivity contact was obtained at optimized thicknesses of the metal layers. It was also shown that some silicide formation occurs at temperatures starting from 300°C and can thus be used to make good silicide contacts.

  11. Texture in thin film silicides and germanides: A review

    Science.gov (United States)

    De Schutter, B.; De Keyser, K.; Lavoie, C.; Detavernier, C.

    2016-09-01

    Silicides and germanides are compounds consisting of a metal and silicon or germanium. In the microelectronics industry, silicides are the material of choice for contacting silicon based devices (over the years, CoSi2, C54-TiSi2, and NiSi have been adopted), while germanides are considered as a top candidate for contacting future germanium based electronics. Since also strain engineering through the use of Si1-xGex in the source/drain/gate regions of MOSFET devices is an important technique for improving device characteristics in modern Si-based microelectronics industry, a profound understanding of the formation of silicide/germanide contacts to silicon and germanium is of utmost importance. The crystallographic texture of these films, which is defined as the statistical distribution of the orientation of the grains in the film, has been the subject of scientific studies since the 1970s. Different types of texture like epitaxy, axiotaxy, fiber, or combinations thereof have been observed in such films. In recent years, it has become increasingly clear that film texture can have a profound influence on the formation and stability of silicide/germanide contacts, as it controls the type and orientation of grain boundaries (affecting diffusion and agglomeration) and the interface energy (affecting nucleation during the solid-state reaction). Furthermore, the texture also has an impact on the electrical characteristics of the contact, as the orientation and size of individual grains influences functional properties such as contact resistance and sheet resistance and will induce local variations in strain and Schottky barrier height. This review aims to give a comprehensive overview of the scientific work that has been published in the field of texture studies on thin film silicide/germanide contacts.

  12. Effect of Chemistry and Particle Size on the Performance of Calcium Disilicide Primers. Part 1 - Synthesis of Calcium Silicide (CaSi2) by Rotary Atomization

    Science.gov (United States)

    2010-02-01

    refs. 8 and 9); electrolysis (refs. 10 and 11); calcium hydride (CaH2) and Si (ref. 12); SiC and CaO (ref. 13); and combustion synthesis (ref. 14...obtained using a goiniometer (Phillips Model PW 3040, Phillips, Eindhoven, the Netherlands) using copper (Cu) K„ radiation (X - 1.54183 A) with a graphite...34 Electrolysis of Molten Alkali and Alkaline Earth Silicates." Bull. Soc. Chim., 6,206, 1939. 12. Louis, V. and Franck, H. H., "Silicide of Calcium," Z. Anorq

  13. Infrared and Raman characterization of beta iron silicide

    Science.gov (United States)

    Lefki, K.; Muret, P.; Bustarret, E.; Boutarek, N.; Madar, R.; Chevrier, J.; Derrien, J.; Brunel, M.

    1991-12-01

    Samples of beta-iron silicide were prepared by three different methods : solid phase reaction on silicon (111), on a monocrystaline FeSi substrate, and from the melt. These samples have been characterized by x-ray diffraction and investigated by Infrared and Raman spectroscopies. The infrared and Raman lines are compared with theoretical predictions given by the factor group analysis of the silicide primitive cell, which yields the number and the symmetry of the different modes. We relate the red shift of the Infrared and Raman lines on samples with smaller lattice parameters to the presence of Iron vacancies in films deposited on silicon, in agreement with the sign of the thermoelectric power.

  14. Controlling nickel silicide phase formation by Si implantation damage

    Energy Technology Data Exchange (ETDEWEB)

    Guihard, M.; Turcotte-Tremblay, P. [Departement de Physique, Universite de Montreal, Montreal (Canada); Gaudet, S.; Coia, C. [Departement de Genie Physique, Ecole Polytechnique de Montreal, Montreal (Canada); Roorda, S. [Departement de Physique, Universite de Montreal, Montreal (Canada); Desjardins, P. [Departement de Genie Physique, Ecole Polytechnique de Montreal, Montreal (Canada); Lavoie, C. [IBM T.J. Watson Research Center, Yorktown Heights, New York (United States); Schiettekatte, F. [Departement de Physique, Universite de Montreal, Montreal (Canada)], E-mail: francois.schiettekatte@umontreal.ca

    2009-05-01

    In the context of fabrication process of contacts in CMOS integrated circuits, we studied the effect of implantation-induced damage on the Ni silicide phase formation sequence. The device layers of Silicon-on-insulator samples were implanted with 30 or 60 keV Si ions at several fluences up to amorphization. Next, 10 or 30 nm Ni layers were deposited. The monitoring of annealing treatments was achieved with time-resolved X-ray diffraction (XRD) technique. Rutherford Backscattering Spectrometry and pole figure XRD were also used to characterize some intermediate phase formations. We show the existence of an implantation threshold (1 ions/nm{sup 2}) from where the silicidation behaviour changes significantly, the formation temperature of the disilicide namely shifting abruptly from 800 to 450 deg. C. It is also found that the monosilicide formation onset temperature for the thinner Ni deposits increases linearly by about 30 deg. C with the amount of damage.

  15. Oxidation behavior of molybdenum silicides and their composites

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Deevi, S. C.

    2000-04-03

    A key materials issue associated with the future of high-temperature structural silicides is the resistance of these materials to oxidation at low temperatures. Oxidation tests were conducted on Mo-based silicides over a wide temperature range to evaluate the effects of alloy composition and temperature on the protective scaling characteristics and testing regime for the materials. The study included Mo{sub 5}Si{sub 3} alloys that contained several concentrations of B. In addition, oxidation characteristics of MoSi{sub 2}-Si{sub 3}N{sub 4} composites that contained 20--80 vol.% Si{sub 3}N{sub 4} were evaluated at 500--1,400 C.

  16. Titanium-based silicide quantum dot superlattices for thermoelectrics applications.

    Science.gov (United States)

    Savelli, Guillaume; Stein, Sergio Silveira; Bernard-Granger, Guillaume; Faucherand, Pascal; Montès, Laurent; Dilhaire, Stefan; Pernot, Gilles

    2015-07-10

    Ti-based silicide quantum dot superlattices (QDSLs) are grown by reduced-pressure chemical vapor deposition. They are made of titanium-based silicide nanodots scattered in an n-doped SiGe matrix. This is the first time that such nanostructured materials have been grown in both monocrystalline and polycrystalline QDSLs. We studied their crystallographic structures and chemical properties, as well as the size and the density of the quantum dots. The thermoelectric properties of the QDSLs are measured and compared to equivalent SiGe thin films to evaluate the influence of the nanodots. Our studies revealed an increase in their thermoelectric properties-specifically, up to a trifold increase in the power factor, with a decrease in the thermal conductivity-making them very good candidates for further thermoelectric applications in cooling or energy-harvesting fields.

  17. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    Science.gov (United States)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  18. Preparation of Magnesium Silicide from Recycled Materials for Energy Storage.

    OpenAIRE

    Bumba, Jakub

    2016-01-01

    Recycling technologies help to save energy, materials and environment. This is the main reason of their popularity. The recovery of semiconductors and metals depends on recycling treatment. A new multi-step technology, which enables to obtain pure silicon and hydrogen from waste materials,is reported in this study. The only by-product is magnesium phosphate, which is a desired fertilizer. Magnesium silicide was successfully prepared from milled silicon photovoltaic (PV) panels and mill...

  19. FORMATION OF MANGANESE SILICIDE THIN FILMS BY SOLID PHASE REACTION

    Institute of Scientific and Technical Information of China (English)

    E.Q. Xie; W.W. Wang; N. Jiang; D.Y. He

    2002-01-01

    Manganese silicide MnSi2-x thin films have been prepared on n-type silicon substratesthrough solid phase reaction. The heterostructures were analyzed by X-ray diffraction,Rutherford backscattering spectroscopy, Fourier transform infrared transmittance spec-troscopy and the four-point probe technique. The results show that two manganese sili-cides have been formed sequentially via the reaction of thin layer Mn with Si substrateat different irradiation annealing stages, i.e., MnSi at 450℃ and MnSi1.73 at 550℃.MnSi1.73 phase exhibits preferred growth after irradiation with infrared. In situ four-point probe measurements of sheet resistance during infrared irradiation annealingshow that nucleation of MnSi and phase transformation of MnSi to MnSi1. 73 occur at410℃ and 530℃, respectively; the MnSi phase shows metallic behavior, while MnSi1.73exhibits semiconducting behavior. Characteristic phonon bands of MnSi2-x silicides,which can be used for phase identification along with conventional XRD techniques,have been observed by FTIR spectroscopy.

  20. Fuel management strategy for the new equilibrium silicide core design of RSG GAS (MPR-30)

    Energy Technology Data Exchange (ETDEWEB)

    Hong Liem Peng; Arbie, Bakri; Sembiring, T.M. [National Atomic Energy Agency (Batan), Center for Multipurpose Reactor, Tangerang (Indonesia)

    1997-07-01

    The design procedure and fuel management strategy were proposed for converting the oxide core of RSG GAS (MPR-30) to the new equilibrium silicide core using higher uranium loading. The obtained silicide core gave significant extension of the core cycle length and thus increasing the reactor availability and utilisation. (author)

  1. Fuel management strategy for the new equilibrium silicide core design of RSG GAS (MPR-30)

    Energy Technology Data Exchange (ETDEWEB)

    Hong Liem Peng; Arbie, Bakri; Sembiring, T.M. [National Atomic Energy Agency (Batan), Center for Multipurpose Reactor, Tangerang (Indonesia)

    1997-07-01

    The design procedure and fuel management strategy were proposed for converting the oxide core of RSG GAS (MPR-30) to the new equilibrium silicide core using higher uranium loading. The obtained silicide core gave significant extension of the core cycle length and thus increasing the reactor availability and utilisation. (author) 4 figs., 1 tab., refs.

  2. Mechanoactivation of chromium silicide formation in the SiC-Cr-Si system

    Directory of Open Access Journals (Sweden)

    Vlasova M.

    2002-01-01

    Full Text Available The processes of simultaneous grinding of the components of a SiC-Cr-Si mixture and further temperature treatment in the temperature range 1073-1793 K were studied by X-ray phase analysis, IR spectroscopy, electron microscopy, and X-ray microanalysis. It was established that, during grinding of the mixture, chromium silicides form. A temperature treatment completes the process. Silicide formation proceeds within the framework of the diffusion of silicon into chromium. In the presence of SiO2 in the mixture, silicide formation occurs also as a result of the reduction of silica by silicon and silicon carbide. The sintering of synthesized composite SiC-chromium silicides powders at a high temperature under a high pressure (T = 2073 K, P = 5 GPa is accompanied by the destruction of cc-SiC particles, the cc/3 transition in silicon carbide and deformation distortions of the lattices of chromium silicides.

  3. Mechanochemical synthesis and spark plasma sintering of the cerium silicides

    Energy Technology Data Exchange (ETDEWEB)

    Alanko, Gordon A.; Jaques, Brian; Bateman, Allyssa [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Butt, Darryl P., E-mail: darrylbutt@boisestate.edu [Department of Materials Science and Engineering, College of Engineering, Boise State University, 1910 University Drive, Boise, ID 83725 (United States); Center for Advanced Energy Studies, 995 University Boulevard, Idaho Falls, ID 83401 (United States)

    2014-12-15

    Highlights: • Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−x} and CeSi{sub 2} were mechanochemically synthesized. • Temperature and pressure were monitored to investigate reaction progress. • All syntheses proceeded through a MSR event followed by rapid solid-state diffusion. • Milling time before MSR correlates well with effective heat of formation. • Some synthesized material was densified by spark plasma sintering. - Abstract: The cerium silicides, Ce{sub 5}Si{sub 3}, Ce{sub 3}Si{sub 2}, CeSi, CeSi{sub 2−y}, and CeSi{sub 2−x}, have been prepared from the elements by mechanochemical processing in a planetary ball mill. Preparation of the cerium silicide Ce{sub 5}Si{sub 4} was unsuccessfully attempted and potential reasons for this are discussed. Temperature and pressure of the milling vial were monitored in situ to gain insight into the mechanochemical reaction kinetics, which include a mechanically-induced self-propagating reaction (MSR). Some prepared powders were consolidated by spark plasma sintering to high density. Starting materials, as-milled powders, and consolidated samples were characterized by X-ray diffraction, scanning electron microscopy, and energy dispersive spectroscopy. The results obtained help elucidate key questions in mechanochemical processing of intermetallics, showing first phase formation similar to thin films, MSR ignition times that are composition- and milling speed-dependent, and sensitivity of stable compound formation on the impact pressure. The results demonstrate mechanochemical synthesis as a viable technique for rare earth silicides.

  4. Work function characterization of solution-processed cobalt silicide

    Science.gov (United States)

    Shihab Ullah, Syed; Robinson, Matt; Hoey, Justin; Sky Driver, M.; Caruso, A. N.; Schulz, Douglas L.

    2012-06-01

    Cobalt silicide thin films were prepared by spin-coating liquid cyclohexasilane-based inks onto silicon substrates followed by a thermal treatment. The work function of the solution-processed Co-Si was determined by both capacitance-voltage (C-V) measurements of metal-oxide-semiconductor (MOS) structures as well as by ultraviolet photoemission spectroscopy (UPS). Variable frequency C-V of MOS structures with silicon oxide layers of variable thickness showed that solution-processed metal silicide films exhibit a work function of 4.36 eV with one Co-Si film on Si giving a UPS-derived work function of 4.80 eV. Similar work function measurements were collected for vapor-deposited MOS capacitors where Al thin films were prepared according to standard class 100 cleanroom handling techniques. In both instances, the work function values established by the electrical measurements were lower than those measured by UPS and this difference appears to be a consequence of parasitic series resistance.

  5. Atomic size effects studied by transport in single silicide nanowires

    Science.gov (United States)

    Miccoli, I.; Edler, F.; Pfnür, H.; Appelfeller, S.; Dähne, M.; Holtgrewe, K.; Sanna, S.; Schmidt, W. G.; Tegenkamp, C.

    2016-03-01

    Ultrathin metallic silicide nanowires with extremely high aspect ratios can be easily grown, e.g., by deposition of rare earth elements on semiconducting surfaces. These wires play a pivotal role in fundamental research and open intriguing perspectives for CMOS applications. However, the electronic properties of these one-dimensional systems are extremely sensitive to atomic-sized defects, which easily alter the transport characteristics. In this study, we characterized comprehensively TbSi2 wires grown on Si(100) and correlated details of the atomic structure with their electrical resistivities. Scanning tunneling microscopy (STM) as well as all transport experiments were performed in situ using a four-tip STM system. The measurements are complemented by local spectroscopy and density functional theory revealing that the silicide wires are electronically decoupled from the Si template. On the basis of a quasiclassical transport model, the size effect found for the resistivity is quantitatively explained in terms of bulk and surface transport channels considering details of atomic-scale roughness. Regarding future applications the full wealth of these robust nanostructures will emerge only if wires with truly atomically sharp interfaces can be reliably grown.

  6. Silicidation in Pd/Si thin film junction-Defect evolution and silicon surface segregation

    Energy Technology Data Exchange (ETDEWEB)

    Abhaya, S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amarendra, G. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)], E-mail: amar@igcar.gov.in; Venugopal Rao, G.; Rajaraman, R.; Panigrahi, B.K.; Sastry, V.S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2007-09-25

    Depth resolved positron annihilation studies on Pd/Si thin film system have been carried out to investigate silicide phase formation and vacancy defect production induced by thermal annealing. The evolution of defect sensitive S-parameter clearly indicates the presence of divacancy defects across the interface, due to enhanced Si diffusion beyond 870 K consequent to silicide formation. Corroborative glancing incidence X-ray diffraction (GIXRD), Auger electron spectroscopy (AES) and Rutherford backscattering spectrometry (RBS) have elucidated the aspects related to silicide phase formation and Si surface segregation.

  7. Comparison of nickel silicide and aluminium ohmic contact metallizations for low-temperature quantum transport measurements

    Directory of Open Access Journals (Sweden)

    Polley Craig

    2011-01-01

    Full Text Available Abstract We examine nickel silicide as a viable ohmic contact metallization for low-temperature, low-magnetic-field transport measurements of atomic-scale devices in silicon. In particular, we compare a nickel silicide metallization with aluminium, a common ohmic contact for silicon devices. Nickel silicide can be formed at the low temperatures (<400°C required for maintaining atomic precision placement in donor-based devices, and it avoids the complications found with aluminium contacts which become superconducting at cryogenic measurement temperatures. Importantly, we show that the use of nickel silicide as an ohmic contact at low temperatures does not affect the thermal equilibration of carriers nor contribute to hysteresis in a magnetic field.

  8. Controlled assembly of graphene-capped nickel, cobalt and iron silicides

    Science.gov (United States)

    Vilkov, O.; Fedorov, A.; Usachov, D.; Yashina, L. V.; Generalov, A. V.; Borygina, K.; Verbitskiy, N. I.; Grüneis, A.; Vyalikh, D. V.

    2013-07-01

    The unique properties of graphene have raised high expectations regarding its application in carbon-based nanoscale devices that could complement or replace traditional silicon technology. This gave rise to the vast amount of researches on how to fabricate high-quality graphene and graphene nanocomposites that is currently going on. Here we show that graphene can be successfully integrated with the established metal-silicide technology. Starting from thin monocrystalline films of nickel, cobalt and iron, we were able to form metal silicides of high quality with a variety of stoichiometries under a Chemical Vapor Deposition grown graphene layer. These graphene-capped silicides are reliably protected against oxidation and can cover a wide range of electronic materials/device applications. Most importantly, the coupling between the graphene layer and the silicides is rather weak and the properties of quasi-freestanding graphene are widely preserved.

  9. Status of the atomized uranium silicide fuel development at KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.K.; Kim, K.H.; Park, H.D.; Kuk, I.H. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-08-01

    While developing KMRR fuel fabrication technology an atomizing technique has been applied in order to eliminate the difficulties relating to the tough property of U{sub 3}Si and to take advantage of the rapid solidification effect of atomization. The comparison between the conventionally comminuted powder dispersion fuel and the atomized powder dispersion fuel has been made. As the result, the processes, uranium silicide powdering and heat treatment for U{sub 3}Si transformation, become simplified. The workability, the thermal conductivity and the thermal compatibility of fuel meat have been investigated and found to be improved due to the spherical shape of atomized powder. In this presentation the overall developments of atomized U{sub 3}Si dispersion fuel and the planned activities for applying the atomizing technique to the real fuel fabrication are described.

  10. Mechanical, elastic and thermodynamic properties of crystalline lithium silicides

    CERN Document Server

    Schwalbe, Sebastian; Trepte, Kai; Biedermann, Franziska; Mertens, Florian; Kortus, Jens

    2016-01-01

    We investigate crystalline thermodynamic stable lithium silicides phases (LixSiy) with density functional theory (DFT) and a force-field method based on modified embedded atoms (MEAM) and compare our results with experimental data. This work presents a fast and accurate framework to calculate thermodynamic properties of crystal structures with large unit cells with MEAM based on molecular dynamics (MD). Mechanical properties like the bulk modulus and the elastic constants are evaluated in addition to thermodynamic properties including the phonon density of states, the vibrational free energy and the isochoric/isobaric specific heat capacity for Li, Li12Si7, Li7Si3, Li13Si4, Li15Si4, Li21Si5, Li17Si4, Li22Si5 and Si. For a selected phase (Li13Si4) we study the effect of a temperature dependent phonon density of states and its effect on the isobaric heat capacity.

  11. Capping of rare earth silicide nanowires on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Appelfeller, Stephan; Franz, Martin; Kubicki, Milan; Dähne, Mario [Institut für Festkörperphysik, Technische Universität Berlin, 10623 Berlin (Germany); Reiß, Paul; Niermann, Tore; Lehmann, Michael [Institut für Optik und Atomare Physik, Technische Universität Berlin, 10623 Berlin (Germany); Schubert, Markus Andreas [IHP–Leibniz-Institut für innovative Mikroelektronik, 15236 Frankfurt (Oder) (Germany)

    2016-01-04

    The capping of Tb and Dy silicide nanowires grown on Si(001) was studied using scanning tunneling microscopy and cross-sectional high-resolution transmission electron microscopy. Several nanometers thick amorphous Si films deposited at room temperature allow an even capping, while the nanowires maintain their original structural properties. Subsequent recrystallization by thermal annealing leads to more compact nanowire structures and to troughs in the Si layer above the nanowires, which may even reach down to the nanowires in the case of thin Si films, as well as to V-shaped stacking faults forming along (111) lattice planes. This behavior is related to strain due to the lattice mismatch between the Si overlayer and the nanowires.

  12. Synthesis and design of silicide intermetallic materials. 1998 annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.; Castro, R.G.; Butt, D.P.; Park, Y.; Vaidya, R.U.; Hollis, K.J.; Kung, H.H.

    1999-03-01

    The overall objective of this program is to develop structural silicide-based materials with optimum combinations of elevated temperature strength/creep resistance, low temperature fracture toughness, and high temperature oxidation and corrosion resistance for applications of importance to the US processing industry. A further objective is to develop silicide-based prototype industrial components. The ultimate aim of the program is to work with industry to transfer the structural silicide materials technology to the private sector in order to promote international competitiveness in the area of advanced high temperature materials and important applications in major energy-intensive US processing industries. The program presently has a number of developing industrial connections, including a CRADA with Johns Manville Corporation targeted at the area of MoSi{sub 2}-based high temperature materials and components for fiberglass melting and processing applications. The authors are also developing an interaction with the Institute of Gas Technology (IGT) to develop silicides for high temperature radiant gas burner applications, for the glass and other industries. With Combustion Technology Inc., they are developing silicide-based periscope sight tubes for the direct observation of glass melts. With Accutru International Corporation, they are developing silicide-based protective sheaths for self-verifying temperature sensors which may be used in glass furnaces and other industrial applications. The progress made on the program in this period is summarized.

  13. Synthesis of Co-silicides and fabrication of microwavepower device using MEVVA source implantation

    Institute of Scientific and Technical Information of China (English)

    张通和; 吴瑜光; 钱卫东; 刘要东; 张旭

    2002-01-01

    Co synthesis silicides with good properties were prepared using MEVVA ion implantation with flux of 25-125 mA/cm2 to does of 5×1017/cm2. The structure of the silicides was investigated using X-ray diffraction (XRD) and transmission electron microscopy (TEM). TEM analysis shows that if the ion dose is greater than 2×1017/cm2, a continuous silicide layer will be formed. The sheet resistance of Co silicide decreases with an increase in ion flux and ion dose. The formation of silicides with CoSi and CoSi2 are identified by XRD analysis. After annealing, the sheet resistance decreases further. A continuous silicide layer with a width of 90-133 nm is formed. The optimal implantation condition is that the ion flux and dose are 50 mA/cm2 and 5×1017/cm2, respectively. The optimal annealing temperature and time are 900℃ and 10 s, respectively. The ohmic contact for power microwave transistors is fabricated using Co ion implantation technique for the first time. The emitter contact resistance and noise of the transistors decrease markedly; the microwave property has been improved obviously.

  14. On the size-dependent magnetism and all-optical magnetization switching of transition-metal silicide nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Glushkov, G. I.; Tuchin, A. V.; Popov, S. V.; Bityutskaya, L. A., E-mail: me144@phys.vsu.ru [Voronezh State University (Russian Federation)

    2015-12-15

    Theoretical investigations of the electronic structure, synthesis, and all-optical magnetization switching of transition-metal silicide nanostructures are reported. The magnetic moment of the nanostructures is studied as a function of the silicide cluster size and configuration. The experimentally demonstrated magnetization switching of nanostructured nickel silicide by circularly polarized light makes it possible to create high-speed storage devices with high density data recording.

  15. Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States); Harp, Jason [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-15

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions, and therefore evaluate the qualification of U3Si2 as an AFT for LWRs. Considering the high cost, long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U3Si2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U3Si2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.

  16. Attempt to produce silicide fuel elements in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Soentono, S. (Nuclear Fuel Element Centre, BATAN Kawasan PUSPIPTEK, Serpong (Indonesia)); Suripto, A. (Nuclear Fuel Element Centre, BATAN Kawasan PUSPIPTEK, Serpong (Indonesia))

    1991-01-01

    After the successful experiment to produce U[sub 3]Si[sub 2] powder and U[sub 3]Si[sub 2]-Al fuel plates using depleted U and Si of semiconductor quality, silicide fuel was synthesized using <20% enriched U metal and silicon chips employing production train of UAl[sub x]-Al available at the Fuel Element Production Installation (FEPI) at Serpong, Indonesia. Two full-size U[sub 3]Si[sub 2]-Al fuel elements, having similar specifications to the ones of U[sub 3]O[sub 8]-Al for the RSG-GAS (formerly known as MPR-30), have been produced at the FEPI. All quality controls required have been imposed to the feeds, intermediate, as well as final products throughout the production processes of the two fuel elements. The current results show that these fuel elements are qualified from fabrication point of view, therefore it is expected that they will be permitted to be tested in the RSG-GAS, sometime by the end of 1989, for normal ([proportional to]50%) and above normal burn-up. (orig.)

  17. Oxidation/vaporization of silicide coated columbium base alloys

    Science.gov (United States)

    Kohl, F. J.; Stearns, C. A.

    1971-01-01

    Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.

  18. High Quality Factor Platinum Silicide Microwave Kinetic Inductance Detectors

    CERN Document Server

    Szypryt, P; Ulbricht, G; Bumble, B; Meeker, S R; Bockstiegel, C; Walter, A B

    2016-01-01

    We report on the development of Microwave Kinetic Inductance Detectors (MKIDs) using platinum silicide as the sensor material. MKIDs are an emerging superconducting detector technology, capable of measuring the arrival times of single photons to better than two microseconds and their energies to around ten percent. Previously, MKIDs have been fabricated using either sub-stoichiometric titanium nitride or aluminum, but TiN suffers from spatial inhomogeneities in the superconducting critical temperature and Al has a low kinetic inductance fraction, causing low detector sensitivity. To address these issues, we have instead fabricated PtSi microresonators with superconducting critical temperatures of 944$\\pm$12~mK and high internal quality factors ($Q_i \\gtrsim 10^6$). These devices show typical quasiparticle lifetimes of $\\tau_{qp} \\approx 30$--$40~\\mu$s and spectral resolution, $R = \\lambda / \\Delta \\lambda$, of 8 at 406.6~nm. We compare PtSi MKIDs to those fabricated with TiN and detail the substantial advanta...

  19. Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Mo, Kun [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States); Harp, Jason [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-15

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions need to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions and therefore evaluate the qualification of U3Si2 as an AFT for LWRs. Considering the high cost, long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U3Si2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U3Si2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.

  20. New Manganese Silicide Mineral Phase in an Interplanetary Dust Particle

    Science.gov (United States)

    Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Palma, R. L.; Pepin, R. O.; Kloeck, W.; Zolensky, M. E.; Messenger, S.

    2008-01-01

    Comet 26P/Grigg-Skjellerup was identified as a source of an Earth-crossing dust stream with low Earth-encounter velocities, with peak anticipated fluxes during April in 2003 and 2004 [1]. In response to this prediction, NASA performed dedicated stratospheric dust collections using high altitude aircraft to target potential interplanetary dust particles (IDPs) from this comet stream in April 2003. Several IDPs from this collection have shown unusually low noble gas abundances [2] consistent with the predicted short space exposure ages of Grigg-Skjellerup dust particles [1]. High abundances of large D enrichments [3] and presolar grains [4] in IDPs from this collection are also consistent with an origin from the comet Grigg-Skjellerup. Here we report a new mineral from one of the cluster IDPs of the "Grigg-Skjellerup" collection, L2055. Our report focuses on an unusual manganese-iron-chromium silicide phase that, to our knowledge, has not been observed previously in nature. This unique phase may also shed light on the genesis of the enigmatic low-Fe,Mn-enriched (LIME) olivine that has been previously reported in IDPs and meteorites [5].

  1. Silicidation in Ni/Si thin film system investigated by X-ray diffraction and Auger electron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abhaya, S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Amarendra, G. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)]. E-mail: amar@igcar.gov.in; Kalavathi, S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Gopalan, Padma [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kamruddin, M. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Tyagi, A.K. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sastry, V.S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Sundar, C.S. [Materials Science Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2007-02-15

    Silicide formation induced by thermal annealing in Ni/Si thin film system has been investigated using glancing incidence X-ray diffraction (GIXRD) and Auger electron spectroscopy (AES). Silicide formation takes place at 870 K with Ni{sub 2}Si, NiSi and NiSi{sub 2} phases co-existing with Ni. Complete conversion of intermediate silicide phases to the final NiSi{sub 2} phase takes place at 1170 K. Atomic force microscopy measurements have revealed the coalescence of pillar-like structures to ridge-like structures upon silicidation. A comparison of the experimental results in terms of the evolution of various silicide phases is presented.

  2. Role of Ti3Al/silicides on tensile properties of Timetal 834 at various temperatures

    Indian Academy of Sciences (India)

    K V Sai Srinadh; Nidhi Singh; V Singh

    2007-12-01

    Extremely fine coherent precipitates of ordered Ti3Al and relatively coarse incoherent precipitates of 2 silicide exist together in the near -titanium alloy, Timetal 834, in the dual phase matrix of primary and transformed . In order to assess the role of these precipitates, three heat treatments viz. WQ, WQ–A and WQ–OA, were given to have no precipitates, Ti3Al and silicide and only silicide precipitates in the respective conditions. Tensile properties in the above three heat treated conditions were determined at room temperature, 673 K and 873 K. It was observed that largely Ti3Al precipitates were responsible for increase in the yield strength and decrease in ductility in this alloy.

  3. Anisotropic thermal expansion of Ni, Pd and Pt germanides and silicides

    Science.gov (United States)

    Geenen, F. A.; Knaepen, W.; Moens, F.; Brondeel, L.; Leenaers, A.; Van den Berghe, S.; Detavernier, C.

    2016-07-01

    Silicon or germanium-based transistors are nowadays used in direct contact with silicide or germanide crystalline alloys for semiconductor device applications. Since these compounds are formed at elevated temperatures, accurate knowledge of the thermal expansion of both substrate and the contact is important to address temperature depending effects such as thermal stress. Here we report the linear coefficients of thermal expansion of Ni-, Pd- and Pt-based mono-germanides, mono-silicides and di-metal-silicides as determined by powder-based x-ray diffraction between 300 and 1225 K. The investigated mono-metallic compounds, all sharing the MnP crystal structure, as well as Pd2Si and Pt2Si exhibit anisotropic expansion. By consequence, this anisotropic behaviour should be taken into account for evaluating the crystal unit’s cell at elevated temperatures.

  4. Study of Nickel Silicide as a Copper Diffusion Barrier in Monocrystalline Silicon Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kale, Abhijit; Beese, Emily; Saenz, Theresa; Warren, Emily; Nemeth, William; Young, David; Marshall, Alexander; Florent, Karine; Kurinec, Santosh K.; Agarwal, Sumit; Stradins, Pauls

    2016-11-21

    NiSi as a conductive diffusion barrier to silicon has been studied. We demonstrate that the NiSi films formed using the single step annealing process are as good as the two step process using XRD and Raman. Quality of NiSi films formed using e-beam Ni and electroless Ni process has been compared. Incomplete surface coverage and presence of constituents other than Ni are the main challenges with electroless Ni. We also demonstrate that Cu reduces the thermal stability of NiSi films. The detection of Cu has proven to be difficult due to temperature limitations.

  5. Use of silicide fuel in the Ford Nuclear Reactor - to lengthen fuel element lifetimes

    Energy Technology Data Exchange (ETDEWEB)

    Bretscher, M.M.; Snelgrove, J.L. [Argonne National Lab., IL (United States); Burn, R.R.; Lee, J.C. [Univ. of Michigan, Ann Arbor, MI (United States). Phoenix Memorial Lab.

    1995-12-31

    Based on economic considerations, it has been proposed to increase the lifetime of LEU fuel elements in the Ford Nuclear Reactor by raising the {sup 235}U plate loading from 9.3 grams in aluminide (UAl{sub x}) fuel to 12.5 grams in silicide (U{sub 3}Si{sub 2}) fuel. For a representative core configuration, preliminary neutronic depletion and steady state thermal hydraulic calculations have been performed to investigate core characteristics during the transition from an all-aluminide to an all-silicide core. This paper discusses motivations for this fuel element upgrade, results from the calculations, and conclusions.

  6. Self-organized growth and magnetic properties of epitaxial silicide nanoislands

    Science.gov (United States)

    Tripathi, J. K.; Levy, R.; Camus, Y.; Dascalu, M.; Cesura, F.; Chalasani, R.; Kohn, A.; Markovich, G.; Goldfarb, I.

    2017-01-01

    Self-organized transition-metal (Ni and Fe) and rare-earth (Er) silicide nanostructures were grown on Si(1 1 1) and Si(0 0 1) surfaces under low coverage conditions, in a "solid phase" and "reactive deposition" epitaxial regimes. Island evolution was continuously monitored in-situ, using real-time scanning tunneling microscopy and surface electron diffraction. After anneal of a Ni/Si(1 1 1) surface at 700 °C, we observed small hemispherical Ni-silicide nanoislands ∼10 nm in diameter decorating surface steps in a self-ordered fashion and pinning them. Fe-silicide nanoislands formed after a 550 °C anneal of a Fe-covered surface, were also self-ordered along the surface step-bunches, however were significantly larger (∼70 × 10 nm) and exhibited well-developed three-dimensional polyhedral shapes. Ni-silicide islands were sparsely distributed, separated by about ∼100 nm from one another, on average, whereas Fe-silicide islands were more densely packed, with only ∼50 nm mean separation distance. In spite of the above differences between both types of island in size, shape, and number density, the self-ordering in both cases was close to ideal, with practically no islands nucleated on terraces. Superconducting quantum interference device magnetometry showed considerable superparamagnetism, in particular in Fe-silicide islands with ∼1.9 μB/Fe atom, indicating stronger ferromagnetic coupling of individual magnetic moments, contrary to Ni-silicide islands with the calculated moments of only ∼ 0.5μB /Ni atom. To elucidate the effects of the island size, shape, and lateral ordering on the measured magnetic response, we have controllably changed the island morphology by varying deposition methods and conditions and even using differently oriented Si substrates. We have also begun experimenting with rare-earth silicide islands. In the forthcoming experiments we intend to compare the magnetic response of these variously built and composed islands and correlate

  7. Optically probing the detection mechanism in a molybdenum silicide superconducting nanowire single-photon detector

    CERN Document Server

    Caloz, Misael; Timoney, Nuala; Weiss, Markus; Gariglio, Stefano; Warburton, Richard J; Schönenberger, Christian; Renema, Jelmer; Zbinden, Hugo; Bussieres, Felix

    2016-01-01

    We experimentally investigate the detection mechanism in a meandered molybdenum silicide (MoSi) superconducting nanowire single-photon detector by characterising the detection probability as a function of bias current in the wavelength range of 750 to 2050 nm. Contrary to some previous observations on niobium nitride (NbN) or tungsten silicide (WSi) detectors, we find that the energy-current relation is nonlinear in this range. Furthermore, thanks to the presence of a saturated detection efficiency over the whole range of wavelengths, we precisely quantify the shape of the curves. This allows a detailed study of their features, which are indicative of both Fano fluctuations and position-dependent effects.

  8. Radiation Re-solution Calculation in Uranium-Silicide Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Andersson, Anders David Ragnar [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Unal, Cetin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-27

    The release of fission gas from nuclear fuels is of primary concern for safe operation of nuclear power plants. Although the production of fission gas atoms can be easily calculated from the fission rate in the fuel and the average yield of fission gas, the actual diffusion, behavior, and ultimate escape of fission gas from nuclear fuel depends on many other variables. As fission gas diffuses through the fuel grain, it tends to collect into intra-granular bubbles, as portrayed in Figure 1.1. These bubbles continue to grow due to absorption of single gas atoms. Simultaneously, passing fission fragments can cause collisions in the bubble that result in gas atoms being knocked back into the grain. This so called “re-solution” event results in a transient equilibrium of single gas atoms within the grain. As single gas atoms progress through the grain, they will eventually collect along grain boundaries, creating inter-granular bubbles. As the inter-granular bubbles grow over time, they will interconnect with other grain-face bubbles until a pathway is created to the outside of the fuel surface, at which point the highly pressurized inter-granular bubbles will expel their contents into the fuel plenum. This last process is the primary cause of fission gas release. From the simple description above, it is clear there are several parameters that ultimately affect fission gas release, including the diffusivity of single gas atoms, the absorption and knockout rate of single gas atoms in intra-granular bubbles, and the growth and interlinkage of intergranular bubbles. Of these, the knockout, or re-solution rate has an particularly important role in determining the transient concentration of single gas atoms in the grain. The re-solution rate will be explored in the following sections with regards to uranium-silicide fuels in order to support future models of fission gas bubble behavior.

  9. Water splitting and electricity with semiconducting silicides in sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Demuth, Martin [Max-Planck-Institut fuer Bioanorganische Chemie, Muelheim an der Ruhr (Germany); H2 Solar GmbH, Loerrach (Germany); Kerpen, Klaus; Kuklya, Andriy; Wuestkamp, Marc-Andre [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    2010-07-01

    Generation of hydrogen and oxygen from water is described using mainly the semiconductor titanium disilicide as catalyst and halogen light which closely mimics solar radiation. The reactions are carried out under non-aerobic conditions, i.e., under nitrogen. High efficiencies are reached at 1.1-1.2 bar pressure. In the first phase of these reactions the catalytically active centers are built up. During this phase of reaction the kinetics of the water splitting process is growing in and leads to a linear dependence in the further course of the reactions which consists of >96% water splitting to yield hydrogen and oxygen in a 2:1 ratio. Hydrogen is partially and reversibly stored physically, depending on temperature. Oxygen behaves differently since it is stored entirely under the applied reaction conditions (50-80 C and light) and can be liberated from storage upon heating the slurries in the dark. This allows convenient separation of hydrogen and oxygen. The stability of titanium disilicide has been positively tested over several months. This material is abundant and inexpensive besides that it absorbs most of the solar radiation. Further, XRD and XPS studies show that titanium disilicide is 80% crystalline and the oxide formation is limited to a few molecular layers in depth. By using labeled water it was shown that labeled dioxygen appears in the gas phase of such reactions, this showing definitively that hydrogen evolution occuring here stems from photochemical splitting of water. Further, water splitting is part of a project which involves photoelectrochemistry and in which the silicides are used as light-receiving electrode and transition metal-coated anodes serve to split water. (orig.)

  10. Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguide.

    Science.gov (United States)

    Zhu, Shiyang; Lo, G Q; Kwong, D L

    2011-08-15

    An ultracompact integrated silicide Schottky barrier detector (SBD) is designed and theoretically investigated to electrically detect the surface plasmon polariton (SPP) propagating along horizontal metal-insulator-silicon-insulator-metal nanoplasmonic slot waveguides at the telecommunication wavelength of 1550 nm. An ultrathin silicide layer inserted between the silicon core and the insulator, which can be fabricated precisely using the well-developed self-aligned silicide process, absorbs the SPP power effectively if a suitable silicide is chosen. Moreover, the Schottky barrier height in the silicide-silicon-silicide configuration can be tuned substantially by the external voltage through the Schottky effect owing to the very narrow silicon core. For a TaSi(2) detector with optimized dimensions, numerical simulation predicts responsivity of ~0.07 A/W, speed of ~60 GHz, dark current of ~66 nA at room temperature, and minimum detectable power of ~-29 dBm. The design also suggests that the device's size can be reduced and the overall performances will be further improved if a silicide with smaller permittivity is used.

  11. Real-time monitoring of the silicidation process of tungsten filaments at high temperature used as catalysers for silane decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Nos, O., E-mail: oriol.nos@gmail.com; Frigeri, P.A.; Bertomeu, J.

    2014-01-15

    The scope of this work is the systematic study of the silicidation process affecting tungsten filaments at high temperature (1900 °C) used for silane decomposition in the hot-wire chemical vapour deposition technique (HWCVD). The correlation between the electrical resistance evolution of the filaments, R{sub fil}(t), and the different stages of the their silicidation process is exposed. Said stages correspond to: the rapid formation of two WSi{sub 2} fronts at the cold ends of the filaments and their further propagation towards the middle of the filaments; and, regarding the hot central portion of the filaments: an initial stage of silicon dissolution into the tungsten bulk, with a random duration for as-manufactured filaments, followed by the inhomogeneous nucleation of W{sub 5}Si{sub 3} (which is later replaced by WSi{sub 2}) and its further growth towards the filaments core. An electrical model is used to obtain real-time information about the current status of the filaments silicidation process by simply monitoring their R{sub fil}(t) evolution during the HWCVD process. It is shown that implementing an annealing pre-treatment to the filaments leads to a clearly repetitive trend in the monitored R{sub fil}(t) signatures. The influence of hydrogen dilution of silane on the filaments silicidation process is also discussed. - Highlights: • The silicidation process of tungsten filaments at 1900 °C has been elucidated. • The silicidation process is correlated with the electrical resistance evolution. • Hydrogen dilution of silane delays the precipitation of silicides. • A thermal treatment of the filaments makes the silicidation process repeatable. • Raman spectroscopy and EDX analysis allow the tungsten silicides identification.

  12. High pressure studies on uranium and thorium silicide compounds: Experiment and theory

    DEFF Research Database (Denmark)

    Yagoubi, S.; Heathman, S.; Svane, A.

    2013-01-01

    The actinide silicides ThSi, USi and USi2 have been studied under high pressure using both theory and experiment. High pressure synchrotron X-ray diffraction experiments were performed on polycrystalline samples in diamond anvil cells at room temperature and for pressures up to 54, 52 and 26 GPa...

  13. Reversibility of silicidation of Ta filaments in HWCVD of thin film silicon

    NARCIS (Netherlands)

    van der Werf, C.H.M.; Li, H. B. T.; Verlaan, V.; Oliphant, C.J.; Bakker, R.; Houweling, Z.S.; Schropp, R.E.I.

    2009-01-01

    If tantalum filaments are used for the hot wire chemical vapour deposition (HWCVD) of thin film silicon, various types of tantalum silicides are formed, depending on the filament temperature. Under deposition conditions employed for device quality amorphous and microcrystalline silicon (Twire ≈ 1750

  14. Copper hypersensitivity.

    Science.gov (United States)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-10-01

    The world production of copper is steadily increasing. Although humans are widely exposed to copper-containing items on the skin and mucosa, allergic reactions to copper are only infrequently reported. To review the chemistry, biology and accessible data to clarify the implications of copper hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common. As a metal, it possesses many of the same qualities as nickel, which is a known strong sensitizer. Cumulative data on subjects with presumed related symptoms and/or suspected exposure showed that a weighted average of 3.8% had a positive patch test reaction to copper. We conclude that copper is a very weak sensitizer as compared with other metal compounds. However, in a few and selected cases, copper can result in clinically relevant allergic reactions.

  15. Analysis of copper-rich precipitates in silicon: chemical state,gettering, and impact on multicrystalline silicon solar cellmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Buonassisi, Tonio; Marcus, Matthew A.; Istratov, Andrei A.; Heuer, Matthias; Ciszek, Theodore F.; Lai, Barry; Cai, Zhonghou; Weber,Eicke R.

    2004-11-08

    In this study, synchrotron-based x-ray absorption microspectroscopy (mu-XAS) is applied to identifying the chemical states of copper-rich clusters within a variety of silicon materials, including as-grown cast multicrystalline silicon solar cell material with high oxygen concentration and other silicon materials with varying degrees of oxygen concentration and copper contamination pathways. In all samples, copper silicide (Cu3Si) is the only phase of copper identified. It is noted from thermodynamic considerations that unlike certain metal species, copper tends to form a silicide and not an oxidized compound because of the strong silicon-oxygen bonding energy; consequently the likelihood of encountering an oxidized copper particle in silicon is small, in agreement with experimental data. In light of these results, the effectiveness of aluminum gettering for the removal of copper from bulk silicon is quantified via x-ray fluorescence microscopy (mu-XRF),and a segregation coefficient is determined from experimental data to beat least (1-2)'103. Additionally, mu-XAS data directly demonstrates that the segregation mechanism of Cu in Al is the higher solubility of Cu in the liquid phase. In light of these results, possible limitations for the complete removal of Cu from bulk mc-Si are discussed.

  16. Thermal Stability Study from Room Temperature to 1273 K (1000 °C) in Magnesium Silicide

    Science.gov (United States)

    Stefanaki, Eleni-Chrysanthi; Hatzikraniotis, Euripides; Vourlias, George; Chrissafis, Konstantinos; Kitis, George; Paraskevopoulos, Konstantinos M.; Polymeris, George S.

    2016-10-01

    Doped magnesium silicide has been identified as a promising and environmentally friendly advanced thermoelectric material in the temperature range between 500 K and 800 K (227 °C and 527 °C). Besides the plethora of magnesium silicide thermoelectric advantages, it is well known for its high sensitivity to oxidation. Oxidation is one of the primary instability mechanisms of degradation of high-temperature Mg2Si thermoelectric devices, as in the presence of O2, Mg2Si decomposes to form MgO and Si. In this work, commercial magnesium silicide in bulk form was used for thermal stability study from room temperature to 1273 K (1000 °C). Various techniques such as DTA-TG, PXRD, and FTIR have been applied. Moreover, the application of thermoluminescence (TL) as an effective and alternative probe for the study of oxidation and decomposition has been exploited. The latter provides qualitative but very helpful hints toward oxidation studies. The low-detection threshold of thermoluminescence, in conjunction with the chemical composition of the oxidation byproducts, consisting of MgO, Mg2SiO4, and SiO2, constitute two powerful motivations for further investigating its viable use as proxy for instability/decomposition studies of magnesium silicide. The partial oxidation reaction has been adopted due to the experimental fact that magnesium silicide is monitored throughout the heating temperature range of the present study. Finally, the role of silicon dioxide to the decomposition procedure, being in amorphous state and gradually crystallizing, has been highlighted for the first time in the literature. Mg2Si oxidation takes place in two steps, including a mild oxidation process with temperature threshold of 573 K (300 °C) and an abrupt one after 773 K (500 °C). Implications on the optimum operational temperature range for practical thermoelectric (TE) applications have also been briefly discussed.

  17. Copper transport.

    Science.gov (United States)

    Linder, M C; Wooten, L; Cerveza, P; Cotton, S; Shulze, R; Lomeli, N

    1998-05-01

    In adult humans, the net absorption of dietary copper is approximately 1 mg/d. Dietary copper joins some 4-5 mg of endogenous copper flowing into the gastrointestinal tract through various digestive juices. Most of this copper returns to the circulation and to the tissues (including liver) that formed them. Much lower amounts of copper flow into and out of other major parts of the body (including heart, skeletal muscle, and brain). Newly absorbed copper is transported to body tissues in two phases, borne primarily by plasma protein carriers (albumin, transcuprein, and ceruloplasmin). In the first phase, copper goes from the intestine to the liver and kidney; in the second phase, copper usually goes from the liver (and perhaps also the kidney) to other organs. Ceruloplasmin plays a role in this second phase. Alternatively, liver copper can also exit via the bile, and in a form that is less easily reabsorbed. Copper is also present in and transported by other body fluids, including those bathing the brain and central nervous system and surrounding the fetus in the amniotic sac. Ceruloplasmin is present in these fluids and may also be involved in copper transport there. The concentrations of copper and ceruloplasmin in milk vary with lactational stage. Parallel changes occur in ceruloplasmin messenger RNA expression in the mammary gland (as determined in pigs). Copper in milk ceruloplasmin appears to be particularly available for absorption, at least in rats.

  18. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  19. Impact of silicide layer on single photon avalanche diodes in a 130 nm CMOS process

    Science.gov (United States)

    Cheng, Zeng; Palubiak, Darek; Zheng, Xiaoqing; Deen, M. Jamal; Peng, Hao

    2016-09-01

    Single photon avalanche diode (SPAD) is an attractive solid-state optical detector that offers ultra-high photon sensitivity (down to the single photon level), high speed (sub-nanosecond dead time) and good timing performance (less than 100 ps). In this work, the impact of the silicide layer on SPAD’s characteristics, including the breakdown voltage, dark count rate (DCR), after-pulsing probability and photon detection efficiency (PDE) is investigated. For this purpose, two sets of SPAD structures in a standard 130 nm complementary metal oxide semiconductor (CMOS) process are designed, fabricated, measured and compared. A factor of 4.5 (minimum) in DCR reduction, and 5 in PDE improvements are observed when the silicide layer is removed from the SPAD structure. However, the after-pulsing probability of the SPAD without silicide layer is two times higher than its counterpart with silicide. The reasons for these changes will be discussed.

  20. Optical characteristics of an epitaxial Fe3Si/Si(111) iron silicide film

    Science.gov (United States)

    Tarasov, I. A.; Popov, Z. I.; Varnakov, S. N.; Molokeev, M. S.; Fedorov, A. S.; Yakovlev, I. A.; Fedorov, D. A.; Ovchinnikov, S. G.

    2014-07-01

    The dispersion of the relative permittivity ɛ of a 27-nm-thick epitaxial Fe3Si iron silicide film has been measured within the E = 1.16-4.96 eV energy range using the spectroscopic ellipsometry technique. The experimental data are compared to the relative permittivity calculated in the framework of the density functional theory using the GGA-PBE approximation. For Fe3Si, the electronic structure and the electronic density of states (DOS) are calculated. The analysis of the frequencies corresponding to the transitions between the DOS peaks demonstrates qualitative agreement with the measured absorption peaks. The analysis of the single wavelength laser ellipsometry data obtained in the course of the film growth demonstrates that a continuous layer of Fe3Si iron silicide film is formed if the film thickness achieves 5 nm.

  1. Study of optical and luminescence properties of silicon — semiconducting silicide — silicon multilayer nanostructures

    Science.gov (United States)

    Galkin, N. G.; Galkin, K. N.; Dotsenko, , S. A.; Goroshko, D. L.; Shevlyagin, A. V.; Chusovitin, E. A.; Chernev, I. M.

    2016-12-01

    By method of in situ differential spectroscopy it was established that at the formation of monolayer Fe, Cr, Ca, Mg silicide and Mg stannide islands on the atomically clean silicon surface an appearance of loss peaks characteristic for these materials in the energy range of 1.1-2.6 eV is observed. An optimization of growth processes permit to grow monolithic double nanoheterostructures (DNHS) with embedded Fe, Cr and Ca nanocrystals, and also polycrystalline DNHS with NC of Mg silicide and Mg stannide and Ca disilicide. By methods of optical spectroscopy and Raman spectroscopy it was shown that embedded NC form intensive peaks in the reflectance spectra at energies up to 2.5 eV and Raman peaks. In DNS with β-FeSi2 NC a photoluminescence and electroluminescence at room temperature were firstly observed.

  2. Influence of the initial nitrogen content in titanium films on the nitridation and silicidation processes

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, C.; Perez-Casero, R.; Martinez-Duart, J.M. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Aplicada; Perez-Rigueiro, J. [Dpto. Ciencia de Materiales, ETSI Caminos, Universidad Politecnica de Madrid, E-28040, Madrid (Spain); Vazquez, L.; Fernandez, M. [Instituto Ciencia de Materiales, CSIC, E-28049, Madrid (Spain)

    1997-08-15

    The rapid thermal annealing of Ti films on silicon in a nitrogen atmosphere seems to be a very promising method to obtain the Si/TiSi{sub 2}/TiN structure. We have tried to increase the final nitrogen content (i.e. TiN thickness) by incorporating nitrogen during the deposition of the initial Ti films. The influence of the nitrogen present in the titanium film on the silicidation process has been studied by comparison with the silicidation of pure titanium. The evolution of the nitrogen content with thermal treatment conditions has been established by nuclear reaction analysis (NRA). The nitrogen initially incorporated in the Ti film plays a passive role during the nitridation process, since its initial presence does not strongly influence the further incorporation of nitrogen from the atmosphere. The final nitrogen content of the N-doped samples is the addition of the nitrogen incorporated from the atmosphere during the thermal treatment in pure titanium samples and the nitrogen incorporated during deposition. The silicidation process has been studied using complementary techniques. The sheet resistances, Rutherford backscattering spectra and grazing X-ray diffraction (GXRD) diagrams have allowed us to establish the evolution of the reaction. Silicidation is not affected by the nitrogen incorporated during deposition. No differences have been found due to the presence of nitrogen. Nevertheless, changes in the surface morphology were found by atomic force microscopy (AFM). The Ti(N{sub 2}) samples are characterized by lower root mean square (rms) surface roughness values and different features. (orig.) 14 refs.

  3. High-Temperature Compatible Nickel Silicide Thermometer And Heater For Catalytic Chemical Microreactors

    DEFF Research Database (Denmark)

    Jensen, Søren; Quaade, U.J.; Hansen, Ole

    2005-01-01

    Integration of heaters and thermometers is important for agile and accurate control and measurement of the thermal reaction conditions in microfabricated chemical reactors (microreactors). This paper describes development and operation of nickel silicide heaters and temperature sensors...... for temperatures exceeding 700 °C. The heaters and thermometers are integrated with chemical microreactors for heterogeneous catalytic conversion of gasses, and thermally activated catalytic conversion of CO to CO2 in the reactors is demonstrated. The heaters and thermometers are shown to be compatible...

  4. Thermodynamic analysis of the elements interaction in liquid copper melts

    Energy Technology Data Exchange (ETDEWEB)

    Samoylova, O V; Mikhaylov, G G [South Urals State University, 76 Lenin avenue, Chelyabinsk, 454080 (Russian Federation); Trofimov, E A [Zlatoust Branch, South Urals State University, 16 Turgenev street, Zlatoust, 456209 (Russian Federation)], E-mail: tea7510@rambler.ru

    2008-02-15

    Interaction between impurity elements (in particular, Si, Ni and O) dissolved in copper melt has been investigated experimentally and theoretically. The X-rays microanalysis has been used to investigate reactions products in the melt. Experimental results have allowed to determine conditions of various complex compounds formation. In particular, interaction between Si and Ni in copper melt leading to formation of double compounds (silicides) has been discovered. Phase diagram of Cu{sub 2}O-NiO system has been calculated. Calculation results are in good agreement with literary data. Activities a{sub Cu2O} and a{sub NiO} have been calculated. The deviation of activity from Raoult law is negative for Cu{sub 2}O and positive for NiO.

  5. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Yuryev, V. A., E-mail: vyuryev@kapella.gpi.ru; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P. [A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991 (Russian Federation); Senkov, V. M. [P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Avenue, Moscow 119991 (Russian Federation); Nalivaiko, O. Y. [JSC “Integral” – “Integral” Holding Management Company, 121A, Kazintsa I. P. Street, Minsk 220108 (Belarus); Novikau, A. G.; Gaiduk, P. I. [Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus)

    2015-05-28

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.

  6. Low-Temperature Wet Conformal Nickel Silicide Deposition for Transistor Technology through an Organometallic Approach.

    Science.gov (United States)

    Lin, Tsung-Han; Margossian, Tigran; De Marchi, Michele; Thammasack, Maxime; Zemlyanov, Dmitry; Kumar, Sudhir; Jagielski, Jakub; Zheng, Li-Qing; Shih, Chih-Jen; Zenobi, Renato; De Micheli, Giovanni; Baudouin, David; Gaillardon, Pierre-Emmanuel; Copéret, Christophe

    2017-02-08

    The race for performance of integrated circuits is nowadays facing a downscale limitation. To overpass this nanoscale limit, modern transistors with complex geometries have flourished, allowing higher performance and energy efficiency. Accompanying this breakthrough, challenges toward high-performance devices have emerged on each significant step, such as the inhomogeneous coverage issue and thermal-induced short circuit issue of metal silicide formation. In this respect, we developed a two-step organometallic approach for nickel silicide formation under near-ambient temperature. Transmission electron and atomic force microscopy show the formation of a homogeneous and conformal layer of NiSix on pristine silicon surface. Post-treatment decreases the carbon content to a level similar to what is found for the original wafer (∼6%). X-ray photoelectron spectroscopy also reveals an increasing ratio of Si content in the layer after annealing, which is shown to be NiSi2 according to X-ray absorption spectroscopy investigation on a Si nanoparticle model. I-V characteristic fitting reveals that this NiSi2 layer exhibits a competitive Schottky barrier height of 0.41 eV and series resistance of 8.5 Ω, thus opening an alternative low-temperature route for metal silicide formation on advanced devices.

  7. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Science.gov (United States)

    Yuryev, V. A.; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P.; Senkov, V. M.; Nalivaiko, O. Y.; Novikau, A. G.; Gaiduk, P. I.

    2015-05-01

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si3N4/SiO2/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about -2%/ °C in the temperature interval from 25 to 50 °C.

  8. Raman study of Ni and Ni silicide contacts on 4H- and 6H-SiC

    Energy Technology Data Exchange (ETDEWEB)

    Cichon, Stanislav, E-mail: cichons@vscht.cz [Department of Solid State Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Machac, Petr; Barda, Bohumil [Department of Solid State Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Machovic, Vladimir [Central Laboratories, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Slepicka, Petr [Department of Solid State Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2012-04-30

    Ni{sub 2}Si, NiSi and NiSi{sub 2} contacts were prepared on n-type 4H- and 6H-SiC(0001) by deposition of Ni and Si multilayers in the respective stoichiometry after high-temperature annealing, as well as pure Ni contacts. After annealing, the individual contacts were analyzed by Raman spectroscopy and electrical property measurements. Contact structures were then etched-off and subsequently observed by means of AFM (Atomic Force Microscopy). Ni reacted with SiC, forming Ni{sub 2}Si and carbon. At Ni{sub x}Si{sub y}/SiC contact structures the respective silicides were already formed at low annealing temperatures, when only Schottky behavior of the structures was observed. The intended silicides, once formed, did not change any further with increasing annealing temperature. All contact structures provided good ohmic behavior after being annealed at 960 Degree-Sign C. By means of combined AFM and Raman analysis of the etched-off contacts we found that the silicide contact structures very probably did not react with SiC which is in accordance with the thermodynamic assumptions. After annealing the silicide contact structures at such temperature, when Schottky behavior changed to ohmic, a certain form of interaction between the SiC substrate and the silicide contact structures must have occurred. - Highlights: Black-Right-Pointing-Pointer Ni and Ni silicides as electrical contacts on N-type SiC. Black-Right-Pointing-Pointer Contacts examined by electrical measurements and Raman spectroscopy. Black-Right-Pointing-Pointer Ohmic behavior of contacts was reached after annealing at high temperatures. Black-Right-Pointing-Pointer Ni silicides showed to be non-reactive with SiC.

  9. Thermal transport across metal silicide-silicon interfaces: An experimental comparison between epitaxial and nonepitaxial interfaces

    Science.gov (United States)

    Ye, Ning; Feser, Joseph P.; Sadasivam, Sridhar; Fisher, Timothy S.; Wang, Tianshi; Ni, Chaoying; Janotti, Anderson

    2017-02-01

    Silicides are used extensively in nano- and microdevices due to their low electrical resistivity, low contact resistance to silicon, and their process compatibility. In this work, the thermal interface conductance of TiSi2, CoSi2, NiSi, and PtSi are studied using time-domain thermoreflectance. Exploiting the fact that most silicides formed on Si(111) substrates grow epitaxially, while most silicides on Si(100) do not, we study the effect of epitaxy, and show that for a wide variety of interfaces there is no dependence of interface conductance on the detailed structure of the interface. In particular, there is no difference in the thermal interface conductance between epitaxial and nonepitaxial silicide/silicon interfaces, nor between epitaxial interfaces with different interface orientations. While these silicide-based interfaces yield the highest reported interface conductances of any known interface with silicon, none of the interfaces studied are found to operate close to the phonon radiation limit, indicating that phonon transmission coefficients are nonunity in all cases and yet remain insensitive to interfacial structure. In the case of CoSi2, a comparison is made with detailed computational models using (1) full-dispersion diffuse mismatch modeling (DMM) including the effect of near-interfacial strain, and (2) an atomistic Green' function (AGF) approach that integrates near-interface changes in the interatomic force constants obtained through density functional perturbation theory. Above 100 K, the AGF approach significantly underpredicts interface conductance suggesting that energy transport does not occur purely by coherent transmission of phonons, even for epitaxial interfaces. The full-dispersion DMM closely predicts the experimentally observed interface conductances for CoSi2, NiSi, and TiSi2 interfaces, while it remains an open question whether inelastic scattering, cross-interfacial electron-phonon coupling, or other mechanisms could also account for

  10. Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo-Cousin, Enrique; Vassilevski, Konstantin; Hopf, Toby; Wright, Nick; O' Neill, Anthony; Horsfall, Alton; Goss, Jonathan [School of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom); Cumpson, Peter [School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU (United Kingdom)

    2013-03-21

    Patterned few-layer graphene (FLG) films were obtained by local solid phase growth from nickel silicide supersaturated with carbon, following a fabrication scheme, which allows the formation of self-aligned ohmic contacts on FLG and is compatible with conventional SiC device processing methods. The process was realised by the deposition and patterning of thin Ni films on semi-insulating 6H-SiC wafers followed by annealing and the selective removal of the resulting nickel silicide by wet chemistry. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to confirm both the formation and subsequent removal of nickel silicide. The impact of process parameters such as the thickness of the initial Ni layer, annealing temperature, and cooling rates on the FLG films was assessed by Raman spectroscopy, XPS, and atomic force microscopy. The thickness of the final FLG film estimated from the Raman spectra varied from 1 to 4 monolayers for initial Ni layers between 3 and 20 nm thick. Self-aligned contacts were formed on these patterned films by contact photolithography and wet etching of nickel silicide, which enabled the fabrication of test structures to measure the carrier concentration and mobility in the FLG films. A simple model of diffusion-driven solid phase chemical reaction was used to explain formation of the FLG film at the interface between nickel silicide and silicon carbide.

  11. X-ray photoemission spectromicroscopy of titanium silicide formation in patterned microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.; Solak, H.; Cerrina, F. [Univ. of Wisconsin-Madison, Stoughton, WI (United States)] [and others

    1997-04-01

    Titanium silicide has the lowest resistivity of all the refractory metal silicides and has good thermal stability as well as excellent compatibility with Al metallization. It is used as an intermediate buffer layer between W vias and the Si substrate to provide good electrical contact in ULSI technology, whose submicron patterned features form the basis of the integrated circuits of today and tomorrow, in the self aligned silicide (salicide) formation process. TiSi{sub 2} exists in two phases: a metastable C49 base-centered orthorhombic phase with specific resistivity of 60-90 {mu}{Omega}-cm that is formed at a lower temperature (formation anneal) and the stable 12-15 {mu}{Omega}-cm resistivity face-centered orthorhombic C54 phase into which C49 is transformed with a higher temperature (conversion anneal) step. C54 is clearly the target for low resistivity VLSI interconnects. However, it has been observed that when dimensions shrink below 1/mic (or when the Ti thickness drops below several hundred angstroms), the transformation of C49 into C54 is inhibited and agglomeration often occurs in fine lines at high temperatures. This results in a rise in resistivity due to incomplete transformation to C54 and because of discontinuities in the interconnect line resulting from agglomeration. Spectromicroscopy is an appropriate tool to study the evolution of the TiSi2 formation process because of its high resolution chemical imaging ability which can detect bonding changes even in the absence of changes in the relative amounts of species and because of the capability of studying thick {open_quotes}as is{close_quotes} industrial samples.

  12. Combustion synthesis of molybdenum silicides and borosilicides for ultrahigh-temperature structural applications

    Science.gov (United States)

    Alam, Mohammad Shafiul

    Molybdenum silicides and borosilicides are promising structural materials for gas-turbine power plants. A major challenge, however, is to simultaneously achieve high oxidation resistance and acceptable mechanical properties at high temperatures. For example, molybdenum disilicide (MoSi2) has excellent oxidation resistance and poor mechanical properties, while Mo-rich silicides such as Mo5Si3 (called T 1) have much better mechanical properties but poor oxidation resistance. One approach is based on the fabrication of MoSi2-T 1 composites that combine high oxidation resistance of MoSi2 and good mechanical properties of T1. Another approach involves the addition of boron to Mo-rich silicides for improving their oxidation resistance through the formation of a borosilicate surface layer. In particular, Mo 5SiB2 (called T2) phase is considered as an attractive material. In the thesis, MoSi2-T1 composites and materials based on T2 phase are obtained by mechanically activated SHS. Use of SHS compaction (quasi-isostatic pressing) significantly improves oxidation resistance of the obtained MoSi2-T1 composites. Combustion of Mo-Si-B mixtures for the formation of T2 phase becomes possible if the composition is designed for the addition of more exothermic reactions leading to the formation of molybdenum boride. These mixtures exhibit spin combustion, the characteristics of which are in good agreement with the spin combustion theory. Oxidation resistance of the obtained Mo-Si-B materials is independent on the concentration of Mo phase in the products so that the materials with a higher Mo content are preferable because of better mechanical properties. Also, T2 phase has been obtained by the chemical oven combustion synthesis technique.

  13. Effect of Annealing Temperature on the Formation of Silicides and the Surface Morphologies of PtSi Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of annealing temperature on the formation of the PtSi phase, distribution of silicides and the surface morphologies of silicides films is investigated by XPS, AFM. It is shown that the phase sequences of the films change from Pt-Pt2Si-PtSi-Si to Pt+Pt2Si+PtSi-PtSi-Si or Pt+Pt2Si+PtSi-PtSi-Si with an increase of annealing temperature and the reason for the formation of mixed layers is discussed.

  14. Synthesis of metallic silicide fullerenes and the characteristics thereof by mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Direct current arc discharge is used for the study on the synthesis of metallo-fullerenes (MFs) to discover whether there exist metallic silicide fullerenes and silicon fullerenes. The resultant components are isolated by the multistage high-performance liquid chromatography (HPLC) and analyzed with the Time-of-Flight (TOF) mass spectrometry. Results show that there exist fullerenes such as SiC69, YSi2C64, YSi2C78, Y3Si2C78 as well as Y2Si2C90 which are structurally similar to (Y2C2)@C82.

  15. On the structural and electronic properties of Ir-silicide nanowires on Si(001) surface

    Science.gov (United States)

    Fatima, Can Oguz, Ismail; ćakır, Deniz; Hossain, Sehtab; Mohottige, Rasika; Gulseren, Oguz; Oncel, Nuri

    2016-09-01

    Iridium (Ir) modified Silicon (Si) (001) surface is studied with Scanning Tunneling Microscopy/Spectroscopy (STM/STS) and Density Functional Theory (DFT). A model for Ir-silicide nanowires based on STM images and ab-initio calculations is proposed. According to our model, the Ir adatom is on the top of the substrate dimer row and directly binds to the dimer atoms. I-V curves measured at 77 K shows that the nanowires are metallic. DFT calculations confirm strong metallic nature of the nanowires.

  16. Synthesis of metallic silicide fullerenes and the characteristics thereof by mass spectrometry

    Institute of Scientific and Technical Information of China (English)

    CHEN YiChi; GUO Liang; ZHU LiQun

    2007-01-01

    Direct current arc discharge is used for the study on the synthesis of metallofullerenes (MFs) to discover whether there exist metallic silicide fullerenes and silicon fullerenes. The resultant components are isolated by the multistage high-performance liquid chromatography (HPLC) and analyzed with the Time-of-Flight (TOF) mass spectrometry. Results show that there exist fullerenes such as SiC69, YSi2C64, YSi2C78, Y3Si2C78 as well as Y2Si2C90 which are structurally similar to (Y2C2)@C82.

  17. Superconductivity at 3.7 K in Ternary Silicide Li2IrSi3

    OpenAIRE

    Hirai, Daigorou; Kawakami, Rui; Magdysyuk, Oxana V.; Dinnebier, Robert E; Yaresko, Alexander; Takagi, Hidenori

    2014-01-01

    We report the discovery of superconductivity at Tc = 3.7 K in the new ternary lithium silicide Li2IrSi3. The crystal structure of Li2IrSi3 consists of IrSi6 antiprisms connected by Si triangles, giving rise to a three dimensional framework of covalent Si-Si and Si-Ir bonds. Electronic specific-heat in superconducting phase suggests that Li2IrSi3 is a BCS weak-coupling superconductor.

  18. Current enhancement in crystalline silicon photovoltaic by low-cost nickel silicide back contact

    KAUST Repository

    Bahabry, R. R.

    2016-11-30

    We report short circuit current (Jsc) enhancement in crystalline silicon (C-Si) photovoltaic (PV) using low-cost Ohmic contact engineering by integration of Nickel mono-silicide (NiSi) for back contact metallization as an alternative to the status quo of using expensive screen printed silver (Ag). We show 2.6 mA/cm2 enhancement in the short circuit current (Jsc) and 1.2 % increment in the efficiency by improving the current collection due to the low specific contact resistance of the NiSi on the heavily Boron (B) doped Silicon (Si) interface.

  19. Microalloying of transition metal silicides by mechanical activation and field-activated reaction

    Energy Technology Data Exchange (ETDEWEB)

    Munir, Zuhair A. (Davis, CA); Woolman, Joseph N. (Davis, CA); Petrovic, John J. (Los Alamos, NM)

    2003-09-02

    Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

  20. Magnetization reversal of ultrathin Fe film grown on Si(111) using iron silicide template

    Institute of Scientific and Technical Information of China (English)

    He Wei; Zhan Qing-Feng; Wang De-Yong; Chen Li-Jun; Sun Young; Cheng Zhao-Hua

    2007-01-01

    Ultrathin Fe films were epitaxially grown on Si(111) by using an ultrathin iron silicide film with p(2 × 2) surface reconstruction as a template. The surface structure and magnetic properties were investigated in situ by low energy electron diffraction (LEED), scanning tunnelling microscopy (STM), and surface magneto-optical effect (SMOKE). Polar SMOKE hysteresis loops demonstrate that the Fe ultrathin films with thickness t< 6 ML (monolayers) exhibit perpendicular magnetic anisotropy. The characters of M-H loops with the external magnetic field at difference angles and the angular dependence of coercivity suggest that the domain-wall pinning plays a dominant role in the magnetization reversal process.

  1. Electrical characterization of strained and unstrained silicon nanowires with nickel silicide contacts.

    Science.gov (United States)

    Habicht, S; Zhao, Q T; Feste, S F; Knoll, L; Trellenkamp, S; Ghyselen, B; Mantl, S

    2010-03-12

    We present electrical characterization of nickel monosilicide (NiSi) contacts formed on strained and unstrained silicon nanowires (NWs), which were fabricated by top-down processing of initially As(+) implanted and activated strained and unstrained silicon-on-insulator (SOI) substrates. The resistivity of doped Si NWs and the contact resistivity of the NiSi to Si NW contacts are studied as functions of the As(+) ion implantation dose and the cross-sectional area of the wires. Strained silicon NWs show lower resistivity for all doping concentrations due to their enhanced electron mobility compared to the unstrained case. An increase in resistivity with decreasing cross section of the NWs was observed for all implantation doses. This is ascribed to the occurrence of dopant deactivation. Comparing the silicidation of uniaxially tensile strained and unstrained Si NWs shows no difference in silicidation speed and in contact resistivity between NiSi/Si NW. Contact resistivities as low as 1.2 x 10(-8) Omega cm(-2) were obtained for NiSi contacts to both strained and unstrained Si NWs. Compared to planar contacts, the NiSi/Si NW contact resistivity is two orders of magnitude lower.

  2. Microstructure of the irradiated U 3Si 2/Al silicide dispersion fuel

    Science.gov (United States)

    Gan, J.; Keiser, D. D.; Miller, B. D.; Jue, J.-F.; Robinson, A. B.; Madden, J. W.; Medvedev, P. G.; Wachs, D. M.

    2011-12-01

    The silicide dispersion fuel of U 3Si 2/Al is recognized as the best performance fuel for many nuclear research and test reactors with up to 4.8 gU/cm 3 fuel loading. An irradiated U 3Si 2/Al dispersion fuel ( 235U ˜ 75%) from the high-flux side of a fuel plate (U0R040) from the Reduced Enrichment for Research and Test Reactors (RERTR)-8 test was characterized using transmission electron microscopy (TEM). The fuel was irradiated in the Advanced Test Reactor (ATR) for 105 days. The average irradiation temperature and fission density of the U 3Si 2 fuel particles for the TEM sample are estimated to be approximately 110 °C and 5.4 × 10 27 f/m 3. The characterization was performed using a 200-kV TEM. The U/Si ratio for the fuel particle and (Si + Al)/U for the fuel-matrix-interaction layer are approximately 1.1 and 4-10, respectively. The estimated average diameter, number density and volume fraction for small bubbles (fuel particle are ˜94 nm, 1.05 × 10 20 m -3 and ˜11%, respectively. The results and their implication on the performance of the U 3Si 2/Al silicide dispersion fuel are discussed.

  3. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Trivedi, Sudhir B. [Brimrose Technology Corporation; Kutcher, Susan W. [Brimrose Technology Corporation; Rosemeier, Cory A. [Brimrose Technology Corporation; Mayers, David [Brimrose Technology Corporation; Singh, Jogender [Pennsylvania State University

    2013-12-02

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  4. Preliminary investigations on the use of uranium silicide targets for fission Mo-99 production

    Energy Technology Data Exchange (ETDEWEB)

    Cols, H.; Cristini, P.; Marques, R.

    1997-08-01

    The National Atomic Energy Commission (CNEA) of Argentine Republic owns and operates an installation for production of molybdenum-99 from fission products since 1985, and, since 1991, covers the whole national demand of this nuclide, carrying out a program of weekly productions, achieving an average activity of 13 terabecquerel per week. At present they are finishing an enlargement of the production plant that will allow an increase in the volume of production to about one hundred of terabecquerel. Irradiation targets are uranium/aluminium alloy with 90% enriched uranium with aluminium cladding. In view of international trends held at present for replacing high enrichment uranium (HEU) for enrichment values lower than 20 % (LEU), since 1990 the authors are in contact with the RERTR program, beginning with tests to adapt their separation process to new irradiation target conditions. Uranium silicide (U{sub 3}Si{sub 2}) was chosen as the testing material, because it has an uranium mass per volume unit, so that it allows to reduce enrichment to a value of 20%. CNEA has the technology for manufacturing miniplates of uranium silicide for their purposes. In this way, equivalent amounts of Molybdenum-99 could be obtained with no substantial changes in target parameters and irradiation conditions established for the current process with Al/U alloy. This paper shows results achieved on the use of this new target.

  5. Effect of annealing on magnetic properties and silicide formation at Co/Si interface

    Indian Academy of Sciences (India)

    Shivani Agarwal; V Ganesan; A K Tyagi; I P Jain

    2006-11-01

    The interaction of Co (30 nm) thin films on Si (100) substrate in UHV using solid state mixing technique has been studied. Cobalt was deposited on silicon substrate using electron beam evaporation at a vacuum of 4 × 10-8 Torr having a deposition rate of about 0.1 Å/s. Reactivity at Co/Si interface is important for the understanding of silicide formation in thin film system. In the present paper, cobalt silicide films were characterized by atomic force microscopy (AFM) and secondary ion mass spectroscopy (SIMS) in terms of the surface and interface morphologies and depth profile, respectively. The roughness of the samples was found to increase up to temperature, 300°C and then decreased with further rise in temperature, which was due to the formation of crystalline CoSi2 phase. The effect of mixing on magnetic properties such as coercivity, remanence etc at interface has been studied using magneto optic Kerr effect (MOKE) techniques at different temperatures. The value of coercivity of pristine sample and 300°C annealed sample was found to be 66 Oe and 40 Oe, respectively, while at high temperature i.e. 748°C, the hysteresis disappears which indicates the formation of CoSi2 compound.

  6. Crystal structure of the ternary silicide Gd2Re3Si5.

    Science.gov (United States)

    Fedyna, Vitaliia; Kozak, Roksolana; Gladyshevskii, Roman

    2014-12-01

    A single crystal of the title compound, the ternary silicide digadolinium trirhenium penta-silicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubo-octa-hedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square anti-prisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re-Re distance of 2.78163 (5) Å and isolated squares with an Re-Re distance of 2.9683 (6) Å.

  7. Design of transition cores of RSG GAS (MPR-30) with higher loading silicide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Liem, Peng Hong, E-mail: liemph@nais.ne.j [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-okayama, Meguro, Tokyo 152-8550 (Japan); Sembiring, Tagor Malem [Center for Reactor Technology and Nuclear Safety, National Nuclear Energy Agency (Batan), Puspiptek, Serpong, Tangerang 15310 (Indonesia)

    2010-06-15

    A procedure of designing transition cores to achieve the equilibrium silicide core of RSG GAS with higher fuel loading of 300 g U/fuel element (FE) (meat density of 3.55 g U/cm{sup 3}) has been proposed. In the proposed procedure, the EOC excess reactivity of each transition core is minimized in order to satisfy the safety design limit of one-stuck-rod sub-criticality margin while keeping the maximum of radial power peaking factor below the allowable value. Under the design procedure, the initial fuel loadings are increased gradually in two steps, i.e. from 250 to 275 g U/FE followed by 275-300 g U/FE. The analysis results show that all transition cores can satisfy all design requirements and safety limits. We concluded that the obtained transition core design should be adopted into the future core conversion program of RSG GAS. The targeted silicide core can be achieved practically in at least 24 transition cores.

  8. Absorption enhancement in amorphous silicon thin films via plasmonic resonances in nickel silicide nanoparticles

    Science.gov (United States)

    Hachtel, Jordan; Shen, Xiao; Pantelides, Sokrates; Sachan, Ritesh; Gonzalez, Carlos; Dyck, Ondrej; Fu, Shaofang; Kalnayaraman, Ramki; Rack, Phillip; Duscher, Gerd

    2013-03-01

    Silicon is a near ideal material for photovoltaics due to its low cost, abundance, and well documented optical properties. The sole detriment of Si in photovoltaics is poor absorption in the infrared. Nanoparticle surface plasmon resonances are predicted to increase absorption by scattering to angles greater than the critical angle for total internal reflection (16° for a Si/air interface), trapping the light in the film. Experiments confirm that nickel silicide nanoparticles embedded in amorphous silicon increases absorption significantly in the infrared. However, it remains to be seen if electron-hole pair generation is increased in the solar cell, or whether the light is absorbed by the nanoparticles themselves. The nature of the absorption is explored by a study of the surface plasmon resonances through electron energy loss spectrometry and scanning transmission electron microscopy experiments, as well as first principles density functional theory calculations. Initial experimental results do not show strong plasmon resonances on the nanoparticle surfaces. Calculations of the optical properties of the nickel silicide particles in amorphous silicon are performed to understand why this resonance is suppressed. Work supported by NSF EPS 1004083 (TN-SCORE).

  9. "Nanoparticle-in-alloy" approach to efficient thermoelectrics: silicides in SiGe.

    Science.gov (United States)

    Mingo, N; Hauser, D; Kobayashi, N P; Plissonnier, M; Shakouri, A

    2009-02-01

    We present a "nanoparticle-in-alloy" material approach with silicide and germanide fillers leading to a potential 5-fold increase in the thermoelectric figure of merit of SiGe alloys at room temperature and 2.5 times increase at 900 K. Strong reductions in computed thermal conductivity are obtained for 17 different types of silicide nanoparticles. We predict the existence of an optimal nanoparticle size that minimizes the nanocomposite's thermal conductivity. This thermal conductivity reduction is much stronger and strikingly less sensitive to nanoparticle size for an alloy matrix than for a single crystal one. At the same time, nanoparticles do not negatively affect the electronic conduction properties of the alloy. The proposed material can be monolithically integrated into Si technology, enabling an unprecedented potential for micro refrigeration on a chip. High figure-of-merit at high temperatures (ZT approximately 1.7 at 900 K) opens up new opportunities for thermoelectric power generation and waste heat recovery at large scale.

  10. Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation

    Science.gov (United States)

    Harp, Jason M.; Lessing, Paul A.; Hoggan, Rita E.

    2015-11-01

    In collaboration with industry, Idaho National Laboratory is investigating uranium silicide for use in future light water reactor fuels as a more accident resistant alternative to uranium oxide base fuels. Specifically this project was focused on producing uranium silicide (U3Si2) pellets by conventional powder metallurgy with a density greater than 94% of the theoretical density. This work has produced a process to consistently produce pellets with the desired density through careful optimization of the process. Milling of the U3Si2 has been optimized and high phase purity U3Si2 has been successfully produced. Results are presented from sintering studies and microstructural examinations that illustrate the need for a finely ground reproducible particle size distribution in the source powder. The optimized process was used to produce pellets for the Accident Tolerant Fuel-1 irradiation experiment. The average density of these pellets was 11.54 ± 0.06 g/cm3. Additional characterization of the pellets by scanning electron microscopy and X-ray diffraction has also been performed. Pellets produced in this work have been encapsulated for irradiation, and irradiation in the Advanced Test Reactor is expected soon.

  11. Organometallic halide perovskite/barium di-silicide thin-film double-junction solar cells

    Science.gov (United States)

    Vismara, R.; Isabella, O.; Zeman, M.

    2016-04-01

    Barium di-silicide (BaSi2) is an abundant and inexpensive semiconductor with appealing opto-electrical properties. In this work we show that a 2-μm thick BaSi2-based thin-film solar cell can exhibit an implied photo-current density equal to 41.1 mA/cm2, which is higher than that of a state-of-the-art wafer-based c-Si hetero-junction solar cell. This performance makes BaSi2 an attractive absorber for high-performing thin-film and multi-junction solar cells. In particular, to assess the potential of barium di-silicide, we propose a thin-film double-junction solar cell based on organometallic halide perovskite (CH3NH3PbI3) as top absorber and BaSi2 as bottom absorber. The resulting modelled ultra-thin double-junction CH3NH3PbI3 / BaSi2 (< 2 μm) exhibits an implied total photo-current density equal to 38.65 mA/cm2 (19.84 mA/cm2 top cell, 18.81 mA/cm2 bottom cell) and conversion efficiencies up to 28%.

  12. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology.

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-03

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm(2), and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p(+-)n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  13. In situ micro-Raman analysis and X-ray diffraction of nickel silicide thin films on silicon.

    Science.gov (United States)

    Bhaskaran, M; Sriram, S; Perova, T S; Ermakov, V; Thorogood, G J; Short, K T; Holland, A S

    2009-01-01

    This article reports on the in situ analysis of nickel silicide (NiSi) thin films formed by thermal processing of nickel thin films deposited on silicon substrates. The in situ techniques employed for this study include micro-Raman spectroscopy (microRS) and X-ray diffraction (XRD); in both cases the variations for temperatures up to 350 degrees C has been studied. Nickel silicide thin films formed by vacuum annealing of nickel on silicon were used as a reference for these measurements. In situ analysis was carried out on nickel thin films on silicon, while the samples were heated from room temperature to 350 degrees C. Data was gathered at regular temperature intervals and other specific points of interest (such as 250 degrees C, where the reaction between nickel and silicon to form Ni(2)Si is expected). The transformations from the metallic state, through the intermediate reaction states, until the desired metal-silicon reaction product is attained, are discussed. The evolution of nickel silicide from the nickel film can be observed from both the microRS and XRD in situ studies. Variations in the evolution of silicide from metal for different silicon substrates are discussed, and these include (100) n-type, (100) p-type, and (110) p-type silicon substrates.

  14. Improvement of power conversion efficiency in photovoltaic-assisted UHF rectifiers by non-silicide technique applied to photovoltaic cells

    Science.gov (United States)

    Kotani, Koji

    2015-04-01

    Non-silicide PV cell structures were successfully applied to the photovoltaic (PV)-assisted UHF rectifier, which is one example realization of the “synergistic ambient energy harvesting” concept. Silicide blocking of PV cell area was experimentally verified to be effective for increasing photo-generated bias voltage, which resulted in the improved power conversion efficiency (PCE) of the rectifier by enhanced VTH compensation effect. Increase in both transparency of light and quantum efficiency of PV cells obtained by eliminating silicide layer affects the PCE improvement almost equally. 25.8% of PCE was achieved under the conditions of an RF input power of -20 dBm, a frequency of 920 MHz, an output load of 47 kΩ, and a typical indoor light irradiance level of 1 W/m2. In addition, when the non-silicide PV cell technique was applied to the voltage-boosted PV-cell structures, 32.1% peak PCE was achieved at 10 W/m2.

  15. Intercalation synthesis of graphene-capped iron silicide atop Ni(111): Evolution of electronic structure and ferromagnetic ordering

    Science.gov (United States)

    Grebenyuk, G. S.; Vilkov, O. Yu.; Rybkin, A. G.; Gomoyunova, M. V.; Senkovskiy, B. V.; Usachov, D. Yu.; Vyalikh, D. V.; Molodtsov, S. L.; Pronin, I. I.

    2017-01-01

    A new method for synthesis of graphene-protected iron silicides has been tested, which consists in formation of graphene on Ni(111) followed by two-step intercalation of the system with Fe and Si. Characterization of the samples was performed in situ by low-energy electron diffraction, angular-resolved photoelectron spectroscopy, core-level photoelectron spectroscopy with synchrotron radiation and magnetic linear dichroism in photoemission of Fe 3p electrons. It is shown, that at 400 °C the intercalation of graphene/Ni(111) with iron occurs in a range up to 14 ML. The graphene layer strongly interacts with the topmost Fe atoms and stabilizes the fcc structure of the film. The in-plane ferromagnetic ordering of the film has a threshold nature and arises after the intercalation of 5 ML Fe due to the thickness-driven spin reorientation transition. Subsequent intercalation of graphene/Fe/Ni(111) with Si leads to the formation of the inhomogeneous system consisted of intercalated and nonintercalated areas. The intercalated islands coalesce at 2 ML Si when a Fe-Si solid solution covered with the Fe3Si surface silicide is formed. The Fe3Si silicide is ferromagnetic and has an ordered (√3 × √3)R30° structure. The graphene layer is weakly electronically coupled to the silicide phase keeping its remarkable properties ready for use.

  16. Aluminium alloyed iron-silicide/silicon solar cells: A simple approach for low cost environmental-friendly photovoltaic technology

    Science.gov (United States)

    Kumar Dalapati, Goutam; Masudy-Panah, Saeid; Kumar, Avishek; Cheh Tan, Cheng; Ru Tan, Hui; Chi, Dongzhi

    2015-12-01

    This work demonstrates the fabrication of silicide/silicon based solar cell towards the development of low cost and environmental friendly photovoltaic technology. A heterostructure solar cells using metallic alpha phase (α-phase) aluminum alloyed iron silicide (FeSi(Al)) on n-type silicon is fabricated with an efficiency of 0.8%. The fabricated device has an open circuit voltage and fill-factor of 240 mV and 60%, respectively. Performance of the device was improved by about 7 fold to 5.1% through the interface engineering. The α-phase FeSi(Al)/silicon solar cell devices have promising photovoltaic characteristic with an open circuit voltage, short-circuit current and a fill factor (FF) of 425 mV, 18.5 mA/cm2, and 64%, respectively. The significant improvement of α-phase FeSi(Al)/n-Si solar cells is due to the formation p+-n homojunction through the formation of re-grown crystalline silicon layer (~5-10 nm) at the silicide/silicon interface. Thickness of the regrown silicon layer is crucial for the silicide/silicon based photovoltaic devices. Performance of the α-FeSi(Al)/n-Si solar cells significantly depends on the thickness of α-FeSi(Al) layer and process temperature during the device fabrication. This study will open up new opportunities for the Si based photovoltaic technology using a simple, sustainable, and los cost method.

  17. Copper gettering by aluminum precipitates in aluminum-implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN,GARY A.; MYERS JR.,SAMUEL M.

    2000-03-20

    Copper in Si is shown to be strongly gettered by Al-rich precipitates formed by implanting Al to supersaturation and followed by annealing. At temperatures ranging from 600 to 800 C a layer containing Al precipitates is found to getter Cu from Cu silicide located on the opposite side of a 0.25-mm Si wafer, indicating a substantially lower chemical potential for the Cu in the molten-A1 phase. Cu gettering proceeds rapidly until an atomic ratio of approximately 2 Cu atoms to 1 Al atom is reached in the precipitated Al region, after which the gettering process slows. Redistribution of Cu from one Al-rich layer to another at low Cu concentrations demonstrates that a segregation-type gettering mechanism is operating. Cu gettering occurs primarily in the region containing the precipitated Al rather than the region where the Al is entirely substitutional.

  18. Understanding and Improving High-Temperature Structural Properties of Metal-Silicide Intermetallics

    Energy Technology Data Exchange (ETDEWEB)

    Bruce S. Kang

    2005-10-10

    The objective of this project was to understand and improve high-temperature structural properties of metal-silicide intermetallic alloys. Through research collaboration between the research team at West Virginia University (WVU) and Dr. J.H. Schneibel at Oak Ridge National Laboratory (ORNL), molybdenum silicide alloys were developed at ORNL and evaluated at WVU through atomistic modeling analyses, thermo-mechanical tests, and metallurgical studies. In this study, molybdenum-based alloys were ductilized by dispersing MgAl2O4 or MgO spinel particles. The addition of spinel particles is hypothesized to getter impurities such as oxygen and nitrogen from the alloy matrix with the result of ductility improvement. The introduction of fine dispersions has also been postulated to improve ductility by acting as a dislocation source or reducing dislocation pile-ups at grain boundaries. The spinel particles, on the other hand, can also act as local notches or crack initiation sites, which is detrimental to the alloy mechanical properties. Optimization of material processing condition is important to develop the desirable molybdenum alloys with sufficient room-temperature ductility. Atomistic analyses were conducted to further understand the mechanism of ductility improvement of the molybdenum alloys and the results showed that trace amount of residual oxygen may be responsible for the brittle behavior of the as-cast Mo alloys. For the alloys studied, uniaxial tensile tests were conducted at different loading rates, and at room and elevated temperatures. Thermal cycling effect on the mechanical properties was also studied. Tensile tests for specimens subjected to either ten or twenty thermal cycles were conducted. For each test, a follow-up detailed fractography and microstructural analysis were carried out. The test results were correlated to the size, density, distribution of the spinel particles and processing time. Thermal expansion tests were carried out using thermo

  19. Crystalline structures and misfit strain inside Er silicide nanocrystals self-assembled on Si(001) substrates.

    Science.gov (United States)

    Ding, Tao; Wu, Yueqin; Song, Junqiang; Li, Juan; Huang, Han; Zou, Jin; Cai, Qun

    2011-06-17

    The morphology and crystalline structure of Er silicide nanocrystals self-assembled on the Si(001) substrate were investigated using scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). It was found that the nanowires and nanorods formed at 630 °C has dominant hexagonal AlB(2)-type structure, while inside the nanoislands self-organized at 800 °C the tetragonal ThSi(2)-type structure is prevalent. The lattice analysis via cross-sectional high-resolution TEM demonstrated that internal misfit strain plays an important role in controlling the growth of nanocrystals. With the relaxation of strain, the nanoislands could evolve from a pyramid-like shape into a truncated-hut-like shape.

  20. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  1. Comparative study of metallic silicide-germanide orthorhombic MnP systems.

    Science.gov (United States)

    Connétable, Damien; Thomas, Olivier

    2013-09-04

    We present a comparative study of the structural, energetic, electronic and elastic properties of MX type MnP systems (where X=Si or Ge, and M=Pt, Pd or Ni) using first-principles calculations. The optimized ground state properties of these systems are in excellent agreement with the experimental values. A detailed comparative study of the elastic properties of polycrystalline structures is also presented. We analyze the relationship between the composition and the properties of the systems. Finally, we present the properties of NiSi1-xGex alloys. We show that these properties depend linearly on the Ge content of the alloy. This work has important consequences for semiconductor devices in which silicides, germanides and alloys thereof are used as contact materials.

  2. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M. [Univ. of Western Ontario, London, Ontario (Canada)

    1998-12-31

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L{sub 2,3}- and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi{sub 2} sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi{sub 2}. Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed.

  3. Strain-promoted growth of Mn silicide nanowires on Si(001)

    Science.gov (United States)

    Miki, Kazushi; Liu, Hongjun; Owen, James H. G.; Renner, Christoph

    2011-03-01

    We have discovered a method to promote the growth of Mn silicide nanowires on the Si(001) at 450° C. Deposition of sub-monolayer quantities of Mn onto a Si(001) surface with a high density of Bi nanolines results in the formation of nanowires, 5-10 nm wide, and up to 600 nm long. These nanowires are never formed if the same growth procedure is followed in the absence of the Bi nanolines. The Haiku core of the Bi nanoline is known to induce short-range stress in the surrounding silicon surface, straining neighbouring dimers, and repelling step edges. We discuss the possible mechanisms for this effect, including the effect of the Bi nanolines on the surface stress tensor and alteration of the available diffusion channels on the surface. This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research, the Iketani Science and Technology Foundation.

  4. Chemical vapour deposition of tungsten and tungsten silicide layers for applications in novel silicon technology

    CERN Document Server

    Li, F X

    2002-01-01

    This work was a detailed investigation into the Chemical Vapour Deposition (CVD) of tungsten and tungsten silicide for potential applications in integrated circuit (IC) and other microelectronic devices. These materials may find novel applications in contact schemes for transistors in advanced ICs, buried high conductivity layers in novel Silicon-On-Insulator (SOI) technology and in power electronic devices. The CVD techniques developed may also be used for metal coating of recessed or enclosed features which may occur in novel electronic or electromechanical devices. CVD of tungsten was investigated using the silicon reduction reaction of WF sub 6. W layers with an optimum self-limiting thickness of 100 nm and resistivity 20 mu OMEGA centre dot cm were produced self-aligned to silicon. A hydrogen passivation technique was developed as part of the wafer pre-clean schedule and proved essential in achieving optimum layer thickness. Layers produced by this approach are ideal for intimate contact to shallow junct...

  5. Dependence of ion-induced Pd-silicide formation on nuclear energy deposition density

    Energy Technology Data Exchange (ETDEWEB)

    Horino, Yuji; Matsunami, Noriaki; Itoh, Noriaki

    1986-05-01

    Pd/sub 2/Si formation at the Pd-Si interface induced by irradiation with ions having a wide range of nuclear energy of deposition density has been investigated. It is found that the thickness of the silicide layer formed by irradiation is proportional to the ion fluence for irradiation with ions having low energy-deposition densities, while it is proportional to the square root of the fluence for irradiation with ions having energy-deposition densities. The results indicate that Pd/sub 2/Si formation is reaction limited when the energy-deposition density at the interface is low and is diffusion limited when it is high. The results are compared with the phenomenological theory developed by Horino et al. and it is shown that such a dependence of the limiting processes on the energy depositon density is induced when the diffusion is thermally activated while the reaction at the interface is radiation-enhanced.

  6. Discovery of Brownleeite: a New Manganese Silicide Mineral in an Interplanetary Dust Particle

    Science.gov (United States)

    Keller, Lindsay P.; Nakamura-Messenger, Keiko; Clemett, Simon J.; Messenger, Scott; Jones, John H.; Palma, Russell L.; Pepin, Robert O.; Klock, Wolfgang; Zolensky, Michael E.; Tatsuoka, Hirokazu

    2011-01-01

    The Earth accretes approximately 40,000 tons of cosmic dust annually, originating mainly from the disintegration of comets and collisions among asteroids. This cosmic dust, also known as interplanetary dust particles (IDPs), is a subject of intense interest since it is made of the original building blocks of our Solar System. Although the specific parent bodies of IDPs are unknown, the anhydrous chondritic-porous IDPs (CP-IDPs) subset has been potentially linked to a cometary source. The CP-IDPs are extremely primitive materials based on their unequilibrated mineralogy, C-rich chemistry, and anomalous isotopic signatures. In particular, some CP-IDPs escaped the thermal, aqueous and impact shock processing that has modified or destroyed the original mineralogy of meteorites. Thus, the CP-IDPs represent some of the most primitive solar system materials available for laboratory study. Most CP-IDPs are comprised of minerals that are common on Earth. However, in the course of an examination of one of the CP-IDPs, we encountered three sub-micrometer sized grains of manganese silicide (MnSi), a phase that has heretofore not been found in nature. In the seminar, we would like to focus on IDP studies and this manganese silicide phase that has been approved as the first new mineral identified from a comet by the International Mineralogical Association (IMA) in 2008. The mineral is named in honour of Donald E. Brownlee, an American astronomer and a founder of the field of cosmic dust research who is the principal investigator of the NASA Stardust Mission that collected dust samples from Comet 81P/Wild-2 and returned them to Earth. Much of our current view and understanding of the early solar system would not exist without the pioneering work of professor Don Brownlee in the study of IDPs.

  7. The modulation of Schott ky barrier height of NiSi/n-Si Schottky diodes by silicide as diffusion source technique

    Institute of Scientific and Technical Information of China (English)

    An Xia; Fan Chun-Hui; Huang Ru; Guo Yue; Xu Cong; Zhang Xing; Wang Yang-Yuan

    2009-01-01

    This paper reports that the Schottky barrier height modulation of NiSi/n-si is experimentally investigated by adopting a novel silicide-as-diffusion-source technique. which avoids the damage to the NiSi/Si interface induced from the conventional dopant segregation method. In addition, the impact of post-BF_2 implantation after silicidation on the surface morphology of Ni silicides is also illustrated. The thermal stability of Ni silicides can be improved by sihcideas-diffusion-source technique. Besides, the electron Schottky barrier height is successfully modulated by 0.11 eV at a boron dose of 10~(15) cm~(-2) in comparison with the non. implanted samples. The change of barrier height is not attributed to the phase change of silicide films but due to the boron pile-up at the interface of NiSi and Si substrate which causes the upward bending of conducting band. The results demonstrate the feasibility of novel silicide-as-diffusion-source technique for the fabrication of Schottky source/drain Si MOS devices.

  8. Evaluation of powder metallurgical processing routes for multi-component niobium silicide-based high-temperature alloys

    Energy Technology Data Exchange (ETDEWEB)

    Seemueller, Hans Christoph Maximilian

    2016-03-22

    Niobium silicide-based composites are potential candidates to replace nickel-base superalloys for turbine applications. The goal of this work was to evaluate the feasibility and differences in ensuing properties of various powder metallurgical processing techniques that are capable of manufacturing net-shape turbine components. Two routes for powder production, mechanical alloying and gas atomization were combined with compaction via hot isostatic pressing and powder injection molding.

  9. Thin manganese films on Si(111)-(7 x 7): electronic structure and strain in silicide formation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ashwani; Tallarida, M; Hansmann, M; Starke, U; Horn, K [Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin (Germany)

    2004-04-07

    The electronic and structural properties of thin epitaxial Mn films on Si(111)-(7 x 7) and their silicide reaction are studied by means of low-energy electron diffraction, scanning tunnelling microscopy (STM) and photoemission spectroscopy (PES). The deposition of Mn at room temperature initially results in the growth of islands. The metal-silicon reaction already occurs at this temperature, which is further enhanced by annealing up to 400 deg. C, leading to the formation of manganese silicide and turning islands into nearly closed films at higher coverage. A pseudo-(1 x 1) phase develops for Mn films of up to 1 monolayer (ML) thickness. For films of higher thicknesses of up to 5 ML, a ( {radical}3 x {radical}3)R30 deg. phase is observed. STM images show that then the silicide film is almost closed and exhibits a strain relief network reflecting an incommensurate interface structure. PES reveals that the (1 x 1) phase is semiconducting while the ({radical}3 x {radical}3)R30 deg. phase is metallic. For both phases, Si 2p core level photoemission data indicate that the surface is probably terminated by Si atoms.

  10. Thin manganese films on Si(111)-(7 × 7): electronic structure and strain in silicide formation

    Science.gov (United States)

    Kumar, Ashwani; Tallarida, M.; Hansmann, M.; Starke, U.; Horn, K.

    2004-04-01

    The electronic and structural properties of thin epitaxial Mn films on Si(111)-(7 × 7) and their silicide reaction are studied by means of low-energy electron diffraction, scanning tunnelling microscopy (STM) and photoemission spectroscopy (PES). The deposition of Mn at room temperature initially results in the growth of islands. The metal-silicon reaction already occurs at this temperature, which is further enhanced by annealing up to 400°C, leading to the formation of manganese silicide and turning islands into nearly closed films at higher coverage. A pseudo-(1 × 1) phase develops for Mn films of up to 1 monolayer (ML) thickness. For films of higher thicknesses of up to 5 ML, a ( \\sqrt{3}\\times\\sqrt{3} )R30° phase is observed. STM images show that then the silicide film is almost closed and exhibits a strain relief network reflecting an incommensurate interface structure. PES reveals that the (1 × 1) phase is semiconducting while the ( \\sqrt{3}\\times\\sqrt{3} )R30° phase is metallic. For both phases, Si 2p core level photoemission data indicate that the surface is probably terminated by Si atoms.

  11. Electrical and optical properties of sub-10 nm nickel silicide films for silicon solar cells

    Science.gov (United States)

    Brahmi, Hatem; Ravipati, Srikanth; Yarali, Milad; Shervin, Shahab; Wang, Weijie; Ryou, Jae-Hyun; Mavrokefalos, Anastassios

    2017-01-01

    Highly conductive and transparent films of ultra-thin p-type nickel silicide films have been prepared by RF magnetron sputtering of nickel on silicon substrates followed by rapid thermal annealing in an inert environment in the temperature range 400-600 °C. The films are uniform throughout the wafer with thicknesses in the range of 3-6 nm. The electrical and optical properties are presented for nickel silicide films with varying thickness. The Drude-Lorentz model and Fresnel equations were used to calculate the dielectric properties, sheet resistance, absorption and transmission of the films. These ultrathin nickel silicide films have excellent optoelectronic properties for p-type contacts with optical transparencies up to 80% and sheet resistance as low as ~0.15 µΩ cm. Furthermore, it was shown that the use of a simple anti-reflection (AR) coating can recover most of the reflected light approaching the values of a standard Si solar cell with the same AR coating. Overall, the combination of ultra-low thickness, high transmittance, low sheet resistance and ability to recover the reflected light by utilizing standard AR coating makes them ideal for utilization in silicon based photovoltaic technologies as a p-type transparent conductor.

  12. Pack cementation Cr-Al coating of steels and Ge-doped silicide coating of Cr-Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    He, Y.R.; Zheng, M.H.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1995-08-01

    Carbon steels or low-alloy steels used in utility boilers, heat exchangers, petrochemical plants and coal gasification systems are subjected to high temperature corrosion attack such as oxidation, sulfidation and hot corrosion. The pack cementation coating process has proven to be an economical and effective method to enhance the corrosion resistance by modifying the surface composition of steels. With the aid of a computer program, STEPSOL, pack cementation conditions to produce a ferrite Cr-Al diffusion coating on carbon-containing steels by using elemental Cr and Al powders have been calculated and experimentally verified. The cyclic oxidation kinetics for the Cr-Al coated steels are presented. Chromium silicide can maintain high oxidation resistance up to 1100{degrees}C by forming a SiO{sub 2} protective scale. Previous studies at Ohio State University have shown that the cyclic oxidation resistance of MOSi{sub 2} and TiSi{sub 2} can be further improved by Ge addition introduced during coating growth. The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating in a single processing step for the ORNL-developed Cr-Nb advanced intermetallic alloy. The oxidation behavior of the silicide-coated Cr-Nb alloy was excellent: weight gain of about 1 mg/cm{sup 2} upon oxidation at 1100{degrees}C in air for 100 hours.

  13. On the interdiffusion in multilayered silicide coatings for the vanadium-based alloy V-4Cr-4Ti

    Science.gov (United States)

    Chaia, N.; Portebois, L.; Mathieu, S.; David, N.; Vilasi, M.

    2017-02-01

    To provide protection against corrosion at high temperatures, silicide diffusion coatings were developed for the V-4Cr-4Ti alloy, which can be used as the fuel cladding in next-generation sodium-cooled fast breeder reactors. The multilayered coatings were prepared by halide-activated pack cementation using MgF2 as the transport agent and pure silicon (high activity) as the master alloy. Coated pure vanadium and coated V-4Cr-4Ti alloy were studied and compared as substrates. In both cases, the growth of the silicide layers (V3Si, V5Si3, V6Si5 and VSi2) was controlled exclusively by solid-state diffusion, and the growth kinetics followed a parabolic law. Wagner's analysis was adopted to calculate the integrated diffusion coefficients for all silicides. The estimated values of the integrated diffusion coefficients range from approximately 10-9 to 10-13 cm2 s-1. Then, a diffusion-based numerical approach was used to evaluate the growth and consumption of the layers when the coated substrates were exposed at critical temperatures. The estimated lifetimes of the upper VSi2 layer were 400 h and 280 h for pure vanadium and the V-4Cr-4Ti alloy, respectively. The result from the numeric simulation was in good agreement with the layer thicknesses measured after aging the coated samples at 1150 °C under vacuum.

  14. Copper allergy from dental copper amalgam?

    Science.gov (United States)

    Gerhardsson, Lars; Björkner, Bert; Karlsteen, Magnus; Schütz, Andrejs

    2002-05-06

    A 65-year-old female was investigated due to a gradually increasing greenish colour change of her plastic dental splint, which she used to prevent teeth grinding when sleeping. Furthermore, she had noted a greenish/bluish colour change on the back of her black gloves, which she used to wipe her tears away while walking outdoors. The investigation revealed that the patient had a contact allergy to copper, which is very rare. She had, however, had no occupational exposure to copper. The contact allergy may be caused by long-term exposure of the oral mucosa to copper from copper-rich amalgam fillings, which were frequently used in childhood dentistry up to the 1960s in Sweden. The deposition of a copper-containing coating on the dental splint may be caused by a raised copper intake from drinking water, increasing the copper excretion in saliva, in combination with release of copper due to electrochemical corrosion of dental amalgam. The greenish colour change of the surface of the splint is probably caused by deposition of a mixture of copper compounds, e.g. copper carbonates. Analysis by the X-ray diffraction technique indicates that the dominant component is copper oxide (Cu2O and CuO). The corresponding greenish/bluish discoloration observed on the back of the patient's gloves may be caused by increased copper excretion in tears.

  15. Rate Theory Modeling and Simulations of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States); Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States); Mei, Zhigang [Argonne National Lab. (ANL), Argonne, IL (United States); Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States); Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-12-10

    Uranium silicide (U3Si2) fuel has higher thermal conductivity and higher uranium density, making it a promising candidate for the accident-tolerant fuel (ATF) used in light water reactors (LWRs). However, previous studies on the fuel performance of U3Si2, including both experimental and computational approaches, have been focusing on the irradiation conditions in research reactors, which usually involve low operation temperatures and high fuel burnups. Thus, it is important to examine the fuel performance of U3Si2 at typical LWR conditions so as to evaluate the feasibility of replacing conventional uranium dioxide fuel with this silicide fuel material. As in-reactor irradiation experiments involve significant time and financial cost, it is appropriate to utilize modeling tools to estimate the behavior of U3Si2 in LWRs based on all those available research reactor experimental references and state-of-the-art density functional theory (DFT) calculation capabilities at the early development stage. Hence, in this report, a comprehensive investigation of the fission gas swelling behavior of U3Si2 at LWR conditions is introduced. The modeling efforts mentioned in this report was based on the rate theory (RT) model of fission gas bubble evolution that has been successfully applied for a variety of fuel materials at devious reactor conditions. Both existing experimental data and DFT-calculated results were used for the optimization of the parameters adopted by the RT model. Meanwhile, the fuel-cladding interaction was captured by the coupling of the RT model with simplified mechanical correlations. Therefore, the swelling behavior of U3Si2 fuel and its consequent interaction with cladding in LWRs was predicted by the rate theory modeling, providing valuable information for the development of U3Si2 fuel as an accident

  16. Copper Products Capacity Expansion Stimulate the Copper Consumption

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>The dramatic growth of copper consumption in China can directly be seen from the expansion of copper products capacity.According to sta- tistics,in the past 4 years,the improvement on the balance of trade on copper bar,copper,and copper alloy and copper wire & cable has driven the growth of copper consumption a lot.

  17. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  18. Silicides and Nitrides Formation in Ti Films Coated on Si and Exposed to (Ar-N2-H2 Expanding Plasma

    Directory of Open Access Journals (Sweden)

    Isabelle Jauberteau

    2017-02-01

    Full Text Available The physical properties including the mechanical, optical and electrical properties of Ti nitrides and silicides are very attractive for many applications such as protective coatings, barriers of diffusion, interconnects and so on. The simultaneous formation of nitrides and silicides in Ti films improves their electrical properties. Ti films coated on Si wafers are heated at various temperatures and processed in expanding microwave (Ar-N2-H2 plasma for various treatment durations. The Ti-Si interface is the centre of Si diffusion into the Ti lattice and the formation of various Ti silicides, while the Ti surface is the centre of N diffusion into the Ti film and the formation of Ti nitrides. The growth of silicides and nitrides gives rise to two competing processes which are thermodynamically and kinetically controlled. The effect of thickness on the kinetics of the formation of silicides is identified. The metastable C49TiSi2 phase is the main precursor of the stable C54TiSi2 phase, which crystallizes at about 600 °C, while TiN crystallizes at about 800 °C.

  19. Copper and copper proteins in Parkinson's disease.

    Science.gov (United States)

    Montes, Sergio; Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  20. Influence of mechanical grinding on lithium insertion and extraction properties of iron silicide/silicon composites

    Science.gov (United States)

    Usui, Hiroyuki; Nouno, Kazuma; Takemoto, Yuya; Nakada, Kengo; Ishii, Akira; Sakaguchi, Hiroki

    2014-12-01

    We prepared composite electrodes of iron silicide/Si by using mechanical grinding for mixtures of ferrosilicon and Si followed by gas-deposition, and investigated their electrochemical properties as Li-ion battery anode. With increasing the mechanical grinding time, the phase transformation from FeSi to FeSi2 took place more significantly, and the composite electrode showed better cycle stabilities. There was no remarkable difference in mechanical properties and electronic conductivity between FeSi and FeSi2. On the other hand, the FeSi2 electrode exhibited about three times larger capacities in comparison with the FeSi electrode. In addition, a result of our first principle calculation indicates that Li-ion can diffuse more easily in FeSi2 lattice than in FeSi lattice. It is suggested that the better cyclability of the composite electrodes was attributed to the moderate reactivity of FeSi2 with Li and the smooth Li-ion diffusion in it.

  1. Experimental studies of thermal and chemical interactions between oxide and silicide nuclear fuels with water

    Energy Technology Data Exchange (ETDEWEB)

    farahani, A.A.; Corradini, M.L. [Univ. of Wisconsi, Madison, WI (United States)

    1995-09-01

    Given some transient power/cooling mismatch is a nuclear reactor and its inability to establish the necessary core cooling, energetic fuel-coolant interactions (FCI`s commonly called `vapor explosions`) could occur as a result of the core melting and coolant contact. Although a large number of studies have been done on energetic FCI`s, very few experiments have been performed with the actual fuel materials postulated to be produced in severe accidents. Because of the scarcity of well-characterized FCI data for uranium allows in noncommercial reactors (cermet and silicide fuels), we have conducted a series of experiments to provide a data base for the foregoing materials. An existing 1-D shock-tube facility was modified to handle depleted radioactive materials (U{sub 3}O{sub 8}-Al, and U{sub 3}Si{sub 2}-Al). Our objectives have been to determine the effects of the initial fuel composition and temperature and the driving pressure (triggering) on the explosion work output, dynamic pressures, transient temperatures, and the hydrogen production. Experimental results indicate limited energetics, mainly thermal interactions, for these fuel materials as compared to aluminum where more chemical reactions occur between the molten aluminum and water.

  2. Status of core conversion with LEU silicide fuel in JRR-4

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Teruo; Ohnishi, Nobuaki; Shirai, Eiji [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1997-08-01

    Japan Research Reactor No.4 (JRR-4) is a light water moderated and cooled, 93% enriched uranium ETR-type fuel used and swimming pool type reactor with thermal output of 3.5MW. Since the first criticality was achieved on January 28, 1965, JRR-4 has been used for shielding experiments, radioisotope production, neutron activation analyses, training for reactor engineers and so on for about 30 years. Within the framework of the RERTR Program, the works for conversion to LEU fuel are now under way, and neutronic and thermal-hydraulic calculations emphasizing on safety and performance aspects are being carried out. The design and evaluation for the core conversion are based on the Guides for Safety Design and Evaluation of research and testing reactor facilities in Japan. These results show that the JRR-4 will be able to convert to use LEU fuel without any major design change of core and size of fuel element. LEU silicide fuel (19.75%) will be used and maximum neutron flux in irradiation hole would be slightly decreased from present neutron flux value of 7x10{sup 13}(n/cm{sup 2}/s). The conversion works are scheduled to complete in 1998, including with upgrade of the reactor building and utilization facilities.

  3. The whole-core LEU silicide fuel demonstration in the JMTR

    Energy Technology Data Exchange (ETDEWEB)

    Aso, Tomokazu; Akashi, Kazutomo; Nagao, Yoshiharu [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)] [and others

    1997-08-01

    The JMTR was fully converted to LEU silicide (U{sub 3}Si{sub 2}) fuel with cadmium wires as burnable absorber in January, 1994. The reduced enrichment program for the JMTR was initiated in 1979, and the conversion to MEU (enrichment ; 45%) aluminide fuel was carried out in 1986 as the first step of the program. The final goal of the program was terminated by the present LEU conversion. This paper describes the results of core physics measurement through the conversion phase from MEU fuel core to LEU fuel core. Measured excess reactivities of the LEU fuel cores are mostly in good agreement with predicted values. Reactivity effect and burnup of cadmium wires, therefore, were proved to be well predicted. Control rod worth in the LEU fuel core is mostly less than that in the MEU fuel core. Shutdown margin was verified to be within the safety limit. There is no significant difference in temperature coefficient of reactivity between the MEU and LEU fuel cores. These results verified that the JMTR was successfully and safely converted to LEU fuel. Extension of the operating cycle period was achieved and reduction of spend fuel elements is expected by using the fuel with high uranium density.

  4. The ability of silicide coating to delay the catastrophic oxidation of vanadium under severe conditions

    Science.gov (United States)

    Chaia, N.; Mathieu, S.; Rouillard, F.; Vilasi, M.

    2015-02-01

    V-4Cr-4Ti vanadium alloy is a potential cladding material for sodium-cooled fast-neutron reactors (SFRs). However, its affinity for oxygen and the subsequent embrittlement that oxygen induces causes a need for an oxygen diffusion barrier, which can be obtained by manufacturing a multi-layered silicide coating. The present work aims to evaluate the effects of thermal cycling (using a cyclic oxidation device) and tensile and compressive stresses (using the three-point flexure test) on the coated alloy system. Tests were performed in air up to 1100 °C, which is 200 °C higher than the accidental temperature for SFR applications. The results showed that the VSi2 coating was able to protect the vanadium substrate from oxidation for more than 400 1-h cycles between 1100 °C and room temperature. The severe bending applied to the coated alloy at 950 °C using a load of 75 MPa did not lead to specimen breakage. It can be suggested that the VSi2 coating has mechanical properties compatible with the V-4Cr-4Ti alloy for SFR applications.

  5. Characteristics of high wear resistant Ni-base materials strengthened by precipitation hardening of wolfram silicide

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, Kiyoshi; Ide, Hisayuki; Ishiyama, Takashi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-12-31

    The practical application of Co-base Stellite and Ni base Inconel for reactor core components with high allowable stress levels is considered to be limited by the formation of radioactive cruds and the susceptibility to IASCC respectively. For this view-point, W-silicide strengthened Cr-W-Si Ni-base high wear resistant alloy so-called HWI alloy was newly developed as an alternative material. The chemical composition and the alloy making process were optimized by applying the electron beam purification process and the thermo-mechanical treatment. The mechanical strength higher than it of above commercial alloys was easily obtained by both solid solution hardening and precipitation hardening, because this alloy has the excellent cold and hot workabilities. The irradiation resistance and the corrosion resistance superior than these of above commercial alloys were verified by several laboratory tests of HWI heats. To maintain austenite phase stability at the practical temperature and to enrich oxide former alloying elements were clarified to be the most important means for this alloy development. (author)

  6. Crystal structure of the ternary silicide Gd2Re3Si5

    Directory of Open Access Journals (Sweden)

    Vitaliia Fedyna

    2014-12-01

    Full Text Available A single crystal of the title compound, the ternary silicide digadolinium trirhenium pentasilicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubooctahedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square antiprisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re—Re distance of 2.78163 (5 Å and isolated squares with an Re—Re distance of 2.9683 (6 Å.

  7. Formation of the Thermoelectric Candidate Chromium Silicide by Use of a Pack-Cementation Process

    Science.gov (United States)

    Stathokostopoulos, D.; Chaliampalias, D.; Tarani, E.; Theodorakakos, A.; Giannoulatou, V.; Polymeris, G. S.; Pavlidou, E.; Chrissafis, K.; Hatzikraniotis, E.; Paraskevopoulos, K. M.; Vourlias, G.

    2014-10-01

    Transition-metal silicides are reported to be good candidates for thermoelectric applications because of their thermal and structural stability, high electrical conductivity, and generation of thermoelectric power at elevated temperatures. Chromium disilicide (CrSi2) is a narrow-gap semiconductor and a potential p-type thermoelectric material up to 973 K with a band gap of 0.30 eV. In this work, CrSi2 was formed from Si wafers by use of a two-step, pack-cementation, chemical diffusion method. Several deposition conditions were used to investigate the effect of temperature and donor concentration on the structure of the final products. Scanning electron microscopy and x-ray diffraction analysis were performed for phase identification, and thermal stability was evaluated by means of thermogravimetric measurements. The results showed that after the first step, chromizing, the structure of the products was a mixture of several Cr-Si phases, depending on the donor (Cr) concentration during the deposition process. After the second step, siliconizing, the pure CrSi2 phase was formed as a result of Si enrichment of the initial Cr-Si phases. It was also revealed that this compound has thermoelectric properties similar to those reported elsewhere. Moreover, it was found to have exceptional chemical stability even at temperatures up to 1273 K.

  8. Magnesium silicide nanoparticles as a deoxygenation agent for cancer starvation therapy

    Science.gov (United States)

    Zhang, Chen; Ni, Dalong; Liu, Yanyan; Yao, Heliang; Bu, Wenbo; Shi, Jianlin

    2017-05-01

    A material that rapidly absorbs molecular oxygen (known as an oxygen scavenger or deoxygenation agent (DOA)) has various industrial applications, such as in food preservation, anticorrosion of metal and coal deoxidation. Given that oxygen is vital to cancer growth, to starve tumours through the consumption of intratumoral oxygen is a potentially useful strategy in fighting cancer. Here we show that an injectable polymer-modified magnesium silicide (Mg2Si) nanoparticle can act as a DOA by scavenging oxygen in tumours and form by-products that block tumour capillaries from being reoxygenated. The nanoparticles are prepared by a self-propagating high-temperature synthesis strategy. In the acidic tumour microenvironment, the Mg2Si releases silane, which efficiently reacts with both tissue-dissolved and haemoglobin-bound oxygen to form silicon oxide (SiO2) aggregates. This in situ formation of SiO2 blocks the tumour blood capillaries and prevents tumours from receiving new supplies of oxygen and nutrients.

  9. Comparing the electrical characteristics and reliabilities of BJTs and MOSFETs between Pt and Ti contact silicide processes

    Science.gov (United States)

    Liu, Kaiping; Shang, Ling

    1999-08-01

    The sub-threshold characteristics and the reliability of BJTs, using platinum contact silicide (PtSi) or titanium contact silicide (TiSi2), are compared and analyzed. During processing, it is observed that the TiSi2 process produces higher interface state density (Dit) than the PtSi process. The increase in Dit not only leads to a higher base current in the BJTs, but also leads to a lower transconductance for the MOS transistors. The data also show that the impact on NPN and nMOS is more severe than the impact of PNP and pMOS, respectively. This can be explained by the non-symmetric interface state distribution, the re- activation of boron, and/or by substrate trap centers. The amount of interface states produced depends not only on the thickness of the titanium film deposited, but also on the temperature and duration of the titanium silicide process. The electrical data indicates that after all the Back-End- Of-The-Line processing steps, which includes a forming gas anneal, Dit is still higher on wafers with the TiSi2 transistor's base current increases at different rates between the two processes, but eventually levels off to the same final value. However, the PNP transistor's base current increases at approximately the same rate, but eventually levels off at different final values. These indicate that the TiSi2 process may have modified the silicon and oxygen dangling bond structure during its high temperature process in addition to removing the hydrogen from the passivated interface states.

  10. Orientation relationship between alpha-prime titanium and silicide S2 in alloy Ti-6Al-5Zr-0. 5Mo-0. 25Si

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandra, C.; Singh, V.

    1985-03-01

    Orientation relationships between the silicide S2 and the matrix of alpha-prime platelets are established for the titanium alloy 685 (Ti-6Al-5Zr-0.5Mo-0.25Si), a near-alpha alloy designed for the high-temperature components of jet engines. A stereogram showing the parallel planes of alpha-prime and S2 is presented for the alloy in the water-quenched and aged condition. A table is also presented which lists the parallel planes of the matrix and the silicide along with the misfit parameters. The results obtained are compared with the orientation relationships reported in the literature. 14 references.

  11. Physical properties of ternary silicide superconductors Li2XSi3 (X = Rh, Os): An ab initio study

    Science.gov (United States)

    Alam, M. A.; Zilani, M. A. K.; Parvin, F.; Hadi, M. A.

    2017-08-01

    An ab initio method, based on the plane wave pseudopotential and the generalized gradient approximation (GGA), is performed to investigate the physical properties such as structural, elastic, electronic and bonding properties of newly synthesized Li2RhSi3 and predicted Li2OsSi3 ternary silicide superconductors for the first time. Both of these compounds are mechanically stable and are brittle in nature. They also have good machinability. Electronic band structures reveal that these compounds have metallic characteristics. They possess complex bonding nature (metallic, covalent and ionic). According to theoretical Vickers hardness, Li2RhSi3 is softer than Li2OsSi3.

  12. Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gamble, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation; Mei, Zhi-Gang [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-08-29

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions needs to be well understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U3Si2 at LWR conditions. The fission gas behavior of U3Si2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranular bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U3Si2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U3Si2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U3Si2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.

  13. Rate Theory Modeling and Simulation of Silicide Fuel at LWR Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yinbin [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Ye, Bei [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Hofman, Gerard [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Yacout, Abdellatif [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gamble, Kyle [Idaho National Lab. (INL), Idaho Falls, ID (United States). Fuel Modeling and Simulation; Mei, Zhi-Gang [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-08-29

    As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U3Si2) at LWR conditions need to be well-understood. In this report, rate theory model was developed based on existing experimental data and density functional theory (DFT) calculations so as to predict the fission gas behavior in U3Si2 at LWR conditions. The fission gas behavior of U3Si2 can be divided into three temperature regimes. During steady-state operation, the majority of the fission gas stays in intragranular bubbles, whereas the dominance of intergranular bubbles and fission gas release only occurs beyond 1000 K. The steady-state rate theory model was also used as reference to establish a gaseous swelling correlation of U3Si2 for the BISON code. Meanwhile, the overpressurized bubble model was also developed so that the fission gas behavior at LOCA can be simulated. LOCA simulation showed that intragranular bubbles are still dominant after a 70 second LOCA, resulting in a controllable gaseous swelling. The fission gas behavior of U3Si2 at LWR conditions is benign according to the rate theory prediction at both steady-state and LOCA conditions, which provides important references to the qualification of U3Si2 as a LWR fuel material with excellent fuel performance and enhanced accident tolerance.

  14. [Copper pathology (author's transl)].

    Science.gov (United States)

    Mallet, B; Romette, J; Di Costanzo, J D

    1982-01-30

    Copper is an essential dietary component, being the coenzyme of many enzymes with oxidase activity, e.g. ceruloplasmin, superoxide dismutase, monoamine oxidase, etc. The metabolism of copper is complex and imperfectly known. Active transport of copper through the intestinal epithelial cells involves metallothionein, a protein rich in sulfhydryl groups which also binds the copper in excess and probably prevents absorption in toxic amounts. In hepatocytes a metallothionein facilitates absorption by a similar mechanism and regulates copper distribution in the liver: incorporation in an apoceruloplasmin, storage and synthesis of copper-dependent enzymes. Metallothioneins and ceruloplasmin are essential to adequate copper homeostasis. Apart from genetic disorders, diseases involving copper usually result from hypercupraemia of varied origin. Wilson's disease and Menkes' disease, although clinically and pathogenetically different, are both marked by low ceruloplasmin and copper serum levels. The excessive liver retention of copper in Wilson's disease might be due to increased avidity of hepatic metallothioneins for copper and decreased biliary excretion through lysosomal dysfunction. Menkes' disease might be due to low avidity of intestinal and hepatic metallothioneins for copper. The basic biochemical defect responsible for these two hereditary conditions has not yet been fully elucidated.

  15. Thermal Stability and Growth Behavior of Erbium Silicide Nanowires Self-Assembled on a Vicinal Si(001) Surface

    Institute of Scientific and Technical Information of China (English)

    DING Tao; SONG Jun-Qiang; LI Juan; CAI Qun

    2011-01-01

    Erbium silicide nanowires are self-assembled on vicinal Si(Ool) substrates after electron beam evaporation and post annealing at 63(fC In-situ scanning tunneling microscopy investigations manifest that the nanowires will successively shrink and transform into a nanoisland with annealing prolonged. Meanwhile, a structural transition from hexagonal AIB2 phase to tetragonal ThSi'2 phase is revealed with high-resolution transmission electron microscopy. It is also found that the nanowires gradually expand to embed into the substrates during the growth process, which has much influence on the shape instability of nanowires. Additionally, a multiple deposition-annealing treatment is given as a novel growth method to strengthen the controlled fabrication of nanowires.%@@ Erbium silicide nanowires are self-assembled on vicinal Si(001) substrates after electron beam evaporation and post annealing at 630℃ In-situ scanning tunneling microscopy investigations manifest that the nanowires will successively shrink and transform into a nanoisland with annealing prolonged.Meanwhile, a structural transition from hexagonal AlB phase to tetragonal ThSi phase is revealed with high-resolution transmission electron microscopy.It is also found that the nanowires gradually expand to embed into the substrates during the growth process, which has much influence on the shape instability of nanowires.Additionally, a multiple deposition- annealing treatment is given as a novel growth method to strengthen the controlled fabrication of nanowires.

  16. Effects of nitrogen annealing on surface structure, silicide formation and magnetic properties of ultrathin films of Co on Si(100)

    Indian Academy of Sciences (India)

    Ganesh K Rajan; Shivaraman Ramaswamy; C Gopalakrishnan; D John Thiruvadigal

    2012-02-01

    Effects of nitrogen annealing on structural and magnetic properties of Co/Si (100) up to 700°C has been studied in this paper. Ultrathin Co films having a constant thickness of 50 Å were grown on Si (100) substrates using electron-beam evaporation under very high vacuum conditions at room temperature. Subsequently, the samples were annealed at temperatures ranging from 100–700°C in a nitrogen environment at atmospheric pressure. Sample quality and surface morphology were examined using atomic force microscopy. Silicide formation and the resultant variation in crystallographic arrangement were studied using X-ray diffractometer. The magnetization measurements done using a vibrating sample magnetometer indicate a decrease in coercivity and retentivity values with increase in annealing temperature. Resistivity of the samples measured using a four-point probe set up shows a decrease in resistivity with increase in annealing temperature. Formation of various silicide phases at different annealing temperatures and the resultant variation in the magnetic susceptibility has been thoroughly studied and quantified in this work.

  17. Hot wire chemical vapor deposition: limits and opportunities of protecting the tungsten catalyzer from silicide with a cavity

    Energy Technology Data Exchange (ETDEWEB)

    Frigeri, P.A. [Dept. de Fisica Aplicada i Optica, Universitat de Barcelona, Barcelona-08028 (Spain); Nos, O., E-mail: oriol_nos@ub.ed [Dept. de Fisica Aplicada i Optica, Universitat de Barcelona, Barcelona-08028 (Spain); Ecotecnia (ALSTOM Group) (Spain); Bengoechea, S.; Frevert, C.; Asensi, J.M.; Bertomeu, J. [Dept. de Fisica Aplicada i Optica, Universitat de Barcelona, Barcelona-08028 (Spain)

    2009-04-30

    Hot Wire Chemical Vapor Deposition (HW-CVD) is one of the most promising techniques for depositing the intrinsic microcrystalline silicon layer for the production of micro-morph solar cells. However, the silicide formation at the colder ends of the tungsten wire drastically reduces the lifetime of the catalyzer, thus limiting its industrial exploitation. A simple but interesting strategy to decrease the silicide formation is to hide the electrical contacts of the catalyzer in a long narrow cavity which reduces the probability of the silane molecules to reach the colder ends of the wire. In this paper, the working mechanism of the cavity is elucidated. Measurements of the thickness profile of the silicon deposited in the internal walls of the cavity have been compared with those predicted using a simple diffusion model based on the assumption of Knudsen flow. A lifetime study of the protected and unprotected wires has been carried out. The different mechanisms which determine the deterioration of the catalyzer have been identified and discussed.

  18. Silicide induced surface defects in FePt nanoparticle fcc-to-fct thermally activated phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shu; Lee, Stephen L. [School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS (United Kingdom); André, Pascal, E-mail: pjpandre@riken.jp [School of Physics and Astronomy, SUPA, University of St Andrews, St Andrews KY16 9SS (United Kingdom); RIKEN, Wako 351-0198 (Japan); Department of Physics, CNRS-Ewha International Research Center (CERC), Ewha W. University, Seoul 120-750 (Korea, Republic of)

    2016-11-01

    Magnetic nanoparticles (MnPs) are relevant to a wide range of applications including high density information storage and magnetic resonance imaging to name but a few. Among the materials available to prepare MnPs, FePt is attracting growing attention. However, to harvest the strongest magnetic properties of FePt MnPs, a thermal annealing is often required to convert face-centered cubic as synthesized nPs into its tetragonal phase. Rarely addressed are the potential side effects of such treatments on the magnetic properties. In this study, we focus on the impact of silica shells often used in strategies aiming at overcoming MnP coalescence during the thermal annealing. While we show that this shell does prevent sintering, and that fcc-to-fct conversion does occur, we also reveal the formation of silicide, which can prevent the stronger magnetic properties of fct-FePt MnPs from being fully realised. This report therefore sheds lights on poorly investigated and understood interfacial phenomena occurring during the thermal annealing of MnPs and, by doing so, also highlights the benefits of developing new strategies to avoid silicide formation.

  19. [Copper IUDs (author's transl)].

    Science.gov (United States)

    Thiery, M

    1983-10-01

    Following initial development of the Grafenberg ring in the 1920's, IUDs fell into disuse until the late 1950s, when plastic devices inserted using new technology began to gain worldwide acceptance. Further research indicated that copper had a significant antifertility effect which increased with increasing surface area, and several copper IUDs were developed and adapted, including the Copper T 200, the Copper T 220C, and the Copper T 380 A, probably the most effective yet. The Gravigard and Multiload are 2 other copper devices developed according to somewhat different principles. Copper devices are widely used not so much because of their great effectiveness as because of their suitability for nulliparous patients and their ease of insertion, which minimizes risk of uterine perforation. Records of 2584 women using Copper IUDs for 7190 women-years and 956 women using devices without copper for 6059 women-years suggest that the copper devices were associated with greater effectiveness and fewer removals for complications. Research suggests that the advantages of copper IUDs become more significant with increased duration of use. Contraindications to copper devices include allergy to copper and hepatolenticular degeneration. No carcinogenic or teratogenic effect of copper devices has been found, but further studies are needed to rule out other undesirable effects. Significant modifications of copper devices in recent years have been developed to increase their effectiveness, prolong their duration of usefulness, facilitate insertion and permit insertion during abortion or delivery. The upper limit of the surface area of copper associated with increased effectiveness appears to be between 200-300 sq mm, and at some point increases in copper exposure may provoke expulsion of the IUD. The duration of fertility inhibition of copper IUDs is usually estimated at 2-3 years, but recent research indicates that it may be 6-8 years, and some devices may retain copper surface

  20. Influence of layout parameters on snapback characteristic for a gate-grounded NMOS device in 0.13-μm silicide CMOS technology

    Institute of Scientific and Technical Information of China (English)

    Jiang Yuxi; Li Jiao; Ran Feng; Cao Jialin; Yang Dianxiong

    2009-01-01

    r of the GGNMOS devices under high ESD current stress, and design area-efficient ESD protection circuits to sustain the required ESD level.Optimized layout rules for ESD protection in 0.13-μm silicide CMOS technology are also presented.

  1. The role of composition and microstructure in Ni-W silicide formation and low temperature epitaxial NiSi2 growth by premixing Si

    Science.gov (United States)

    Schrauwen, A.; Van Stiphout, K.; Demeulemeester, J.; De Schutter, B.; Devulder, W.; Comrie, C. M.; Detavernier, C.; Temst, K.; Vantomme, A.

    2017-02-01

    We report on an extensive and detailed study of the silicide reaction of Ni-W alloys on Si(1 0 0). The solid phase reaction when studied over the full composition range reveals the substantial impact of composition and microstructure on the silicide reaction properties, such as the phase formation sequence and formation temperatures. It was found that the microstructure of the as-deposited film depends crucially on the alloy composition, being polycrystalline below 45 at.% W and amorphous above 45 at.% W. The microstructure affects the elemental mobility substantially, resulting in a drastic increase in the silicide reaction temperature in the case of an amorphous thin film. To further investigate the effect of elemental mobility, Si was premixed in the as-deposited alloy, thereby excluding the need for long-range diffusion. As a result, the silicide reaction temperatures were lowered. However, what was more striking was the observation of a bilayer structure for epitaxial NiSi2 in contact with the Si substrate and a W-rich layer residing at the outermost layer at a temperature of only 300 °C. The results stress the importance of the composition and crystalline nature of the as-deposited film, with these being decisive for the reaction sequence.

  2. High-temperature thermochemistry of transition metal borides, silicides and related compounds. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Klemppa, Ole J.

    2000-10-01

    Earlier this year in collaboration with Dr. Susan V. Meschel we prepared a major review paper which gives a comprehensive summary of what our laboratory has accomplished with support from DOE. This paper is No.43 in the List of Publications provided. It was presented to TMS at its National Meeting in Nashville, TN last March. A copy of the manuscript of this paper was recently mailed to DOE. It has been submitted for publication in Journal of Alloys and Compounds. This review paper summarizes our observed trends in the enthalpies of formation of TR-X and RE-X compounds (where X is a IIIB or IVB element) in their dependence of the atomic number of the transition metal (TR) and the lanthanide metal (RE). In this paper our measured enthalpies of formation for each alloy family are compared for the 3d, 4d and 5d transition metal elements. We also compare our experimental results with predicted values based on Miedema's semi-empirical model. Data are presented for the carbides, silicides, germanides and stannides in Group IVB, and for the borides and aluminides in Group IIIB. During the past year (1999-2000) we have extended our work to compounds of the 3d, 4d and 5d elements with gallium (see papers No.40, No.41, and No.45 in the List of Publications). Fig. 1 (taken from No.45) presents a systematic picture of our experimental values for the most exothermic gallide compounds formed with the transition elements. This figure is characteristic of the other systematic pictures which we have found for the two other IIIB elements which we have studied and for the four IVB elements. These figures are all presented in Ref. No.43. This paper also illustrates how the enthalpy of formation of compounds of the IIIB and IVB elements with the lanthanide elements (with the exception of Pm, Eu and Yb) depend on the atomic number of RE. Finally our results for the RE-X compounds are compared with the predictions of Gschneidner (K.A. Gschneidner, Jr., J. Less Common Metals 17, 1

  3. Synthesis and characterization of the structural and magnetic properties of new uranium and copper-based silicides and germanides: study of the physical and hydridation properties of some compounds belonging to the Gd-Ni-X systems, where X = Ga, Al, Sn; Synthese et caracterisation des proprietes structurales et magnetiques de nouveaux siliciures et germaniures a base d'uranium et de cuivre: etude des proprietes physiques et d'hydruration de quelques composes appartenant aux systemes Gd-Ni-X ou X = Ga, Al, Sn

    Energy Technology Data Exchange (ETDEWEB)

    Pechev, St

    1998-07-01

    Three novel phases, U{sub 3}Cu{sub 4}Si{sub 4}, U{sub 3}Cu{sub 4}Ge{sub 4} and UCuGe{sub 1,77}, were prepared in the U - Cu - X (X = Si or Ge) ternary system. Their structural and magnetic properties were investigated. The magnetic structures of the first two compounds were determined by neutron diffraction. Structural and magnetic behaviour transitions occur as copper substitutes silicon atoms in the UCu{sub x}Si{sub 2-x} (0,28 {<=} x {<=} 0,96) solid solution. Thus, the structure of the compositions changes in the {alpha}-ThSi{sub 2}(tetragonal) {yields} AlB{sub 2}(hexagonal) {yields} Ni{sub 2}In(hexagonal) sequence while a transition from a nonmagnetic to ferromagnetic then antiferromagnetic behaviour is observed. The magnetic properties of the different compositions are governed by a Kondo - RKKY -type interactions competition. Crystallographic disorder and magnetic frustrations are at the origin of a spin glass state between the ferro- and antiferromagnetic areas. The investigations of the GdNi{sub 3}X{sub 2} (X =Ga, Al, Sn) compounds revealed that their structural and magnetic properties are strongly dependent on the nature of the X element as well as the on thermal treatment. A CaCu{sub 5} {yields} HoNi{sub 2,6}Ga{sub 2,4} - type structure transition and a ferro - to antiferromagnetic behaviour evolution are favoured by the increase of the X - atom size. A commensurate modulated crystal structure (described also as a a{sub HoNi{sub 2,6}}{sub Ga{sub 2,4}} x a{sub HoNi{sub 2,6}}{sub Ga{sub 2,4}} x 2c{sub HoNi{sub 2,6}}{sub Ga{sub 2,4}}-type superstructure) has been observed for GdNi{sub 3}Al{sub 2}. Hydrogen absorption in Gd{sub 3}Ni{sub 6}Al{sub 2} and GdNi{sub 3}Al{sub 2} weakens the strength of the magnetic interactions. (author)

  4. Handling of Copper and Copper Oxide Nanoparticles by Astrocytes.

    Science.gov (United States)

    Bulcke, Felix; Dringen, Ralf

    2016-02-01

    Copper is an essential trace element for many important cellular functions. However, excess of copper can impair cellular functions by copper-induced oxidative stress. In brain, astrocytes are considered to play a prominent role in the copper homeostasis. In this short review we summarise the current knowledge on the molecular mechanisms which are involved in the handling of copper by astrocytes. Cultured astrocytes efficiently take up copper ions predominantly by the copper transporter Ctr1 and the divalent metal transporter DMT1. In addition, copper oxide nanoparticles are rapidly accumulated by astrocytes via endocytosis. Cultured astrocytes tolerate moderate increases in intracellular copper contents very well. However, if a given threshold of cellular copper content is exceeded after exposure to copper, accelerated production of reactive oxygen species and compromised cell viability are observed. Upon exposure to sub-toxic concentrations of copper ions or copper oxide nanoparticles, astrocytes increase their copper storage capacity by upregulating the cellular contents of glutathione and metallothioneins. In addition, cultured astrocytes have the capacity to export copper ions which is likely to involve the copper ATPase 7A. The ability of astrocytes to efficiently accumulate, store and export copper ions suggests that astrocytes have a key role in the distribution of copper in brain. Impairment of this astrocytic function may be involved in diseases which are connected with disturbances in brain copper metabolism.

  5. Canine models of copper toxicosis for understanding mammalian copper metabolism

    OpenAIRE

    Fieten, Hille; Leegwater, Peter A. J.; Watson, Adrian L.; Rothuizen, Jan

    2011-01-01

    Hereditary forms of copper toxicosis exist in man and dogs. In man, Wilson’s disease is the best studied disorder of copper overload, resulting from mutations in the gene coding for the copper transporter ATP7B. Forms of copper toxicosis for which no causal gene is known yet are recognized as well, often in young children. Although advances have been made in unraveling the genetic background of disorders of copper metabolism in man, many questions regarding disease mechanisms and copper homeo...

  6. Physical, Mechanical, and Structural Properties of Highly Efficient Nanostructured n- and p-Silicides for Practical Thermoelectric Applications

    Science.gov (United States)

    Gelbstein, Yaniv; Tunbridge, Jonathan; Dixon, Richard; Reece, Mike J.; Ning, Huanpo; Gilchrist, Robert; Summers, Richard; Agote, Iñigo; Lagos, Miguel A.; Simpson, Kevin; Rouaud, Cedric; Feulner, Peter; Rivera, Sergio; Torrecillas, Ramon; Husband, Mark; Crossley, Julian; Robinson, Ivan

    2014-06-01

    Cost-effective highly efficient nanostructured n-type Mg2Si1- x Sn x and p-type higher manganese silicide (HMS) compositions were prepared for the development of practical waste heat generators for automotive and marine thermoelectric applications, in the frame of the European Commission (EC)-funded PowerDriver project. The physical, mechanical, and structural properties were fully characterized as part of a database-generation exercise required for the thermoelectric converter design. A combination of high maximal ZT values of ˜0.6 and ˜1.1 for the HMS and Mg2Si1- x Sn x compositions, respectively, and adequate mechanical properties was obtained.

  7. Hair copper in intrauterine copper device users.

    Science.gov (United States)

    Thiery, M; Heyndrickx, A; Uyttersprot, C

    1984-03-01

    The antifertility effect of copper-bearing IUDs is based on continuous release of copper, which is a result of the reaction between the metal and the uterine secretions. Released cupric ions collect in the endometrium and in the uterine fluid but significant accumulation has not been found in the bloodstream or elsewhere. Following Laker's suggestion that hair be used for monitoring essential trace elements, e.g., copper, we checked the copper content of the hair of women wearing copper-bearing IUDs. Samples of untreated pubic hair removed by clipping before diagnostic curettage were obtained from 10 young (24-34 years old), white caucasian females who until then had been wearing an MLCu250 IUD for more than 1 year. Pubes from 10 comparable (sex, age, race) subjects who had never used a Cu-containing device served as controls. The unwashed material was submitted to the toxicology laboratory, where the copper content was assessed by flameless atomic absorption, a technique whose lower limit of measurement lies at a concentration of 0.05 mcg Cu/ml fluid (50 ppb). Hair samples were washed to remove extraneous traces of metal according to the prescriptions of the International Atomic Energy Agency, weighed, and mineralized, after which a small volume (10 mcl) of the diluted fluid was fed into the graphite furnace. Each sample (75-150 mg) was analyzed 4 times, both before and after washing. Since the cleaning procedure reduces the weight of the sample (mainly by the removal of fat, dust, etc.) this explains why the percentage copper content of washed hair is higher than that of unwashed hair belonging to the same subject. The results indicate that there was no significant difference (Mann-Whitney U test) between the mean copper levels of both unwashed and washed pubes from women who were using or had never used an MLCu250 IUD. We therefore conclude that the use of this copper-containing device is not associated with significant accumulation of copper in (pubic) hair.

  8. China Copper Processing Industry Focus

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>1. Market Consumption The ’China Factor’ and Copper Price Fluctuation We all know China is an enormous consumer of copper,but the exact levels of consumption and where the copper has gone remains a mystery.

  9. Reaction path and crystallograpy of cobalt silicide formation on silicon(001) by reaction deposition epitaxy

    Science.gov (United States)

    Lim, Chong Wee

    CaF2-structure CoSi2 layers were formed on Si(001) by reactive deposition epitaxy (RDE) and compared with CoSi2 layers obtained by conventional solid phase growth (SPG). In the case of RDE, CoSi 2 formation occurred during Co deposition at elevated temperature while for SPG, Co was deposited at 25°C and silicidation took place during subsequent annealing. My results demonstrate that RDE CoSi2 layers are epitaxial with a cube-on-cube relationship, 001CoSi2 ‖001Si and 100CoSi2 ‖100 Si . In contrast, SPG films are polycrystalline with a mixed 111/002/022/112 orientation. I attribute the striking difference to rapid Co diffusion during RDE for which the high Co/Si reactivity gives rise to a flux-limited reaction resulting in the direct formation of the disilicide phase. Initial formation of CoSi2(001) follows the Volmer-Weber mode with two families of island shapes: inverse pyramids and platelets. The rectangular-based pyramidal islands extend along orthogonal directions, bounded by four {111} CoSi2/Si interfaces, and grow with a cube-on-cube orientation with respect to Si(001). Platelet-shaped islands are bounded across their long directions by {111} twin planes and their narrow directions by 511CoSi2 ‖111Si interfaces. The top and bottom surfaces are {22¯1}, with 22¯1 CoSi2‖001 Si , and {1¯1¯1}, with 1¯1¯ 1CoSi2‖ 11¯1Si , respectively. The early stages of film growth (tCo ≤ 13 A) are dominated by the twinned platelets due to a combination of higher nucleation rates and rapid elongation along preferred directions. However, at tCo ≥ 13 A, island coalescence becomes significant as orthogonal platelets intersect and block elongation along fast growth directions. Further island growth becomes dominated by the untwinned islands. I show that high-flux low-energy Ar+ ion irradiation during RDE growth dramatically increases the area fraction of untwinned regions from 0.17 in films grown under standard magnetically balanced conditions in which the ratio

  10. Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications.

    Science.gov (United States)

    Rubilar, Olga; Rai, Mahendra; Tortella, Gonzalo; Diez, Maria Cristina; Seabra, Amedea B; Durán, Nelson

    2013-09-01

    Copper nanoparticles have been the focus of intensive study due to their potential applications in diverse fields including biomedicine, electronics, and optics. Copper-based nanostructured materials have been used in conductive films, lubrification, nanofluids, catalysis, and also as potent antimicrobial agent. The biogenic synthesis of metallic nanostructured nanoparticles is considered to be a green and eco-friendly technology since neither harmful chemicals nor high temperatures are involved in the process. The present review discusses the synthesis of copper nanostructured nanoparticles by bacteria, fungi, and plant extracts, showing that biogenic synthesis is an economically feasible, simple and non-polluting process. Applications for biogenic copper nanoparticles are also discussed.

  11. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  12. Coping with copper

    DEFF Research Database (Denmark)

    Nunes, Ines; Jacquiod, Samuel; Brejnrod, Asker

    2016-01-01

    Copper has been intensively used in industry and agriculture since mid-18(th) century and is currently accumulating in soils. We investigated the diversity of potential active bacteria by 16S rRNA gene transcript amplicon sequencing in a temperate grassland soil subjected to century-long exposure......, suggesting a potential promising role as bioindicators of copper contamination in soils....

  13. Vertically grown multiwalled carbon nanotube anode and nickel silicide integrated high performance microsized (1.25 μl) microbial fuel cell

    KAUST Repository

    Mink, Justine E.

    2012-02-08

    Microbial fuel cells (MFCs) are an environmentally friendly method for water purification and self-sustained electricity generation using microorganisms. Microsized MFCs can also be a useful power source for lab-on-a-chip and similar integrated devices. We fabricated a 1.25 μL microsized MFC containing an anode of vertically aligned, forest type multiwalled carbon nanotubes (MWCNTs) with a nickel silicide (NiSi) contact area that produced 197 mA/m 2 of current density and 392 mW/m 3 of power density. The MWCNTs increased the anode surface-to-volume ratio, which improved the ability of the microorganisms to couple and transfer electrons to the anode. The use of nickel silicide also helped to boost the output current by providing a low resistance contact area to more efficiently shuttle electrons from the anode out of the device. © 2012 American Chemical Society.

  14. Behavior of silicon in nitric media. Application to uranium silicides fuels reprocessing; Comportement du silicium en milieu nitrique. Application au retraitement des combustibles siliciures d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Cheroux, L

    2001-07-01

    Uranium silicides are used in some research reactors. Reprocessing them is a solution for their cycle end. A list of reprocessing scenarios has been set the most realistic being a nitric dissolution close to the classic spent fuel reprocessing. This uranium silicide fuel contains a lot of silicon and few things are known about polymerization of silicic acid in concentrated nitric acid. The study of this polymerization allows to point out the main parameters: acidity, temperature, silicon concentration. The presence of aluminum seems to speed up heavily the polymerization. It has been impossible to find an analytical technique smart and fast enough to characterize the first steps of silicic acid polymerization. However the action of silicic species on emulsions stabilization formed by mixing them with an organic phase containing TBP has been studied, Silicon slows down the phase separation by means of oligomeric species forming complex with TBP. The existence of these intermediate species is short and heating can avoid any stabilization. When non irradiated uranium silicide fuel is attacked by a nitric solution, aluminum and uranium are quickly dissolved whereas silicon mainly stands in solid state. That builds a gangue of hydrated silica around the uranium silicide particulates without preventing uranium dissolution. A small part of silicon passes into the solution and polymerize towards the highly poly-condensed forms, just 2% of initial silicon is still in molecular form at the end of the dissolution. A thermal treatment of the fuel element, by forming inter-metallic phases U-Al-Si, allows the whole silicon to pass into the solution and next to precipitate. The behavior of silicon in spent fuels should be between these two situations. (author)

  15. Characteristics of a nickel thin film and formation of nickel silicide by using remote plasma atomic layer deposition with Ni( i Pr-DAD)2

    Science.gov (United States)

    Kim, Jinho; Jang, Woochool; Park, Jingyu; Jeon, Heeyoung; Kim, Hyunjung; Yuh, Junhan; Jeon, Hyeongtag

    2015-03-01

    In this study, the characteristics of nickel thin film deposited by remote plasma atomic layer deposition (RPALD) on p-type Si substrate and formation of nickel silicide using rapid thermal annealing were determined. Bis(1,4-di-isopropyl-1,3-diazabutadienyl)nickel, Ni(iPr-DAD)2, was used as a Ni precursor and ammonia plasma was used as a reactant. This was the first attempt to deposit Ni thin film using Ni(iPr-DAD)2 as a precursor for the ALD process. The RPALD Ni film was deposited with a growth rate of around 2.2{\\AA}/cycle at 250 {\\deg}C and showed significant low resistivity of 33 {\\mu}{\\Omega}cm with a total impurity concentration of around 10 at. %.The impurities of the thin film, carbon and nitrogen, were existent by the forms of C-C and C-N in a bonding state. The impurities removal tendency was investigated by comparing of experimental conditions, namely process temperature and pressure. Nitrogen impurity was removed by thermal desorption during each ALD cycle and carbon impurity was reduced by the optimizing of the process pressure which is directly related with a mean free path of NH3 plasma. After Ni deposition, nickel silicide was formed by RTA in a vacuum ambient for 1 minute. A nickel silicide layer from ALD Ni and PVD Ni was compared at the annealing temperature from 500 to 900 {\\deg}C. NiSi from ALD Ni showed better thermal stability due to the contribution of small amounts of carbon and nitrogen in the asdeposited Ni thin film. Degradation of the silicide layer was effectively suppressed with a use of ALD Ni.

  16. Kunpeng Copper:The largest Copper Smelting Company of Sichuan

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>On September 9,Liangshan Mining Company’s 100,000 tons/year cathode copper project kicked off.It is another key project of the company following the successful launch of the 100,000 tons/year anode copper project.Based on ISA copper smelting technology of the largest open-cast copper mine in southwest China,

  17. Simultaneous aluminizing and chromizing of steels to form (Fe,Cr){sub 3}Al coatings and Ge-doped silicide coatings of Cr-Zr base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, M.; He, Y.R.; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States). Dept. of Materials Science and Engineering

    1997-12-01

    A halide-activated cementation pack involving elemental Al and Cr powders has been used to achieve surface compositions of approximately Fe{sub 3}Al plus several percent Cr for low alloy steels (T11, T2 and T22) and medium carbon steel (1045 steel). A two-step treatment at 925 C and 1150 C yields the codeposition and diffusion of aluminum and chromium to form dense and uniform ferrite coatings of about 400 {micro}m thickness, while preventing the formation of a blocking chromium carbide at the substrate surfaces. Upon cyclic oxidation in air at 700 C, the coated steel exhibits a negligible 0.085 mg/cm{sup 2} weight gain for 1900 one-hour cycles. Virtually no attack was observed on coated steels tested at ABB in simulated boiler atmospheres at 500 C for 500 hours. But coatings with a surface composition of only 8 wt% Al and 6 wt% Cr suffered some sulfidation attack in simulated boiler atmospheres at temperatures higher than 500 C for 1000 hours. Two developmental Cr-Zr based Laves phase alloys (CN129-2 and CN117(Z)) were silicide/germanide coated. The cross-sections of the Ge-doped silicide coatings closely mimicked the microstructure of the substrate alloys. Cyclic oxidation in air at 1100 C showed that the Ge-doped silicide coating greatly improved the oxidation resistance of the Cr-Zr based alloys.

  18. Atomically precise self-organization of perfectly ordered gadolinium–silicide nanomeshes controlled by anisotropic electromigration-induced growth on Si(1 1 0)-16 × 2 surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Ie-Hong, E-mail: ihhong@mail.ncyu.edu.tw [Department of Electrophysics, National Chiayi University, Chiayi 60004, Taiwan (China); Institute of Optoelectronics and Solid State Electronics, National Chiayi University, Chiayi 60004, Taiwan (China); Chen, Tsung-Ming; Tsai, Yung-Feng [Institute of Optoelectronics and Solid State Electronics, National Chiayi University, Chiayi 60004, Taiwan (China)

    2015-09-15

    Highlights: • This work provides a clear understanding of the template-directed self-organization mechanism of a perfectly ordered Gd-silicide nanomesh on a double-domain Si(1 1 0)-16 × 2 and identifies that the anisotropic electromigration is the driving force governing the two-dimensional self-ordering of the atomically precise silicide nanomesh. • The ability to self-organize a variety of the perfectly ordered silicide nanomeshes on Si(1 1 0) with atomic precision represents a promising route for the optimal bottom-up fabrication of well-defined crossbar nanocircuits, which opens the possibility for their utilizations in crossbar nanoarchitectures and Si-based magnetoelectronic nanodevices. - Abstract: Detailed scanning tunneling microscopy and spectroscopy (STM and STS) studies for the effects of thermal migration and electromigration on the growth of gadolinium–silicide nanomeshes on double-domain Si(1 1 0)-16 × 2 surfaces are presented to identify the driving force for the self-organization of a perfectly ordered silicide nanomesh on Si(1 1 0). STM results clearly show that the anisotropic electromigration effect is crucial for the control of the spatial uniformity of a self-ordered silicide nanomesh on Si(1 1 0). This two-dimensional self-ordering driven by the anisotropic-electromigration-induced growth allows the sizes and positions of crossed nanowires to be precisely controlled within a variation of ±0.2 nm over a mesoscopic area, and it can be straightforwardly applied to other metals (e.g., Au and Ce) to grow a variety of highly regular silicide nanomeshes for the applications as nanoscale interconnects. Moreover, the STS results show that the anisotropic electromigration-induced growth causes the metallic horizontal nanowires to cross over the semiconducting oblique nanowires, which opens the possibility for the atomically precise bottom-up fabrication of well-defined crossbar nanoarchitectures.

  19. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level. Th

  20. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  1. [Copper and the human body].

    Science.gov (United States)

    Krízek, M; Senft, V; Motán, J

    1997-11-19

    Copper is one of the essential trace elements. It is part of a number of enzymes. Deficiency of the element is manifested by impaired haematopoesis, bone metabolism, disorders of the digestive, cardiovascular and nervous system. Deficiency occurs in particular in patients suffering from malnutrition, malabsorption, great copper losses during administration of penicillamine. Sporadically copper intoxications are described (suicidal intentions or accidental ingestion of beverages with a high copper content). Acute exposure to copper containing dust is manifested by metal fume fever. Copper salts can produce local inflammations. Wilson's disease is associated with inborn impaired copper metabolism. In dialyzed patients possible contaminations of the dialyzate with copper must be foreseen as well as the possible release of copper from some dialyzation membranes. With the increasing amount of copper in the environment it is essential to monitor the contamination of the environment.

  2. Targeting copper in cancer therapy: 'Copper That Cancer'.

    Science.gov (United States)

    Denoyer, Delphine; Masaldan, Shashank; La Fontaine, Sharon; Cater, Michael A

    2015-11-01

    Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.

  3. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  4. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  5. Production Cycle for Large Scale Fission Mo-99 Separation by the Processing of Irradiated LEU Uranium Silicide Fuel Element Targets

    Directory of Open Access Journals (Sweden)

    Abdel-Hadi Ali Sameh

    2013-01-01

    Full Text Available Uranium silicide fuels proved over decades their exceptional qualification for the operation of higher flux material testing reactors with LEU elements. The application of such fuels as target materials, particularly for the large scale fission Mo-99 producers, offers an efficient and economical solution for the related facilities. The realization of such aim demands the introduction of a suitable dissolution process for the applied U3Si2 compound. Excellent results are achieved by the oxidizing dissolution of the fuel meat in hydrofluoric acid at room temperature. The resulting solution is directly behind added to an over stoichiometric amount of potassium hydroxide solution. Uranium and the bulk of fission products are precipitated together with the transuranium compounds. The filtrate contains the molybdenum and the soluble fission product species. It is further treated similar to the in-full scale proven process. The generated off gas stream is handled also as experienced before after passing through KOH washing solution. The generated alkaline fluoride containing waste solution is noncorrosive. Nevertheless fluoride can be selectively bonded as in soluble CaF2 by addition of a mixture of solid calcium hydroxide calcium carbonate to the sand cement mixture used for waste solidification. The generated elevated amounts of LEU remnants can be recycled and retargeted. The related technology permits the minimization of the generated fuel waste, saving environment, and improving processing economy.

  6. Crystal Structure and Thermoelectric Properties of Lightly Vanadium-Substituted Higher Manganese Silicides (Mn1-x V x )Si γ )

    Science.gov (United States)

    Miyazaki, Yuzuru; Hamada, Haruki; Hayashi, Kei; Yubuta, Kunio

    2016-09-01

    To further enhance the thermoelectric (TE) properties of higher manganese silicides (HMSs), dissipation of layered precipitates of MnSi phase as well as optimization of hole carrier concentration are critical. We have prepared a lightly vanadium-substituted solid solution of HMS, (Mn1-x V x )Si γ , by a melt growth method. A 2% substitution of manganese with vanadium is found to dissipate MnSi precipitates effectively, resulting in a substantial increase in the electrical conductivity from 280 S/cm to 706 S/cm at 800 K. The resulting TE power factor reaches 2.4 mW/K2-m at 800 K, more than twice that of the V-free sample. The total thermal conductivity did not change significantly with increasing x owing to a reduction of the lattice contribution. As a consequence, the dimensionless figure of merit zT of the melt-grown samples increased from 0.26 ± 0.01 for x = 0 to 0.59 ± 0.01 for x = 0.02 at around 800 K.

  7. Oxidation and interdiffusion behavior of a germanium-modified silicide coating on an Nb-Si-based alloy

    Science.gov (United States)

    Li, Jin-long; Wang, Wan; Zhou, Chun-gen

    2017-03-01

    To investigate the interdiffusion behavior of Ge-modified silicide coatings on an Nb-Si-based alloy substrate, the coating was oxidized at 1250°C for 5, 10, 20, 50, or 100 h. The interfacial diffusion between the (Nb,X)(Si,Ge)2 (X = Ti, Cr, Hf) coating and the Nb-Si based alloy was also examined. The transitional layer is composed of (Ti,Nb)5(Si,Ge)4 and a small amount of (Nb,X)5(Si,Ge)3. With increasing oxidation time, the thickness of the transitional layer increases because of the diffusion of Si from the outer layer to the substrate, which obeys a parabolic rate law. The parabolic growth rate constant of the transitional layer under oxidation conditions is 2.018 μm·h-1/2. Moreover, the interdiffusion coefficients of Si in the transitional layer were determined from the interdiffusion fluxes calculated directly from experimental concentration profiles.

  8. Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2015-01-01

    Standard Specification for Copper-Aluminum-Silicon-Cobalt Alloy, Copper-Nickel-Silicon-Magnesium Alloy, Copper-Nickel-Silicon Alloy, Copper-Nickel-Aluminum-Magnesium Alloy, and Copper-Nickel-Tin Alloy Sheet and Strip

  9. Copper and Copper Proteins in Parkinson’s Disease

    OpenAIRE

    Sergio Montes; Susana Rivera-Mancia; Araceli Diaz-Ruiz; Luis Tristan-Lopez; Camilo Rios

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased pr...

  10. Jiangxi Copper Plans to Increase its Refined Copper Output

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>According to news published on March 30th, China’s largest copper producer--Jiangxi Copper alleged in its 2010 Financial Report Statement that it plans to improve its output of refined copper by 4.4% in 2011, to increase from 900,000 tonnes last year to 940,000 tons.

  11. [Copper metabolism and genetic disorders].

    Science.gov (United States)

    Shimizu, Norikazu

    2016-07-01

    Copper is one of essential trace elements. Copper deficiency lead to growth and developmental failure and/or neurological dysfunction. However, excess copper is also problems for human life. There are two disorders of inborn error of copper metabolism, Menkes disease and Wilson disease. Menkes disease is an X linked recessive disorder with copper deficiency and Wilson disease is an autosomal recessive disorder with copper accumulation. These both disorders result from the defective functioning of copper transport P-type ATPase, ATP7A of Menkes disease and ATP7B of Wilson disease. In this paper, the author describes about copper metabolism of human, and clinical feature, diagnosis and treatment of Menkes disease and Wilson disease.

  12. Structural, elastic, electronic properties and stability trends of 1111-like silicide arsenides and germanide arsenides MCuXAs (M = Ti, Zr, Hf; X = Si, Ge) from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Bannikov, V.V.; Shein, I.R. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg (Russian Federation); Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620990 Ekaterinburg (Russian Federation)

    2012-08-25

    Highlights: Black-Right-Pointing-Pointer Silicide arsenides and germanide arsenides of Ti, Zr, Hf are probed from first principles. Black-Right-Pointing-Pointer Structural, elastic, electronic properties and stability trends are evaluated. Black-Right-Pointing-Pointer Bulk moduli of HfCuSiAs and HfCuGeAs are the largest among all 1111-like phases. Black-Right-Pointing-Pointer Chemical bonding is analyzed. - Abstract: The tetragonal (s.g. I4/nmm; no. 129) silicide arsenide ZrCuSiAs is well known as a structural type of the broad family of so-called 1111-like quaternary phases which includes now more than 150 representatives. These materials demonstrate a rich variety of outstanding physical properties (from p-type transparent semiconductors to high-temperature Fe-based superconductors) and attracted a great interest as promising candidates for a broad range of applications. At the same time, the data about the electronic and elastic properties of the ZrCuSiAs phase itself, as well as of related silicide arsenides and germanide arsenides are still very limited. Here for a series of six isostructural and isoelectronic 1111-like phases which includes both synthesized (ZrCuSiAs, HfCuSiAs, ZrCuGeAs, and HfCuGeAs) and hypothetical (TiCuSiAs and TiCuGeAs) materials, systematical studies of their structural, elastic, electronic properties and stability trends are performed by means of first-principles calculations.

  13. Chinese Copper Manufacturers Expand Overseas

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>In 2012,China’s apparent copper consumption reached 8.84 million tons,accounting for 43%of the global total demand.Spurred by strong demand,China’s copper smelting capacity roars with annual average growth in domestic copper smelting capacity reaching approx-

  14. Fabrication and Characterization of Metallic Copper and Copper Oxide Nanoflowers

    Directory of Open Access Journals (Sweden)

    *H. S. Virk

    2011-12-01

    Full Text Available Copper nanoflowers have been fabricated using two different techniques; electro-deposition of copper in polymer and anodic alumina templates, and cytyltrimethal ammonium bromide (CTAB-assisted hydrothermal method. Scanning Electron Microscope (SEM images record some interesting morphologies of metallic copper nanoflowers. Field Emission Scanning Electron Microscope (FESEM has been used to determine morphology and composition of copper oxide nanoflowers. X-ray diffraction (XRD pattern reveals the monoclinic phase of CuO in the crystallographic structure of copper oxide nanoflowers. There is an element of random artistic design of nature, rather than science, in exotic patterns of nanoflowers fabricated in our laboratory.

  15. Improvement of the thermal stability of nickel silicide using a ruthenium interlayer deposited via remote plasma atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Inhye [Department of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea and System LSI Manufacturing Operation Center, Samsung Electronics Co., Ltd, Gyeonggi-do 17113 (Korea, Republic of); Park, Jingyu; Jeon, Heeyoung; Kim, Hyunjung; Shin, Changhee [Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Shin, Seokyoon; Lee, Kunyoung [Department of Materials Science and Engineering, Hanyang University, Seoul 04763 (Korea, Republic of); Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea and Department of Nano-scale Semiconductor Engineering, Hanyang University, Seoul 04763 (Korea, Republic of)

    2016-05-15

    In this study, the effects of a thin Ru interlayer on the thermal and morphological stability of NiSi have been investigated. Ru and Ni thin films were deposited sequentially to form a Ni/Ru/Si bilayered structure, without breaking the vacuum, by remote plasma atomic layer deposition (RPALD) on a p-type Si wafer. After annealing at various temperatures, the thermal stabilities of the Ni/Ru/Si and Ni/Si structures were investigated by various analysis techniques. The results showed that the sheet resistance of the Ni/Ru/Si sample was consistently lower compared to the Ni/Si sample over the entire temperature range. Although both samples exhibited the formation of NiSi{sub 2} phases at an annealing temperature of 800 °C, as seen with glancing angle x-ray diffraction, the peaks of the Ni/Ru/Si sample were observed to have much weaker intensities than those obtained for the Ni/Si sample. Moreover, the NiSi film with a Ru interlayer exhibited a better interface and improved surface morphologies compared to the NiSi film without a Ru interlayer. These results show that the phase transformation of NiSi to NiSi{sub 2} was retarded and that the smooth NiSi/Si interface was retained due to the activation energy increment for NiSi{sub 2} nucleation that is caused by adding a Ru interlayer. Hence, it can be said that the Ru interlayer deposited by RPALD can be used to control the phase transformation and physical properties of nickel silicide phases.

  16. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  17. Industrial experiment of copper electrolyte purification by copper arsenite

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ya-jie; XIAO Fa-xin; WANG Yong; LI Chun-hua; XU Wei; JIAN Hong-sheng; MA Yut-ian

    2008-01-01

    Copper electrolyte was purified by copper arsenite that was prepared with As2O3. And electrolysis experiments of purified electrolyte were carried out at 235 and 305 A/m2, respectively. The results show that the yield of copper arsenite is up to 98.64% when the molar ratio of Cu to As is 1.5 in the preparation of copper arsenite. The removal rates of Sb and Bi reach 74.11% and 65.60% respectively after copper arsenite is added in electrolyte. The concentrations of As, Sb and Bi in electrolyte nearly remain constant during electrolysis of 13 d. The appearances of cathode copper obtained at 235 and 305 A/m2 are slippery and even, and the qualification rate is 100% according to the Chinese standard of high-pure cathode copper(GB/T467-97).

  18. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  19. The Effect of Copper

    African Journals Online (AJOL)

    higher (p<0.05) in the broodfish fed CSD0 and CSD1 diets than the other diets. Exposure of Clarias gariepinus fish to copper in water, at concentrations above 1.0mg CuSO4/g elicits adverse ... introduction of a toxicant to an aquatic system ..... Toxicity of four commonly used agrochemicals on. Oreochromis niloticus (L) fry.

  20. Presenilin promotes dietary copper uptake.

    Directory of Open Access Journals (Sweden)

    Adam Southon

    Full Text Available Dietary copper is essential for multicellular organisms. Copper is redox active and required as a cofactor for enzymes such as the antioxidant Superoxide Dismutase 1 (SOD1. Copper dyshomeostasis has been implicated in Alzheimer's disease. Mutations in the presenilin genes encoding PS1 and PS2 are major causes of early-onset familial Alzheimer's disease. PS1 and PS2 are required for efficient copper uptake in mammalian systems. Here we demonstrate a conserved role for presenilin in dietary copper uptake in the fly Drosophila melanogaster. Ubiquitous RNA interference-mediated knockdown of the single Drosophila presenilin (PSN gene is lethal. However, PSN knockdown in the midgut produces viable flies. These flies have reduced copper levels and are more tolerant to excess dietary copper. Expression of a copper-responsive EYFP construct was also lower in the midgut of these larvae, indicative of reduced dietary copper uptake. SOD activity was reduced by midgut PSN knockdown, and these flies were sensitive to the superoxide-inducing chemical paraquat. These data support presenilin being needed for dietary copper uptake in the gut and so impacting on SOD activity and tolerance to oxidative stress. These results are consistent with previous studies of mammalian presenilins, supporting a conserved role for these proteins in mediating copper uptake.

  1. Self-organised silicide nanodot patterning by medium-energy ion beam sputtering of Si(100): local correlation between the morphology and metal content

    Science.gov (United States)

    Redondo-Cubero, A.; Galiana, B.; Lorenz, K.; Palomares, FJ; Bahena, D.; Ballesteros, C.; Hernandez-Calderón, I.; Vázquez, L.

    2016-11-01

    We have produced self-organised silicide nanodot patterns by medium-energy ion beam sputtering (IBS) of silicon targets with a simultaneous and isotropic molybdenum supply. Atomic force microscopy (AFM) studies show that these patterns are qualitatively similar to those produced thus far at low ion energies. We have determined the relevance of the ion species on the pattern ordering and properties. For the higher ordered patterns produced by Xe+ ions, the pattern wavelength depends linearly on the ion energy. The dot nanostructures are silicide-rich as assessed by x-ray photoelectron spectroscopy (XPS) and emerge in height due to their lower sputtering yield, as observed by electron microscopy. Remarkably, a long wavelength corrugation is observed on the surface which is correlated with both the Mo content and the dot pattern properties. Thus, as assessed by electron microscopy, the protrusions are Mo-rich with higher and more spaced dots on their surface whereas the valleys are Mo-poor with smaller dots that are closer to each other. These findings indicate that there is a correlation between the local metal content of the surface and the nanodot pattern properties both at the nanodot and the large corrugation scales. These results contribute to advancing the understanding of this interesting nanofabrication method and aid in developing a comprehensive theory of nanodot pattern formation and evolution.

  2. Self-organised silicide nanodot patterning by medium-energy ion beam sputtering of Si(100): local correlation between the morphology and metal content.

    Science.gov (United States)

    Redondo-Cubero, A; Galiana, B; Lorenz, K; Palomares, F J; Bahena, D; Ballesteros, C; Hernandez-Calderón, I; Vázquez, L

    2016-11-01

    We have produced self-organised silicide nanodot patterns by medium-energy ion beam sputtering (IBS) of silicon targets with a simultaneous and isotropic molybdenum supply. Atomic force microscopy (AFM) studies show that these patterns are qualitatively similar to those produced thus far at low ion energies. We have determined the relevance of the ion species on the pattern ordering and properties. For the higher ordered patterns produced by Xe(+) ions, the pattern wavelength depends linearly on the ion energy. The dot nanostructures are silicide-rich as assessed by x-ray photoelectron spectroscopy (XPS) and emerge in height due to their lower sputtering yield, as observed by electron microscopy. Remarkably, a long wavelength corrugation is observed on the surface which is correlated with both the Mo content and the dot pattern properties. Thus, as assessed by electron microscopy, the protrusions are Mo-rich with higher and more spaced dots on their surface whereas the valleys are Mo-poor with smaller dots that are closer to each other. These findings indicate that there is a correlation between the local metal content of the surface and the nanodot pattern properties both at the nanodot and the large corrugation scales. These results contribute to advancing the understanding of this interesting nanofabrication method and aid in developing a comprehensive theory of nanodot pattern formation and evolution.

  3. Carrier-transport mechanism of Er-silicide Schottky contacts to strained-silicon-on-insulator and silicon-on-insulator.

    Science.gov (United States)

    Jyothi, I; Janardhanam, V; Kang, Min-Sung; Yun, Hyung-Joong; Lee, Jouhahn; Choi, Chel-Jong

    2014-11-01

    The current-voltage characteristics and the carrier-transport mechanism of the Er-silicide (ErSi1.7) Schottky contacts to strained-silicon-on-insulator (sSOI) and silicon-on-insulator (SOI) were investigated. Barrier heights of 0.74 eV and 0.82 eV were obtained for the sSOI and SOI structures, respectively. The barrier height of the sSOI structure was observed to be lower than that of the SoI structure despite the formation of a Schottky contact using the same metal silicide. The sSOI structure exhibited better rectification and higher current level than the SOI structure, which could be associated with a reduction in the band gap of Si caused by strain. The generation-recombination mechanism was found to be dominant in the forward bias for both structures. Carrier generation along with the Poole-Frenkel mechanism dominated the reverse-biased current in the SOI structure. The saturation tendency of the reverse leakage current in the sSOI structure could be attributed to strain-induced defects at the interface in non-lattice-matched structures.

  4. Comparative characteristics of copper, copper chloride, and copper bromide vapor lasers

    Energy Technology Data Exchange (ETDEWEB)

    Kazarian, M.A.; Petrash, G.G.; Trofimov, A.N.

    1980-03-01

    The paper reports the results of a comparative study of copper and copper halide vapor lasers emitting in a repetitively-pulsed regime. Copper chloride and copper bromide vapor lasers are found to have identical lasing characteristics under any excitation conditions. These characteristics are different from those of a copper vapor laser. An average lasing power of 13 W has been obtained for all lasers studied for an efficiency of 1%. It is shown that the choice of a laser will largely depend on the laser design suitability for a specific application.

  5. Production of ultrahigh purity copper using waste copper nitrate solution.

    Science.gov (United States)

    Choi, J Y; Kim, D S

    2003-04-25

    The production of ultrahigh purity copper (99.9999%) by electrolysis in the presence of a cementation barrier has been attempted employing a waste nitric copper etching solution as the electrolyte. The amount of copper deposited on the cathode increased almost linearly with electrolysis time and the purity of copper was observed to increase as the electrolyte concentration was increased. At some point, however, as the electrolyte concentration increased, the purity of copper decreased slightly. As the total surface area of cementation barrier increased, the purity of product increased. The electrolyte temperature should be maintained below 35 degrees C in the range of investigated electrolysis conditions to obtain the ultrahigh purity copper. Considering that several industrial waste solutions contain valuable metallic components the result of present study may support a claim that electrowinning is a very desirable process for their treatment and recovery.

  6. Tongling:Copper Industry Giant Takes Shape

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>Centering on the strategic goal of building "World Copper Capital", Tongling constantly extends its product lines and improves the copper industry chain. Now, the copper industry with a production value of RMB 100 billion has taken shape.As the largest copper wire rod manufacturer in Asia, Tongling Quanwei Copper Technologies Co., Ltd., upon its moving into the local market,

  7. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D., E-mail: dhb@ansto.gov.au; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-07-15

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni{sub 2}(Mo,Cr){sub 4}(Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni{sub 3}(Mo,Cr){sub 3}(Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld

  8. Direct Production of Copper

    Science.gov (United States)

    Victorovich, G. S.; Bell, M. C.; Diaz, C. M.; Bell, J. A. E.

    1987-09-01

    The use of commercially pure oxygen in flash smelting a typical chalcopyrite concentrate or a low grade comminuted matte directly to copper produces a large excess of heat. The heat balance is controlled by adjusting the calorific value of the solid feed. A portion of the sulfide material is roasted to produce a calcine which is blended with unroasted material, and the blend is then autogeneously smelted with oxygen and flux directly to copper. Either iron silicate or iron calcareous slags are produced, both being subject to a slag cleaning treatment. Practically all of the sulfur is contained in a continuous stream of SO2 gas, most of which is strong enough for liquefaction. A particularly attractive feature of these technologies is that no radically new metallurgical equipment needs to be developed. The oxygen smelting can be carried out not only in the Inco type flash furnace but in other suitable smelters such as cyclone furnaces. Another major advantage stems from abolishion of the ever-troublesome converter aisle, which is replaced with continuous roasting of a fraction of the copper sulfide feed.

  9. Mechanochemical reactions on copper-based compounds

    NARCIS (Netherlands)

    Castricum, H.L.; Bakker, H.; Poels, E.K.

    1999-01-01

    Mechanochemical reactions of copper and copper oxides with oxygen and carbon dioxide are discussed, as well as decomposition and reduction of copper compounds by mechanical milling under high-vacuum conditions.

  10. Oxidation Mechanism of Copper Selenide

    Science.gov (United States)

    Taskinen, Pekka; Patana, Sonja; Kobylin, Petri; Latostenmaa, Petri

    2014-09-01

    The oxidation mechanism of copper selenide was investigated at deselenization temperatures of copper refining anode slimes. The isothermal roasting of synthetic, massive copper selenide in flowing oxygen and oxygen - 20% sulfur dioxide mixtures at 450-550 °C indicate that in both atmospheres the mass of Cu2Se increases as a function of time, due to formation of copper selenite as an intermediate product. Copper selenide oxidises to copper oxides without formation of thick copper selenite scales, and a significant fraction of selenium is vaporized as SeO2(g). The oxidation product scales on Cu2Se are porous which allows transport of atmospheric oxygen to the reaction zone and selenium dioxide vapor to the surrounding gas. Predominance area diagrams of the copper-selenium system, constructed for selenium roasting conditions, indicate that the stable phase of copper in a selenium roaster gas with SO2 is the sulfate CuSO4. The cuprous oxide formed in decomposition of Cu2Se is further sulfated to CuSO4.

  11. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  12. Removal of copper from ferrous scrap

    Science.gov (United States)

    Blander, Milton; Sinha, Shome N.

    1990-01-01

    A process for removing copper from ferrous or other metal scrap in which the scrap is contacted with a polyvalent metal sulfide slag in the presence of an excess of copper-sulfide forming additive to convert the copper to copper sulfide which is extracted into the slag to provide a ratio of copper in the slag to copper in the metal scrap of at least about 10.

  13. Variations of serum copper values in pregnancy

    OpenAIRE

    Vukelić Jelka; Kapamadžija Aleksandra; Petrović Đorđe; Grujić Zorica; Novakov-Mikić Aleksandra; Kopitović Vesna; Bjelica Artur

    2012-01-01

    Introduction. Copper is essential micronutrient and has an important role in the human body. The serum copper increases during pregnancy and is doubled at full term. Lower levels of serum copper in pregnancy are connected with some pathological conditions. Objective. The aim of this study was to estimate the levels of serum copper in normal and pathological pregnancies, comparing them with values of serum copper in non-pregnant women, to determine if serum copper is lower in some pathol...

  14. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  15. Study of Copper Substitute in High Copper Price Market Environment

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>The high price of copper drives up industry cost,also it is difficult for terminal products to raise price to transfer the cost pressure brought by increase in copper price,as a result downstream consumption markets instead try to seek

  16. Fixation Property of Copper Triazole Wood Preservatives

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    According to AWPA E11-2006 standard,copper fixation rates of several copper-based formulations,such as ammoniacal copper,amine copper,and ammoniacal-ethanolamine copper,as well as alkaline copper quaternary(ACQ),were tested and compared in this paper.And the fixation rates of tebuconazole(TEB) and propiconazole(PPZ) in several formulations,such as copper azole,emulsified type and solvent type,were also compared.The determination of copper content in the leachate was analyzed by atomic absorption spectrom...

  17. INTERACTION OF COPPER BASED PRESERVATIVES WITH WOOD

    Directory of Open Access Journals (Sweden)

    Ali Temiz

    2004-11-01

    Full Text Available Copper is highly toxic to fungi and the element is widely used in many preservative formulations over 50 years. The interactions of wood and copper-based preservatives impact both the performance and the environment aspects of treated wood. Copper might be present in treated wood as coppercellulose complex, copper-lignin complex, and crystalline or amorphous inorganic/organic copper compounds. In this review; it was aimed to investigate the interactions of wood and copper-based preservatives, Copper Adsorpsion factors and copper forms in treated wood

  18. Electroleaching of Copper Waste with Recovery of Copper by Electrodialysis

    Directory of Open Access Journals (Sweden)

    Nuñez P.

    2013-04-01

    Full Text Available A new process to leach and recover copper from solid waste using electric fields was designed. The leaching with electro migration is presented as an alternative to traditional leaching. Preliminary data indicate that the copper ion migration is facilitated by using the electrical potential difference; therefore applying a potential difference in the processes of leaching facilitates the removal of copper. This is especially useful when mineral concentrations are very low. Different phenomena associated with transport of copper in solution are studied to generate a model able predict the state of the copper ion concentration in time. A kinetic model for the process was developed and fitted very well the experimental data.

  19. Synthesis of copper/copper oxide nanoparticles by solution plasma

    Science.gov (United States)

    Saito, Genki; Hosokai, Sou; Tsubota, Masakatsu; Akiyama, Tomohiro

    2011-07-01

    This paper describes the synthesis of copper/copper oxide nanoparticles via a solution plasma, in which the effect of the electrolyte and electrolysis time on the morphology of the products was mainly examined. In the experiments, a copper wire as a cathode was immersed in an electrolysis solution of a K2CO3 with the concentration from 0.001 to 0.50 M or a citrate buffer (pH = 4.8), and was melted by the local-concentration of current. The results demonstrated that by using the K2CO3 solution, we obtained CuO nanoflowers with many sharp nanorods, the size of which decreased with decreasing the concentration of the solution. Spherical particles of copper with/without pores formed when the citrate buffer was used. The pores in the copper nanoparticles appeared when the applied voltage changed from 105 V to 130 V, due to the dissolution of Cu2O.

  20. Structural, elastic, and electronic properties of recently discovered ternary silicide superconductor Li2IrSi3:An ab-initio study

    Institute of Scientific and Technical Information of China (English)

    M. A. Hadi; M. A. Alam; M. Roknuzzaman; M. T. Nasir; A. K. M. A. Islam; S. H. Naqib

    2015-01-01

    The structural, elastic, and electronic properties of the very recently discovered ternary silicide superconductor, Li2IrSi3, are calculated using an ab-initio technique. We adopt the plane-wave pseudopotential approach within the frame-work of the first-principles density functional theory (DFT) implemented by the CASTEP code. The calculated structural parameters show reasonable agreement with the experimental results. The elastic moduli of this interesting material are calculated for the first time. The electronic band structure and electronic energy density of states indicate the strong cova-lent Ir–Si and Si–Si bonding, which leads to the formation of the rigid structure of Li2IrSi3. Strong covalency gives rise to a high Debye temperature in this system. We discuss the theoretical results in detail in this paper.

  1. Study of the phase composition of silicide coatings, based on layered Nb-Mo structures, obtained by vacuum-arc deposition

    Science.gov (United States)

    Lozovan, A. A.; Betsofen, S. Ya; Lenkovets, A. S.

    2016-07-01

    A multilayer composite ∼1000 μm in thickness, formed by niobium and molybdenum layers (number of layers n = 230), is obtained by vacuum-arc deposition with subsequent siliconization of the surface layers at a temperature of 1200 °C. Layer-by-layer phase analysis is performed by X-ray diffraction and scanning electron microscopy. It is found that in the surface layers ∼130 μm in thickness, single-phase silicides (Nb x Mo1- x )Si2 are formed with the hexagonal C40 structure (Strukturbericht designations). Alternating layers of solid solutions based on niobium and molybdenum with a body-centered cubic (BCC) lattice are observed within the composite. The formation of solid solutions caused by heating of the coating leads to convergence of the values of the linear thermal expansion coefficient and Young's modulus at the interface between the layers.

  2. Si-rich W silicide films composed of W-atom-encapsulated Si clusters deposited using gas-phase reactions of WF6 with SiH4.

    Science.gov (United States)

    Okada, Naoya; Uchida, Noriyuki; Kanayama, Toshihiko

    2016-02-28

    We formed Si-rich W silicide films composed of Sin clusters, each of which encapsulates a W atom (WSi(n) clusters with 8 composed of WSi(n) clusters with a uniform n, which was determined by the gas temperature. The formed films were amorphous semiconductors with an optical gap of ∼0.8-1.5 eV and an electrical mobility gap of ∼0.05-0.12 eV, both of which increased as n increased from 8 to 12. We attribute this dependence to the reduction of randomness in the Si network as n increased, which decreased the densities of band tail states and localized states.

  3. Studies of copper transport in mammalian cells using copper radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M. [University of Melbourne, Parkville, VIC (Australia). Department of Genetics; Smith, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division; Mercer, J. [Deakin University, Clayton, VIC (Australia). Centre of Cellular and Molecular Biology

    1998-12-31

    The trace element copper poses a major problem for all organisms. It is essential as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Using the copper radioisotopes {sup 64}Cu (t1/2 = 12.8 hr) and {sup 67}Cu (t1/2 = 61 hr) we have developed a number of systems for studying copper transport in mammalian cells. These include investigation of copper uptake, copper efflux and ligand blot assays for Cu-binding proteins. Our studies have focused on Menkes disease which is an inherited and usually lethal copper deficiency disorder in humans. We have demonstrated that the Menkes protein is directly involved as a copper efflux pump in mammalian cells. Using cells overexpressing the Menkes protein we have provided the first biochemical evidence that this functions as a Cu translocating (across the membrane) P-type ATPase (Voskoboinik et al., FEBS Letters, in press). These studies were carried out using purified plasma membrane vesicles. We are now carrying out structure- function studies on this protein using targeted mutations and assaying using the radiocopper vesicle assay. Recently we have commenced studies on the role of amyloid precursor protein (APP) in copper transport and relationship of this to Alzheimers disease

  4. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    OpenAIRE

    Choveaux David L; Przyborski Jude M; Goldring JP

    2012-01-01

    Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper st...

  5. Nanocrystalline copper based microcomposites

    OpenAIRE

    J.P. Stobrawa; Z.M. Rdzawski; W. Głuchowski; J. Domagała-Dubiel

    2012-01-01

    Purpose: The aim of this work was to investigate microstructure, mechanical properties and deformation behavior of copper microcomposites: Cu- Y2O3, Cu- ZrO2 and Cu-WC produced by powder metallurgy techniques.Design/methodology/approach: Tests were made with Cu-Y2O3, Cu-ZrO2 and Cu-WC microcomposites containing up to 2% of a strengthening phase. The materials were fabricated by powder metallurgy techniques, including milling of powders, followed by their compacting and sintering. The main mec...

  6. The Bauschinger Effect in Copper

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Brown, L .M.; Stobbs, W. M.

    1981-01-01

    A study of the Bauschinger effect in pure copper shows that by comparison with dispersion hardened copper the effect is very small and independent of temperature. This suggests that the obstacles to flow are deformable. A simple composite model based on this principle accounts for the data semi...

  7. Effects of copper(II) and copper oxides on THMs formation in copper pipe.

    Science.gov (United States)

    Li, Bo; Qu, Jiuhui; Liu, Huijuan; Hu, Chengzhi

    2007-08-01

    Little is known about how the growth of trihalomethanes (THMs) in drinking water is affected in copper pipe. The formation of THMs and chlorine consumption in copper pipe under stagnant flow conditions were investigated. Experiments for the same water held in glass bottles were performed for comparison. Results showed that although THMs levels firstly increased in the presence of chlorine in copper pipe, faster decay of chlorine as compared to the glass bottle affected the rate of THMs formation. The analysis of water phase was supplemented by surface analysis of corrosion scales using X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and energy dispersive spectroscopy (EDX). The results showed the scales on the pipe surface mainly consisted of Cu(2)O, CuO and Cu(OH)(2) or CuCO(3). Designed experiments confirmed that the fast depletion of chlorine in copper pipe was mainly due to effect of Cu(2)O, CuO in corrosion scales on copper pipe. Although copper(II) and copper oxides showed effect on THMs formation, the rapid consumption of chlorine due to copper oxide made THM levels lower than that in glass bottles after 4h. The transformations of CF, DCBM and CDBM to BF were accelerated in the presence of copper(II), cupric oxide and cuprous oxide. The effect of pH on THMs formation was influenced by effect of pH on corrosion of copper pipe. When pH was below 7, THMs levels in copper pipe was higher as compared to glass bottle, but lower when pH was above 7.

  8. Silicides for VLSI applications

    CERN Document Server

    Murarka, Shyam P

    1983-01-01

    Most of the subject matter of this book has previously been available only in the form of research papers and review articles. I have not attempted to refer to all the published papers. The reader may find it advantageous to refer to the references listed.

  9. Copper: From neurotransmission to neuroproteostasis

    Directory of Open Access Journals (Sweden)

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  10. Jiangxi Copper Corporation Builds 900,000-Ton Copper Production Capacity

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>The Eastward Refined Copper Expansion Pro- ject of Guixi Smelting Plant under Jiangxi Copper Corporation has output its first lot of Copper cathode,marking the company’s pos- session of a 900,000-ton copper production ca- pacity.Thus the company further strengthens its position as the top 3 of the copper world.

  11. Secondary Copper Industry Entered Rapid Growth Period

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    In China’s copper output,secondary copper accounts for about 40%,for power cable industry,the usage percentage of secondary copper is about 50%.Under the favorable policy of the government to vigorously support recycling industry,secondary copper rod enterprises begin to expand,and are confident toward the industry’s potentials.

  12. Unravelling the Chemical Nature of Copper Cuprizone

    OpenAIRE

    Messori, L.; Casini, A.; C.Gabbiani; Sorace, L.; Muniz-Miranda, M.; Zatta, P

    2007-01-01

    During the last 50 years, formation of the highly chromogenic copper cuprizone complex has been exploited for spectrophotometric determinations of copper although the precise chemical nature of the resulting species has never been ascertained; we eventually show here, in contrast to current opinion, that copper cuprizone is a copper(III) complex.

  13. Oxidation behaviours of Nb–22Ti–15Si–2Al–2Hf–2V–(2, 14)Cr alloys with Al and Y modified silicide coatings prepared by pack cementation

    OpenAIRE

    Songming Zhang; Xingrui Shi; Jiangbo Sha

    2015-01-01

    Al and Y modified silicide coatings on the Nb–15Si–22Ti–(2,14)Cr–2Al–2Hf–2V alloys (where the alloy with 2 at% Cr or 14 at% Cr is hereafter referred to as 2Cr and 14Cr alloy, respectively) was prepared by pack cementation. The microstructural evolution and the oxidation behaviours of the coating 2Cr and 14Cr samples at 1250 °C were studied. The 2Cr alloy consists of Nb solid solution (NbSS) and α-Nb5Si3 silicide, while the Laves C15–Cr2Nb phase arised in the 14Cr alloy. The coating structure ...

  14. Secondary Copper Consumption and Location in China

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> China is short of copper resources and is alsothe second largest copper consuming country inthe world.The way to overcome the contradic-tion between the resource shortage and fastgrowth in consumption is to import copper rawmaterial in large quantities.Since the 1990’s,China’s import quantity of copper scrap hasincreased considerably.During the last twoyears,China has imported copper scrap worthof US$2.25 billion,1.32 times of the value ofimported copper concentrates in the same pe-riod.China is one of the biggest copper scrap

  15. An Introduction to Copper Deposits in China

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    There are 11 genetic types of copper deposit in China, three of which (porphyry,contact metasomatic and VMS types) are the most important. The copper deposits distribute widely both temporally and spatially in China. The features of copper ores in China are mostly poor in copper tenor and complex in metal associated. The copper metallogeny in China predominantly occurs in three metallogenic megadomains, namely the circum-Pacific, the paleo-Asian and the Tethys-Himalayan.

  16. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  17. The Revovery of Copper and Cobalt from Oxidized Copper Ore and Converter Slag

    OpenAIRE

    ZİYADANOĞULLARI, Berrin; ZİYADANOĞULLARI, Recep

    1999-01-01

    The aim of this study was to develop a method for obtaining copper and cobalt from oxidized copper ore and converter slag. In order to convert the copper and cobalt into sulfate compounds the main step was to roast the samples obtained by sulfurization and transfer the samples into solution. First the oxidized copper ore was roasted, followed by the mixture of converter slag and oxidized copper ore. Since the levels of copper and cobalt were low, the sulfurization process was carri...

  18. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller;

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  19. Majorana Electroformed Copper Mechanical Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Overman, Nicole R.; Overman, Cory T.; Kafentzis, Tyler A.; Edwards, Danny J.; Hoppe, Eric W.

    2012-04-30

    The MAJORANA DEMONSTRATOR is a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay. The DEMONSTRATOR will utilize ultra high purity electroformed copper for a variety of detector components and shielding. A preliminary mechanical evaluation was performed on the Majorana prototype electroformed copper material. Several samples were removed from a variety of positions on the mandrel. Tensile testing, optical metallography, scanning electron microscopy, and hardness testing were conducted to evaluate mechanical response. Analyses carried out on the Majorana prototype copper to this point show consistent mechanical response from a variety of test locations. Evaluation shows the copper meets or exceeds the design specifications.

  20. Hereditary iron and copper deposition

    DEFF Research Database (Denmark)

    Aaseth, Jan; Flaten, Trond Peder; Andersen, Ole

    2007-01-01

    can be successfully treated, emphasizing the importance of early diagnosis. Serum ferritin values, transferrin saturation and genetic analysis are used when diagnosing haemochromatosis. The diagnostics of Wilson's disease depends on the use of urinary copper values, serum ceruloplasmin and liver...

  1. Use of copper radioisotopes in investigating disorders of copper metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M. [University of Melbourne, Parkville, VIC (Australia). Department of Genetics; Smith, S. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia). Radiopharmaceuticals Division; Mercer, J. [Deakin University, Rusden Campus, Clayton, VIC (Australia). Centre of Cellular and Molecular Biology

    1998-12-31

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes {sup 64}Cu (t 1/2 = 12.8 hr) and {sup 67}Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  2. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  3. Renal cortex copper concentration in acute copper poisoning in calves

    Directory of Open Access Journals (Sweden)

    Luis E. Fazzio

    2012-01-01

    Full Text Available The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu concentration in clinical cases of acute copper poisoning (ACP. A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.

  4. Characterization of laser doped silicon and overcoming adhesion challenges of solar cells with nickel-copper plated contacts

    Energy Technology Data Exchange (ETDEWEB)

    Geisler, Christian

    2015-07-01

    The combination of localized laser patterning and metal plating allows to replace conventional silver screen printing with nickel-copper plating to form inexpensive front contacts for crystalline silicon solar cells. In this work, a focus is put on effects that could cause inhomogeneous metal deposition and low metal contact adhesion. A descriptive model of the silicon nitride ablation mechanism is derived from SEM imaging and a precise recombination analysis using QSSPC measurements. Surface sensitive XPS measurements are conducted to prove the existence of a parasitic surface layer, identified as SiO{sub x}N{sub y}. The dense SiO{sub x}N{sub y} layer is an effective diffusion barrier, hindering the formation of a nickel silicide interlayer. After removal of the SiO{sub x}N{sub y} layer, cells show severe degradation caused by metal-induced shunting. These shunts are imaged using reverse biased electroluminescence imaging. A shunting mechanism is proposed and experimentally verified. New laser process sequences are devised and proven to produce cells with adhering Ni-Cu contacts. Conclusively the developed processes are assessed based on their industrial feasibility as well as on their efficiency potential.

  5. Copper metallurgy at the crossroads

    Directory of Open Access Journals (Sweden)

    Habashi F.

    2007-01-01

    Full Text Available Copper technology changed from the vertical to the horizontal furnace and from the roast reaction to converting towards the end of the last century. However, the horizontal furnace proved to be an inefficient and polluting reactor. As a result many attempts were made to replace it. In the past 50 years new successful melting processes were introduced on an industrial scale that were more energy efficient and less polluting. In addition, smelting and converting were conducted in a single reactor in which the concentrate was fed and the raw copper was produced. The standing problem in many countries, however, is marketing 3 tonnes of sulfuric acid per tonne of copper produced as well as emitting large amounts of excess SO2 in the atmosphere. Pressure hydrometallurgy offers the possibility of liberating the copper industry from SO2 problem. Heap leaching technology has become a gigantic operation. Combined with solvent extraction and electrowinning it contributes today to about 20% of copper production and is expected to grow. Pressure leaching offers the possibility of liberating the copper industry from SO2 problem. The technology is over hundred years old. It is applied for leaching a variety of ores and concentrates. Hydrothermal oxidation of sulfide concentrates has the enormous advantage of producing elemental sulfur, hence solving the SO2 and sulfuric acid problems found in smelters. Precipitation of metals such as nickel and cobalt under hydrothermal conditions has been used for over 50 years. It has the advantage of a compact plant but the disadvantage of producing ammonium sulfate as a co-product. In case of copper, however, precipitation takes place without the need of neutralizing the acid, which is a great advantage and could be an excellent substitute for electrowinning which is energy intensive and occupies extensive space. Recent advances in the engineering aspects of pressure equipment design open the door widely for increased

  6. Progress of p-channel bottom-gate poly-Si thin-film transistor by nickel silicide seed-induced lateral crystallization

    Science.gov (United States)

    Lee, Sol Kyu; Seok, Ki Hwan; Park, Jae Hyo; Kim, Hyung Yoon; Chae, Hee Jae; Jang, Gil Su; Lee, Yong Hee; Han, Ji Su; Joo, Seung Ki

    2016-06-01

    Excimer laser annealing (ELA) is known to be the most common crystallization technology for the fabrication of low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) in the mass production industry. This technology, however, cannot be applied to bottom-gate (BG) TFTs, which are well developed for the liquid-crystal display (LCD) back-planes, because strong laser energy of ELA can seriously damage the other layers. Here, we propose a novel high-performance BG poly-Si TFT using Ni silicide seed-induced lateral crystallization (SILC). The SILC technology renders it possible to ensure low damage in the layers, smooth surface, and longitudinal large grains in the channel. It was observed that the electrical properties exhibited a steep subthreshold slope of 110 mV/dec, high field-effect mobility of 304 cm2/Vsec, high I on/ I off ratio of 5.9 × 107, and a low threshold voltage of -3.9 V.

  7. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color additive potassium sodium copper chlorophyllin is a green to black powder obtained from chlorophyll...

  8. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity...

  9. Testing Corrosion Inhibitors for the Conservation of Archaeological Copper and Copper Alloys

    Directory of Open Access Journals (Sweden)

    Robert B. Faltermeier

    1997-11-01

    Full Text Available This is a synopsis of the Ph.D. research undertaken at the Institute of Archaeology, University College London. The aim was to evaluate corrosion inhibitors for use in the conservation of copper and copper alloy archaeological artefacts. The objective of this work was to acquire an insight into the performance of copper corrosion inhibitors, when applied to archaeological copper.

  10. The link between copper and Wilson's disease.

    Science.gov (United States)

    Purchase, Rupert

    2013-01-01

    Wilson's disease (hepatolenticular degeneration) is a rare inherited autosomal recessive disorder of copper metabolism leading to copper accumulation in the liver and extrahepatic organs such as the brain and cornea. Patients may present with combinations of hepatic, neurological and psychiatric symptoms. Copper is the therapeutic target for the treatment of Wilson's disease. But how did copper come to be linked with Wilson's disease? The answer encompasses a study of enzootic neonatal ataxia in lambs in the 1930s, the copper-chelating properties of British Anti-Lewisite, and the chemical analysis for copper of the organs of deceased Wilson's disease patients in the mid-to-late 1940s. Wilson's disease is one of a number of copper-related disorders where loss of copper homeostasis as a result of genetic, nutritional or environmental factors affects human health.

  11. Determination of copper in clarified apple juices.

    Science.gov (United States)

    Zeiner, Michaela; Juranović Cindrić, Iva; Kröppl, Michaela; Stingeder, Gerhard

    2010-03-24

    Inorganic copper compounds are not considered as synthetic fertilizers for apple trees as they are traditional fertilizers. Thus, they are used in organic farming for soil or foliar applications. The European Union is for health reasons interested in reducing copper in apple orchards. Because the fertilizer application rate affects the nutrition of apples, the applied copper might also be reflected in the copper concentration of apple juices. Thus, the determination of copper is of concern for investigating the application of copper-containing fertilizers. Samples of clarified apple juice commercially available in the European market were analyzed for their copper content. Prior to quantification by inductively coupled plasma-optical emission spectrometry, the juices were processed by a microwave-assisted digestion system using HNO(3). All samples were also measured directly after dilution with HNO(3). The copper concentrations measured using both methods were all below the limit of detection (17 microg/L).

  12. Synthesis of aminoarenethiolato-copper(I) complexes

    NARCIS (Netherlands)

    Sperotto, E.; van Klink, G.P.M.; van Koten, G.

    2008-01-01

    Copper(I)-mediated reactions have recently become the choice for large industrial scale applications, since copper is environmentally friendly and cheaper than other transition metals already explored. However, most organocopper compounds still present several limitations including the sensitivity t

  13. Global assessment of undiscovered copper resources

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Deposits, prospects, and permissive tracts for porphyry and sediment-hosted copper resources worldwide, with estimates of undiscovered copper resources. pCu_tracts...

  14. EFFECT OF COPPER ON PASSIVITY AND CORROSION ...

    African Journals Online (AJOL)

    2014-06-30

    Jun 30, 2014 ... metallic copper enriched on the surface film of austenitic stainless ... Dispersed inclusions of this phase can influence the stability of .... two microstructures showed that copper concentration possessed a non-uniform chemical.

  15. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  16. Preparation of Pure Copper Powder from Acidic Copper Chloride Waste Etchant

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The method for the recycling of copper from copper chloride solution was developed. This process consists of extraction of copper, purification and particle size reduction. In the first step, reductive metal scraps were added to acidic copper chloride waste enchants produced in the PCB industry to obtain copper powder.Composition analysis showed that this powder contained impurities such as Fe, Ni, and water. So, drying and purification were carried out by using microwave and a centrifugal separator. Thereby the copper powder had a purity of higher than 99% and spherical form in morphology. The copper powder size was decreased by ball milling.

  17. Coating of a steel wire with copper

    Science.gov (United States)

    Vdovin, K. N.; Dubskii, G. A.; Nefed'ev, A. A.; Derevyanko, D. V.

    2016-03-01

    The process of coating of a steel wire with liquid copper at a high speed (>1 m/s) is considered. The results of long-term studies of copperizing under laboratory conditions and electron-microscopic investigation of the copper-steel adhesion are used to develop a mathematical model for coating of a steel wire with copper and to create a commercial setup to implement this process.

  18. Canine Models for Copper Homeostasis Disorders

    OpenAIRE

    Xiaoyan Wu; Leegwater, Peter A. J.; Hille Fieten

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper me...

  19. 49 CFR 192.279 - Copper pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Copper pipe. 192.279 Section 192.279... Copper pipe. Copper pipe may not be threaded except that copper pipe used for joining screw fittings or... heavier wall pipe listed in Table C1 of ASME/ANSI B16.5. [Amdt. 192-62, 54 FR 5628, Feb. 6, 1989, as...

  20. Modulation of tau phosphorylation by environmental copper

    OpenAIRE

    Voss, Kellen; Harris, Christopher; Ralle, Martina; Duffy, Megan; Murchison, Charles; Joseph F. Quinn

    2014-01-01

    Background The transition metal copper enhances amyloid β aggregation and neurotoxicity, and in models of concomitant amyloid and tau pathology, copper also promotes tau aggregation. Since it is not clear if the effects of environmental copper upon tau pathology are dependent on the presence of pathological amyloid β, we tested the effects of copper overload and complexing in disease models which lack pathological amyloid β. Methods We used cell culture and transgenic murine models to test th...

  1. Canine Models for Copper Homeostasis Disorders

    OpenAIRE

    Xiaoyan Wu; Leegwater, Peter A.J.; Hille Fieten

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper me...

  2. Tensile behavior of nanocrystalline copper

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, P.G.; Weertman, J.R. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering; Eastman, J.A. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering]|[Argonne National Lab., IL (United States). Materials Science Div.

    1995-11-01

    High density nanocrystalline copper produced by inert gas condensation was tested in tension. Displacements were measured using foil strain gauges, which greatly improved the accuracy of the strain data. The Young`s modulus of nanocrystalline copper was found to be consistent with that of coarse-grained copper. Total elongations of {approx} 1% were observed in samples with grain sizes less than 50 nm, while a sample with a grain size of 110 nm exhibited more than 10% elongation, perhaps signifying a change to a dislocation-based deformation mechanism in the larger-grained material. In addition, tensile tests were performed as a function of strain rate, with a possible trend of decreased strength and increased elongation as the strain rate was decreased.

  3. Monitoring copper in Wilson's disease.

    Science.gov (United States)

    Walshe, J M

    2010-01-01

    Monitoring copper metabolism in patients with Wilson's disease is not an exact science. At present, there are no simple methods of estimating the total body load of this metal. Indirect methods must therefore be used. A survey of the current literature shows that most approaches rely on the determination of blood and urine copper concentration. Both these should decrease with treatment. In parallel with decreased copper concentration, there should be subsequent improvement in more routine laboratory tests including liver and renal function, blood count parameters, and clotting factors. Lack of compliance is revealed by a reversal of this trend. This chapter critically reviews current testing methods and describes other approaches that may be helpful.

  4. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  5. Copper tolerance of Trichoderma species

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2014-01-01

    Full Text Available Some Trichoderma strains can persist in ecosystems with high concentrations of heavy metals. The aim of this research was to examine the variability of Trichoderma strains isolated from different ecosystems, based on their morphological properties and restriction analysis of ITS fragments. The fungal growth was tested on potato dextrose agar, amended with Cu(II concentrations ranging from 0.25 to 10 mmol/l, in order to identify copper-resistant strains. The results indicate that some isolated strains of Trichoderma sp. show tolerance to higher copper concentrations. Further research to examine the ability of copper bioaccumulation by tolerant Trichoderma strains is needed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31080 i br. III 43010

  6. LIWU Copper Plans to Get Listed

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>According to recently-released "Notice con-cerning Environmental Protection Checks for IPO of Sichuan LIWU Copper Co., Ltd.", Sichuan LIWU Copper Co., Ltd. (hereinafter referred to as LIWU Copper) plans to issue 68 million shares, and all the funds raised will be

  7. Canine Models for Copper Homeostasis Disorders

    NARCIS (Netherlands)

    Wu, Xiaoyan; Leegwater, Peter A J|info:eu-repo/dai/nl/074236539; Fieten, Hille|info:eu-repo/dai/nl/314112596

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurolog

  8. Extra-Hepatic Storage of Copper

    DEFF Research Database (Denmark)

    Heydorn, Kaj; Damsgaard, Else; Horn, N.

    1975-01-01

    The distribution of copper among the organs of an aborted, male foetus, expected to develop Menkes' syndrome, was entirely different from the distribution in 4 normal foetuses. Copper concentrations determined by neutron activation analysis showed a considerably reduced content in the liver......, but increased concentrations in the other organs analysed; total foetal copper was normal....

  9. Quanwei Copper Processing Base Put Into Operation

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>Quanwei (Tongling) Copper Co.,Ltd’s copper processing base in Tongling of Anhui Province has been put into operation at the end of De- cember last year. It is reported that the copper processing project, invested by Zhengwei (Shenzhen) Technology

  10. Study on copper adsorption on olivine

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The copper adsorption on olivine supplied by A/S Olivine production plant at Aheim in western Norway has been studied. The factors which affect the uptake of copper have been evaluated. The results reveal that the equilibrium pH in aqueous solution has the greatest influence on the copper adsorption thanks to the competitive adsorption between proton and copper ions, and the adsorption of copper to olivine increases rapidly with the pH increasing from 4 to 6. The initial copper concentration and olivine dose also possess significant effect on copper adsorption. The adsorption efficieny of copper increases with the increase of olivine dose or the decrease of initial copper concentration at the same pH. The ionic strength effect on the adsorption has also been investigated, but it owns little effect on the adsorption process of copper due to the formation of inner sphere surface complexation of copper on olivine. The experimental data show that olivine has a high acid buffer capacity and is an effective adsorbent for copper.

  11. Canine Models for Copper Homeostasis Disorders

    NARCIS (Netherlands)

    Wu, Xiaoyan; Leegwater, Peter A J; Fieten, Hille

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurolog

  12. Preparation of Copper-loaded Microcapsule Formulations

    Directory of Open Access Journals (Sweden)

    Nenad Jalšenjak

    2011-06-01

    Full Text Available Novel copper-loaded chitosan or chitosan/alginate based microcapsules formulations have been presented. It was shown that prolonged release of copper from microcapsules accompanied with possible prolonged presence of copper on leaves is useful in crop protection.

  13. Preparation of Copper-loaded Microcapsule Formulations

    Directory of Open Access Journals (Sweden)

    Nenad Jalšenjak

    2014-02-01

    Full Text Available Novel copper-loaded chitosan or chitosan/alginate based microcapsules formulations have been presented. It was shown that prolonged release of copper from microcapsules accompanied with possible prolonged presence of copper on leaves is useful in crop protection.

  14. Canine Models for Copper Homeostasis Disorders

    NARCIS (Netherlands)

    Wu, Xiaoyan; Leegwater, Peter A J; Fieten, Hille

    2016-01-01

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and

  15. Copper coating specification for the RHIC arcs

    Energy Technology Data Exchange (ETDEWEB)

    Blaskiewicz, M.

    2010-12-01

    Copper coating specifications for the RHIC arcs are given. Various upgrade scenarios are considered and calculations of resistive wall losses in the arcs are used to constrain the necessary quality and surface thickness of a copper coating. We find that 10 {mu}m of high purity copper will suffice.

  16. Distribution of Copper in Rats Submitted to Treatment With Copper Aspirinate

    OpenAIRE

    LIU, Weiping; Yang, Yikun; Xiong, Huizhou; Lu, Ying; Yang, Rong

    1998-01-01

    The distribution of copper in Sprague – Dawley rats following a three month oral administration of 0,10 or 50mg/kg copper aspirinate has been investigated. Metal content was determined by ICP – AES in blood, brain, kidney, liver, lung, spleen, and dejection. The results show that treatment with copper aspirinate did not cause accumulation of copper in rats and excess ingested copper was excreted through feces.

  17. Chinalco Straightened Out Copper Assets, and Delegated Stock Equity of Yunnan Copper

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>Immediately after the news that Chinalco transferred 58%stock equity of Yunnan Copper Group to its wholly-owned subsidiary China Copper Corporation Limited free of charge was disclosed on July 9,many individual investors couldn’t help but to think:Does it mean China Copper Corporation Limited will assemble assets for overall listing?At present,among main copper business companies under China Copper Corporation

  18. A copper vapor laser by using a copper-vapor-complex reaction at a low temperature

    OpenAIRE

    Kano, Toshiyuki; Taniguchi, Hiroshi; Saito, Hiroshi

    1987-01-01

    A copper vapor laser performance by using ametal-vapor-complex reaction (Cu+AlBr3) is reported. The laser operation is obtained at a low temperature without externalheating because of the AlBr3 vapors evaporating at a room temperature. The copper vapor laser using this metal-vapor-complex reaction has an advantage of deposition-free of a metallic copper to the laser tube wall, which is different from the copper halide and the organometallic copper lasers.

  19. Copper metabolism and copper-mediated alterations in the metabolism of cultured astrocytes

    OpenAIRE

    Scheiber, Ivo Florin

    2012-01-01

    Copper is an essential element that is required for a variety of important cellular functions. Since not only copper deficiency, but also excess of copper can seriously affect cellular functions, cellular copper metabolism is tightly regulated. Disturbances of copper homeostasis are the underlying defect of the inherited diseases Menkes and Wilson s disease and have also been linked to several neurodegenerative diseases including Alzheimer s disease and Parkinson s disease. Known astrocytes f...

  20. Electrochemical nucleation and growth of copper and copper alloys

    Science.gov (United States)

    Shao, Wenbo

    This dissertation aims to contribute to a fundamental understanding of the physicochemical processes occurring in electrochemical nucleation and growth. To this end, the effects of various anions (chloride (Cl-), sulfate (SO42-) and sulfamate (NH2SO 3-)) on the electrochemical kinetics and the mechanism of copper reduction, as well as on the microstructure of the resulting films, were studied. On the basis of this work, the deposition of copper alloys (Cu-Ag with positive heat of mixing, Cu-Au with negative heat of mixing) was investigated with the main objective to achieve an insight on the role of solid state thermodynamics on the electrocrystallization process. Chloride ions cause two competing effects: at low chloride concentration the formation of an adsorbed chloride layer introduces an additional reaction pathway, resulting in an overall depolarization of the reduction process with no significant change of the Tafel slope. At high chloride concentration, complexation phenomena induce a cathodic polarization of the deposition process and a decrease in the Tafel slope. Chlorides cause a decrease in the density and an increased size of copper nuclei. Sulfamate depolarizes copper reduction the most and results in the largest nucleus density. Chloride promotes the faceting, and dendritic growth of copper deposits along direction by introducing interfacial anisotropy. Addition of Ag in the solution or in the electrode substrate enhances copper deposition and results in an additional reduction peak. Codeposition of Cu-Ag increases nucleus density and decreases nucleus size. Such enhancement of copper deposition, the increase in nucleus density and the decrease in nucleus size by Ag could be due to the continued formation of a surface alloy of Cu-Ag and the fast interface dynamics of Ag deposition. Cu can be underpotentially codeposited in the Cu-Au alloy. Homogeneous solid solutions are grown under conditions of underpotential deposition of Cu, while precipitation

  1. Electrochemical behaviour of alkaline copper complexes

    Indian Academy of Sciences (India)

    C L Aravinda; S M Mayanna; V R Muralidharan

    2000-10-01

    A search for non-cyanide plating baths for copper resulted in the development of alkaline copper complex baths containing trisodium citrate [TSC] and triethanolamine [TEA]. Voltammetric studies were carried out on platinum to understand the electrochemical behaviour of these complexes. In TSC solutions, the deposition of copper involves the slow formation of a monovalent species. Adsorption of this species obeys Langmuir isotherm. In TEA solutions the deposition involves the formation of monovalent ions obeying the non-activated Temkin isotherm. Conversion of divalent to monovalent copper is also slow. In TEA and TSC alkaline copper solutions, the predominant species that undergo stepwise reduction contain only TEA ligands

  2. Development of new ORIGEN2 data library sets for research reactors with light water cooled oxide and silicide LEU (20 w/o) fuels based on JENDL-3.3 nuclear data

    Energy Technology Data Exchange (ETDEWEB)

    Liem, Peng Hong, E-mail: liemph@nais.ne.jp [Nippon Advanced Information Service (NAIS Co., Inc.), 416 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1112 (Japan); Sembiring, Tagor Malem [Center for Reactor Technology and Nuclear Safety Indonesian National Nuclear Energy Agency (BATAN), Puspiptek Complex, Building No. 80, Serpong, Tangerang 15310 (Indonesia)

    2013-09-15

    Highlights: • We developed new ORIGEN2 data library sets for research reactors based on JENDL-3.3. • The sets cover oxide and silicide LEU fuels with meat density up to 4.74 g U/cm{sup 3}. • Two kinds of data library sets are available: fuel region and non-fuel regions. • We verified the new data library sets with other codes. • We validated the new data library against a non-destructive test. -- Abstract: New sets of ORIGEN2 data library dedicated to research/testing reactors with light water cooled oxide and silicide LEU fuel plates based on JENDL-3.3 nuclear data were developed, verified and validated. The new sets are considered to be an extension of the most recent release of ORIGEN2.2UPJ code, i.e. the ORLIBJ33 library sets. The newly generated ORIGEN2 data library sets cover both oxide and silicide LEU fuels with fuel meat density range from 2.96 to 4.74 g U/cm{sup 3} used in the present and future operation of the Indonesian 30 MWth RSG GAS research reactor. The new sets are expected applicable also for other research/testing reactors which utilize similar fuels or have similar neutron spectral indices. In addition to the traditional ORIGEN2 library sets for fuel depletion analyses in fuel regions, in the new data library sets, new ORIGEN2 library sets for irradiation/activation analyses were also prepared which cover all representative non-fuel regions of RSG GAS such as reflector elements, irradiation facilities, etc. whose neutron spectra are significantly softer than fuel regions. Verification with other codes as well as validation with a non-destructive test result showed promising results where a good agreement was confirmed.

  3. Crystallization of copper metaphosphate glass

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  4. Spectroscopic studies of copper enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-05-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present.

  5. Copper complexes as chemical nucleases

    Indian Academy of Sciences (India)

    Akhil R Chakravarty; Pattubala A N Reddy; Bidyut K Santra; Anitha M Thomas

    2002-08-01

    Redox active mononuclear and binuclear copper(II) complexes have been prepared and structurally characterized. The complexes have planar N-donor heterocyclic bases like 1,10-phenanthroline (phen), dipyridoquinoxaline (dpq) and dipyridophenazine (dppz) ligands that are suitable for intercalation to B-DNA. Complexes studied for nuclease activity have the formulations [Cu(dpq)2(H2O)] (ClO4)2.H2O (1), [{CuL(H2O)}2(-ox)](ClO4)2 (L = bpy, 2; phen, 3; dpq, 4; and dppz, 5) and [Cu(L)(salgly)] (L = bpy, 6; phen, 7; dpq, 8; and dppz, 9), where salgly is a tridentate Schiff base obtained from the condensation of glycine and salicylaldehyde. The dpq complexes are efficient DNA binding and cleavage active species. The dppz complexes show good binding ability but poor nuclease activity. The cleavage activity of the bis-dpq complex is significantly higher than the bis-phen complex of copper(II). The nuclease activity is found to be dependent on the intercalating nature of the complex and on the redox potential of the copper(II)/copper(I) couple. The ancillary ligand plays a significant role in binding and cleavage activity.

  6. Copper proteomes, phylogenetics and evolution.

    Science.gov (United States)

    Decaria, Leonardo; Bertini, Ivano; Williams, Robert J P

    2011-01-01

    This paper is a continuation of our study of the connection between the changing environment and the changing use of particular elements in organisms in the course of their combined evolution (Decaria, Bertini and Williams, Metallomics, 2010, 2, 706). Here we treat the changes in copper proteins in historically the same increasingly oxidising environmental conditions. The study is a bioinformatic analysis of the types and the numbers of copper domains of proteins from 435 DNA sequences of a wide range of organisms available in NCBI, using the method developed by Andreini, Bertini and Rosato in Accounts of Chemical Research 2009, 42, 1471. The copper domains of greatest interest are found predominantly in copper chaperones, homeostatic proteins and redox enzymes mainly used outside the cytoplasm which are in themselves somewhat diverse. The multiplicity of these proteins is strongly marked. The contrasting use of the iron and heme iron proteins in oxidations, mostly in the cytoplasm, is compared with them and with activity of zinc fingers during evolution. It is shown that evolution is a coordinated development of the chemistry of elements with use of novel and multiple copies of their proteins as their availability rises in the environment.

  7. CopperCore Service Integration

    Science.gov (United States)

    Vogten, Hubert; Martens, Harrie; Nadolski, Rob; Tattersall, Colin; van Rosmalen, Peter; Koper, Rob

    2007-01-01

    In an e-learning environment there is a need to integrate various e-learning services like assessment services, collaboration services, learning design services and communication services. In this article we present the design and implementation of a generic integrative service framework, called CopperCore Service Integration (CCSI). We will…

  8. Reactivity test between beryllium and copper

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, H. [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan); Kato, M. [NGK Insulators, Ltd., Aichi-ken (Japan)

    1995-09-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700{degrees}C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper).

  9. Friction stir welding of copper alloys

    Institute of Scientific and Technical Information of China (English)

    Liu Shuhua; Liu Meng; Wang Deqing; Xu Zhenyue

    2007-01-01

    Copper plates,brass plates and copper/brass plates were friction stir welded with various parameters. Experimental results show that the microstructure of the weld is characterized by its much finer grains as contrasted with the coarse grains of parent materials and the heat-affected zones are very narrow. The microhardness of the copper weld is a little higher than that of parent plate. The microhardness of brass weld is about 25% higher than that of parent material. The tensile strength of copper joints increases with increasing welding speed in the test range. The range of parameters to obtain good welds for copper is much wider than that for brass. When different materials were welded, the position of copper plate before welding affected the quality of FSW joints. If the copper plate was put on the advancing side of weld, the good quality of weld could be got under proper parameters.

  10. Catastrophic Oxidation of Copper: A Brief Review

    Science.gov (United States)

    Belousov, V. V.; Klimashin, A. A.

    2012-10-01

    A brief review of the current understanding of copper accelerated oxidation in the presence of low-melting oxides (Bi2O3, MoO3, and V2O5) is given. Special attention is paid to the kinetics, thermodynamics, and mechanisms of accelerated oxidation of copper. The mechanisms of two stages (fast and superfast) of the copper accelerated oxidation are considered. It is shown that the fast oxidation of copper occurs by a diffusion mechanism. Oxygen diffusion along the liquid channels in the oxide scale is the rate-limiting step in the overall mechanism. The superfast oxidation of copper occurs by a fluxing mechanism. Realization of the particular mechanism depends on the mass ratio of low-melting oxide to the metal. The mass ratios of low-melting oxide to the metal and the oxygen partial pressures for superfast oxidation of copper are established. A model of the fast oxidation of copper is discussed.

  11. Process Of Bonding Copper And Tungsten

    Science.gov (United States)

    Slattery, Kevin T.; Driemeyer, Daniel E.

    1999-11-23

    Process for bonding a copper substrate to a tungsten substrate by providing a thin metallic adhesion promoting film bonded to a tungsten substrate and a functionally graded material (FGM) interlayer bonding the thin metallic adhesion promoting film to the copper substrate. The FGM interlayer is formed by thermal plasma spraying mixtures of copper powder and tungsten powder in a varied blending ratio such that the blending ratio of the copper powder and the tungsten powder that is fed to a plasma torch is intermittently adjusted to provide progressively higher copper content/tungsten content, by volume, ratio values in the interlayer in a lineal direction extending from the tungsten substrate towards the copper substrate. The resulting copper to tungsten joint well accommodates the difference in the coefficient of thermal expansion of the materials.

  12. Radiation resistance of copper alloys at high exposure levels

    Energy Technology Data Exchange (ETDEWEB)

    Garner, F.A. (Pacific Northwest Lab., Richland, WA (USA)); Zinkle, S.J. (Oak Ridge National Lab., TN (USA))

    1990-08-01

    Copper alloys are currently being considered for high heat flux applications in fusion power devices. A review is presented of the results of two separate series of experiments on the radiation response of copper and copper alloys. One of these involved pure copper and boron-doped copper in the ORR mixed spectrum reactor. The other series included pure copper and a wide array of copper alloys irradiated in the FFTF fast reactor 16 refs., 13 figs.

  13. Abnormal Copper Homeostasis: Mechanisms and Roles in Neurodegeneration

    OpenAIRE

    Mario Manto

    2014-01-01

    As a cofactor of proteins and enzymes involved in critical molecular pathways in mammals and low eukaryotes, copper is a transition metal essential for life. The intra-cellular and extra-cellular metabolism of copper is under tight control, in order to maintain free copper concentrations at very low levels. Copper is a critical element for major neuronal functions, and the central nervous system is a major target of disorders of copper metabolism. Both the accumulation of copper and copper d...

  14. Smelting chlorination method applied to removal of copper from copper slags

    Institute of Scientific and Technical Information of China (English)

    李磊; 王华; 胡建杭

    2015-01-01

    In order to reasonably utilize the iron resources of copper slags, the smelting chlorination process was used to remove copper from copper slags. Higher holding temperature and O2 flow rate are beneficial to increasing copper removal rate. However, the Cu2O mode is formed by the reaction of surplus O2 and CuCl with O2 flow rate increasing over 0.4 L/min, causing CuCl volatilization rate and copper removal rate to decrease. The resulting copper removal rate of 84.34%is obtained under the optimum conditions of holding temperature of 1573 K, residence time of 10 min, CaCl2 addition amount of 0.1 (mass ratio of CaCl2 and the copper slag) and oxygen flow rate of 0.4 L/min. The efficient removal of copper from copper slags through chlorination is feasible.

  15. Grain Refinement of Deoxidized Copper

    Science.gov (United States)

    Balart, María José; Patel, Jayesh B.; Gao, Feng; Fan, Zhongyun

    2016-10-01

    This study reports the current status of grain refinement of copper accompanied in particular by a critical appraisal of grain refinement of phosphorus-deoxidized, high residual P (DHP) copper microalloyed with 150 ppm Ag. Some deviations exist in terms of the growth restriction factor ( Q) framework, on the basis of empirical evidence reported in the literature for grain size measurements of copper with individual additions of 0.05, 0.1, and 0.5 wt pct of Mo, In, Sn, Bi, Sb, Pb, and Se, cast under a protective atmosphere of pure Ar and water quenching. The columnar-to-equiaxed transition (CET) has been observed in copper, with an individual addition of 0.4B and with combined additions of 0.4Zr-0.04P and 0.4Zr-0.04P-0.015Ag and, in a previous study, with combined additions of 0.1Ag-0.069P (in wt pct). CETs in these B- and Zr-treated casts have been ascribed to changes in the morphology and chemistry of particles, concurrently in association with free solute type and availability. No further grain-refining action was observed due to microalloying additions of B, Mg, Ca, Zr, Ti, Mn, In, Fe, and Zn (~0.1 wt pct) with respect to DHP-Cu microalloyed with Ag, and therefore are no longer relevant for the casting conditions studied. The critical microalloying element for grain size control in deoxidized copper and in particular DHP-Cu is Ag.

  16. The copper metallome in prokaryotic cells.

    Science.gov (United States)

    Rensing, Christopher; McDevitt, Sylvia Franke

    2013-01-01

    As a trace element copper has an important role in cellular function like many other transition metals. Its ability to undergo redox changes [Cu(I) ↔ Cu(II)] makes copper an ideal cofactor in enzymes catalyzing electron transfers. However, this redox change makes copper dangerous for a cell since it is able to be involved in Fenton-like reactions creating reactive oxygen species (ROS). Cu(I) also is a strong soft metal and can attack and destroy iron-sulfur clusters thereby releasing iron which can in turn cause oxidative stress. Therefore, copper homeostasis has to be highly balanced to ensure proper cellular function while avoiding cell damage.Throughout evolution bacteria and archaea have developed a highly regulated balance in copper metabolism. While for many prokaryotes copper uptake seems to be unspecific, others have developed highly sophisticated uptake mechanisms to ensure the availability of sufficient amounts of copper. Within the cytoplasm copper is sequestered by various proteins and molecules, including specific copper chaperones, to prevent cellular damage. Copper-containing proteins are usually located in the cytoplasmic membrane with the catalytic domain facing the periplasm, in the periplasm of Gram-negative bacteria, or they are secreted, limiting the necessity of copper to accumulate in the cytoplasm. To prevent cellular damage due to excess copper, bacteria and archaea have developed various copper detoxification strategies. In this chapter we attempt to give an overview of the mechanisms employed by bacteria and archaea to handle copper and the importance of the metal for cellular function as well as in the global nutrient cycle.

  17. Variations of serum copper values in pregnancy

    Directory of Open Access Journals (Sweden)

    Vukelić Jelka

    2012-01-01

    Full Text Available Introduction. Copper is essential micronutrient and has an important role in the human body. The serum copper increases during pregnancy and is doubled at full term. Lower levels of serum copper in pregnancy are connected with some pathological conditions. Objective. The aim of this study was to estimate the levels of serum copper in normal and pathological pregnancies, comparing them with values of serum copper in non-pregnant women, to determine if serum copper is lower in some pathological pregnancies and if this is of some importance. Methods. A total of 2170 plasma samples for copper analyses were made in the following groups: healthy non-pregnant women; healthy pregnant women from the 5th-40th gestational week, during the first delivery stage and during the first three postpartum weeks, in pregnant women with habitual abortion, imminent abortion, abortion in progress, missed abortion (9th-24th weeks, missed labour and premature rupture of membranes (29th-40th weeks. Levels of serum copper were determined by colorimetric technique of bathocuproin with disulphate as a chromogen. Results. Serum copper values in non-pregnant women range from 11.6-25.8 μmol/L. In healthy pregnant women, there is a constant trend of the increase of serum copper. The mean serum copper values revealed three significant peaks at the 22nd, 27th and 35th gestational week. Serum copper values in the patients with some pathological pregnancies in relation to the serum copper values of the healthy pregnant women were significantly lower. Conclusion. Serum copper values can be used as an indicator of some pathological pregnancies.

  18. Variations of serum copper values in pregnancy.

    Science.gov (United States)

    Vukelić, Jelka; Kapamadzija, Aleksandra; Petrović, Djordje; Grujić, Zorica; Novakov-Mikić, Aleksandra; Kopitović, Vesna; Bjelica, Artur

    2012-01-01

    Copper is essential micronutrient and has an important role in the human body. The serum copper increases during pregnancy and is doubled at full term. Lower levels of serum copper in pregnancy are connected with some pathological conditions. The aim of this study was to estimate the levels of serum copper in normal and pathological pregnancies, comparing them with values of serum copper in non-pregnant women, to determine if serum copper is lower in some pathological pregnancies and if this is of some importance. A total of 2170 plasma samples for copper analyses were made in the following groups: healthy non-pregnant women; healthy pregnant women from the 5th-40th gestational week, during the first delivery stage and during the first three postpartum weeks, in pregnant women with habitual abortion, imminent abortion, abortion in progress, missed abortion (9th-24th weeks), missed labour and premature rupture of membranes (29th-40th weeks). Levels of serum copper were determined by colorimetric technique of bathocuproin with disulphate as a chromogen. Serum copper values in non-pregnant women range from 11.6-25.8 micromol/L. In healthy pregnant women, there is a constant trend of the increase of serum copper. The mean serum copper values revealed three significant peaks at the 22nd, 27th and 35th gestational week. Serum copper values in the patients with some pathological pregnancies in relation to the serum copper values of the healthy pregnant women were significantly lower. Serum copper values can be used as an indicator of some pathological pregnancies.

  19. M5Si3(M=Ti, Nb, Mo) Based Transition-Metal Silicides for High Temperature Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhihong [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    Transition metal silicides are being considered for future engine turbine components at temperatures up to 1600 C. Although significant improvement in high temperature strength, room temperature fracture toughness has been realized in the past decade, further improvement in oxidation resistance is needed. Oxidation mechanism of Ti5Si3-based alloys was investigated. Oxidation behavior of Ti5Si3-based alloy strongly depends on the atmosphere. Presence of Nitrogen alters the oxidation behavior of Ti5Si3 by nucleation and growth of nitride subscale. Ti5Si3.2and Ti5Si3C0.5 alloys exhibited an excellent oxidation resistance in nitrogen bearing atmosphere due to limited dissolution of nitrogen and increased Si/Ti activity ratio. MoSi2 coating developed by pack cementation to protect Mo-based Mo-Si-B composites was found to be effective up to 1500 C. Shifting coating composition to T1+T2+Mo3Si region showed the possibility to extend the coating lifetime above 1500 C by more than ten times via formation of slow growing Mo3Si or T2 interlayer without sacrificing the oxidation resistance of the coating. The phase equilibria in the Nb-rich portion of Nb-B system has been evaluated experimentally using metallographic analysis and differential thermal analyzer (DTA). It was shown that Nbss (solid solution) and NbB are the only two primary phases in the 0-40 at.% B composition range, and the eutectic reaction L {leftrightarrow} NbSS + NbB was determined to occur at 2104 ± 5 C by DTA.

  20. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    Directory of Open Access Journals (Sweden)

    Choveaux David L

    2012-11-01

    Full Text Available Abstract Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369, containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds.

  1. Accumulation and hyperaccumulation of copper in plants

    Science.gov (United States)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  2. Jiangxi Copper and Yates Joined Hands in High-Grade Copper Foil Project Construction

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    <正> The construction of a large-scale copper foilproject recently started in the High-Tech De-velopment Zone of Nanchang,the capital ofJiangxi Province.This new copper foil factory,with a designed annual production capacity of6,000 tons of high-grade copper foil,is a jointventure project between Jiangxi Copper Group,the No.1 copper producer in China,and YatesInc.,a leading US copper product company andthe world’s first electrical circuit board maker.

  3. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  4. Radiocopper for the imaging of copper metabolism.

    Science.gov (United States)

    Hueting, Rebekka

    2014-04-01

    The redox-active transition metal copper is an essential trace element for growth and development and serves as a structural or catalytic cofactor for many enzymes in a range of physiological processes. Mammalian copper homeostasis is tightly regulated, and an imbalance in copper metabolism is implicated in various pathological disorders. Radioactive copper isotopes, in particular (64) Cu (t1/2  = 12.7 h) and (67) Cu (t1/2  = 62.01 h), have made important contributions to the understanding of copper metabolism in health and disease. This review gives a brief account of how radiolabelled copper(II) salts and bioreductive copper complexes have been used to trace copper uptake, transport and efflux in vitro and in vivo. Recently, positron emission tomography (PET) has emerged as a noninvasive tool to image copper metabolism in living subjects and (64) Cu-PET is investigated for the study of copper-related neurological disorders, genetic diseases and cancer.

  5. Canine Models for Copper Homeostasis Disorders

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wu

    2016-02-01

    Full Text Available Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted.

  6. Canine Models for Copper Homeostasis Disorders.

    Science.gov (United States)

    Wu, Xiaoyan; Leegwater, Peter A J; Fieten, Hille

    2016-02-04

    Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted.

  7. Nanoscale Copper and Copper Compounds for Advanced Device Applications

    Science.gov (United States)

    Chen, Lih-Juann

    2016-12-01

    Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

  8. Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica.

    Science.gov (United States)

    Zhu, Libin; Elguindi, Jutta; Rensing, Christopher; Ravishankar, Sadhana

    2012-05-01

    Copper has shown antibacterial effects against foodborne pathogens. The objective of this study was to evaluate the antibacterial activity of copper surfaces on copper resistant and sensitive strains of Salmonella enterica. Six different copper alloy coupons (60-99.9% copper) were tested along with stainless steel as the control. The coupons were surface inoculated with either S. Enteritidis or one of the 3 copper resistant strains, S. Typhimurium S9, S19 and S20; stored under various incubation conditions at room temperature; and sampled at various times up to 2 h. The results showed that under dry incubation conditions, Salmonella only survived 10-15 min on high copper content alloys. Salmonella on low copper content alloys showed 3-4 log reductions. Under moist incubation conditions, no survivors were detected after 30 min-2 h on high copper content alloys, while the cell counts decreased 2-4 logs on low copper content coupons. Although the copper resistant strains survived better than S. Enteritidis, they were either completely inactivated or survival was decreased. Copper coupons showed better antimicrobial efficacy in the absence of organic compounds. These results clearly show the antibacterial effects of copper and its potential as an alternative to stainless steel for selected food contact surfaces.

  9. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption

    Directory of Open Access Journals (Sweden)

    R Andreazza

    2011-03-01

    Full Text Available Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária experimental station, Bento Gonçalves, RS, Brazil (29º09'53.92''S and 51º31'39.40''W and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30º29'43.48''S and 53'32'37.87W. Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L-1 in 24 h. Contrarily isolate N11 (Bacillus pumilus displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h. GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration.

  10. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption.

    Science.gov (United States)

    Andreazza, R; Pieniz, S; Okeke, B C; Camargo, F A O

    2011-01-01

    Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09'53.92″S and 51°31'39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29'43.48″S and 53'32'37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L(-1) in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration.

  11. The Present Conditions of China’s Copper Industry

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>China’s copper industry has formed a complete production system and by the end of 2004, China had 600,000 tons of copper mining capacities, 1.5 million tons of copper smelting capacities, 2.15 million tons of copper refining capacities and 3.8 million tons of copper fabricating capacities.

  12. Thermoelectric Study of Copper Selenide

    Science.gov (United States)

    Yao, Mengliang; Liu, Weishu; Ren, Zhifeng; Opeil, Cyril

    2014-03-01

    Nanostructuring has been shown to be an effective approach in reducing lattice thermal conductivity and improving the figure of merit of thermoelectric materials. Copper selenide is a layered structure material, which has a low thermal conductivity and p-type Seebeck coefficient at low temperatures. We have evaluated several hot-pressed, nanostructured copper selenide samples with different dopants for their thermoelectric properties. The phenomenon of the charge-density wave observed in the nanocomposite, resistivity, Seebeck, thermal conductivity and carrier mobility will be discussed. Funding for this research was provided by the Solid State Solar - Thermal Energy Conversion Center (S3TEC), an Energy Frontier Research Center sponsored by the DOE, Office of Basic Energy Science, Award No. DE-SC0001299/ DE-FG02-09ER46577.

  13. Accelerations of {epsilon}+{alpha}{yields}{beta} transformation and sintering of iron silicide by addition of Pd; Pd tenka ni yoru keikatetsu no {epsilon}+{alpha}{yields}{beta} hentai to shoketsu no sokushin

    Energy Technology Data Exchange (ETDEWEB)

    Kato, M.; Yamamoto, N.; Takeda, T. [Isuzu Advanced Engineering Center Ltd., Kanagawa (Japan); Hayashi, K. [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1996-12-15

    FeSi2 ({beta} phase) semiconducting iron silicide, which is expected to be widely used as a thermoelectric material in high temperature environment, is formed below 1259K by the peritectoid reaction of FeSi ({epsilon}) and Fe2Si5 ({alpha}) two metallic phases. Because the transformation of {epsilon} + {alpha} {yields} {beta} caused by this peritectoid reaction occurs considerably slowly, the iron silicide material which is produced by sintering of the powder at temperatures above 1259K has to be isothermally heat-treated for at least 180ks at about 1120K after the sintering so that the transformation occurs completely. We have found that the transformation was drastically accelerated by the addition of a small amount of Pd in the same way as Cu; the isothermal heat-treatment time necessary for the completion of the transformation was reduced to about 1/60. The sintering time needed for the almost full densification of the powder by pressure DCL sintering (DCL; direct current loading) was also reduced. A hypothesis for the mechanisms was proposed. 15 refs., 7 figs., 2 tabs.

  14. Rapid iodometric determination of copper in some copper-base alloys

    NARCIS (Netherlands)

    Agterdenbos, J.; Eelberse, P.A.

    1966-01-01

    Copper-base alloys, especially those containing tin, are readily dissolved in a mixture of hydrofluoric and nitric acids. In the resulting solution copper can be titrated iodometrically in the conventional manner.

  15. Xinjiang Non-ferrous Metals Wuxin Copper 100,000-ton Cathode Copper Project Commences

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>The construction of Xinjiang Nonferrous Met-als’ Wuxin Copper’s 100,000-ton Cathode Copper Project commenced at the Fukang Xin-jiang Industrial Park of Innovative Non-Ferrous Materials recently. Xinjiang Wuxin Copper

  16. Explosive compact-coating of tungsten–copper alloy to a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Miao, Yusong

    2017-03-01

    This study proposed a new method for coating tungsten–copper alloy to copper surface. First, the tungsten–copper alloy powder was pre-compacted to the copper surface. Then, the powder in the hydrogen atmosphere was sintered, and the pre-compacted powder was compacted by explosive compact-coating. Finally, diffusion sintering was conducted to improve the density of the coating layer. The theoretical density of the coating reached 99.3%. Microstructure characteristics indicated that tungsten and copper powders were well mixed. Tungsten particles were larger than copper particles. Scanning electron microscope (SEM) fracture surface analysis was different from the traditional fracture of metals. Coating and substrate joint surfaces, which were analyzed by SEM, indicated that the tungsten–copper alloy was sintered on the copper surface. The hardness of the coating layer was 197.6–245.2 HV, and the hardness of the substrate was approximately 55 HV.

  17. Reduction reaction analysis of nanoparticle copper oxide for copper direct bonding using formic acid

    Science.gov (United States)

    Fujino, Masahisa; Akaike, Masatake; Matsuoka, Naoya; Suga, Tadatomo

    2017-04-01

    Copper direct bonding is required for electronics devices, especially power devices, and copper direct bonding using formic acid is expected to lower the bonding temperature. In this research, we analyzed the reduction reaction of copper oxide using formic acid with a Pt catalyst by electron spin resonance analysis and thermal gravimetry analysis. It was found that formic acid was decomposed and radicals were generated under 200 °C. The amount of radicals generated was increased by adding the Pt catalyst. Because of these radicals, both copper(I) oxide and copper(II) oxide start to be decomposed below 200 °C, and the reduction of copper oxide is accelerated by reactants such as H2 and CO from the decomposition of formic acid above 200 °C. The Pt catalyst also accelerates the reaction of copper oxide reduction. Herewith, it is considered that the copper surface can be controlled more precisely by using formic acid to induce direct bonding.

  18. ANALYSIS AND DEVELOPMENT OF COPPER RECYCLING OF DEAD COPPER-CONTAINING CATALYSTS

    OpenAIRE

    O. S. Komarov; I. V. Provorova; V. I. Volosatikov; D. O. Komarov; N. I. Urbanovich

    2009-01-01

    The technology of processing of copper-bearing dead catalysts, which includes leaching and deposition of copper by means of electrolysis and also their application in composition of the mixture for alloy doping is offered.

  19. ANALYSIS AND DEVELOPMENT OF COPPER RECYCLING OF DEAD COPPER-CONTAINING CATALYSTS

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2009-01-01

    Full Text Available The technology of processing of copper-bearing dead catalysts, which includes leaching and deposition of copper by means of electrolysis and also their application in composition of the mixture for alloy doping is offered.

  20. LEP Radio Frequency Copper Cavity

    CERN Multimedia

    The pulse of a particle accelerator. 128 of these radio frequency cavities were positioned around CERN's 27-kilometre LEP ring to accelerate electrons and positrons. The acceleration was produced by microwave electric oscillations at 352 MHz. The electrons and positrons were grouped into bunches, like beads on a string, and the copper sphere at the top stored the microwave energy between the passage of individual bunches. This made for valuable energy savings as it reduced the heat generated in the cavity.

  1. Yunnan Copper Co., Ltd. Invested 1.5 Billion Yuan for 200,000-Ton Refined Copper Project in Baoding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Yunnan Copper(Group)Co.,Ltd.has signed a strategic agreement with Baoding Municipal Government of Heibei Province in Kunming on the joint development of a copper smelting project.With the joint investment from Baoding Xinxian Government,Yunnan Copper Co.,Ltd.and Baoding Dali Copper Ltd,a copper refinery with an annual capacity of

  2. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis

    NARCIS (Netherlands)

    Fedoseienko, Alina; Bartuzi, Paulina; van de Sluis, Bart

    2014-01-01

    Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in

  3. In situ Fabrication of Monolithic Copper Azide

    Science.gov (United States)

    Li, Bing; Li, Mingyu; Zeng, Qingxuan; Wu, Xingyu

    2016-04-01

    Fabrication and characterization of monolithic copper azide were performed. The monolithic nanoporous copper (NPC) with interconnected pores and nanoparticles was prepared by decomposition and sintering of the ultrafine copper oxalate. The preferable monolithic NPC can be obtained through decomposition and sintering at 400°C for 30 min. Then, the available monolithic NPC was in situ reacted with the gaseous HN3 for 24 h and the monolithic NPC was transformed into monolithic copper azide. Additionally, the copper particles prepared by electrodeposition were also reacted with the gaseous HN3 under uniform conditions as a comparison. The fabricated monolithic copper azide was characterized by Fourier transform infrared (FTIR), inductively coupled plasma-optical emission spectrometry (ICP-OES), and differential scanning calorimetry (DSC).

  4. SRB Sells Copper for Market Stability

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    <正>In order to ease the tight supply situation for copper on the domestic market and meet the consumption requirement of the industry, the State Goods and Materials Adjustment Center under the State Reserves Bureau (SRB) is ready to sell 20,000 tons of copper by way of open bid. In addition, the SRB also prepares to sell 40,000 tons of copper later in December and

  5. Copper metabolism in analbuminaemic rats fed a high-copper diet.

    NARCIS (Netherlands)

    Yu, S.; Berg, van den G.J.; Beynen, A.C.

    1995-01-01

    Copper metabolism in male Nagase analbuminaemic (NA) rats was compared with that in male Sprague Dawley (SD) rats fed purified diets containing either 5 or 100 mg Cu/kg diet. Dietary copper loading increased hepatic and kidney copper concentrations in both strains to the same extent, but baseline va

  6. Pc Electrolytic System Of Zhangjiagang Copper Industry Company Successfully Produced Copper After Resuming Production

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    On March 17,the PC electrolytic system of Zhangjiagang Copper Industry Co.,Ltd successfully produced the first batch of qualified PC electrolytic copper after resuming production.This company’s 100,000 t/a PC electrolytic copper project was completed and launched into production in April last year.

  7. Nearly 60% Copper Rod & Wire Companies Neutral about Future Copper Price

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>How about the trend of copper price recently? According to the survey result of Shanghai Metals Market, amongst 21 domestic copper rod & wire companies, 57% of the companies are neutral about the future copper price, while 14% and 19% of the companies consider that

  8. Jiangxi Copper Planning to Produce Copper Products of More Than 480,000 Tons This Year

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>It is learned from Jiangxi Copper Group that the company has made the plan to produce copper processing products of more than 480,000 tons, and meanwhile its 100,000-ton copper plate and strip project is planned to be

  9. Tongling’s Ambition for Copper Processing Industrial Leadership

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Known as the "Copper Capital of Ancient China", Tongling’s copper industry posted sub-stantial growth as the domestic copper price rose. According to Wang Yijun, the Director of Tongling DPC, the local government was

  10. TonglingExtended Copper Intensive Processing Industrial Chain

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Despite the adverse impacts including decline in copper price, in 2012, Tongling’s copper in-dustry development still made steady progress. The number of copper enterprises in Tongling with industrial output value above 100 million

  11. [Copper in methane oxidation: a review].

    Science.gov (United States)

    Su, Yao; Kong, Jiao-Yan; Zhang, Xuan; Xia, Fang-Fang; He, Ruo

    2014-04-01

    Methane bio-oxidation plays an important role in the global methane balance and warming mitigation, while copper has a crucial function in methane bio-oxidation. On one side, copper is known to be a key factor in regulating the expression of the genes encoding the two forms of methane monooxygenases (MMOs) and is the essential metal element of the particulate methane monooxygenase (pMMO). On the other side, the content and fractionation of copper in the environment have great effects on the distribution of methanotrophs and their metabolic capability of methane and non-methane organic compounds, as well as on the copper-specific uptake systems in methanotrophs. Thus, it is meaningful to know the role of copper in methane bio-oxidation for comprehensive understanding of this process and is valuable for guiding the application of methanotrophs in greenhouse gas removal and pollution remediation. In this paper, the roles of copper in methane oxidation were reviewed, including the effect of copper on methanotrophic community structure and activity, the expression and activity of MMOs as well as the copper uptake systems in methanotrophs. The future studies of copper and methane oxidation were also discussed.

  12. Level of copper in human split ejaculate.

    Science.gov (United States)

    Skandhan, Kalanghot; Valsa, James; Sumangala, Balakrishnan; Jaya, Vasudevan

    2017-02-03

    The purpose of this study was to understand the details of splits of an ejaculate and to locate the origin of release of copper into semen. Laboratory methods routinely followed for semen analysis were carried out. Copper was estimated by employing atomic absorption spectrophotometry. First split of ejaculate showed the highest number of motile sperm, the quality of which decreased from first to third. Copper level in splits 1, 2 and 3 was 29, 23 and 22 µg%, respectively. This study concluded that copper was released from throughout the genital tract.

  13. Structure of a copper-isoniazid complex.

    Science.gov (United States)

    Hanson, J C; Camerman, N; Camerman, A

    1981-11-01

    It is well-known that complex formation with copper ions increases the in vitro mycobactericidal action of the antituberculosis agent isoniazid. We report here the preparation and structure of a copper(II)-isoniazid complex. Unit cell parameters are a = 9.575, b = 14.855, and c = 7.056 A and space group P2(1)2(1)2(1). Copper bonding geometry is square planar with the isoniazid carbonyl oxygen and hydrazide amino nitrogen atoms and two chlorines occupying coordination positions. Complexing with copper(II) does not significantly alter the isoniazid molecular conformation.

  14. Copper Nanoparticles in Click Chemistry.

    Science.gov (United States)

    Alonso, Francisco; Moglie, Yanina; Radivoy, Gabriel

    2015-09-15

    The challenges of the 21st century demand scientific and technological achievements that must be developed under sustainable and environmentally benign practices. In this vein, click chemistry and green chemistry walk hand in hand on a pathway of rigorous principles that help to safeguard the health of our planet against negligent and uncontrolled production. Copper-catalyzed azide-alkyne cycloaddition (CuAAC), the paradigm of a click reaction, is one of the most reliable and widespread synthetic transformations in organic chemistry, with multidisciplinary applications. Nanocatalysis is a green chemistry tool that can increase the inherent effectiveness of CuAAC because of the enhanced catalytic activity of nanostructured metals and their plausible reutilization capability as heterogeneous catalysts. This Account describes our contribution to click chemistry using unsupported and supported copper nanoparticles (CuNPs) as catalysts prepared by chemical reduction. Cu(0)NPs (3.0 ± 1.5 nm) in tetrahydrofuran were found to catalyze the reaction of terminal alkynes and organic azides in the presence of triethylamine at rates comparable to those achieved under microwave heating (10-30 min in most cases). Unfortunately, the CuNPs underwent dissolution under the reaction conditions and consequently could not be recovered. Compelling experimental evidence on the in situ generation of highly reactive copper(I) chloride and the participation of copper(I) acetylides was provided. The supported CuNPs were found to be more robust and efficient catalyst than the unsupported counterpart in the following terms: (a) the multicomponent variant of CuAAC could be applied; (b) the metal loading could be substantially decreased; (c) reactions could be conducted in neat water; and (d) the catalyst could be recovered easily and reutilized. In particular, the catalyst composed of oxidized CuNPs (Cu2O/CuO, 6.0 ± 2.0 nm) supported on carbon (CuNPs/C) was shown to be highly versatile and very

  15. Conclusion on the peer review of the pesticide risk assessment of confirmatory data submitted for the active substance Copper (I, copper (II variants namely copper hydroxide, copper oxychloride, tribasic copper sulfate, copper (I oxide, Bordeaux mixture

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2013-06-01

    Full Text Available The conclusions of the European Food Safety Authority (EFSA following the peer review of the initial risk assessment carried out by the competent authority of the rapporteur Member State France, for the pesticide active substance copper (I, copper (II variants (formerly referred to as copper compounds are reported. The context of the peer review was that requested by the European Commission following the submission and evaluation of confirmatory environmental fate and behaviour and ecotoxicology data. The conclusions were reached on the basis of the evaluation of the representative uses of copper (I, copper (II variants as a fungicide/bactericide on grapes and tomatoes. The reliable endpoints concluded as being appropriate for use in regulatory risk assessment, derived from the available studies and literature in the dossier peer reviewed, are presented. Concerns are identified.

  16. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics.

    Science.gov (United States)

    Park, Kyung Chan; Fouani, Leyla; Jansson, Patric J; Wooi, Danson; Sahni, Sumit; Lane, Darius J R; Palanimuthu, Duraippandi; Lok, Hiu Chuen; Kovačević, Zaklina; Huang, Michael L H; Kalinowski, Danuta S; Richardson, Des R

    2016-09-01

    Copper is an essential trace metal required by organisms to perform a number of important biological processes. Copper readily cycles between its reduced Cu(i) and oxidised Cu(ii) states, which makes it redox active in biological systems. This redox-cycling propensity is vital for copper to act as a catalytic co-factor in enzymes. While copper is essential for normal physiology, enhanced copper levels in tumours leads to cancer progression. In particular, the stimulatory effect of copper on angiogenesis has been established in the last several decades. Additionally, it has been demonstrated that copper affects tumour growth and promotes metastasis. Based on the effects of copper on cancer progression, chelators that bind copper have been developed as anti-cancer agents. In fact, a novel class of thiosemicarbazone compounds, namely the di-2-pyridylketone thiosemicarbazones that bind copper, have shown great promise in terms of their anti-cancer activity. These agents have a unique mechanism of action, in which they form redox-active complexes with copper in the lysosomes of cancer cells. Furthermore, these agents are able to overcome P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) and act as potent anti-oncogenic agents through their ability to up-regulate the metastasis suppressor protein, N-myc downstream regulated gene-1 (NDRG1). This review provides an overview of the metabolism and regulation of copper in normal physiology, followed by a discussion of the dysregulation of copper homeostasis in cancer and the effects of copper on cancer progression. Finally, recent advances in our understanding of the mechanisms of action of anti-cancer agents targeting copper are discussed.

  17. Energy and materials flows in the copper industry

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  18. Duobaoshan Porphyry Copper Deposit and Its Associated Components

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Duobaoshan porphyry copper deposit, situated in Nenjiang County of Heilongjiang Province, Northeast China, lies tectonically in the Mongolian-Okhotsk geosyncline.Duobaoshan porphyry copper ore field consisting of Duobaoshan copper deposit and Tongshan copper deposit contains rich copper associated with molybdenum, gold, silver and osmium (OsX87). In this sense, this porphyry copper ore field will turn into a large industrial base of copper, gold, silver and osmium. At present, in Duobaoshan porphyry copper deposit occurs a usable B+C+-D grade reserve of 3 276 630ton Cu, 122 920 ton Mo, 87 ton gold and 1 417 ton Ag.

  19. Energy and materials flows in the copper industry

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.

    1980-12-01

    The copper industry comprises both the primary copper industry, which produces 99.9%-pure copper from copper ore, and the secondary copper industry, which salvages and recycles copper-containing scrap metal to extract pure copper or copper alloys. The United States uses about 2 million tons of copper annually, 60% of it for electrical applications. Demand is expected to increase less than 4% annually for the next 20 years. The primary copper industry is concentrated in the Southwest; Arizona produced 66% of the 1979 total ore output. Primary production uses about 170 x 10/sup 12/ Btu total energy annually (about 100 x 10/sup 6/ Btu/ton pure copper produced from ore). Mining and milling use about 60% of the total consumption, because low-grade ore (0.6% copper) is now being mined. Most copper is extracted by smelting sulfide ores, with concomitant production of sulfur dioxide. Clean air regulations will require smelters to reduce sulfur emissions, necessitating smelting process modifications that could also save 20 x 10/sup 12/ Btu (10 x 10/sup 6/ Btu/ton of copper) in smelting energy. Energy use in secondary copper production averages 20 x 10/sup 6/ Btu/ton of copper. If all copper products were recycled, instead of the 30% now salvaged, the energy conservation potential would be about one-half the total energy consumption of the primary copper industry.

  20. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

    2016-03-25

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  1. Synthesis of copper nanoparticles by electrolysis of DNA utilizing copper as sacrificial anode.

    Science.gov (United States)

    Singh, Dinesh Pratap; Srivastava, Onkar Nath

    2007-06-01

    Copper nanoparticles have been synthesized by anodic oxidation through a simple electrolysis process employing de-oxy ribonucleic acid (DNA) as electrolyte. Platinum was taken as cathode and copper as anode. The applied voltage was 4 V and the electrolysis was performed for duration of 1 h. The copper nanoparticles were prepared in situ from the electron beam irradiation on residues of electrolyte consisting of DNA and copper particles: DNA (Cu) complexes. The size of the nanoparticles ranges between 5-50 nm. A tentative explanation has been given for the formation of copper nanoparticles.

  2. Different pathways for copper sulphate and copper nitrate antioxidation and organic acid excretion in Typha latifolia?

    OpenAIRE

    Lyubenova L.; Kuhn A.; Höltkemeier A.; Bipuah H.; Belford E.; Schröder P.

    2013-01-01

    The major topic of the present experiment was the investigation of the antioxidative enzymes and the root exudate excretion after plant exposure to copper. The copper was added for each treatment as copper sulphate and copper nitrate in the concentrations of 10 μM, 50 μM and 100 μM, respectively. The plant species chosen for the study was Typha latifolia. The experiment gives insight into the plant responses to different copper supplies during the same conditions of exposure. Remarkable resul...

  3. Geomorphology of the lower Copper River, Alaska

    Science.gov (United States)

    Brabets, Timothy P.

    1997-01-01

    The Copper River, located in southcentral Alaska, drains an area of more than 24,000 square miles. About 30 miles above its mouth, this large river enters Miles Lake, a proglacial lake formed by the retreat of Miles Glacier. Downstream from the outlet of Miles Lake, the Copper River flows past the face of Childs Glacier before it enters a large, broad, alluvial flood plain. The Copper River Highway traverses this flood plain and in 1995, 11 bridges were located along this section of the highway. These bridges cross parts of the Copper River and in recent years, some of these bridges have sustained serious damage due to the changing course of the Copper River. Although the annual mean discharge of the lower Copper River is 57,400 cubic feet per second, most of the flow occurs during the summer months from snowmelt, rainfall, and glacial melt. Approximately every six years, an outburst flood from Van Cleve Lake, a glacier-dammed lake formed by Miles Glacier, releases approximately 1 million acre-feet of water into the Copper River. When the outflow rate from Van Cleve Lake reaches it peak, the flow of the Copper River will increase between 150,000 to 190,000 cubic feet per second. Data collected by bedload sampling and continuous seismic reflection indicated that Miles Lake traps virtually all the bedload being transported by the Copper River as it enters the lake from the north. The reservoir-like effect of Miles Lake results in the armoring of the channel of the Copper River downstream from Miles Lake, past Childs Glacier, until it reaches the alluvial flood plain. At this point, bedload transport begins again. The lower Copper River transports 69 million tons per year of suspended sediment, approximately the same quantity as the Yukon River, which drains an area of more than 300,000 square miles. By correlating concurrent flows from a long-term streamflow-gaging station on the Copper River with a short-term streamflow-gaging station at the outlet of Miles Lake

  4. Liver copper concentration in Wilson's disease: effect of treatment with 'anti-copper' agents.

    Science.gov (United States)

    Gibbs, K; Walshe, J M

    1990-01-01

    Serial copper determinations have been made on the livers of 10 patients with Wilson's disease. Two were studied before and eight after the start of treatment in order to assess the effect, if any, on the concentration of the metal. In two patients who were receiving no therapy and in one in whom it had been discontinued, the level of copper rose. In the latter patient, resumption of treatment then resulted in a fall in the level of copper in the liver. A similar fall was seen in seven patients on continuous therapy. In one patient, a very poor complier, there was a tendency for the liver copper concentration to rise over a 5-year period. All three therapies investigated--penicillamine, trientine and tetrathiomolybdate--when taken regularly, appear to be effective in reducing liver copper levels. Sixty-nine single determinations of liver copper have been plotted against time on treatment. This shows that the copper concentration falls rapidly in the first year. Thereafter, there is no linear relationship between the duration of treatment and liver copper. Poor compliers have a higher liver copper concentration than do good compliers. Determinations made from different portions of the liver showed that in only one of 19 examples was there an overlap between the near normal and the abnormal range. The principal mechanism of action of 'anti-copper' agents in Wilson's disease appears to be the mobilization of copper from the tissues, but a secondary detoxifying action may come into play later.

  5. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  6. Three stages of copper accumulation in hepatocellular lysosomes: X-ray microanalysis of copper-loaded golden hamsters.

    OpenAIRE

    Yagi, A.; Hayashi, H; Higuchi, T.; Hishida, N.; Sakamoto, N.

    1992-01-01

    Male golden hamsters were loaded with copper by supplying them for up to 12 weeks with drinking water containing 0.5% cupric acetate. The copper feeding increased hepatic copper to widely varying levels. Energy dispersive X-ray microanalysis could always identify a copper-sulphur complex in the hepatocyte lysosomes of copper-loaded hamsters and the X-ray intensity of copper was found to be a reliable parameter to measure in-situ copper accumulation. Combining this parameter with the copper bi...

  7. Theory of Copper Oxide Superconductors

    CERN Document Server

    Kamimura, Hiroshi; Shunichi Matsuno; Tsuyoshi Hamada

    2005-01-01

    This is an advanced textbook for graduate students and researchers wishing to learn about high temperature superconductivity in copper oxides, in particular the Kamimura-Suwa (K-S) model. Because a number of models have been proposed since the discovery of high temperature superconductivity by Bednorz and Müller in 1986, the book first explains briefly the historical development that led to the K-S model. It then focuses on the physical background necessary to understand the K-S model and on the basic principles behind various physical phenomena such as electronic structures, electrical, thermal and optical properties, and the mechanism of high temperature superconductivity.

  8. Copper Scrap Industry Remained in Cold Winter

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Beginning from 2012,domestic copper scrap enterprises entered"winter"period,this year the situation further worsened.According to survey,most medium to small sized copper scrap trading enterprises have either closed down,transferred to other businesses,or reduced trading volume,though large trading

  9. Smelting Oxidation Desulfurization of Copper Slags

    Institute of Scientific and Technical Information of China (English)

    LI Lei; HU Jian-hang; WANG Hua

    2012-01-01

    According to the mechanism of sulfur removal easily through oxidation, the process of smelting oxidation desulfurization of copper slags is studied, which supplies a new thinking for obtaining the molten iron of lower sulfur content by smelting reduction of copper slags. Special attention is given to the effects of the holding temperature, the holding time and CaF2, CaO addition amounts on the desulfurization rate of copper slags. The results indicate that the rate of copper slags smelting oxidation desulfurization depends on the matte mass transfer rate through the slag phase. After the oxidation treatment, sulfur of copper slags can be removed as SO2 efficiently. Amount of Ca2+ of copper slags affects the desulfurization rate greatly, and the slag desulfurization rate is reduced by adding a certain amount of CaF2 and CaO. Compared with CaF2, CaO is negative to slags sulfur removal with equal Ca2+ addition. Under the air flow of 0.3 U/min, the sulfur content of copper slags can be reduced to 0. 004 67% in the condition of the holding time of 3 min and the holding temperature of 1 500 ℃. The sulfur content of molten iron is reduced to 0. 000 8 % in the smelting reduction of treated slags, and the problem of high sulfur content of molten iron obtained by smelting reduction with copper slag has been successively solved.

  10. Copper and Aluminium Fabricators in Deep Waters

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The copper processing industry of Yingtan represents over 60% of the provincial fiscal revenue.Due to the fallout of the global finan- cial crisis,most of the 78 copper processing enterprises in Yingtan City have or are about to shut down.In late October,Yingtan city spe-

  11. Spent nuclear fuel rods encapsulated in copper

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, H.D.

    1984-04-01

    Using hot isostatic pressing, spent nuclear fuel rods and other radioactive wastes can be encapsulated in solid copper. The copper capsule which is formed is free of pores and cracks, and is highly resistant to attack by reducing ground waters. Such capsules should contain radioactive materials safely for hundreds of thousands of years in underground storage.

  12. Mesophilic leaching of copper sulphide sludge

    Directory of Open Access Journals (Sweden)

    VLADIMIR B. CVETKOVSKI

    2009-02-01

    Full Text Available Copper was precipitated using a sodium sulphide solution as the precipitation agent from an acid solution containing 17 g/l copper and 350 g/l sulphuric acid. The particle size of nearly 1 µm in the sulphide sludge sample was detected by optical microscopy. Based on chemical and X-ray diffraction analyses, covellite was detected as the major sulphide mineral. The batch bioleach amenability test was performed at 32 °C on the Tk31 mine mesophilic mixed culture using a residence time of 28 days. The dissolution of copper sulphide by direct catalytic leaching of the sulphides with bacteria attached to the particles was found to be worthy, although a small quantity of ferrous ions had to be added to raise the activity of the bacteria and the redox potential of the culture medium. Throughout the 22-day period of the bioleach test, copper recovery based on residue analysis indicated a copper extraction of 95 %, with copper concentration in the bioleach solution of 15 g/l. The slope of the straight line tangential to the exponential part of the extraction curve gave a copper solubilisation rate of 1.1 g/l per day. This suggests that a copper extraction of 95 % for the period of bioleach test of 13.6 days may be attained in a three-stage bioreactor system.

  13. High Copper Amalgam Alloys in Dentistry

    Directory of Open Access Journals (Sweden)

    Gaurav Solanki

    2012-07-01

    Full Text Available Amalgam Restoration is an example of the material giving its name to the process. Amalgam fillings are made up of mercury, powdered silver and tin. They are mixed and packed into cavities in teeth where it hardens slowly and replaces the missing tooth substance. The high copper have become material of choice as compared to low copper alloys nowadays because of their improved mechanical properties, corrosion resistance, better marginal integrity and improved performance in clinical trial. The high copper amalgam was used as a restorative material. The application of high copper amalgam was found to be much more useful than low copper amalgam. High copper had much more strength, corrosion resistance, durability and resistance to tarnish as compared to low copper amalgams. No marked expansion or condensation was noted in the amalgam restoration after its setting after 24 hrs. By using the high copper alloy, the chances of creep were also minimized in the restored tooth. No discomfort or any kind of odd sensation in the tooth was noted after few days of amalgam restoration in the tooth.

  14. China Curbs the Investment in Copper Smelting

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>According to a recent document released by the State Development and Reform Commission (SDRC), the investment in copper smelting by China’s enterprises will be put under strict control so as to prevent the blind investment and duplication in copper smelting projects at low technical standard. The document stipulated a series of conditions including equipment, technology, energy consumption and environmental protection.

  15. Jinchuan Becomes a Shareholder of Huading Copper

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>At the end of 2011, the signing ceremony was held for China Jinchuan Nonferrous Metals Holding Co., Ltd. to become a shareholder of Baotou Huading Copper Development Co., Ltd. As a leading company of the copper deep processing industry in the high-tech rare earth

  16. Cellular copper distribution: a mechanistic systems biology approach.

    Science.gov (United States)

    Banci, Lucia; Bertini, Ivano; Cantini, Francesca; Ciofi-Baffoni, Simone

    2010-08-01

    Copper is an essential but potentially harmful trace element required in many enzymatic processes involving redox chemistry. Cellular copper homeostasis in mammals is predominantly maintained by regulating copper transport through the copper import CTR proteins and the copper exporters ATP7A and ATP7B. Once copper is imported into the cell, several pathways involving a number of copper proteins are responsible for trafficking it specifically where it is required for cellular life, thus avoiding the release of harmful free copper ions. In this study we review recent progress made in understanding the molecular mechanisms of copper transport in cells by analyzing structural features of copper proteins, their mode of interaction, and their thermodynamic and kinetic parameters, thus contributing to systems biology of copper within the cell.

  17. Construction of a four tip scanning tunneling microscope/scanning electron microscope combination and conductivity measurements of silicide nanowires; Aufbau einer Vierspitzen-Rastertunnelmikroskop/Rasterelektronenmikroskop-Kombination und Leitfaehigkeitsmessungen an Silizid Nanodraehten

    Energy Technology Data Exchange (ETDEWEB)

    Zubkov, Evgeniy

    2013-09-01

    In this work the combination of a four-tip scanning tunneling microscope with a scanning electron microscope is presented. By means of this apparatus it is possible to perform the conductivity measurements on the in-situ prepared nanostructures in ultra-high vacuum. With the aid of a scanning electron microscope (SEM), it becomes possible to position the tunneling tips of the four-tip scanning tunneling microscope (STM), so that an arrangement for a four-point probe measurement on nanostructures can be obtained. The STM head was built according to the novel coaxial Beetle concept. This concept allows on the one hand, a very compact arrangement of the components of the STM and on the other hand, the new-built STM head has a good mechanical stability, in order to achieve atomic resolution with all four STM units. The atomic resolution of the STM units was confirmed by scanning a Si(111)-7 x 7 surface. The thermal drift during the STM operation, as well as the resonant frequencies of the mechanical structure of the STM head, were determined. The scanning electron microscope allows the precise and safe navigation of the tunneling tips on the sample surface. Multi tip spectroscopy with up to four STM units can be performed synchronously. To demonstrate the capabilities of the new-built apparatus the conductivity measurements were carried out on metallic yttrium silicide nanowires. The nanowires were prepared by the in-situ deposition of yttrium on a heated Si(110) sample surface. Current-voltage curves were recorded on the nanowires and on the wetting layer in-between. The curves indicate an existence of the Schottky barrier between the yttrium silicide nanowires and the silicon bulk. By means of the two-tip measurements with a gate, the insulating property of the Schottky barrier has been confirmed. Using this Schottky barrier, it is possible to limit the current to the nanowire and to prevent it from flowing through the silicon bulk. A four-tip resistance measurement

  18. Solar thermal extraction of copper from sulfides

    Energy Technology Data Exchange (ETDEWEB)

    Winkel, L.; Guesdon, C.; Sturzenegger, M.

    2003-03-01

    With the aim to develop a solar-driven process for the extraction of copper from sulfide concentrates re-search on the decomposition of copper sulfides under inert atmospheres has been initiated. Thermogravimetric measurements on chalcocite (Cu{sub 2}S) revealed that copper is formed already at 1823 K. Chalcopyrite (CuFeS{sub 2}) also disintegrates at this temperature, although at a lower rate. Copper and iron have been identified in the solid residue. The results confirm the feasibility of copper extraction by direct decomposition of sulfides under atmospheric pressure. The decomposition under inert atmosphere prevents generation of SO{sub 2}, and is beneficial to the removal of volatile impurities. Chemical equilibrium calculations for CuFeS{sub 2} contaminated with enargite (Cu{sub 3}AsS{sub 4}) have shown that the absence of an oxidic slag allows for a complete evaporation of arsenic and subsequent separation. (author)

  19. Bioremediation: Copper Nanoparticles from Electronic-waste

    Directory of Open Access Journals (Sweden)

    D. R. MAJUMDER

    2012-10-01

    Full Text Available A single-step eco-friendly approach has been employed to synthesize copper nanoparticles. The superfast advancement in the field of electronics has given rise to a new type of waste called electronic waste. Since the physical and chemical recycling procedures have proved to be hazardous, the present work aims at the bioremediation of e-waste in order to recycle valuable metals. Microorganisms such as Fusarium oxysporum and Pseudomonas sp. were able to leach copper (84-130 nm from integrated circuits present on electronic boards under ambient conditions. Lantana camara, a weed commonly found in Maharashtra was also screened for leaching copper. The characteristics of the copper nanoparticles obtained were studied using X-ray diffraction analysis, energy-dispersive spectroscopy, scanning electron microscopy, Fourier Tranform Infrared analysis, Transmission electron microscopy, Thermogravimetric analysis and Cyclic Voltammetry. Copper nanoparticles were found to be effective against hospital strain Escherichia coli 2065.

  20. Xinjiang to Build Its Largest Copper Mine

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>On September 16, the 6,000,000-ton mining project of Hudehe Copper Mine kicked off, which is the largest copper mine in Xinjiang.Jointly developed by Xinjiang Nonferrous Metals Group and Gansu Jianxin Group, Hudehe Copper Mine is located at Tuoli County, Tacheng Prefecture, Xinjiang. It is a large-scale porphyry-type copper deposit with proven copper reserve of 362,500 tons and prospective reserve of 1,000,000 tons(metal content). According to the preliminary plan, it will be built into a mine with mining and dressing capacity of 6,000,000 tons/year. With a total investment of RMB 1.466 billion, the project is expected to achieve annual sales revenue of RMB 0.8 billion and provide jobs for nearly 1,000 people.

  1. An Analysis of Contemporary Copper Recycling in China

    Institute of Scientific and Technical Information of China (English)

    YUE Qiang; LU Zhong-wu

    2006-01-01

    Copper consumption increased very quickly in China in recent years, which could not be met by inland copper industry. In order to achieve a sustainable development of copper industry, an analysis of copper recycling in China was necessary. For the life cycle of copper products a copper-flow diagram with time factor was worked out and the contemporary copper recycling in China was analyzed, from which the following data were obtained. The average life cycle of copper products was 30 years. From 1998 to 2002, the use ratio of copper scraps in copper production, the use ratio of copper scraps in copper manufacture, the materials self-support ratio in copper production, and the materials self-support ratio in copper manufacture were 26.50%, 15.49%, 48.05% and 59.41%, respectively. The materials self-support ratios in copper production and manufacture declined year by year in recent years on the whole, and the latter dropped more quickly. The average index of copper ore and copper scrap from 1998 to 2002 were 0.8475 t/t and 0.0736 t/t, respectively; and copper resource efficiency was 1.1855 t/t. Some efforts should be paid to reduce copper ores consumption and promote copper scraps regeneration.Copper scraps were mostly imported from foreign countries because of shortage in recent years in China. Here the reasons related to copper scraps deficiency were also demonstrated. But we can forecast: when copper production was in a slow rise or in a steady state in China, the deficiency of copper scraps may be mitigated; when copper production was in a steady state for a very long time, copper scraps may become relatively abundant. According to the status of copper industry in China, the raw materials of copper production and manufacture have to depend on oversea markets heavily in recent years, and at the same time, the copper scraps using proportion and efficiency in copper industry should be improved.

  2. Surface films and corrosion of copper

    Energy Technology Data Exchange (ETDEWEB)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M. [VTT Manufacturing Technology, Espoo (Finland)

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  3. [Atomic absorption spectrophotometry study of copper ion release by copper-bearing intrauterine devices].

    Science.gov (United States)

    Berthou, J; Chrétien, F C; Driguez, P A

    1998-11-01

    Copper release from copper-bearing IUD's was studied in vitro and in vivo using atomic absorption spectrophotometry in deionized water, normal saline solution and normal ovulatory cervical mucus. In these media, copper release from a 375 mm2 DIU occurs without latency, showing comparable amounts for identical time intervals. Daily copper release was shown to be respectively 8 and 11 times higher in cervical mucus and normal saline solution than in deionized water. Although copper ions are detectable in ovulatory cervical mucus under physiological conditions, the copper content appears 5 to 6 times higher in women bearing a copper IUD. Obviously, the copper amount is dependent on the copper exposed surface: the daily in vitro release from a 250 mm2 IUD is 18% inferior to that observed from a 375 mm2 model. In vivo, the daily copper release in ovulatory mucus of 380 or 200 mm2 IUD users is respectively 5 and 3.5 times higher than in controls.

  4. Molecular responses of mouse macrophages to copper and copper oxide nanoparticles inferred from proteomic analyses.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Carrière, Marie; Diemer, Hélène; Proamer, Fabienne; Habert, Aurélie; Chevallet, Mireille; Collin-Faure, Véronique; Strub, Jean-Marc; Hanau, Daniel; Van Dorsselaer, Alain; Herlin-Boime, Nathalie; Rabilloud, Thierry

    2013-11-01

    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents.

  5. Molecular Responses of Mouse Macrophages to Copper and Copper Oxide Nanoparticles Inferred from Proteomic Analyses*

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Carrière, Marie; Diemer, Hélène; Proamer, Fabienne; Habert, Aurélie; Chevallet, Mireille; Collin-Faure, Véronique; Strub, Jean-Marc; Hanau, Daniel; Van Dorsselaer, Alain; Herlin-Boime, Nathalie; Rabilloud, Thierry

    2013-01-01

    The molecular responses of macrophages to copper-based nanoparticles have been investigated via a combination of proteomic and biochemical approaches, using the RAW264.7 cell line as a model. Both metallic copper and copper oxide nanoparticles have been tested, with copper ion and zirconium oxide nanoparticles used as controls. Proteomic analysis highlighted changes in proteins implicated in oxidative stress responses (superoxide dismutases and peroxiredoxins), glutathione biosynthesis, the actomyosin cytoskeleton, and mitochondrial proteins (especially oxidative phosphorylation complex subunits). Validation studies employing functional analyses showed that the increases in glutathione biosynthesis and in mitochondrial complexes observed in the proteomic screen were critical to cell survival upon stress with copper-based nanoparticles; pharmacological inhibition of these two pathways enhanced cell vulnerability to copper-based nanoparticles, but not to copper ions. Furthermore, functional analyses using primary macrophages derived from bone marrow showed a decrease in reduced glutathione levels, a decrease in the mitochondrial transmembrane potential, and inhibition of phagocytosis and of lipopolysaccharide-induced nitric oxide production. However, only a fraction of these effects could be obtained with copper ions. In conclusion, this study showed that macrophage functions are significantly altered by copper-based nanoparticles. Also highlighted are the cellular pathways modulated by cells for survival and the exemplified cross-toxicities that can occur between copper-based nanoparticles and pharmacological agents. PMID:23882024

  6. Evaluation of copper resistant bacteria from vineyard soils and mining waste for copper biosorption

    Science.gov (United States)

    Andreazza, R.; Pieniz, S.; Okeke, B.C.; Camargo, F.A.O

    2011-01-01

    Vineyard soils are frequently polluted with high concentrations of copper due application of copper sulfate in order to control fungal diseases. Bioremediation is an efficient process for the treatment of contaminated sites. Efficient copper sorption bacteria can be used for bioremoval of copper from contaminated sites. In this study, a total of 106 copper resistant bacteria were examined for resistance to copper toxicity and biosorption of copper. Eighty isolates (45 from vineyard Mollisol, 35 from Inceptisol) were obtained from EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária) experimental station, Bento Gonçalves, RS, Brazil (29°09′53.92″S and 51°31′39.40″W) and 26 were obtained from copper mining waste from Caçapava do Sul, RS, Brazil (30°29′43.48″S and 53′32′37.87W). Based on resistance to copper toxicity and biosorption, 15 isolates were identified by 16S rRNA gene sequencing. Maximal copper resistance and biosorption at high copper concentration were observed with isolate N2 which removed 80 mg L−1 in 24 h. Contrarily isolate N11 (Bacillus pumilus) displayed the highest specific copper biosorption (121.82 mg/L/OD unit in 24 h). GenBank MEGABLAST analysis revealed that isolate N2 is 99% similar to Staphylococcus pasteuri. Results indicate that several of our isolates have potential use for bioremediation treatment of vineyards soils and mining waste contaminated with high copper concentration. PMID:24031606

  7. Kinetics of the conversion of copper sulfide to blister copper

    Directory of Open Access Journals (Sweden)

    Carrillo, F.

    2002-10-01

    Full Text Available The desulfurization of copper sulfide by air and oxygen has been studied in two laboratory reactors where the gas is blown onto the melt surface. Rates of oxidation in a vertical resistance furnace may be explained by the mass transfer control in the gas phase. However, results for a horizontal tube suggest that the chemical resistance is controlling.

    La desulfuración del sulfuro cuproso con aire y oxígeno se ha estudiado en dos reactores de laboratorio, en los cuales el gas se sopla sobre la superficie del fundido. La velocidad de reacción en un horno de resistencias verticales se puede explicar considerando como controlante la resistencia a la transferencia de materia de la fase gas. Sin embargo, los resultados del horno horizontal indican que la resistencia química es la controlante.

  8. Relapsing hypocupraemic myelopathy requiring high‐dose oral copper replacement

    OpenAIRE

    Prodan, C.I.; Bottomley, S S; Holland, N R; Lind, S. E.

    2006-01-01

    Adult‐onset copper deficiency with neurological manifestations is a newly recognised syndrome. Long‐term oral copper replacement therapy has been the mainstay of treatment in the literature. A case of relapsing hypocupraemic myelopathy responsive to increased doses of copper replacement is reported. Standard doses of copper may not be sufficient for all patients.

  9. The various faces of copper in laboratory animals

    NARCIS (Netherlands)

    Wolf, Ingeborg Désirée de

    2001-01-01

    All research described in this thesis focuses on the role of copper in various biochemical processes. It appears that copper has various faces in laboratory animals. On the one hand, copper is an essential trace element, which implicates that a certain requirement for copper exists. On the other

  10. China’s Copper Industry Development and the Prospects

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    <正>Since the founding of the People’s Republic, China has given priority to the development of the copper industry, and for a long period of time, copper industry has been placed in the first categories of the industry development in China. Nevertheless, due to the restricted copper resources, the copper mining industry development was rather slow and by the end of

  11. Oxidation behaviours of Nb–22Ti–15Si–2Al–2Hf–2V–(2, 14Cr alloys with Al and Y modified silicide coatings prepared by pack cementation

    Directory of Open Access Journals (Sweden)

    Songming Zhang

    2015-10-01

    Full Text Available Al and Y modified silicide coatings on the Nb–15Si–22Ti–(2,14Cr–2Al–2Hf–2V alloys (where the alloy with 2 at% Cr or 14 at% Cr is hereafter referred to as 2Cr and 14Cr alloy, respectively was prepared by pack cementation. The microstructural evolution and the oxidation behaviours of the coating 2Cr and 14Cr samples at 1250 °C were studied. The 2Cr alloy consists of Nb solid solution (NbSS and α-Nb5Si3 silicide, while the Laves C15–Cr2Nb phase arised in the 14Cr alloy. The coating structure of the coating 2Cr sample contained the outer (Nb, XSi2+(Nb, X5Si3 layer, the middle (Nb, X5Si3 layer and the inner undeveloped intermetallic (Nb,Ti3(Al,X layer; the structure of the coating 14Cr sample consisted of the outer single (Nb, XSi2 layer, the middle (Nb, X5Si3 layer, the transition (Nb,Ti (Cr,Al layer and the inner (Cr, Al2(Nb,Ti layer. The coating 14Cr sample exhibited better oxidation resistance than the coating 2Cr sample. With an outer single (Nb, XSi2 layer, a compact oxide scale consisting of SiO2 and TiO2 formed on the coating 14Cr sample, which can efficiently prevent the substrate from oxidising. For the coating 2Cr sample with an outer (Nb, XSi2+(Nb, X5Si3 layer, the oxide scale of the SiO2, TiO2, Nb2O5 and CrNbO4 mixture generated, and the scale spalled out from the surface of the sample, resulting in disastrous failure.

  12. Tarnished copper IUDs still safe and effective.

    Science.gov (United States)

    1989-01-01

    Due to the presence of tarnish on copper T 380A (TCU 380A) intrauterine devices (IUDs) still in their wrappers, family planning providers in developing countries were concerned over their safety and effectiveness. This article explains why there is tarnish on the copper IUDs and why these IUDs are still sterile as long as their packaging is intact. The Population Council and Finishing Enterprises, the developer and the manufacturer of the devise respectively, along with several chemists, have determined that the tarnishing in no way reflects the sterility of the IUD. The IUD packages are permeable to gases but impermeable to microorganisms so that packages of IUDs can be sterilized with ethylene oxide and then stay sterile because no microorganisms can get to the IUD. Tarnishing is caused by the normal oxidation of copper which gives a surface layer of copper oxide. Normally, this surface layer is too thin to be visible, but 10% of the time a thicker layer of copper oxide or what is called "tarnishing" develops on copper IUDs. Copper IUDs have the same efficiency whether or not they are tarnished. Finishing Enterprises is now conducting research on how to slow down the oxidation process.

  13. Electrochromism in copper oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  14. Fully additive copper metallization on BCB

    Energy Technology Data Exchange (ETDEWEB)

    Stolle, T. [FhG-IZM Berlin (Germany); Schwencke, B.; Reichl, H.

    2000-07-01

    A fully additive copper metallization process on benzocyclobutene cyclotene trademark (BCB) has been investigated for application in MCM-D technology. The process consists of surface pretreatment of the BCB basic layer by reactive ion etching (RIE), spin-coating and photopatterning of an organic seed layer by broad-band I-line photolithography followed by developing and activation steps. The metallization of the seed patterns is performed by a 2-step process by means of electroless copper baths. A height of about 5 {mu}m selectively deposited copper can be achieved. The electrical conductivity of patterns is in the range of 80% - 85% of the bulk conductivity of pure copper. Adhesive strength tests during accelerated aging show good adhesion of copper to the BCB surface, which is influenced by RIE pretreatment, exposure dose and thermal load. Shear experiments performed with optimal treated 200 x 200 {mu}m bumps show shear forces > 150 cN. Design rules have to take into account the lateral growth of copper patterns, which is nearly equal to the vertical growth. Real spaces of {>=} 30 {mu}m between copper lines are possible. The process is considered as a low cost technology because of replacing of sputter technique, few process steps and waste reduction. (orig.)

  15. Electron Percolation In Copper Infiltrated Carbon

    Science.gov (United States)

    Krcho, Stanislav

    2015-11-01

    The work describes the dependence of the electrical conductivity of carbon materials infiltrated with copper in a vacuum-pressure autoclave on copper concentration and on the effective pore radius of the carbon skeleton. In comparison with non-infiltrated material the electrical conductivity of copper infiltrated composite increased almost 500 times. If the composite contained less than 7.2 vol% of Cu, a linear dependence of the electrical conductivity upon cupper content was observed. If infiltrated carbon contained more than 7.2 vol% of Cu, the dependence was nonlinear - the curve could be described by a power formula (x - xc)t. This is a typical formula describing the electron percolation process in regions containing higher Cu fraction than the critical one. The maximum measured electrical conductivity was 396 × 104 Ω-1 m-1 for copper concentration 27.6 vol%. Experiments and analysis of the electrical conductivity showed that electron percolation occurred in carbon materials infiltrated by copper when the copper volume exceeded the critical concentration. The analysis also showed a sharp increase of electrical conductivity in composites with copper concentration higher than the threshold, where the effective radius of carbon skeleton pores decreased to 350 nanometres.

  16. Studies of valence of selected rare earth silicides determined using Si K and Pd/Rh L{sub 2,3} XANES and LAPW numerical studies

    Energy Technology Data Exchange (ETDEWEB)

    Zajdel, P., E-mail: pawel.zajdel@us.edu.pl [Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Kisiel, A., E-mail: andrzej.kisiel@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Kraków (Poland); Szytuła, A., E-mail: andrzej.szytula@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Kraków (Poland); Goraus, J., E-mail: jerzy.goraus@us.edu.pl [Institute of Physics, University of Silesia, ul. Uniwersytecka 4, 40-007 Katowice (Poland); Balerna, A., E-mail: antonella.balerna@lnf.infn.it [Laboratori Nazionali di Frascati, INFN, Lab DAPHINE-Light, Via E. Fermi 40, I-00044 Frascati (Italy); Banaś, A., E-mail: slsba@nus.edu.sg [Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603 (Singapore); Starowicz, P., E-mail: pawel.starowicz@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Kraków (Poland); Konior, J., E-mail: jerzy.konior@uj.edu.pl [M. Smoluchowski Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Kraków (Poland); Cinque, G., E-mail: gianfelice.cinque@diamond.ac.uk [Diamond Light Source, Harwell Campus, OX11 0DE Chilton-Didcot (United Kingdom); Grilli, A., E-mail: antonio.grilli@lnf.infn.it [Laboratori Nazionali di Frascati, INFN, Lab DAPHINE-Light, Via E. Fermi 40, I-00044 Frascati (Italy)

    2015-12-01

    Highlights: • The Si K and Pd L{sub 3} edges of R{sub 2}PdSi{sub 3} (R = Ce, Nd, Tb, Dy, Ho, Er) and HoRh{sub 2−x}Pd{sub x}Si{sub 2} are reported. • The R–Si bonds possess polar and 4d5s bands of Pd and Rh metallic characters. • There is no indication of Ce having a different valence than the other rare earths. • The positions and features of the calculated edges exhibit a fair agreement up to ≈10 eV. • The supercell used for Ho{sub 2}PdSi{sub 3} is good enough to reproduce the Si K edge. - Abstract: We report on the investigation of Si and Pd/Rh chemical environments using X-ray Absorption Near Edge Spectroscopy in two different families of rare earth silicides R{sub 2}PdSi{sub 3} (R = Ce, Nd, Tb, Dy, Ho, Er) and HoRh{sub 2−x}Pd{sub x}Si{sub 2} (x = 0, 0.5, 0.75, 1.0, 1.5, 1.8, 2.0). The Si K, Pd L{sub 3} and Rh L{sub 3} absorption edges were recorded in order to follow their changes upon the variation of 4f and 4d5s electron numbers. In both cases it was found that the Si K edge was shifted ≈0.5 eV toward lower energies, relative to pure silicon. In the first family, the shift decreases with increasing number of f-electrons, while the Si K edge remains constant upon rhodium–palladium substitution. In all cases the Pd L{sub 3} edge was shifted to higher energies relative to metallic Pd. No visible change in the Pd L{sub 3} position was observed either with a varying 4f electron count or upon Pd/Rh substitution. Also, the Rh L{sub 3} edge did not change. For two selected members, Ho{sub 2}PdSi{sub 3} and HoPd{sub 2}Si{sub 2}, the Wien2K’09 (LDA + U) package was used to calculate the electronic structure and the absorption edges. Si K edges were reproduced well for both compounds, while Pd L{sub 3} only exhibited a fair agreement for the second compound. This discrepancy between the Pd L{sub 3} theory and experiment for the Ho{sub 2}PdSi{sub 3} sample can be attributed to the specific ordered superstructure used in the numerical calculations

  17. The Effective Electrolytic Recovery of Dilute Copper from Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Teng-Chien Chen

    2013-01-01

    Full Text Available Electroplating copper industry was discharged huge amount wastewater and cause serious environmental and health damage in Taiwan. This research applied electrical copper recovery system to recover copper metal. In this work, electrotreatment of a industrial copper wastewater ([Cu] = 30000 mg L−1 was studied with titanium net coated with a thin layer of RuO2/IrO2 (DSA reactor. The optimal result for simulated copper solution was 99.9% copper recovery efficiency in current density 0.585 A/dm2 and no iron ion. Due to high concentration of iron and chloride ions in real industrial wastewater, the copper recovery efficiency was down to 60%. Although, the copper recovery efficiency was not high as simulated copper solution, high environmental economic value was included in the technology. The possibility of pretreating the wastewater with iron is the necessary step, before the electrical recovery copper system.

  18. In situ deposits of copper and copper oxide containing condensation polyimide films

    Science.gov (United States)

    Porta, G. M.; Taylor, L. T.

    1987-01-01

    Novel copper-polyimide composites have been synthesized via simultaneous thermal decomposition of solid solutions of bis (trifluoroacetylacetonato) copper (II) and thermal cyclodehydration of polyimide acid. In contrast to conventional filled polymer composites which are prepared by dispersion of particles or fibers in a polymer matrix this study has yielded in general uniform Cu or CuO dispersions of very small particle size that reside near the film surface that was exposed to the atmosphere during curing. The nature of the copper deposit, the thickness of the copper deposit, and the polyimide overlayer which bonds the copper to the polymer substrate depend on the curing atmosphere used. A variety of analytical surface methods along with thermogravimetric analysis and variable temperature (surface and volume) electrical resistivity measurements have been used to characterize these thin, flexible copper doped polyimide films.

  19. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  20. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  1. Thermodynamic Study on Process in Copper Converters (The Copper-making Stage)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Theoretical calculations were based on thermodynamic equilibrium in the multi-component and multi-phase system with heat and mass balance as well as the oxygen efficiency to take account for the effects of process kinetics. The variations of temperature, mass fractions of dissolved oxygen and sulfur in blister copper, partial pressures for O2, S2, SO2 in gas phase for the copper-making stage were calculated. The model predicted temperature, time of blowing as well as mass of the blister copper at end points for 6 heats showed a fairly good agreements with corresponding plant data. The calculated content of 0.065% and content of 0.87% in blister copper were both at reasonable levels. Compared with the so called Goto model, the present model has very much improved process description of copper-making stage as well as the prediction of end points for a copper converter by introducing the oxygen efficiency.

  2. Jiangrun Copper Limited Company Set its Eyes on the Leading Position of Copper Processing Industry in China

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    <正>Jiangrun Copper Limited Company’s total investment volume for projects of stranded copper wire with high strength and high conductivity as well as high-performance copper and copper alloy wire are 500 million yuan and 360 million yuan, respectively. The company plans to introduce 85 units (sets) of high-end

  3. Activation of ADAM 12 protease by copper

    DEFF Research Database (Denmark)

    Loechel, F; Wewer, Ulla M.

    2001-01-01

    Conversion of latent proteases to the active form occurs by various mechanisms characteristic for different protease families. Here we report that the disintegrin metalloprotease ADAM 12-S is activated by Cu(II). Copper activation is distinct from the cysteine switch component of latency......: elimination of the ADAM 12 cysteine switch by a point mutation in the propeptide had no effect on copper activation, whereas mutation of an unpaired cysteine residue in the catalytic domain resulted in a mutant form of ADAM 12-S that was insensitive to copper. This suggests a multi-step activation mechanism...

  4. Graphene-protected copper and silver plasmonics

    DEFF Research Database (Denmark)

    Kravets, V. G.; Jalil, R.; Kim, Y. J.

    2014-01-01

    suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered...... with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic...... waveguides and test sensitivity of surface plasmon resonances. Our results are likely to initiate wide use of graphene-protected plasmonics....

  5. Nanocrystalline Ni-W coatings on copper

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780, Athens (Greece); Plainakis, G.D.; Lagaris, D.A. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780, Athens (Greece)

    2011-04-15

    Nanocrystalline Ni-W coatings were produced on copper substrates with the aid of electrodeposition technique. The morphology, chemical composition and structure of the produced coatings were examined with the aid of scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The microhardness of alloy Ni-W coatings on copper substrate was also studied. The adhesion between the Ni-W coating, having W content 50 wt%, and the copper substrate, was also studied with a scratch testing apparatus. The scratch tests resulted in the coatings suffering an intensive brittle fracture and minor delamination.

  6. Dietary Management of Labrador Retrievers with Subclinical Hepatic Copper Accumulation

    OpenAIRE

    Fieten, H.; Biourge, V.C.; Watson, A.L.; Leegwater, P.A.J.; van den Ingh, T.S.G.A.M.; Rothuizen, J.

    2015-01-01

    Background Genetic and environmental factors, including dietary copper intake, contribute to the pathogenesis of copper‐associated hepatitis in Labrador retrievers. Clinical disease is preceded by a subclinical phase in which copper accumulates in the liver. Objective To investigate the effect of a low‐copper, high‐zinc diet on hepatic copper concentration in Labrador retrievers with increased hepatic copper concentrations. Animals Twenty‐eight clinically healthy, client‐owned Labrador retrie...

  7. Evolution of Copper Transporting ATPases in Eukaryotic Organisms

    OpenAIRE

    Gupta, Arnab; Lutsenko, Svetlana

    2012-01-01

    Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases i...

  8. Copper adsorption in tropical oxisols

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available Cu adsorption, at concentrations between 0 to 800 mg L-1, was evaluated in surface and subsurface samples of three Brazilian soils: a heavy clayey-textured Rhodic Hapludalf (RH, a heavy clayey-textured Anionic ''Rhodic'' Acrudox (RA and a medium-textured Anionic ''Xanthic'' Acrudox (XA. After adsorption, two consecutive extractions were performed to the samples which received 100 mg L-1 copper. Surface samples adsorbed higher amounts of Cu than the subsurface, and exhibited lower Cu removed after the extractions, reinforcing the influence of the organic matter in the reactions. Cu adsorption was significant in the subsurface horizons of the Oxisols, despite the positive balance of charge, demonstrating the existence of mechanisms for specific adsorption, mainly related to the predominance of iron and aluminum oxides in the mineral fractions. In these samples, Cu was easily removed from the adsorption sites. RH demonstrated a higher capacity for the Cu adsorption in both horizons.

  9. Metallochaperones regulate intracellular copper levels.

    Directory of Open Access Journals (Sweden)

    W Lee Pang

    Full Text Available Copper (Cu is an important enzyme co-factor that is also extremely toxic at high intracellular concentrations, making active efflux mechanisms essential for preventing Cu accumulation. Here, we have investigated the mechanistic role of metallochaperones in regulating Cu efflux. We have constructed a computational model of Cu trafficking and efflux based on systems analysis of the Cu stress response of Halobacterium salinarum. We have validated several model predictions via assays of transcriptional dynamics and intracellular Cu levels, discovering a completely novel function for metallochaperones. We demonstrate that in addition to trafficking Cu ions, metallochaperones also function as buffers to modulate the transcriptional responsiveness and efficacy of Cu efflux. This buffering function of metallochaperones ultimately sets the upper limit for intracellular Cu levels and provides a mechanistic explanation for previously observed Cu metallochaperone mutation phenotypes.

  10. Copper Homeostasis in Mycobacterium tuberculosis

    Science.gov (United States)

    Shi, Xiaoshan; Darwin, K. Heran

    2015-01-01

    Copper (Cu) is a trace element essential for the growth and development of almost all organisms, including bacteria. However, Cu overload in most systems is toxic. Studies show Cu accumulates in macrophage phagosomes infected with bacteria, suggesting Cu provides an innate immune mechanism to combat invading pathogens. To counteract the host-supplied Cu, increasing evidence suggests that bacteria have evolved Cu resistance mechanisms to facilitate their pathogenesis. In particular, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, has evolved multiple pathways to respond to Cu. Here, we summarize what is currently known about Cu homeostasis in Mtb and discuss potential sources of Cu encountered by this and other pathogens in a mammalian host. PMID:25614981

  11. China Metallurgical Group and Jiangxi Copper Having Signed Agreement on Copper Mines with Afghanistan

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>On May 25,the joint investment combo formed by China Metallurgical Group Corp.(MCC) and Jiangxi Copper Co.has formally signed agreement with Afghan government in Kabul on the exploitation of Aynak copper mine.The mine is situated in the north of Loghar in the middle east of Afghanistan,which is about 35km from the Capital City of Kabul.The ex- tra-large copper mine was found at the begin-

  12. Outlook for China’s Copper Rod & Copper Wire Markets-Part Ⅰ

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    <正>Along with its economic development,China is growing in its demand for copper material,and the Chinese copper processing industry has got into the period of rapid expansion.During2001-2009,output of copper material was growing by nearly 20%annually in this country.In 2009,fueled by the national economic stimulus policy,the output hit a high of 22.2%.Since 2009,it has been growing by nearly 12% annually.

  13. The general situation of the production of copper foil for copper clad laminate in China Mainland

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>The"Report of Survey & Analysis on copper clad laminate industry in China Mainland"from copper clad laminate branch of China Electronic Material Industrial Association showed that in spite of several unfavorable fac- tors confronted by the whole industry including the large up-rise of raw material price of copper foil,the appreciation of RMB currency,the ad- justment of export policies and the implementa- tion of 2 orders on environmental protection

  14. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria

    DEFF Research Database (Denmark)

    Elguindi, J; Moffitt, S; Hasman, Henrik

    2010-01-01

    The rapid killing of various bacteria in contact with metallic copper is thought to be influenced by the influx of copper ions into the cells, but the exact mechanism is not fully understood. This study showed that the kinetics of contact killing of copper surfaces depended greatly on the amount...... of moisture present, copper content of alloys, type of medium used, and type of bacteria. We examined antibiotic- and copper ion-resistant strains of Escherichia coli and Enterococcus faecium isolated from pig farms following the use of copper sulfate as feed supplement. The results showed rapid killing...... of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper...

  15. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis.

    Science.gov (United States)

    Fedoseienko, Alina; Bartuzi, Paulina; van de Sluis, Bart

    2014-05-01

    Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in humans and animals. At present, Wilson's disease is the best-described and best-studied copper-storage disorder in humans; it is caused by mutations in the ATP7B gene. In dogs, a mutation in the COMMD1 gene has been found to be associated with copper toxicosis. Using a liver-specific Commd1 knockout mouse, the biological role of Commd1 in copper homeostasis has been confirmed. Yet, the exact mechanism by which COMMD1 regulates copper homeostasis is still unknown. Here, we give an overview of the current knowledge and perspectives on the molecular function of COMMD1 in copper homeostasis.

  16. Kinetics and mechanisms of reactions between H2O2 and copper and copper oxides.

    Science.gov (United States)

    Björkbacka, Åsa; Yang, Miao; Gasparrini, Claudia; Leygraf, Christofer; Jonsson, Mats

    2015-09-28

    One of the main challenges for the nuclear power industry today is the disposal of spent nuclear fuel. One of the most developed methods for its long term storage is the Swedish KBS-3 concept where the spent fuel is sealed inside copper canisters and placed 500 meters down in the bedrock. Gamma radiation will penetrate the canisters and be absorbed by groundwater thereby creating oxidative radiolysis products such as hydrogen peroxide (H2O2) and hydroxyl radicals (HO˙). Both H2O2 and HO˙ are able to initiate corrosion of the copper canisters. In this work the kinetics and mechanism of reactions between the stable radiolysis product, H2O2, and copper and copper oxides were studied. Also the dissolution of copper into solution after reaction with H2O2 was monitored by ICP-OES. The experiments show that both H2O2 and HO˙ are present in the systems with copper and copper oxides. Nevertheless, these species do not appear to influence the dissolution of copper to the same extent as observed in recent studies in irradiated systems. This strongly suggests that aqueous radiolysis can only account for a very minor part of the observed radiation induced corrosion of copper.

  17. Speciation and leachability of copper in mine tailings from porphyry copper mining

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Yianatos, Juan B; Ottosen, Lisbeth M.

    2005-01-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150mgkg^-^1 dry...... matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212@mm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order...

  18. Effect of fission neutron irradiation on the tensile and electrical properties of copper and copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fabritsiev, S.A. [D.V. Efremov Institute, St. Petersburg (Russian Federation); Zinkle, S.J.; Rowcliffe, A.F. [Oak Ridge National Lab., TN (United States)] [and others

    1995-04-01

    The objective of this study is to evaluate the properties of several copper alloys following fission reactor irradiation at ITER-relevant temperatures of 80 to 200{degrees}C. This study provides some of the data needed for the ITER research and development Task T213. These low temperature irradiations caused significant radiation hardening and a dramatic decrease in the work hardening ability of copper and copper alloys. The uniform elongation was higher at 200{degree}C compared to 100{degree}C, but still remained below 1% for most of the copper alloys.

  19. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O

    2012-04-01

    Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4

  20. Copper catalysed synthesis of indolylquinazolinone alkaloid bouchardatine

    Indian Academy of Sciences (India)

    Mayavan Viji; Rajagopal Nagarajan

    2014-07-01

    We describe the total synthesis of indolylquinazolinone alkaloid bouchardatine and some of the quinazolinone derivatives. The aerobic oxidation induced by copper(I) bromide, followed by Vilsmeier-Haack formylation gives the natural product bouchardatine alkaloid in good yield.

  1. Diffusion of copper in porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Andsager, D.; Hetrick, J.M.; Hilliard, J.; Nayfeh, M.H. [Department of Physics, 1110 West Green Street, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    1995-05-01

    We present a study on the nature of diffusion of copper in {ital p}-type porous silicon. The diffusion of evaporated copper in porous silicon and deposition of metal ions in aqueous solution through the porous network was measured by monitoring the metal concentration depth profile as a function of time using Auger electron spectroscopy. We observed that increasing metal penetration from copper evaporated samples correlates with quenching of photoluminescence, in agreement with previous ion quenching results. We extracted a diffusion coefficient from Auger concentration depth profiles which was seven orders of magnitude lower than that expected for diffusion of copper in bulk crystalline Si at room temperature. Deposition of ionic species cannot be characterized as a simple diffusion process. The observed deposition rates were strongly dependent on the solution concentration.

  2. Map and table of world copper smelters

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This map and table comprise information on 124 world copper smelters (2 of which are closed and 1 of which is under development) and 4 (low-grade solvent...

  3. Electrodialytic remediation of copper mine tailings

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Rojo, A.; Ottpsen, Lisbeth M.

    2005-01-01

    Mining activities in Chile have generated large amounts of solid waste, which have been deposited in mine tailing impoundments. These impoundments cause concern to the communities due to dam failures or natural leaching to groundwater and rivers.This work shows the laboratory results of nine...... electrodialytic remediation experiments on copper mine tailings. The results show that electric current could remove copper from watery tailing if the potential gradient was higher than 2V/cm during 21 days. With addition of sulphuric acid, the process was enhanced because the pH decreased to around 4......, and the copper by this reason was released in the solution. Furthermore, with acidic tailing the potential gradient was less than 2V/cm.The maximum copper removal reached in the anode side was 53% with addition of sulphuric acid in 21 days experiment at 20V using approximately 1.8kg mine tailing on dry basis...

  4. Disturbed Copper Bioavailability in Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Daniela Kaden

    2011-01-01

    Full Text Available Recent data from in vitro, animal, and human studies have shed new light on the positive roles of copper in many aspects of AD. Copper promotes the non-amyloidogenic processing of APP and thereby lowers the Aβ production in cell culture systems, and it increases lifetime and decreases soluble amyloid production in APP transgenic mice. In a clinical trial with Alzheimer patients, the decline of Aβ levels in CSF, which is a diagnostic marker, is diminished in the verum group (8 mg copper/day, indicating a beneficial effect of the copper treatment. These observations are in line with the benefit of treatment with compounds aimed at normalizing metal levels in the brain, such as PBT2. The data reviewed here demonstrate that there is an apparent disturbance in metal homeostasis in AD. More research is urgently needed to understand how this disturbance can be addressed therapeutically.

  5. Porphyry copper deposits of the world

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Information on porphyry copper deposits from around the world with grade and tonnage models, a general classification based on geologic setting, mineralogy, with...

  6. 21 CFR 524.463 - Copper naphthenate.

    Science.gov (United States)

    2010-04-01

    ... and ponies for thrush caused by organisms susceptible to copper naphthenate. (3) Limitations. Use on horses and ponies only. Avoid contact around eyes. Do not contaminate feed. Do not use in horses...

  7. Ultralow-loss CMOS copper plasmonic waveguides

    DEFF Research Database (Denmark)

    Fedyanin, Dmitry Yu.; Yakubovsky, Dmitry I.; Kirtaev, Roman V.

    2016-01-01

    with microelectronics manufacturing technologies. This prevents plasmonic components from integration with both silicon photonics and silicon microelectronics. Here, we demonstrate ultralow-loss copper plasmonic waveguides fabricated in a simple complementary metal-oxide semiconductor (CMOS) compatible process, which...

  8. Measuring the stability of three copper alloys

    Science.gov (United States)

    Doiron, Theodore D.; Stoup, John R.; Snoots, Patricia; Chaconas, Grace

    1990-11-01

    In this paper we report measurements of the dimensional stability of samples of brass, beryllium copper, and tellurium copper taken over an 18 month time span. Of the materials, brass was the most stable, decreasing slightly in length at the rate of 1 part per million per year (ppm/y) with an uncertainty (3a) of about 1 ppm/y. Tellurium copper shrank at an average rate of 2.Li ppm/y and beryllium copper, the least stable, at the rate of 5.8 ppm/y. To measure the instrumental uncertainty 4 samples of each material were measured, and the measurement scheme was designed to detect and correct for thermal drift ,during measurements. The experiment design problems associated with these measurements and the associated uncertainties are discussed.

  9. Water requirements of the copper industry

    Science.gov (United States)

    Mussey, Orville Durey

    1961-01-01

    The copper industry in 1955 used about 330 million gallons of water per day in the mining and manufacturing of primary copper. This amount is about 0.3 percent of the total estimated withdrawals of industrial water in the United States in 1955. These facts were determined by a survey, in 1956, of the amount and chemical quality of the water used by the copper industry. A large part of this water was used in Arizona, Nevada, New Mexico, and Utah, where about five-sixths of the domestic copper is mined. Much of the remaining water use was near New York City where most of the electrolytic refineries are located, and the rest of the water was used in widely scattered places. A little more than 100,000 gallons of water per ton of copper was used in the production of copper from domestic ores. Of this amount about 70,000 gallons per ton was used in mining and concentrating the ore, and about 30,000 gallons per ton was used to reduce the concentrate to refined copper. In areas where water was scarce or expensive, the unit water use was a little more than half the average. About 60 mgd (million gallons per day) or 18 percent of the water was used consumptively, and nearly all of the consumptive use occurred in the water-short areas of the West. Of the water used in mining and manufacturing primary copper 75 percent was surface water and 25 percent was ground water, 89 percent of this water was self-supplied by the copper companies and 11 percent came from public supplies. Much of the water used in producing primary copper was of comparatively poor quality; about 46 percent was saline containing 1,000 ppm (parts per million) or more of dissolved solids and 54 percent was fresh. Water that is used for concentration of copper ores by flotation or even any water that comes in contact with the ore at any time before it reaches the flotation plant must be free of petroleum products because they interfere with the flotation process. The water used in mining and ore concentration

  10. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  11. Microstructure and Service Properties of Copper Alloys

    OpenAIRE

    Polok-Rubiniec M.; Konieczny J.; Labisz K.; Włodarczyk-Fligier A.

    2016-01-01

    This elaboration shows the effect of combined heat treatment and cold working on the structure and utility properties of alloyed copper. As the test material, alloyed copper CuTi4 was employed. The samples were subjected to treatment according to the following schema: 1st variant – supersaturation and ageing, 2nd variant – supersaturation, cold rolling and ageing. The paper presents the results of microstructure, hardness, and abrasion resistance. The analysis of the wipe profile geometry was...

  12. Electrodialytic Remediation of Copper Mine Tailings

    DEFF Research Database (Denmark)

    Hansen, H.K.; Rojo, A.; Ottosen, L.M.

    2012-01-01

    This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields.......This work compares and evaluates sixteen electrodialytic laboratory remediation experiments on copper mine tailings. Different parameters were analysed, such as remediation time, addition of desorbing agents, and the use of pulsed electrical fields....

  13. Pharmacological Properties of Nanometals (Silver, Copper, Iron

    Directory of Open Access Journals (Sweden)

    Chekman, I.S.

    2015-01-01

    Full Text Available The article summarizes the results of studies on the pharmacological, toxicological and specific properties of nanometals (silver, iron, copper. It is established that nanoparticles of silver, copper, iron exhibit antimicrobial action. Acute toxicity of nanometals depends on their nature, administration route and animal sex. Effects on heart activity and hemodynamic status as well as erythrocyte osmotic fragility have dose-dependent nature.

  14. EXPERIMENTAL STUDY OF THERMODYNAMICS OF LOADED COPPER

    OpenAIRE

    Barannikov, V.; Nikolaeva, E; Kasatkina, S.

    2005-01-01

    This paper presents an experimental technique to investigate the dynamic behavior of copper under compression using the split Hopkinson pressure bar. We propose to measure thermophysical characteristics of copper specimens with the use of a classic adiabatic calorimeter. The measurements of heat energy, microand macrohardness and density of deformed specimens are made. The obtained results indicate that the evolution of the material structure plays a leading role in the dynamic process of pla...

  15. The Influence of Copper on Steel

    Science.gov (United States)

    1917-02-07

    quenching in oil instead of water. He con- cludes that the presence of copper need not cause apprehension, although tere may not be any advantage in its...present work of .r. Breuil, to be h- zein de- scribed, re 2 resents on; of the most extended investigations on the zffect of copper on the properties...Clevenger and Ray, which will now be described. Experimantal. MAKING INGOTS. 𔄂mall, circular, oil fired fuinace used, (using IoA pressure burner), to heat

  16. Atomistic simulations of dislocation processes in copper

    DEFF Research Database (Denmark)

    Vegge, T.; Jacobsen, K.W.

    2002-01-01

    We discuss atomistic simulations of dislocation processes in copper based on effective medium theory interatomic potentials. Results on screw dislocation structures and processes are reviewed with particular focus on point defect mobilities and processes involving cross slip. For example, the sta......We discuss atomistic simulations of dislocation processes in copper based on effective medium theory interatomic potentials. Results on screw dislocation structures and processes are reviewed with particular focus on point defect mobilities and processes involving cross slip. For example...

  17. China Resumes Processing Trade of Copper Concentrate

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>On December 31,2008,China’s Ministry of Commerce and General Administration of Cus- toms issued its year-2008 No.121 announce- ment,saying it will adjust the forbidden cate- gory of processing trade,which includes non- ferrous metal products such as copper concen- trate,nickel concentrate,cobalt concentrate, refined copper,nickel and nickel alloy.The above products will be exempt from being for- bidden to process starting from Feb.1,2009.

  18. Interactions of catechins with copper ions

    OpenAIRE

    Řihošková, Petra

    2014-01-01

    Charles University in Prague Faculty of Pharmacy in Hradec Králové Department of Pharmaceutical botanic and ecology Candidate: Mgr. Petra Řihošková Supervisor: PharmDr. Jana Karlíčková, Ph.D. Title of Thesis: Interactions of catechins with copper ions Keywords: catechins, chelating activity, copper, bathocuproine, hematoxylin, antioxidants Flavonoids are a class of plant polyphenols with significant antioxidant activity, which positively affects human health. Flavonoids are able to chelate me...

  19. Bonding and structure of copper nitrenes.

    Science.gov (United States)

    Cundari, Thomas R; Dinescu, Adriana; Kazi, Abul B

    2008-11-03

    Copper nitrenes are of interest as intermediates in the catalytic aziridination of olefins and the amination of C-H bonds. However, despite advances in the isolation and study of late-transition-metal multiply bonded complexes, a bona fide structurally characterized example of a terminal copper nitrene has, to our knowledge, not been reported. In anticipation of such a report, terminal copper nitrenes are studied from a computational perspective. The nitrene complexes studied here are of the form (beta-diketiminate)Cu(NPh). Density functional theory (DFT), complete active space self-consistent-field (CASSCF) electronic structure techniques, and hybrid quantum mechanical/molecular mechanical (QM/MM) methods are employed to study such species. While DFT methods indicate that a triplet (S = 1) is the ground state, CASSCF calculations indicate that a singlet (S = 0) is the ground state, with only a small energy gap between the singlet and triplet. Moreover, the ground-state (open-shell) singlet copper nitrene is found to be highly multiconfigurational (i.e., biradical) and to possess a bent geometry about the nitrene nitrogen, contrasting with the linear nitrene geometry of the triplet copper nitrenes. CASSCF calculations also reveal the existence of a closed-shell singlet state with some degree of multiple bonding character for the copper-nitrene bond.

  20. Bitrex: A new levelling agent for copper

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J.F.K., E-mail: J.F.K.Cooper@gmail.com [Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Barnes, C.H.W. [Department of Physics, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2011-10-30

    Highlights: > Bitrex is a new levelling agent for copper. > The addition of Bitrex increases corrosion resistance of copper films. > The nature of pure copper electrodeposits depends on the growth template size. > Bitrex increases coppers current efficiency. - Abstract: We investigate the effects of denatonium benzoate (Bitrex) on the electrodeposition of copper films from a boric acid bath using scanning electron microscopy, cyclic voltammetry, electrochemical quartz microbalance (EQCM) measurements and corrosion studies. In the absence of Bitrex, pure copper films grown by this method are optically black owing to the appearance of complex surface nanostructures. The addition of Bitrex acts as a levelling agent preventing the formation of these nanostructures even for concentrations as low as 0.02 mM producing a lustrous film with low surface roughness. Bitrex is also found to improve the corrosion resistance by up to a factor of 20 and increase the current efficiency by over a factor of two. Bitrex is hypothesised to act directly on the cathode, partially inhibiting the growth or lowering the deposition current.

  1. Material characterization of ancient Indian copper

    Indian Academy of Sciences (India)

    A Srivastava; R Balasubramaniam

    2003-10-01

    A chalcolithic (2350–1800 BC) copper chisel from Balathal has been characterized by X-ray diffraction, microstructural and electrochemical methods. The surface patina was composed of sulfates and oxysulfates in the outer layers while the inner layers were rich in copper oxides. The chisel exhibited smaller grain sizes near two of the surfaces while the structure in the interior was equiaxed. The deformed grains and inclusions near the surfaces and variation in the microhardness of the sample from different faces proved that the copper chisel was processed by cold deformation after initial casting of the square cross-section chisel. The electrochemical behaviour of chalcolithic Cu has been compared with that of a modern Cu sample by potentiodynamic polarization studies. The corrosion rate of chalcolithic Cu in aerated 3.5% NaCl solution was only marginally higher than that of modern Cu. The higher rate of corrosion has been attributed to the presence of second phase sulfide inclusions. The excellent condition of preservation of the 3800-year-old copper object, with no indications of stress corrosion cracking, suggests that pure copper or copper-based materials can be seriously considered as candidate canister materials for long-term underground storage of nuclear wastes in underground repositories.

  2. Electrochemical Synthesis and Structural Characterization of a Novel Mixed-valence Copper (I)-copper (II) Complex: {[Bis(ethylenediamine) Copper (II)] Bis[diiodocuprate (I)]}

    OpenAIRE

    Mahboobeh Dashti Ardakani; Majid M. Heravi; Saeed Dehghanpour; Lida Fotouhi

    2007-01-01

    A novel, mixed-valent copper(I)-copper(II) complex, {[bis(ethylene-diamine)copper(II)] bis[diiodocuprate(I)]} (1), has been prepared by electrochemicaldissolution of a sacrificial copper anode in a solution of ethylenediamine (en), I2 andtetraethylammoniumperchlorate (TEAP) as supporting electrolyte in acetonitrile (AcN)and characterized by single-crystal X-ray structure determination. The crystal structure ofthe complex 1 shows that it consists of a CuI2 polymer formed from I- ligands bridgi...

  3. Copper-resistant bacteria enhance plant growth and copper phytoextraction.

    Science.gov (United States)

    Yang, Renxiu; Luo, Chunling; Chen, Yahua; Wang, Guiping; Xu, Yue; Shen, Zhenguo

    2013-01-01

    In this study, we investigated the role of rhizospheric bacteria in solubilizing soil copper (Cu) and promoting plant growth. The Cu-resistant bacterium DGS6 was isolated from a natural Cu-contaminated soil and was identified as Pseudomonas sp. DGS6. This isolate solubilized Cu in Cu-contaminated soil and stimulated root elongation of maize and sunflower. Maize was more sensitive to inoculation with DGS6 than was sunflower and exhibited greater root elongation. In pot experiment, inoculation with DGS6 increased the shoot dry weight of maize by 49% and sunflower by 34%, and increased the root dry weight of maize by 85% and sunflower by 45%. Although the concentrations of Cu in inoculated and non-inoculated seedlings did not differ significantly, the total accumulation of Cu in the plants increased after inoculation. DGS6 showed a high ability to solubilize P and produce iron-chelating siderophores, as well as significantly improved the accumulation of P and Fe in both maize and sunflower shoots. In addition, DGS6 produced indole-3-acetic acid (IAA) and ACC deaminase, which suggests that it may modulate ethylene levels in plants. The bacterial strain DGS6 could be a good candidate for re-vegetation of Cu-contaminated sites. Supplemental materials are available for this article. Go to the publisher's online edition of International Journal of Phytoremediation to view the supplemental file.

  4. Synthesis of the copper chelator TGTA and evaluation of its ability to protect biomolecules from copper induced degradation during copper catalyzed azide-alkyne bioconjugation reactions.

    Science.gov (United States)

    Ekholm, F S; Pynnönen, H; Vilkman, A; Koponen, J; Helin, J; Satomaa, T

    2016-01-21

    One of the most successful bioconjugation strategies to date is the copper(I)-catalyzed cycloaddition reaction (CuAAC), however, the typically applied reaction conditions have been found to degrade sensitive biomolecules. Herein, we present a water soluble copper chelator which can be utilized to protect biomolecules from copper induced degradation.

  5. Copper Recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).

  6. Copper toxicity in a New Zealand dairy herd.

    Science.gov (United States)

    Johnston, Howard; Beasley, Laura; MacPherson, Neil

    2014-01-01

    Chronic copper toxicity was diagnosed in a Jersey herd in the Waikato region of New Zealand following an investigation into the deaths of six cattle from a herd of 250 dry cows. Clinical signs and post-mortem examination results were consistent with a hepatopathy, and high concentrations of copper in liver and blood samples of clinically affected animals confirmed copper toxicity. Liver copper concentrations and serum gamma-glutamyl transferase activities were both raised in a group of healthy animals sampled at random from the affected herd, indicating an ongoing risk to the remaining cattle; these animals all had serum copper concentrations within normal limits. Serum samples and liver biopsies were also collected and assayed for copper from animals within two other dairy herds on the same farm; combined results from all three herds showed poor correlation between serum and liver copper concentrations. To reduce liver copper concentrations the affected herd was drenched with 0.5 g ammonium molybdate and 1 g sodium sulphate per cow for five days, and the herd was given no supplementary feed or mineral supplements. Liver biopsies were repeated 44 days after the initial biopsies (approximately 1 month after the end of the drenching program); these showed a significant 37.3% decrease in liver copper concentrations (P record keeping, but multiple sources of copper contributed to a long term copper over supplementation of the herd; the biggest source of copper was a mineral supplement. The farmer perceived this herd to have problems with copper deficiency prior to the diagnosis of copper toxicity, so this case demonstrates the importance of monitoring herd copper status regularly. Also the poor correlation between liver and serum copper concentrations in the three herds sampled demonstrates the importance of using liver copper concentration to assess herd copper status.

  7. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    Science.gov (United States)

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.

  8. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  9. Tianyi Copper Corporation Copper Belt Project Expected to Start in June

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>The copper belt project initiated by Zhongshan Tianyi Copper Corporation is now under construction. Construction of plant is nearing completion and the installation of equipment will soon begin.According to the schedule,the project is expected to begin operation in June, and the output is expected to reach 30,000 tons by end of year.

  10. Jiangrun Copper Planning for Copper Rod Production of 240,000 tons

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    <正>According to Jiangsu Jiangrun Copper Co Ltd, it is planning to achieve 240,000 tons of 8mm copper rod production this year due to brisk demand from the lower reaches and the gradual release of its SCR line capacity.

  11. GD Copper Puts New Copper Tube Production Lines in Handan into Operation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Recently a foundation stone laying ceremony was held in Handan for the Jinxiang Project on Precise Copper Tube for Air-conditioners and Refrigerators. The project was invested by Golden Dragon Precise Copper Tube Group Inc. of Henan Province.

  12. Joint Exploitation of Copper Mine Resources in Liangshan by Jiangxi Copper and Sichuan

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    <正>Recently,Sichuan Institute of Metallurgical Geology & Exploration signed a strategic agreement of cooperation with Jiangxi Copper Group.The two parties will play an active roles in the joint prospecting and exploitation of mine resources in Liangshan,the copper mine

  13. Copper does not alter the intracellular distribution of ATP7B, a copper-transporting ATPase.

    Science.gov (United States)

    Harada, M; Sakisaka, S; Kawaguchi, T; Kimura, R; Taniguchi, E; Koga, H; Hanada, S; Baba, S; Furuta, K; Kumashiro, R; Sugiyama, T; Sata, M

    2000-09-01

    Wilson's disease is a genetic disorder characterized by the accumulation of copper in the body due to a defect of biliary copper excretion. However, the mechanism of biliary copper excretion has not been fully clarified. We examined the effect of copper on the intracellular localization of the Wilson disease gene product (ATP7B) and green fluorescent protein (GFP)-tagged ATP7B in a human hepatoma cell line (Huh7). The intracellular organelles were visualized by fluorescence microscopy. GFP-ATP7B colocalized with late endosome markers, but not with endoplasmic reticulum, Golgi, or lysosome markers in both the steady and copper-loaded states. ATP7B mainly localized at the perinuclear regions in both states. These results suggest that the main localization of ATP7B is in the late endosomes in both the steady and copper-loaded states. ATP7B seems to translocate copper from the cytosol to the late endosomal lumen, thus participating in biliary copper excretion via lysosomes.

  14. Ternary silicides ScIr{sub 4}Si{sub 2} and RERh{sub 4}Si{sub 2} (RE = Sc, Y, Tb-Lu) and quaternary derivatives RERh{sub 4}Si{sub 2-x}Sn{sub x} (RE = Y, Nd, Sm, Gd-Lu) - structure, chemical bonding, and solid state NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Vosswinkel, Daniel; Benndorf, Christopher; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Sao Paulo Univ., Sao Carlos (Brazil). Inst. of Physics; Matar, Samir F. [Bordeaux Univ., CNRS, ICMCB, UPR 9048, Pessac (France)

    2016-11-01

    The silicides ScIr{sub 4}Si{sub 2} and RERh{sub 4}Si{sub 2} (RE = Sc, Y, Tb-Lu) and silicide stannides RERh{sub 4}Si{sub 2-x}Sn{sub x}(RE = Y, Nd, Sm, Gd-Lu) were synthesized from the elements by arc-melting and subsequent annealing. The new compounds crystallize with the orthorhombic YRh{sub 4}Ge{sub 2} type structure, space group Pnma. They were characterized by X-ray powder patterns and several structures were refined from single crystal X-ray diffractometer data. The main structural motifs of this series of silicides are tricapped trigonal prisms formed by the transition metal and rare earth atoms. One of the two crystallographically independent silicon sites allows for formation of solid solutions with tin, exemplarily studied for ErRh{sub 4}Si{sub 2-x}Sn{sub x}. Electronic structure calculations reveal strong covalent Rh-Si bonding as the main stability factor. Multinuclear ({sup 29}Si, {sup 45}Sc, and {sup 89}Y) magic-angle spinning (MAS) NMR spectra of the structure representatives with diamagnetic rare-earth elements (Sc, Y, Lu) are found to be consistent with the crystallographic data and specifically confirm the selective substitution of Sn in the Si2 sites in the quaternary compounds YRh{sub 4}SiSn and LuRh{sub 4}SiSn.

  15. Copper-2 Ingestion, Plus Increased Meat Eating Leading to Increased Copper Absorption, Are Major Factors Behind the Current Epidemic of Alzheimer's Disease.

    Science.gov (United States)

    Brewer, George J

    2015-12-02

    It has become clear that copper toxicity is playing a major role in Alzheimer's disease; but why is the brain copper toxicity with cognition loss in Alzheimer's disease so much different clinically than brain copper toxicity in Wilson's disease, which results in a movement disorder? Furthermore, why is the inorganic copper of supplement pills and in drinking water so much more damaging to cognition than the organic copper in food? A recent paper, which shows that almost all food copper is copper-1, that is the copper-2 of foods reverts to the reduced copper-1 form at death or harvest, gives new insight into these questions. The body has an intestinal transport system for copper-1, Ctr1, which channels copper-1 through the liver and into safe channels. Ctr1 cannot absorb copper-2, and some copper-2 bypasses the liver, ends up in the blood quickly, and is toxic to cognition. Humans evolved to handle copper-1 safely, but not copper-2. Alzheimer's is at least in part, a copper-2 toxicity disease, while Wilson's is a general copper overload disease. In this review, we will show that the epidemiology of the Alzheimer's epidemic occurring in developed, but not undeveloped countries, fits with the epidemiology of exposure to copper-2 ingestion leached from copper plumbing and from copper supplement pill ingestion. Increased meat eating in developed countries is also a factor, because it increases copper absorption, and thus over all copper exposure.

  16. The Amyloid Precursor Protein of Alzheimer's Disease in the Reduction of Copper(II) to Copper(I)

    Science.gov (United States)

    Multhaup, Gerd; Schlicksupp, Andrea; Hesse, Lars; Beher, Dirk; Ruppert, Thomas; Masters, Colin L.; Beyreuther, Konrad

    1996-03-01

    The transition metal ion copper(II) has a critical role in chronic neurologic diseases. The amyloid precursor protein (APP) of Alzheimer's disease or a synthetic peptide representing its copper-binding site reduced bound copper(II) to copper(I). This copper ion-mediated redox reaction led to disulfide bond formation in APP, which indicated that free sulfhydryl groups of APP were involved. Neither superoxide nor hydrogen peroxide had an effect on the kinetics of copper(II) reduction. The reduction of copper(II) to copper(I) by APP involves an electron-transfer reaction and could enhance the production of hydroxyl radicals, which could then attack nearby sites. Thus, copper-mediated toxicity may contribute to neurodegeneration in Alzheimer's disease.

  17. Copper intoxication inhibits aerobic nucleotide synthesis in Streptococcus pneumoniae

    Science.gov (United States)

    Johnson, Michael D. L.; Kehl-Fie, Thomas E.; Rosch, Jason W.

    2015-01-01

    Copper is universally toxic in excess, a feature exploited by the human immune system to facilitate bacterial clearance. The mechanism of copper intoxication remains unknown for many bacterial species. Here, we demonstrate that copper toxicity in Streptococcus pneumoniae is independent from oxidative stress but, rather, is the result of copper inhibiting the aerobic dNTP biosynthetic pathway. Furthermore, we show that copper-intoxicated S. pneumoniae is rescued by manganese, which is an essential metal in the aerobic nucleotide synthesis pathway. These data provide insight into new targets to enhance copper-mediated toxicity during bacterial clearance. PMID:25730343

  18. Copper(I) electrode function of two types of copper(II) ion-selective electrodes.

    Science.gov (United States)

    Neshkova, M; Sheytanov, H

    1985-08-01

    The response of two types of solid-state copper ion-selective electrodes with homogeneous membranes of CuAgSe and Cu(2-x)Se has been investigated in copper(I) solutions, prepared electrochemically by insitu generation from a copper anode in chloride medium. The selectivity coefficient K(pot)(Cu+, Cu(2+)) both types of electrodes has been determined. It is 10(-5.7) for the copper selenide sensor, and 10(-6.2) for the copper silver selenide one. These values are very close to that calculated for an exchange reaction proceeding on the electrode surface. The similarity in K(pot)(Cu+ ,Cu(2+)) values for different chalcogenidebased sensors suggests a common potential-generating mechanism. High chloride concentration does not interfere with the electrode response towards Cu(I), but distorts the electrode response to Cu(II).

  19. The effect of primary copper slag cooling rate on the copper valorization in the flotation process

    Directory of Open Access Journals (Sweden)

    Aleksandar Mihajlović

    2015-06-01

    Full Text Available Technological procedure of slow cooling slag from primary copper production is applied in the purpose of copper recovery in the level of 98.5% to blister. This technological procedure is divided into two phases, first slow cooling of slag on the air for 24 hours, and then accelerated cooling with water for 48 hours. Within the research following methods were used: calculation of nonstationary slag cooling, verification of the calculation using computer simulation of slag cooling in the software package COMSOL Multiphysics and experimental verification of simulation results. After testing of the experimentally gained samples of slowly cooled slag it was found that this technological procedure gives the best results in promoting growth or coagulation of dispersed particles of copper sulfide and copper in the slag, thereby increasing the utilization of the flotation process with a decrease of copper losses through very fine particles.

  20. [Evaluation of the exposure to copper and other non-ferrous metals in copper foundries].

    Science.gov (United States)

    Linscheid, D

    1985-01-01

    Working environment has been evaluated in two copper metallurgy plants by analysis of Cu and other metals (Pb, Cd, Zn) concentrations. At the Charge Preparation Department the greatest concentrations of Cu and Pb were found. Copper concentrations at Metallurgy Department (shaft furnace, converter and anodic furnace) oscillate between 0.1-0.5 mg/m3, and Pb 0.06-0.71 mg/m3. In order to accurately evaluate copper exposure at working places where copper fume may arise (Metallurgy Department) it is necessary to determine Cu concentrations in respirable dust. At other working places Cu, Pb and Zn concentrations were low. Cadmium appears in vestigial amounts. The quantitative analysis indicates that airborne copper at the Charge Preparation Department and at the shaft furnace appears as CuS, at converter as Cu2O, and at other working places as metal Cu.

  1. Strain-induced orientation of copper oxide nanoislands through decomposition of pre-organized copper nitrate

    Institute of Scientific and Technical Information of China (English)

    谷俐; 陈树大; 赵惠明

    2004-01-01

    By the decomposition of copper nitrate at 400 ℃, oriented islands of copperoxide crystals were successfully fabricated on the amorphous glass surface. X-ray diffraction (XRD), atom force microscope (AFM), and Xray photoelectron spectroscopy (XPS) confirm the presence of copper oxide islands. The formation of oriented island structures is attributed to the following reasons: 1) the mismatch between the glass substrate and the copper oxide crystals during the relaxation of thermal expansion leads to the formation of islands; 2) the preorganized copper nitrate particles in the voids of colloidal crystals determine their ordered spatial distribution; 3) the strain of the glass substrate developing during calcination provides the driven energy for the orientation of copper oxide crystals along the same direction.

  2. Extracting copper from copper oxide ore by a zwitterionic reagent and dissolution kinetics

    Institute of Scientific and Technical Information of China (English)

    Jiu-shuai Deng; Shu-ming Wen; Jian-ying Deng; Dan-dan Wu

    2015-01-01

    Sulfamic acid (SA), which possesses a zwitterionic structure, was applied as a leaching reagent for the first time for extracting copper from copper oxide ore. The effects of reaction time, temperature, particle size, reagent concentration, and stirring speed on this leach-ing were studied. The dissolution kinetics of malachite was illustrated with a three-dimensional diffusion model. A novel leaching effect of SA on malachite was eventually demonstrated. The leaching rate increased with decreasing particle size and increasing concentration, reac-tion temperature and stirring speed. The activation energy for SA leaching malachite was 33.23 kJ/mol. Furthermore, the effectiveness of SA as a new reagent for extracting copper from copper oxide ore was confirmed by experiment. This approach may provide a solution suitable for subsequent electrowinning. In addition, results reported herein may provide basic data that enable the leaching of other carbonate miner-als of copper, zinc, cobalt and so on in an SA system.

  3. Magnetic field effects on copper metal deposition from copper sulfate aqueous solution.

    Science.gov (United States)

    Udagawa, Chikako; Maeda, Aya; Katsuki, Akio; Maki, Syou; Morimoto, Shotaro; Tanimoto, Yoshifumi

    2014-05-01

    Effects of a magnetic field (≤0.5 T) on electroless copper metal deposition from the reaction of a copper sulfate aqueous solution and a zinc thin plate were examined in this study. In a zero field, a smooth copper thin film grew steadily on the plate. In a 0.38 T field, a smooth copper thin film deposited on a zinc plate within about 1 min. Then, it peeled off repeatedly from the plate. The yield of consumed copper ions increased about 2.1 times compared with that in a zero field. Mechanism of this magnetic field effect was discussed in terms of Lorentz force- and magnetic force-induced convection and local volta cell formation.

  4. Vitrification of copper flotation waste.

    Science.gov (United States)

    Karamanov, Alexander; Aloisi, Mirko; Pelino, Mario

    2007-02-09

    The vitrification of an hazardous iron-rich waste (W), arising from slag flotation of copper production, was studied. Two glasses, containing 30wt% W were melted for 30min at 1400 degrees C. The first batch, labeled WSZ, was obtained by mixing W, blast furnace slag (S) and zeolite tuff (Z), whereas the second, labeled WG, was prepared by mixing W, glass cullet (G), sand and limestone. The glass frits showed high chemical durability, measured by the TCLP test. The crystallization of the glasses was evaluated by DTA. The crystal phases formed were identified by XRD resulting to be pyroxene and wollastonite solid solutions, magnetite and hematite. The morphology of the glass-ceramics was observed by optical and scanning electron microscopy. WSZ composition showed a high rate of bulk crystallization and resulted to be suitable for producing glass-ceramics by a short crystallization heat-treatment. WG composition showed a low crystallization rate and good sinterability; glass-ceramics were obtained by sinter-crystallization of the glass frit.

  5. The Copper Balance of Cities

    Science.gov (United States)

    Kral, Ulrich; Lin, Chih-Yi; Kellner, Katharina; Ma, Hwong-wen; Brunner, Paul H

    2014-01-01

    Material management faces a dual challenge: on the one hand satisfying large and increasing demands for goods and on the other hand accommodating wastes and emissions in sinks. Hence, the characterization of material flows and stocks is relevant for both improving resource efficiency and environmental protection. This article focuses on the urban scale, a dimension rarely investigated in past metal flow studies. We compare the copper (Cu) metabolism of two cities in different economic states, namely, Vienna (Europe) and Taipei (Asia). Substance flow analysis is used to calculate urban Cu balances in a comprehensive and transparent form. The main difference between Cu in the two cities appears to be the stock: Vienna seems close to saturation with 180 kilograms per capita (kg/cap) and a growth rate of 2% per year. In contrast, the Taipei stock of 30 kg/cap grows rapidly by 26% per year. Even though most Cu is recycled in both cities, bottom ash from municipal solid waste incineration represents an unused Cu potential accounting for 1% to 5% of annual demand. Nonpoint emissions are predominant; up to 50% of the loadings into the sewer system are from nonpoint sources. The results of this research are instrumental for the design of the Cu metabolism in each city. The outcomes serve as a base for identification and recovery of recyclables as well as for directing nonrecyclables to appropriate sinks, avoiding sensitive environmental pathways. The methodology applied is well suited for city benchmarking if sufficient data are available. PMID:25866460

  6. Grain Boundary Energies in Copper.

    Science.gov (United States)

    Omar, Ramli

    Available from UMI in association with The British Library. Requires signed TDF. The dependence of grain boundary energy on boundary orientation was studied in copper annealed at 1000 ^circC. Grain boundary orientations and the disorientations across the boundaries were measured. A rotation matrix notation is used to interpret selected area electron channelling patterns observed in a scanning electron microscope. The Herring and Shewmon torque terms were investigated using wire specimens having a "bamboo" structure. The Herring torque terms were determined using the Hess relation. The (110) section of the Sigma 11 gamma-plot (i.e. the variation of grain boundary energy with boundary orientation) was evaluated. In this plot, minima in energies were found at the (311) and (332) mirror planes. Sigma 3 and Sigma9 boundaries were investigated in sheet specimens. The (110) and (111) sections of the Sigma3 gamma -plot were evaluated. In addition to the sharp cusps occurring at the Sigma3 {111} planes, the further shallower cusps occur at the incoherent Sigma 3 boundaries with the interfacial planes approximately parallel to {322} in one crystal and {11.44} in the other crystal. Flat and curved Sigma9 boundaries were investigated. The break up of Sigma9 boundaries into two Sigma3 boundaries and the relation between the Sigma3 and Sigma 9 gamma-plots was also examined. The (110) section of the Sigma9 gamma-plot was constructed.

  7. Copper complexes as therapeutic agents.

    Science.gov (United States)

    Duncan, Clare; White, Anthony R

    2012-02-01

    The importance of transition metals in biological processes has been well established. Copper (Cu) is a transition metal that can exist in oxidised and reduced states. This allows it to participate in redox and catalytic chemistry, making it a suitable cofactor for a diverse range of enzymes and molecules. Cu deficiency or toxicity is implicated in a variety of pathological conditions; therefore inorganic complexes of Cu have been investigated for their therapeutic and diagnostic potential. These Cu complexes have been shown to be effective in cancer treatment due to their cytotoxic action on tumour cells. Alternatively, Cu complexes can also modulate Cu homeostasis in the brain, resulting in protective effects in several models of neurodegeneration. In other diseases such as coronary heart disease and skin disease, the success of Cu complexes as potential therapeutics will most likely be due to their ability to increase SOD activity, leading to relief of oxidative stress. This review seeks to provide a broad insight into some of the diverse actions of Cu complexes and demonstrate the strong future for these compounds as potential therapeutic agents.

  8. Elusive Terminal Copper Arylnitrene Intermediates.

    Science.gov (United States)

    Bakhoda, Abolghasem Gus; Jiang, Quan; Bertke, Jeffery A; Cundari, Thomas R; Warren, Timothy H

    2017-06-01

    We report herein three new modes of reactivity between arylazides N3 Ar with a bulky copper(I) β-diketiminate. Addition of N3 Ar(X3) (Ar(X3) =2,4,6-X3 C6 H2 ; X=Cl or Me) to [(i) Pr2 NN]Cu(NCMe) results in triazenido complexes from azide attack on the β-diketiminato backbone. Reaction of [(i) Pr2 NN]Cu(NCMe) with bulkier azides N3 Ar leads to terminal nitrenes [(i) Pr2 NN]Cu]=NAr that dimerize via formation of a C-C bond at the arylnitrene p-position to give the dicopper(II) diketimide 4 (Ar=2,6-(i) Pr2 C6 H3 ) or undergo nitrile insertion to give diazametallocyclobutene 8 (Ar=4-Ph-2,6-iPr2 C6 H2 ). Importantly, reactivity studies reveal both 4 and 8 to be "masked" forms of the terminal nitrenes [(i) Pr2 NN]Cu=NAr that undergo nitrene group transfer to PMe3 , (t) BuNC, and even into a benzylic sp(3) C-H bond of ethylbenzene. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Directory of Open Access Journals (Sweden)

    Rebeca Ortega-Amaya

    2016-07-01

    Full Text Available This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs on the surface of a copper foil supporting graphene oxide (GO at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure.

  10. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Science.gov (United States)

    Matsumoto, Yasuhiro; Espinoza-Rivas, Andrés M; Pérez-Guzmán, Manuel A; Ortega-López, Mauricio

    2016-01-01

    Summary This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs) on the surface of a copper foil supporting graphene oxide (GO) at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure. PMID:27547618

  11. Grain boundary corrosion of copper canister material

    Energy Technology Data Exchange (ETDEWEB)

    Fennell, P.A.H.; Graham, A.J.; Smart, N.R.; Sofield, C.J. [AEA Technology plc, Harwell (United Kingdom)

    2001-03-01

    The proposed design for a final repository for spent fuel and other long-lived residues in Sweden is based on the multi-barrier principle. The waste will be encapsulated in sealed cylindrical canisters, which will then be placed in granite bedrock and surrounded by compacted bentonite clay. The canister design is based on a thick cast inner container fitted inside a corrosion-resistant copper canister. During fabrication of the outer copper canisters there will be some unavoidable grain growth in the welded areas. As grains grow they will tend to concentrate impurities within the copper at the new grain boundaries. The work described in this report was undertaken to determine whether there is any possibility of enhanced corrosion at grain boundaries within the copper canister. The potential for grain boundary corrosion was investigated by exposing copper specimens, which had undergone different heat treatments and hence had different grain sizes, to aerated artificial bentonite-equilibrated groundwater with two concentrations of chloride, for increasing periods of time. The degree of grain boundary corrosion was determined by atomic force microscopy (AFM) and optical microscopy. AFM showed no increase in grain boundary 'ditching' for low chloride groundwater. In high chloride groundwater the surface was covered uniformly with a fine-grained oxide. No increases in oxide thickness were observed. No significant grain boundary attack was observed using optical microscopy either. The work suggests that in aerated artificial groundwaters containing chloride ions, grain boundary corrosion of copper is unlikely to adversely affect SKB's copper canisters.

  12. Copper homeostasis in grapevine: functional characterization of the Vitis vinifera copper transporter 1.

    Science.gov (United States)

    Martins, Viviana; Bassil, Elias; Hanana, Mohsen; Blumwald, Eduardo; Gerós, Hernâni

    2014-07-01

    The Vitis vinifera copper transporter 1 is capable of self-interaction and mediates intracellular copper transport. An understanding of copper homeostasis in grapevine (Vitis vinifera L.) is particularly relevant to viticulture in which copper-based fungicides are intensively used. In the present study, the Vitis vinifera copper transporter 1 (VvCTr1), belonging to the Ctr family of copper transporters, was cloned and functionally characterized. Amino acid sequence analysis showed that VvCTr1 monomers are small peptides composed of 148 amino acids with 3 transmembrane domains and several amino acid residues typical of Ctr transporters. Bimolecular fluorescence complementation (BiFC) demonstrated that Ctr monomers are self-interacting and subcellular localization studies revealed that VvCTr1 is mobilized via the trans-Golgi network, through the pre-vacuolar compartment and located to the vacuolar membrane. The heterologous expression of VvCTr1 in a yeast strain lacking all Ctr transporters fully rescued the phenotype, while a deficient complementation was observed in a strain lacking only plasma membrane-bound Ctrs. Given the common subcellular localization of VvCTr1 and AtCOPT5 and the highest amino acid sequence similarity in comparison to the remaining AtCOPT proteins, Arabidopsis copt5 plants were stably transformed with VvCTr1. The impairment in root growth observed in copt5 seedlings in copper-deficient conditions was fully rescued by VvCTr1, further supporting its involvement in intracellular copper transport. Expression studies in V. vinifera showed that VvCTr1 is mostly expressed in the root system, but transcripts were also present in leaves and stems. The functional characterization of VvCTr-mediated copper transport provides the first step towards understanding the physiological and molecular responses of grapevines to copper-based fungicides.

  13. Copper transporter 2 regulates intracellular copper and sensitivity to cisplatin.

    Science.gov (United States)

    Huang, Carlos P; Fofana, Mariama; Chan, Jefferson; Chang, Christopher J; Howell, Stephen B

    2014-03-01

    Mammalian cells express two copper (Cu) influx transporters, CTR1 and CTR2. CTR1 serves as an influx transporter for both Cu and cisplatin (cDDP). In mouse embryo fibroblasts, reduction of CTR1 expression renders cells resistant to cDDP whereas reduction of CTR2 makes them hypersensitive both in vitro and in vivo. To investigate the role of CTR2 on intracellular Cu and cDDP sensitivity its expression was molecularly altered in the human epithelial 2008 cancer cell model. Intracellular exchangeable Cu(+) was measured with the fluorescent probe Coppersensor-3 (CS3). The ability of CS3 to report on changes in intracellular Cu(+) was validated by showing that Cu chelators reduced its signal, and that changes in signal accompanied alterations in expression of the major Cu influx transporter CTR1 and the two Cu efflux transporters, ATP7A and ATP7B. Constitutive knock down of CTR2 mRNA by ∼50% reduced steady-state exchangeable Cu by 22-23% and increased the sensitivity of 2008 cells by a factor of 2.6-2.9 in two separate clones. Over-expression of CTR2 increased exchangeable Cu(+) by 150% and rendered the 2008 cells 2.5-fold resistant to cDDP. The results provide evidence that CS3 can quantitatively assess changes in exchangeable Cu(+), and that CTR2 regulates both the level of exchangeable Cu(+) and sensitivity to cDDP in a model of human epithelial cancer. This study introduces CS3 and related sensors as novel tools for probing and assaying Cu-dependent sensitivity to anticancer therapeutics.

  14. Evolution of copper transporting ATPases in eukaryotic organisms.

    Science.gov (United States)

    Gupta, Arnab; Lutsenko, Svetlana

    2012-04-01

    Copper is an essential nutrient for most life forms, however in excess it can be harmful. The ATP-driven copper pumps (Copper-ATPases) play critical role in living organisms by maintaining appropriate copper levels in cells and tissues. These evolutionary conserved polytopic membrane proteins are present in all phyla from simplest life forms (bacteria) to highly evolved eukaryotes (Homo sapiens). The presumed early function in metal detoxification remains the main function of Copper-ATPases in prokaryotic kingdom. In eukaryotes, in addition to removing excess copper from the cell, Copper-ATPases have another equally important function - to supply copper to copper dependent enzymes within the secretory pathway. This review focuses on the origin and diversification of Copper ATPases in eukaryotic organisms. From a single Copper ATPase in protozoans, a divergence into two functionally distinct ATPases is observed with the evolutionary appearance of chordates. Among the key functional domains of Copper-ATPases, the metal-binding N-terminal domain could be responsible for functional diversification of the copper ATPases during the course of evolution.

  15. Abnormal Copper Homeostasis: Mechanisms and Roles in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Mario Manto

    2014-06-01

    Full Text Available As a cofactor of proteins and enzymes involved in critical molecular pathways in mammals and low eukaryotes, copper is a transition metal essential for life. The intra-cellular and extra-cellular metabolism of copper is under tight control, in order to maintain free copper concentrations at very low levels. Copper is a critical element for major neuronal functions, and the central nervous system is a major target of disorders of copper metabolism. Both the accumulation of copper and copper deficiency are associated with brain dysfunction. The redox capacities of free copper, its ability to trigger the production of reactive oxygen species and the close relationships with the regulation of iron and zinc are remarkable features. Major advances in our understanding of the relationships between copper, neuronal functions and neurodegeneration have occurred these last two decades. The metabolism of copper and the current knowledge on the consequences of copper dysregulation on brain disorders are reviewed, with a focus on neurodegenerative diseases, such as Wilson’s disease, Alzheimer’s disease and Parkinson’s disease. In vitro studies, in vivo experiments and evidence from clinical observations of the neurotoxic effects of copper provide the basis for future therapies targeting copper homeostasis.

  16. Copper at synapse: Release, binding and modulation of neurotransmission.

    Science.gov (United States)

    D'Ambrosi, Nadia; Rossi, Luisa

    2015-11-01

    Over the last decade, a piece of the research studying copper role in biological systems was devoted to unravelling a still elusive, but extremely intriguing, aspect that is the involvement of copper in synaptic function. These studies were prompted to provide a rationale to the finding that copper is released in the synaptic cleft upon depolarization. The copper pump ATP7A, which mutations are responsible for diseases with a prominent neurodegenerative component, seems to play a pivotal role in the release of copper at synapses. Furthermore, it was found that, when in the synaptic cleft, copper can control, directly or indirectly, the activity of the neurotransmitter receptors (NMDA, AMPA, GABA, P2X receptors), thus affecting excitability. In turn, neurotransmission can affect copper trafficking and delivery in neuronal cells. Furthermore, it was reported that copper can also modulate synaptic vesicles trafficking and the interaction between proteins of the secretory pathways. Interestingly, proteins with a still unclear role in neuronal system though associated with the pathogenesis of neurodegenerative diseases (the amyloid precursor protein, APP, the prion protein, PrP, α-synuclein, α-syn) show copper-binding domains. They may act as copper buffer at synapses and participate in the interplay between copper and the neurotransmitters receptors. Given that copper dysmetabolism occurs in several diseases affecting central and peripheral nervous system, the findings on the contribution of copper in synaptic transmission, beside its more consolidate role as a neuronal enzymes cofactor, may open new insights for therapy interventions.

  17. United States copper metal and scrap use and trade patterns, 1995‒2014

    Science.gov (United States)

    Goonan, Thomas G.

    2016-06-17

    In 1995, China accounted for 10 percent of world copper consumption. By 2014, China accounted for about 49 percent of world copper consumption. This change has affected global copper and copper scrap prices, the sources of copper supply, and U.S. trade of copper-containing materials.

  18. 40 CFR 468.10 - Applicability; description of the copper forming subcategory.

    Science.gov (United States)

    2010-07-01

    ... treatment works from the forming of copper and copper alloys except beryllium copper alloys. ... copper forming subcategory. 468.10 Section 468.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COPPER FORMING POINT SOURCE CATEGORY Copper...

  19. Optical properties of stabilized copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohindroo, Jeevan Jyoti, E-mail: jjmdav@gmail.com [Punjab Technical University, Kapurthala Punjab (India); Department of Chemistry, DAV College, Amritsar, Punjab India (India); Garg, Umesh Kumar, E-mail: Umeshkgarg@gmail.com [Punjab Technical University, Kapurthala Punjab (India); Guru Teg Bahadur Khalsa College of IT, Malout, Punjab (India); Sharma, Anshul Kumar [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2016-05-06

    Optical studies involving calculation of Band Gap of the synthesized copper nanoparticles were carried out in the wavelength range of 500 to 650 nm at room temperature, the particles showed high absorption at 550 nm indicating their good absorptive properties. In this method water is used as the medium for reduction of copper ions in to copper Nanoparticles the stabilization of copper Nanoparticles was studied with starch both as a reductant and stabilizer,. The reaction mixture was heated using a kitchen microwave for about 5 minutes to attain the required temp for the reaction. The pH of the solution was adjusted to alkaline using 5% solution of NaOH. Formation of Copper Nanoparticles was indicated by change in color of the solution from blue to yellowish black which is supported by the UV absorption at 570 nm.the synthesized particles were washed with water and alcohol. The optical properties depend upon absorption of radiations which in turn depends upon ratio of electrons and holes present in the material and also on the shape of the nanoparticles. In the present investigation it was observed that optical absorption increases with increase in particle size. The optical band gap for the Nanoparticles was obtained from plots between hv vs. (αhv){sup 2} and hv vs. (αhv){sup 1/2}. The value of Band gap came out to be around 1.98–2.02 eV which is in close agreement with the earlier reported values.

  20. Electrodialytic remediation of copper mine tailings.

    Science.gov (United States)

    Hansen, Henrik K; Rojo, Adrián; Ottosen, Lisbeth M

    2005-01-31

    Mining activities in Chile have generated large amounts of solid waste, which have been deposited in mine tailing impoundments. These impoundments cause concern to the communities due to dam failures or natural leaching to groundwater and rivers. This work shows the laboratory results of nine electrodialytic remediation experiments on copper mine tailings. The results show that electric current could remove copper from watery tailing if the potential gradient was higher than 2 V/cm during 21 days. With addition of sulphuric acid, the process was enhanced because the pH decreased to around 4, and the copper by this reason was released in the solution. Furthermore, with acidic tailing the potential gradient was less than 2 V/cm. The maximum copper removal reached in the anode side was 53% with addition of sulphuric acid in 21 days experiment at 20 V using approximately 1.8 kg mine tailing on dry basis. In addition, experiments with acidic tailing show that the copper removal is proportional with time.

  1. Copper in the sea: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.L.

    1977-04-01

    Life in the sea is vulnerable to the influx of trace metals resulting from man's activities. Although many pollutants introduced to the sea eventually degrade to less harmful forms, trace metals accumulate in sediments and have a continued potential for effect on biota. Copper has a toxic potential exceeding all other metals due to the quantity discharged and its toxicological effect. Fortunately, copper in the oceans is rendered less bioavailable or less toxic by its ready interaction with the complex chemical components of seawater. This bibliography was prepared to illustrate the status of current knowledge of the biogeochemistry of copper and to aid the development of research programs to define the effects of copper discharged to the marine environment. The references are categorized to aid the reader to locate literature concerning specific aspects of the biogeochemistry of copper. A brief comment describing the important findings in each category is given. Although this bibliography is not exhaustive, the listed references are likely representative of current knowledge.

  2. Characterization of copper-resistant rhizosphere bacteria from Avena sativa and Plantago lanceolata for copper bioreduction and biosorption.

    Science.gov (United States)

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Camargo, Flávio A O

    2012-04-01

    Copper is a toxic heavy metal widely used to microbial control especially in agriculture. Consequently, high concentrations of copper residues remain in soils selecting copper-resistant organisms. In vineyards, copper is routinely used for fungi control. This work was undertaken to study copper resistance by rhizosphere microorganisms from two plants (Avena sativa L. and Plantago lanceolata L.) common in vineyard soils. Eleven rhizosphere microorganisms were isolated, and four displayed high resistance to copper. The isolates were identified by 16S rRNA gene sequence analysis as Pseudomonas putida (A1), Stenotrophomonas maltophilia (A2) and Acinetobacter sp. (A6), isolated from Avena sativa rhizosphere, and Acinetobacter sp. (T5), isolated from Plantago lanceolata rhizosphere. The isolates displayed high copper resistance in the temperature range from 25°C to 35°C and pH in the range from 5.0 to 9.0. Pseudomonas putida A1 resisted as much as 1,000 mg L(-1) of copper. The isolates showed similar behavior on copper removal from liquid medium, with a bioremoval rate of 30% at 500 mg L(-1) after 24 h of growth. Speciation of copper revealed high copper biotransformation, reducing Cu(II) to Cu(I), capacity. Results indicate that our isolates are potential agents for copper bioremoval and bacterial stimulation of copper biosorption by Avena sativa and Plantago lanceolata.

  3. New canine models of copper toxicosis: diagnosis, treatment, and genetics.

    Science.gov (United States)

    Fieten, Hille; Penning, Louis C; Leegwater, Peter A J; Rothuizen, Jan

    2014-05-01

    The One Health principle recognizes that human health, animal health, and environmental health are inextricably linked. An excellent example is the study of naturally occurring copper toxicosis in dogs to help understand human disorders of copper metabolism. Besides the Bedlington terrier, where copper toxicosis is caused by a mutation in the COMMD1 gene, more complex hereditary forms of copper-associated hepatitis were recognized recently in other dog breeds. The Labrador retriever is one such breed, where an interplay between genetic susceptibility and exposure to copper lead to clinical copper toxicosis. Purebred dog populations are ideal for gene mapping studies, and because genes involved in copper metabolism are highly conserved across species, newly identified gene mutations in the dog may help unravel the genetic complexity of different human forms of copper toxicosis. Furthermore, increasing knowledge with respect to diagnosis and treatment strategies will benefit both species.

  4. ENVIRONMENTAL ISSUE IN COPPER ORE FLOTATION BY XANTHATES

    National Research Council Canada - National Science Library

    Zoran Markovic

    2015-01-01

      This paper presents some investigation results about potassium ethyl xanthate (PEX) stability in water solution at higher pH and in presence of mineral chalcopyrite, related to flotation of copper minerals from copper ore...

  5. Metals in Metal Salts: A Copper Mirror Demonstration

    Science.gov (United States)

    Pike, Robert D.

    2010-01-01

    A simple lecture demonstration is described to show the latent presence of metal atoms in a metal salt. Copper(II) formate tetrahydrate is heated in a round-bottom flask forming a high-quality copper mirror.

  6. Structure evolution on annealing of copper-doped carbon film

    Energy Technology Data Exchange (ETDEWEB)

    Onoprienko, A.A. [Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky St., 03142 Kiev (Ukraine)]. E-mail: onopr@ipms.kiev.ua; Danilenko, N.I. [Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky St., 03142 Kiev (Ukraine); Kossko, I.A. [Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanovsky St., 03142 Kiev (Ukraine)

    2007-06-13

    Thin copper-doped (8 at.% Cu) carbon film was deposited by direct current magnetron sputtering of composite graphite/copper target in argon plasma. The evolution of film structure on annealing at 600 deg. C in a vacuum has been studied by transmission electron microscopy and electron diffraction. The as-deposited film was amorphous with copper atoms uniformly distributed over the film volume. Annealing resulted in precipitation of copper particles within carbon film followed by the decrease in the density of copper particles and increase in particle average size with annealing time due to diffusion coalescence within the ensemble of copper particles. The coalescence occurred by the mixed mechanism of bulk and surface diffusion of copper atoms within carbon film that contained a large number of structural defects. As a result, the mean radius of copper particles in ensemble changed as R-bar {sup 5} {approx} t.

  7. Trace elements in human physiology and pathology. Copper.

    Science.gov (United States)

    Tapiero, H; Townsend, D M; Tew, K D

    2003-11-01

    Copper is a trace element, important for the function of many cellular enzymes. Copper ions can adopt distinct redox states oxidized Cu(II) or reduced (I), allowing the metal to play a pivotal role in cell physiology as a catalytic cofactor in the redox chemistry of enzymes, mitochondrial respiration, iron absorption, free radical scavenging and elastin cross-linking. If present in excess, free copper ions can cause damage to cellular components and a delicate balance between the uptake and efflux of copper ions determines the amount of cellular copper. In biological systems, copper homeostasis has been characterized at the molecular level. It is coordinated by several proteins such as glutathione, metallothionein, Cu-transporting P-type ATPases, Menkes and Wilson proteins and by cytoplasmic transport proteins called copper chaperones to ensure that it is delivered to specific subcellular compartments and thereby to copper-requiring proteins.

  8. Bulk Copper Electrodeposition on Gold Imaged by In Situ STM

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov; Bech-Nielsen, Gregers; Møller, Per

    1996-01-01

    Electrochemical measurements were carried out simultaneously with acquisition of in situ STM images of copper electrodeposition at low cathodic overpotentials and subsequent dissolution from the underlying polycrystalline gold surfaces. The morphologies of the copper deposits were examined...... for correlation with features of the current-voltage diagram. Copper growth is by nucleation and formation of 3D islands. During the initial stages of bulk copper growth the potentials were fixed at selected values and a balance observed between formation of polycrystalline copper nuclei and of copper crystals....... After the first cycle of copper deposition and dissolution the morphology of the polycrystalline gold surface had apparently changed into a recrystallized phase of a copper-gold alloy. At a given stage of the cycle the potential of the electrode was found to depend linearly on the tip potential...

  9. A limited legacy effect of copper in marine biofilms.

    Science.gov (United States)

    McElroy, David J; Doblin, Martina A; Murphy, Richard J; Hochuli, Dieter F; Coleman, Ross A

    2016-08-15

    The effects of confounding by temporal factors remains understudied in pollution ecology. For example, there is little understanding of how disturbance history affects the development of assemblages. To begin addressing this gap in knowledge, marine biofilms were subjected to temporally-variable regimes of copper exposure and depuration. It was expected that the physical and biological structure of the biofilms would vary in response to copper regime. Biofilms were examined by inductively coupled plasma optical emission spectrometry, chlorophyll-a fluorescence and field spectrometry and it was found that (1) concentrations of copper were higher in those biofilms exposed to copper, (2) concentrations of copper remain high in biofilms after the source of copper is removed, and (3) exposure to and depuration from copper might have comparable effects on the photosynthetic microbial assemblages in biofilms. The persistence of copper in biofilms after depuration reinforces the need for consideration of temporal factors in ecology.

  10. Copper nanoparticle formation in a reducing gas environment

    NARCIS (Netherlands)

    ten Brink, Gert H.; Krishnan, Gopi; Kooi, Bart J.; Palasantzas, George

    2014-01-01

    Although copper nanoparticles are used as model nanomaterial because of their small nucleation barrier, their oxidization sensitivity hampers production of fully metallic nanoparticles with controlled size and shape. Nevertheless, we demonstrate here synthesis of copper nanoparticles, via high press

  11. Characterization of copper resistant ciliates: Potential candidates for ...

    African Journals Online (AJOL)

    ... of copper resistant ciliates: Potential candidates for consortia of organisms used in bioremediation of wastewater. ... African Journal of Biotechnology ... Copper is one of such contaminant found in the wastewater of local industries.

  12. High-strength braze joints between copper and steel

    Science.gov (United States)

    Kuhn, R. F.

    1967-01-01

    High-strength braze joints between copper and steel are produced by plating the faying surface of the copper with a layer of gold. This reduces porosity in the braze area and strengthens the resultant joint.

  13. Modeling and control of copper loss in smelting slag

    Science.gov (United States)

    Tan, Pengfu

    2011-12-01

    A series of technical improvements have been implemented to address the issue of high copper losses in rotary holding furnace (RHF) slag, which were experienced at the Xstrata Copper Smelter at Mount Isa in 2007 and 2008. The copper losses in smelting slag in the RHF were more than 3% in 2006 and 2007. Thermodynamic models and viscosity models have been applied in the operation of Xstrata Copper Smelter in Australia. The theory of RHF key performance indicators has also been developed to reduce the copper losses in RHF slag. The RHF KPIs Theory has been applied in Mount Isa Copper Smelter. The copper losses in RHF slag dropped from 3.1% in 2007 to 0.76% in April 2009. The average copper loss in RHF slag in 2009 and 2010 was about 0.9%.

  14. Coordination geometry around copper in a Schiff-base trinuclear copper complex using EXAFS spectroscopy

    Science.gov (United States)

    Gaur, Abhijeet; Shrivastava, B. D.; Gaur, D. C.; Prasad, J.; Srivastava, K.; Jha, S. N.; Bhattacharyya, D.; Poswal, A.

    2012-05-01

    In the present investigation, we have studied extended X-ray absorption fine structure (EXAFS) spectra of a trinuclear Schiff-base copper complex tetraaqua-di-μ3-(N-salicylidene-DL-glutamato)-tricopper(II)heptahydrate, [Cu3(C12H10NO5)2 (H2O)4]. 7H2O, in which three metal sites are present. One metal site is square-pyramidal (4+1) and other two similar metal sites are tetragonally distorted octahedral (4+2). EXAFS has been recorded at the K-edge of copper in the complex at the dispersive EXAFS beamline at 2 GeV Indus-2 synchrotron source at RRCAT, Indore, India. The analysis of EXAFS spectra of multinuclear metal complexes pose some problems due to the presence of many absorbing atoms, even when the absorbing atoms may be of the same element. Hence, using the available crystal structure of the complex, theoretical models have been generated for the different copper sites separately, which are then fitted to the experimental EXAFS data. The two coordination geometries around the copper sites have been determined. The contributions of the different copper sites to the experimental spectrum have been estimated. The structural parameters, which include bond-lengths, coordination numbers and thermal disorders, for the two types of copper sites have been reported. Further, copper has been found to be in +2 oxidation state at these metal sites.

  15. Mechanism of Mineral Phase Reconstruction for Improving the Beneficiation of Copper and Iron from Copper Slag

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jan; Zhang, Feng

    2016-09-01

    To maximize the recovery of iron and copper from copper slag, the modification process by adding a compound additive (a mixture of hematite, pyrite and manganous oxide) and optimizing the cooling of the slag was studied. The phase reconstruction mechanism of the slag modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that the synergy between the burnt lime and the compound additive promotes the generation of target minerals, such as magnetite and copper matte. In addition, the multifunctional compound additive is able to improve the fluidity of the molten slag, which facilitates the coalescence and growth of fine particles of the target minerals. As a result, the percentage of iron distributed in the form of magnetite increased from 32.9% to 65.1%, and that of the copper exiting in the form of metallic copper and copper sulfide simultaneously increased from 80.0% to 90.3%. Meanwhile, the grains of the target minerals in the modified slag grew markedly to a mean size of over 50 μm after slow cooling. Ultimately, the beneficiation efficiency of copper and iron was improved because of the ease with which the target minerals could be liberated.

  16. COPPER RESISTANT STRAIN CANDIDA TROPICALIS RomCu5 INTERACTION WITH SOLUBLE AND INSOLUBLE COPPER COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Ie. P. Prekrasna

    2015-10-01

    Full Text Available The focus of the study was interaction of Candida tropicalis RomCu5 isolated from highland Ecuador ecosystem with soluble and insoluble copper compounds. Strain C. tropicalis RomCu5 was cultured in a liquid medium of Hiss in the presence of soluble (copper citrate and CuCl2 and insoluble (CuO and CuCO3 copper compounds. The biomass growth was determined by change in optical density of culture liquid, composition of the gas phase was measured on gas chromatograph, redox potential and pH of the culture fluid was defined potentiometrically. The concentration of soluble copper compounds was determined colorimetrically. Maximal permissible concentration of Cu2+ for C. tropicalis RomCu5 was 30 000 ppm of Cu2+ in form of copper citrate and 500 ppm of Cu2+ in form of CuCl2. C. tropicalis was metabolically active at super high concentrations of Cu2+, despite the inhibitory effect of Cu2+. C. tropicalis immobilized Cu2+ in the form of copper citrate and CuCl2 by it accumulation in the biomass. Due to medium acidification C. tropicalis dissolved CuO and CuCO3. High resistance of C. tropicalis to Cu2+ and ability to interact with soluble and insoluble copper compounds makes it biotechnologically perspective.

  17. Relative bioavailability of copper in tribasic copper chloride to copper in copper sulfate for laying hens based on egg yolk and feather copper concentrations.

    Science.gov (United States)

    Kim, J W; Kim, J H; Shin, J E; Kil, D Y

    2016-07-01

    This experiment was conducted to determine the relative bioavailability (RBV) of Cu in tribasic copper chloride (TBCC) to Cu in copper sulfate (monohydrate form; CuSO4·H2O) for layer diets based on egg yolk and feather Cu concentrations. A total of 252, 72-wk-old Hy-Line Brown laying hens were allotted to 1 of 7 treatments with 6 replicates consisting of 6 hens per replicate in a completely randomized design. Hens were fed corn-soybean meal-based basal diets supplemented with 0 (basal), 100, 200, or 300 mg/kg Cu from CuSO4 or TBCC for 4 wk. Results indicated that egg production, egg weight, and egg mass were not affected by dietary treatments. However, increasing inclusion levels of Cu in diets from CuSO4 decreased (P hens fed diets containing CuSO4 than for hens fed diets containing TBCC. The values for the RBV of Cu in TBCC to Cu in CuSO4 based on log10 transformed egg yolk and feather Cu concentrations were 107.4% and 69.5%, respectively. These values for the RBV of Cu in TBCC did not differ from Cu in CuSO4 (100%). The RBV measured in egg yolk did not differ from the RBV measured in feather. In conclusion, the RBV of Cu in TBCC to Cu in CuSO4 can be determined using Cu concentrations of egg yolk and feathers although the values depend largely on target tissues of laying hens. For a practical application, however, the RBV value of Cu in TBCC to Cu in CuSO4 could be 88.5% when the RBV values determined using egg yolk and feather Cu concentrations were averaged.

  18. Leaching of copper-ethanolamine based preservatives from wood

    OpenAIRE

    Humar, Miha

    2006-01-01

    Copper-ethanolamine based preservatives are successfully replacing classical copper-chromium based preservative solutions. In this paper, the proposed fixation mechanisms are described. Additionaly,basic facts that influence copper leaching from wood are elucidated: composition and concentration of solutions, time and temperature of fixation as well as wood species and treatment method used. The results show that addition of ethanolamine significiantly improves copper fixation, but can on the...

  19. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  20. Gigantic Copper-Molybdenum Mining Project Contract Signed in Guangdong

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>With the reserves of nearly 1,000,000 tons of copper and approximately 250,000 tons of molybdenum and a total investment of RMB 5 billion, Guangdong Fengkai Yuanzhushan copper-molybdenum mining project contract was inked on October 13, 2011. It is reported that this is China’s second largest open-cast copper molybdenum mine next only to Dexing Copper Mine.

  1. A new acid pickling process for copper alloys

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The cleaning process of removing oxides on the surface of copper alloy sheets was investigated systematically. Through optimizing, a perfect process was selected that is fit for removing oxides on the surface. By acid pickling, all kinds of copper oxides are removed completely, furthermore, no poisonous gases are given out and a smooth and clean surface of copper alloys is obtained. At present, the process is applied successfully in the copper-processing industry.

  2. Preliminary Model of Porphyry Copper Deposits

    Science.gov (United States)

    Berger, Byron R.; Ayuso, Robert A.; Wynn, Jeffrey C.; Seal, Robert R., II

    2008-01-01

    The U.S. Geological Survey (USGS) Mineral Resources Program develops mineral-deposit models for application in USGS mineral-resource assessments and other mineral resource-related activities within the USGS as well as for nongovernmental applications. Periodic updates of models are published in order to incorporate new concepts and findings on the occurrence, nature, and origin of specific mineral deposit types. This update is a preliminary model of porphyry copper deposits that begins an update process of porphyry copper models published in USGS Bulletin 1693 in 1986. This update includes a greater variety of deposit attributes than were included in the 1986 model as well as more information about each attribute. It also includes an expanded discussion of geophysical and remote sensing attributes and tools useful in resource evaluations, a summary of current theoretical concepts of porphyry copper deposit genesis, and a summary of the environmental attributes of unmined and mined deposits.

  3. Copper Electrodeposition for 3D Integration

    CERN Document Server

    Beica, Rozalia; Ritzdorf, Tom

    2008-01-01

    Two dimensional (2D) integration has been the traditional approach for IC integration. Due to increasing demands for providing electronic devices with superior performance and functionality in more efficient and compact packages, has driven the semiconductor industry to develop more advanced packaging technologies. Three-dimensional (3D) approaches address both miniaturization and integration required for advanced and portable electronic products. Vertical integration proved to be essential in achieving a greater integration flexibility of disparate technologies, reason for which a general trend of transition from 2D to 3D integration is currently being observed in the industry. 3D chip integration using through silicon via (TSV) copper is considered one of the most advanced technologies among all different types of 3D packaging technologies. Copper electrodeposition is one of technologies that enable the formation of TSV structures. Because of its well-known application for copper damascene, it was believed ...

  4. Studies on copper coating on carbon fibers

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The weak interface bonding of metal matrix reinforced by carbon fibers is the central problem of fabricating such composites. Depositing copper coating on carbon fibers is regarded as a feasible method to solve the problem. In this paper, copper coating has been deposited on the fibers through both electroless deposition and electroplating methods. Two kinds of complexing agents and two stabilizing agents are taken during the electroless plating process. The solution is stable, and little extraneous component is absorbed on the surface. After adding additive agents and increasing the concentration of H2SO4 to the acid cupric sulfate electrolyte, the "black core" during usual electroplating process is avoided. The quality of copper coating is analyzed using SEM and XRD, etc.

  5. Surface properties of copper based cermet materials

    Energy Technology Data Exchange (ETDEWEB)

    Voinea, M. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)], E-mail: m.voinea@unitbv.ro; Vladuta, C.; Bogatu, C.; Duta, A. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)

    2008-08-25

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO{sub x} cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO{sub x} was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components.

  6. Graphene-protected copper and silver plasmonics

    Science.gov (United States)

    Kravets, V. G.; Jalil, R.; Kim, Y.-J.; Ansell, D.; Aznakayeva, D. E.; Thackray, B.; Britnell, L.; Belle, B. D.; Withers, F.; Radko, I. P.; Han, Z.; Bozhevolnyi, S. I.; Novoselov, K. S.; Geim, A. K.; Grigorenko, A. N.

    2014-01-01

    Plasmonics has established itself as a branch of physics which promises to revolutionize data processing, improve photovoltaics, and increase sensitivity of bio-detection. A widespread use of plasmonic devices is notably hindered by high losses and the absence of stable and inexpensive metal films suitable for plasmonic applications. To this end, there has been a continuous search for alternative plasmonic materials that are also compatible with complementary metal oxide semiconductor technology. Here we show that copper and silver protected by graphene are viable candidates. Copper films covered with one to a few graphene layers show excellent plasmonic characteristics. They can be used to fabricate plasmonic devices and survive for at least a year, even in wet and corroding conditions. As a proof of concept, we use the graphene-protected copper to demonstrate dielectric loaded plasmonic waveguides and test sensitivity of surface plasmon resonances. Our results are likely to initiate wide use of graphene-protected plasmonics. PMID:24980150

  7. Monovalent copper-activated oxygenated insulators

    Science.gov (United States)

    Parent, C.; Boutinaud, P.; Flem, G. Le; Moine, B.; Pedrini, C.; Garcia, D.; Faucher, M.

    1994-12-01

    The photoluminescence of monovalent copper in oxygenated insulators has been extensively studied. The spectroscopy and the excited states dynamics of Cu + ions were investigated as a function of the copper concentration and temperature in various glassy and crystallized materials, essentially borates and phosphates. The broad band fluorescences observed in the visible range under UV excitation arise from two main emitting centers: isolated Cu + ions and (Cu +) 2 pairs. The spectroscopic characteristics of isolated Cu + depend strongly on the local structure, whereas those of the copper pairs remain nearly unaltered whatever the host-matrix. Energy diagrams are proposed for both centers, using ab initio LCAO calculations, in connection with structural investigations involving XRD, ND and EXAFS spectroscopies. Borate glasses can be considered as potential laser sources for tunable output in the whole visible range.

  8. REMOVAL OF COPPER ELECTROLYTE CONTAMINANTS BY ADSORPTION

    Directory of Open Access Journals (Sweden)

    B Gabai

    1997-09-01

    Full Text Available Abstract - Selective adsorbents have become frequently used in industrial processes. Recent studies have shown the possibility of using adsorption to separate copper refinery electrolyte contaminants, with better results than those obtained with conventional techniques. During copper electrorefinning, many impurities may be found as dissolved metals present in the anode slime which forms on the electrode surface, accumulated in the electrolyte or incorporated into the refined copper on the cathode by deposition. In this study, synthetic zeolites, chelating resins and activated carbons were tested as adsorbents to select the best adsorbent performance, as well as the best operating temperature for the process. The experimental method applied was the finite bath, which consists in bringing the adsorbent into contact with a finite volume of electrolyte while controlling the temperature. The concentration of metals in the liquid phase was continuously monitored by atomic absorption spectrophotometry (AAS

  9. Acute toxicity of copper to sea catfish

    Energy Technology Data Exchange (ETDEWEB)

    Steele, C.W.

    1983-01-01

    Sea catfish (Arius felis) were exposed to aqueous solutions of reagent grade cupric chloride in artificial seawater (30.0 +/- 2.0 0/00, 21-23/sup 0/C) in four static bioassays. The 24, 48, 72 and 96 h LC/sub 50/ were calculated and found to be 5.43, 4.17, 3.57 and 2.40 mg 1./sup -1/ copper, respectively. Experimental concentrations of copper producing subtle behavioral changes in this species correspond to less than 0.3% of the 72 h LC/sub 50/. Based on this comparison with literature values, a new, maximum 'safe' concentration for copper in marine waters of 0.01 mg 1./sup -1/ is proposed.

  10. Copper Oxide Nanoparticles Synthesis by Electrochemical Method

    Directory of Open Access Journals (Sweden)

    Nitin DIGHORE

    2016-05-01

    Full Text Available Copper oxide nanoparticles were prepared by electrochemical reduction method which is environmental benign. Tetra ethyl ammonium bromide (TEAB, tetra propyl ammonium bromide (TPAB, tetra butyl ammonium bromide (TBAB were used as stabilizing agent in an organic medium viz. tetra hydro furan (THF and acetonitrile (ACN in 4:1 ratio by optimizing current density. The reduction process takes place under atmospheric condition over a period of 2 h. Such nanoparticles were prepared using simple electrolysis cell in which the sacrificial anode was a commercially available copper metal sheet and platinum (inert sheet acted as a cathode. The stabilizers were used to control the size of a nanoparticles. The synthesized copper oxide nanoparticles were characterized by using UV-Visible, FT-IR, XRD, SEM-EDS and TEM analysis techniques.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.7501

  11. Zinc, copper and selenium in reproduction.

    Science.gov (United States)

    Bedwal, R S; Bahuguna, A

    1994-07-15

    Of the nine biological trace elements, zinc, copper and selenium are important in reproduction in males and females. Zinc content is high in the adult testis, and the prostate has a higher concentration of zinc than any other organ of the body. Zinc deficiency first impairs angiotensin converting enzyme (ACE) activity, and this in turn leads to depletion of testosterone and inhibition of spermatogenesis. Defects in spermatozoa are frequently observed in the zinc-deficient rat. Zinc is thought to help to extend the functional life span of the ejaculated spermatozoa. Zinc deficiency in the female can lead to such problems as impaired synthesis/secretion of (FSH) and (LH), abnormal ovarian development, disruption of the estrous cycle, frequent abortion, a prolonged gestation period, teratogenicity, stillbirths, difficulty in parturition, pre-eclampsia, toxemia and low birth weights of infants. The level of testosterone in the male has been suggested to play a role in the severity of copper deficiency. Copper-deficient female rats are protected against mortality due to copper deficiency, and the protection has been suggested to be provided by estrogens, since estrogens alter the subcellular distribution of copper in the liver and increase plasma copper levels by inducing ceruloplasmin synthesis. The selenium content of male gonads increases during pubertal maturation. Selenium is localized in the mitochondrial capsule protein (MCP) of the midpiece. Maximal incorporation in MCP occurs at steps 7 and 12 of spermatogenesis and uptake decreases by step 15. Selenium deficiency in females results in infertility, abortions and retention of the placenta. The newborns from a selenium-deficient mother suffer from muscular weakness, but the concentration of selenium during pregnancy does not have any effect on the weight of the baby or length of pregnancy. The selenium requirements of a pregnant and lactating mother are increased as a result of selenium transport to the fetus via

  12. Copper removal using electrosterically stabilized nanocrystalline cellulose.

    Science.gov (United States)

    Sheikhi, Amir; Safari, Salman; Yang, Han; van de Ven, Theo G M

    2015-06-03

    Removal of heavy metal ions such as copper using an efficient and low-cost method with low ecological footprint is a critical process in wastewater treatment, which can be achieved in a liquid phase using nanoadsorbents such as inorganic nanoparticles. Recently, attention has turned toward developing sustainable and environmentally friendly nanoadsorbents to remove heavy metal ions from aqueous media. Electrosterically stabilized nanocrystalline cellulose (ENCC), which can be prepared from wood fibers through periodate/chlorite oxidation, has been shown to have a high charge content and colloidal stability. Here, we show that ENCC scavenges copper ions by different mechanisms depending on the ion concentration. When the Cu(II) concentration is low (C0≲200 ppm), agglomerates of starlike ENCC particles appear, which are broken into individual starlike entities by shear and Brownian motion, as evidenced by photometric dispersion analysis, dynamic light scattering, and transmission electron microscopy. On the other hand, at higher copper concentrations, the aggregate morphology changes from starlike to raftlike, which is probably due to the collapse of protruding dicarboxylic cellulose (DCC) chains and ENCC charge neutralization by copper adsorption. Such raftlike structures result from head-to-head and lateral aggregation of neutralized ENCCs as confirmed by transmission electron microscopy. As opposed to starlike aggregates, the raftlike structures grow gradually and are prone to sedimentation at copper concentrations C0≳500 ppm, which eliminates a costly separation step in wastewater treatment processes. Moreover, a copper removal capacity of ∼185 mg g(-1) was achieved thanks to the highly charged DCC polyanions protruding from ENCC. These properties along with the biorenewability make ENCC a promising candidate for wastewater treatment, in which fast, facile, and low-cost removal of heavy metal ions is desired most.

  13. Mechanism of copper selenide growth on copper-oxide selenium system

    Science.gov (United States)

    Ishikawa, Y.; Kido, O.; Kimura, Y.; Kurumada, M.; Suzuki, H.; Saito, Y.; Kaito, C.

    2004-01-01

    Transmission electron microscopy was used to study spontaneous copper selenide formation on Cu particles covered with an oxide layer. Even if the copper particle surface was covered with a Cu 2O layer, selenides were formed by diffusion through the metal oxide layer. For a particle size less than 50 nm, selenide was formed in Cu particles by the diffusion of Se atoms passing through the Cu 2O layer. For particles larger than 100 nm in size, selenide was formed in Se film. It was also found that the thickness of the Cu 2O layer on the surface of Cu particle accelerated diffusion of Se atoms to the copper particle.

  14. Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Samreen; Goddard, Russell H.; Bielmyer-Fraser, Gretchen K., E-mail: gkbielmyer@valdosta.edu

    2015-03-15

    Highlights: • Differences between CuO NP and CuCl{sub 2} exposure were characterized. • Copper accumulation in E. pallida was concentration-dependent. • E. pallida exposed to CuCl{sub 2} accumulated higher copper tissue burdens. • The oxidative stress response was greater in E. pallida exposed to CuO NP. • Both forms of copper inhibited CA activity in E. pallida. - Abstract: Increasing use of metal oxide nanoparticles (NP) by various industries has resulted in substantial output of these NP into aquatic systems. At elevated concentrations, NP may interact with and potentially affect aquatic organisms. Environmental implications of increased NP use are largely unknown, particularly in marine systems. This research investigated and compared the effects of copper oxide (CuO) NP and dissolved copper, as copper chloride (CuCl{sub 2}), on the sea anemone, Exaiptasia pallida. Sea anemones were collected over 21 days and tissue copper accumulation and activities of the enzymes: catalase, glutathione peroxidase, glutathione reductase, and carbonic anhydrase were quantified. The size and shape of CuO NP were observed using a ecanning electron microscope (SEM) and the presence of copper was confirmed by using Oxford energy dispersive spectroscopy systems (EDS/EDX). E. pallida accumulated copper in their tissues in a concentration- and time-dependent manner, with the animals exposed to CuCl{sub 2} accumulating higher tissue copper burdens than those exposed to CuO NP. As a consequence of increased copper exposure, as CuO NP or CuCl{sub 2}, anemones increased activities of all of the antioxidant enzymes measured to some degree, and decreased the activity of carbonic anhydrase. Anemones exposed to CuO NP generally had higher anti-oxidant enzyme activities than those exposed to the same concentrations of CuCl{sub 2}. This study is useful in discerning differences between CuO NP and dissolved copper exposure and the findings have implications for exposure of aquatic

  15. Studies on Cementation of Tin on Copper and Tin Stripping from Copper Substrate

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2016-06-01

    Full Text Available Cementation of tin on copper in acid chloride-thiourea solutions leads to the formation of porous layers with a thickness dependent on the immersion time. The process occurs via Sn(II-Cu(I mechanism. Chemical stripping of tin was carried out in alkaline and acid solutions in the presence of oxidizing agents. It resulted in the dissolution of metallic tin, but refractory Cu3Sn phase remained on the copper surface. Electrochemical tin stripping allows complete tin removal from the copper substrate, but porosity and complex phase composition of the tin coating do not allow monitoring the process in unambiguous way.

  16. Simulated small-scale pilot heap leaching of low-grade copper sulfide ore with selective extraction of copper

    Institute of Scientific and Technical Information of China (English)

    QIN Wen-qing; ZHANG Yan-sheng; LI Wei-zhong; WANG Jun

    2008-01-01

    The bioleaching of low-grade copper sulfide ore and the selective extraction of copper were investigated.Lix984 dissolved in kerosene was used as extractant.The results show that it is possible to selectively leach copper from the ores by heap leaching.The copper concentration of leaching liquor after 250 d is 2.17 g/L,and the copper concentration is 0.27 g/L after solvent extraction.The leach liquor was subjected to solvent extraction,scrubbing and selective stripping for the enrichment of copper and the removal of impurities.The pregnant copper sulfate solution produced from the stripping cycle is suitable for copper electro-winning.

  17. Removal of copper from copper-contaminated river water and aqueous solutions using Methylobacterium extorquens modified Erzurum clayey soil

    National Research Council Canada - National Science Library

    Neslihan Celebi; Hayrunnisa Nadaroglu; Ekrem Kalkan; Recep Kotan

    2016-01-01

    ... adsorbent materials for the removal of copper from aqueous solution. The copper concentrations in the samples of the polluted river water and CuCl solutions treated by the natural and bacteria-modified Erzurum clayey soil (ECS...

  18. 2010 Q3 China Copper Scrap Market Analysis

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    <正>Analysis of price change tendency of copper scrap In Q3 2010, China’s copper scrap price re-bounded. Although the price dropped by 1.2% q-o-q, it rose by 22.07% y-o-y. In September, average price of copper scrap reached RMB 52350/ton.

  19. Copper deficiency in a herd of captive muskoxen.

    OpenAIRE

    Blakley, B R; S. C. Tedesco; Flood, P F

    1998-01-01

    At necropsy, a mature muskox cow was found to have exceedingly low serum and liver copper concentrations of 4.8 = mumol/L and 0.02 mmol/kg, respectively. Serum copper levels were also low in remaining members of the herd but returned to normal after parenteral treatment with calcium copper edetate.

  20. 21 CFR 73.125 - Sodium copper chlorophyllin.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Sodium copper chlorophyllin. 73.125 Section 73.125... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.125 Sodium copper chlorophyllin. (a) Identity. (1) The color additive sodium copper chlorophyllin is a green to black powder prepared from chlorophyll...