WorldWideScience

Sample records for copper perchlorates

  1. Silver nanoplate-decorated copper wire for the on-site microextraction and detection of perchlorate using a portable Raman spectrometer.

    Science.gov (United States)

    Zhu, Sha; Zhang, Xiaoli; Cui, Jingcheng; Shi, Yu-E; Jiang, Xiaohong; Liu, Zhen; Zhan, Jinhua

    2015-04-21

    Perchlorate, which causes health concerns because of its effects on the thyroid function, is highly soluble and mobile in the environment. In this study, diethyldithiocarbamate (DDTC)-modified silver nanoplates were fabricated on a copper wire to perform the on-site microextraction and detection of perchlorate. This fiber could be inserted into water or soil to extract perchlorate through electrostatic interaction and then can be detected by a portable Raman spectrometer, owing to its surface-enhanced Raman (SERS) activity. A relatively stable vibrational mode (δ(HCH)(CH3), (CH2)) of DDTC at 1273 cm(-1) was used as an internal standard, which was negligibly influenced by the absorption of ClO4(-). The DDTC-modified Ag/Cu fiber showed high uniformity, good reusability and temporal stability under continuous laser radiation each with an RSD lower than 10%. The qualitative and quantitative detection of perchlorate were also realized. A log-log plot of the normalized SERS intensity against perchlorate concentration showed a good linear relationship. The fiber could be also directly inserted into the perchlorate-polluted soil, and the perchlorate could thereby be detected on site. The detection limit in soil reached 0.081 ppm, which was much lower than the EPA-published safety standard. The recovery of the detection was 105% and comparable with the ion chromatography. This hyphenated method of microextraction with direct SERS detection may find potential application for direct pollutant detection free from complex sample pretreatment.

  2. Fabrication of ammonium perchlorate/copper-chromium oxides core-shell nanocomposites for catalytic thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Eslami, Abbas, E-mail: eslami@umz.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Juibari, Nafise Modanlou [Department of Inorganic Chemistry, Faculty of Chemistry, University of Mazandaran, P.O.Box 47416-95447, Babolsar (Iran, Islamic Republic of); Hosseini, Seyed Ghorban [Department of Chemistry, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of)

    2016-09-15

    The ammonium perchlorate/Cu(II)-Cr(III)-oxides(AP/Cu-Cr-O) core-shell nanocomposites were in-situ prepared by deposition of copper and chromium oxides on suspended ammonium perchlorate particles in ethyl acetate as solvent. The results of differential scanning calorimetery (DSC) and thermal gravimetric analysis (TGA) experiments showed that the nanocomposites have excellent catalytic effect on the thermal decomposition of AP, so that the released heat increases up to about 3-fold over initial values, changing from 450 J/g for pure AP to 1510 J/g for most appropriate mixture. For better comparison, single metal oxide/AP core-shell nanocomposite have also been prepared and the results showed that they have less catalytic effect respect to mixed metal oxides system. Scanning electron microscopy (SEM) results revealed homogenous deposition of nanoparticles on the surface of AP and fabrication of core-shell structures. The kinetic parameters of thermal decomposition of both pure AP and AP/Cu-Cr-O samples have been calculated by Kissinger method and the results showed that the values of pre-exponential factor and activation energy are higher for AP/Cu-Cr-O nanocomposite. The better catalytic effect of Cu-Cr-O nanocomposites is probably attributed to the synergistic effect between Cu{sup 2+} and Cr{sup 3+} in the nanocomposites, smaller particle size and more crystal defect. - Highlights: • The Cu-Cr-O nanoparticles were synthesized by chemical liquid deposition method. • Then, the AP/Cu-Cr-O core-shell nanocomposites were prepared. • The core-shell samples showed high catalytic activity for AP decomposition. • Thermal decomposition of samples occurs at lower temperature range.

  3. Crystal structure of μ-oxalodi-hydroxamato-bis-[(2,2'-bipyrid-yl)(di-methyl sulfoxide-κO)copper(II)] bis-(perchlorate).

    Science.gov (United States)

    Odarich, Irina A; Pavlishchuk, Anna V; Kalibabchuk, Valentina A; Haukka, Matti

    2016-02-01

    The centrosymmetric binuclear complex, [Cu2(C2H2N2O4)(C10H8N2)2(C2H6OS)2](ClO4)2, contains two copper(II) ions, connected through an N-deprotonated oxalodi-hydroxamic acid dianion, two terminal 2,2'-bi-pyridine ligands, and two apically coordinating dimethylsulfoxide mol-ecules. Two non-coordinating perchlorate anions assure electrical neutrality. The copper(II) ions in the complex dication [Cu2(C10H8N2)2(μ-C2H2N2O4)(C2H6SO)2](2+) are in an O2N3 square-pyramidal donor environment, the Cu-Cu separation being 5.2949 (4) Å. Two hydroxamate groups in the deprotonated oxalodi-hydroxamic acid are located trans to one each other. In the crystal, O-H⋯O and C-H⋯O hydrogen bonds link the complex cations to the perchlorate anions. Further C-H⋯O hydrogen bonds combine with π-π contacts with a centroid-to-centroid separation of 3.6371 (12) Å to stack the mol-ecules along the a-axis direction.

  4. Synthesis, characterization and antitumour activity of copper(II) 6-(4-chlorobenzylamino)purine complexes. X-ray structure of 6-(4-chloro-benzylamino)purinium perchlorate

    Czech Academy of Sciences Publication Activity Database

    Maloň, M.; Trávníček, Z.; Maryško, Miroslav; Marek, J.; Doležal, Karel; Rolčík, Jakub; Strnad, Miroslav

    2002-01-01

    Roč. 27, č. 6 (2002), s. 580-586 ISSN 0340-4285 R&D Projects: GA ČR GA522/01/0275; GA MŠk OC 844.10; GA ČR GA301/02/0475 Institutional research plan: CEZ:AV0Z5038910 Keywords : Copper complexes * human malignant melanoma * purinium perchlorate Subject RIV: CE - Biochemistry Impact factor: 0.949, year: 2002

  5. Carbon-coated copper nanoparticles prepared by detonation method and their thermocatalysis on ammonium perchlorate

    Science.gov (United States)

    An, Chongwei; Ding, Penghui; Ye, Baoyun; Geng, Xiaoheng; Wang, Jingyu

    2017-03-01

    Carbon-coated copper nanoparticles (CCNPs) were prepared by initiating a high-density charge pressed with a mixture of microcrystalline wax, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and copper nitrate hydrate (Cu(NO3)2.3H2O) in an explosion vessel filled with nitrogen gas. The detonation products were characterized by transmission electron microcopy (TEM), high resolution transmission electron microcopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Raman spectroscopy. The effects of CCNPs on thermal decomposition of ammonium perchlorate (AP) were also investigated by differential scanning calorimeter (DSC). Results indicated that the detonation products were spherical, 25-40 nm in size, and had an apparent core-shell structure. In this structure, the carbon shell was 3-5 nm thick and mainly composed of graphite, C8 (a kind of carbyne), and amorphous carbon. When 5 wt.% CCNPs was mixed with 95 wt.% AP, the high-temperature decomposition peak of AP decreased by 95.97, 96.99, and 96.69 °Cat heating rates of 5, 10, and 20 °C/min, respectively. Moreover, CCNPs decreased the activation energy of AP as calculated through Kissinger's method by 25%, which indicated outstanding catalysis for the thermal decomposition of AP.

  6. Carbon-coated copper nanoparticles prepared by detonation method and their thermocatalysis on ammonium perchlorate

    Directory of Open Access Journals (Sweden)

    Chongwei An

    2017-03-01

    Full Text Available Carbon-coated copper nanoparticles (CCNPs were prepared by initiating a high-density charge pressed with a mixture of microcrystalline wax, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, and copper nitrate hydrate (Cu(NO32·3H2O in an explosion vessel filled with nitrogen gas. The detonation products were characterized by transmission electron microcopy (TEM, high resolution transmission electron microcopy (HRTEM, energy dispersive X-ray spectroscopy (EDX, X-ray diffraction (XRD, and Raman spectroscopy. The effects of CCNPs on thermal decomposition of ammonium perchlorate (AP were also investigated by differential scanning calorimeter (DSC. Results indicated that the detonation products were spherical, 25-40 nm in size, and had an apparent core-shell structure. In this structure, the carbon shell was 3-5 nm thick and mainly composed of graphite, C8 (a kind of carbyne, and amorphous carbon. When 5 wt.% CCNPs was mixed with 95 wt.% AP, the high-temperature decomposition peak of AP decreased by 95.97, 96.99, and 96.69 °Cat heating rates of 5, 10, and 20 °C/min, respectively. Moreover, CCNPs decreased the activation energy of AP as calculated through Kissinger’s method by 25%, which indicated outstanding catalysis for the thermal decomposition of AP.

  7. [(6-Methyl-2-pyridylmethyl(2-pyridylmethylamine][(2-pyridylmethylamine]copper(II bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher

    2008-01-01

    Full Text Available The title compound, [Cu(C6H8N2(C13H15N3](ClO42, is a mixed ligand complex with the CuII atom coordinated by (6-methyl-2-pyridylmethyl(2-pyridylmethylamine, acting as a tridentate ligand, and 2-(2-aminomethylpyridine, as a bidentate ligand, leading to an N5 square-pyramidal geometry. The amine H atoms are involved in hydrogen bonding to the perchlorate O atoms and there are extensive but weak intermolecular C—H...O interactions in the crystal structure. The perchlorate ions are each disordered over two positions, with site occupancies of 0.601 (8:0.399 (8 and 0.659 (11:0.341 (11.

  8. Perchlorate in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Martinelango, P. Kalyani [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States); Tian Kang [Institute of Environmental and Human Health, Texas Tech University, Lubbock, TX 79409 (United States); Dasgupta, Purnendu K. [Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061 (United States)]. E-mail: Sandyd@ttu.edu

    2006-05-10

    There has been no reliable published data on the presence of perchlorate in seawater. Seaweeds are among the most important plant life in the ocean and are good sources of iodine and have been widely used as food and nutritional supplement. Perchlorate is known to inhibit the transport of iodide by the sodium iodide symporter (NIS), present e.g., in the thyroid and mammary glands. With perchlorate being increasingly detected in drinking water, milk and various other foods, increasing the iodide intake through inexpensive natural supplements may be an attractive solution for maintaining iodine assimilation. We report here measurable concentrations of perchlorate in several samples of seawater (detectable in about half the samples analyzed). We also report the iodide and perchlorate concentrations of 11 different species of seaweed and the corresponding bioconcentration factors (BCF) for perchlorate and iodide, relative to the seawater from which they were harvested. All seaweed samples came from the same region, off the coast of Northeastern Maine. Concentrations of iodide and perchlorate in four seawater samples collected from the region near harvest time were 30 {+-} 11 and 0.16 {+-} 0.084 {mu}g l{sup -1}, respectively. Concentrations of both iodide and perchlorate varied over a wide range for different seaweed species; iodide ranging from 16 to 3134 mg kg{sup -1} and perchlorate from 0.077 to 3.2 mg kg{sup -1}. The Laminaria species had the highest iodide concentration; Laminaria digitata is the seaweed species most commonly used in the kelp tablets sold in health food stores. Our sample of L. digitata contained 3134 {+-} 15 mg iodide/kg dry weight. The BCF varied widely for different species, with Laminaria species concentrating iodide preferentially over perchlorate. The iodide BCF (BCF{sub i}) to perchlorate BCF (BCF{sub p}) quotient ranged from 0.66 to 53; L. digitata and L. saccarina having a BCF{sub i}/BCF{sub p} value of 45 and 53, respectively, far

  9. Perchlorate in seawater

    International Nuclear Information System (INIS)

    Martinelango, P. Kalyani; Tian Kang; Dasgupta, Purnendu K.

    2006-01-01

    There has been no reliable published data on the presence of perchlorate in seawater. Seaweeds are among the most important plant life in the ocean and are good sources of iodine and have been widely used as food and nutritional supplement. Perchlorate is known to inhibit the transport of iodide by the sodium iodide symporter (NIS), present e.g., in the thyroid and mammary glands. With perchlorate being increasingly detected in drinking water, milk and various other foods, increasing the iodide intake through inexpensive natural supplements may be an attractive solution for maintaining iodine assimilation. We report here measurable concentrations of perchlorate in several samples of seawater (detectable in about half the samples analyzed). We also report the iodide and perchlorate concentrations of 11 different species of seaweed and the corresponding bioconcentration factors (BCF) for perchlorate and iodide, relative to the seawater from which they were harvested. All seaweed samples came from the same region, off the coast of Northeastern Maine. Concentrations of iodide and perchlorate in four seawater samples collected from the region near harvest time were 30 ± 11 and 0.16 ± 0.084 μg l -1 , respectively. Concentrations of both iodide and perchlorate varied over a wide range for different seaweed species; iodide ranging from 16 to 3134 mg kg -1 and perchlorate from 0.077 to 3.2 mg kg -1 . The Laminaria species had the highest iodide concentration; Laminaria digitata is the seaweed species most commonly used in the kelp tablets sold in health food stores. Our sample of L. digitata contained 3134 ± 15 mg iodide/kg dry weight. The BCF varied widely for different species, with Laminaria species concentrating iodide preferentially over perchlorate. The iodide BCF (BCF i ) to perchlorate BCF (BCF p ) quotient ranged from 0.66 to 53; L. digitata and L. saccarina having a BCF i /BCF p value of 45 and 53, respectively, far greater than a simple anion exchange process

  10. Widespread Occurrence of Plant Perchlorate

    Science.gov (United States)

    Harvey, G.; Orris, G.; Jackson, W. A.; Rajagopalan, S.; Andraski, B.; Stonestrom, D.

    2007-12-01

    Perchlorate is a water soluble oxyanion containing four oxygens bonded to a single chlorine atom. High concentration of perchlorate can competitively block the uptake of iodide by the sodium iodide symporter and disrupt thyroid function. Due to this ability to potentially impair thyroid function, perchlorate in environmental exposure pathways has been of concern for more than a decade. Our knowledge of the spatial and temporal aspects of environmental perchlorate has increased dramatically in the past few years. To date, perchlorate has been found in numerous different environmental media, including water, soils and sediments, and plants, from many parts of the world. Perchlorate can be found in marine alage, food and plant samples from Asia, Africa, Europe, North and South America. It is becoming increasingly apparent that perchlorate in low levels is ubiquitous. Perchlorate has been found in several different carbon age-dated water and midden samples that pre-date the industrial age and agricultural use of Chilean nitrate fertilizers by thousands of years. While anthropogenic sources of perchlorate exist, the accumulating spatial and temporal evidence suggests that perchlorate must have a significant natural source. This natural source of perchlorate under the appropriate geochemical and climatic conditions is contributing a natural background level of perchlorate. Concentrations of perchlorate in soils appears to be influenced by soil geochemistry. Soils with low organic content usually have higher levels of perchlorate then soils with abundant organic matter. High levels of perchlorate have been found in remotely located xerophytes growing in aridosols and in deciduous phreatophytes growing in humid densely populated areas. Often the amount of perchlorate in a plant cannot be explained by the amount of perchlorate in either the soil or precipitation. Investigations into the relative source contribution of lithogenic, atmospheric and other sources and mechanisms

  11. Energetic co-ordination compounds: synthesis, characterization and thermolysis studies on bis-(5-nitro-2H-tetrazolato-N2)tetraammine cobalt(III) perchlorate (BNCP) and its new transition metal (Ni/Cu/Zn) perchlorate analogues

    International Nuclear Information System (INIS)

    Talawar, M.B.; Agrawal, A.P.; Asthana, S.N.

    2005-01-01

    Bis-(5-nitro-2H-tetrazolato-N 2 )tetraammine[cobalt(III)/nickel(III)] perchlorates (BNCP/BNNP) and mono-(5-nitro-H-tetrazolato-N)triammine [copper(II)/zinc(II)] perchlorates (MNCuP/MNZnP) have been synthesized during this work. The synthesis was carried out by addition of carbonato tetraammine metal [Co/Ni/Cu/Zn] nitrate [CTCN/CTNN/CTCuN/CTZnN] to the aqueous solution of sodium salt of 5-nitrotetrazole followed by reaction with perchloric acid. The precursors were synthesized by the reaction of aqueous solution of their respective nitrates with ammonium carbonate at 70 deg. C. The complexes and their precursors were characterized by determining metal and perchlorate content as well as infrared (IR), electron spectra for chemical analysis (ESCA) and X-ray diffraction (XRD) techniques. The TG profiles indicated that BNCP, BNNP and MNCuP are thermally stable up to the temperature of 260-278 deg. C unlike MNZnP (150 deg. C). Sudden exothermic decomposition was observed in case of bis-(5-nitro-2H-tetrazolato-N 2 )tetraammine cobalt(III) perchlorate, bis-(5-nitro-2H-tetrazolato-N 2 )tetraammine nickel(III) perchlorate and mono-(5-nitro-H-tetrazolato-N)triammine zinc(II) perchlorate resulting in the severe damage of the sample cup. Sensitivity data indicated that the Co/Ni/Cu complexes are more friction sensitive (3-4.8 kg) than mono-(5-nitro-H-tetrazolato-N)triammine zinc(II) perchlorate (14 kg). The impact sensitivity results of the complexes corresponded to h 50% of 30-36 cm

  12. μ-Oxalato-bis[(2,2′-bipyridylcopper(II] bis(perchlorate dimethylformamide disolvate monohydrate

    Directory of Open Access Journals (Sweden)

    Alexander N. Boyko

    2010-09-01

    Full Text Available The title compound, [Cu2(C2O4(C10H8N24](ClO42·2C3H7NO·H2O, contains doubly charged centrosymmetric dinuclear oxalato-bridged copper(II complex cations, perchlorate anions, and DMF and water solvate molecules. In the complex cation, the oxalate ligand is coordinated in a bis-bidentate bridging mode to the Cu atoms. Each Cu atom has a distorted tetragonal-bipyramidal environment, being coordinated by two N atoms of the two chelating bipy ligands and two O atoms of the doubly deprotonated oxalate anion. Pairs of perchlorate anions and water molecules are linked into rectangles by O—H...O bonds in which the perchlorate O atoms act as acceptors and the water molecules as donors. Methyl groups of the DMF solvent molecule are disordered over two sites with occupancies of 0.453 (7:0.547 (7, and the water molecule is half-occupied.

  13. trans-Bis(perchlorato-κOtetrakis(1H-pyrazole-κN2copper(II

    Directory of Open Access Journals (Sweden)

    Viktor Zapol'skii

    2008-10-01

    Full Text Available The title compound, [Cu(ClO42(C3H4N24], was obtained unexpectedly by the reaction of copper(II perchlorate hexahydrate with equimolar amounts of 1-chloro-1-nitro-2,2,2-tripyrazolylethane in methanol solution. The crystal structure comprises octahedrally coordinated Cu2+ ions, located on an inversion centre, with four pyrazole ligands in the equatorial plane. The average Cu—N distance is 2.000 (1 Å. Two perchlorate ions are coordinated to copper in trans positions [Cu—O = 2.4163 (11 Å].

  14. Bioelectrical Perchlorate Remediation

    Science.gov (United States)

    Thrash, C.; Achenbach, L. A.; Coates, J. D.

    2007-12-01

    Several bioreactor designs are currently available for the ex-situ biological attenuation of perchlorate- contaminated waters and recently, some of these reactor designs were conditionally approved by the California Department of Health Services for application in the treatment of perchlorate contaminated drinking water. However, all of these systems are dependent on the continual addition of a chemical electron donor to sustain microbial activity and are always subject to biofouling and downstream water quality issues. In addition, residual labile electron donor in the reactor effluent can stimulate microbial growth in water distribution systems and contribute to the formation of potentially toxic trihalomethanes during disinfection by chlorination. As part of our ongoing studies into microbial perchlorate reduction we investigated the ability of dissimilatory perchlorate reducing bacteria (DPRB) to metabolize perchlorate using a negatively charged electrode (cathode) in the working chamber of a bioelectrical reactor (BER) as the primary electron donor. In this instance the DPRB use the electrons on the electrode surface either directly or indirectly in the form of electrolytically produced H2 as a source of reducing equivalents for nitrate and perchlorate reduction. As part of this investigation our fed-batch studies showed that DPRB could use electrons from a graphite cathode poised at -500mV (vs. Ag/AgCl) for the reduction of perchlorate and nitrate. We isolated a novel organism, Dechlorospirillum strain VDY, from the cathode surface after 70 days operation which readily reduced 100 mg.L-1 perchlorate in a mediatorless batch bioelectrical reactor (BER) in 6 days. Continuous up-flow BERs (UFBERs) seeded with active cultures of strain VDY continuously treated waters containing 100 mg.L-1 perchlorate with almost 100% efficiency throughout their operation achieving a non-optimized volumetric loading of 60 mg.L-1 reactor volume.day-1. The same UFBERs also treated

  15. Jarosite dissolution rates in perchlorate brine

    Science.gov (United States)

    Legett, Carey; Pritchett, Brittany N.; Elwood Madden, Andrew S.; Phillips-Lander, Charity M.; Elwood Madden, Megan E.

    2018-02-01

    Perchlorate salts and the ferric sulfate mineral jarosite have been detected at multiple locations on Mars by both landed instruments and orbiting spectrometers. Many perchlorate brines have eutectic temperatures bearing rocks and sediments may have been altered by perchlorate brines. Here we measured jarosite dissolution rates in 2 M sodium perchlorate brine as well as dilute water at 298 K to determine the effects of perchlorate anions on jarosite dissolution rates and potential reaction products. We developed a simple method for determining aqueous iron concentrations in high salinity perchlorate solutions using ultraviolet-visible spectrophotometry that eliminates the risk of rapid oxidation reactions during analyses. Jarosite dissolution rates in 2 M perchlorate brine determined by iron release rate (2.87 × 10-12 ±0.85 × 10-12 mol m-2 s-1) were slightly slower than the jarosite dissolution rate measured in ultrapure (18.2 MΩ cm-1) water (5.06 × 10-12 mol m-2 s-1) using identical methods. No additional secondary phases were observed in XRD analyses of the reaction products. The observed decrease in dissolution rate may be due to lower activity of water (ɑH2O = 0.9) in the 2 M NaClO4 brine compared with ultrapure water (ɑH2O = 1). This suggests that the perchlorate anion does not facilitate iron release, unlike chloride anions which accelerated Fe release rates in previously reported jarosite and hematite dissolution experiments. Since dissolution rates are slower in perchlorate-rich solutions, jarosite is expected to persist longer in perchlorate brines than in dilute waters or chloride-rich brines. Therefore, if perchlorate brines dominate aqueous fluids on the surface of Mars, jarosite may remain preserved over extended periods of time, despite active aqueous processes.

  16. Novel miniaturized sensors for potentiometric batch and flow-injection analysis (FIA) of perchlorate in fireworks and propellants.

    Science.gov (United States)

    Almeer, Saeed H M A; Zogby, Ibrahim A; Hassan, Saad S M

    2014-11-01

    Three planar miniaturized perchlorate membrane sensors (3×5 mm(2)) are prepared using a flexible Kaptan substrate coated with nitron-perchlorate (NT-ClO4) [sensor 1], methylene blue-perchlorate (MB-ClO4) [sensor II] and indium-porphyrin (In-Por) [sensor III] as electroactive materials in PVC membranes plasticized with 2-NPPE. Sensors I, II and III display near-Nernstian response for 1.0×10(-5)-1.0×10(-2), 3.1×10(-5)-1.0×10(-2) and 3.1×10(-6)-1.0×10(-2) mol L(-1) ClO4(-) with lower detection limits of 6.1×10(-6), 6.9×10(-6) and 1.2×10(-6) mol L(-1), and anionic calibration slopes of 50.9±0.4, 48.4±0.4 and 57.7±0.3 mV decade(-1), respectively. Methods for determining perchlorate using these sensors offer many attractive advantages including simplicity, flexibility, cost effectiveness, wide linear dynamic response range (0.1-1000 ppm), low detection limit (copper, iron, sodium), color brighten (linseed oil) and regulators (aluminum flakes) which are commonly used in the formulations. The sensor is also used for perchlorate assessment in some propellant powders. The results fairly agree with data obtained by ion-chromatography. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Environmental perchlorate: Why it matters

    International Nuclear Information System (INIS)

    Kirk, Andrea B.

    2006-01-01

    The only known mechanism of toxicity for perchlorate is interference with iodide uptake at the sodium-iodide symporter (NIS). The NIS translocates iodide across basolateral membranes to the thyroid gland so it can be used to form thyroid hormones (TH). NIS is also expressed in the mammary gland during lactation, so that iodide can be transferred from a mother to her child. Without adequate iodide, an infant cannot produce sufficient TH to meet its developmental needs. Effects expected from perchlorate are those that would be seen in conditions of hypothyroidism or hypothyroxinemia. The probability of a permanent adverse effect is greatest during early life, as successful neurodevelopment is TH-dependent. Study of perchlorate risk is complicated by a number of factors including thyroid status of the mother during gestation, thyroid status of the fetus, maternal and infant iodine intake, and exposure of each to other TH-disrupting chemicals. Perhaps the greatest standing issue, and the issue most relevant to the field of analytical chemistry, is the simple fact that human exposure has not been quantified. This review will summarize perchlorate's potential to adversely affect neurodevelopment. Whether current environmental exposures to perchlorate contribute to neuro-impairment is unknown. Risks posed by perchlorate must be considered in conjunction with iodine intake

  18. Metallization of cyanide-modified Pt(111) electrodes with copper

    DEFF Research Database (Denmark)

    Escribano, Maria Escudero; Wildi, Christopher; Mwanda, Jonathan A.

    2016-01-01

    -cyanide-copper sandwich configuration. STM also shows that the Cu deposit consists of isolated bidimensional nanoislands, which slowly grow through an Ostwald ripening mechanism if the potential is kept negative of the reduction peak. Metallization is not possible in perchloric acid solutions, which implies...

  19. Colloidal copper in aqueous solutions: radiation-chemical reduction, mechanism of formation and properties

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1994-01-01

    Colloidal copper was obtained upon γ-irradiation of aqueous solutions of divalent copper perchlorate in the presence of alcohol and polyethyleneimine (PEI). The sols were in the form of spherical particles 4 nm in diameter, which were promptly oxidized by oxygen or other oxidants. The copper ions were reduced on the surface of silver sols. The optical parameters of the obtained bimetallic particles were studied. The copper ions led to the broadening and shift of the absorption bands of the silver sols to the UV region

  20. Preparation, characterization and catalytic effects of copper oxalate nanocrystals

    International Nuclear Information System (INIS)

    Singh, Gurdip; Kapoor, Inder Pal Singh; Dubey, Reena; Srivastava, Pratibha

    2012-01-01

    Graphical abstract: Prepared copper oxalate nanocrystals were characterized by FE-SEM and bright field TEM micrographs. Its catalytic activity was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG-DSC techniques. Highlights: ► Preparation of nanocrystals (∼9.0 nm) of copper oxalate using Cu(NO 3 ) 2 ·2H 2 O, oxalic acid and acetone under thermal conditions. ► Method is simple and novel. ► Characterization using XRD, SEM, TEM, HRTEM and ED pattern. ► Catalytic activity of copper oxalate nanocrystals on AP thermal decomposition using thermal techniques (TG, TG-DSC and ignition delay). ► Kinetics of thermal decomposition of AP + CONs using isoconversional and model fitting kinetic approaches. - Abstract: Recent work has described the preparation and characterization of copper oxalate nanocrystals (CONs). It was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and electron diffraction pattern (ED). The catalytic activity of CONs on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) has been done by thermogravimetry (TG), differential scanning calorimetry (DSC) and ignition delay measurements. Burning rate of CSPs was also found to be enhanced in presence of copper oxalate nanocrystals. Kinetics of thermal decomposition of AP with and without CONs has also been investigated. The model free (isoconversional) and model-fitting kinetic approaches have been applied to data for isothermal TG decomposition.

  1. Stable Isotope Systematics of Martian Perchlorate

    Science.gov (United States)

    Martin, P.; Farley, K. A.; Archer, D., Jr.; Atreya, S. K.; Conrad, P. G.; Eigenbrode, J. L.; Fairen, A.; Franz, H. B.; Freissinet, C.; Glavin, D. P.; Mahaffy, P. R.; Malespin, C.; Ming, D. W.; Navarro-Gonzalez, R.; Sutter, B.

    2015-12-01

    Chlorine isotopic compositions in HCl released during evolved gas analysis (EGA) runs have been detected by the Sample Analysis at Mars (SAM) instrument on the Curiosity rover ranging from approximately -9‰ to -50‰ δ37Cl, with two spatially and isotopically separated groups of samples averaging -15‰ and -45‰. These extremely low values are the first such detection of any known natural material; common terrestrial values very rarely exceed ±5‰, and the most extreme isotopic signature yet detected elsewhere in the solar system are values of around +24‰ on the Moon. The only other known location in the solar system with large negative chlorine isotopes is the Atacama Desert, where perchlorate with -14‰ δ37Cl has been detected. The Atacama perchlorate has unusual Δ17O signatures associated with it, indicating a formation mechanism involving O3, which suggests an atmospheric origin of the perchlorate and associated large isotopic anomalies. Identification of non-zero positive Δ17O signatures in the O2 released during EGA runs would allow definitive evidence for a similar process having occurred on Mars. Perchlorate is thought to be the most likely source of HCl in EGA runs due to the simultaneous onset of O2 release. If perchlorate is indeed the HCl source, atmospheric chemistry could be responsible for the observed isotopic anomalies, with variable extents of perchlorate production producing the isotopic variability. However, chloride salts have also been observed to release HCl upon heating; if the timing of O2 release is merely coincidental, observed HCl could be coming from chlorides. At thermodynamic equilibrium, the fractionation factor of perchlorate reduction is 0.93, meaning that differing amounts of post-deposition reduction of isotopically normal perchlorate to chloride could account for the highly variable Cl isotopes. Additionally, post-deposition reduction could account for the difference between the two Cl isotopic groups if perchlorate

  2. Crystal structure of μ-oxalodihydroxamato-bis[(2,2′-bipyridyl(dimethyl sulfoxide-κOcopper(II] bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Irina A. Odarich

    2016-02-01

    Full Text Available The centrosymmetric binuclear complex, [Cu2(C2H2N2O4(C10H8N22(C2H6OS2](ClO42, contains two copper(II ions, connected through an N-deprotonated oxalodihydroxamic acid dianion, two terminal 2,2′-bipyridine ligands, and two apically coordinating dimethylsulfoxide molecules. Two non-coordinating perchlorate anions assure electrical neutrality. The copper(II ions in the complex dication [Cu2(C10H8N22(μ-C2H2N2O4(C2H6SO2]2+ are in an O2N3 square-pyramidal donor environment, the Cu–Cu separation being 5.2949 (4 Å. Two hydroxamate groups in the deprotonated oxalodihydroxamic acid are located trans to one each other. In the crystal, O—H...O and C—H...O hydrogen bonds link the complex cations to the perchlorate anions. Further C—H...O hydrogen bonds combine with π–π contacts with a centroid-to-centroid separation of 3.6371 (12 Å to stack the molecules along the a-axis direction.

  3. Novel biomarkers of perchlorate exposure in zebrafish

    Science.gov (United States)

    Mukhi, S.; Carr, J.A.; Anderson, T.A.; Patino, R.

    2005-01-01

    Perchlorate inhibits iodide uptake by thyroid follicles and lowers thyroid hormone production. Although several effects of perchlorate on the thyroid system have been reported, the utility of these pathologies as markers of environmental perchlorate exposures has not been adequately assessed. The present study examined time-course and concentration-dependent effects of perchlorate on thyroid follicle hypertrophy, colloid depletion, and angiogenesis; alterations in whole-body thyroxine (T4) levels; and somatic growth and condition factor of subadult and adult zebrafish. Changes in the intensity of the colloidal T4 ring previously observed in zebrafish also were examined immunohistochemically. Three-month-old zebrafish were exposed to ammonium perchlorate at measured perchlorate concentrations of 0, 11, 90, 1,131, and 11,480 ppb for 12 weeks and allowed to recover in clean water for 12 weeks. At two weeks of exposure, the lowest-observed-effective concentrations (LOECs) of perchlorate that induced angiogenesis and depressed the intensity of colloidal T4 ring were 90 and 1,131 ppb, respectively; other parameters were not affected (whole-body T4 was not determined at this time). At 12 weeks of exposure, LOECs for colloid depletion, hypertrophy, angiogenesis, and colloidal T4 ring were 11,480, 1,131, 90, and 11 ppb, respectively. All changes were reversible, but residual effects on angiogenesis and colloidal T4 ring intensity were still present after 12 weeks of recovery (LOEC, 11,480 ppb). Whole-body T 4 concentration, body growth (length and weight), and condition factor were not affected by perchlorate. The sensitivity and longevity of changes in colloidal T4 ring intensity and angiogenesis suggest their usefulness as novel markers of perchlorate exposure. The 12-week LOEC for colloidal T4 ring is the lowest reported for any perchlorate biomarker in aquatic vertebrates. ?? 2005 SETAC.

  4. Bio-reduction of free and laden perchlorate by the pure and mixed perchlorate reducing bacteria: Considering the pH and coexisting nitrate.

    Science.gov (United States)

    Shang, Yanan; Wang, Ziyang; Xu, Xing; Gao, Baoyu; Ren, Zhongfei

    2018-08-01

    Pure bacteria cell (Azospira sp. KJ) and mixed perchlorate reducing bacteria (MPRB) were employed for decomposing the free perchlorate in water as well as the laden perchlorate on surface of quaternary ammonium wheat residuals (QAWR). Results indicated that perchlorate was decomposed by the Azospira sp. KJ prior to nitrate while MPRB was just the reverse. Bio-reduction of laden perchlorate by Azospira sp. KJ was optimal at pH 8.0. In contrast, bio-reduction of laden perchlorate by MPRB was optimal at pH 7.0. Generally, the rate of perchlorate reduction was controlled by the enzyme activity of PRB. In addition, perchlorate recovery (26.0 mg/g) onto bio-regenerated QAWR by MPRB was observed with a small decrease as compared with that (31.1 mg/g) by Azospira sp. KJ at first 48 h. Basically, this study is expected to offer some different ideas on bio-regeneration of perchlorate-saturated adsorbents using biological process, which may provide the economically alternative to conventional methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Atmospheric Production of Perchlorate on Earth and Mars

    Science.gov (United States)

    Claire, M.; Catling, D. C.; Zahnle, K. J.

    2009-12-01

    Natural production and preservation of perchlorate on Earth occurs only in arid environments. Isotopic evidence suggests a strong role for atmospheric oxidation of chlorine species via pathways including ozone or its photochemical derivatives. As the Martian atmosphere is both oxidizing and drier than the driest places on Earth, we propose an atmospheric origin for the Martian perchlorates measured by NASA's Phoenix Lander. A variety of hypothetical formation pathways can be proposed including atmospheric photochemical reactions, electrostatic discharge, and gas-solid reactions. Here, we investigate gas phase formation pathways using a 1-D photochemical model (Catling et al. 2009, accepted by JGR). Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we start with a study of the means to produce Atacama perchlorate. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. These results are sensitive to estimated reaction rates for ClO3 species. The feasibility of gas phase production for the Atacama provides justification for further investigations of gas phase photochemistry as a possible source for Martian perchlorate. In addition to the Atacama results, we will present a preliminary study incorporating chlorine chemistry into an existing Martian photochemical model (Zahnle et al. JGR 2008).

  6. Biotechnological Applications of Microbial (Per)chlorate Reduction.

    Science.gov (United States)

    Wang, Ouwei; Coates, John D

    2017-11-24

    While the microbial degradation of a chloroxyanion-based herbicide was first observed nearly ninety years ago, only recently have researchers elucidated the underlying mechanisms of perchlorate and chlorate [collectively, (per)chlorate] respiration. Although the obvious application of these metabolisms lies in the bioremediation and attenuation of (per)chlorate in contaminated environments, a diversity of alternative and innovative biotechnological applications has been proposed based on the unique metabolic abilities of dissimilatory (per)chlorate-reducing bacteria (DPRB). This is fueled in part by the unique ability of these organisms to generate molecular oxygen as a transient intermediate of the central pathway of (per)chlorate respiration. This ability, along with other novel aspects of the metabolism, have resulted in a wide and disparate range of potential biotechnological applications being proposed, including enzymatic perchlorate detection; gas gangrene therapy; enhanced xenobiotic bioremediation; oil reservoir bio-souring control; chemostat hygiene control; aeration enhancement in industrial bioreactors; and, biogenic oxygen production for planetary exploration. While previous reviews focus on the fundamental science of microbial (per)chlorate reduction (for example see Youngblut et al., 2016), here, we provide an overview of the emerging biotechnological applications of (per)chlorate respiration and the underlying organisms and enzymes to environmental and biotechnological industries.

  7. PERCHLORATE PHYTOREMEDIATION USING HARDWOOD TREES AND VASCULAR PLANTS

    Science.gov (United States)

    Perchlorate has contaminated water and soils at several locations in the United States. Perchlorate iswater soluble, exceedingly mobile in aqueous systems, and can persist for many decades under typical ground and surface water conditions. Perchlorate is of concern because of...

  8. Interaction of perchlorate and trichloroethene bioreductions in mixed anaerobic culture

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Li-Lian [Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou (China); Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang (China); Yang, Qiang [Hangzhou Institute of Environmental Protection Science, Hangzhou (China); Zhang, Zhao-Xin; Yi, Yang-Yi [Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou (China); Tang, Youneng [Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310-6046 (United States); Zhao, He-Ping, E-mail: zhaohp@zju.edu.cn [Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou (China); Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang (China); Hangzhou Institute of Environmental Protection Science, Hangzhou (China)

    2016-11-15

    This work evaluated the interaction of perchlorate and trichloroethene (TCE), two common co-contaminants in groundwater, during bioreduction in serum bottles containing synthetic mineral salts media and microbial consortia. TCE at concentrations up to 0.3 mM did not significantly affect perchlorate reduction; however, perchlorate concentrations higher than 0.1 mM made the reduction of TCE significantly slower. Perchlorate primarily inhibited the reduction of vinyl chloride (VC, a daughter product of TCE) to ethene. Mechanistic analysis showed that the inhibition was mainly because perchlorate reduction is thermodynamically more favorable than reduction of TCE and its daughter products and not because of toxicity due to accumulation of dissolved oxygen produced during perchlorate reduction. As the initial perchlorate concentration increased from 0 to 600 mg/L in a set of serum bottles, the relative abundance of Rhodocyclaceae (a putatively perchlorate-reducing genus) increased from 6.3 to 80.6%, while the relative abundance of Dehalococcoides, the only known genus that is able to reduce TCE all the way to ethene, significantly decreased. Similarly, the relative abundance of Proteobacteria (a phylum to which most known perchlorate-reducing bacteria belong) increased from 22% to almost 80%. - Graphical abstract: Fig. A plots the interaction of TCE and perchlorate bio-reduction under different concentrations of perchlorate and suggests that initial ethene wasn't formed until the perchlorate was completely reduced. B shows the electron donor utilization and oxygen generated during the experiment and indicates that it is perchlorate reduction over-competed for electron donor rather than oxygen generated that inhibits TCE reductive dechlorination. - Highlight: • Perchlorate slowed but did not inhibit the complete dechlorination of TCE. • The inhibition was mainly due to the thermodynamic preference of perchlorate to TCE. • The generated oxygen was consumed and

  9. Atmospheric origins of perchlorate on Mars and in the Atacama

    Science.gov (United States)

    Catling, D. C.; Claire, M. W.; Zahnle, K. J.; Quinn, R. C.; Clark, B. C.; Hecht, M. H.; Kounaves, S.

    2010-01-01

    Isotopic studies indicate that natural perchlorate is produced on Earth in arid environments by the oxidation of chlorine species through pathways involving ozone or its photochemical products. With this analogy, we propose that the arid environment on Mars may have given rise to perchlorate through the action of atmospheric oxidants. A variety of hypothetical pathways can be proposed including photochemical reactions, electrostatic discharge, and gas-solid reactions. Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we made a preliminary study of the means to produce Atacama perchlorate to help shed light on the origin of Martian perchlorate. We investigated gas phase pathways using a 1-D photochemical model. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. The feasibility of gas phase production for the Atacama provides justification for future investigations of gas phase photochemistry as a possible source for Martian perchlorate.

  10. (Per)chlorate in Biology on Earth and Beyond.

    Science.gov (United States)

    Youngblut, Matthew D; Wang, Ouwei; Barnum, Tyler P; Coates, John D

    2016-09-08

    Respiration of perchlorate and chlorate [collectively, (per)chlorate] was only recognized in the last 20 years, yet substantial advances have been made in our understanding of the underlying metabolisms. Although it was once considered solely anthropogenic, pervasive natural sources, both terrestrial and extraterrestrial, indicate an ancient (per)chlorate presence across our solar system. These discoveries stimulated interest in (per)chlorate microbiology, and the application of advanced approaches highlights exciting new facets. Forward and reverse genetics revealed new information regarding underlying molecular biology and associated regulatory mechanisms. Structural and functional analysis characterized core enzymes and identified novel reaction sequences. Comparative genomics elucidated evolutionary aspects, and stress analysis identified novel response mechanisms to reactive chlorine species. Finally, systems biology identified unique metabolic versatility and novel mechanisms of (per)chlorate respiration, including symbiosis and a hybrid enzymatic-abiotic metabolism. While many published studies focus on (per)chlorate and their basic metabolism, this review highlights seminal advances made over the last decade and identifies new directions and potential novel applications.

  11. PHYTOREMEDIATION OF PERCHLORATE BY TOBACCO PLANTS

    Science.gov (United States)

    Previous studies have shown that tobacco plants are tolerant of perchlorate and will accumulate perchlorate in the plant tissues. The objective of this research was to determine the effectiveness of tobacco plants in phytoremediation, a technology that employs plants to degrade,...

  12. The Microbiology of Perchlorate in the Environment

    Science.gov (United States)

    Coates, J. D.

    2007-12-01

    In the last decade perchlorate has been identified as an important groundwater component that poses potential health threat. Although primarily sourced anthropogenically, many recent studies have identified significant natural pools throughout the US and the natural mechanisms of its synthesis remain a mystery. As such, the true perchlorate concentrations naturally present in the environment are still unknown making its regulation problematic. Because of its solubility and non-reactivity the fate and transport of perchlorate in the environment is primarily a function of microbial activity. In the last seven years more than forty specialized perchlorate respiring organisms have been identified and characterized. These dissimilatory perchlorate reducing bacteria (DPRB) are metabolically diverse and environmental populations tend to be dominated by two primary genotypes, the Dechloromonas and the Azospira species. As such, the majority of our understanding of this metabolism is based on these organisms. These organisms are readily found in soil and sedimentary environments and often associate with the rhizosphere. Recent research has demonstrated an accumulation of these organisms along plant roots suggesting their catabolism of root exudates and molecular studies has demonstrated their existence as endophytic infections of the stem and leaves of actively growing Brachypodium grass plants although their exact role under these conditions is unknown. These microorganisms are generally not nutritionally fastidious and vitamin supplementation is unnecessary for growth although molybdenum is a required trace element for perchlorate reduction. The Dechloromonas and Azospira species generally grow optimally at pH values near neutrality in freshwater environments. Even so, recent field studies have shown that related deep-branching members of these genera often predominate in sites of adverse pH or salinity with some species being capable of growth and perchlorate respiration

  13. Perchlorate adsorption and desorption on activated carbon and anion exchange resin.

    Science.gov (United States)

    Yoon, In-Ho; Meng, Xiaoguang; Wang, Chao; Kim, Kyoung-Woong; Bang, Sunbaek; Choe, Eunyoung; Lippincott, Lee

    2009-05-15

    The mechanisms of perchlorate adsorption on activated carbon (AC) and anion exchange resin (SR-7 resin) were investigated using Raman, FTIR, and zeta potential analyses. Batch adsorption and desorption results demonstrated that the adsorption of perchlorate by AC and SR-7 resin was reversible. The reversibility of perchlorate adsorption by the resin was also proved by column regeneration test. Solution pH significantly affected perchlorate adsorption and the zeta potential of AC, while it did not influence perchlorate adsorption and the zeta potential of resin. Zeta potential measurements showed that perchlorate was adsorbed on the negatively charged AC surface. Raman spectra indicated the adsorption resulted in an obvious position shift of the perchlorate peak, suggesting that perchlorate was associated with functional groups on AC at neutral pH through interactions stronger than electrostatic interaction. The adsorbed perchlorate on the resin exhibited a Raman peak at similar position as the aqueous perchlorate, indicating that perchlorate was adsorbed on the resin through electrostatic attraction between the anion and positively charged surface sites.

  14. Wet Deposition of Perchlorate Over the Continental United States

    Science.gov (United States)

    Rajagopalan, S.; Jackson, A. W.; Anderson, T. A.

    2007-12-01

    Natural perchlorate (ClO4-) has been detected in soil, vegetation, food products, and ground and drinking water supplies at various concentrations across the world. For almost a century natural perchlorate has been known to exist in Chilean nitrate deposits that are up to 16 million years old, and recent isotopic evidence has confirmed its source to be predominantly atmospheric. Although the source of natural perchlorate has been attributed to atmospheric deposition, there is almost no data available concerning the deposition rate of perchlorate from precipitation. This research effort, supported by SERDP, was designed to investigate the range of concentrations, and temporal and spatial variations in perchlorate deposition. Sub-samples of precipitation collected through the National Atmospheric Deposition program over a two year period were analyzed for perchlorate. Sample locations included 14 continental states, and Puerto Rico. Perchlorate has been detected (DL= 5 ng/L) in over 65 % of all samples tested with a mean value of 12.60 ± 13.60 ng/L and ranged from 0.5) between ClO4- and other ions (Cl-, NO3-, SO4-2, Na+, K+, Ca+2, Mg+2, and NH4+). Results from this study will have important implications to the national perchlorate issue and may aid in explaining the occurrence of non-anthropogenic perchlorate being reported in arid and semi-arid areas.

  15. Perchlorate Removal, Destruction, and Field Monitoring Demonstration

    National Research Council Canada - National Science Library

    Coppola, Edward N; Davis, Andrea

    2006-01-01

    The objectives of this demonstration were to evaluate and demonstrate a complete perchlorate ion exchange process for groundwater that included a unique, regenerable, perchlorate-selective ion exchange resin...

  16. High Tolerance of Hydrogenothermus marinus to Sodium Perchlorate

    Directory of Open Access Journals (Sweden)

    Kristina Beblo-Vranesevic

    2017-07-01

    Full Text Available On Mars, significant amounts (0.4–0.6% of perchlorate ions were detected in dry soil by the Phoenix Wet Chemistry Laboratory and later confirmed with the Mars Science Laboratory. Therefore, the ability of Hydrogenothermus marinus, a desiccation tolerant bacterium, to survive and grow in the presence of perchlorates was determined. Results indicated that H. marinus was able to tolerate concentrations of sodium perchlorate up to 200 mM ( 1.6% during cultivation without any changes in its growth pattern. After the addition of up to 440 mM ( 3.7% sodium perchlorate, H. marinus showed significant changes in cell morphology; from single motile short rods to long cell chains up to 80 cells. Furthermore, it was shown that the known desiccation tolerance of H. marinus is highly influenced by a pre-treatment with different perchlorates; additive effects of desiccation and perchlorate treatments are visible in a reduced survival rate. These data demonstrate that thermophiles, especially H. marinus, have so far, unknown high tolerances against cell damaging treatments and may serve as model organisms for future space experiments.

  17. Biodegradation of Perchlorate in Laboratory Reactors Under Different Environmental Conditions

    Science.gov (United States)

    2010-07-01

    21 Figure 8. Initial and final mass of perchlorate, chloride, and chlorate ...is the soluble anion associated with the solid salts of ammonium, potassium , and sodium perchlorate. Large-scale production of ammonium perchlorate...ions. Most perchlorate-respiring microorganisms are capable of functioning under varying environmental conditions and use oxygen, nitrate, and chlorate

  18. Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater

    Science.gov (United States)

    2007-03-01

    association between perchlorate exposure at the doses investigated and hypothyroidism or other thyroid disorders in adults Thyroid cancer in adults ...hormone secretions can result in thyroid hypertrophy and hyperplasia, possibly followed by hypothyroidism in people unable to compensate with an...perchlorate exposure. The model indicated that continued perchlorate exposure ultimately led to birth defects in children and tumors in adults . Based upon

  19. 76 FR 7762 - Drinking Water: Regulatory Determination on Perchlorate

    Science.gov (United States)

    2011-02-11

    ...-9262-8] RIN 2040-AF08 Drinking Water: Regulatory Determination on Perchlorate AGENCY: Environmental...'s) regulatory determination for perchlorate in accordance with the Safe Drinking Water Act (SDWA... substantial likelihood that perchlorate will occur in public water systems with a frequency and at levels of...

  20. Potentiometric perchlorate determination at nanomolar concentrations in vegetables.

    Science.gov (United States)

    Leoterio, Dilmo M S; Paim, Ana Paula S; Belian, Mônica F; Galembeck, André; Lavorante, André F; Pinto, Edgar; Amorim, Célia G; Araújo, Alberto N; Montenegro, Maria C B S M

    2017-07-15

    In this work, an expeditious method based on the multi-commutated flow-analysis concept with potentiometric detection is proposed to perform determinations of the emergent contaminant perchlorate in vegetable matrices down to nanomolar concentration. To accomplish the task, a tubular shaped potentiometric sensor selective to perchlorate ion was constructed with a PVC membrane containing 12mmol/kg of the polyamine bisnaphthalimidopropyl-4,4'-diaminodiphenylmethane and 2-nitrophenyl phenyl ether 68% (w/w) as plasticizer casted on a conductive epoxy resin. Under optimal flow conditions, the sensor responded linearly in the concentration range of 6.3×10 -7 -1.0×10 -3 mol/L perchlorate. In order to extend the determinations to lower concentrations (4.6(±1.3)×10 -10 mol/L perchlorate), a column packed with 70mg of sodium 2,5,8,11,14-pentaoxa-1-silacyclotetradecane-polymer was coupled to the flow-system thus enabling prior pre-concentration of the perchlorate. The proposed procedure provides a simpler alternative for the determination of perchlorate in foods, nowadays only allowed by sophisticated and expensive equipment and laborious methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Determination of Perchlorate in Bottled Water from Italy

    Directory of Open Access Journals (Sweden)

    Patrizia Iannece

    2013-06-01

    Full Text Available Perchlorate is regarded as an emerging persistent inorganic contaminant. It is widely known that perchlorate is an endocrine disruptor as it competitively inhibits iodide transport in the thyroid gland. As drinking water is the major source of human exposure to perchlorate, its occurrence in commercially available bottled waters purchased in different regions of Italy was investigated. Perchlorate was measured using the rapid, sensitive, and selective LC-ESI-MS/MS (liquid chromatography-electrospray tandem mass spectrometry method by multiple reaction monitoring (MRM of the transition 98.8→82.8, which corresponds to the loss of one oxygen atom in the perchlorate ion (ClO4−→ClO3−. The chlorine isotope ratio (35Cl/37Cl was used as a confirmation tool. The limit of quantification (LOQ for this method was 5 ng/L, and the recovery ranged from 94% to 108%. Perchlorate was detected in 44 of the 62 drinking waters tested, with concentrations ranging from <5 to 75 ng/L. These values are similar in magnitude to those reported in drinking water from the USA and do not pose an immediate health concern.

  2. Relative source contributions for perchlorate exposures in a lactating human cohort

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Andrea B. [University of North Texas Health Sciences Center (United States); Dyke, Jason V. [University of Texas at Arlington (United States); Ohira, Shin-Ichi [Kumamoto University (Japan); Dasgupta, Purnendu K., E-mail: Dasgupta@uta.edu [University of Texas at Arlington (United States)

    2013-01-15

    Perchlorate is an iodine-uptake inhibitor and common contaminant of food and drinking water. Understanding the amount of perchlorate exposure occurring through non-water sources is essential for accurate estimates of human exposure levels, and establishment of drinking water limits for this pervasive contaminant. The study objective was to determine the amount of perchlorate intake derived from diet rather than water. Subjects provided drinking water samples, detailed fluid-intake records, 24 h urine collections and four milk samples for nine days. Samples were analyzed for perchlorate by isotope dilution ion chromatography–tandem mass spectrometry. Amounts of perchlorate derived from drinking water and dietary sources were calculated for each individual. Water of local origin was found to contribute a minor fraction of perchlorate intake. Estimated fraction intake from drinking water ranged from 0 to 36%. The mean and median dose of perchlorate derived from non-water sources by lactating women was 0.18 μg/kg/day (range: 0.06 to 0.36 μg/kg/day.) Lactating women consumed more fluid (mean 2.424 L/day) than has been assumed in recent risk assessments for perchlorate. The data reported here indicate that lactating women may be exposed to perchlorate through dietary sources at markedly higher levels than estimated previously. Exposures to perchlorate from non-water sources may be higher than recent estimates, including those used to develop drinking water standards. - Highlights: ► Residence in an area with perchlorate-contaminated water may be a poor predictor of exposure. ► Exposures to perchlorate from food are likely underestimated. ► The relative contributions for human perchlorate exposures should be weighted more heavily towards non-water sources.

  3. Environmental biotechnology and microbiology of (per)chlorate reducing bacteria

    NARCIS (Netherlands)

    Mehboob, F.; Schraa, G.; Stams, A.J.M.

    2011-01-01

    Perchlorates are the salts derived from perchloric acid (HClO4). They occur both naturally and through manufacturing. They have been used as a medicine for more than 50 years to treat thyroid gland disorders and are used extensively within the pyrotechnics industry, and ammonium perchlorate is also

  4. Perchlorate exposure in lactating women in an urban community in New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Borjan, Marija [Department of Environmental and Occupational Health, UMDNJ-School of Public Health, Piscataway, NJ (United States); Marcella, Stephen [Department of Epidemiology, UMDNJ-School of Public Health, Piscataway, NJ (United States); Blount, Benjamin [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA (United States); Greenberg, Michael [Bloustien School of Planning and Public Policy, Rutgers, State University of New Jersey, New Brunswick, NJ (United States); Zhang Junfeng [Department of Environmental and Occupational Health, UMDNJ-School of Public Health, Piscataway, NJ (United States); Murphy, Eileen [New Jersey Department of Environmental Protection, Division of Science and Research, Trenton, NJ (United States); Valentin-Blasini, Liza [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA (United States); Robson, Mark, E-mail: robson@aesop.rutgers.edu [Department of Environmental and Occupational Health, UMDNJ-School of Public Health, Piscataway, NJ (United States); School of Environmental and Biological Sciences, Rutgers, State University of New Jersey, New Brunswick, NJ (United States)

    2011-01-01

    Perchlorate is most widely known as a solid oxidant for missile and rocket propulsion systems although it is also present as a trace contaminant in some fertilizers. It has been detected in drinking water, fruits, and vegetables throughout New Jersey and most of the United States. At sufficiently high doses, perchlorate interferes with the uptake of iodine into the thyroid and may interfere with the development of the skeletal system and the central nervous system of infants. Therefore, it is important to quantify perchlorate in breast milk to understand potential perchlorate exposure in infants. In this study we measured perchlorate in breast milk, urine, and drinking water collected from 106 lactating mothers from Central New Jersey. Each subject was asked to provide three sets of samples over a 3-month period. The average {+-} SD perchlorate level in drinking water, breast milk, and urine was 0.168 {+-} 0.132 ng/mL (n = 253), 6.80 {+-} 8.76 ng/mL (n = 276), and 3.19 {+-} 3.64 ng/mL (3.51 {+-} 6.79 {mu}g/g creatinine) (n = 273), respectively. Urinary perchlorate levels were lower than reference range values for women of reproductive age (5.16 {+-} 11.33 {mu}g/g creatinine, p = 0.03), likely because of perchlorate secretion in breast milk. Drinking water perchlorate levels were {<=} 1.05 ng/mL and were not positively correlated with either breast milk or urine perchlorate levels. These findings together suggest that drinking water was not the most important perchlorate exposure source for these women. Creatinine-adjusted urine perchlorate levels were strongly correlated with breast milk perchlorate levels (r = 0.626, p = < 0.0005). Breast milk perchlorate levels in this study are consistent with widespread perchlorate exposure in lactating women and thus infants. This suggests that breast milk may be a source of exposure to perchlorate in infants. - Research Highlights: {yields} The general population, including infants, is exposed to perchlorate. {yields} Breast

  5. Perchlorate exposure in lactating women in an urban community in New Jersey

    International Nuclear Information System (INIS)

    Borjan, Marija; Marcella, Stephen; Blount, Benjamin; Greenberg, Michael; Zhang Junfeng; Murphy, Eileen; Valentin-Blasini, Liza; Robson, Mark

    2011-01-01

    Perchlorate is most widely known as a solid oxidant for missile and rocket propulsion systems although it is also present as a trace contaminant in some fertilizers. It has been detected in drinking water, fruits, and vegetables throughout New Jersey and most of the United States. At sufficiently high doses, perchlorate interferes with the uptake of iodine into the thyroid and may interfere with the development of the skeletal system and the central nervous system of infants. Therefore, it is important to quantify perchlorate in breast milk to understand potential perchlorate exposure in infants. In this study we measured perchlorate in breast milk, urine, and drinking water collected from 106 lactating mothers from Central New Jersey. Each subject was asked to provide three sets of samples over a 3-month period. The average ± SD perchlorate level in drinking water, breast milk, and urine was 0.168 ± 0.132 ng/mL (n = 253), 6.80 ± 8.76 ng/mL (n = 276), and 3.19 ± 3.64 ng/mL (3.51 ± 6.79 μg/g creatinine) (n = 273), respectively. Urinary perchlorate levels were lower than reference range values for women of reproductive age (5.16 ± 11.33 μg/g creatinine, p = 0.03), likely because of perchlorate secretion in breast milk. Drinking water perchlorate levels were ≤ 1.05 ng/mL and were not positively correlated with either breast milk or urine perchlorate levels. These findings together suggest that drinking water was not the most important perchlorate exposure source for these women. Creatinine-adjusted urine perchlorate levels were strongly correlated with breast milk perchlorate levels (r = 0.626, p = < 0.0005). Breast milk perchlorate levels in this study are consistent with widespread perchlorate exposure in lactating women and thus infants. This suggests that breast milk may be a source of exposure to perchlorate in infants. - Research Highlights: → The general population, including infants, is exposed to perchlorate. → Breast milk is a significant

  6. Perchlorate in fish from a contaminated site in east-central Texas

    International Nuclear Information System (INIS)

    Theodorakis, Christopher; Rinchard, Jacques; Anderson, Todd; Liu, Fujun; Park, June-Woo; Costa, Filipe; McDaniel, Leslie; Kendall, Ronald; Waters, Aaron

    2006-01-01

    Perchlorate, a known thyroid endocrine disruptor, contaminates surface waters near military instillations where solid fuel rocket motors are manufactured or assembled. To assess potential perchlorate exposure to fish and the human population which may feed on them, fish were collected around the Naval Weapons Industrial Reserve Plant in McLennan County, TX, and analyzed for the presence of the perchlorate anion. The sampling sites included Lake Waco and Belton Lake, and several streams and rivers within their watersheds. The general tendency was that perchlorate was only found in a few species sampled, and perchlorate was not detected in every individual within these species. When detected in the fish, perchlorate tissue concentrations were greater than that in the water. This may be due to highly variable perchlorate concentrations in the water coupled with individual-level variation in elimination from the body, or to routes of exposure other than water. - In perchlorate-contaminated lakes and streams, perchlorate is detected infrequently in fish heads, fillets, and whole bodies, but may be detected more often depending on species and seasonal trends, and always at concentrations higher in the fish than in the water

  7. MARGINAL IODINE DEFICIENCY EXACERBATES PERCHLORATE THYROID TOXICITY.

    Science.gov (United States)

    The environmental contaminant perchlorate disrupts thyroid homeostasis via inhibition of iodine uptake into the thyroid. This work tested whether iodine deficiency exacerbates the effects of perchlorate. Female 27 day-old LE rats were fed a custom iodine deficient diet with 0, 50...

  8. Perchlorate in Fertilizers

    National Research Council Canada - National Science Library

    Eldridge, J. E; Tsui, D. T; Mattie, D. R; Crown, J; Scott, R; Blackman, T

    1999-01-01

    ...) methods for perchlorate analysis in lawn and garden fertilizers. Seven government, private, and commercial laboratories participated in the analysis of 34 aqueous suspensions of the test materials, using similar ion chromatography systems...

  9. Development of an extraction method for perchlorate in soils.

    Science.gov (United States)

    Cañas, Jaclyn E; Patel, Rashila; Tian, Kang; Anderson, Todd A

    2006-03-01

    Perchlorate originates as a contaminant in the environment from its use in solid rocket fuels and munitions. The current US EPA methods for perchlorate determination via ion chromatography using conductivity detection do not include recommendations for the extraction of perchlorate from soil. This study evaluated and identified appropriate conditions for the extraction of perchlorate from clay loam, loamy sand, and sandy soils. Based on the results of this evaluation, soils should be extracted in a dry, ground (mortar and pestle) state with Milli-Q water in a 1 ratio 1 soil ratio water ratio and diluted no more than 5-fold before analysis. When sandy soils were extracted in this manner, the calculated method detection limit was 3.5 microg kg(-1). The findings of this study have aided in the establishment of a standardized extraction method for perchlorate in soil.

  10. Perchlorate in fish from a contaminated site in east-central Texas.

    Science.gov (United States)

    Theodorakis, Christopher; Rinchard, Jacques; Anderson, Todd; Liu, Fujun; Park, June-Woo; Costa, Filipe; McDaniel, Leslie; Kendall, Ronald; Waters, Aaron

    2006-01-01

    Perchlorate, a known thyroid endocrine disruptor, contaminates surface waters near military instillations where solid fuel rocket motors are manufactured or assembled. To assess potential perchlorate exposure to fish and the human population which may feed on them, fish were collected around the Naval Weapons Industrial Reserve Plant in McLennan County, TX, and analyzed for the presence of the perchlorate anion. The sampling sites included Lake Waco and Belton Lake, and several streams and rivers within their watersheds. The general tendency was that perchlorate was only found in a few species sampled, and perchlorate was not detected in every individual within these species. When detected in the fish, perchlorate tissue concentrations were greater than that in the water. This may be due to highly variable perchlorate concentrations in the water coupled with individual-level variation in elimination from the body, or to routes of exposure other than water.

  11. Perchlorate and halophilic prokaryotes: implications for possible halophilic life on Mars.

    Science.gov (United States)

    Oren, Aharon; Elevi Bardavid, Rahel; Mana, Lily

    2014-01-01

    In view of the finding of perchlorate among the salts detected by the Phoenix Lander on Mars, we investigated the relationships of halophilic heterotrophic microorganisms (archaea of the family Halobacteriaceae and the bacterium Halomonas elongata) toward perchlorate. All strains tested grew well in NaCl-based media containing 0.4 M perchlorate, but at the highest perchlorate concentrations, tested cells were swollen or distorted. Some species (Haloferax mediterranei, Haloferax denitrificans, Haloferax gibbonsii, Haloarcula marismortui, Haloarcula vallismortis) could use perchlorate as an electron acceptor for anaerobic growth. Although perchlorate is highly oxidizing, its presence at a concentration of 0.2 M for up to 2 weeks did not negatively affect the ability of a yeast extract-based medium to support growth of the archaeon Halobacterium salinarum. These findings show that presence of perchlorate among the salts on Mars does not preclude the possibility of halophilic life. If indeed the liquid brines that may exist on Mars are inhabited by salt-requiring or salt-tolerant microorganisms similar to the halophiles on Earth, presence of perchlorate may even be stimulatory when it can serve as an electron acceptor for respiratory activity in the anaerobic Martian environment.

  12. Effects of Perchlorate on Organic Molecules under Simulated Mars Conditions

    Science.gov (United States)

    Carrier, B. L.; Kounaves, S. P.

    2014-12-01

    Perchlorate (ClO4-) was discovered in the northern polar region of Mars by the Mars Phoenix Lander in 2008 and has also been recently detected by the Curiosity Rover in Gale Crater [1,2]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [3]. The discovery of perchlorate on Mars has raised important questions about the effects of perchlorate on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [4], few studies have been conducted on the potential effects of perchlorate on organic molecules under martian surface conditions. Although perchlorate is typically inert under Mars-typical temperatures [5], perchlorate does absorb high energy UV radiation, and has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-) when exposed to martian conditions including UV or ionizing radiation [6,7]. Here we investigate the effects of perchlorate on the organic molecules tryptophan, benzoic acid and mellitic acid in order to determine how perchlorate may alter these compounds under Mars conditions. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of SiO2 and each organic, as well as varying concentrations of perchlorate salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination. References: [1] Kounaves et al., J. Geophys. Res. Planets, Vol. 115, p. E00E10, 2010 [2] Glavin et al., J. Geophys. Res. Planets, Vol

  13. Perchlorate reduction during electrochemically induced pitting corrosion of zero-valent titanium (ZVT)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chunwoo, E-mail: clee@doosanhydro.com [Department of Research and Development, Doosan Hydro Technology, Inc, Tampa, FL 33619 (United States); Batchelor, Bill [Zachry Department of Civil Engineering, Texas A and M University, College Station, TX 77840 (United States); Park, Sung Hyuk [Environmental and Engineering Research Team, GS Engineering and Construction Research Institute, Youngin, Kyunggi-do 449-831 (Korea, Republic of); Han, Dong Suk; Abdel-Wahab, Ahmed [Chemical Engineering Program, Texas A and M University at Qatar, Education City, Doha, PO Box 23874 (Qatar); Kramer, Timothy A.

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. Black-Right-Pointing-Pointer Perchlorate is effectively reduced to chloride by soluble titanium species. Black-Right-Pointing-Pointer Solution pH and surface area of ZVT showed negligible effects on rates of perchlorate reduction. - Abstract: Zero-valent metals and ionic metal species are a popular reagent for the abatement of contaminants in drinking water and groundwater and perchlorate is a contaminant of increasing concern. However, perchlorate degradation using commonly used reductants such as zero-valent metals and soluble reduced metal species is kinetically limited. Titanium in the zero-valent and soluble states has a high thermodynamic potential to reduce perchlorate. Here we show that perchlorate is effectively reduced to chloride by soluble titanium species in a system where the surface oxide film is removed from ZVT and ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. The pitting potential of ZVT was measured as 12.77 {+-} 0.04 V (SHE) for a 100 mM solution of perchlorate. The rate of perchlorate reduction was independent of the imposed potential as long as the potential was maintained above the pitting potential, but it was proportional to the applied current. Solution pH and surface area of ZVT electrodes showed negligible effects on rates of perchlorate reduction. Although perchlorate is effectively reduced during electrochemically induced corrosion of ZVT, this process may not be immediately applicable to perchlorate treatment due to the high potentials needed to produce active reductants, the amount of titanium consumed, the inhibition of perchlorate removal by chloride, and oxidation of chloride to chlorine.

  14. Perchlorate reduction during electrochemically induced pitting corrosion of zero-valent titanium (ZVT)

    International Nuclear Information System (INIS)

    Lee, Chunwoo; Batchelor, Bill; Park, Sung Hyuk; Han, Dong Suk; Abdel-Wahab, Ahmed; Kramer, Timothy A.

    2011-01-01

    Highlights: ► ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. ► Perchlorate is effectively reduced to chloride by soluble titanium species. ► Solution pH and surface area of ZVT showed negligible effects on rates of perchlorate reduction. - Abstract: Zero-valent metals and ionic metal species are a popular reagent for the abatement of contaminants in drinking water and groundwater and perchlorate is a contaminant of increasing concern. However, perchlorate degradation using commonly used reductants such as zero-valent metals and soluble reduced metal species is kinetically limited. Titanium in the zero-valent and soluble states has a high thermodynamic potential to reduce perchlorate. Here we show that perchlorate is effectively reduced to chloride by soluble titanium species in a system where the surface oxide film is removed from ZVT and ZVT is oxidized during electrochemically induced pitting corrosion to produce reactive soluble species. The pitting potential of ZVT was measured as 12.77 ± 0.04 V (SHE) for a 100 mM solution of perchlorate. The rate of perchlorate reduction was independent of the imposed potential as long as the potential was maintained above the pitting potential, but it was proportional to the applied current. Solution pH and surface area of ZVT electrodes showed negligible effects on rates of perchlorate reduction. Although perchlorate is effectively reduced during electrochemically induced corrosion of ZVT, this process may not be immediately applicable to perchlorate treatment due to the high potentials needed to produce active reductants, the amount of titanium consumed, the inhibition of perchlorate removal by chloride, and oxidation of chloride to chlorine.

  15. In-Situ Bioremediation of Perchlorate in Groundwater and Soil

    OpenAIRE

    Jin, Liyan

    2012-01-01

    Historical, uncontrolled disposal practices have made perchlorate a significant threat to drinking water supplies in the United States. In-situ bioremediation (ISB) technologies are cost effective and provide an environmental friendly solution for treating contaminated groundwater and soil. In situ bioremediation was considered as an option for treatment of perchlorate in groundwater and soil in Lockheed Martin Corporation's Beaumont Site 2 (Beaumont, CA). Based on the perchlorate distribu...

  16. Validation of Chlorine and Oxygen Isotope Ratio Analysis To Differentiate Perchlorate Sources and To Document Perchlorate Biodegradation

    Science.gov (United States)

    2013-05-31

    kilogram km2 square kilometer KNO3 potassium nitrate KOH potassium hydroxide L liter LC-MS/MS liquid chromatography-tandem mass...perchlorate (CsClO4) by addition of CsCl or CsOH, or as potassium perchlorate (KClO4) by addition of KOH or KCl. Most of the samples prepared for this...destructive Raman spectroscopy or (2) dissolution and analysis by ion chromatography (IC) using USEPA Method 300.0 (USEPA, 1993) or equivalent

  17. Microbial (per)chlorate reduction in hot subsurface environments

    NARCIS (Netherlands)

    Liebensteiner, M.

    2014-01-01

    The microbial reduction of chlorate and perchlorate has been known for long as a respiratory process of mesophilic bacteria that thrive in diverse environments such as soils, marine and freshwater sediments. Chlorate and perchlorate are found in nature deriving from anthropogenic and natural

  18. Electrochemical behaviour of copper in N,N-dimethylformamide + 0.5 M potassium perchlorate solution

    Directory of Open Access Journals (Sweden)

    S. MENTUS

    2000-09-01

    Full Text Available The electrochemical deposition and dissolution of copper in 0.0025 M CuSO4 + N,N-dimethylformamide + 0.5 M KClO4 solution was examined by the rotating disc and potentiodynamic methods. Both platinum and copper were used as working electrodes. A wide polarization range –1 to +2 V vs. SCE, and several temperatures between 25 and 55°C were encompased. The Cu/electrolyte interface was found to be permanently out of equilibrium, as a consequence of the development of a passivating layer. In accordance with the classic theory of a copper electrode in acidified aqueous solutions, the cathodic and anodic Tafel lines of metallic copper define a unique value of the exchange current density, however, their slopes do not correspond to the classic theory.

  19. Crystal structure of iron(III perchlorate nonahydrate

    Directory of Open Access Journals (Sweden)

    Erik Hennings

    2014-12-01

    Full Text Available Since the discovery of perchlorate salts on Mars and the known occurrence of ferric salts in the regolith, there is a distinct possibility that the title compound could form on the surface of Mars. [Fe(H2O6](ClO43·3H2O was crystallized from aqueous solutions at low temperatures according to the solid–liquid phase diagram. It consists of Fe(H2O6 octahedra (point group symmetry -3. and perchlorate anions (point group symmetry .2 as well as non-coordinating water molecules, as part of a second hydrogen-bonded coordination sphere around the cation. The perchlorate appears to be slightly disordered, with major–minor component occupancies of 0.773 (9:0.227 (9.

  20. Portable Amperometric Perchlorate Selective Sensors with Microhole Array-water/organic Gel Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Hyuk; Girault, Hubert H.; Lee, Hye Jin [Kyungpook National Univ., Daegu (Korea, Republic of); Kim, Hyungi [Gyeongbuk Technopark, Gyeongsan (Korea, Republic of); Girault, Hubert H. [Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)

    2013-09-15

    A novel stick-shaped portable sensing device featuring a microhole array interface between the polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel and water phase was developed for in-situ sensing of perchlorate ions in real water samples. Perchlorate sensitive sensing responses were obtained based on measuring the current changes with respect to the assisted transfer reaction of perchlorate ions by a perchlorate selective ligand namely, bis(dibenzoylmethanato)Ni(II) (Ni(DBM){sub 2}) across the polarized microhole array interface. Cyclic voltammetry was used to characterize the assisted transfer reaction of perchlorate ions by the Ni(DBM){sub 2} ligand when using the portable sensing device. The current response for the transfer of perchlorate anions by Ni(DBM){sub 2} across the micro-water/gel interface linearly increased as a function of the perchlorate ion concentration. The technique of differential pulse stripping voltammetry was also utilized to improve the sensitivity of the perchlorate anion detection down to 10 ppb. This was acquired by preconcentrating perchlorate anions in the gel layer by means of holding the ion transfer potential at 0 mV (vs. Ag/AgCl) for 30 s followed by stripping the complexed perchlorate ion with the ligand. The effect of various potential interfering anions on the perchlorate sensor was also investigated and showed an excellent selectivity over Br{sup -}, NO{sub 2}{sup -}, NO{sub 3}{sup -}, CO{sub 3}{sup 2-}, CH{sub 3}COO{sup -} and SO{sub 4}{sup 2-} ions. As a final demonstration, some regional water samples from the Sincheon river in Daegu city were analyzed and the data was verified with that of ion chromatography (IC) analysis from one of the Korean-certified water quality evaluation centers.

  1. Fatty acid profile in milk from goats, Capra aegagrus hircus, exposed to perchlorate and its relationship with perchlorate residues in human milk.

    Science.gov (United States)

    Cheng, Qiuqiong; Smith, Ernest E; Kirk, Andrea B; Liu, Fujun; Boylan, Lee Mallory; McCarty, Michael E; Hart, Sybil; Dong, Linxia; Cobb, George P; Jackson, W Andrew; Anderson, Todd A

    2007-10-01

    Polyunsaturated fatty acids (PUFA) in milk are vital for normal growth and development of infant mammals. Changes in fatty acid composition were observed in milk fat from goats dosed with perchlorate (0.1 and 1 mg/kg body weight/day) for 31 days, but the effect was not persistent. Adaptation may be induced in these goats to compensate for the perchlorate effect. In an analysis of fatty acid composition in human milk samples, a weak negative correlation was observed between perchlorate concentrations and total PUFA in 38 human milk samples.

  2. Perchlorate Exposure Reduces Primordial Germ Cell Number in Female Threespine Stickleback.

    Directory of Open Access Journals (Sweden)

    Ann M Petersen

    Full Text Available Perchlorate is a common aquatic contaminant that has long been known to affect thyroid function in vertebrates, including humans. More recently perchlorate has been shown to affect primordial sexual differentiation in the aquatic model fishes zebrafish and threespine stickleback, but the mechanism has been unclear. Stickleback exposed to perchlorate from fertilization have increased androgen levels in the embryo and disrupted reproductive morphologies as adults, suggesting that perchlorate could disrupt the earliest stages of primordial sexual differentiation when primordial germ cells (PGCs begin to form the gonad. Female stickleback have three to four times the number of PGCs as males during the first weeks of development. We hypothesized that perchlorate exposure affects primordial sexual differentiation by reducing the number of germ cells in the gonad during an important window of stickleback sex determination at 14-18 days post fertilization (dpf. We tested this hypothesis by quantifying the number of PGCs at 16 dpf in control and 100 mg/L perchlorate-treated male and female stickleback. Perchlorate exposure from the time of fertilization resulted in significantly reduced PGC number only in genotypic females, suggesting that the masculinizing effects of perchlorate observed in adult stickleback may result from early changes to the number of PGCs at a time critical for sex determination. To our knowledge, this is the first evidence of a connection between an endocrine disruptor and reduction in PGC number prior to the first meiosis during sex determination. These findings suggest that a mode of action of perchlorate on adult reproductive phenotypes in vertebrates, including humans, such as altered fecundity and sex reversal or intersex gonads, may stem from early changes to germ cell development.

  3. Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria.

    Science.gov (United States)

    Shrout, Joshua D; Scheetz, Todd E; Casavant, Thomas L; Parkin, Gene F

    2005-04-01

    Recent studies have shown that perchlorate (ClO(4) (-)) can be degraded by some pure-culture and mixed-culture bacteria with the addition of hydrogen. This paper describes the isolation of two hydrogen-utilizing perchlorate-degrading bacteria capable of using inorganic carbon for growth. These autotrophic bacteria are within the genus Dechloromonas and are the first Dechloromonas species that are microaerophilic and incapable of growth at atmospheric oxygen concentrations. Dechloromonas sp. JDS5 and Dechloromonas sp. JDS6 are the first perchlorate-degrading autotrophs isolated from a perchlorate-contaminated site. Measured hydrogen thresholds were higher than for other environmentally significant, hydrogen-utilizing, anaerobic bacteria (e.g., halorespirers). The chlorite dismutase activity of these bacteria was greater for autotrophically grown cells than for cells grown heterotrophically on lactate. These bacteria used fumarate as an alternate electron acceptor, which is the first report of growth on an organic electron acceptor by perchlorate-reducing bacteria.

  4. ACCUMULATION OF PERCHLORATE IN TOBACCO PLANTS: DEVELOPMENT OF A PLANT KINETIC MODEL

    Science.gov (United States)

    Previous studies have shown that tobacco plants are tolerant of perchlorate and will accumulate perchlorate in plant tissues. This research determined the uptake, translocation, and accumulation of perchlorate in tobacco plants. Three hydroponics growth studies were completed u...

  5. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    International Nuclear Information System (INIS)

    Son, Ahjeong; Schmidt, Carl J.; Shin, Hyejin; Cha, Daniel K.

    2011-01-01

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  6. Microbial community analysis of perchlorate-reducing cultures growing on zero-valent iron

    Energy Technology Data Exchange (ETDEWEB)

    Son, Ahjeong, E-mail: ason@auburn.edu [Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Schmidt, Carl J. [Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716 (United States); Shin, Hyejin [Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 (United States); Cha, Daniel K. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States)

    2011-01-30

    Anaerobic microbial mixed cultures demonstrated its ability to completely remove perchlorate in the presence of zero-valent iron. In order to understand the major microbial reaction in the iron-supported culture, community analysis comprising of microbial fatty acids and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) techniques was performed for perchlorate reducing cultures. Analysis of fatty acid methyl esters (FAMEs) and subsequent principal component analysis (PCA) showed clear distinctions not only between iron-supported perchlorate reducing culture and seed bacteria, but also among perchlorate-reducing cultures receiving different electron donors. The DGGE pattern targeting the chlorite dismutase (cld) gene showed that iron-supported perchlorate reducing culture is similar to hydrogen-fed cultures as compared to acetate-fed culture. The phylogenetic tree suggested that the dominant microbial reaction may be a combination of the autotrophic and heterotrophic reduction of perchlorate. Both molecular and chemotaxonomic experimental results support further understanding in the function of zero-valent iron as an adequate electron source for enhancing the microbial perchlorate reduction in natural and engineered systems.

  7. Photooxidation of chloride by oxide minerals: implications for perchlorate on Mars.

    Science.gov (United States)

    Schuttlefield, Jennifer D; Sambur, Justin B; Gelwicks, Melissa; Eggleston, Carrick M; Parkinson, B A

    2011-11-09

    We show that highly oxidizing valence band holes, produced by ultraviolet (UV) illumination of naturally occurring semiconducting minerals, are capable of oxidizing chloride ion to perchlorate in aqueous solutions at higher rates than other known natural perchlorate production processes. Our results support an alternative to atmospheric reactions leading to the formation of high concentrations of perchlorate on Mars.

  8. The Effects of Ammonium Perchlorate on Reproduction and Development of Amphibians

    Science.gov (United States)

    2008-01-01

    Mitigating Ammonium Perchlorate (AP) Exposure........................................................................18 Table 5-1. Funding History and...amphibian species were reared on perchlorate-laden food (e.g., hydroponically grown lettuce ) and their growth and development monitored. Thyroid...of Perchlorate Derived from Food Sources on Amphibian Development 8 Table 3.1 (Continued) 3.1 Initiate Lettuce Growth 3.2 Tests with Native

  9. Rate and extent of aqueous perchlorate removal by iron surfaces.

    Science.gov (United States)

    Moore, Angela M; De Leon, Corinne H; Young, Thomas M

    2003-07-15

    The rate and extent of perchlorate reduction on several types of iron metal was studied in batch and column reactors. Mass balances performed on the batch experiments indicate that perchlorate is initially sorbed to the iron surface, followed by a reduction to chloride. Perchlorate removal was proportional to the iron dosage in the batch reactors, with up to 66% removal in 336 h in the highest dosage system (1.25 g mL(-1)). Surface-normalized reaction rates among three commercial sources of iron filings were similar for acid-washed samples. The most significant perchlorate removal occurred in solutions with slightly acidic or near-neutral initial pH values. Surface mediation of the reaction is supported by the absence of reduction in batch experiments with soluble Fe2+ and also by the similarity in specific reaction rate constants (kSA) determined for three different iron types. Elevated soluble chloride concentrations significantly inhibited perchlorate reduction, and lower removal rates were observed for iron samples with higher amounts of background chloride contamination. Perchlorate reduction was not observed on electrolytic sources of iron or on a mixed-phase oxide (Fe3O4), suggesting that the reactive iron phase is neither pure zerovalent iron nor the mixed oxide alone. A mixed valence iron hydr(oxide) coating or a sorbed Fe2+ surface complex represent the most likely sites for the reaction. The observed reaction rates are too slow for immediate use in remediation system design, but the findings may provide a basis for future development of cost-effective abiotic perchlorate removal techniques.

  10. Perchlorate Questions and Answers

    Science.gov (United States)

    ... the atmosphere. Manufactured perchlorate is used as an industrial chemical and can be found in rocket propellant, explosives, ... of the FAQs from May 2017. More in Chemical ... Foods Toxic Elements in Foods & Foodware Page Last Updated: 12/ ...

  11. An upper-bound assessment of the benefits of reducing perchlorate in drinking water.

    Science.gov (United States)

    Lutter, Randall

    2014-10-01

    The Environmental Protection Agency plans to issue new federal regulations to limit drinking water concentrations of perchlorate, which occurs naturally and results from the combustion of rocket fuel. This article presents an upper-bound estimate of the potential benefits of alternative maximum contaminant levels for perchlorate in drinking water. The results suggest that the economic benefits of reducing perchlorate concentrations in drinking water are likely to be low, i.e., under $2.9 million per year nationally, for several reasons. First, the prevalence of detectable perchlorate in public drinking water systems is low. Second, the population especially sensitive to effects of perchlorate, pregnant women who are moderately iodide deficient, represents a minority of all pregnant women. Third, and perhaps most importantly, reducing exposure to perchlorate in drinking water is a relatively ineffective way of increasing iodide uptake, a crucial step linking perchlorate to health effects of concern. © 2014 Society for Risk Analysis.

  12. PERCHLORATE IDENTIFICATION IN FERTILIZERS AND ACCUMULATION IN LETTUCE SEEDLINGS

    Science.gov (United States)

    Perchlorate has contaminated groundwater, drinking water and soils at several locations in the U.S. The primary source of contamination at sites that have been investigated to date seems to be from industrial and military operations that use Perchlorate as an oxidizing agent. How...

  13. The Effect of Gamma Radiation on Mars Mineral Matrices: Implications for Perchlorate Formation on Mars

    Science.gov (United States)

    Fox, A. C.; Eigenbrode, J. L.; Pavlov, A.; Lewis, J.

    2017-12-01

    Observations by the Phoenix Wet Chemistry Lab of the Martian surface indicate the presence of perchlorate in high concentrations. Additional observations by the Sample Analysis at Mars and the Viking Landers indirectly support the presence of perchlorate at other localities on Mars. The evidence for perchlorate at several localities on Mars coupled with its detection in Martian meteorite EETA79001 suggests that perchlorate is present globally on Mars. The presence of perchlorate on Mars further complicates the search for organic molecules indicative of past life. While perchlorate is kinetically limited in Martian conditions, the intermediate species associated with its formation or decomposition, such as chlorate or chlorite, could oxidize Martian organic species. As a result, it is vital to understand the mechanism of perchlorate formation on Mars in order to determine its role in the degradation of organics. Here, we explore an alternate mechanism of formation of perchlorate by bombarding Cl-salts and Mars-relevant mineral mixtures with gamma radiation both with and without the presence of liquid water, under vacuum. Previous work has shown that OClO can form from both UV radiation and energetic electrons bombardment of Cl-ices or Cl-salts, which then reacts with either OH- or O-radicals to produce perchlorate. Past research has suggested that liquid water or ice is the source of these hydroxyl and oxygen radicals, which limits the location of perchlorate formation on Mars. We demonstrate that trace amounts of perchlorate are potentially formed in samples containing silica dioxide or iron oxide and Cl-salts both with and without liquid water. Perchlorate was also detected in a portion of samples that were not irradiated, suggesting possible contamination. We did not detect perchlorate in samples that contained sulfate minerals. If perchlorate was formed without liquid water, it is possible that oxide minerals could be a potential source of oxygen radicals

  14. Bifunctional lanthanum phosphate substrates as novel adsorbents and biocatalyst supports for perchlorate removal

    International Nuclear Information System (INIS)

    Sankar, Sasidharan; Prajeesh, Gangadharan Puthiya Veetil; Anupama, Vijaya Nadaraja; Krishnakumar, Bhaskaran; Hareesh, Padinhattayil; Nair, Balagopal N.; Warrier, Krishna Gopakumar; Hareesh, Unnikrishnan Nair Saraswathy

    2014-01-01

    Graphical abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign thermal gelation process, performed the role of dual functional sorbent facilitating perchlorate adsorption and bioremediation through the growth of perchlorate reducing microbial colonies. - Highlights: • Lanthanum phosphate monoliths as efficient perchlorate adsorbents. • And also as substrates for biofilm (perchlorate reducing bacteria) growth. • Environmentally benign thermal gelation process for substrate fabrication. • 98% adsorption efficiency for perchlorate concentrations up to 100 μg/L. • The regenerated monoliths show nearly 100% reusability. - Abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign colloidal forming process employing methyl cellulose, are reported here as excellent adsorbents of perchlorate with >98% efficiency and with 100% reusability. Additionally, the effectiveness of such substrates as biocatalyst supports that facilitate biofilm formation of perchlorate reducing microbes (Serratia marcescens NIIST 5) is also demonstrated for the first time. The adsorption of perchlorate ions is attributed to the pore structure of lanthanum phosphate substrate and the microbial attachment is primarily ascribed to its intrinsic hydrophobic property. Lanthanum phosphate thus emerges as a dual functional material that possesses an integrated adsorption/bioremediation property for the effective removal of ClO 4 − which is an increasingly important environmental contaminant

  15. Bifunctional lanthanum phosphate substrates as novel adsorbents and biocatalyst supports for perchlorate removal

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, Sasidharan [Materials Science and Technology Division (India); Prajeesh, Gangadharan Puthiya Veetil; Anupama, Vijaya Nadaraja [Process Engineering and Environmental Technology Division, CSIR – National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019 (India); Krishnakumar, Bhaskaran [Process Engineering and Environmental Technology Division, CSIR – National Institute for Interdisciplinary Science and Technology, Industrial Estate P.O., Thiruvananthapuram 695019 (India); Academy of Scientific and Industrial Research (AcSIR) (India); Hareesh, Padinhattayil [Materials Science and Technology Division (India); Nair, Balagopal N. [R and D Centre, Noritake Co. Ltd., Aichi (Japan); Warrier, Krishna Gopakumar [Materials Science and Technology Division (India); Academy of Scientific and Industrial Research (AcSIR) (India); Hareesh, Unnikrishnan Nair Saraswathy, E-mail: hareesh@niist.res.in [Materials Science and Technology Division (India); Academy of Scientific and Industrial Research (AcSIR) (India)

    2014-06-30

    Graphical abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign thermal gelation process, performed the role of dual functional sorbent facilitating perchlorate adsorption and bioremediation through the growth of perchlorate reducing microbial colonies. - Highlights: • Lanthanum phosphate monoliths as efficient perchlorate adsorbents. • And also as substrates for biofilm (perchlorate reducing bacteria) growth. • Environmentally benign thermal gelation process for substrate fabrication. • 98% adsorption efficiency for perchlorate concentrations up to 100 μg/L. • The regenerated monoliths show nearly 100% reusability. - Abstract: Porous lanthanum phosphate substrates, obtained by an environmentally benign colloidal forming process employing methyl cellulose, are reported here as excellent adsorbents of perchlorate with >98% efficiency and with 100% reusability. Additionally, the effectiveness of such substrates as biocatalyst supports that facilitate biofilm formation of perchlorate reducing microbes (Serratia marcescens NIIST 5) is also demonstrated for the first time. The adsorption of perchlorate ions is attributed to the pore structure of lanthanum phosphate substrate and the microbial attachment is primarily ascribed to its intrinsic hydrophobic property. Lanthanum phosphate thus emerges as a dual functional material that possesses an integrated adsorption/bioremediation property for the effective removal of ClO{sub 4}{sup −} which is an increasingly important environmental contaminant.

  16. A review of perchlorate (ClO4-) occurrence in fruits and vegetables.

    Science.gov (United States)

    Calderón, R; Godoy, F; Escudey, M; Palma, P

    2017-02-01

    Since the 1990s, a large number of studies around the world have reported the presence of perchlorate in different types of environmental matrices. In view of their inherent characteristics, such as high solubility, mobility, persistence, and low affinity for the surface of soil, perchlorates are mobilized through the water-soil system and accumulate in edible plant species of high human consumption. However, the ingestion of food products containing perchlorate represents a potential health risk to people due to their adverse effects on thyroid, hormone, and neuronal development, mainly in infants and fetuses. At present, research has been centered on determining sources, fates, and remediation methods and not on its real extension in vegetables under farming conditions. This review presents a comprehensive overview and update of the frequent detection of perchlorate in fruits and vegetables produced and marketed around the world. Additionally, the impact of fertilizer on the potential addition of perchlorate to soil and its mobility in the water-soil-plant system is discussed. This review is organized into the following sections: sources of perchlorate, mobility in the water-soil system, presence in fruits and vegetables in different countries, international regulations, and toxicological studies. Finally, recommendations for future studies concerning perchlorate in fruits and vegetables are presented.

  17. Perchlorate adsorption by granular activated carbon modified with cetyl trimethyl ammonium chloride

    International Nuclear Information System (INIS)

    Yin-Xian, P.; Lu, Z.; Cui-Yun, C.; Ming-Long, Z.; Yang, Z.; Chun-Du, W.

    2012-01-01

    To improve the adsorption of perchlorate (ClO/sub 4/ in contaminated water, granular activated carbon (GAC) was modified with cetyl trimethyl ammonium chloride (CTAC). To investigate the adsorption mechanism of perchlorate the structure of GAC-CTAC was characterized by scanning electron microscopy (SEM) and FTIR spectroscopy. Then the GAC-CTAC was used for the adsorption of perchlorate in water. The effects of the adsorption time, pH, initial ClO/sub 4/ concentration, and co-existed anions on perchlorate adsorbed by GAC-CTAC were studied. The results show that the GAC-CTAC could absorb perchlorate better in water. The adsorption capacity of perchlorate on GAC-CTAC decreases in the alkaline solution, and increases with increasing the - initial concentration. The competitive adsorption exists between co-existed anions and ClO/sub 4/ on GAC-CTAC. In addition, adsorption of ClO/sub 4/ on GAC-CTAC fits the Langmuir, Freundlich and Tempkin isothermal models in the range of the experimental concentration. The adsorption process follows pseudo-second order kinetics. (author)

  18. Perchlorate, iodine supplements, iodized salt and breast milk iodine content

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, Andrea B. [Department of Epidemiology, School of Public Health, University of North Texas Health Sciences Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107 (United States); Kroll, Martina; Dyke, Jason V.; Ohira, Shin-Ichi; Dias, Rukshan A.; Dasgupta, Purnendu K. [Department of Chemistry and Biochemistry, 700 Planetarium Place, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2012-03-15

    This study was undertaken to determine if increasing maternal iodine intake through single dose tablets will decrease breast milk concentrations of the iodine-uptake inhibitor, perchlorate, through competitive inhibition. We also sought to determine if the timing of supplementation influences the fraction of iodine excreted in milk versus urine and to compare the effectiveness of iodized salt as a means of providing iodine to breastfed infants. Thirteen women who did not use supplements, seven of whom used iodized salt and six of whom used non-iodized salt, submitted four milk samples and a 24-h urine collection daily for three days. Women repeated the sampling protocol for three more days during which {approx} 150 {mu}g of iodine were taken in the evening and again for three days with morning supplementation. Samples were analyzed using isotope-dilution inductively-coupled plasma-mass spectrometry for iodine and isotope-dilution ion chromatography-tandem mass spectrometry for perchlorate. No statistically significant differences were observed in milk iodine or perchlorate concentrations during the two treatment periods. Estimated perchlorate intake was above the U.S. National Academy of Sciences suggested reference dose for most infants. Single daily dose iodine supplementation was not effective in decreasing milk perchlorate concentrations. Users of iodized salt had significantly higher iodine levels in milk than non-users. Iodized salt may be a more effective means of iodine supplementation than tablets. - Highlights: Black-Right-Pointing-Pointer Estimated infant exposures to perchlorate were, on a {mu}g/kg basis, {approx} 5 Multiplication-Sign higher than those of mothers. Black-Right-Pointing-Pointer Daily supplements are less effective than iodized salt in providing iodine to lactating women. Black-Right-Pointing-Pointer Low iodine and high perchlorate in milk may place infants at risk of iodine deficiency.

  19. Bioreactor configurations for ex-situ treatment of perchlorate: a review.

    Science.gov (United States)

    Sutton, Paul M

    2006-12-01

    The perchlorate anion has been detected in the drinking water of millions of people living in the United States. At perchlorate levels equal to or greater than 1 mg/L and where the water is not immediately used for household purposes, ex-situ biotreatment has been widely applied. The principal objective of this paper was to compare the technical and economic advantages and disadvantages of various bioreactor configurations in the treatment of low- and medium-strength perchlorate-contaminated aqueous streams. The ideal bioreactor configuration for this application should be able to operate efficiently while achieving a long solids retention time, be designed to promote physical-chemical adsorption in addition to biodegradation, and operate under plug-flow hydraulic conditions. To date, the granular activated carbon (GAC) or sand-media-based fluidized bed reactors (FBRs) and GAC, sand-, or plastic-media-based packed bed reactors (PBRs) have been the reactor configurations most widely applied for perchlorate treatment. Only the FBR configuration has been applied commercially. Commercial-scale cost information presented implies no economic advantage for the PBR relative to the FBR configuration. Full-scale application information provides evidence that the FBR is a good choice for treating perchlorate-contaminated aqueous streams.

  20. Nitrate and Perchlorate removal from groundwater by ion exchange; TOPICAL

    International Nuclear Information System (INIS)

    Burge, S; Halden, R

    1999-01-01

    This study was conducted to evaluate the performance of a small scale ion exchange unit (Krudico, Inc of Auborn, IA) for removal of nitrate and perchlorate from groundwater at Lawrence Livermore National Laboratory's Site 300. The unit was able to treat 3,600 gallons of Site 300 groundwater, at an average influent concentration of 100 mg/L NO(sub 3)(sup -) before breakthrough occurred. The unit contained 2.5 ft(sup 3) of Sybron SR-7 resin. Seventy gallons of regeneration waste were generated (water treated to waste ratio of 51:1). The effluent concentration was about 20 mg/L NO(sub 3)(sup -), which is equivalent to a treatment efficiency of at least 80%. There are several options for implementing this technology at Site 300. A target well, in the 817 area, has been selected. It has a 3 to 4 gpm flow rate, and concentrations of 90 mg/L NO(sub 3)(sup -) and 40(micro)g/L perchlorate. The different treatment options include ion exchange treatment of nitrate only, nitrate and perchlorate, or perchlorate only. Option 1: For the treatment of nitrate only, this unit will be able to treat 3,700 gallons of water before regeneration is required. If both columns of the ion exchange unit are used, 7,400 gallons could be treated before the columns will need to be regenerated (producing 140 gallons of waste, per cycle or every 1.5 days). The effluent nitrate concentration is expected to be about 17 mg/L. Annual operation and maintenance costs are estimated to be$0.14 per gallon of water treated. Option 2: If only perchlorate is to be removed with ion exchange at the 817 area, a smaller unit should be considered. A 55 gallon canister filled with ion exchange resin should be able to reduce perchlorate concentrations in the groundwater from 40(micro)g/L to non-detect levels for three years before the resin would need to be replaced. The contaminant-laden resin would be disposed of as hazardous waste. It is not practical to regenerate the resin because of the extreme difficulty of

  1. Competitive microbial reduction of perchlorate and nitrate with a cathode directly serving as the electron donor

    International Nuclear Information System (INIS)

    Xie, Daohai; Yu, Hui; Li, Chenchen; Ren, Yuan; Wei, Chaohai; Feng, Chunhua

    2014-01-01

    Microbial reduction of perchlorate with an electrode as the electron donor represents an emerging technology for remediation of perchlorate contamination; it is important to know how perchlorate reduction behaves when nitrate, a co-contaminant of perchlorate is present. We reported that electrons derived from the electrode can be directly transferred to the bacteria with perchlorate or nitrate as the sole electron acceptor. The presence of nitrate, even at the 0.07 mM level, can slow reduction of perchlorate (0.70 mM) as a poised potential of -0.50 V (vs. SCE) was applied to the inoculated cathode. Increasing the concentration of nitrate resulted in a noticeable inhibitory effect on perchlorate reduction. When the nitrate concentration was 2.10 mM, reduction of 0.70 mM perchlorate was totally inhibited. Bacterial community analyses based on 16S rDNA gene analysis with denaturing gradient gel electrophoresis (DGGE) revealed that most of the bacteria newly enriched on the nitrate and/or perchlorate biocathodes were the known electrochemically active denitrifiers, which possibly prefer to reduce nitrate over perchlorate. These results show that nitrate is a more favorable electron acceptor than perchlorate in the bioelectrochemical system where the cathode directly serves as the electron donor

  2. Perchlorate: Health Effects and Technologies for Its Removal from Water Resources

    Directory of Open Access Journals (Sweden)

    Thiruvenkatachari Viraraghavan

    2009-04-01

    Full Text Available Perchlorate has been found in drinking water and surface waters in the United States and Canada. It is primarily associated with release from defense and military operations. Natural sources include certain fertilizers and potash ores. Although it is a strong oxidant, perchlorate is very persistent in the environment. At high concentrations perchlorate can affect the thyroid gland by inhibiting the uptake of iodine. A maximum contaminant level has not been set, while a guidance value of 6 ppb has been suggested by Health Canada. Perchlorate is measured in environmental samples primarily by ion chromatography. It can be removed from water by anion exchange or membrane filtration. Biological and chemical processes are also effective in removing this species from water.

  3. RAMAN SPECTRAL ANALYSIS OF PERCHLORATE CONTAMINATION IN COMMONLY-USED FERTILIZERS

    Science.gov (United States)

    Raman spectroscopy (RS) was used for qualitative and quantitative analysis of perchlorate (ClO4-1) in 30+ commonly-used fertilizers. Perchlorate contamination is emerging as an important environmental issue since its discovery in water resources that are widely used for drinking...

  4. Perchlorate: environmental occurrence, interactions and treatment

    National Research Council Canada - National Science Library

    Gu, Baohua, Ph. D; Coates, John D

    2006-01-01

    ..... ... . ... .. ... .. ... . ... ... .. . . . . , . , . , .. ... ... .. 14 Chapter 2. The Chemistry of Perchlorate in the Environment Gilbert M Brown and Baohua Gu Introduction ... 17 Redox Properties of Chlorine Compounds ... 18...

  5. Branched polymeric media: Perchlorate-selective resins from hyperbranched polyethyleneimine

    KAUST Repository

    Chen, Dennis P.

    2012-10-02

    Perchlorate (ClO4 -) is a persistent contaminant found in drinking groundwater sources in the United States. Ion exchange (IX) with selective and disposable resins based on cross-linked styrene divinylbenzene (STY-DVB) beads is currently the most commonly utilized process for removing low concentrations of ClO4 - (10-100 ppb) from contaminated drinking water sources. However, due to the low exchange capacity of perchlorate-selective STY-DVB resins (∼0.5-0.8 eq/L), the overall cost becomes prohibitive when treating groundwater with higher concentration of ClO4 - (e.g., 100-1000 ppb). In this article, we describe a new perchlorate-selective resin with high exchange capacity. This new resin was prepared by alkylation of branched polyethyleneimine (PEI) beads obtained from an inverse suspension polymerization process. Batch and column studies show that our new PEI resin with mixed hexyl/ethyl quaternary ammonium chloride exchange sites can selectively extract trace amounts of ClO4 - from a makeup groundwater (to below detection limit) in the presence of competing ions. In addition, this resin has a strong-base exchange capacity of 1.4 eq/L, which is 1.75-2.33 times larger than those of commercial perchlorate-selective STY-DVB resins. The overall results of our studies suggest that branched PEI beads provide versatile and promising building blocks for the preparation of perchlorate-selective resins with high exchange capacity. © 2012 American Chemical Society.

  6. PHYTOREMEDIATION OF PERCHLORATE AND N-NITROSODIMETHYLAMINE AS SINGLE AND CO-CONTAMINANTS

    Science.gov (United States)

    Although potential plant species suitable for phytoremediation of perchlorate and the phytoprocesses involved (rhizodegradation and phytodegradation) have been identified in previous research, regulators and some critics argue that plants recycle the perchlorate fract...

  7. Thyroid Hormones and Moderate Exposure to Perchlorate during Pregnancy in Women in Southern California.

    Science.gov (United States)

    Steinmaus, Craig; Pearl, Michelle; Kharrazi, Martin; Blount, Benjamin C; Miller, Mark D; Pearce, Elizabeth N; Valentin-Blasini, Liza; DeLorenze, Gerald; Hoofnagle, Andrew N; Liaw, Jane

    2016-06-01

    Findings from national surveys suggest that everyone in the United States is exposed to perchlorate. At high doses, perchlorate, thiocyanate, and nitrate inhibit iodide uptake into the thyroid and decrease thyroid hormone production. Small changes in thyroid hormones during pregnancy, including changes within normal reference ranges, have been linked to cognitive function declines in the offspring. We evaluated the potential effects of low environmental exposures to perchlorate on thyroid function. Serum thyroid hormones and anti-thyroid antibodies and urinary perchlorate, thiocyanate, nitrate, and iodide concentrations were measured in 1,880 pregnant women from San Diego County, California, during 2000-2003, a period when much of the area's water supply was contaminated from an industrial plant with perchlorate at levels near the 2007 California regulatory standard of 6 μg/L. Linear regression was used to evaluate associations between urinary perchlorate and serum thyroid hormone concentrations in models adjusted for urinary creatinine and thiocyanate, maternal age and education, ethnicity, and gestational age at serum collection. The median urinary perchlorate concentration was 6.5 μg/L, about two times higher than in the general U.S. Adjusted associations were identified between increasing log10 perchlorate and decreasing total thyroxine (T4) [regression coefficient (β) = -0.70; 95% CI: -1.06, -0.34], decreasing free thyroxine (fT4) (β = -0.053; 95% CI: -0.092, -0.013), and increasing log10 thyroid-stimulating hormone (β = 0.071; 95% CI: 0.008, 0.133). These results suggest that environmental perchlorate exposures may affect thyroid hormone production during pregnancy. This could have implications for public health given widespread perchlorate exposure and the importance of thyroid hormone in fetal neurodevelopment. Steinmaus C, Pearl M, Kharrazi M, Blount BC, Miller MD, Pearce EN, Valentin-Blasini L, DeLorenze G, Hoofnagle AN, Liaw J. 2016. Thyroid

  8. Exposure to perchlorate induces the formation of macrophage aggregates in the trunk kidney of zebrafish and mosquitofish

    Science.gov (United States)

    Capps, T.; Mukhi, S.; Rinchard, J.J.; Theodorakis, C.W.; Blazer, V.S.; Patino, R.

    2004-01-01

    Environmental contamination of ground and surface waters by perchlorate, derived from ammonium perchlorate (AP) and other perchlorate salts, is of increasing concern. Exposure to perchlorate can impair the thyroid endocrine system, which is thought to modulate renal and immune function in vertebrates. This study with zebrafish Danio rerio and eastern mosquitofish Gambusia holbrooki examined the histological effects of perchlorate on the trunk kidney, which in teleosts serves excretory and hemopoietic functions and therefore may be a target of perchlorate effects. Adult zebrafish of both sexes were exposed in the laboratory to waterborne, AP-derived perchlorate at measured concentrations of 18 mg/L for 8 weeks. Adult male mosquitofish were exposed to waterborne sodium perchlorate at measured perchlorate concentrations of 1-92 mg/L for 8 weeks. Control fish were kept in untreated water. The region of the body cavity containing the trunk kidney was processed from each fish for histological analysis. Macrophage aggregates (MAs), possible markers of contaminant exposure or immunotoxic effect, were present in the hemopoietic region of the kidney in both species exposed to perchlorate. The estimated percent area of kidney sections occupied by MAs was greater in zebrafish exposed to perchlorate at 18 mg/L (P < 0.05) than in controls. In male mosquitofish, the incidence of renal MAs increased proportionally with sodium perchlorate concentration and was significantly different from that of controls at 92 mg/L (P < 0.05). These observations confirm that in fish the kidney is affected by exposure to perchlorate. The concentrations of perchlorate at which the effects were noted are relatively high but within the range reported in some contaminated habitats.

  9. Effects of ammonium perchlorate on the reproductive performance and thyroid follicle histology of zebrafish

    Science.gov (United States)

    Patino, R.; Wainscott, M.R.; Cruz-Li, E. I.; Balakrishnan, S.; McMurry, C.; Blazer, V.S.; Anderson, T.A.

    2003-01-01

    Adult zebrafish were reared up to eight weeks in control water or in water containing ammonium perchlorate (AP) at measured perchlorate concentrations of 18 (environmentally relevant, high) and 677 ppm. Groups of eight females were paired with four males on a weekly basis to assess AP effects on spawned egg volume, an index of reproductive performance. All treatments were applied to four to five spawning replicates. At 677 ppm, spawn volume was reduced within one week and became negligible after four weeks. At 18 ppm, spawn volume was unaffected even after eight weeks. Also, perchlorate at 18 ppm did not affect percentage egg fertilization. Fish were collected at the end of the exposures (677 ppm, four weeks; control and 18 ppm, eight weeks) for whole-body perchlorate content and thyroid histopathological analysis. Fish perchlorate levels were about one-hundredth of those of treatment water levels, indicating that waterborne perchlorate does not accumulate in whole fish. At 677 ppm for four weeks, perchlorate caused thyroid follicle cell (nuclear) hypertrophy and angiogenesis, whereas at 18 ppm for eight weeks, its effects were more pronounced and included hypertrophy, angiogenesis, hyperplasia, and colloid depletion. In conclusion, an eight-week exposure of adult zebrafish to 18 ppm perchlorate (high environmentally relevant concentrations) affected the histological condition of their thyroid follicles but not their reproductive performance. The effect of 677 ppm perchlorate on reproduction may be due to extrathyroidal toxicity. Further research is needed to determine if AP at lower environmentally relevant concentrations also affects the thyroid follicles of zebrafish.

  10. Validation of a Novel Bioassay for Low-level Perchlorate Determination

    Science.gov (United States)

    2014-04-01

    was not attractive, since these reduce PMS2 , and it was thought they would interfere with the stoichiometry of NADH and perchlorate in the bioassay...these reduce PMS2 directly, and would interfere with the stoichiometry of NADH and perchlorate in the bioassay. Thus the only approach that could be

  11. Detoxification of PAX-21 ammunitions wastewater by zero-valent iron for microbial reduction of perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Se Chang; Cha, Daniel K. [Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716 (United States); Kim, Byung J. [U.S. Army Engineer Research and Development Center, Champaign, IL 61826-9005 (United States); Oh, Seok-Young, E-mail: quartzoh@ulsan.ac.kr [Department of Civil and Environmental Engineering, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2011-08-30

    Highlights: {yields} Ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. {yields} DNAN is identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. {yields} Iron treatment not only removes energetic compounds but also eliminates the toxic constituents that inhibit the subsequent microbial process. - Abstract: US Army and the Department of Defense (DoD) facilities generate perchlorate (ClO{sub 4}{sup -}) from munitions manufacturing and demilitarization processes. Ammonium perchlorate is one of the main constituents in Army's new main charge melt-pour energetic, PAX-21. In addition to ammonium perchlorate, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4-dinitroanisole (DNAN) are the major constituents of PAX-21. In order to evaluate microbial perchlorate reduction as a practical option for the treatment of perchlorate in PAX-21 wastewater, we conducted biodegradation experiments using glucose as the primary sources of electrons and carbon. Batch experiments showed that negligible perchlorate was removed in microbial reactors containing PAX-21 wastewater while control bottles containing seed bacteria and glucose rapidly and completely removed perchlorate. These results suggested that the constituents in PAX-21 wastewater may be toxic to perchlorate reducing bacteria. A series of batch toxicity test was conducted to identify the toxic constituents in PAX-21 and DNAN was identified as the primary toxicant responsible for inhibiting the activity of perchlorate reducing bacteria. It was hypothesized that pretreatment of PAX-21 by zero-valent iron granules will transform toxic constituents in PAX-21 wastewater to non-toxic products. We observed complete reduction of DNAN to 2,4-diaminoanisole (DAAN) and RDX to formaldehyde in abiotic iron reduction study. After a 3-day acclimation period, perchlorate in iron-treated PAX-21

  12. Gestational exposure to high perchlorate concentrations in drinking water and neonatal thyroxine levels.

    Science.gov (United States)

    Amitai, Yona; Winston, Gary; Sack, Joseph; Wasser, Janice; Lewis, Matthew; Blount, Benjamin C; Valentin-Blasini, Liza; Fisher, Nirah; Israeli, Avi; Leventhal, Alex

    2007-09-01

    To assess the effect of gestational perchlorate exposure through drinking water on neonatal thyroxine (T(4)). T(4) values were compared among newborns in Ramat Hasharon, Israel, whose mothers resided in suburbs where drinking water contained perchlorate water exclusively (as determined by a telephone interview) were analyzed as a subset. Serum perchlorate levels in blood from donors residing in the area were used as proxy indicators of exposure. Neonatal T(4) values (mean +/- SD) in the very high, high, and low exposure groups were 13.9 +/- 3.8, 13.9 +/- 3.4, and 14.0 +/- 3.5 microg/dL, respectively (p = NS). Serum perchlorate concentrations in blood from donors residing in areas corresponding to these groups were 5.99 +/- 3.89, 1.19 +/- 1.37, and 0.44 +/- 0.55 microg/L, respectively. T(4) levels of neonates with putative gestational exposure to perchlorate in drinking water were not statistically different from controls. This study finds no change in neonatal T(4) levels despite maternal consumption of drinking water that contains perchlorate at levels in excess of the Environmental Protection Agency (EPA) drinking water equivalent level (24.5 microg/L) based on the National Research Council reference dose (RfD) [0.7 microg/(kg.day)]. Therefore the perchlorate RfD is likely to be protective of thyroid function in neonates of mothers with adequate iodide intake.

  13. Spatial Variability of Perchlorate along a Traverse Route from Zhongshan Station to Dome A, East Antarctica

    Science.gov (United States)

    Jiang, S.; Cole-Dai, J.; Li, Y.; An, C.

    2016-12-01

    Snow deposition and accumulation on the Antarctic ice sheet preserve records of climatic change, as well as those of chemical characteristics of the environment. Chemical composition of snow and ice cores can be used to track the sources of important substances including pollutants and to investigate relationships between atmospheric chemistry and climatic conditions. Recent development in analytical methodology has enabled the determination of ultra-trace levels of perchlorate in polar snow. We have measured perchlorate concentrations in surface snow samples collected along a traverse route from Zhongshan Station to Dome A in East Antarctica to determine the level of atmospheric perchlorate in East Antarctica and to assess the spatial variability of perchlorate along the traverse route. Results show that the perchlorate concentrations vary between 32 and 200 ng kg-1, with an average of 104.3 ng kg-1. And perchlorate concentration profile presents regional variation patterns along the traverse route. In the coastal region, perchlorate concentration displays an apparent decreasing relationship with increasing distance inland; it exhibits no apparent trend in the intermediate region from 200 to 1000 km. The inland region from 1000 to 1244 km presents a generally increasing trend of perchlorate concentration approaching the dome. Different rates of atmospheric production, dilution by snow accumulation and re-deposition of snow-emitted perchlorate (post-depositional change) are the three possible factors influencing the spatial variability of perchlorate over Antarctica.

  14. Chlorine Isotopic Composition of Perchlorate in Human Urine as a Means of Distinguishing Among Natural and Synthetic Exposure Sources

    Science.gov (United States)

    Poghosyan, Armen; Morel-Espinosa, Maria; Valentín-Blasini, Liza; Blount, Benjamin C.; Ferreccio, Catterina; Steinmaus, Craig M.; Sturchio, Neil C.

    2015-01-01

    Perchlorate (ClO4−) is a ubiquitous environmental contaminant with high human exposure potential; it has both natural and man-made sources in the environment. Natural perchlorate forms in the atmosphere from where it deposits onto the surface of Earth, whereas synthetic perchlorate is manufactured as an oxidant for industrial, aerospace, and military applications. Perchlorate exposure can potentially cause adverse health effects in humans by interfering with the production of thyroid hormones through competitively blocking iodide uptake. To control and reduce perchlorate exposure, the contributions of different sources of perchlorate exposure need to be quantified. Thus, we demonstrate a novel approach for determining the contribution of different perchlorate exposure sources by quantifying stable and radioactive chlorine isotopes of perchlorate extracted from composite urine samples from two distinct populations: one in Atlanta, USA and one in Taltal, Chile (Atacama region). Urinary perchlorate from the Atlanta region resembles indigenous natural perchlorate from the southwestern USA [δ37Cl = +4.1 ± 1.0 ‰; 36Cl/Cl = 1811 (± 136) × 10−15], and urinary perchlorate from the Taltal, Chile region is similar to natural perchlorate in nitrate salt deposits from the Atacama Desert of northern Chile [δ37Cl = −11.0 ± 1.0 ‰; 36Cl/Cl = 254 (± 40) × 10−15]. Neither urinary perchlorate resembled the isotopic pattern found in synthetic perchlorate. These results indicate that natural perchlorate of regional provenance is the dominant exposure source for the two sample populations, and that chlorine isotope ratios provide a robust tool for elucidating perchlorate exposure pathways. PMID:25805252

  15. Occurrence of perchlorate in groundwater, paired farmland soil, lettuce, and rhizosphere soil from Chengdu, China.

    Science.gov (United States)

    Tang, Yulu; Zhong, Bifeng; Qu, Bing; Feng, Shujin; Ding, Sanglan; Su, Shijun; Li, Zhi; Gan, Zhiwei

    2017-05-24

    A total of 28 groundwater, paired farmland soil, lettuce, and its rhizosphere soil samples were collected from Chengdu, China to detect perchlorate levels and to evaluate the relationships of perchlorate concentrations among these matrices. The perchlorate concentrations in the groundwater, farmland soil, lettuce, and rhizosphere soil samples ranged from below detection limit to 60.2 μg L -1 , from below detection limit to 249 μg kg -1 dry weight (dw), from 2.07 to 1010 μg kg -1 wet weight, and from below detection limit to 314 μg kg -1 dw, respectively. Significant correlation was found in the perchlorate levels among the farmland soil, lettuce, and rhizosphere soil, suggesting that they have common pollution sources, or perchlorate might transfer from farmland soil-rhizosphere soil-plant. However, there is no significant correlation between groundwater and the other three matrices, indicating that infiltration from perchlorate contaminated farmland soil was not the predominant source for groundwater pollution in Chengdu. The perchlorate concentrations in the farmland soil and lettuce samples were significantly higher than those in the rhizosphere soil, primarily due to uptake of perchlorate through the rhizosphere micro-environment by lettuce, or accelerated degradation by rhizospheric microorganisms, which contributed more needs further investigation.

  16. Monitoring of perchlorate in diverse foods and its estimated dietary exposure for Korea populations.

    Science.gov (United States)

    Lee, Ji-Woo; Oh, Sung-Hee; Oh, Jeong-Eun

    2012-12-01

    The perchlorate concentrations in various Korean food samples were monitored, and 663 samples belonging to 39 kinds of food were analyzed. The analysis results revealed that dairy products contain the highest average concentration of 6.34 μg/kg and high detection frequency of over 85%. Fruit and vegetables showed the next highest perchlorate concentration with an average of 6.17 μg/kg. Especially, with its average concentration of 39.9 μg/kg, spinach showed the highest perchlorate level among all target food samples studied. Tomato was followed by spinach, which showed a high perchlorate average concentration of 19.8 μg/kg, and over 7 μg/kg was detected in ham and sausage (avg. 7.31 μg/kg) and in instant noodles (avg. 7.58 μg/kg). Less than 2 μg/kg was detected in fishes, meats and beverages. The exposure dose of perchlorate in Korean by food intake was calculated on the basis of the analyzed perchlorate levels in this study. The daily perchlorate dose to which Korean adults are exposed is 0.04 μg/kg bw/day, which is lower than the RfD (0.7 μg/kg bw/day) value suggested by US NAS. This result indicates that Korean people's current exposure to perchlorate from domestic food consumption is evaluated as safe. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Synthesis of CNTs/CuO and its catalytic performance on the thermal decomposition of ammonium perchlorate

    Directory of Open Access Journals (Sweden)

    Ping Cui

    2016-05-01

    Full Text Available Copper oxide (CuO nanoparticles were successfully deposited on carbon nanotubes’ (CNTs surface via complex-precipitation method, the nanocomposite was characterized by transmission electron microscopy (TEM, scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, X-ray powder diffraction (XRD, Raman spectroscopy, Fourier transform infrared (FT-IR and Brunauer–Emmett–Teller (BET. The catalytic performance of CNTs/CuO on ammonium perchlorate (AP decomposition was analyzed by differential thermal analyzer (DTA, the DTA results showed its excellent catalytic effect on AP decomposition, as 8 wt.% CNTs/CuO was added in AP, the second exothermic peak temperature decreased by 158 °C. Such composite may be a promising candidate for catalyzing the AP thermal decomposition.

  18. Natural Attenuation of Perchlorate in Groundwater: Processes, Tools and Monitoring Techniques

    Science.gov (United States)

    2008-04-01

    environmental health concerns are associated with the uptake of perchlorate in food crops such as lettuce and milk (Kirk et al., 2003; USEPA, 2005b...that high concentrations of ammonium would remain in the soil and provide forensic clues regarding the source of perchlorate and plume history (Motzer

  19. Mechanisms of direct inhibition of the respiratory sulfate-reduction pathway by (per)chlorate and nitrate.

    Science.gov (United States)

    Carlson, Hans K; Kuehl, Jennifer V; Hazra, Amrita B; Justice, Nicholas B; Stoeva, Magdalena K; Sczesnak, Andrew; Mullan, Mark R; Iavarone, Anthony T; Engelbrektson, Anna; Price, Morgan N; Deutschbauer, Adam M; Arkin, Adam P; Coates, John D

    2015-06-01

    We investigated perchlorate (ClO(4)(-)) and chlorate (ClO(3)(-)) (collectively (per)chlorate) in comparison with nitrate as potential inhibitors of sulfide (H(2)S) production by mesophilic sulfate-reducing microorganisms (SRMs). We demonstrate the specificity and potency of (per)chlorate as direct SRM inhibitors in both pure cultures and undefined sulfidogenic communities. We demonstrate that (per)chlorate and nitrate are antagonistic inhibitors and resistance is cross-inducible implying that these compounds share at least one common mechanism of resistance. Using tagged-transposon pools we identified genes responsible for sensitivity and resistance in Desulfovibrio alaskensis G20. We found that mutants in Dde_2702 (Rex), a repressor of the central sulfate-reduction pathway were resistant to both (per)chlorate and nitrate. In general, Rex derepresses its regulon in response to increasing intracellular NADH:NAD(+) ratios. In cells in which respiratory sulfate reduction is inhibited, NADH:NAD(+) ratios should increase leading to derepression of the sulfate-reduction pathway. In support of this, in (per)chlorate or nitrate-stressed wild-type G20 we observed higher NADH:NAD(+) ratios, increased transcripts and increased peptide counts for genes in the core Rex regulon. We conclude that one mode of (per)chlorate and nitrate toxicity is as direct inhibitors of the central sulfate-reduction pathway. Our results demonstrate that (per)chlorate are more potent inhibitors than nitrate in both pure cultures and communities, implying that they represent an attractive alternative for controlling sulfidogenesis in industrial ecosystems. Of these, perchlorate offers better application logistics because of its inhibitory potency, solubility, relative chemical stability, low affinity for mineral cations and high mobility in environmental systems.

  20. The occurrence of perchlorate during drinking water electrolysis using BDD anodes

    International Nuclear Information System (INIS)

    Bergmann, M.E. Henry; Rollin, Johanna; Iourtchouk, Tatiana

    2009-01-01

    Electrochemical studies were carried out to estimate the risks of perchlorate formation in drinking water disinfected by direct electrolysis. Boron Doped Diamond (BDD) anodes were used in laboratory and commercially available cells at 20 deg. C. The current density was changed between 50 and 500 A m -2 . For comparison, other anode materials such as platinum and mixed oxide were also tested. It was found that BDD anodes have a thousandfold higher perchlorate formation potential compared with the other electrode materials that were tested. In long-term discontinuous experiments all the chloride finally reacted to form perchlorate. The same result was obtained when probable oxychlorine intermediates (OCl - , ClO 2 - , ClO 3 - ) were electrolysed in synthetic waters in the ppm range of concentrations. The tendency to form perchlorate was confirmed when the flow rate of drinking water was varied between 100 and 300 L h -1 and the temperature increased to 30 deg. C. In a continuous flow mode of operation a higher chloride concentration in the water resulted in a lower perchlorate formation. This can be explained by reaction competition of species near and on the anode surface for experiments both with synthetic and local drinking waters. It is concluded that the use of electrodes producing highly reactive species must be more carefully controlled in hygienically and environmentally oriented applications

  1. Occurrence of perchlorate in drinking water and seawater in South Korea.

    Science.gov (United States)

    Her, Namguk; Jeong, Hyunchan; Kim, Jongsung; Yoon, Yeomin

    2011-08-01

    Concentrations of perchlorate were determined by both liquid-chromatography-mass spectrometry (LC-MS) and ion chromatography tandem mass spectrometry (IC-MS/MS) in 520 tap-water, 48 bottled-water, and 9 seawater samples obtained or purchased from >100 different locations in South Korea. The method detection limits were 0.013 μg/L for LC-MS and 0.005 μg/L for IC-MS/MS, and the limits of quantification (LOQs) were 0.10 μg/L for LC-MS and 0.032 μg/L for IC-MS/MS. Perchlorate was detected in most (80%) of the tap-water samples, with concentrations higher than the LOQ; the concentrations ranged from water samples, with concentrations higher then the LOQ, ranging from 0.04 to 0.29 μg/L (mean 0.07 ± 0.01). The concentrations of perchlorate in all seawater samples collected from the various locations were higher than the LOQ, with a mean concentration of 1.15 ± 0.01 μg/L (maximum 6.11 and minimum 0.11). This study provides further evidence that drinking-water sources have been contaminated by perchlorate. To the best of our knowledge, this is the first comprehensive study on perchlorate assessment in drinking water and seawater in South Korea.

  2. Sample processing method for the determination of perchlorate in milk

    International Nuclear Information System (INIS)

    Dyke, Jason V.; Kirk, Andrea B.; Kalyani Martinelango, P.; Dasgupta, Purnendu K.

    2006-01-01

    In recent years, many different water sources and foods have been reported to contain perchlorate. Studies indicate that significant levels of perchlorate are present in both human and dairy milk. The determination of perchlorate in milk is particularly important due to its potential health impact on infants and children. As for many other biological samples, sample preparation is more time consuming than the analysis itself. The concurrent presence of large amounts of fats, proteins, carbohydrates, etc., demands some initial cleanup; otherwise the separation column lifetime and the limit of detection are both greatly compromised. Reported milk processing methods require the addition of chemicals such as ethanol, acetic acid or acetonitrile. Reagent addition is undesirable in trace analysis. We report here an essentially reagent-free sample preparation method for the determination of perchlorate in milk. Milk samples are spiked with isotopically labeled perchlorate and centrifuged to remove lipids. The resulting liquid is placed in a disposable centrifugal ultrafilter device with a molecular weight cutoff of 10 kDa, and centrifuged. Approximately 5-10 ml of clear liquid, ready for analysis, is obtained from a 20 ml milk sample. Both bovine and human milk samples have been successfully processed and analyzed by ion chromatography-mass spectrometry (IC-MS). Standard addition experiments show good recoveries. The repeatability of the analytical result for the same sample in multiple sample cleanup runs ranged from 3 to 6% R.S.D. This processing technique has also been successfully applied for the determination of iodide and thiocyanate in milk

  3. Isolation of perchlorate-reducing Azospira suillum strain JB524 from tidal flats of the Yellow Sea

    Directory of Open Access Journals (Sweden)

    Nirmala Bardiya

    2016-11-01

    Full Text Available Objective: To isolate and identify perchlorate-reducing bacterium from an enriched consortium from tidal flats of the Yellow Sea. Methods: A perchlorate-enriched consortium from tidal flats of the Yellow Sea was used to isolate Azospira suillum (A. suillum strain JB524. The strain was identified based on partial 16S rDNA sequencing. Perchlorate reduction by the strain was tested with acetate as the e - donor in the presence of NaCl, nitrate and at different growth temperatures using standard anaerobic techniques. The complete enzymatic destruction of perchlorate was confirmed as evolution of O2 by chlorite dismutase in the absence of acetate. Results: Strain JB524 shared 100% 16S rDNA sequence similarity with the type strain A. suillum PST isolated from a swine waste treatment lagoon. Perchlorate reduction coincided with concomitant increase in cell density. Although, acclimatization of the strain PST at suboptimal temperature for perchlorate reduction is not reported, the newly isolated strain could rapidly reduce perchlorate at 22 °C after brief acclimatization. Conclusions: Reduction of perchlorate by A. suillum strain JB524 was negatively affected in the presence of NaCl, suboptimal temperature, presence of nitrate, and limiting amount of acetate as the e-donor.

  4. Study of microbial perchlorate reduction: Considering of multiple pH, electron acceptors and donors

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xing [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Gao, Baoyu, E-mail: bygao@sdu.edu.cn [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Jin, Bo [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia); Zhen, Hu [Key Laboratory of Water Pollution Control and Recycling (Shandong), School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Wang, Xiaoyi [CSIRO Land and Water, Gate 5, Waite Road, Urrbrae, SA 5064 (Australia); Dai, Ming [School of Chemical Engineering, The University of Adelaide, Adelaide SA 5005,Australia (Australia)

    2015-03-21

    Graphical abstract: Schemes of perchlorate reduction in ClO{sub 4}{sup −}/ClO{sub 3}{sup −}–NO{sub 3}{sup −} e{sup −}acceptor systems. - Highlights: • We created a multiple electron acceptor/donor system for ClO{sub 4}{sup −} reduction. • Nitrate reduction was inhibited when using perchlorate-grown Azospira sp. KJ. • Reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}and NO{sub 3}{sup −}. • Oxidation of acetate was inhibited by succinate in acetate–succinate series. - Abstract: Bioremediation of perchlorate-cotaminated water by a heterotrophic perchlorate reducing bacterium creates a multiple electron acceptor-donor system. We experimentally determined the perchlorate reduction by Azospira sp. KJ at multiple pH, electron acceptors and donors systems; this was the aim of this study. Perchlorate reduction was drastically inhibited at the pH 6.0, and the maximum reduction of perchlorate by Azospira sp. KJ was observed at pH value of 8.0. Perchlorate reduction was retarded in ClO{sub 4}{sup −}–ClO{sub 3}{sup −}, ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −},and ClO{sub 4}{sup −}–NO{sub 3}{sup −} acceptor systems, while being completely inhibited by the additional O{sub 2} in the ClO{sub 4}{sup −}–O{sub 2} acceptor system. The reduction proceeded as an order of ClO{sub 3}{sup −}, ClO{sub 4}{sup −}, and NO{sub 3}{sup −} in the ClO{sub 4}{sup −}–ClO{sub 3}{sup −}–NO{sub 3}{sup −} system. K{sub S,}v{sub max}, and q{sub max} obtained at different e{sup −} acceptor and donor conditions are calculated as 140.5–190.6 mg/L, 8.7–13.2 mg-perchlorate/L-h, and 0.094–0.16 mg-perchlorate/mg-DW-h, respectively.

  5. Novel Electrochemical Process for Treatment of Perchlorate in Waste Water

    Science.gov (United States)

    2011-03-06

    chemical products, such as leather, rubber, fabrics, paints , and aluminum. As a result, perchlorate contamination is now recognized as a widespread... paints , and aluminum. As a result, perchlorate contamination is now recognized as a widespread concern affecting many water utilities. Thus, removing...I. A.; Lin, Y., Highly efficient and low cost graphene -based nanocomposite for water purification, 2010, In Preparation. 3. Kang, X.; Shao, Y

  6. Effect of nitrate, acetate and hydrogen on native perchlorate-reducing microbial communities and their activity in vadose soil

    Science.gov (United States)

    Nozawa-Inoue, Mamie; Jien, Mercy; Yang, Kun; Rolston, Dennis E.; Hristova, Krassimira R.; Scow, Kate M.

    2011-01-01

    Effect of nitrate, acetate and hydrogen on native perchlorate-reducing bacteria (PRB) was examined by conducting microcosm tests using vadose soil collected from a perchlorate-contaminated site. The rate of perchlorate reduction was enhanced by hydrogen amendment and inhibited by acetate amendment, compared to unamendment. Nitrate was reduced before perchlorate in all amendments. In hydrogen-amended and unamended soils, nitrate delayed perchlorate reduction, suggesting the PRB preferentially use nitrate as an electron acceptor. In contrast, nitrate eliminated the inhibitory effect of acetate amendment on perchlorate reduction and increased the rate and the extent, possibly because the preceding nitrate reduction/denitrification decreased the acetate concentration which was inhibitory to the native PRB. In hydrogen-amended and unamended soils, perchlorate reductase gene (pcrA) copies, representing PRB densities, increased with either perchlorate or nitrate reduction, suggesting either perchlorate or nitrate stimulates growth of the PRB. In contrast, in acetate-amended soil pcrA increased only when perchlorate was depleted: a large portion of the PRB may have not utilized nitrate in this amendment. Nitrate addition did not alter the distribution of the dominant pcrA clones in hydrogen-amended soil, likely because of the functional redundancy of PRB as nitrate-reducers/denitrifiers, whereas acetate selected different pcrA clones from those with hydrogen amendment. PMID:21284679

  7. The geochemical associations of nitrate and naturally formed perchlorate in the Mojave Desert, California, USA

    Science.gov (United States)

    Lybrand, Rebecca A.; Michalski, Greg; Graham, Robert C.; Parker, David R.

    2013-03-01

    Perchlorate is a widely studied environmental contaminant that may adversely affect human health, and whose natural occurrence has emerged as a subject of great interest. Naturally formed perchlorate has been found to co-occur with nitrate in arid environments worldwide, but the relationship is not fully understood in the desert soils of the southwestern United States. The main objective of this research was to explore the origin, pedogenic distribution, and possible preservation of perchlorate and nitrate in the Mojave Desert mud hill deposits of California and to determine if the co-occurrence of putatively natural perchlorate was significantly correlated with nitrate in these soils. We identified 39 soil horizons in the Mojave Desert, California that contained reportable levels of perchlorate (MRL >165 μg kg-1) with a maximum concentration of 23 mg kg-1. A weak yet significant correlation was observed between perchlorate and nitrate (r2 = 0.321∗∗∗), which could be indicative of similar mechanisms of accumulation. When compared to published data for the Atacama Desert, the Mojave Desert perchlorate concentrations were remarkably lower for a given nitrate concentration. Oxygen isotopes in the nitrate were examined to identify variation within the Mojave Desert field sites, and to compare with the available literature for the Atacama Desert. The Mojave Desert Δ17O values ranged from 7‰ to 13‰, indicating a mixture of biologically and atmospherically-derived nitrate. An investigation of the distribution of perchlorate among soil horizons revealed that over sixty percent of the samples containing perchlorate were from C horizons while only twenty percent of the samples were from B horizons and even fewer in the overlying A horizons. Soil chemical, morphologic, and geologic characteristics of the soils suggest that the perchlorate, nitrate and/or other soluble salts have moved in a "bottom-up" manner wherein the salts were deposited in strata through

  8. Effects of larval-juvenile treatment with perchlorate and co-treatment with thyroxine on zebrafish sex ratios

    Science.gov (United States)

    Mukhi, S.; Torres, L.; Patino, R.

    2007-01-01

    The objective of this study was to determine the effect of larval-juvenile exposure to perchlorate, a thyroid hormone synthesis inhibitor, on the establishment of gonadal sex ratios in zebrafish. Zebrafish were exposed to untreated water or water containing perchlorate at 100 or 250 ppm for a period of 30 days starting at 3 days postfertilization (dpf). Recovery treatments consisted of a combination of perchlorate and exogenous thyroxine (T4; 10 nM). Thyroid histology was assessed at the end of the treatment period (33 dpf), and gonadal histology and sex ratios were determined in fish that were allowed an additional 10-day period of growth in untreated water. As expected, exposure to perchlorate caused changes in thyroid histology consistent with hypothyroidism and these effects were reversed by co-treatment with exogenous T4. Perchlorate did not affect fish survival but co-treatment with T4 induced higher mortality. However, relative to the corresponding perchlorate concentration, co-treatment with T4 caused increased mortality only at a perchlorate concentration of 100 ppm. Perchlorate alone or in the presence of T4 suppressed body length at 43 dpf relative to control values. Perchlorate exposure skewed the sex ratio toward female in a concentration-dependent manner, and co-treatment with T4 not only blocked the feminizing effect of perchlorate but also overcompensated by skewing the sex ratio towards male. Moreover, co-treatment with T4 advanced the onset of spermatogenesis in males. There was no clear association between sex ratios and larval survival or growth. We conclude that endogenous thyroid hormone plays a role in the establishment of gonadal sex phenotype during early development in zebrafish. ?? 2006 Elsevier Inc. All rights reserved.

  9. Reactions of atomic oxygen with the chlorate ion and the perchlorate ion

    Science.gov (United States)

    Anan'ev, Vladimir; Miklin, Mikhail; Kriger, Ludmila

    2014-06-01

    The reactions of the chlorate ion with atomic oxygen formed under photolysis of the nitrate ion introduced to potassium chlorate crystal by co-crystallization were studied by optical and infrared absorption spectroscopy. The perchlorate ion was found to form in solids as product of addition reaction of singlet atomic oxygen, formed under dissociation of the peroxynitrite ion - the product of isomerization of the excited nitrate ion. Triplet atomic oxygen does not react with the chlorate ion. The atomic oxygen formed under photolysis of the nitrate ion introduced to potassium perchlorate crystal by co-crystallization does not react with the perchlorate ion.

  10. Transport and degradation of perchlorate in deep vadose zone: implications from direct observations during bioremediation treatment

    Science.gov (United States)

    Dahan, Ofer; Katz, Idan; Avishai, Lior; Ronen, Zeev

    2017-08-01

    An in situ bioremediation experiment of a deep vadose zone ( ˜ 40 m) contaminated with a high concentration of perchlorate (> 25 000 mg L-1) was conducted through a full-scale field operation. Favourable environmental conditions for microbiological reduction of perchlorate were sought by infiltrating an electron donor-enriched water solution using drip irrigation underlying an airtight sealing liner. A vadose zone monitoring system (VMS) was used for real-time tracking of the percolation process, the penetration depth of dissolved organic carbon (DOC), and the variation in perchlorate concentration across the entire soil depth. The experimental conditions for each infiltration event were adjusted according to insight gained from data obtained by the VMS in previous stages. Continuous monitoring of the vadose zone indicated that in the top 13 m of the cross section, perchlorate concentration is dramatically reduced from thousands of milligrams per litre to near-detection limits with a concurrent increase in chloride concentration. Nevertheless, in the deeper parts of the vadose zone (< 17 m), perchlorate concentration increased, suggesting its mobilization down through the cross section. Breakthrough of DOC and bromide at different depths across the unsaturated zone showed limited migration capacity of biologically consumable carbon and energy sources due to their enhanced biodegradation in the upper soil layers. Nevertheless, the increased DOC concentration with concurrent reduction in perchlorate and increase in the chloride-to-perchlorate ratio in the top 13 m indicate partial degradation of perchlorate in this zone. There was no evidence of improved degradation conditions in the deeper parts where the initial concentrations of perchlorate were significantly higher.

  11. Assembled cross-species perchlorate dose-response data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set contains dose-response data for perchlorate exposure in multiple species. These data were assembled from peer-reviewed studies. Species included in...

  12. Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing.

    Science.gov (United States)

    Wan, Dongjin; Liu, Yongde; Niu, Zhenhua; Xiao, Shuhu; Li, Daorong

    2016-02-01

    Hydrogen autotrophic reduction of perchlorate have advantages of high removal efficiency and harmless to drinking water. But so far the reported information about the microbial community structure was comparatively limited, changes in the biodiversity and the dominant bacteria during acclimation process required detailed study. In this study, perchlorate-reducing hydrogen autotrophic bacteria were acclimated by hydrogen aeration from activated sludge. For the first time, high-throughput sequencing was applied to analyze changes in biodiversity and the dominant bacteria during acclimation process. The Michaelis-Menten model described the perchlorate reduction kinetics well. Model parameters q(max) and K(s) were 2.521-3.245 (mg ClO4(-)/gVSS h) and 5.44-8.23 (mg/l), respectively. Microbial perchlorate reduction occurred across at pH range 5.0-11.0; removal was highest at pH 9.0. The enriched mixed bacteria could use perchlorate, nitrate and sulfate as electron accepter, and the sequence of preference was: NO3(-) > ClO4(-) > SO4(2-). Compared to the feed culture, biodiversity decreased greatly during acclimation process, the microbial community structure gradually stabilized after 9 acclimation cycles. The Thauera genus related to Rhodocyclales was the dominated perchlorate reducing bacteria (PRB) in the mixed culture.

  13. The Effects of Perchlorate and its Precursors on Organic Molecules under Simulated Mars Conditions

    Science.gov (United States)

    Carrier, B. L.; Beegle, L. W.; Bhartia, R.; Abbey, W. J.

    2016-12-01

    Perchlorate (ClO4-) was first detected on Mars by the Phoenix Lander in 2008 [1] and has subsequently been detected by Curiosity in Gale Crater [2], in Mars meteorite EETA79001 [3], and has been proposed as a possible explanation for results obtained by Viking [4]. Perchlorate has also been shown to be formed under current Mars conditions via the oxidation of mineral chlorides, further supporting the theory that perchlorate is present globally on Mars [5]. The discovery of perchlorate on Mars has raised important questions about its effects on the survival and detection of organic molecules. Although it has been shown that pyrolysis in the presence of perchlorate results in the alteration or destruction of organic molecules [2, 4], few studies have been conducted on the potential effects of perchlorate and its precursors on organic molecules prior to analysis. Perchlorate is typically inert under Mars temperatures and pressures, but it has been shown to decompose to form reactive oxychlorine species such as chlorite (ClO2-), hypochlorite (ClO-) and chlorine dioxide (ClO2) when exposed to Mars conditions including ionizing radiation [6]. The oxidation of chloride to perchlorate also results in the formation of reactive oxychlorine species such as chlorate (ClO3-) [5]. Here we investigate the effects of perchlorate and its oxychlorine precursors on organic molecules. Experiments are performed in a Mars Simulation Chamber (MSC) capable of reproducing the temperature, pressure, atmospheric composition and UV flux found on Mars. Soil simulants are prepared consisting of Mojave Mars Simulant (MMS) [7] and each organic, as well as varying concentrations of perchlorate and/or chloride salts, and exposed in the MSC. Subsequent to exposure in the MSC samples are leached and the leachate analyzed by HPLC and LC-MS to determine the degree of degradation of the original organic and the identity of any potential decomposition products formed by oxidation or chlorination

  14. DDT performance of energetic cobalt coordination compounds. [Dozen of compounds similar to 2-(5-cyanotetrazolato)pentaaminecobalt perchlorate, trinitrotriamine cobalt, dinitrobis(ethylenediamine) cobalt perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Lieberman, M.L.; Fleming, W.

    1986-01-01

    The compound 2-(5-cyanotetrazolato)pentaamminecobalt(III) perchlorate (CP) has been utilized in low-voltage detonators because it reliably undergoes deflagration-to-detonation transition (DDT). In the present investigation, we have compared the performance of over a dozen similar compounds. These compounds all have cobalt as the coordinating metal, most are ammine complexes, and all except one incorporate the perchlorate anion as an oxidizer. Chemical factors such as fuel-to-oxidizer ratio, trigger group, and organic content have been varied. 18 refs., 7 figs., 2 tabs.

  15. The effects of sodium perchlorate on the liver of Molly Fish ( Poecilia ...

    African Journals Online (AJOL)

    Adult male molly fishes were reared up to ten days in control water or in water containing sodium perchlorate at concentrations of 1, 5, 25 and 125 ppm. Remarkable steatosis, fibrosis, hyperemia and necrosis were distinguished in parallel with increasing sodium perchlorate concentrations. The striking cellular damages ...

  16. Transport and degradation of perchlorate in deep vadose zone: implications from direct observations during bioremediation treatment

    Directory of Open Access Journals (Sweden)

    O. Dahan

    2017-08-01

    Full Text Available An in situ bioremediation experiment of a deep vadose zone ( ∼  40 m contaminated with a high concentration of perchlorate (> 25 000 mg L−1 was conducted through a full-scale field operation. Favourable environmental conditions for microbiological reduction of perchlorate were sought by infiltrating an electron donor-enriched water solution using drip irrigation underlying an airtight sealing liner. A vadose zone monitoring system (VMS was used for real-time tracking of the percolation process, the penetration depth of dissolved organic carbon (DOC, and the variation in perchlorate concentration across the entire soil depth. The experimental conditions for each infiltration event were adjusted according to insight gained from data obtained by the VMS in previous stages. Continuous monitoring of the vadose zone indicated that in the top 13 m of the cross section, perchlorate concentration is dramatically reduced from thousands of milligrams per litre to near-detection limits with a concurrent increase in chloride concentration. Nevertheless, in the deeper parts of the vadose zone (< 17 m, perchlorate concentration increased, suggesting its mobilization down through the cross section. Breakthrough of DOC and bromide at different depths across the unsaturated zone showed limited migration capacity of biologically consumable carbon and energy sources due to their enhanced biodegradation in the upper soil layers. Nevertheless, the increased DOC concentration with concurrent reduction in perchlorate and increase in the chloride-to-perchlorate ratio in the top 13 m indicate partial degradation of perchlorate in this zone. There was no evidence of improved degradation conditions in the deeper parts where the initial concentrations of perchlorate were significantly higher.

  17. μ-Peroxido-bis[acetonitrilebis(ethylenediaminecobalt(III] tetrakis(perchlorate

    Directory of Open Access Journals (Sweden)

    Valentina A. Kalibabchuk

    2010-12-01

    Full Text Available The title compound, [Co2(O2(CH3CN2(C2H8N24](ClO44, consists of centrosymmetric binuclear cations and perchlorate anions. Two CoIII atoms, which have a slightly distorted octahedral coordination, are connected through a peroxido bridge; the O—O distance is 1.476 (3 Å. Both acetonitrile ligands are situated in a trans position with respect to the O—O bridge. In the crystal, the complex cations are connected by N—H...O hydrogen bonds between ethylendiamine NH groups and O atoms from the perchlorate anions and peroxide O atoms.

  18. Development of a Reference Dose for Perchlorate: Current Issues and Status

    Science.gov (United States)

    Pleus, R. C.; Goodman, G.; Mattie, D. R.

    2000-01-01

    The perchlorate anion (ClO4) is typically manufactured as the ammonium salt. The most common use of ammonium perchlorate is in the aerospace program as a component of solid rocket fuel. The perchlorate anion is exceedingly stable under environmental conditions and has been found in ground and surface waters in CA, NV, UT, AZ, TX, AK, NY, MD, WV and FL. The National Center for Environmental Assessment (NCEA) of the U.S. Environmental Protection Agency (US EPA) is in the process of developing an oral reference dose (RfD) for perchlorate. An oral RfD is a body-weight-adjusted dose that can be consumed daily over an entire lifetime with the expectation of no adverse health effects. Once developed, the new RfD will be used by US EPA as the basis of a safe-drinking-water level (SDWL) guideline. US EPA and regional regulatory agencies will then jointly or separately propose clean-up action levels for ground and surface waters at contaminated sites. The toxicological database on CIO4- as of March 1997 was determined by an expert peer-review panel to be inadequate for the purpose of deriving an oral RfD. For example, little or no experimental data existed on the subchronic, reproductive, or developmental toxicity of perchlorate. To fill gaps in the toxicological database, eight animal studies were designed by a government-industry consortium that included US EPA and AFRL. These studies were performed in 1997-1998. It has been known for many years that in the thyroid, high doses of perchlorate block the function of iodide by competing for iodide binding sites. Perchlorate was used in the 1950s-60s as a treatment for Graves' disease (a hyperthyroid condition). Because of what was already known about the pharmacological mode of action of perchlorate, specific concerns addressed in the design of the recent animal studies included the potential for developmental toxicity, notably neurological development. Upon review of complete study reports from four of the studies and

  19. Rapid analysis of perchlorate in drinking water at parts per billion levels using microchip electrophoresis.

    Science.gov (United States)

    Gertsch, Jana C; Noblitt, Scott D; Cropek, Donald M; Henry, Charles S

    2010-05-01

    A microchip capillary electrophoresis (MCE) system has been developed for the determination of perchlorate in drinking water. The United States Environmental Protection Agency (USEPA) recently proposed a health advisory limit for perchlorate in drinking water of 15 parts per billion (ppb), a level requiring large, sophisticated instrumentation, such as ion chromatography coupled with mass spectrometry (IC-MS), for detection. An inexpensive, portable system is desired for routine online monitoring applications of perchlorate in drinking water. Here, we present an MCE method using contact conductivity detection for perchlorate determination. The method has several advantages, including reduced analysis times relative to IC, inherent portability, high selectivity, and minimal sample pretreatment. Resolution of perchlorate from more abundant ions was achieved using zwitterionic, sulfobetaine surfactants, N-hexadecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate (HDAPS) and N-tetradecyl-N,N-dimethyl-3-ammonio-1-propane sulfonate (TDAPS). The system performance and the optimization of the separation chemistry, including the use of these surfactants to resolve perchlorate from other anions, are discussed in this work. The system is capable of detection limits of 3.4 +/- 1.8 ppb (n = 6) in standards and 5.6 +/- 1.7 ppb (n = 6) in drinking water.

  20. Perchlorates on Mars enhance the bacteriocidal effects of UV light.

    Science.gov (United States)

    Wadsworth, Jennifer; Cockell, Charles S

    2017-07-06

    Perchlorates have been identified on the surface of Mars. This has prompted speculation of what their influence would be on habitability. We show that when irradiated with a simulated Martian UV flux, perchlorates become bacteriocidal. At concentrations associated with Martian surface regolith, vegetative cells of Bacillus subtilis in Martian analogue environments lost viability within minutes. Two other components of the Martian surface, iron oxides and hydrogen peroxide, act in synergy with irradiated perchlorates to cause a 10.8-fold increase in cell death when compared to cells exposed to UV radiation after 60 seconds of exposure. These data show that the combined effects of at least three components of the Martian surface, activated by surface photochemistry, render the present-day surface more uninhabitable than previously thought, and demonstrate the low probability of survival of biological contaminants released from robotic and human exploration missions.

  1. Effective adsorption/electrocatalytic degradation of perchlorate using Pd/Pt supported on N-doped activated carbon fiber cathode

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Fubing; Zhong, Yu [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Yang, Qi, E-mail: yangqi@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Wang, Dongbo, E-mail: dongbowang@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China); Chen, Fei; Zhao, Jianwei; Xie, Ting; Jiang, Chen; An, Hongxue; Zeng, Guangming; Li, Xiaoming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082 (China)

    2017-02-05

    Highlights: • Pd/Pt-NACF served as an adsorption/electrocatalysis electrode to reduce perchlorate. • The possible mechanisms involved in the reaction process were explained. • The reusability and stability of Pd/Pt-NACF bifunctional material was evaluated. - Abstract: In this work, Pd/Pt supported on N-doped activated carbon fiber (Pd/Pt-NACF) was employed as the electrode for electrocatalytic degradation of perchlorate through adsorption/electroreduction process. Perchlorate in solution was firstly adsorbed on Pd/Pt-NACF and then reduced to non-toxic chloride by the catalytic function of Pd/Pt at a constant current (20 mA). Compared with Pd/Pt-ACF, the adsorption capacity and electrocatalytic degradation efficiency of Pd/Pt-NACF for perchlorate increased 161% and 28%, respectively. Obviously, positively charged N-functional groups on NACF surface enhanced the adsorption capacity of Pd/Pt-NACF, and the dissociation of hydrogen to atomic H* by the Pd/Pt nanostructures on the cathode might drastically promote the electrocatalytic reduction of perchlorate. The role of atomic H* in the electroreduction process was identified by tertiary butanol inhibition test. Meanwhile, the perchlorate degradation performance was not substantially lower after three successive adsorption/electrocatalytic degradation experiments, demonstrating the electrochemical reusability and stability of the as-prepared electrode. These results showed that Pd/Pt-NACF was effective for electrocatalytic degradation of perchlorate and had great potential in perchlorate removal from water.

  2. Preparation of Some Novel Copper(I) Complexes and their Molar Conductances in Organic Solvents

    Science.gov (United States)

    Gill, Dip Singh; Rana, Dilbag

    2009-04-01

    Attempts have been made to prepare some novel copper(I) nitrate, sulfate, and perchlorate complexes. Molar conductances of these complexes have been measured in organic solvents like acetonitrile (AN), acetone (AC), methanol (MeOH), N,N-dimethylformamide (DMF), N,Ndimethylacetamide (DMA), and dimethylsulfoxide (DMSO) at 298 K. The molar conductance data have been analyzed to obtain limiting molar conductances (λ0) and ion association constants (KA) of the electrolytes. The results showed that all these complexes are strong electrolytes in all organic solvents. The limiting ionic molar conductances (λo± ) for various ions have been calculated using Bu4NBPh4 as reference electrolyte. The actual radii for copper(I) complex ions are very large and different in different solvents and indicate some solvation effects in each solvent system

  3. Modeling In Situ Bioremediation of Perchlorate-Contaminated Groundwater

    National Research Council Canada - National Science Library

    Secody, Roland E

    2007-01-01

    .... An innovative technology was recently developed which uses dual-screened treatment wells to mix an electron donor into perchlorate-contaminated groundwater in order to effect in situ bioremediation...

  4. Synthesis and characterization of an energetic compound Cu(Mtta)2(NO3)2 and effect on thermal decomposition of ammonium perchlorate

    International Nuclear Information System (INIS)

    Yang, Qi; Chen, Sanping; Xie, Gang; Gao, Shengli

    2011-01-01

    Highlights: ► A new energetic compound Cu(Mtta) 2 (NO 3 ) 2 has been synthesized and structural characterized. ► Sensitivity tests reveal that the compound is insensitive to mechanical stimuli. ► Cu(Mtta) 2 (NO 3 ) 2 accelerates the decomposition of Ammonium perchlorate (AP), which is the key component of composite solid propellant. - Abstract: An energetic coordination compound Cu(Mtta) 2 (NO 3 ) 2 has been synthesized by using 1-methyltetrazole (Mtta) as ligand and its structure has been characterized by X-ray single crystal diffraction. The central copper (II) cation was coordinated by four O atoms from two Mtta ligands and two N atoms from two NO 3 − anions to form a six-coordinated and distorted octahedral structure. 2D superamolecular layer structure was formed by the extensive intermolecular hydrogen bonds between Mtta ligands and NO 3 − anions. Thermal decomposition process of the compound was predicted based on DSC and TG-DTG analyses results. The kinetic parameters of the first exothermic process of the compound were studied by the Kissinger's and Ozawa–Doyle's methods. Sensitivity tests revealed that the compound was insensitive to mechanical stimuli. In addition, compound was explored as additive to promote the thermal decomposition of ammonium perchlorate (AP) by differential scanning calorimetry.

  5. On solubility of perchloric (periodic) acid and α-cyanacetanmide in aqueous solutions at 25 deg C

    International Nuclear Information System (INIS)

    Omarova, R.A.; Balysbekov, S.M.; Erkasov, R.Sh.; Nikolenko, O.N.

    1996-01-01

    Acid-base interaction within perchloric (periodic) acid-α-cyanacetamide-water systems in studied by method of solubility under isothermal conditions at 25 deg C. Solubility regularities of crystalline α-cyanacetamide in perchloric and periodic acid solutions are determined, the concentration limits of formation of a new solid phase-tris(α-cyanacetamide) perchlorate within perchloric acid-α-cyanacetamide-water system are determined. The compound is identified by means of chemical and X-ray phase analyses, its density and melting temperature are determined. Iodic acid and α-cyanacetamide water solution base system is shown to belong to a simple eutonic type. 2 refs., 3 figs., 2 tabs

  6. COMMENT ON "PERCHLORATE IDENTIFICATION IN FERTILIZERS" AND THE SUBSEQUENT ADDITION/CORRECTION [LETTER TO EDITOR

    Science.gov (United States)

    Perchlorate contamination has been reported in several fertilizer materials and not just in mined Chile saltpeter, where it is a welo-known natural impurity. To survey fertilizers for perchlorate, two analytical techniques have been applied to 45 products that span agricultural, ...

  7. PERCHLORATE UPTAKE BY SALT CEDAR (TAMARIX RAMOSISSIMA) IN THE LAS VEGAS WASH RIPARIAN ECOSYSTEM

    Science.gov (United States)

    Perchlorate ion (CIO4-) has been identified in samples of dormant salt cedar (Tamarix ramosissima) growing in the Las vegas Wash. Perchlorate is an oxidenat, but its reduction is kineticaly hindered. CXoncern over thyrpoid effects caused the Environmental Protection Agency (EPA...

  8. Perchlorate-Coupled Carbon Monoxide (CO Oxidation: Evidence for a Plausible Microbe-Mediated Reaction in Martian Brines

    Directory of Open Access Journals (Sweden)

    Marisa R. Myers

    2017-12-01

    Full Text Available The presence of hydrated salts on Mars indicates that some regions of its surface might be habitable if suitable metabolizable substrates are available. However, several lines of evidence have shown that Mars’ regolith contains only trace levels of the organic matter needed to support heterotrophic microbes. Due to the scarcity of organic carbon, carbon monoxide (CO at a concentration of about 700 parts per million (about 0.4 Pa might be the single most abundant readily available substrate that could support near-surface bacterial activity. Although a variety of electron acceptors can be coupled to CO oxidation, perchlorate is likely the most abundant potential oxidant in Mars’ brines. Whether perchlorate, a potent chaotrope, can support microbial CO oxidation has not been previously documented. We report here the first evidence for perchlorate-coupled CO oxidation based on assays with two distinct euryarchaeal extreme halophiles. CO oxidation occurred readily in 3.8 M NaCl brines with perchlorate concentrations from 0.01 to 1 M. Both isolates were able to couple CO with perchlorate or chlorate under anaerobic conditions with or without nitrate as an inducer for nitrate reductase, which serves as a perchlorate reductase in extreme halophiles. In the presence of perchlorate, CO concentrations were reduced to levels well below those found in Mars’ atmosphere. This indicates that CO could contribute to the survival of microbial populations in hydrated salt formations or brines if water activities are suitably permissive.

  9. Effect of perchlorate in fertilisers on lettuce and fruit vegetables : Uptake and distribution of perchlorate in greenhouse soil-grown butterhead lettuce and solless-grown cucumber, sweet pepper, round and cherry tomate

    NARCIS (Netherlands)

    Voogt, W.; Eveleens, B.A.; Steenhuizen, J.W.; Vandevelde, I.; Vis, de R.; Lommel, van J.

    2014-01-01

    In 2013 traces of perchlorate were detected in fruits and vegetable samples. Because perchlorate (ClO4 -) is part of a group of substances (goitrogens) that may inhibit the uptake of iodine by the thyroid, these findings caused commotion in the markets. Fertilizers were named as one of the sources

  10. Cyclic voltammetry and reduction mechanistic studies of styrylpyrylium perchlorates

    Directory of Open Access Journals (Sweden)

    Y. L. Bonzi-Coulibaly

    2013-04-01

    Full Text Available The reduction and oxidation potentials of methylated 4-styrylpyrylium and 6-styrylpyrylium perchlorates have been evaluated using cyclic voltammetry, in comparison to their non-methylated derivatives values. The reduction peak of all studied compounds remained chemically irreversible. The presence of the electron-donating methyl group on pyrylium ring leads to a shift of the styrylpyrylium perchlorates reduction potential towards cathodic values. Kinetic studies on platinum electrodes based on the variation of the peak potential at different scan rates and upon substrate concentrations confirm, in another way, the mechanism of electron transfer.DOI: http://dx.doi.org/10.4314/bcse.v27i1.12

  11. Synthesis and characterisation of some lanthanide perchlorate complexes of 4-nitrosoantipyrine

    International Nuclear Information System (INIS)

    Jayasankar, H.; Indrasenan, P.

    1988-01-01

    Seven lanthanide perchlorate complexes of 4-nitrosoantipyrine (NAP) of the general formula [Ln(NAP) 4 ClO 4 ](ClO 4 ) 2 (where Ln=La, Pr, Nd, Sm, Gd, Dy and Y), have been synthesised and characterised by elemental analyses, molecular weights, conductances, magnetic moments and infrared and electronic spectral data. In these nine-coordinated complexes, all the four NAP molecules are coordinated bidentately and one of the perchlorate groups is coordinated monodentately. (author). 12 refs

  12. Effects of prolonged exposure to perchlorate on thyroid and reproductive function in zebrafish

    Science.gov (United States)

    Mukhi, S.; Patino, R.

    2007-01-01

    The objectives of this study were to determine the effects of prolonged exposure to perchlorate on (1) thyroid status and reproductive performance of adult zebrafish (Danio rerio) and (2) F1 embryo survival and early larval development. Using a static-renewal procedure, mixed sex populations of adult zebrafish were exposed to 0, 10, and 100 mg/l nominal concentrations of waterborne perchlorate for 10 weeks. Thyroid histology was qualitatively assessed, and females and males were separated and further exposed to their respective treatments for six additional weeks. Eight females in each tank replicate (n = 3) were paired weekly with four males from the same respective treatment, and packed-egg (spawn) volume (PEV) was measured each of the last five weeks. At least once during weeks 14-16 of exposure, other end points measured included fertilization rate, fertilized egg diameter, hatching rate, standard length, and craniofacial development of 4-day-postfertilization larvae and thyroid hormone content of 3.5-h embryos and of exposed mothers. At 10 weeks of exposure, perchlorate at both concentrations caused thyroidal hypertrophy and colloid depletion. A marked reduction in PEV was observed toward the end of the 6-week spawning period, but fertilization and embryo hatching rates were unaffected. Fertilized egg diameter and larval length were increased by parental exposure to perchlorate. Larval head depth was unaffected but the forward protrusion of the lower jaw-associated cartilage complexes, Meckel's and ceratohyal, was decreased. Exposure to both concentrations of perchlorate inhibited whole-body thyroxine content in mothers and embryos, but triiodothyronine content was unchanged. In conclusion, prolonged exposure of adult zebrafish to perchlorate not only disrupts their thyroid endocrine system but also impairs reproduction and influences early F1 development. ?? 2007 Oxford University Press.

  13. Microbial redox processes in deep subsurface environments and the potential application of (perchlorate in oil reservoirs

    Directory of Open Access Journals (Sweden)

    Martin G Liebensteiner

    2014-09-01

    Full Text Available The ability of microorganisms to thrive under oxygen-free conditions in subsurface environments relies on the enzymatic reduction of oxidized elements, such as sulfate, ferric iron or CO2, coupled to the oxidation of inorganic or organic compounds. A broad phylogenetic and functional diversity of microorganisms from subsurface environments has been described using isolation-based and advanced molecular ecological techniques. The physiological groups reviewed here comprise iron-, manganese- and nitrate-reducing microorganisms. In the context of recent findings also the potential of chlorate and perchlorate [jointly termed (perchlorate] reduction in oil reservoirs will be discussed. Special attention is given to elevated temperatures that are predominant in the deep subsurface. Microbial reduction of (perchlorate is a thermodynamically favorable redox process, also at high temperature. However, knowledge about (perchlorate reduction at elevated temperatures is still scarce and restricted to members of the Firmicutes and the archaeon Archaeoglobus fulgidus. By analyzing the diversity and phylogenetic distribution of functional genes in (metagenome databases and combining this knowledge with extrapolations to earlier-made physiological observations we speculate on the potential of (perchlorate reduction in the subsurface and more precisely oil fields. In addition, the application of (perchlorate for bioremediation, souring control and microbial enhanced oil recovery are addressed.

  14. Thermal decomposition of beryllium perchlorate tetrahydrate

    International Nuclear Information System (INIS)

    Berezkina, L.G.; Borisova, S.I.; Tamm, N.S.; Novoselova, A.V.

    1975-01-01

    Thermal decomposition of Be(ClO 4 ) 2 x4H 2 O was studied by the differential flow technique in the helium stream. The kinetics was followed by an exchange reaction of the perchloric acid appearing by the decomposition with potassium carbonate. The rate of CO 2 liberation in this process was recorded by a heat conductivity detector. The exchange reaction yielding CO 2 is quantitative, it is not the limiting one and it does not distort the kinetics of the process of perchlorate decomposition. The solid products of decomposition were studied by infrared and NMR spectroscopy, roentgenography, thermography and chemical analysis. A mechanism suggested for the decomposition involves intermediate formation of hydroxyperchlorate: Be(ClO 4 ) 2 x4H 2 O → Be(OH)ClO 4 +HClO 4 +3H 2 O; Be(OH)ClO 4 → BeO+HClO 4 . Decomposition is accompained by melting of the sample. The mechanism of decomposition is hydrolytic. At room temperature the hydroxyperchlorate is a thick syrup-like compound crystallizing after long storing

  15. Structural and magnetic characterization of a tetranuclear copper(II) cubane stabilized by intramolecular metal cation-π interactions.

    Science.gov (United States)

    Papadakis, Raffaello; Rivière, Eric; Giorgi, Michel; Jamet, Hélène; Rousselot-Pailley, Pierre; Réglier, Marius; Simaan, A Jalila; Tron, Thierry

    2013-05-20

    A novel tetranuclear copper(II) complex (1) was synthesized from the self-assembly of copper(II) perchlorate and the ligand N-benzyl-1-(2-pyridyl)methaneimine (L(1)). Single-crystal X-ray diffraction studies revealed that complex 1 consists of a Cu4(OH)4 cubane core, where the four copper(II) centers are linked by μ3-hydroxo bridges. Each copper(II) ion is in a distorted square-pyramidal geometry. X-ray analysis also evidenced an unusual metal cation-π interaction between the copper ions and phenyl substituents of the ligand. Calculations based on the density functional theory method were used to quantify the strength of this metal-π interaction, which appears as an important stabilizing parameter of the cubane core, possibly acting as a driving parameter in the self-aggregation process. In contrast, using the ligand N-phenethyl-1-(2-pyridyl)methaneimine (L(2)), which only differs from L(1) by one methylene group, the same synthetic procedure led to a binuclear bis(μ-hydroxo)copper(II) complex (2) displaying intermolecular π-π interactions or, by a slight variation of the experimental conditions, to a mononuclear complex (3). These complexes were studied by X-ray diffraction techniques. The magnetic properties of complexes 1 and 2 are reported and discussed.

  16. Pediatric neurobehavioral diseases in Nevada counties with respect to perchlorate in drinking water: an ecological inquiry.

    Science.gov (United States)

    Chang, Soju; Crothers, Carol; Lai, Shenghan; Lamm, Steven

    2003-10-01

    Contamination of drinking water with perchlorate, a known thyrotropic agent, has been demonstrated in areas in the western United States. The health consequences of that exposure have been studied, particularly in the State of Nevada. Previous studies in Nevada, comparing the area with perchlorate in the drinking water and the areas without perchlorate in the drinking water, have found no difference in neonatal thyroxine (T(4)) or thyrotropin (TSH) levels, or in the prevalences of thyroid diseases and thyroid cancer. This same study design has now been applied to the major neurobehavioral diseases of childhood (i.e., attention deficit-hyperactivity disorder (ADHD) and autism) and to school performance in order to determine whether those conditions are more frequent in the area with perchlorate-contaminated water. Medical services data on ADHD and autism were obtained from the Nevada Medicaid system for the period of January 1, 1996, to December 31, 2000, with county of residence used as the basis for residential information. Analyses of fourth-grade school performance results for two recent time periods came from the state government. Perchlorate concentrations in drinking water had been determined by local water authorities. ADHD and autism rates for the area with perchlorate in the drinking water (Clark County) were calculated and compared with the rates for the other areas in the state, as were fourth-grade school performances. Analysis of the data from the Nevada Medicaid program shows that the rates for ADHD and for autism in the area where perchlorate was in the drinking water did not exceed the rates in those areas where there was no perchlorate contamination in the drinking water. Fourth-grade standardized test results for students in Clark County were not different from those of the remainder of the state. This ecological study of children in the exposure area did not find evidence of an increased risk of either ADHD or of autism caused by perchlorate

  17. Fusibility diagram of strontium perchlorate-water system

    International Nuclear Information System (INIS)

    Dobrynina, T.A.; Akhapkina, N.A.; Rosolovskij, V.Ya.

    1986-01-01

    Investigation into fusibility in Sr(ClO 4 ) 2 -H 2 O binary system using visual-polythermal method and DTA is conducted. Existence of the following solid phases in the system: ice, Sr(ClO 4 ) 2 x8H 2 O, Sr(ClO 4 ) 2 x3H 2 O, Sr(ClO 4 )xH 2 O and Sr(ClO 4 ) 2 is displayed. Anhydrous strontium perchlorate is crystallized as an equilibrium solid phase in the range of high Sr(ClO 4 ) 2 concentrations in the 155-295 deg C temperature range. Transitions between ice and Sr(ClO 4 ) 2 x8H 2 O and Sr(ClO 4 ) 2 x8H 2 O and Sr(ClO 4 ) 2 x3H 2 O belong to eutectic type. Transformations of Sr(ClO 4 ) 2 x3H 2 O into Sr(ClO 4 ) 2 x2H 2 O and Sr(ClO 4 ) 2 xH 2 O into Sr(ClO 4 ) 2 take place at the boundary of congruence. Metastable states characterized by formation of metastable eutectics between ice and Sr(ClO 4 ) 2 x3H 2 O, Sr(ClO 4 ) 2 x8H 2 O and Sr(ClO 4 ) 2 xh 2 O, Sr(ClO 4 ) 2 x3H 2 O and Sr(ClO 4 ) 2 are found for all hydrates of strontium perchlorate and for anhydrous perchlorate

  18. High-Nitrogen-Based Pyrotechnics: Development of Perchlorate-Free Green-Light Illuminants for Military and Civilian Applications

    Science.gov (United States)

    2012-01-01

    Table 1. Magnesium served as the main fuel in the formulation, barium nitrate and potassium per- chlorate served as the oxidizers, and dechlorane plus...course of the investigation needed to be changed. Although the initial investigation set out to remove potassium per- chlorate oxidizer from the M195 HHS...become a concern of the US Department of Defense is the “perchlorate issue.” Potassium perchlorate and ammonium perchlorate oxidizers, once believed to be

  19. Evidence of Influence of Human Activities and Volcanic Eruptions on Environmental Perchlorate from a 300-Year Greenland Ice Core Record.

    Science.gov (United States)

    Cole-Dai, Jihong; Peterson, Kari Marie; Kennedy, Joshua Andrew; Cox, Thomas S; Ferris, David G

    2018-06-26

    A 300-year (1700-2007) chronological record of environmental perchlorate, reconstructed from high-resolution analysis of a central Greenland ice core, shows that perchlorate levels in the post-1980 atmosphere were two-to-three times those of the pre-1980 environment. While this confirms recent reports of increased perchlorate in Arctic snow since 1980 compared with the levels for the prior decades (1930-1980), the longer Greenland record demonstrates that the Industrial Revolution and other human activities, which emitted large quantities of pollutants and contaminants, did not significantly impact environmental perchlorate, as perchlorate levels remained stable throughout the eighteenth, nineteenth, and much of the twentieth centuries. The increased levels since 1980 likely result from enhanced atmospheric perchlorate production, rather than from direct release from perchlorate manufacturing and applications. The enhancement is probably influenced by the emission of organic chlorine compounds in the last several decades. Prior to 1980, no significant long-term temporal trends in perchlorate concentration are observed. Brief (a few years) high concentration episodes appear frequently over an apparently stable and low background (~1 ng kg‒1). Several such episodes coincide in time with large explosive volcanic eruptions including the 1912 Novarupta/Katmai eruption in Alaska. It appears that atmospheric perchlorate production is impacted by large eruptions in both high and low latitudes, but not by small eruptions and non-explosive degassing.

  20. Structure, spectra and phase transition in p-nitroanilinium perchlorate crystal

    Energy Technology Data Exchange (ETDEWEB)

    Marchewka, M.K.; Drozd, M.; Pietraszko, A

    2003-07-25

    The first X-ray diffraction and vibrational spectroscopic analysis of a novel complex between p-nitroaniline and perchloric acid is reported. The structure was solved in 295 K. Room temperature powder infrared and Raman measurements for the p-nitroanilinium perchlorate (1:1) crystals were carried out. The vibrational spectra in the region of internal vibrations of ions corroborates the X-ray data which show that p-nitroaniline molecule is monoprotonated. DSC measurements on powder sample indicate the phase transition point at about 213 and 208 K for heating and cooling, respectively. No detectable signal was observed during powder test for second harmonic generation.

  1. Determination of copper in whole blood by differential pulse adsorptive stripping voltammetry

    Directory of Open Access Journals (Sweden)

    Tarik Attar

    2014-02-01

    Full Text Available A selective and sensitive method for determination of copper in blood by adsorptive differential pulse cathodic stripping voltammetry is presented. The method is based on adsorptive accumulation of the complexes of Cu (II ions with benzenesulfonyl hydrazide onto hanging mercury drop electrode (HMDE, followed by the reduction of the adsorbed species by differential pulse cathodic stripping voltammetry. The effect of various parameters such as supporting electrolyte, concentration of benzenesulfonyl hydrazide, accumulation potential, accumulation time and stirring rate on the selectivity and sensitivity were studied. The optimum conditions for determination of copper include perchloric acid 0.03 M, concentration of benzenesulfonyl hydrazide 7.5×10-5 M, the accumulation potential of -350 mV (vs. Ag/AgCl, the accumulation time of 50 s, and the scan rate of 50 mV s-1. Under optimized conditions, linear calibration curves were established for the concentration of Cu (II in the range of 0.62-275 ng mL-1, with detection limit of 0.186 ng mL-1 for Cu (II. The procedure was successfully applied to the determination of copper ion in whole blood samples.

  2. Probability of detecting perchlorate under natural conditions in deep groundwater in California and the Southwestern United States

    Science.gov (United States)

    Fram, Miranda S.; Belitz, Kenneth

    2011-01-01

    We use data from 1626 groundwater samples collected in California, primarily from public drinking water supply wells, to investigate the distribution of perchlorate in deep groundwater under natural conditions. The wells were sampled for the California Groundwater Ambient Monitoring and Assessment Priority Basin Project. We develop a logistic regression model for predicting probabilities of detecting perchlorate at concentrations greater than multiple threshold concentrations as a function of climate (represented by an aridity index) and potential anthropogenic contributions of perchlorate (quantified as an anthropogenic score, AS). AS is a composite categorical variable including terms for nitrate, pesticides, and volatile organic compounds. Incorporating water-quality parameters in AS permits identification of perturbation of natural occurrence patterns by flushing of natural perchlorate salts from unsaturated zones by irrigation recharge as well as addition of perchlorate from industrial and agricultural sources. The data and model results indicate low concentrations (0.1-0.5 μg/L) of perchlorate occur under natural conditions in groundwater across a wide range of climates, beyond the arid to semiarid climates in which they mostly have been previously reported. The probability of detecting perchlorate at concentrations greater than 0.1 μg/L under natural conditions ranges from 50-70% in semiarid to arid regions of California and the Southwestern United States to 5-15% in the wettest regions sampled (the Northern California coast). The probability of concentrations above 1 μg/L under natural conditions is low (generally <3%).

  3. The colloidal thyroxine (T4) ring as a novel biomarker of perchlorate exposure in the African clawed frog Xenopus laevis

    Science.gov (United States)

    Hu, F.; Sharma, Bibek; Mukhi, S.; Patino, R.; Carr, J.A.

    2006-01-01

    The purpose of this study was to determine if changes in colloidal thyroxine (T4) immunoreactivity can be used as a biomarker of perchlorate exposure in amphibian thyroid tissue. Larval African clawed frogs (Xenopus laevis) were exposed to 0, 1, 8, 93, and 1131 ??g perchlorate/l for 38 and 69 days to cover the normal period of larval development and metamorphosis. The results of this study confirmed the presence of an immunoreactive colloidal T4 ring in thyroid follicles of X. laevis and demonstrated that the intensity of this ring is reduced in a concentration-dependent manner by perchlorate exposure. The smallest effective concentration of perchlorate capable of significantly reducing colloidal T4 ring intensity was 8 ??g perchlorate/l. The intensity of the immunoreactive colloidal T4 ring is a more sensitive biomarker of perchlorate exposure than changes in hind limb length, forelimb emergence, tail resorption, thyrocyte hypertrophy, or colloid depletion. We conclude that the colloidal T4 ring can be used as a sensitive biomarker of perchlorate-induced thyroid disruption in amphibians. ?? Copyright 2006 Oxford University Press.

  4. catena-Poly[[copper(II-bis[μ-bis(3,5-dimethyl-1H-pyrazol-4-yl selenide

    Directory of Open Access Journals (Sweden)

    Maksym Seredyuk

    2009-11-01

    Full Text Available In the title compound, {[Cu(C10H14N4Se2](ClO42}n, the CuII ion is located on a twofold rotation axis and has a tetragonally distorted square-planar geometry constituted by four N atoms. A pair of bis(3,5-dimethyl-1H-pyrazol-4-yl selenide (L ligands bridges the copper centers into a polymeric chain extending along [001]. The perchlorate anions are involved in intermolecular N—H...O hydrogen bonding, which links the chains into layers parallel to the bc plane.

  5. Treatment of amiodarone-induced hypothyroidism with potassium perchlorate

    NARCIS (Netherlands)

    van Dam, E. W.; Prummel, M. F.; Wiersinga, W. M.; Nikkels, R. E.

    1993-01-01

    The antiarrhythmic drug, amiodarone, induces thyroid dysfunction, which is potentially dangerous in cardiac patients. After discontinuation of the drug it takes several months before euthyroidism is restored. The potent antithyroid drug, potassium perchlorate (KClO4), is used successfully to treat

  6. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  7. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike; Mehboob, Farrakh; van Gelder, Antonie H; Rijpstra, W Irene C; Damsté , Jaap S Sinninghe; Stams, Alfons J M

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  8. CO-occurring exposure to perchlorate, nitrate and thiocyanate alters thyroid function in healthy pregnant women

    International Nuclear Information System (INIS)

    Horton, Megan K.; Blount, Benjamin C.; Valentin-Blasini, Liza; Wapner, Ronald; Whyatt, Robin; Gennings, Chris; Factor-Litvak, Pam

    2015-01-01

    Background: Adequate maternal thyroid function during pregnancy is necessary for normal fetal brain development, making pregnancy a critical window of vulnerability to thyroid disrupting insults. Sodium/iodide symporter (NIS) inhibitors, namely perchlorate, nitrate, and thiocyanate, have been shown individually to competitively inhibit uptake of iodine by the thyroid. Several epidemiologic studies examined the association between these individual exposures and thyroid function. Few studies have examined the effect of this chemical mixture on thyroid function during pregnancy Objectives: We examined the cross sectional association between urinary perchlorate, thiocyanate and nitrate concentrations and thyroid function among healthy pregnant women living in New York City using weighted quantile sum (WQS) regression. Methods: We measured thyroid stimulating hormone (TSH) and free thyroxine (FreeT4) in blood samples; perchlorate, thiocyanate, nitrate and iodide in urine samples collected from 284 pregnant women at 12 (±2.8) weeks gestation. We examined associations between urinary analyte concentrations and TSH or FreeT4 using linear regression or WQS adjusting for gestational age, urinary iodide and creatinine. Results: Individual analyte concentrations in urine were significantly correlated (Spearman's r 0.4–0.5, p<0.001). Linear regression analyses did not suggest associations between individual concentrations and thyroid function. The WQS revealed a significant positive association between the weighted sum of urinary concentrations of the three analytes and increased TSH. Perchlorate had the largest weight in the index, indicating the largest contribution to the WQS. Conclusions: Co-exposure to perchlorate, nitrate and thiocyanate may alter maternal thyroid function, specifically TSH, during pregnancy. - Highlights: • Perchlorate, nitrate, thiocyanate and iodide measured in maternal urine. • Thyroid function (TSH and Free T4) measured in maternal blood

  9. CO-occurring exposure to perchlorate, nitrate and thiocyanate alters thyroid function in healthy pregnant women

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Megan K., E-mail: megan.horton@mssm.edu [Department of Preventive Medicine, Icahn School of Medicine, New York, New York (United States); Blount, Benjamin C.; Valentin-Blasini, Liza [National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia (United States); Wapner, Ronald [Department of Obstetrics and Gynecology, Columbia University, New York, New York (United States); Whyatt, Robin [Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York (United States); Gennings, Chris [Department of Preventive Medicine, Icahn School of Medicine, New York, New York (United States); Factor-Litvak, Pam [Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York (United States)

    2015-11-15

    Background: Adequate maternal thyroid function during pregnancy is necessary for normal fetal brain development, making pregnancy a critical window of vulnerability to thyroid disrupting insults. Sodium/iodide symporter (NIS) inhibitors, namely perchlorate, nitrate, and thiocyanate, have been shown individually to competitively inhibit uptake of iodine by the thyroid. Several epidemiologic studies examined the association between these individual exposures and thyroid function. Few studies have examined the effect of this chemical mixture on thyroid function during pregnancy Objectives: We examined the cross sectional association between urinary perchlorate, thiocyanate and nitrate concentrations and thyroid function among healthy pregnant women living in New York City using weighted quantile sum (WQS) regression. Methods: We measured thyroid stimulating hormone (TSH) and free thyroxine (FreeT4) in blood samples; perchlorate, thiocyanate, nitrate and iodide in urine samples collected from 284 pregnant women at 12 (±2.8) weeks gestation. We examined associations between urinary analyte concentrations and TSH or FreeT4 using linear regression or WQS adjusting for gestational age, urinary iodide and creatinine. Results: Individual analyte concentrations in urine were significantly correlated (Spearman's r 0.4–0.5, p<0.001). Linear regression analyses did not suggest associations between individual concentrations and thyroid function. The WQS revealed a significant positive association between the weighted sum of urinary concentrations of the three analytes and increased TSH. Perchlorate had the largest weight in the index, indicating the largest contribution to the WQS. Conclusions: Co-exposure to perchlorate, nitrate and thiocyanate may alter maternal thyroid function, specifically TSH, during pregnancy. - Highlights: • Perchlorate, nitrate, thiocyanate and iodide measured in maternal urine. • Thyroid function (TSH and Free T4) measured in maternal blood

  10. Synthesis, X-ray crystal structures, and phosphate ester cleavage properties of bis(2-pyridylmethyl)amine copper(II) complexes with guanidinium pendant groups.

    Science.gov (United States)

    Belousoff, Matthew J; Tjioe, Linda; Graham, Bim; Spiccia, Leone

    2008-10-06

    Three new derivatives of bis(2-pyridylmethyl)amine (DPA) featuring ethylguanidinium (L (1)), propylguanidinium (L (2)), or butylguanidinium (L (3)) pendant groups have been prepared by the reaction of N, N- bis(2-pyridylmethyl)alkane-alpha,omega-diamines with 1 H-pyrazole-1-carboxamidine hydrochloride. The corresponding mononuclear copper(II) complexes were prepared by reacting the ligands with copper(II) nitrate and were isolated as [Cu(LH (+))(OH 2)](ClO 4) 3. xNaClO 4. yH 2O ( C1: L = L (1), x = 2, y = 3; C2: L = L (2), x = 2, y = 4; C3: L = L (3), x = 1, y = 0) following cation exchange purification. Recrystallization yielded crystals of composition [Cu(LH (+))(X)](ClO 4) 3.X ( C1': L = L (1), X = MeOH; C2': L = L (2), X = H 2O; C3': L = L (3), X = H 2O), which were suitable for X-ray crystallography. The crystal structures of C1', C2', and C3' indicate that the DPA moieties of the ligands coordinate to the copper(II) centers in a meridional fashion, with a water or methanol molecule occupying the fourth basal position. Weakly bound perchlorate anions located in the axial positions complete the distorted octahedral coordination spheres. The noncoordinating, monoprotonated guanidinium groups project away from the Cu(II)-DPA units and are involved in extensive charge-assisted hydrogen-bonding interactions with cocrystallized water/methanol molecules and perchlorate anions within the crystal lattices. The copper(II) complexes were tested for their ability to promote the cleavage of two model phosphodiesters, bis( p-nitrophenyl)phosphate (BNPP) and uridine-3'- p-nitrophenylphosphate (UpNP), as well as supercoiled plasmid DNA (pBR 322). While the presence of the guanidine pendants was found to be detrimental to BNPP cleavage efficiency, the functionalized complexes were found to cleave plasmid DNA and, in some cases, the model ribose phosphate diester, UpNP, at a faster rate than the parent copper(II) complex of DPA.

  11. Background Perchlorate Source Identification Technical Guidance

    Science.gov (United States)

    2013-12-01

    perchlorate was at one time used to treat thyroid dysfunction, particularly a hyperthyroidism condition known as Grave’s disease . Ecological impacts...chlorates are used for pulp and paper bleaching, non-selective contact herbicide application, and plant defoliation for cotton, sunflowers...safflower, rice, and chili peppers (OMRI, 2000). Effluents from pulp mills have been reported to contain chlorate (1 to 70 mg/L) (Warrington, 2002), but

  12. Stability and Concentration Verification of Ammonium Perchlorate Dosing Solutions

    National Research Council Canada - National Science Library

    Tsui, David

    1998-01-01

    Stability and concentration verification was performed for the ammonium perchlorate dosing solutions used in the on-going 90-Day Oral Toxicity Study conducted by Springborn Laboratories, Inc. (SLI Study No. 3433.1...

  13. Assessment of the feasibility of anaerobic composting for treatment of perchlorate - contaminated soils in a war zone

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2015-01-01

    Full Text Available Aims: The objectives of this study were to determine the perchlorate concentrations in surface soils and assess feasibility of anaerobic bioremediation in full-scale for perchlorate-contaminated soils in a war zone. Materials and Methods: Fifteen samples of surface soil were collected using a composite sampling method in the study area. The soil samples, after extraction and preparation, were analyzed by ion chromatography. Anaerobic composting technique (soil excavation, mixing with manure, transfer into treatment cell and cover with a 6-mil high-density polyethylene liner considered to cleanup perchlorate-contaminated soil in a war zone. Results: The concentration of perchlorate in the soil surface samples ranged from 3 to 107.9 mg/kg, which is more than State advisory levels for residential and protection of domestic groundwater use pathway. This study indicates that technologies, skills, experience, raw materials (manure, lands, and machinery needed for implementation of full-scale composting, are available in the study area. Conclusions: Based on the results, anaerobic composting technique could be considered as a feasible, viable and cost-effective alternative for perchlorate bioremediation in the study area. According to the available of techniques and skills, successful experiences of anaerobic composting in other countries, and potential of study area, The application of anaerobic composting is technically feasible and can be use for perchlorate contaminated soil cleanup in a zone war.

  14. Possible Detection of Perchlorates by the Sample Analysis at Mars (SAM) Instrument: Comparison with Previous Missions

    Science.gov (United States)

    Navarro-Gonzalex, Rafael; Sutter, Brad; Archer, Doug; Ming, Doug; Eigenbrode, Jennifer; Franz, Heather; Glavin, Daniel; McAdam, Amy; Stern, Jennifer; McKay, Christopher; hide

    2013-01-01

    The first chemical analysis of soluble salts in the soil was carried out by the Phoenix Lander in the Martian Arctic [1]. Surprisingly, chlorine was present as magnesium or calcium perchlorate at 0.4 to 0.6 percent. Additional support for the identification of perchlorate came from the evolved gas analysis which detected the release of molecular oxygen at 350-550C [1]. When Mars-like soils from the Atacama Desert were spiked with magnesium perchlorate (1 percent) and heated using the Viking GC-MS protocol, nearly all the organics were combusted but a small amount was chlorinated, forming chloromethane and dichloromethane [2]. These chlorohydrocarbons were detected by the Viking GC-MS experiments when the Martian soil was analyzed but they were considered to be terrestrial contaminants [3]. Reinterpretation of the Viking results suggests Analysis at Mars (SAM) instrument on board the Mars Science Laboratory (MSL) ran four samples from an aeolian bedform named Rocknest. The samples analyzed were portioned from the fifth scoop at this location. The samples were heated to 835C at 35C/min with a He flow. The SAM QMS detected a major oxygen release (300-500C) [5], coupled with the release of chlorinated hydrocarbons (chloromethane, dichloromethane, trichloromethane, and chloromethylpropene) detected both by SAM QMS and GC-MS derived from known Earth organic contaminants in the instrument [6]. Calcium perchlorate appears to be the best candidate for evolved O2 in the Rocknest samples at this time but other Cl species (e.g., chlorates) are possible and must be evaluated. The potential detection of perchlorates in Rocknest material adds weight to the argument that both Viking Landers measured signatures of perchlorates. Even if the source of the organic carbon detected is still unknown, the chlorine source was likely Martian. Two mechanisms have been hypothesized for the formation of soil perchlorate: (1) Atmospheric oxidation of chlorine; and (2) UV photooxidation of

  15. A simplified method for obtaining high-purity perchlorate from groundwater for isotope analyses.

    Energy Technology Data Exchange (ETDEWEB)

    vonKiparski, G; Hillegonds, D

    2011-04-04

    Investigations into the occurrence and origin of perchlorate (ClO{sub 4}{sup -}) found in groundwater from across North America have been sparse until recent years, and there is mounting evidence that natural formation mechanisms are important. New opportunities for identifying groundwater perchlorate and its origin have arisen with the utilization of improved detection methods and sampling techniques. Additionally, application of the forensic potential of isotopic measurements has begun to elucidate sources, potential formation mechanisms and natural attenuation processes. Procedures developed appear to be amenable to enable high precision stable isotopic analyses, as well as lower precision AMS analyses of {sup 36}Cl. Immediate work is in analyzing perchlorate isotope standards and developing full analytical accuracy and uncertainty expectations. Field samples have also been collected, and will be analyzed when final qa/qc samples are deemed acceptable.

  16. Perchlorate exposure and association with iron homeostasis and other biological functions among NHANES 2005-2008 subjects

    Science.gov (United States)

    Perchlorate exposure and association with iron homeostasis and other biological functions among NHANES 2005-2008 subjects Schreinemachers DM, Ghio AJ, Cascio WE, Sobus JR. U.S. EPA, RTP, NC, USA Perchlorate (ClO4-), an environmental pollutant, is a known thyroid toxicant and...

  17. Combined effects of perchlorate, thiocyanate, and iodine on thyroid function in the National Health and Nutrition Examination Survey 2007–08

    International Nuclear Information System (INIS)

    Steinmaus, Craig; Miller, Mark D.; Cushing, Lara; Blount, Benjamin C.; Smith, Allan H.

    2013-01-01

    Perchlorate, thiocyanate, and low iodine intake can all decrease iodide intake into the thyroid gland. This can reduce thyroid hormone production since iodide is a key component of thyroid hormone. Previous research has suggested that each of these factors alone may decrease thyroid hormone levels, but effect sizes are small. We hypothesized that people who have all three factors at the same time have substantially lower thyroid hormone levels than people who do not, and the effect of this combined exposure is substantially larger than the effects seen in analyses focused on only one factor at a time. Using data from the 2007–2008 National Health and Nutrition Examination Survey, subjects were categorized into exposure groups based on their urinary perchlorate, iodine, and thiocyanate concentrations, and mean serum thyroxine concentrations were compared between groups. Subjects with high perchlorate (n=1939) had thyroxine concentrations that were 5.0% lower (mean difference=0.40 μg/dl, 95% confidence interval=0.14–0.65) than subjects with low perchlorate (n=2084). The individual effects of iodine and thiocyanate were even smaller. Subjects with high perchlorate, high thiocyanate, and low iodine combined (n=62) had thyroxine concentrations 12.9% lower (mean difference=1.07 μg/dl, 95% confidence interval=0.55–1.59) than subjects with low perchlorate, low thiocyanate, and adequate iodine (n=376). Potential confounders had little impact on results. Overall, these results suggest that concomitant exposure to perchlorate, thiocyanate, and low iodine markedly reduces thyroxine production. This highlights the potential importance of examining the combined effects of multiple agents when evaluating the toxicity of thyroid-disrupting agents. -- Highlights: ► Recent data suggest that essentially everyone in the US is exposed to perchlorate. ► Perchlorate exposure may be associated with lower thyroid hormone levels. ► Some groups may be more susceptible to

  18. Combined effects of perchlorate, thiocyanate, and iodine on thyroid function in the National Health and Nutrition Examination Survey 2007–08

    Energy Technology Data Exchange (ETDEWEB)

    Steinmaus, Craig, E-mail: craigs@berkeley.edu [Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, 1515 Clay St. 16th Floor, Oakland, CA 94612 (United States); Miller, Mark D., E-mail: ucsfpehsumiller@gmail.com [Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, 1515 Clay St. 16th Floor, Oakland, CA 94612 (United States); Cushing, Lara, E-mail: lara.cushing@berkeley.edu [Energy and Resources Group, 310 Barrows Hall, University of California, Berkeley, CA 93720-3050 (United States); Blount, Benjamin C., E-mail: bkb3@cdc.gov [Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, NE, Mail Stop F47, Atlanta, GA (United States); Smith, Allan H., E-mail: ahsmith@berkeley.edu [Arsenic Health Effects Research Group, 1950 Addison St., Suite 204, University of California, Berkeley, CA 94704 (United States)

    2013-05-15

    Perchlorate, thiocyanate, and low iodine intake can all decrease iodide intake into the thyroid gland. This can reduce thyroid hormone production since iodide is a key component of thyroid hormone. Previous research has suggested that each of these factors alone may decrease thyroid hormone levels, but effect sizes are small. We hypothesized that people who have all three factors at the same time have substantially lower thyroid hormone levels than people who do not, and the effect of this combined exposure is substantially larger than the effects seen in analyses focused on only one factor at a time. Using data from the 2007–2008 National Health and Nutrition Examination Survey, subjects were categorized into exposure groups based on their urinary perchlorate, iodine, and thiocyanate concentrations, and mean serum thyroxine concentrations were compared between groups. Subjects with high perchlorate (n=1939) had thyroxine concentrations that were 5.0% lower (mean difference=0.40 μg/dl, 95% confidence interval=0.14–0.65) than subjects with low perchlorate (n=2084). The individual effects of iodine and thiocyanate were even smaller. Subjects with high perchlorate, high thiocyanate, and low iodine combined (n=62) had thyroxine concentrations 12.9% lower (mean difference=1.07 μg/dl, 95% confidence interval=0.55–1.59) than subjects with low perchlorate, low thiocyanate, and adequate iodine (n=376). Potential confounders had little impact on results. Overall, these results suggest that concomitant exposure to perchlorate, thiocyanate, and low iodine markedly reduces thyroxine production. This highlights the potential importance of examining the combined effects of multiple agents when evaluating the toxicity of thyroid-disrupting agents. -- Highlights: ► Recent data suggest that essentially everyone in the US is exposed to perchlorate. ► Perchlorate exposure may be associated with lower thyroid hormone levels. ► Some groups may be more susceptible to

  19. Catalytic destruction of perchlorate in ferric chloride and hydrochloric acid solution with control of temperature, pressure and chemical reagents

    Science.gov (United States)

    Gu, Baohua; Cole, David R.; Brown, Gilbert M.

    2004-10-05

    A method is described to decompose perchlorate in a FeCl.sub.3 /HCl aqueous solution such as would be used to regenerate an anion exchange resin used to remove perchlorate. The solution is mixed with a reducing agent, preferably an organic alcohol and/or ferrous chloride, and can be heated to accelerate the decomposition of perchlorate. Lower temperatures may be employed if a catalyst is added.

  20. Radiation-chemical behaviour of Rh(4) in perchlorate and nitrate solutions

    International Nuclear Information System (INIS)

    Vladimirova, M.V.; Khalkina, E.V.

    1994-01-01

    Kinetic of rhodium(4) reduction in the process of radiolysis in solutions of perchloric (0.6-3.2 mol/l) and nitric (2-9 mol/l) acids with rhodium (4) concentration (0.4-5)x10 -3 mol/l has been studied. Irradiation of the solutions was carried out using a 60 Co source with dose rate of 3.5 Gy/s in the absorbed dose range up to 10 4 Gy. A mechanism of radiation-chemical reduction of rhodium(4) in perchloric and nitric acid solutions in suggested, the reason for high radiation-chemical yields of reduction is discussed. 7 refs.; 9 figs.; 2 tabs

  1. Growth and optical characterizations on 3-aminophenol perchlorate (3-AMPP) crystal

    Energy Technology Data Exchange (ETDEWEB)

    Boopathi, K., E-mail: ramasamyp@ssn.edu.in; Ramasamy, P., E-mail: ramasamyp@ssn.edu.in [Centre for Crystal Growth, SSN College of Engineering, Kalavakkam-603110 (India)

    2014-04-24

    A single crystal of organic nonlinear optical material 3-aminophenol perchlorate (3-AMP) was successfully grown by the slow evaporation solution method. Single-crystal X-ray diffractrometer was utilized to measure unit cell parameters and to confirm lattice parameter. 3-aminophenol perchlorate belongs to monoclinic space group P2{sub 1}. The optical transparency window in the UV-vis-NIR region is found to be good for nonlinear optical applications second harmonic studies were carried out. The second harmonic output intensity was tested using the Kurtz and Perry powder method and was found to be 1.1 times that of potassium dihydrogen phosphate (KDP)

  2. 4-(2-Azaniumylethylpiperazin-1-ium bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Reisi

    2011-09-01

    Full Text Available In the title compound, C6H17N32+·2ClO4−, the piperazine ring adopts a chair conformation with the ethylammonium fragment occupying an equatorial position. In the crystal, the dications and perchlorate anions are linked through N—H...O hydrogen bonding and weak C—H...O hydrogen bonding into a three-dimensional supramolecular network.

  3. Monitored Natural Attenuation of Perchlorate in Groundwater

    Science.gov (United States)

    2010-09-01

    dissolved oxygen DoD Department of Defense DPRB dissimilatory perchlorate-reducing bacteria EOS® Emulsified ( Edible ) Oil Substrate ESTCP...simple and complex electron donors, i.e., lactate and Emulsified ( Edible ) Oil Substrate (EOS®) Task 2: Laboratory Studies 1 solutions...project were to provide Department of Defense (DoD) managers and industry professionals with the tools needed to demonstrate to regulatory agencies that

  4. 4-Bromoanilinium perchlorate 18-crown-6 clathrate

    Directory of Open Access Journals (Sweden)

    Min Guo

    2010-11-01

    Full Text Available The reaction of 4-bromoaniline, 18-crown-6, and perchloric acid in methanol yields the title compound, C6H7BrN+·ClO4−·C12H24O6, in which the protonated –NH3+ group forms three bifurcated N—H...O hydrogen bonds to the O atoms of the crown ether.

  5. catena-Poly[[copper(II)-bis[μ-bis(3,5-dimethyl-1H-pyrazol-4-yl) selenide

    Science.gov (United States)

    Seredyuk, Maksym; Haukka, Matti; Pavlenko, Vadim A.; Fritsky, Igor O.

    2009-01-01

    In the title compound, {[Cu(C10H14N4Se)2](ClO4)2}n, the CuII ion is located on a twofold rotation axis and has a tetra­gonally distorted square-planar geometry constituted by four N atoms. A pair of bis(3,5-dimethyl-1H-pyrazol-4-yl) selenide (L) ligands bridges the copper centers into a polymeric chain extending along [001]. The perchlorate anions are involved in inter­molecular N—H⋯O hydrogen bonding, which links the chains into layers parallel to the bc plane. PMID:21578140

  6. The thermal decomposition behavior of ammonium perchlorate and of an ammonium-perchlorate-based composite propellant

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, R.; Minier, L.

    1998-03-24

    The thermal decomposition of ammonium perchlorate (AP) and ammonium-perchlorate-based composite propellants is studied using the simultaneous thermogravimetric modulated beam mass spectrometry (STMBMS) technique. The main objective of the present work is to evaluate whether the STMBMS can provide new data on these materials that will have sufficient detail on the reaction mechanisms and associated reaction kinetics to permit creation of a detailed model of the thermal decomposition process. Such a model is a necessary ingredient to engineering models of ignition and slow-cookoff for these AP-based composite propellants. Results show that the decomposition of pure AP is controlled by two processes. One occurs at lower temperatures (240 to 270 C), produces mainly H{sub 2}O, O{sub 2}, Cl{sub 2}, N{sub 2}O and HCl, and is shown to occur in the solid phase within the AP particles. 200{micro} diameter AP particles undergo 25% decomposition in the solid phase, whereas 20{micro} diameter AP particles undergo only 13% decomposition. The second process is dissociative sublimation of AP to NH{sub 3} + HClO{sub 4} followed by the decomposition of, and reaction between, these two products in the gas phase. The dissociative sublimation process occurs over the entire temperature range of AP decomposition, but only becomes dominant at temperatures above those for the solid-phase decomposition. AP-based composite propellants are used extensively in both small tactical rocket motors and large strategic rocket systems.

  7. Branched polymeric media: Perchlorate-selective resins from hyperbranched polyethyleneimine

    KAUST Repository

    Chen, Dennis P.; Yu, Changjun; Chang, ChingYu; Wan, Yanjian; Frechet, Jean; Goddard, William A.; Diallo, Mamadou S.

    2012-01-01

    prohibitive when treating groundwater with higher concentration of ClO4 - (e.g., 100-1000 ppb). In this article, we describe a new perchlorate-selective resin with high exchange capacity. This new resin was prepared by alkylation of branched polyethyleneimine

  8. Terbium nitrate luminescence quenching by eosin in he presence of lithium perchlorate in sulfolane solutions

    International Nuclear Information System (INIS)

    Ostakhov, S.S.; Kolosnitsyn, V.S.; Krasnogorskaya, N.N.; Kazakov, V.P.

    2000-01-01

    Quenching of terbium nitrate luminescence by anionic dye, eosin, in the presence of lithium perchlorate in sulfolane solutions was studied. Temperature dependence of terbium nitrate luminescence in sulfolane solutions in the presence of perchlorate anions were considered. The values of energy required for water molecular substitution in Tb 3+ ion coordination sphere for solvent molecule in electrolyte solution were ascertained [ru

  9. Groundwater movement, recharge, and perchlorate occurrence in a faulted alluvial aquifer in California (USA)

    Science.gov (United States)

    Izbicki, John A.; Teague, Nicholas F.; Hatzinger, Paul B.; Böhlke, John Karl; Sturchio, Neil C.

    2015-01-01

    Perchlorate from military, industrial, and legacy agricultural sources is present within an alluvial aquifer in the Rialto-Colton groundwater subbasin, 80 km east of Los Angeles, California (USA). The area is extensively faulted, with water-level differences exceeding 60 m across parts of the Rialto-Colton Fault separating the Rialto-Colton and Chino groundwater subbasins. Coupled well-bore flow and depth-dependent water-quality data show decreases in well yield and changes in water chemistry and isotopic composition, reflecting changing aquifer properties and groundwater recharge sources with depth. Perchlorate movement through some wells under unpumped conditions from shallower to deeper layers underlying mapped plumes was as high as 13 kg/year. Water-level maps suggest potential groundwater movement across the Rialto-Colton Fault through an overlying perched aquifer. Upward flow through a well in the Chino subbasin near the Rialto-Colton Fault suggests potential groundwater movement across the fault through permeable layers within partly consolidated deposits at depth. Although potentially important locally, movement of groundwater from the Rialto-Colton subbasin has not resulted in widespread occurrence of perchlorate within the Chino subbasin. Nitrate and perchlorate concentrations at the water table, associated with legacy agricultural fertilizer use, may be underestimated by data from long-screened wells that mix water from different depths within the aquifer.

  10. Thermal Decomposition of Calcium Perchlorate/Iron-Mineral Mixtures: Implications of the Evolved Oxygen from the Rocknest Eolian Deposit in Gale Crater, Mars

    Science.gov (United States)

    Bruck, A. M.; Sutter, B.; Ming, D. W.; Mahaffy, P.

    2014-01-01

    A major oxygen release between 300 and 500 C was detected by the Mars Curiosity Rover Sample Analysis at Mars (SAM) instrument at the Rocknest eolian deposit. Thermal decomposition of perchlorate (ClO4-) salts in the Rocknest samples are a possible explanation for this evolved oxygen release. Releative to Na-, K-, Mg-, and Fe-perchlorate, the thermal decomposition of Ca-perchlorate in laboratory experiments released O2 in the temperature range (400-500degC) closest to the O2 release temperatures observed for the Rocknest material. Furthermore, calcium perchlorate could have been the source of Cl in the chlorinated-hydrocarbons species that were detected by SAM. Different components in the Martian soil could affect the decomposition temperature of calcium per-chlorate or another oxychlorine species. This interaction of the two components in the soil could result in O2 release temperatures consistent with those detected by SAM in the Rocknest materials. The decomposition temperatures of various alkali metal perchlorates are known to decrease in the presence of a catalyst. The objective of this work is to investigate catalytic interactions on calcium perchlorate from various iron-bearing minerals known to be present in the Rocknest material

  11. Solid polymer electrolyte on the basis of polyethylene carbonate-lithium perchlorate system

    International Nuclear Information System (INIS)

    Dukhanin, G.P.; Dumler, S.A.; Sablin, A.N.; Novakov, I.A.

    2009-01-01

    Reaction in the system polyethylene carbonate-lithium perchlorate was investigated by IR spectroscopy, differential thermal and X-ray structural analyses. Specific electric conductivity of the prepared composition has been measured. Solid polymer electrolytes on the basis of polyethylene carbonate have conducting properties as electrolytes on the basis of unmodified polyethylene oxide. Compositions of polyethylene carbonate : LiClO 4 =10 : 1Al 2 O 3 -ZrO 2 possess maximum value of electrical conductivity. Activation energies of the process is calculated for all investigated compositions, and dependence of these values from concentration of lithium perchlorate is established

  12. Passive Biobarrier for Treating Co-Mingled Perchlorate and RDX in Groundwater at an Active Range

    Science.gov (United States)

    2016-12-31

    monitoring K hydraulic conductivity; sorption coefficient MCL Maximum Contaminant Level mg/kg milligram(s) per kilogram mg/L milligram(s) per liter...low concentrations. The effectiveness of the barrier for reducing migration of perchlorate and explosives in groundwater at the EEA of NSWCDD was...at NSWCDD suggests that an emulsified oil biobarrier is a viable alternative to reduce the migration of co-mingled perchlorate and explosives in

  13. CRYSTALLIZATION KINETICS OF AMMONIUM PERCHLORATE IN AN AGITATED VESSEL

    Directory of Open Access Journals (Sweden)

    Nahidh Kaseer

    2013-05-01

    Full Text Available 31Overall crystal growth kinetics for ammonium perchlorate in laboratory scale batch  agitated vessel crystallizer have been determined from batch experiments performed in an integral mode. The effects of temperature between 30-60ºC, seed size 0.07, 0.120 and 0.275 mm and stirrer speed 160, 340, and 480 rpm, on the kinetics of crystal growth were investigated. Two different methods, viz. polynomial fitting and initial derivative were used to predict the kinetics expression. In general both methods gave comparable results for growth kinetics estimation. The order of growth process is not more than two. The activation energy for crystal growth of ammonium perchlorate was determined and found  to be equal to 5.8 kJ/ mole.            Finally, the influence of the affecting parameters on the crystal growth rate gives general expression that had an obvious dependence of the growth rate on each variables of concern (temperature, seed size, and stirrer speed .The general overall growth rate expression had shown that super saturation is the most significant variable. While the positive dependence of the stirrer speed demonstrates the importance of the diffusional step in the growth rate model. Moreover, the positive dependence of the seed size demonstrate the importance of the surface integration  step in the growth rate model. All the studied variables tend to suggest that the growth rate characteristics  of ammonium perchlorate from aqueous solution commenced in a batch crystallizer are diffusion kinetic controlled process.

  14. Perchlorate Contamination of Drinking Water: Regulatory Issues and Legislative Actions

    National Research Council Canada - National Science Library

    Tiemann, Mary

    2007-01-01

    .... It also has been found in milk, fruits, and vegetables. Concern over the potential health risks of perchlorate exposure has increased, and some states and Members of Congress have urged the Environmental Protection Agency (EPA...

  15. Possible Calcite and Magnesium Perchlorate Interaction in the Mars Phoenix Thermal and Evolved Gas Analyzer (TEGA)

    Science.gov (United States)

    Cannon, K. M.; Sutter, B.; Ming, D. W.; Boynton, W. V.; Quinn, R. C.

    2012-01-01

    The Mars Phoenix Lander's TEGA instrument detected a calcium carbonate phase decomposing at high temperatures (approx.700 C) from the Wicked Witch soil sample [1]. TEGA also detected a lower temperature CO2 release between 400 C and 680 C [1]. Possible explanations given for this lower temperature CO2 release include thermal decomposition of Mg or Fe carbonates, a zeolitictype desorption reaction, or combustion of organic compounds in the soil [2]. The detection of 0.6 wt % soluble perchlorate by the Wet Chemistry Laboratory (WCL) on Phoenix [3] has implications for the possibility of organic molecules in the soil. Ming et al. [4] demonstrated that perchlorates could have oxidized organic compounds to CO2 in TEGA, preventing detection of their characteristic mass fragments. Here, we propose that a perchlorate salt and calcium carbonate present in martian soil reacted to produce the 400 C - 680 C TEGA CO2 release. The parent salts of the perchlorate on Mars are unknown, but geochemical models using WCL data support the possible dominance of Mg-perchlorate salts [5]. Mg(ClO4)2 6H2O is the stable phase at ambient martian conditions [6], and breaks down at lower temperatures than carbonates giving off Cl2 and HCl gas [7,8]. Devlin and Herley [7] report two exotherms at 410-478 C and 473-533 C which correspond to the decomposition of Mg(ClO4)2.

  16. Acute and chronic activity of perchlorate and hexavalent chromium contamination on the survival and development of Culex quinquefasciatus Say (Diptera: Culicidae)

    International Nuclear Information System (INIS)

    Sorensen, Mary A.; Jensen, Peter D.; Walton, William E.; Trumble, John T.

    2006-01-01

    Effects of water contamination with perchlorate and hexavalent chromium [Cr (VI)] on the mosquito Culex quinquefasciatus were assessed. The chronic (10-day) LC 5 s values for perchlorate and chromium were 74 ± 8.0 mg/L and 0.41 ± 0.15 mg/L, respectively. Relative Growth Index, a measure of growth and mortality rates in a population, was significantly reduced within 5 days for levels of perchlorate as low as 25 mg/L and for levels of chromium as low as 0.16 mg/L. Neither compound altered wing length of surviving adults. In combination, contaminants were synergistic, causing 14% more mortality than predicted. Acute (24-h) LC 5 values for perchlorate and Cr (VI) were 17,000 ± 3200 and 38 ± 1.3 mg/L, respectively. Effects on mosquito larvae in contaminated environments are likely to be observed for Cr (VI) but not for perchlorate, which generally does not occur at levels as high as those shown here to affect larval mosquitoes. - While pollution with hexavalent chromium may adversely affect Culex quinquefasciatus larvae, levels of perchlorate currently in the environment will not impact these insects

  17. Acute and chronic activity of perchlorate and hexavalent chromium contamination on the survival and development of Culex quinquefasciatus Say (Diptera: Culicidae)

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, Mary A. [Department of Entomology, University of California, Riverside, CA 92521 (United States)]. E-mail: mary.sorensen@email.ucr.edu; Jensen, Peter D. [Department of Entomology, University of California, Riverside, CA 92521 (United States); Walton, William E. [Department of Entomology, University of California, Riverside, CA 92521 (United States); Trumble, John T. [Department of Entomology, University of California, Riverside, CA 92521 (United States)

    2006-12-15

    Effects of water contamination with perchlorate and hexavalent chromium [Cr (VI)] on the mosquito Culex quinquefasciatus were assessed. The chronic (10-day) LC{sub 5}s values for perchlorate and chromium were 74 {+-} 8.0 mg/L and 0.41 {+-} 0.15 mg/L, respectively. Relative Growth Index, a measure of growth and mortality rates in a population, was significantly reduced within 5 days for levels of perchlorate as low as 25 mg/L and for levels of chromium as low as 0.16 mg/L. Neither compound altered wing length of surviving adults. In combination, contaminants were synergistic, causing 14% more mortality than predicted. Acute (24-h) LC{sub 5} values for perchlorate and Cr (VI) were 17,000 {+-} 3200 and 38 {+-} 1.3 mg/L, respectively. Effects on mosquito larvae in contaminated environments are likely to be observed for Cr (VI) but not for perchlorate, which generally does not occur at levels as high as those shown here to affect larval mosquitoes. - While pollution with hexavalent chromium may adversely affect Culex quinquefasciatus larvae, levels of perchlorate currently in the environment will not impact these insects.

  18. Investigation of radiation-chemical behaviour of divalent palladium in perchloric acid solutions

    International Nuclear Information System (INIS)

    Vladimirova, M.V.; Kalinina, S.V.

    1988-01-01

    Gamma-radiolysis of divalent palladium in perchloric acid solutions is studied. Absorption spectra of intermediate palladium compounds formed in the irradiated solution are taken. The analysis of literature data as well as comparative analysis of the absorption spectra obtained under irradiation of palladium (2) perchloric acid solutions with absorption spectra of palladium chlorocomplexes allows to suppose that the mentioned compounds are chlorocomplexes of palladium (2) of different composition depending on HClO 4 concentration in the initial solution and absorbed radiation dose. Radiation-chemical reduction of palladium (2) up to metal is stated to take place in the whole studied range of initial concentrations of components of the system and dose rates. Kinetic dependences of metallic palladium formation are obtained. Values of radiation-chemical yields of metallic palladium formation depending on the initial concentrations of palladium (2) and perchloric acid are given. A mechanism of radiolytic reduction of palladium (2) in the investigated system is suggested based on the experimental data, and a theoretical value of the radiation-chemical yield of palladium (2) reduction being in a good agreement with experimentally found values is calculated

  19. Perchlorate Contamination of Drinking Water: Regulatory Issues and Legislative Actions

    National Research Council Canada - National Science Library

    Tiemann, Mary

    2008-01-01

    .... It also has been found in milk and many foods. Because of this widespread occurrence, concern over the potential health risks of perchlorate exposure has increased, and some states, water utilities, and Members of Congress have urged...

  20. Bis[(E-N-(pyridin-3-ylmethylidenehydroxylamine-κN1]silver(I perchlorate

    Directory of Open Access Journals (Sweden)

    Jing Xu

    2012-06-01

    Full Text Available Each of the ions in the title salt, [Ag(C6H6N2O2]ClO4, is completed by the application of crystallographic twofold symmetry. The AgI atom is coordinated by two pyridine N atoms in an almost linear fashion [N—Ag—N = 170.0 (2°], with the T-shaped coordination geometry being completed by a weakly associated perchlorate-O atom. Supramolecular zigzag chains along [100] mediated by O—H...N hydrogen bonds [as parts of R22(6 loops] feature in the crystal packing. The perchlorate O atoms are disordered over two sets of sites in a statistical ratio.

  1. Reaction Kinetics of Monomethylhydrazine With Nitrous Acid in Perchloric Acid Solution

    International Nuclear Information System (INIS)

    Wei Yan; Wang Hui; Pan Yongjun; Cong Haifeng; Jiao Haiyang; Jia Yongfen; Zheng Weifang

    2009-01-01

    The oxidation of monomethylhydrazine (MMH) by nitrous acid was researched in perchloric acid solution with spectrophotometry. The rate equation has been determined as follows: -dc (HNO 2 ) /dt= kc (H + ) 0.9 c (MMH) 1.1 c (HNO 2 ), k is (46.0 ± 2.7) L 2 / (mol 2 · s) with the initial perchlorate concentration of 0.50 mol/L at the temperature of 4.5 degree C. The corresponding activation energy of the reaction is (42.4 ± 0.1) kJ/mol. The results indicate that oxidation of mono-methylhydrazine (MMH) by nitrous acid is fast. The higher concentration of MMH can accelerate the reduction process of nitrous acid. Higher acidity can also speed up the reduction of nitrous acid. (authors)

  2. The vapour pressures over saturated aqueous solutions of sodium and potassium acetates, chlorates, and perchlorates

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Manzurola, Emanuel [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)

    2007-08-15

    Vapour pressures of water over saturated solutions of sodium acetate, potassium acetate, sodium perchlorate, and potassium perchlorate were determined over the (278 to 318) K temperature range and compared with available in the literature data. The cases of saturated solutions of sodium chlorate and potassium chlorate are also considered. The determined vapour pressures were used to obtain the water activities, the osmotic coefficients, and the molar enthalpies of vaporization in considered systems.

  3. 37Cl/35Cl isotope ratio analysis in perchlorate by ion chromatography/multi collector -ICPMS: Analytical performance and implication for biodegradation studies.

    Science.gov (United States)

    Zakon, Yevgeni; Ronen, Zeev; Halicz, Ludwik; Gelman, Faina

    2017-10-01

    In the present study we propose a new analytical method for 37 Cl/ 35 Cl analysis in perchlorate by Ion Chromatography(IC) coupled to Multicollector Inductively Coupled Plasma Mass Spectrometry (MC-ICPMS). The accuracy of the analytical method was validated by analysis of international perchlorate standard materials USGS-37 and USGS -38; analytical precision better than ±0.4‰ was achieved. 37 Cl/ 35 Cl isotope ratio analysis in perchlorate during laboratory biodegradation experiment with microbial cultures enriched from the contaminated soil in Israel resulted in isotope enrichment factor ε 37 Cl = -13.3 ± 1‰, which falls in the range reported previously for perchlorate biodegradation by pure microbial cultures. The proposed analytical method may significantly simplify the procedure for isotope analysis of perchlorate which is currently applied in environmental studies. Copyright © 2017. Published by Elsevier Ltd.

  4. Evaluation of the risk of perchlorate exposure in a population of late-gestation pregnant women in the United States: Application of probabilistic biologically-based dose response modeling

    International Nuclear Information System (INIS)

    Lumen, A; George, N I

    2017-01-01

    The risk of ubiquitous perchlorate exposure and the dose-response on thyroid hormone levels in pregnant women in the United States (U.S.) have yet to be characterized. In the current work, we integrated a previously developed perchlorate submodel into a recently developed population-based pregnancy model to predict reductions in maternal serum free thyroxine (fT4) levels for late-gestation pregnant women in the U.S. Our findings indicated no significant difference in geometric mean estimates of fT4 when perchlorate exposure from food only was compared to no perchlorate exposure. The reduction in maternal fT4 levels reached statistical significance when an added contribution from drinking water (i.e., 15 μg/L, 20 μg/L, or 24.5 μg/L) was assumed in addition to the 90th percentile of food intake for pregnant women (0.198 μg/kg/day). We determined that a daily intake of 0.45 to 0.50 μg/kg/day of perchlorate was necessary to produce results that were significantly different than those obtained from no perchlorate exposure. Adjusting for this food intake dose, the relative source contribution of perchlorate from drinking water (or other non-dietary sources) was estimated to range from 0.25–0.3 μg/kg/day. Assuming a drinking water intake rate of 0.033 L/kg/day, the drinking water concentration allowance for perchlorate equates to 7.6–9.2 μg/L. In summary, we have demonstrated the utility of a probabilistic biologically-based dose-response model for perchlorate risk assessment in a sensitive life-stage at a population level; however, there is a need for continued monitoring in regions of the U.S. where perchlorate exposure may be higher. - Highlights: • Probabilistic risk assessment for perchlorate in U.S. pregnant women was conducted. • No significant change in maternal fT4 predicted due to perchlorate from food alone. • Drinking water concentration allowance for perchlorate estimated as 7.6–9.2 μg/L

  5. Evaluation of the risk of perchlorate exposure in a population of late-gestation pregnant women in the United States: Application of probabilistic biologically-based dose response modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lumen, A, E-mail: Annie.Lumen@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, HFT-110, Jefferson, AR 72079 (United States); George, N I, E-mail: Nysia.George@fda.hhs.gov [Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, 3900 NCTR Rd, HFT-20, Jefferson, AR 72079 (United States)

    2017-05-01

    The risk of ubiquitous perchlorate exposure and the dose-response on thyroid hormone levels in pregnant women in the United States (U.S.) have yet to be characterized. In the current work, we integrated a previously developed perchlorate submodel into a recently developed population-based pregnancy model to predict reductions in maternal serum free thyroxine (fT4) levels for late-gestation pregnant women in the U.S. Our findings indicated no significant difference in geometric mean estimates of fT4 when perchlorate exposure from food only was compared to no perchlorate exposure. The reduction in maternal fT4 levels reached statistical significance when an added contribution from drinking water (i.e., 15 μg/L, 20 μg/L, or 24.5 μg/L) was assumed in addition to the 90th percentile of food intake for pregnant women (0.198 μg/kg/day). We determined that a daily intake of 0.45 to 0.50 μg/kg/day of perchlorate was necessary to produce results that were significantly different than those obtained from no perchlorate exposure. Adjusting for this food intake dose, the relative source contribution of perchlorate from drinking water (or other non-dietary sources) was estimated to range from 0.25–0.3 μg/kg/day. Assuming a drinking water intake rate of 0.033 L/kg/day, the drinking water concentration allowance for perchlorate equates to 7.6–9.2 μg/L. In summary, we have demonstrated the utility of a probabilistic biologically-based dose-response model for perchlorate risk assessment in a sensitive life-stage at a population level; however, there is a need for continued monitoring in regions of the U.S. where perchlorate exposure may be higher. - Highlights: • Probabilistic risk assessment for perchlorate in U.S. pregnant women was conducted. • No significant change in maternal fT4 predicted due to perchlorate from food alone. • Drinking water concentration allowance for perchlorate estimated as 7.6–9.2 μg/L.

  6. The Investigation of Perchlorate/Iron Phase Mixtures as A Possible Source of Oxygen Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    Science.gov (United States)

    Sutter, B.; Heil, E.; Morris, R. V.; Archer, P. D.; Ming, D. W.; Niles, P. B.; Eigenbrode, J. L.; Franz, H.; Freissinet C.; Glavin, D. P.; hide

    2015-01-01

    The Sample Analysis at Mars (SAM) instrument onboard the Curiosity rover detected O2 and HCl gas releases from the Rocknest (RN) eolian bedform and the John Klein (JK) and Cumberland (CB) drill hole materials in Gale Crater. Chlorinated hydrocarbons have also been detected by the SAM quadrupole mass spectrometer (QMS) and gas chromatography/mass spectrometer (GCMS). These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory (WCL) suggesting perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of individual per-chlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. These detections along with the detection of perchlorate (ClO4-) by the Mars Phoenix Lander's Wet Chemistry Laboratory suggested perchlorate is a possible candidate for evolved O2 and chlorine species. Laboratory thermal analysis of pure perchlorates has yet to provide an unequivocal temperature match to the SAM O2 and HCl release data. Analog laboratory analysis of iron mineralogy detected in Gale materials that was physically mixed with Ca- and Mg-perchlorate has been shown to catalyze lower O2 release temperatures and approach some SAM O2 release data. Instead of physical mixtures used in previous work, the work presented here utilized perchlorate solutions added to Fe phases. This technique allowed for perchlorate to come in closer contact with the Fe-phase and may more closely mimic Mars conditions where humidity can increase enough to cause deliquescence of the highly hygroscopic perchlorate phases. The objective of this work is to: 1) Utilize a laboratory SAM analog instrument to evaluate the O2 release temperatures from Mg- and Ca-perchlorates solutions applied to Fephases detetected in Gale Crate; and 2) Determine if perchlorate solutions can provide improved matches with the SAM O2 temperature release profiles.

  7. PREDICTING FIELD PERFORMANCE OF HERBACEOUS SPECIES FOR PHYTOREMEDIATION OF PERCHLORATE

    Science.gov (United States)

    Results of these short-term experiments coupled with ecological knowledge of the nine herbaceous plant species tested suggest that several species may by successful in on-site remediation of perchlorate. The two wetland species which appear to be most suitable for field experimen...

  8. RAMAN SPECTROSCOPIC ANALYSIS OF FERTILIZERS AND PLANT TISSUE FOR PERCHLORATE

    Science.gov (United States)

    Raman spectroscopy, without the need for prior chromatographic separation, was used for qualitative and quantitative analysis of 59 samples of fertilizers for perchlorate (ClO4-). These primarily lawn and garden products had no known link to Chile saltpeter, which is known to con...

  9. Environmental Health Assessment for Pyrotechnic Perchlorate Elimination/Mitigation Program for M118/M119 Simulators

    Science.gov (United States)

    2009-09-11

    17% Potassium Chlorate 3811-04-9 67% 80% Potassium Nitrate 7757-79-1 81% 13% 70% 70% Red Gum 9000-20-8 3% 3% Silicon 7440-21-3 6% Sulfur 7704-34-9 8... potassium perchlorate from the flash composition of the formulations for the Ml18 and Ml19 simulators. These simulators are used in training to produce...simulators that are more efficient, are life-cycle cost effective, and more conducive to human health and environmental quality. b. Potassium perchlorate

  10. Investigation of REE perchlorates complexing with benzimidazole in aqua-dioxane media

    International Nuclear Information System (INIS)

    Akhrimenko, Z.M.; Panyushkin, V.T.; Ishbulatova, S.K.

    1992-01-01

    Stability constant (K 1 ) of complexes of rare earth perchlorates with benzimidazole were determined by the method of pH-metric titration. Nonmonotonous change in lgK 1 with rare earth ordinal number increase was revealed

  11. Bis(μ-bis{[4-(2-pyridylpyrimidin-2-yl]sulfanyl}methanedisilver(I bis(perchlorate

    Directory of Open Access Journals (Sweden)

    Hai-Bin Zhu

    2010-12-01

    Full Text Available In the macrocyclic centrosymmetric dinuclear complex, [Ag2(C19H14N6S22](ClO42, the AgI atom, bis{[4-(2-pyridylpyrimidin-2-yl]sulfanyl}methane (2-bppt ligand and perchlorate anion each lie on a twofold rotation axis. The 2-bppt ligand chelates two four-coordinated AgI atoms through its two bipyridine-like arms. The O atoms of the perchlorate anion are disordered each over two positions of equal occupancy. Adjacent complex molecules are linked by π–π interactions between the pyridine and pyrimidine rings [centroid–centroid distance = 3.663 (8 Å].

  12. ANALYSIS OF HYDROPONIC FERTILIZER MATRIXES FOR PERCHLORATE: COMPARISON OF ANALYTICAL TECHNIQUES

    Science.gov (United States)

    Seven retail hydroponic nitrate fertilizer products, two liquid and five solid, were comparatively analyzed for the perchlorate anion (ClO4-) by ion chromatography (IC) with suppressed conductivity detection, complexation electrospray ionization mass spectrometry (cESI-MS), norma...

  13. Stripping analysis of nanomolar perchlorate in drinking water with a voltammetric ion-selective electrode based on thin-layer liquid membrane.

    Science.gov (United States)

    Kim, Yushin; Amemiya, Shigeru

    2008-08-01

    A highly sensitive analytical method is required for the assessment of nanomolar perchlorate contamination in drinking water as an emerging environmental problem. We developed the novel approach based on a voltammetric ion-selective electrode to enable the electrochemical detection of "redox-inactive" perchlorate at a nanomolar level without its electrolysis. The perchlorate-selective electrode is based on the submicrometer-thick plasticized poly(vinyl chloride) membrane spin-coated on the poly(3-octylthiophene)-modified gold electrode. The liquid membrane serves as the first thin-layer cell for ion-transfer stripping voltammetry to give low detection limits of 0.2-0.5 nM perchlorate in deionized water, commercial bottled water, and tap water under a rotating electrode configuration. The detection limits are not only much lower than the action limit (approximately 246 nM) set by the U.S. Environmental Protection Agency but also are comparable to the detection limits of the most sensitive analytical methods for detecting perchlorate, that is, ion chromatography coupled with a suppressed conductivity detector (0.55 nM) or electrospray ionization mass spectrometry (0.20-0.25 nM). The mass transfer of perchlorate in the thin-layer liquid membrane and aqueous sample as well as its transfer at the interface between the two phases were studied experimentally and theoretically to achieve the low detection limits. The advantages of ion-transfer stripping voltammetry with a thin-layer liquid membrane against traditional ion-selective potentiometry are demonstrated in terms of a detection limit, a response time, and selectivity.

  14. Immunity of the Fe-N-C catalysts to electrolyte adsorption: phosphate but not perchloric anions

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Pan, Chao

    2018-01-01

    often carried out, like for Pt-based catalysts, in dilute perchloric acid by assuming its non-adsorbing nature on the active sites. The assumption is however not true. In this work, a typical Fe-N-C catalyst was first synthesized by high-pressure pyrolysis in the presence of carbon support...... and thoroughly characterized in terms of morphology, structure and active site distribution. The subsequent electrochemical characterization of the catalyst shows strong adsorption and poisoning effect of, in addition to the known Cl-, perchloric anions on the oxygen reduction reaction (ORR) activity...

  15. Feasibility Study for the Reduction of Perchlorate, Iodide, and Other Aqueous Anions

    National Research Council Canada - National Science Library

    Clewell, Rebecca A; Tsui, David T; Mattie, David R

    1999-01-01

    Cyclic Voltammetry (CV) was used as a technique to determine the feasibility of the use of a coulometric detector in the determination of perchlorate, iodide, and various other anions commonly found in drinking water...

  16. Δ17O Isotopic Investigation of Nitrate Salts Found in Co-Occurrence with Naturally Formed Perchlorate in the Mojave Desert, California, USA and the Atacama Desert, Chile

    Science.gov (United States)

    Lybrand, R. A.; Parker, D.; Rech, J.; Prellwitz, J.; Michalski, G.

    2009-12-01

    Perchlorate is both a naturally occurring and manmade contaminant that has been identified in soil, groundwater and surface water. Perchlorate directly affects human health by interfering with iodide uptake in the thyroid gland, which may in turn lower the production of key hormones that are needed for proper growth and development. Until recently, the Atacama Desert, Chile was thought to be the only location where perchlorate salts formed naturally. Recent work has documented the occurrence of these salts in several semi-arid regions of the United States. This study identified putatively natural sources of perchlorate in the Mojave Desert of California. Soil samples were collected from six field sites varying in geologic age. The co-occurrence of perchlorate and nitrate in caliches from the Atacama Desert and soils from the Mojave Desert was also investigated. Although the former are richer in NO3-, near-ore-grade (~5%) deposits occur in the vicinity of Death Valley National Park. Weak but significant correlations exist between ClO4- and NO3- at both locations, but the perchlorate levels are much higher (up to 800 mg/kg) in the Chilean samples than in California (atmospheric origin for the Atacama nitrate salts, and a mixture between biological nitrate and atmospherically-derived nitrate for the Mojave samples. When corrected for the percentage of atmospheric nitrate measured in the Atacama samples, the Mojave samples still contain much lower perchlorate concentrations than would be expected if the occurrence of perchlorate correlated strictly with atmospherically derived nitrate. These results indicate that the variation in the origins of the nitrate salts is not the only factor influencing perchlorate distribution in these environments. These findings suggest that there are other geologic differences in landform age and stability that are crucial to understanding the co-occurrence of nitrate and perchlorate between the two locations.

  17. Column adsorption of perchlorate by amine-crosslinked biopolymer based resin and its biological, chemical regeneration properties.

    Science.gov (United States)

    Song, Wen; Xu, Xing; Tan, Xin; Wang, Yan; Ling, Jianya; Gao, Baoyu; Yue, Qinyan

    2015-01-22

    Column adsorption of perchlorate by amine-crosslinked biopolymer based resin was investigated by considering the bed depth, stream flow rate and influent pH. The empty bed contact time (EBCT) increased with the growth of bed depths, meanwhile rising flow rate at constant bed depth (3.4 cm) decreased the breakthrough time. It was observed that perchlorate adsorption capacity was optimum at neutral condition (pH: 6.0, 170.4 mg/g), and decreased at acidic (pH: 3.0, 96.4 mg/g) or alkalic (pH: 12.0, 72.8 mg/g) influents. The predominant strains of the acclimated sludge for resin biological regeneration were the β-subclass of Proteobacteria. Biological regeneration of the saturated amine-crosslinked biopolymer based resin with mixed bacteria have shown its merit with regeneration and biological perchlorate destruction simultaneously, although its regeneration efficiency was only 61.2-84.1% by contrast to chemical regeneration with efficiency more than 95%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The photochemistry of neptunium in aqueous perchloric acid solutions

    International Nuclear Information System (INIS)

    Friedman, H.A.; Toth, L.M.; Osborne, M.M.

    1979-01-01

    The photochemistry of neptunium ions in aqueous perchloric acid has been investigated using 254 and 300 nm UV radiation. In the absence of other reagents, Np(IV) and (V) oxidized to Np(VI), in a stepwise fashion, with individual quantum efficiencies for each step that vary from 0.02 to 0.004. Decreasing acid concentration favors the Np(IV) → Np(V) reaction whereas it hinders the Np(V) → Np(VI) photo-oxidation. When ethanol, acetaldehyde and other mild reducing agents are added to neptunium-perchloric acid solutions which are then photolyzed, the Np species are reduced to Np(III) in a stepwise fashion with individual quantum efficiencies that vary from 0.07 to 0.006. The overall photoredox reactions of neptunium are subject to competing secondary product reactions that become significant as the photolysis products accumulate. Absorption spectrophotometry was used to monitor the changes in Np oxidation states and reference spectra of the various Np oxidation states are given for 1.0 N HClO 4 . The Np species have absorption bands in the 300 to 1320 nm region that obey Beer's law only when they were properly resolved. (author)

  19. Immunological detection of small organic molecules in the presence of perchlorates: relevance to the life marker chip and life detection on Mars.

    Science.gov (United States)

    Rix, Catherine S; Sims, Mark R; Cullen, David C

    2011-11-01

    The proposed ExoMars mission, due to launch in 2018, aims to look for evidence of extant and extinct life in martian rocks and regolith. Previous attempts to detect organic molecules of biological or abiotic origin on Mars have been unsuccessful, which may be attributable to destruction of these molecules by perchlorate salts during pyrolysis sample extraction techniques. Organic molecules can also be extracted and measured with solvent-based systems. The ExoMars payload includes the Life Marker Chip (LMC) instrument, capable of detecting biomarker molecules of extant and extinct Earth-like life in liquid extracts of martian samples with an antibody microarray assay. The aim of the work reported here was to investigate whether the presence of perchlorate salts, at levels similar to those at the NASA Phoenix landing site, would compromise the LMC extraction and detection method. To test this, we implemented an LMC-representative sample extraction process with an LMC-representative antibody assay and used these to extract and analyze a model sample that consisted of a Mars analog sample matrix (JSC Mars-1) spiked with a representative organic molecular target (pyrene, an example of abiotic meteoritic infall targets) in the presence of perchlorate salts. We found no significant change in immunoassay function when using pyrene standards with added perchlorate salts. When model samples spiked with perchlorate salts were subjected to an LMC-representative liquid extraction, immunoassays functioned in a liquid extract and detected extracted pyrene. For the same model sample matrix without perchlorate salts, we observed anomalous assay signals that coincided with yellow coloration of the extracts. This unexpected observation is being studied further. This initial study indicates that the presence of perchlorate salts, at levels similar to those detected at the NASA Phoenix landing site, is unlikely to prevent the LMC from extracting and detecting organic molecules from

  20. Perchlorate and Volatiles in the Brine of Lake Vida (antarctica): Implication for the Analysis of Mars Sediments

    Science.gov (United States)

    Kenig, F. P. H.; Chou, L.; McKay, C.; Jackson, W. A.; Doran, P. T.; Murray, A. E.; Fritsen, C. H.

    2015-12-01

    A cold (-13.4 °C), saline (188 psu) evaporative brine is encapsulated in the thick (> 27 m) ice of Lake Vida (McMurdo Dry Valleys, Antarctica). The Lake Vida brine (LVBr), which contains abundant dissolved organic carbon (48.2 mmol/L), support an active but slow microbial community. LVBr contains oxychlorines with 50 μg/L of perchlorate and 11 μg/L of chlorate. The McMurdo Dry Valleys have often been considered as a good Mars analog. The oxychlorine-rich brine of Lake Vida constitutes a potential equivalent to perchlorate-rich preserved saline liquid water on Mars. We report here on the artifacts created by oxychlorines upon analysis of volatiles and volatile organic compounds (VOCs) of LVBr by direct immersion (DI) and head space (HS) solid phase micro extraction (SPME) gas chromatography-mass spectrometry (GCMS). We compare analytical blanks to a standard containing 40 μg/L of perchlorate and to actual LVBr sample runs. All blanks, perchlorate blanks and samples were analyzed using two types of SPME fibers, CarboxenTM/polydimethylsiloxane (PDMS) and divinylbenzene (DVB)/ PDMS. The similarities and differences between our results and those obtained by the Sample Analysis at Mars instruments of the rover Curiosity are discussed. The volatiles evolved from LVBr upon analysis with DI- and HS-SPME GCMS are dominated by CO2, dichloromethane, HCl, and volatile organic sulfur compounds (VOSCs, such as DMS, DMDS). The volatiles also include oxygenated compounds such as acids and ketones, aromatic compounds, hydrocarbons, chlorinated compounds (dominated by dichloromethane). Apart from the VOSCs, short chain hydrocarbons and some functionalized compounds derived from the brine itself, all compounds observed are artifacts formed upon oxychlorine breakdown in the injector of the GCMS. The distribution of aromatic compounds seems to be directly dependant on the type of SPME fiber used. The perchlorate blanks show a clear pattern of carbon limitation, likely affecting the

  1. Development of a Health-Protective Drinking Water Level for Perchlorate

    Science.gov (United States)

    Ting, David; Howd, Robert A.; Fan, Anna M.; Alexeeff, George V.

    2006-01-01

    We evaluated animal and human toxicity data for perchlorate and identified reduction of thyroidal iodide uptake as the critical end point in the development of a health-protective drinking water level [also known as the public health goal (PHG)] for the chemical. This work was performed under the drinking water program of the Office of Environmental Health Hazard Assessment of the California Environmental Protection Agency. For dose–response characterization, we applied benchmark-dose modeling to human data and determined a point of departure (the 95% lower confidence limit for 5% inhibition of iodide uptake) of 0.0037 mg/kg/day. A PHG of 6 ppb was calculated by using an uncertainty factor of 10, a relative source contribution of 60%, and exposure assumptions specific to pregnant women. The California Department of Health Services will use the PHG, together with other considerations such as economic impact and engineering feasibility, to develop a California maximum contaminant level for perchlorate. We consider the PHG to be adequately protective of sensitive subpopulations, including pregnant women, their fetuses, infants, and people with hypothyroidism. PMID:16759989

  2. A STUDY ON THE ACCUMULATION OF PERCHLORATE IN YOUNG HEAD LETTUCE

    Science.gov (United States)

    The overall objective of this study was to demonstrate in a greenhouse study the potential for incorporation of perchlorate from aqueous solutions of 10, 50, 100, 500, 1,000, 5,000, and 10,000 ppb into an agricultural food crop (lettuce; Lactuca sativa), which is typically grown ...

  3. RAMAN ANALYSIS OF FERTILIZER AND PLANT TISSUE EXTRACTS FOR PERCHLORATE CONTAMINATION

    Science.gov (United States)

    Recently, we and others found perchlorate at high levels (approximately 500 - 8000 mg/kg) in ~ 90% of 25+ fertilizers products (primarily lawn-and-garden type) with no known link to mined nitrate-bearing Chilean ore. This ore is used, albeit in small scale, in fertilizer product...

  4. Uptake of N-nitrosodimethylamine (NDMA) from water by phreatophytes in the absence and presence of perchlorate as a co-contaminant.

    Science.gov (United States)

    Yifru, Dawit D; Nzengung, Valentine A

    2006-12-01

    The uptake and fate of the emerging contaminants N-nitrosodimethylamine (NDMA) and perchlorate in phreatophytes was studied in a hydroponics system under greenhouse conditions. NDMA is a potent carcinogen, and perchlorate disrupts the functioning ofthe human thyroid gland. The rate of removal of NDMA from solution by rooted cuttings of black willow (Salix nigra) and hybrid poplar (Populus deltoides x nigra, DN34) trees varied seasonally, with faster removal in summer months when transpiration rates were highest. A linear correlation between the volume of water transpired and mass of NDMA removed from the root zone was observed, especially at higher NDMA concentrations. In bioreactors dosed with both NDMA (0.7-1.0 mg L(-1)) and perchlorate (27 mg L(-1)), no competitive uptake of NDMA and perchlorate was observed. While NDMA was primarily removed from solution by plant uptake, perchlorate was predominantly removed by rhizodegradation. In the presence of NDMA, a slower rate of rhizodegradation of perchlorate was observed, but still significantly faster than the rate of NDMA uptake. For experiments conducted with radiolabeled NDMA, 46.4 +/- 1.1% of the total 14C-activity was recovered in the plant tissues and 47.5% was phytovolatilized. The 46.4 +/- 1.1% recovered in the plants was distributed as follows: 18.8 +/- 1.4% in leaves, 15.9 +/- 5.9% in stems, 7.6 +/- 3.2% in branches, and 3.5 +/- 3.3% in roots. The poor extractability of NDMA with methanol-water (1:1 v/v) from stem and leaf tissues suggested that some fraction of NDMA was assimilated. The calculated transpiration stream concentration factor (TSCF) of 0.28 +/- 0.06 suggests that NDMA is passively taken up by phreatophytes, and mainly phytovolatilized.

  5. DETERMINATION OF PERCHLORATE IN SOME FERTILIZERS AND PLANT TISSUE BY RAMAN SPECTROSCOPY

    Science.gov (United States)

    We have successfully used Raman spectroscopy for the direct qualitative and quantitative analysis of perchlorate in fertilizer extracts without the need for chromatographic separation. This approach is attractive because Raman is not hindered by the presence of water or of high ...

  6. Ferroelectric Polarization Switching Dynamics and Domain Growth of Triglycine Sulfate and Imidazolium Perchlorate

    KAUST Repository

    Ma, He; Gao, Wenxiu; Wang, Junling; Wu, Tao; Yuan, Guoliang; Liu, Junming; Liu, Zhiguo

    2016-01-01

    The weak bond energy and large anisotropic domain wall energy induce many special characteristics of the domain nucleation, growth, and polarization switch in triglycine sulfate (TGS) and imidazolium perchlorate (IM), two typical molecular

  7. The Effects of Perchlorate on Developing and Adult Birds

    Science.gov (United States)

    2003-06-01

    Veterinary Medicine at Virginia Tech. Experimental treatment and 3 maintenance during the experiment were done in our animal facilities in the Dept. of...experiments. We have not completed our analysis of these experiments [6]. Reversibility of Perchlorate Effects: In human clinical medicine , where...Ingbar’s The Thyroid, 7th ed., Lippincott-Raven, Philadelphia, PA, USA, pp 296-316. Green WL. 1996. Antithyroid compounds. In Braverman LE, Utiger RD

  8. Electrochemical reduction of CO2 to CO over Zn in propylene carbonate/tetrabutylammonium perchlorate

    Science.gov (United States)

    Shen, Feng-xia; Shi, Jin; Chen, Tian-you; Shi, Feng; Li, Qing-yuan; Zhen, Jian-zheng; Li, Yun-fei; Dai, Yong-nian; Yang, Bin; Qu, Tao

    2018-02-01

    Developing low cost and high efficient electrode for carbon dioxide (CO2) reduction in organic media is essential for practical application. Zn is a cheap metal and has high catalytic effects on CO2 reduction to carbon monoxide (CO) in aqueous solution. However, little attention has been given to investigate the performance of Zn in organic media for CO2 reduction. In present work, we have conducted CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate on Zn due to that propylene carbonate is a widely used industrial absorber, and tetrabutylammonium perchlorate is a commonly used organic supporting electrolyte. In addition, because electrochemical reduction of CO2 to CO naturally produces H2O, we have discussed water effects on CO2 reduction in propylene carbonate/tetrabutylammonium perchlorate+6.8 wt % H2O. Our experiment results reveal that the faradaic efficiency for CO formation reaches to 83%, and the current density remains stable at 6.72 mA/cm2 at voltage -2.3 V for 4 h. Interestingly, Zn presents higher catalytic activity than Ag, and slightly lower than Au. X-ray photoelectron spectroscopy results confirm that no poisonous species is formed and absorbed on the cathode, which is an important advantage in practical application.

  9. Isotopic tracing of perchlorate in the environment

    Science.gov (United States)

    Sturchio, Neil C.; Böhlke, John Karl; Gu, Baohua; Hatzinger, Paul B.; Jackson, W. Andrew; Baskaran, Mark

    2012-01-01

    Isotopic measurements can be used for tracing the sources and behavior of environmental contaminants. Perchlorate (ClO 4 − ) has been detected widely in groundwater, soils, fertilizers, plants, milk, and human urine since 1997, when improved analytical methods for analyzing ClO 4 −concentration became available for routine use. Perchlorate ingestion poses a risk to human health because of its interference with thyroidal hormone production. Consequently, methods for isotopic analysis of ClO 4 − have been developed and applied to assist evaluation of the origin and migration of this common contaminant. Isotopic data are now available for stable isotopes of oxygen and chlorine, as well as 36Cl isotopic abundances, in ClO 4 − samples from a variety of natural and synthetic sources. These isotopic data provide a basis for distinguishing sources of ClO 4 − found in the environment, and for understanding the origin of natural ClO 4 − . In addition, the isotope effects of microbial ClO 4 − reduction have been measured in laboratory and field experiments, providing a tool for assessing ClO 4 − attenuation in the environment. Isotopic data have been used successfully in some areas for identifying major sources of ClO 4 − contamination in drinking water supplies. Questions about the origin and global biogeochemical cycle of natural ClO 4 − remain to be addressed; such work would benefit from the development of methods for preparation and isotopic analysis of ClO 4 − in samples with low concentrations and complex matrices.

  10. Detection of trace organics in Mars analog samples containing perchlorate by laser desorption/ionization mass spectrometry.

    Science.gov (United States)

    Li, Xiang; Danell, Ryan M; Brinckerhoff, William B; Pinnick, Veronica T; van Amerom, Friso; Arevalo, Ricardo D; Getty, Stephanie A; Mahaffy, Paul R; Steininger, Harald; Goesmann, Fred

    2015-02-01

    Evidence from recent Mars missions indicates the presence of perchlorate salts up to 1 wt % level in the near-surface materials. Mixed perchlorates and other oxychlorine species may complicate the detection of organic molecules in bulk martian samples when using pyrolysis techniques. To address this analytical challenge, we report here results of laboratory measurements with laser desorption mass spectrometry, including analyses performed on both commercial and Mars Organic Molecule Analyzer (MOMA) breadboard instruments. We demonstrate that the detection of nonvolatile organics in selected spiked mineral-matrix materials by laser desorption/ionization (LDI) mass spectrometry is not inhibited by the presence of up to 1 wt % perchlorate salt. The organics in the sample are not significantly degraded or combusted in the LDI process, and the parent molecular ion is retained in the mass spectrum. The LDI technique provides distinct potential benefits for the detection of organics in situ on the martian surface and has the potential to aid in the search for signs of life on Mars.

  11. Studies on composite solid propellant with tri-modal ammonium perchlorate containing an ultrafine fraction

    Directory of Open Access Journals (Sweden)

    K.V. Suresh Babu

    2017-08-01

    Full Text Available Composite solid propellant is prepared using tri-modal Ammonium perchlorate (AP containing coarse, fine and ultrafine fractions of AP with average particle size (APS 340, 40 and 5 μm respectively, in various compositions and their rheological, mechanical and burn rate characteristics are evaluated. The optimum combination of AP coarse to fine to ultrafine weight fraction was obtained by testing of series of propellant samples by varying the AP fractions at fixed solid loading. The concentration of aluminium was maintained constant throughout the experiments for ballistics requirement. The propellant formulation prepared using AP with coarse to fine to ultrafine ratio of 67:24:9 has lowest viscosity for the propellant paste and highest tensile strength due to dense packing as supported by the literature. A minimum modulus value was also observed at 9 wt. % of ultrafine AP concentration indicates the maximum solids packing density at this ratio of AP fractions. The burn rate is evaluated at different pressures to obtain pressure exponent. Incorporation of ultrafine fraction of AP in propellant increased burn rate without adversely affecting the pressure exponent. Higher solid loading propellants are prepared by increased AP concentration from 67 to 71 wt. % using AP with coarse to fine to ultrafine ratio of 67:24:9. Higher solid content up to 89 wt. % was achieved and hence increased solid motor performance. The unloading viscosity showed a trend with increased AP content and the propellant couldn't able to cast beyond 71 wt. % of AP. Mechanical properties were also studied and from the experiments noticed that % elongation decreased with increased AP content from 67 to 71 wt.%, whereas tensile strength and modulus increased. Burn rate increased with increased AP content and observed that pressure exponent also increased and it is high for the propellant containing with 71 wt.% of AP due to increased oxidiser to fuel ratio. Catalysed

  12. Zero-Pressure Organic Superconductor: Di-(Tetramethyltetraselenafulvalenium)-Perchlorate [(TMTSF)2ClO4

    DEFF Research Database (Denmark)

    Bechgaard, Klaus; da Costa Carneiro, Kim; Olsen, Malte

    1981-01-01

    Evidence for superconductivity in the organic conductor di-(tetramethyltetraselenafulvalenium)-perchlorate [(TMTSF)2ClO4] has been found by resistance measurements in the absence of applied pressure. For different crystals the transitions are approximately 0.3 K wide and are centered around...

  13. Coordination, non-coordination and semi-coordination of perchlorates in the lanthanide adducts Ln (CLO4)3. 6dmba

    International Nuclear Information System (INIS)

    Tfouni, E.; Giesbrecht, E.

    1983-01-01

    The coordination or not of the perchlorate anions in the previously reported Ln(CLO 4 ) 3 .6 dmba is discussed. The analysis of the infrared spectral data and molar conductance data indicate that they may be formulated as [Ln(dmba) 6 (CLO 4 )n] (CLO 4 ) sub(3-n), n=0,1,2. The individual compounds may be a mixture of species with different n values and/or pure compounds with semi-coordinated and non-coordinated perchlorates. (Author) [pt

  14. Crystal structure of 2-cyano-1-methylpyridinium perchlorate

    Directory of Open Access Journals (Sweden)

    Vu D. Nguyen

    2015-11-01

    Full Text Available The asymmetric unit of the title salt, C7H7N2+·ClO4−, comprises two independent formula units. The solid-state structure comprises corrugated layers of cations and of anions, approximately parallel to (010. The supramolecular layers are stabilized and connected by C—H...O hydrogen bonding to consolidate a three-dimensional architecture. A close pyridinium–perchlorate N...O contact [2.867 (5 Å] is noted. The crystal was refined as an inversion twin.

  15. Enhancement of perchlorate removal from groundwater by cationic granular activated carbon: Effect of preparation protocol and surface properties.

    Science.gov (United States)

    Hou, Pin; Yan, Zhe; Cannon, Fred S; Yue, Ye; Byrne, Timothy; Nieto-Delgado, Cesar

    2018-06-01

    In order to obtain a high adsorption capacity for perchlorate, the epoxide-forming quaternary ammonium (EQA) compounds were chemically bonded onto granular activated carbon (GAC) surface by cationic reaction. The optimum preparation condition of the cationic GAC was achieved while applying softwood-based Gran C as the parent GAC, dosing EQA first at a pH of 12, preparation time of 48 h, preparation temperature of 50 °C, and mole ratio of EQA/oxygen groups of 2.5. The most favorable cationic GAC that had the QUAB360 pre-anchored exhibited the highest perchlorate adsorption capacity of 24.7 mg/g, and presented the longest bed volumes (3000 BV) to 2 ppb breakthrough during rapid small scale column tests (RSSCTs), which was 150 times higher than that for the pristine Gran C. This was attributed to its higher nitrogen amount (1.53 At%) and higher positive surface charge (0.036 mmol/g) at pH 7.5. Also, there was no leaching of the quaternary ammonium detected in the effluent of the RSSCTs, indicating there was no secondary pollution occurring during the perchlorate removal process. Overall, this study provides an effective and environmental-friendly technology for improving GAC perchlorate adsorption capacity for groundwater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Comparative Demonstration of Active and Semi-Passive In Situ Bioremediation Approaches for Perchlorate Impacted Groundwater: Active In Situ Bioremediation Demonstration

    Science.gov (United States)

    2013-04-01

    http://www.itrcweb.org/Documents/PERC-1.pdf • ITRC Perchlorate Team. 2008. Remediation Technologies for Perchlorate Contamination in Water and Soil ...pdf • Solutions EIS. 2006. Protocol for Enhanced In Situ Bioremediation Using Emulsified Vegetable Oil . Prepared for ESTCP. May 2006. • http...Air Force. 2007. Protocol for In Situ Bioremediation of Chlorinated Solvents Using Edible Oil . Prepared for AFCEC - Environmental Science Division

  17. Removal of an acid fume system contaminated with perchlorates located within hot cell

    International Nuclear Information System (INIS)

    Rosenberg, K.E.; Henslee, S.P.; Vroman, W.R.; Krsul, J.R.; Michelbacher, J.A.; Knighton, G.C.

    1992-09-01

    An add scrubbing system located within the confines of a highly radioactive hot cell at Argonne National Laboratory-West (ANL-W) was remotely removed. The acid scrubbing system was routinely used for the dissolution of irradiated reactor fuel samples and structural materials. Perchloric acid was one of the acids used in the dissolution process and remained in the system with its inherent risks. Personnel could not enter the hot cell to perform the dismantling of the acid scabbing system due to the high radiation field and the explosion potential associated with the perchlorates. A robot was designed and built at ANL-W and used to dismantle the system without the need for personnel entry into the hot cell. The robot was also used for size reduction of removed components and loading of the removed components into waste containers

  18. Perchlorate Detection at Nanomolar Concentrations by Surface-Enhanced Raman Scattering

    Science.gov (United States)

    2009-01-01

    grooves/mm grating light path controlled by Renishaw WiRE software and analyzed by Galactic GRAMS software. RESULTS AND DISCUSSION Quantitative... Federal Rights License 14. ABSTRACT Perchlorate (ClO4 ) has emerged as a widespread environmental contaminant and has been detected in various food...by means of dynamic light scattering using a ZetaPlus particle size analyzer (Brookhaven Instruments, Holtsville, NY). Data were collected for every

  19. ZnO twin-cones: synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate.

    Science.gov (United States)

    Sun, Xuefei; Qiu, Xiaoqing; Li, Liping; Li, Guangshe

    2008-05-19

    ZnO twin-cones, a new member to the ZnO family, were prepared directly by a solvothermal method using a mixed solution of zinc nitrate and ethanol. The reaction and growth mechanisms of ZnO twin-cones were investigated by X-ray diffraction, UV-visible spectra, infrared and ion trap mass spectra, and transmission electron microscopy. All as-prepared ZnO cones consisted of tiny single crystals with lengths of several micrometers. With prolonging of the reaction time from 1.5 h to 7 days, the twin-cone shape did not change at all, while the lattice parameters increased slightly and the emission peak of photoluminescence shifted from the green region to the near orange region. ZnO twin-cones are also explored as an additive to promote the thermal decomposition of ammonium perchlorate. The variations of photoluminescence spectra and catalytic roles in ammonium perchlorate decomposition were discussed in terms of the defect structure of ZnO twin-cones.

  20. Multi-Objective Optimization of an In situ Bioremediation Technology to Treat Perchlorate-Contaminated Groundwater

    Science.gov (United States)

    The presentation shows how a multi-objective optimization method is integrated into a transport simulator (MT3D) for estimating parameters and cost of in-situ bioremediation technology to treat perchlorate-contaminated groundwater.

  1. Evaluation of Potential for Monitored Natural Attenuation of Perchlorate in Groundwater

    Science.gov (United States)

    2010-09-01

    by agricultural areas. The facility has been used for industrial purposes, such as fireworks manufacturing, munitions production, pesticide ... microorganisms and enzyme functions involved with bioremediation . These methods can be applied selectively to detect and/or enumerate the proportion...particular functional gene based upon the abundance of messenger RNA (mRNA). The perchlorate reducing microorganisms use the mRNA to assemble the CD enzyme

  2. Thermometric titrations of amines with nitrosyl perchlorate in acetonitrile solvent.

    Science.gov (United States)

    Gündüz, T; Kiliç, E; Cakirer, O

    1996-05-01

    Thirteen aliphatic and four aromatic amines, namely diethylamine, triethylamine, n-propylamine, di-n-propylamine, tri-n-butylamine, isopropylamine, di-isopropylamine, n-butylamine, di-n-butylamine, tri-n-butylamine, isobutylamine, sec-butylamine, tert-butylamine, aniline, N,N-dimethylaniline, 2-nitroaniline and 4-nitroaniline were titrated thermometrically with nitrosyl perchlorate in acetonitrile solvent. All the aliphatic amines gave very well-shaped thermometric titration curves. The calculated recovery values of the amines were very good. In comparison, the aromatic amines, aniline and N,N-dimethylaniline gave rather well-shaped titration curves, but the recovery values were fairly low. 2-Nitro- and 4-nitro anilines gave no thermometric response at all. The heats of reaction of the amines with nitrosyl perchlorate are rather high. However, the average heat of reaction of the aromatic amines is approximately two-thirds that of the average heat of the aliphatic amines. To support this method all the amines were also titrated potentiometrically and very similar results to those obtained with the thermometric method are seen. The nitrosyl ion is a Lewis acid, strong enough to titrate quantitatively aliphatic amines in acetonitrile solvent, but not strong enough to titrate aromatic amines at the required level in the same solvent.

  3. Occurrence of perchlorate and thiocyanate in human serum from e-waste recycling and reference sites in Vietnam: association with thyroid hormone and iodide levels.

    Science.gov (United States)

    Eguchi, Akifumi; Kunisue, Tatsuya; Wu, Qian; Trang, Pham Thi Kim; Viet, Pham Hung; Kannan, Kurunthachalam; Tanabe, Shinsuke

    2014-07-01

    Perchlorate (ClO4 (-)) and thiocyanate (SCN(-)) interfere with iodide (I(-)) uptake by the sodium/iodide symporter, and thereby these anions may affect the production of thyroid hormones (THs) in the thyroid gland. Although human exposure to perchlorate and thiocyanate has been studied in the United States and Europe, few investigations have been performed in Asian countries. In this study, we determined concentrations of perchlorate, thiocyanate, and iodide in 131 serum samples collected from 2 locations in Northern Vietnam, Bui Dau (BD; electrical and electronic waste [e-waste] recycling site) and Doung Quang (DQ; rural site) and examined the association between serum levels of these anions with levels of THs. The median concentrations of perchlorate, thiocyanate, and iodide detected in the serum of Vietnamese subjects were 0.104, 2020, and 3.11 ng mL(-1), respectively. Perchlorate levels were significantly greater in serum of the BD population (median 0.116 ng mL(-1)) than those in the DQ population (median 0.086 ng mL(-1)), which indicated greater exposure from e-waste recycling operations by the former. Serum concentrations of thiocyanate were not significantly different between the BD and DQ populations, but increased levels of this anion were observed among smokers. Iodide was a significant positive predictor of serum levels of FT3 and TT3 and a significant negative predictor of thyroid-stimulating hormone in males. When the association between serum levels of perchlorate or thiocyanate and THs was assessed using a stepwise multiple linear regression model, no significant correlations were found. In addition to greater concentrations of perchlorate detected in the e-waste recycling population, however, given that lower concentrations of iodide were observed in the serum of Vietnamese females, detailed risk assessments on TH homeostasis for females inhabiting e-waste recycling sites, especially for pregnant women and their neonates, are required.

  4. Evaluation of perturbations in serum thyroid hormones during human pregnancy due to dietary iodide and perchlorate exposure using a biologically based dose-response model.

    Science.gov (United States)

    Lumen, Annie; Mattie, David R; Fisher, Jeffrey W

    2013-06-01

    A biologically based dose-response model (BBDR) for the hypothalamic pituitary thyroid (HPT) axis was developed in the near-term pregnant mother and fetus. This model was calibrated to predict serum levels of iodide, total thyroxine (T4), free thyroxine (fT4), and total triiodothyronine (T3) in the mother and fetus for a range of dietary iodide intake. The model was extended to describe perchlorate, an environmental and food contaminant, that competes with the sodium iodide symporter protein for thyroidal uptake of iodide. Using this mode-of-action framework, simulations were performed to determine the daily ingestion rates of perchlorate that would be associated with hypothyroxinemia or onset of hypothyroidism for varying iodide intake. Model simulations suggested that a maternal iodide intake of 75 to 250 µg/day and an environmentally relevant exposure of perchlorate (~0.1 µg/kg/day) did not result in hypothyroxinemia or hypothyroidism. For a daily iodide-sufficient intake of 200 µg/day, the dose of perchlorate required to reduce maternal fT4 levels to a hypothyroxinemic state was estimated at 32.2 µg/kg/day. As iodide intake was lowered to 75 µg/day, the model simulated daily perchlorate dose required to cause hypothyroxinemia was reduced by eightfold. Similarly, the perchlorate intake rates associated with the onset of subclinical hypothyroidism ranged from 54.8 to 21.5 µg/kg/day for daily iodide intake of 250-75 µg/day. This BBDR-HPT axis model for pregnancy provides an example of a novel public health assessment tool that may be expanded to address other endocrine-active chemicals found in food and the environment.

  5. Bull.Chem.Soc.Ethiop.,4(1)

    African Journals Online (AJOL)

    axial coordination of halides stabilizes the copper(III) state of copper macrocyclic complexes. ... employed and tetraethylammonium perchlorate, or reagent grade acids were used as supporting electrolytes. RESULTS AND .... Summary of kinetic parameters for acid dependent Fe(phen)3+ oxidetions of b-diimine complexes.

  6. The Investigation of Chlorate and Perchlorate/Saponite Mixtures as a Possible Source of Oxygen and Chlorine Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater

    Science.gov (United States)

    Clark, J.; Sutter, B.; Min, D. W.; Mahaffy, P.

    2016-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected O2 and HCl gas releases from all analyzed Gale Crater sediments, which are attributed to the presence of perchlorates and/or chlorates in martian sediment. Previous SAM analog laboratory analyses found that most pure perchlorates and chlorates release O2 and HCl at different temperatures than those observed in the SAM data. Subsequent studies examined the effects of perchlorate and chlorate mixtures with Gale Crater analog iron phases, which are known to catalyze oxychlorine decomposition. Several mixtures produced O2 releases at similar temperatures as Gale Crater materials, but most of these mixtures did not produce significant HCl releases comparable to those detected by the SAM instrument. In order to better explain the Gale Crater HCl releases, perchlorates and chlorates were mixed with Gale Crater analog saponite, which is found at abundances from 8 to 20 wt % in the John Klein and Cumberland drill samples. Mixtures of chlorates or perchlorates with calcium-saponite or ferrian-saponite were heated to 1000 deg C in a Labsys EVO differential scanning calorimeter/mass spectrometer configured to operate similarly to the SAM oven/quadrupole mass spectrometer system. Our results demonstrate that all chlorate and perchlorate mixtures produce significant HCl releases below 1000 deg C as well as depressed oxygen peak release temperatures when mixed with saponite. The type of saponite (calcium or ferrian saponite) did not affect the evolved gas results significantly. Saponite/Mg-perchlorate mixtures produced two HCl releases similar to the Cumberland drilled sample. Mg-chlorate mixed with saponite produced HCl releases similar to the Big Sky drilled sample in an eolian sandstone. A mixture of Ca-perchlorate and saponite produced HCl and oxygen releases similar to the Buckskin mudstone drilled sample and the Gobabeb 2 eolian dune material. Ca-chlorate mixed with saponite produced both

  7. Analysis of perchlorate, thiocyanate, nitrate and iodide in human amniotic fluid using ion chromatography and electrospray tandem mass spectrometry

    International Nuclear Information System (INIS)

    Blount, Benjamin C.; Valentin-Blasini, Liza

    2006-01-01

    Because of health concerns surrounding in utero exposure to perchlorate, we developed a sensitive and selective method for quantifying iodide, as well as perchlorate and other sodium-iodide symporter (NIS) inhibitors in human amniotic fluid using ion chromatography coupled with electrospray ionization tandem mass spectrometry. Iodide and NIS inhibitors were quantified using a stable isotope-labeled internal standards (Cl 18 O 4 - , S 13 CN - and 15 NO 3 - with excellent assay accuracy of 100%, 98%, 99%, 95% for perchlorate, thiocyanate, nitrate and iodide, respectively, in triplicate analysis of spiked amniotic fluid sample). Excellent analytical precision (<5.2% RSD for all analytes) was found when amniotic fluid quality control pools were repetitively analyzed for iodide and NIS-inhibitors. Selective chromatography and tandem mass spectrometry reduced the need for sample cleanup, resulting in a rugged and rapid method capable of routinely analyzing 75 samples/day. Analytical response was linear across the physiologically relevant concentration range for the analytes. Analysis of a set of 48 amniotic fluid samples identified the range and median levels for perchlorate (0.057-0.71, 0.18 μg/L), thiocyanate (<10-5860, 89 μg/L), nitrate (650-8900, 1620 μg/L) and iodide (1.7-170, 8.1 μg/L). This selective, sensitive, and rapid method will help assess exposure of the developing fetus to low levels of NIS-inhibitors and their potential to inhibit thyroid function

  8. Investigation of uranyl-ion hydrolysis in uranyl pertechnetate and uranyl perchlorates solutions by two-phases potentiometric titration method

    International Nuclear Information System (INIS)

    Volk, V.I.; Belikov, A.D.

    1977-01-01

    The applicability of the method of two-phase potentiometric titration for studying hydrolysis of multi-charge ions has been shown. Hydrolysis of uranyl-ion has been investigated and hydrolysis constants in the solutions of uranyl pertechnetate and perchlorate have been calculated equal to (6.2+-0.15)x10 -5 and (9.25+-0.5)10 -5 , respectively. Infrared spectra of the initial crystallohydrates of uranyl pertechnetate and perchlorate has been analyzed. The data on hydrolysis of an uranyl-ion and IR spectra of crystallohydrates of the investigated salts have revealed the ability of pertechnetate ion to complexing with an uranyl group

  9. Removal of Perchlorate from Water and Wastewater by Catalytic Hydrogen Gas Membrane Systems

    Science.gov (United States)

    2007-01-01

    Quimica, Serie A: Quimica Fisica e Ingenieria Quimica, 1984. 80(2): p. 219-25. Logan, B.E. and D. LaPoint, Treatment of Perchlorate- and Nitrate...ion at iridium electrodes. Ion concentration and solution pH effects. Anales de Quimica, Serie A: Quimica Fisica e Ingenieria Quimica (1985), 81(3

  10. METAMORPHIC INHIBITION OF XENOPUS LAEVIS BY SODIUM PERCHLORATE: EFFECTS ON DEVELOPMENT AND THYROID HISTOLOGY

    Science.gov (United States)

    The perchlorate anion inhibits thyroid hormone (TH) synthesis via inhibition of the sodium-iodide symporter. It is, therefore, a good model chemical to aid in the development of a bioassay to screen chemicals for effects on thyroid function. Xenopus laevis larvae were exposed to ...

  11. Control of Sulfidogenesis Through Bio-oxidation of H2S Coupled to (per)chlorate Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, Patrick [Univ. of California, Berkeley, CA (United States); Engelbrektson, Anna [Univ. of California, Berkeley, CA (United States); Hubbard, Christopher G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Metlagel, Zoltan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Csencsits, Roseann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Auer, Manfred [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Conrad, Mark E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Thieme, Jurgen [Brookhaven National Lab. (BNL), Upton, NY (United States); Northrup, Paul [Brookhaven National Lab. (BNL), Upton, NY (United States); Coates, John D. [Univ. of California, Berkeley, CA (United States)

    2014-04-04

    Here, we investigate H2S attenuation by dissimilatory perchlorate-reducing bacteria (DPRB). All DPRB tested oxidized H2S coupled to (per)chlorate reduction without sustaining growth. H2S was preferentially utilized over organic electron donors resulting in an enriched (34S)-elemental sulfur product. Electron microscopy revealed elemental sulfur production in the cytoplasm and on the cell surface of the DPRB Azospira suillum. We also propose a novel hybrid enzymatic-abiotic mechanism for H2S oxidation similar to that recently proposed for nitrate-dependent Fe(II) oxidation. The results of this study have implications for the control of biosouring and biocorrosion in a range of industrial environments.

  12. Comparative effects of in ovo exposure to sodium perchlorate on development, growth, metabolism, and thyroid function in the common snapping turtle (Chelydra serpentina) and red-eared slider (Trachemys scripta elegans).

    Science.gov (United States)

    Eisenreich, Karen M; Dean, Karen M; Ottinger, Mary Ann; Rowe, Christopher L

    2012-11-01

    Perchlorate is a surface and groundwater contaminant found in areas associated with munitions and rocket manufacturing and use. It is a thyroid-inhibiting compound, preventing uptake of iodide by the thyroid gland, ultimately reducing thyroid hormone production. As thyroid hormones influence metabolism, growth, and development, perchlorate exposure during the embryonic period may impact embryonic traits that ultimately influence hatchling performance. We topically exposed eggs of red-eared sliders (Trachemys scripta) and snapping turtles (Chelydra serpentina) to 200 and 177 μg/g of perchlorate (as NaClO(4)), respectively, to determine impacts on glandular thyroxine concentrations, embryonic growth and development, and metabolic rates of hatchlings for a period of 2 months post-hatching. In red-eared sliders, in ovo perchlorate exposure delayed hatching, increased external yolk size at hatching, increased hatchling mortality, and reduced total glandular thyroxine concentrations in hatchlings. In snapping turtles, hatching success and standard metabolic rates were reduced, liver and thyroid sizes were increased, and total glandular thyroxine concentrations in hatchlings were reduced after exposure to perchlorate. While both species were negatively affected by exposure, impacts on red-eared sliders were most severe, suggesting that the slider may be a more sensitive sentinel species for studying effects of perchlorate exposure to turtles. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Interfacial behavior of perchlorate versus chloride ions in saturated aqueous salt solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, S; Kuo, I W; Baer, M D; Bluhm, H

    2009-04-14

    In recent years combination of theoretical and experimental work have presented a novel view of the aqueous interface wherein hard and/or multiply charged ions are excluded from the interface, but large polarizable anions show interfacial enhancement relative to the bulk. The observed trend in the propensity of anions to adsorb at the air/water interface appears to be reverse of the Hofmeister series for anions. This study focuses on experimental and theoretical examination of the partitioning behavior of perchlorate (ClO{sub 4}{sup -}) and chloride (Cl{sup -}) ions at the air/water interface. We have used ambient pressure X-ray photoelectron spectroscopy technique to directly probe the interfacial concentrations of ClO{sub 4}{sup -} and Cl{sup -} ions in sodium perchlorate and sodium chloride solutions, respectively. Experimental observations are compared with first principles molecular dynamics simulations. Both experimental and simulation results show enhancement of ClO{sub 4}{sup -} ion at the interface, compared with the absence of such enhancement in the case of Cl{sup -} ion. These observations are in agreement with the expected trend in the interfacial propensity of anions based on the Hofmeister series.

  14. FT-IR, FT-Raman spectra and DFT calculations of melaminium perchlorate monohydrate

    Science.gov (United States)

    Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Renganathan, N. G.; Gunasekaran, S.; Anbalagan, G.

    2013-08-01

    Melaminium perchlorate monohydrate (MPM), an organic material has been synthesized by slow solvent evaporation method at room temperature. Powder X-ray diffraction analysis confirms that MPM crystal belongs to triclinic system with space group P-1. FTIR and FT Raman spectra are recorded at room temperature. Functional group assignment has been made for the melaminium cations and perchlorate anions. Vibrational spectra have also been discussed on the basis of quantum chemical density functional theory (DFT) calculations using Firefly (PC GAMESS) version 7.1 G. Vibrational frequencies are calculated and scaled values are compared with experimental values. The assignment of the bands has been made on the basis of the calculated PED. The Mulliken charges, HOMO-LUMO orbital energies are analyzed directly from Firefly program log files and graphically illustrated. HOMO-LUMO energy gap and other related molecular properties are also calculated. The theoretically constructed FT-IR and FT-Raman spectra of MPM coincide with the experimental one. The chemical structure of the compound has been established by 1H and 13C NMR spectra. No detectable signal was observed during powder test for second harmonic generation.

  15. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  16. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  17. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars.

    Science.gov (United States)

    Shcherbakova, Viktoria; Oshurkova, Viktoria; Yoshimura, Yoshitaka

    2015-09-09

    The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2(T) M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth's subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  18. The Effects of Perchlorates on the Permafrost Methanogens: Implication for Autotrophic Life on Mars

    Directory of Open Access Journals (Sweden)

    Viktoria Shcherbakova

    2015-09-01

    Full Text Available The terrestrial permafrost represents a range of possible cryogenic extraterrestrial ecosystems on Earth-like planets without obvious surface ice, such as Mars. The autotrophic and chemolithotrophic psychrotolerant methanogens are more likely than aerobes to function as a model for life forms that may exist in frozen subsurface environments on Mars, which has no free oxygen, inaccessible organic matter, and extremely low amounts of unfrozen water. Our research on the genesis of methane, its content and distribution in permafrost horizons of different ages and origin demonstrated the presence of methane in permanently frozen fine-grained sediments. Earlier, we isolated and described four strains of methanogenic archaea of Methanobacterium and Methanosarcina genera from samples of Pliocene and Holocene permafrost from Eastern Siberia. In this paper we study the effect of sodium and magnesium perchlorates on growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. In this paper we study the effect of sodium and magnesium perchlorates on the growth of permafrost and nonpermafrost methanogens, and present evidence that permafrost hydogenotrophic methanogens are more resistant to the chaotropic agent found in Martian soil. Furthermore, as shown in the studies strain M2T M. arcticum, probably can use perchlorate anion as an electron acceptor in anaerobic methane oxidation. Earth’s subzero subsurface environments are the best approximation of environments on Mars, which is most likely to harbor methanogens; thus, a biochemical understanding of these pathways is expected to provide a basis for designing experiments to detect autotrophic methane-producing life forms on Mars.

  19. Kinetics of [123I]iodide uptake and discharge by perchlorate in studies of inhibition of iodide binding by antithyroid drugs

    International Nuclear Information System (INIS)

    McCruden, D.C.; Connell, J.M.C.; Alexander, W.D.; Hilditch, T.E.

    1985-01-01

    Thyroidal binding of iodide was studied by kinetic analysis of [ 123 ]iodide uptake and its discharge by perchlorate in 80 hyperthyroid subjects receiving antithyroid drug therapy. Five dosage regimens ranging from 5 mg carbimazole twice daily to 15 mg methimazole twice daily were studied. Binding inhibition was estimated at 5-7 h after drug as an index of the mean effect of the 12 hourly regimen. In all cases, except one in the lowest dose group, binding was found to be markedly reduced with mean binding rates ranging from 0.002 to 0.020 min -1 (normal > 0.15 min -1 ). The net clearance of iodide in the lowest dose group was reduced to a mean value near the upper limit of the euthyroid range, whereas in the highest dose group it lay at the lower limit of the euthyroid range. These results were reflected in the serum thyroid hormone response. There was a reducing incidence of inadequate control of hyperthyroidism and an increasing incidence of hypothyroidism with increasing thiourylene dose. The exit rate constant of free iodide for the various doses showed values from 0.048 to 0.055 min -1 . Correpsonding mean values for the discharge rate constant after perchlorate were 0.087 to 0.105 min -1 . This suggests that perchlorate increases the rate of iodide release from the thyroid gland. Studies at a later interval after drug (12-14 h) showed no change in discharge rate constant. This leads to the conclusion that perchlorate may further inhibit iodide binding in subjects receiving antithyroid drug therapy. (author)

  20. 77 FR 64335 - Notification of a Public Teleconference of the Science Advisory Board; Perchlorate Advisory Panel

    Science.gov (United States)

    2012-10-19

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL--9743-2] Notification of a Public Teleconference of the Science Advisory Board; Perchlorate Advisory Panel AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The Environmental Protection Agency (EPA) Science Advisory Board (SAB) Staff Office...

  1. Integrated Ion Exchange Regeneration Process for Perchlorate in Drinking Water

    Science.gov (United States)

    2010-08-01

    chloride NDEA N-Nitrosodiethylamine NDMA N-Nitrosodimethylamine NDPA N-Nitrosodipropylamine NAVFAC ESC Naval Facilities Engineering Command...NO3 37 mg/L as NO3 Uranium 1.6 μg/L 2.6 μg/L 2.2 mg/L NDMA ɚ.0 ng/L 32 ng/L ɚ.0 ng/L NDEA ɚ.0 ng/L ɚ.0 ng/L ɚ.0 ng/L NDPA ɚ.0 ng/L ɚ.0 ng...L ɚ.0 ng/L NDMA – N-Nitrosodimethylamine NDEA – N-Nitrosodiethylamine NDPA – N-Nitrosodipropylamine 15 Figure 5. Influent perchlorate

  2. Poly[[tetrakis(μ2-pyrazine N,N′-dioxide-κ2O:O′erbium(III] tris(perchlorate

    Directory of Open Access Journals (Sweden)

    James D. Buchner

    2010-09-01

    Full Text Available The title three-dimensional coordination network, {[Er(C4H4N2O24](ClO43}n, is isostructural to that of other lanthanides. The Er+3 cation lies on a fourfold roto-inversion axis. It is coordinated in a distorted square-antiprismatic fashion by eight O atoms from bridging pyrazine N,N′-dioxide ligands. There are two unique pyrazine N,N′-dioxide ligands. One ring is located around an inversion center, and there is a a twofold rotation axis at the center of the other ring. There are also two unique perchlorate anions. One is centered on a twofold rotation axis and the other on a fourfold roto-inversion axis. The perchlorate anions are located in channels that run perpendicular to (001 and (110 and interact with the coordination network through C—H...O hydrogen bonds.

  3. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  4. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  5. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  6. Effects of the anti-thyroidal compound potassium-perchlorate on the thyroid system of the zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Florian, E-mail: florian.schmidt@zoo.uni-heidelberg.de [Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany); Schnurr, Sarah; Wolf, Raoul; Braunbeck, Thomas [Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, D-69120 Heidelberg (Germany)

    2012-03-15

    The increasing pollution of aquatic habitats with anthropogenic compounds has led to various test strategies to detect hazardous chemicals. However, information on effects of pollutants in the thyroid system in fish, which is essential for growth, development and parts of reproduction, is still scarce. Other vertebrate groups such as amphibians or mammals are well-studied; so the need for further knowledge especially in fish as a favored vertebrate model test organism is evident. Modified early life-stage tests were carried out with zebrafish exposed to the known thyroid inhibitor potassium perchlorate (0, 62.5, 125, 250, 500 and 5000 {mu}g/L) to identify adverse effects on the hypothalamic-pituitary-thyroid axis. Especially higher perchlorate concentrations led to conspicuous alterations in thyroidal tissue architecture and to effects in the pituitary. In the thyroid, severe hyperplasia at concentrations {>=}500 {mu}g/L together with an increase in follicle number could be detected. The most sensitive endpoint was the colloid, which showed alterations at {>=}250 {mu}g/L. The tinctorial properties and the texture of the colloid changed dramatically. Interestingly, effects on epithelial cell height were minor. The pituitary revealed significant proliferations of TSH-producing cells resulting in alterations in the ratio of adeno- to neurohypophysis. The liver as the main site of T4 deiodination showed severe glycogen depletion at concentrations {>=}250 {mu}g/L. In summary, the thyroid system in zebrafish showed effects by perchlorate from concentrations {>=}250 {mu}g/L, thus documenting a high sensitivity of the zebrafish thyroid gland for goitrogens. In the future, such distinct alterations could lead to a better understanding and identification of potential thyroid-disrupting chemicals.

  7. Bis[N-(3-aminopropylpropane-1,3-diamine-κ3N,N′,N′′]cadmium nitrate perchlorate

    Directory of Open Access Journals (Sweden)

    Václav Eigner

    2012-03-01

    Full Text Available The title complex, [Cd(C6H17N32](ClO4(NO3, was synthesized by the reaction of Cd(NO32·4H2O, bis(3-aminopropylamine and sodium perchlorate in methanol. The asymmetric unit of the title complex consists of one Cd2+ cation, two tridentate bis(3-aminopropylamine ligands, one nitrate anion and one perchlorate anion. The Cd2+ cation is coordinated by six N atoms of the bis(3-aminopropylamine ligands in a slightly distorted octahedral coordination geometry. In the crystal, molecules are held together by an intricate network of N—H...O interactions. One of the two amine ligands was found to be disordered over two sets of sites, with a ratio of 0.802 (3:0.198 (3, similarly to the nitrate anion, with a ratio of 0.762 (10:0.238 (10.

  8. Perchlorate Destruction and Potable Water Production Using Membrane Biofilm Reduction and Membrane Filtration

    Science.gov (United States)

    2013-11-18

    drainages , and infiltration (rainfall and irrigation water) provide the majority of recharge to the system (Wooldenden and Kadhim 2005). 4.3 CONTAMINANT...restarted the system at 15:44. To mitigate accumulation of rainwater into secondary containment, the southern secondary containment wall was temporarily...phase to assess system robustness and resiliency. Using indigenous organisms, the MBfR was colonized with perchlorate- and nitrate-reducing bacteria

  9. Development of a Screening Tool to Facilitate Technology Transfer of an Innovative Technology to Treat Perchlorate-Contaminated Water

    National Research Council Canada - National Science Library

    Craig, Daniel A

    2008-01-01

    Perchlorate contamination of drinking water is a significant problem nationwide. The purpose of this study was to develop a tool to predict the cost and performance of tailored granular activated carbon (T-GAC...

  10. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  11. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  12. Analysis of Mixed Aryl/Alkyl Esters by Pyrolysis Gas Chromatography-Mass Spectrometry in the Presence of Perchlorate

    Science.gov (United States)

    Burton, A. S.; Locke, D. R.; Lewis, E. K.

    2017-01-01

    Mars is an important target for Astrobiology. A key goal of the MSL mission was to determine whether Mars was habitable in the past, a que-tion that has now been definitely determined to be yes. Another key goal for Mars exploration is to understand the origin and distribution of organic material on Mars; this question is being addressed by the SAM instrument on MSL, and will also be informed by two upcoming Mars exploration missions, ExoMars and Mars 2020. These latter two missions have instrumentation capable of detecting and characterize organic molecules. Over the next decade, these missions will analyze organics in surface, near-surface and sub-surface samples. Each mission has the capability to analyze organics by different methods (pyrolysis gas chromatography-mass spectrometry [py-GC-MS]; laser desorption and thermal volatilization GC-MS; and Raman spectroscopy). Plausibly extraterrestrial organics were recently discovered by the Mars Science Laboratory (MSL), providing an important first step towards understanding the organic inventory on Mars [1]. The compounds detected were chlorobenzenes and chloroalkanes, but it was argued that chlorination of these compounds occurred during pyrolysis of samples containing unchlorinated organics in the presence of perchlorate. A recent report analyzed a suite of aromatic (benzene, toluene, benzoic acid, phthalic acid, and mellitic acid) and aliphatic (acetic acid, propane, propanol, and hexane) by pyrolysis under SAM-like conditions in the presence of perchlorate to attempt to constrain possible precursor molecules for the organic molecules detected on Mars. For aromatic compounds, the aromatic acids all readily produced SAM-relevant chlorobenzes, whereas benzene and toluene did not. This observation suggests that the chlorobenzene detected on Mars could have derived from compounds like mellitic acid, consistent with the previous hypothesis by Benner et al. [3]. Among the aliphatic molecules, it was shown that

  13. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    Science.gov (United States)

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  14. Copper as a target for prostate cancer therapeutics: copper-ionophore pharmacology and altering systemic copper distribution

    Science.gov (United States)

    Denoyer, Delphine; Pearson, Helen B.; Clatworthy, Sharnel A.S.; Smith, Zoe M.; Francis, Paul S.; Llanos, Roxana M.; Volitakis, Irene; Phillips, Wayne A.; Meggyesy, Peter M.; Masaldan, Shashank; Cater, Michael A.

    2016-01-01

    Copper-ionophores that elevate intracellular bioavailable copper display significant therapeutic utility against prostate cancer cells in vitro and in TRAMP (Transgenic Adenocarcinoma of Mouse Prostate) mice. However, the pharmacological basis for their anticancer activity remains unclear, despite impending clinical trails. Herein we show that intracellular copper levels in prostate cancer, evaluated in vitro and across disease progression in TRAMP mice, were not correlative with copper-ionophore activity and mirrored the normal levels observed in patient prostatectomy tissues (Gleason Score 7 & 9). TRAMP adenocarcinoma cells harbored markedly elevated oxidative stress and diminished glutathione (GSH)-mediated antioxidant capacity, which together conferred selective sensitivity to prooxidant ionophoric copper. Copper-ionophore treatments [CuII(gtsm), disulfiram & clioquinol] generated toxic levels of reactive oxygen species (ROS) in TRAMP adenocarcinoma cells, but not in normal mouse prostate epithelial cells (PrECs). Our results provide a basis for the pharmacological activity of copper-ionophores and suggest they are amendable for treatment of patients with prostate cancer. Additionally, recent in vitro and mouse xenograft studies have suggested an increased copper requirement by prostate cancer cells. We demonstrated that prostate adenocarcinoma development in TRAMP mice requires a functional supply of copper and is significantly impeded by altered systemic copper distribution. The presence of a mutant copper-transporting Atp7b protein (tx mutation: A4066G/Met1356Val) in TRAMP mice changed copper-integration into serum and caused a remarkable reduction in prostate cancer burden (64% reduction) and disease severity (grade), abrogating adenocarcinoma development. Implications for current clinical trials are discussed. PMID:27175597

  15. Evaluation of an Innovative Technology for Treatment of Water Contaminated with Perchlorate and Organic Compounds

    Science.gov (United States)

    2009-03-26

    2004). Exposure to perchlorate can result in negative health effects including hypothyroidism and various other thyroid disorders (NRC, 2005). Ion...level (DWEL) of 24.5 µg/L (U. S. EPA, 2006a). This dose is based on a 154-pound adult consuming 2 liters of water per day that contains 24.5 µg/L of

  16. The discrimination of 72 nitrate, chlorate and perchlorate salts using IR and Raman spectroscopy

    Science.gov (United States)

    Zapata, Félix; García-Ruiz, Carmen

    2018-01-01

    Inorganic oxidizing energetic salts including nitrates, chlorates and perchlorates are widely used in the manufacture of not only licit pyrotechnic compositions, but also illicit homemade explosive mixtures. Their identification in forensic laboratories is usually accomplished by either capillary electrophoresis or ion chromatography, with the disadvantage of dissociating the salt into its ions. On the contrary, vibrational spectroscopy, including IR and Raman, enables the non-invasive identification of the salt, i.e. avoiding its dissociation. This study focuses on the discrimination of all nitrate, chlorate and perchlorate salts that are commercially available, using both Raman and IR spectroscopy, with the aim of testing whether every salt can be unequivocally identified. Besides the visual spectra comparison by assigning every band with the corresponding molecular vibrational mode, a statistical analysis based on Pearson correlation was performed to ensure an objective identification, either using Raman, IR or both. Positively, 25 salts (out of 72) were unequivocally identified using Raman, 30 salts when using IR and 44 when combining both techniques. Negatively, some salts were undistinguishable even using both techniques demonstrating there are some salts that provide very similar Raman and IR spectra.

  17. Determination of low levels of perchlorate in lettuce and spinach using ion chromatography-electrospray ionization mass spectrometry (IC-ESI-MS).

    Science.gov (United States)

    Seyfferth, Angelia L; Parker, David R

    2006-03-22

    A sample preparation method was developed to quantify environmentally relevant (low micrograms per liter) concentrations of perchlorate (ClO4(-)) in leafy vegetables using IC-ESI-MS. Lettuce and spinach were macerated, centrifuged, and filtered, and the aqueous extracts were rendered water-clear using a one-step solid-phase extraction method. Total time for extraction and sample preparation was 6 h. Ion suppression was demonstrated and was likely due to unknown organics still present in the extract solution after cleanup. However, this interference was readily eliminated using a Cl(18)O4(-) internal standard at 1 microg/L in all standards and samples. Hydroponically grown perchlorate-free butterhead lettuce was spiked to either 10.3 or 37.7 microg/kg of fresh weight (FW), and recoveries were between 91 and 98% and between 93 and 101%, respectively. Five types of lettuce and spinach from a local grocery store were then analyzed; they contained from 0.6 to 6.4 microg/kg of FW. Spike recoveries using the store-bought samples ranged from 89 to 100%. The method detection limit for perchlorate in plant extracts is 40 ng/L, and the corresponding minimum reporting limit is 200 ng/L or 0.8 microg/kg of FW.

  18. Native copper as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1989-12-01

    This paper discusses the occurrence of native copper as found in geological formations as a stability analogue of copper canisters that are planned to be used for the disposal of spent nuclear fuel in the Finnish bedrock. A summary of several publications on native copper occurrences is presented. The present geochemical and geohydrological conditions in which copper is met with in its metallic state show that metallic copper is stable in a wide range of temperatures. At low temperatures native copper is found to be stable where groundwater has moderate pH (about 7), low Eh (< +100 mV), and low total dissolved solids, especially chloride. Microscopical and microanalytical studies were carried out on a dozen of rock samples containing native copper. The results reveal that the metal shows no significant alteration. Only the surface of copper grains is locally coated. In the oldest samples there exist small corrosion cracks; the age of the oldest samples is over 1,000 million years. A review of several Finnish groundwater studies suggests that there are places in Finland where the geohydrological conditions are favourable for native copper stability. (orig.)

  19. Magneto and spectral behaviour of lanthanide(III) perchlorate complexes of n-isonicotinamidoanisalaldimine

    International Nuclear Information System (INIS)

    Agarwal, R.K.; Agarwal, Himanshu; Sarin, R.K.

    1996-01-01

    A new series of lanthanide(III) perchlorate complexes of N-isonicotinamidoanisalaldimine (INH-SAL) with the general composition (Ln(INH-SAL) 4 )(ClO) 4 ) 3 (Ln=La, Pr, Nd, Sm, Gd, Tb or Dy) were synthesized and characterized by elemental analyses, conductance, molecular weight, infrared and electronic spectral data. INH-SAL acts as a bidentate (N, O) chelating agents. The tentative coordination number eight has been assigned. Thermal behaviour of some representative chelates has also been investigated. (author). 14 refs., 2 tabs

  20. Perchlorate exposure is associated with oxidative stress and indicators of serum iron homeostasis among NHANES 2005-2008 subjects

    Science.gov (United States)

    ABSTRACT Perchlorate (ClO4-), an oxidizing agent, is a ubiquitous environmental pollutant. Several studies have investigated its thyroid hormone disrupting properties. Its associations with other biological measures are largely unknown. This study, combining 2005-2008 National H...

  1. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  2. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  3. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species.

    Science.gov (United States)

    Levy, Jacqueline L; Angel, Brad M; Stauber, Jennifer L; Poon, Wing L; Simpson, Stuart L; Cheng, Shuk Han; Jolley, Dianne F

    2008-08-29

    Although it has been well established that different species of marine algae have different sensitivities to metals, our understanding of the physiological and biochemical basis for these differences is limited. This study investigated copper adsorption and internalisation in three algal species with differing sensitivities to copper. The diatom Phaeodactylum tricornutum was particularly sensitive to copper, with a 72-h IC50 (concentration of copper to inhibit growth rate by 50%) of 8.0 microg Cu L(-1), compared to the green algae Tetraselmis sp. (72-h IC50 47 microg Cu L(-1)) and Dunaliella tertiolecta (72-h IC50 530 microg Cu L(-1)). At these IC50 concentrations, Tetraselmis sp. had much higher intracellular copper (1.97+/-0.01 x 10(-13)g Cu cell(-1)) than P. tricornutum (0.23+/-0.19 x 10(-13)g Cu cell(-1)) and D. tertiolecta (0.59+/-0.05 x 10(-13)g Cu cell(-1)), suggesting that Tetraselmis sp. effectively detoxifies copper within the cell. By contrast, at the same external copper concentration (50 microg L(-1)), D. tertiolecta appears to better exclude copper than Tetraselmis sp. by having a slower copper internalisation rate and lower internal copper concentrations at equivalent extracellular concentrations. The results suggest that the use of internal copper concentrations and net uptake rates alone cannot explain differences in species-sensitivity for different algal species. Model prediction of copper toxicity to marine biota and understanding fundamental differences in species-sensitivity will require, not just an understanding of water quality parameters and copper-cell binding, but also further knowledge of cellular detoxification mechanisms.

  4. Ecological Risk Assessment of Perchlorate in Avian Species, Rodents, Amphibians and Fish

    Science.gov (United States)

    2003-04-01

    http://www .indiana.edu/- axolotl ). 10.0 JUSTIFICATION OF TEST SYSTEM Perchlorate occurs in ground and surface waters in 44 states in the USA... axolotl ). * Sequentially numbered in order of the date that the change is effective Dept. of Biological Sciences (DBS) Box 43131 Lubbock, TX 79409...KCl, 0.025 giL; CaCh2 H20, 0.65 g/L; MgS04·7H20, 0.1 giL (http://www.indiana.edu/~ axolotl ). *Sequentially numbered in order of the date that the

  5. EFFECTS OF AMMONIUM PERCHLORATE ON LIVER ENZYMES AND THE THYROID AXIS OF RATS PRETREATED WITH PCB126.

    Science.gov (United States)

    Ammonium perchlorate and 3,3,4,4,5-pentachlorobiphenyl (PCB126) are environmental contaminants that are known to disturb thyroid hormone (TH) homeostasis by well defined modes of action that lead to hypothyroidism in the rat. PCB126 increases phase II conjugation of T4 by induc...

  6. 2-(2-Hydroxy-3-methoxyphenyl-1H-benzimidazol-3-ium perchlorate

    Directory of Open Access Journals (Sweden)

    Chuan Chen

    2012-06-01

    Full Text Available In the title molecular salt, C14H13N2O2+·ClO4−, the ring systems in the cation are almost coplanar [dihedral angle = 5.53 (13°]. Intramolecular N—H...O and O—H...O hydrogen bonds generate S(6 and S(5 rings, respectively. In the crystal, the two H atoms involved in the intramolecular hydrogen bonds also participate in intermolecular links to acceptor O atoms of the perchlorate anions. A simple intermolecular N—H...O bond also occurs. Together, these form a double-chain structure along [101].

  7. Electrical conduction in composites containing copper core-copper

    Indian Academy of Sciences (India)

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  8. A vacuum ultraviolet photoionization study on the thermal decomposition of ammonium perchlorate

    Science.gov (United States)

    Góbi, Sándor; Zhao, Long; Xu, Bo; Ablikim, Utuq; Ahmed, Musahid; Kaiser, Ralf I.

    2018-01-01

    Pyrolysis products of ammonium perchlorate (NH4ClO4) at 483 K were monitored on line and in situ via single photon photoionization reflectron time-of-flight spectrometry (PI-ReTOF-MS) in the photon energy range of 9.00-17.50 eV. The photoionization efficiency curves (PIE) of the subliming product molecules were collected and allowed for detection of three class of products containing chlorine, nitrogen, and oxygen including atoms and free radicals. These results suggest a new insight into possible low-temperature decomposition pathways of NH4ClO4.

  9. Phase behaviour and molecular dynamics in the binary system of sodium perchlorate and 1,2-propanediamine

    International Nuclear Information System (INIS)

    Terashima, Yukio; Takeda, Kiyoshi; Honda, Makoto

    2011-01-01

    The phase and glass transition behaviour in a binary mixture of sodium perchlorate and 1,2-propanediamine {(NaClO 4 ) x (12PDA) 1-x , x 4 ) 1 (12PDA) 4 and (NaClO 4 ) 2 (12PDA) 5 . The concentration dependence of the glass transition point shows a sigmoid curve implying an underlying anomaly.

  10. MEASUREMENT OF PERCHLORATE IN WATER USING AN OXYGEN-18 ENRICHED ISOTOPE STANDARD AND ION CHROMATOGRAPHY MASS SPECTROMETRIC DETECTION

    Science.gov (United States)

    Perchlorate (ClO4 -) is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a component in air bag infla...

  11. METHOD 332.0: DETERMINATION OF PERCHLORATE IN DRINKING WATER BY ION CHROMATOGRAPHY WITH SUPPRESSED CONDUCTIVITY AND ELECTROSPRAY IONIZATION MASS SPECTROMETRY

    Science.gov (United States)

    This method is applicable to the identification and quantitation of perchlorate in raw and finished drinking waters. The approach used is ion chromatography with suppressed conductivity and electrospray ionization mass spectrometry (IC-ESI/MS)

  12. Reagent conditions of the flotation of copper, copper - molybdenum and copper -zinc ores in foreing countries

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1983-01-01

    Reagents-collectors and frothers, used abroad in reagent regimes of flotation of copper, copper-molybdenum and copper zinc ores, have been considered. Xanthogenates, aerofloats, xanthogenformiates, thionocarbamates are mainly used as reagents-collectors. Methylizobutylcarbinol and Daufros are used as reagents-frothers

  13. Radiation-chemical oxidation of neptunium in perchloric acid solutions

    International Nuclear Information System (INIS)

    Shilov, V.P.; Gusev, Yu.K.; Pikaev, A.K.; Stepanova, E.S.; Krot, N.N.

    1979-01-01

    The γ-radiation effect (at a dose rate of 5x10 16 eV/mlxs) on 1x10 -3 Np(6) and Np(5) perchloric acid solutions is studied. The output of Np(6) loss in aerated 0.001-0.005M HClO 4 solutions was 2.4 ions/100 eV. The output of Np(5) loss in solutions saturated with nitrous oxide was 2.1 ions/100 eV at pH-4. In aerated 0.1-1.0 M HClO 4 solutions in presence of XeO 4 the output of Np(5) loss grows from 6.6 to 13.5 ions/100 eV as (XeO 3 ) 0 increases from 1x10 -3 to 2x10 -2 M. Possible process mechanisms have been proposed

  14. Uptake and Transformation of the Propellants 2,4-DNT, Perchlorate and Nitroglycerin by Grasses

    Science.gov (United States)

    2006-07-31

    they stabilize and prevent contamination from spreading. Grasses native to a region tend to grow rapidly and can be easily cultivated without digging...to the live soil. The alternative of cultivating strictly sterile plants was deemed too difficult. In addition problems often result from experiments...Lu Yu, Jaclyn E.Cafias, Cobb G.P., Jackson W.A. Anderson T.A. "Uptake of perchlorate in terrestrial plants." Ecotoxicology and Environmental Safety 58

  15. Open Burn/Open Detonation (OBOD) Area Management Using Lime For Explosives Transformation And Metals Immobilization

    Science.gov (United States)

    2012-01-01

    Arsenic Ca Calcium Cd Cadmium Co Cobalt Cr Chromium Cu Copper Fe Iron Mo Molybdenum ERDC/EL TR-12-4 xii Ni Nickel Pb Lead Sb... phytoremediation , reactive barriers, etc.) exist for treatment after the explosive constituents have entered the groundwater or surface water. However, no...Explosives (1,3-dinitrobenzene and nitrobenzene), perchlorate, and inor- ganics ( arsenic , copper, nickel, selenium and zinc) were detected in pre- vious

  16. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  17. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color...

  18. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and...

  19. Medium effects on a C-H bond fission reaction. Solvent and salt effects on the solvolysis of arylsulfonylmethyl perchlorates.

    NARCIS (Netherlands)

    Menninga, Lubbertus

    1976-01-01

    In this thesis, medium effects on the general basecatelyzed solvolysis of two arylsulfonylmethyl perchlorates are described and analyzed in some detail. For the aqueous media, special attention is given to possible effects due to changes in diffusionally averaged water structure. ... Zie: Summary

  20. Synthesis of polycrystalline Co{sub 3}O{sub 4} nanowires with excellent ammonium perchlorate catalytic decomposition property

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hai [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Lv, Baoliang, E-mail: lbl604@sxicc.ac.cn [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Wu, Dong; Xu, Yao [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China)

    2014-12-15

    Graphical abstract: Co{sub 3}O{sub 4} nanowires with excellent ammonium perchlorate catalytic decomposition property were synthesized via a methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process in the presence of methanamide. - Abstract: Co{sub 3}O{sub 4} nanowires, with the length of tens of micrometers and the width of several hundred nanometers, were produced by a hydrothermal treatment and a post-anneal process. X-ray diffraction (XRD) result showed that the Co{sub 3}O{sub 4} nanowires belong to cubic crystal system. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that the Co{sub 3}O{sub 4} nanowires, composed by single crystalline nanoparticles, were of polycrystalline nature. On the basis of time-dependent experiments, methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process were used to explain the precursors' formation process of the polycrystalline Co{sub 3}O{sub 4} nanowires. The TGA experiments showed that the as-obtained Co{sub 3}O{sub 4} nanowires can catalyze the thermal decomposition of ammonium perchlorate (AP) effectively.

  1. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  2. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  3. Morphological changes of porphine films on graphite by perchloric and phosphoric electrolytes. An electrochemical-AFM study

    Science.gov (United States)

    Yivlialin, Rossella; Penconi, Marta; Bussetti, Gianlorenzo; Biroli, Alessio Orbelli; Finazzi, Marco; Duò, Lamberto; Bossi, Alberto

    2018-06-01

    Organic molecules have been proposed as promising candidates for electrode protection in acidic electrolytes. The use of tetraphenyl-porphines (H2TPP) as graphite surface-protecting agents in sulphuric acid (H2SO4) is one of the newest. With the aim of unveiling the mechanism of such a protective effect, in this paper we test the stability of a H2TPP thin film immersed in perchloric and phosphoric acid solutions that differently interact with porphyrins. The protective role of H2TPP is tested in the electrochemical potential range where the pristine graphite undergoes an oxidation process that erodes the surface and eventually exfoliate the stratified crystal. The electrochemical analysis is performed in a three-electrode cell, while the surface morphology is monitored ex-situ and in-situ by atomic force microscopy. Electrospray mass analysis is also employed to investigate the presence of H2TPP fragments in the solution. We find that the organic film is not stable in perchloric solution, while it is stable and avoids graphite surface corrosion in phosphoric acid solution. These results provide a rationale for the role played by free-base porphines in graphite protection.

  4. Speciation and leachability of copper in mine tailings from porphyry copper mining

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Yianatos, Juan B; Ottosen, Lisbeth M.

    2005-01-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150mgkg^-^1 dry...... matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212@mm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order...... to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles...

  5. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    International Nuclear Information System (INIS)

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  6. Copper and Anesthesia: Clinical Relevance and Management of Copper Related Disorders

    OpenAIRE

    Langley, Adrian; Dameron, Charles T.

    2013-01-01

    Recent research has implicated abnormal copper homeostasis in the underlying pathophysiology of several clinically important disorders, some of which may be encountered by the anesthetist in daily clinical practice. The purpose of this narrative review is to summarize the physiology and pharmacology of copper, the clinical implications of abnormal copper metabolism, and the subsequent influence of altered copper homeostasis on anesthetic management.

  7. A Porous Perchlorate-Doped Polypyrrole Nanocoating on Nickel Nanotube Arrays for Stable Wide-Potential-Window Supercapacitors.

    Science.gov (United States)

    Chen, Gao-Feng; Li, Xian-Xia; Zhang, Li-Yi; Li, Nan; Ma, Tian Yi; Liu, Zhao-Qing

    2016-09-01

    A bottom-up synthetic strategy is developed to fabricate a highly porous wave-superposed perchlorate-doped polypyrrole nanocoating on nickel nanotube arrays. The delicate nanostructure and the unique surface chemistry synergistically endow the obtained electrode with revealable pseudocapacitance, large operating potential window, and excellent cycling stability, which are highly promising for both asymmetric and symmetric supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  9. Validation of chlorine and oxygen isotope ratio analysis to differentiate perchlorate sources and to document perchlorate biodegradation

    Science.gov (United States)

    Paul B. Hatzinger,; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua

    2013-01-01

    Increased health concerns about perchlorate (ClO4-) during the past decade and subsequent regulatory considerations have generated appreciable interest in source identification. The key objective of the isotopic techniques described in this guidance manual is to provide evidence concerning the origin of ClO4- in soils and groundwater and, more specifically, whether that ClO4- is synthetic or natural. Chlorine and oxygen isotopic analyses of ClO4- provide the primary direct approach whereby different sources of ClO4- can be distinguished from each other. These techniques measure the relative abundances of the stable isotopes of chlorine (37Cl and 35Cl) and oxygen (18O, 17O, and 16O) in ClO4- using isotope-ratio mass spectrometry (IRMS). In addition, the relative abundance of the radioactive chlorine isotope 36Cl is measured using accelerator mass spectrometry (AMS). Taken together, these measurements provide four independent quantities that can be used to distinguish natural and synthetic ClO4- sources, to discriminate different types of natural ClO4-, and to detect ClO4- biodegradation in the environment. Other isotopic, chemical, and geochemical techniques that can be applied in conjunction with isotopic analyses of ClO4- to provide supporting data in forensic studies are also described.

  10. The Nitrate/Perchlorate Ratio on Mars as an Indicator for Habitability

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; McKay, C. P.; Navarro-Gonzalex, R.; Freissinet, C.; Conrad, P. G.; Mahaffy, P. R.; Archer, P. D., Jr.; Ming, D. W.; Niles, P. B.; hide

    2015-01-01

    Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and the potential development of a nitrogen cycle at some point in martian history. The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) Curiosity Rover detected evolved nitric oxide (NO) gas during pyrolysis of scooped aeolian sediments and drilled mudstone acquired in Gale Crater. The detection of NO suggests an indigenous source of fixed N, and may indicate a mineralogical sink for atmospheric N2 in the form of nitrate. The ratio of nitrate to oxychlorine species (e.g. perchlorate) may provide insight into the extent of development of a nitrogen cycle on Mars.

  11. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts

    NARCIS (Netherlands)

    Munnik, P.|info:eu-repo/dai/nl/328228524; Wolters, M.|info:eu-repo/dai/nl/304829560; Gabrielsson, A.; Pollington, S.D.; Headdock, G.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2011-01-01

    In order to obtain copper catalysts with high dispersions at high copper loadings, the gas flow rate and gas composition was varied during calcination of silica gel impregnated with copper nitrate to a loading of 18 wt % of copper. Analysis by X-ray diffraction (XRD), N2O chemisorption, and

  12. Copper economy in Chlamydomonas: Prioritized allocation and reallocation of copper to respiration vs. photosynthesis

    Science.gov (United States)

    Kropat, Janette; Gallaher, Sean D.; Urzica, Eugen I.; Nakamoto, Stacie S.; Strenkert, Daniela; Tottey, Stephen; Mason, Andrew Z.; Merchant, Sabeeha S.

    2015-01-01

    Inorganic elements, although required only in trace amounts, permit life and primary productivity because of their functions in catalysis. Every organism has a minimal requirement of each metal based on the intracellular abundance of proteins that use inorganic cofactors, but elemental sparing mechanisms can reduce this quota. A well-studied copper-sparing mechanism that operates in microalgae faced with copper deficiency is the replacement of the abundant copper protein plastocyanin with a heme-containing substitute, cytochrome (Cyt) c6. This switch, which is dependent on a copper-sensing transcription factor, copper response regulator 1 (CRR1), dramatically reduces the copper quota. We show here that in a situation of marginal copper availability, copper is preferentially allocated from plastocyanin, whose function is dispensable, to other more critical copper-dependent enzymes like Cyt oxidase and a ferroxidase. In the absence of an extracellular source, copper allocation to Cyt oxidase includes CRR1-dependent proteolysis of plastocyanin and quantitative recycling of the copper cofactor from plastocyanin to Cyt oxidase. Transcriptome profiling identifies a gene encoding a Zn-metalloprotease, as a candidate effecting copper recycling. One reason for the retention of genes encoding both plastocyanin and Cyt c6 in algal and cyanobacterial genomes might be because plastocyanin provides a competitive advantage in copper-depleted environments as a ready source of copper. PMID:25646490

  13. Investigation of REE perchlorates complexing with benzimidazole in aqua-dioxane media. Issledovanie kompleksoobrazovaniya perkhloratov RZEh s benzimidazolom v vodno-dioksanovoj srede

    Energy Technology Data Exchange (ETDEWEB)

    Akhrimenko, Z M; Panyushkin, V T; Ishbulatova, S K [Kubanskij Gosudarstvennyj Univ., Krasnodar (Russian Federation)

    1992-01-01

    Stability constant (K[sub 1]) of complexes of rare earth perchlorates with benzimidazole were determined by the method of pH-metric titration. Nonmonotonous change in lgK[sub 1] with rare earth ordinal number increase was revealed.

  14. Canine Copper-Associated Hepatitis

    NARCIS (Netherlands)

    Dirksen, Karen; Fieten, Hille

    2017-01-01

    Copper-associated hepatitis is recognized with increasing frequency in dogs. The disease is characterized by centrolobular hepatic copper accumulation, leading to hepatitis and eventually cirrhosis. The only way to establish the diagnosis is by histologic assessment of copper distribution and copper

  15. [Health survey of plant workers for an occupational exposure to ammonium perchlorate].

    Science.gov (United States)

    Chen, Hong-xia; Shao, Yuan-peng; Wu, Feng-hong; Li, Yang-ping; Peng, Kai-liang

    2013-01-01

    To understand the occupational hazards of ammonium perchlorate dust on operating workers and to provide the basis preventive measures for protecting the workers' health. 36 workers exposed to ammonium perchlorate dust and 48 unexposed workers from one factory were selected as the exposure and control groups. Investigations on the general condition, sampling of dust in the workplaces and a special medical examination were conducted for two groups, including occupational history, clinical manifestations, blood routine test, hepatic and renal functions, indexes of thyroid hormone, spirometric test and chest X-ray. The total dust concentration of AP in the batch plant reached to 51.63 ± 43.27 mg/m(3), exceeding the U.S. Occupational Safety and Health Administration (OSHA) permission exposure limits. The systolic blood pressure in the exposure group was higher than that of the control group (146.14 ± 21.03 VS 134.67 ± 18.58), and the difference was statistically significant (P detection rates of the cumulative total symptoms, short of breath and skin itch symptoms in the exposure group were significantly higher than those in the control group (86.11% VS 66.67%; 30.56% VS 12.50%) (P detected on the left of lung door area in the control group. The systolic blood pressure of workers in the exposure group was significantly higher, which could not exclude related to the exposure to AP dust; The T(3) levels in the exposure workers were lower than those in the control group, which may due to AP exposure, suggesting that long-term chronic exposure to AP dust may affect thyroid function.

  16. Earth's copper resources estimated from tectonic diffusion of porphyry copper deposits

    Science.gov (United States)

    Kesler, Stephen E.; Wilkinson, Bruce H.

    2008-03-01

    Improved estimates of global mineral endowments are relevantto issues ranging from strategic planning to global geochemicalcycling. We have used a time-space model for the tectonic migrationof porphyry copper deposits vertically through the crust tocalculate Earth's endowment of copper in mineral deposits. Themodel relies only on knowledge of numbers and ages of porphyrycopper deposits, Earth's most widespread and important sourceof copper, in order to estimate numbers of eroded and preserveddeposits in the crust. Model results indicate that 125,895 porphyrycopper deposits were formed during Phanerozoic time, that only47,789 of these remain at various crustal depths, and that thesecontain 1.7 x 1011 tonnes (t) of copper. Assuming that othertypes of copper deposits behave similarly in the crust and haveabundances proportional to their current global production yieldsan estimate of 3 x 1011 t for total global copper resourcesat all levels in Earth's crust. Thus, 0.25% of the copper inthe crust has been concentrated into deposits through Phanerozoictime, and about two-thirds of this has been recycled by upliftand erosion. The amount of copper in deposits above 3.3 km,a likely limit of future mining, could supply current worldmine production for 5500 yr, thus quantifying the highly unusualand nonrenewable nature of mineral deposits.

  17. Study of the ion-channel behavior on glassy carbon electrode supported bilayer lipid membranes stimulated by perchlorate anion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiquan; Shi, Jun; Huang, Weimin, E-mail: huangwm@jlu.edu.cn

    2015-10-01

    In this paper, a kind of didodecyldimethylammonium bromide (DDAB) layer membranes was supported on a glassy carbon electrode (GCE). We studied the ion channel behavior of the supported bilayer lipid membrane by scanning electrochemical microscopy (SCEM) in tris(2,2′-bipyridine) ruthenium(II) solution. Perchlorate anion was used as a presence of stimulus and ruthenium(II) complex cations as the probing ions for the measurement of SECM, the lipid membrane channel was opened and exhibited the behavior of distinct SECM positive feedback curve. The channel was in a closed state in the absence of perchlorate anions while reflected the behavior of SECM negative feedback curve. The rates of electron transfer reaction in the lipid membranes surface were detected and it was dependant on the potential of SECM. - Highlights: • The rates of electron transfer reaction in the lipid membranes surface were detected. • Dynamic investigations of ion-channel behavior of supported bilayer lipid membranes by scanning electrochemical microscopy • A novel way to explore the interaction between molecules and supported bilayer lipid membranes.

  18. The perchlorate discharge test with {sup 123}I for the diagnosis of the Pendred syndrome in children; Der Depletionstest mit {sup 123}Iod zur Diagnose des Pendred-Syndroms bei Kindern

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, K.; Fischer, S. [Klinik und Poliklinik fuer Nuklearmedizin, Klinikum der Ludwig-Maximilians-Univ. Muenchen (Germany)

    2009-03-15

    The method for the diagnosis of the Pendred Syndrome in children by the Perchlorate discharge test using {sup 123}I is described. The older child, who has the Pendred Syndrome and the obligatory hearing deficit, frequently has neither a goitre nor hypothyroidism, but other investigations (bone growth, scars and function tests) can also show changes. However a more certain diagnosis of this disorder in children is possible by the perchlorate discharge test using {sup 123}I. (orig.)

  19. DETERMINATION OF PERCHLORATE BY ION CHROMATOGRAPHY, SUPPRESSED CONDUCTIVITY AND MASS SPECTROMETRIC DETECTION USING AN OXYGEN-18 ENRICHED ISOTROPIC INTERNAL STANDARD

    Science.gov (United States)

    Perchlorate (ClO4 -) is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a component in air bag infla...

  20. Study of the Deposition of Ammonium Perchlorate Following the Static Firing of MK-58 Rocket Motors

    Science.gov (United States)

    2008-10-01

    hyperthyroidism , gas generators, electrolytes for lithium cells, and as chemical reagents. The occurrence of perchlorate in the environment is...and prevent their movement by the rocket motor plume (Fig. 5). The water in the traps was collected using 1-l amber glass containers and the exact...them. On day one, after the firing of the second motor, heavy rain and lightning prevented the collection of samples from the witness plates. Only

  1. Experimental investigation on the heterogeneous kinetic process of the low thermal decomposition of ammonium perchlorate particles

    Energy Technology Data Exchange (ETDEWEB)

    Longuet, Baptiste [Laboratoire Energetique Explosions et Structures Universite d' Orleans (Germany); Gillard, Philippe [Laboratoire Energetic Explosions et Structures, Universite d' Orleans, Bourges (France)

    2009-02-15

    The thermal decomposition of ammonium perchlorate has been extensively studied in the past. Nevertheless, the various results published illustrate, on the one hand, significant differences regarding the influence of different parameters on the decomposition and on the other hand, a lack of useful quantitative laws to predict the thermal behaviour of this crystal under a range of conditions (temperature, duration of exposure, presence of confinement). (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  2. Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake.

    Science.gov (United States)

    Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N

    2017-08-01

    The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Analysis of perchlorate in foods and beverages by ion chromatography coupled with tandem mass spectrometry (IC-ESI-MS/MS)

    Energy Technology Data Exchange (ETDEWEB)

    El Aribi, Houssain [Applied Biosystems/MDS Sciex, 71 Four Valley Drive, Concord, Ont., L4K 4V8 (Canada)]. E-mail: houssain.aribi@sciex.com; Le Blanc, Yves J.C. [Applied Biosystems/MDS Sciex, 71 Four Valley Drive, Concord, Ont., L4K 4V8 (Canada); Antonsen, Stephen [Dionex Canada Ltd., 1540 Cornwall Road, Oakville, Ont., L6J 7W5 (Canada); Sakuma, Takeo [Applied Biosystems/MDS Sciex, 71 Four Valley Drive, Concord, Ont., L4K 4V8 (Canada)

    2006-05-10

    A new IC-ESI-MS/MS method, with simple sample preparation procedure, has been developed for quantification and confirmation of perchlorate (ClO{sub 4} {sup -}) anions in water, fresh and canned food, wine and beer samples at low part-per-trillion (ng l{sup -1}) levels. To the best of our knowledge, this is the first time an analytical method is used for determination of perchlorate in wine and beer samples. The IC-ESI-MS/MS instrumentation consisted of an ICS-2500 ion chromatography (IC) system coupled to either an API 2000{sup TM} or an API 3200{sup TM} mass spectrometer. The IC-ESI-MS/MS system was optimized to monitor two pairs of precursor and fragment ion transitions, i.e., multiple reaction monitoring (MRM). All samples had oxygen-18 isotope labeled perchlorate internal standard (ISTD) added prior to extraction. Chlorine isotope ratio ({sup 35}Cl/{sup 37}Cl) was used as a confirmation tool. The transition of {sup 35}Cl{sup 16}O{sub 4} {sup -} (m/z 98.9) into {sup 35}Cl{sup 16}O{sub 3} {sup -} (m/z 82.9) was monitored for quantifying the main analyte; the transition of {sup 37}Cl{sup 16}O{sub 4} {sup -} (m/z 100.9) into {sup 37}Cl{sup 16}O{sub 3} {sup -} (m/z 84.9) was monitored for examining a proper isotopic abundance ratio of {sup 35}Cl/{sup 37}Cl; and the transition of {sup 35}Cl{sup 18}O{sub 4} {sup -} (m/z 107.0) into {sup 35}Cl{sup 18}O{sub 3} {sup -} (m/z 89.0) was monitored for quantifying the internal standard. The minimum detection limit (MDL) for this method in de-ionized water is 5 ng l{sup -1} (ppt) using the API 2000{sup TM} mass spectrometer and 0.5 ng l{sup -1} using the API 3200{sup TM} mass spectrometer. Over 350 food and beverage samples were analyzed mostly in triplicate. Except for four, all samples were found to contain measurable amounts of perchlorate. The levels found ranged from 5 ng l{sup -1} to 463.5 {+-} 6.36 {mu}g kg{sup -1} using MRM 98.9 {sup {yields}} 82.9 and 100 {mu}l injection.

  4. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  5. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  6. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  7. MEASUREMENT OF PERCHLORATE IN WATER BY USE OF AN 18O-ENRICHED ISOTOPIC STANDARD AND ION CHROMATOGRAPHY WITH MASS SPECTROMETRIC DETECTION

    Science.gov (United States)

    Perchlorate (ClO4-) is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a compone...

  8. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    International Nuclear Information System (INIS)

    McCormick, Stephen F.

    2016-01-01

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/

  9. Annual Copper Mountain Conferences on Multigrid and Iterative Methods, Copper Mountain, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, Stephen F. [Front Range Scientific, Inc., Lake City, CO (United States)

    2016-03-25

    This project supported the Copper Mountain Conference on Multigrid and Iterative Methods, held from 2007 to 2015, at Copper Mountain, Colorado. The subject of the Copper Mountain Conference Series alternated between Multigrid Methods in odd-numbered years and Iterative Methods in even-numbered years. Begun in 1983, the Series represents an important forum for the exchange of ideas in these two closely related fields. This report describes the Copper Mountain Conference on Multigrid and Iterative Methods, 2007-2015. Information on the conference series is available at http://grandmaster.colorado.edu/~copper/.

  10. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  11. Nearly 60% Copper Rod & Wire Companies Neutral about Future Copper Price

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    <正>How about the trend of copper price recently? According to the survey result of Shanghai Metals Market, amongst 21 domestic copper rod & wire companies, 57% of the companies are neutral about the future copper price, while 14% and 19% of the companies consider that

  12. Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier

    Science.gov (United States)

    Borden, Robert C.

    2007-10-01

    A detailed field pilot test was conducted to evaluate the use of edible oil emulsions for enhanced in situ biodegradation of perchlorate and chlorinated solvents in groundwater. Edible oil substrate (EOS®) was injected into a line of ten direct push injection wells over a 2-day period to form a 15-m-long biologically active permeable reactive barrier (bio-barrier). Field monitoring results over a 2.5-year period indicate the oil injection generated strongly reducing conditions in the oil-treated zone with depletion of dissolved oxygen, nitrate, and sulfate, and increases in dissolved iron, manganese and methane. Perchlorate was degraded from 3100 to 20,000 μg/L to below detection (oil and adaptation of the in situ microbial community. Approximately 4 months after emulsion injection, concentrations of 1,1,1-trichloroethane (TCA), perchloroethene (PCE), trichloroethene (TCE) and their degradation products appeared to reach a quasi steady-state condition. During the period from 4 to 18 months, TCA was reduced from 30-70 μM to 0.2-4 μM during passage through the bio-barrier. However, 1-9 μM 1,1-dichloroethane (DCA) and 8-14 μM of chloroethane (CA) remained indicating significant amounts of incompletely degraded TCA were discharging from the oil-treated zone. During this same period, PCE and TCE were reduced with concurrent production of 1,2- cis-dichloroethene ( cis-DCE). However, very little VC or ethene was produced indicating reductive dechlorination slowed or stopped at cis-DCE. The incomplete removal of TCA, PCE and TCE is likely associated with the short (5-20 days) hydraulic retention time of contaminants in the oil-treated zone. The permeability of the injection wells declined by 39-91% (average = 68%) presumably due to biomass growth and/or gas production. However, non-reactive tracer tests and detailed monitoring of the perchlorate plume demonstrated that the permeability loss did not result in excessive flow bypassing around the bio

  13. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm.

    Science.gov (United States)

    Gautam, Arunodaya; Ray, Abhishek; Mukherjee, Soumalya; Das, Santanu; Pal, Kunal; Das, Subhadeep; Karmakar, Parimal; Ray, Mitali; Ray, Sajal

    2018-02-01

    Copper oxide nanoparticles and copper sulfate are established contaminants of water and soil. Metaphire posthuma is a common variety of earthworm distributed in moist soil of Indian subcontinent. Comparative toxicity of copper nanoparticles and copper sulfate were investigated with reference to selected immune associated parameters of earthworm. Total count, phagocytic response, generation of cytotoxic molecules (superoxide anion, nitric oxide), activities of enzymes like phenoloxidase, superoxide dismutase, catalase, acid phosphatase, alkaline phosphatase and total protein of coelomocytes were estimated under the exposures of 100, 500, 1000mg of copper oxide nanoparticles and copper sulfate per kg of soil for 7 and 14 d. A significant decrease in the total coelomocyte count were recorded with maximum depletion as 15.45 ± 2.2 and 12.5 ± 2 × 10 4 cells/ml under the treatment of 1000mg/kg of copper nanoparticles and copper sulfate for 14 d respectively. A significant decrease in generation of nitric oxide and activity of phenoloxidase were recorded upon exposure of both toxins for 7 and 14 d indicating possible decline in cytotoxic status of the organism. A maximum inhibition of superoxide dismutase activity was recorded as 0.083 ± 0.0039 and 0.055 ± 0.0057 unit/mg protein/minute against 1000mg/kg of copper nanoparticles and copper sulfate treatment for 14 d respectively. Activities of catalase and alkaline phosphatase were inhibited by all experimental concentrations of both toxins in the coelomocytes of earthworm. These toxins were recorded to be modifiers of the major immune associated parameters of M. posthuma. Unrestricted contamination of soil by sulfate and oxide nanoparticles of copper may lead to an undesirable shift in the innate immunological status of earthworm leading to a condition of immune compromisation and shrinkage in population density of this species in its natural habitat. This article is the first time report of immunological toxicity of

  14. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    International Nuclear Information System (INIS)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload

  15. Underwater explosive compaction-sintering of tungsten-copper coating on a copper surface

    Science.gov (United States)

    Chen, Xiang; Li, Xiaojie; Yan, Honghao; Wang, Xiaohong; Chen, Saiwei

    2018-01-01

    This study investigated underwater explosive compaction-sintering for coating a high-density tungsten-copper composite on a copper surface. First, 50% W-50% Cu tungsten-copper composite powder was prepared by mechanical alloying. The composite powder was pre-compacted and sintered by hydrogen. Underwater explosive compaction was carried out. Finally, a high-density tungsten-copper coating was obtained by diffusion sintering of the specimen after explosive compaction. A simulation of the underwater explosive compaction process showed that the peak value of the pressure in the coating was between 3.0 and 4.8 GPa. The hardness values of the tungsten-copper layer and the copper substrate were in the range of 87-133 and 49 HV, respectively. The bonding strength between the coating and the substrate was approximately 100-105 MPa.

  16. cis-Aquabis(2,2'-bipyridine-κ2N,N')-fluoridochromium(III) bis(perchlorate) dihydrate

    DEFF Research Database (Denmark)

    Birk, Torben; Bendix, Jesper

    2010-01-01

    The title mixed aqua-fluoride complex, [CrF(C(10)H(8)N(2))(2)(H(2)O)](ClO(4))(2)·2H(2)O, has been synthesized by aqua-tion of the corresponding difluoride complex using lanthan-ide(III) ions as F(-) acceptors. The complex crystallizes with a Cr(III) ion at the center of a distorted octa-hedral co......-hedral coordination polyhedron with a cis arrangement of ligands. The crystal packing shows a hydrogen-bonding pattern involving water mol-ecules, the coordinated F atom and the perchlorate anions....

  17. Magnetic moment oscillation in ammonium perchlorate in a DC SQUID-based magnetic resonance experiment

    International Nuclear Information System (INIS)

    Montero, V.; Cernicchiaro, G.

    2008-01-01

    In this work we describe experimental results in which a DC SQUID (superconducting quantum interference device) is used as free induction decay detector. Measurements of a solid ammonium perchlorate (NH 4 ClO 4 ) sample were performed, in zero field, at 4.2 K. Unexpected magnetic moment oscillations were detected at 1.5 kHz. The computation of the magnetic fields suggests that the proton nuclear magnetic resonance may explain the measured resonance, considering reorientation of the ammonium group by quantum tunneling of protons and a magnetic proton dipole-dipole intermolecular interaction model

  18. Field and Laboratory Evaluation of the Potential for Monitored Natural Attenuation of Perchlorate in Groundwater

    Science.gov (United States)

    2007-07-01

    Petroleum hydrocarbons mg/L 1.03 50.3 0.19 PHC as Gasoline µg/L 10,700 224,000 2160 PHC as Diesel Fuel mg/L 0.25 16 ɘ.095 Water Quality Total Organic...Intrinsic Bioremediation . Ground Water 33(2):180-189. Borden, R. C., M. J. Hunt, M. B. Shafer, M. A. Barlaz, 1997a. Environmental Research Brief...and J. Pollock, 2003. Potential for In Situ Bioremediation of Perchlorate in Contaminated Environments. Presented at: In Situ and On- Site

  19. Sulfidation treatment of copper-containing plating sludge towards copper resource recovery.

    Science.gov (United States)

    Kuchar, D; Fukuta, T; Onyango, M S; Matsuda, H

    2006-11-02

    The present study is concerned with the sulfidation treatment of copper-containing plating sludge towards copper resource recovery by flotation of copper sulfide from treated sludge. The sulfidation treatment was carried out by contacting simulated or real copper plating sludge with Na(2)S solution for a period of 5 min to 24 h. The initial molar ratio of S(2-) to Cu(2+) (S(2-) to Me(2+) in the case of real sludge) was adjusted to 1.00, 1.25 or 1.50, while the solid to liquid ratio was set at 1:50. As a result, it was found that copper compounds were converted to various copper sulfides within the first 5 min. In the case of simulated copper sludge, CuS was identified as the main sulfidation product at the molar ratio of S(2-) to Cu(2+) of 1.00, while Cu(7)S(4) (Roxbyite) was mainly found at the molar ratios of S(2-) to Cu(2+) of 1.50 and 1.25. Based on the measurements of oxidation-reduction potential, the formation of either CuS or Cu(7)S(4) at different S(2-) to Cu(2+) molar ratios was attributed to the changes in the oxidation-reduction potential. By contrast, in the case of sulfidation treatment of real copper sludge, CuS was predominantly formed, irrespective of S(2-) to Me(2+) molar ratio.

  20. SFG study of platinum electrodes in perchloric acid solutions

    Science.gov (United States)

    Zheng, W. Q.; Pluchery, O.; Tadjeddine, A.

    2002-04-01

    Infrared-visible sum-frequency generation (SFG) spectroscopy has been used to study the structure of water molecules (and/or its derivatives OH -, H 3O + etc.) at aqueous electrolyte/electrode interfaces. For Pt(1 1 0) and Pt(1 0 0) electrodes in 0.1 M perchloric acid solution, we did not observe any significant O-H stretching resonance. In striking contrast to the resonant SFG signal, the nonresonant SFG (NRSFG) signal varies sensitively with the applied electrochemical potential, indicating that the interaction of water molecules with platinum electrodes is relatively weak as compared to that of H + and ClO 4- ions. From changes in the NRSFG signal and on the basis of an ionic adsorption model, we can also deduce that the potential of zero charge of Pt(1 1 0) in 0.1 M HClO 4 should be located at about 0.22 V (vs. NHE). This value is in good agreement with that measured recently by electrochemical method.

  1. Critical review: Copper runoff from outdoor copper surfaces at atmospheric conditions.

    Science.gov (United States)

    Hedberg, Yolanda S; Hedberg, Jonas F; Herting, Gunilla; Goidanich, Sara; Odnevall Wallinder, Inger

    2014-01-01

    This review on copper runoff dispersed from unsheltered naturally patinated copper used for roofing and facades summarizes and discusses influencing factors, available literature, and predictive models, and the importance of fate and speciation for environmental risk assessment. Copper runoff from outdoor surfaces is predominantly governed by electrochemical and chemical reactions and is highly dependent on given exposure conditions (size, inclination, geometry, degree of sheltering, and orientation), surface parameters (age, patina composition, and thickness), and site-specific environmental conditions (gaseous pollutants, chlorides, rainfall characteristics (amount, intensity, pH), wind direction, temperature, time of wetness, season). The corrosion rate cannot be used to assess the runoff rate. The extent of released copper varies largely between different rain events and is related to dry and wet periods, dry deposition prior to the rain event and prevailing rain and patina characteristics. Interpretation and use of copper runoff data for environmental risk assessment and management need therefore to consider site-specific factors and focus on average data of long-term studies (several years). Risk assessments require furthermore that changes in copper speciation, bioavailability aspects, and potential irreversible retention on solid surfaces are considered, factors that determine the environmental fate of copper runoff from outdoor surfaces.

  2. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  3. A cytosolic copper storage protein provides a second level of copper tolerance in Streptomyces lividans.

    Science.gov (United States)

    Straw, Megan L; Chaplin, Amanda K; Hough, Michael A; Paps, Jordi; Bavro, Vassiliy N; Wilson, Michael T; Vijgenboom, Erik; Worrall, Jonathan A R

    2018-01-24

    Streptomyces lividans has a distinct dependence on the bioavailability of copper for its morphological development. A cytosolic copper resistance system is operative in S. lividans that serves to preclude deleterious copper levels. This system comprises of several CopZ-like copper chaperones and P 1 -type ATPases, predominantly under the transcriptional control of a metalloregulator from the copper sensitive operon repressor (CsoR) family. In the present study, we discover a new layer of cytosolic copper resistance in S. lividans that involves a protein belonging to the newly discovered family of copper storage proteins, which we have named Ccsp (cytosolic copper storage protein). From an evolutionary perspective, we find Ccsp homologues to be widespread in Bacteria and extend through into Archaea and Eukaryota. Under copper stress Ccsp is upregulated and consists of a homotetramer assembly capable of binding up to 80 cuprous ions (20 per protomer). X-ray crystallography reveals 18 cysteines, 3 histidines and 1 aspartate are involved in cuprous ion coordination. Loading of cuprous ions to Ccsp is a cooperative process with a Hill coefficient of 1.9 and a CopZ-like copper chaperone can transfer copper to Ccsp. A Δccsp mutant strain indicates that Ccsp is not required under initial copper stress in S. lividans, but as the CsoR/CopZ/ATPase efflux system becomes saturated, Ccsp facilitates a second level of copper tolerance.

  4. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  5. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.

    OpenAIRE

    Midander, Klara; Cronholm, Pontus; Karlsson, Hanna L.; Elihn, Karine; Moller, Lennart; Leygraf, Christofer; Wallinder, Inger Odnevall

    2009-01-01

    An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered ...

  6. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  7. cis-Aquabis(2,2′-bipyridine-κ2N,N′fluoridochromium(III bis(perchlorate dihydrate

    Directory of Open Access Journals (Sweden)

    Torben Birk

    2010-02-01

    Full Text Available The title mixed aqua–fluoride complex, [CrF(C10H8N22(H2O](ClO42·2H2O, has been synthesized by aquation of the corresponding difluoride complex using lanthanide(III ions as F− acceptors. The complex crystallizes with a CrIII ion at the center of a distorted octahedral coordination polyhedron with a cis arrangement of ligands. The crystal packing shows a hydrogen-bonding pattern involving water molecules, the coordinated F atom and the perchlorate anions

  8. Copper Leaching from Copper-ethanolamine Treated Wood: Comparison of Field Test Studies and Laboratory Standard Procedures

    OpenAIRE

    Nejc Thaler; Miha Humar

    2014-01-01

    Copper-based compounds are some of the most important biocides for the protection of wood in heavy duty applications. In the past, copper was combined with chromium compounds to reduce copper leaching, but a recent generation of copper-based preservatives uses ethanolamine as a fixative. To elucidate the leaching of copper biocides from wood, Norway spruce (Picea abies) wood was treated with a commercial copper-ethanolamine solution with two different copper concentrations (cCu = 0.125% and 0...

  9. Copper metabolism: a multicompartmental model of copper kinetics in the rat

    International Nuclear Information System (INIS)

    Dunn, M.A.

    1985-01-01

    A qualitative multicompartmental model was developed that describes the whole-body kinetics of copper metabolism in the adult rat. The model was developed from radiocopper percent dose vs. time data measured over a three day period in plasma, liver, skin, skeletal muscle, bile and feces after the intravenous injection of 10 μg copper labeled with 64 Cu. Plasma radiocopper was separated into ceruloplasmin (Cp) and nonceruloplasmin (NCp) fractions. Liver cytosolic radiocopper was fractionated into void volume superoxide dismutase (SOD) containing and metallothionein fractions by gel filtration. Liver particulate fractions were isolated by differential centrifugation. The SAAM and CONSAM modeling programs were used to develop the model. The sizes of compartments, fractional rate constants and mass transfer rates between compartments were evaluated. The intracellular metabolism of copper was similar in hepatic and extrahepatic tissues being comprised of a faster turning over compartment (FTC) exchanging copper with NCp and a slower turning over compartment (STC) with input from Cp. Output from the STC was into the FTC. In the liver the STC was postulated to represent SOD copper which unlike the extrahepatic tissues received much of its input from the FTC. A small amount of biliary copper (9%) was postulated to return to plasma NCp by enterohepatic recycling. The model developed was contrasted and compared with two previous models of copper metabolism

  10. Oxidation of alginate and pectate biopolymers by cerium(IV) in perchloric and sulfuric acid solutions: A comparative kinetic and mechanistic study.

    Science.gov (United States)

    Fawzy, Ahmed

    2016-03-15

    The kinetics of oxidation of alginate (Alg) and pectate (Pec) carbohydrate biopolymers was studied by spectrophotometry in aqueous perchloric and sulfuric acid solutions at fixed ionic strengths and temperature. In both acids, the reactions showed a first order dependence on [Ce(IV)], whereas the orders with respect to biopolymer concentrations are less than unity. In perchloric acid, the reactions exhibited less than unit orders with respect to [H(+)] whereas those proceeded in sulfuric acid showed negative fractional-first order dependences on [H(+)]. The effect of ionic strength and dielectric constant was studied. Probable mechanistic schemes for oxidation reactions were proposed. In both acids, the final oxidation products were characterized as mono-keto derivatives of both biopolymers. The activation parameters with respect to the slow step of the mechanisms were computed and discussed. The rate laws were derived and the reaction constants involved in the different steps of the mechanisms were calculated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Potential phytoextraction and phytostabilization of perennial peanut on copper-contaminated vineyard soils and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Bortolon, Leandro; Pieniz, Simone; Giacometti, Marcelo; Roehrs, Dione D; Lambais, Mácio R; Camargo, Flávio A O

    2011-12-01

    This study sought to evaluate the potential of perennial peanut (Arachis pintoi) for copper phytoremediation in vineyard soils (Inceptisol and Mollisol) contaminated with copper and copper mining waste. Our results showed high phytomass production of perennial peanut in both vineyard soils. Macronutrient uptakes were not negatively affected by perennial peanut cultivated in all contaminated soils. Plants cultivated in Mollisol showed high copper concentrations in the roots and shoots of 475 and 52 mg kg(-1), respectively. Perennial peanut plants showed low translocation factor values for Cu, although these plants showed high bioaccumulation factor (BCF) for both vineyard soils, Inceptisol and Mollisol, with BCF values of 3.83 and 3.24, respectively, being characterized as a copper hyperaccumulator plant in these soils. Copper phytoextraction from Inceptisol soil was the highest for both roots and entire plant biomass, with more than 800 mg kg(-1) of copper in whole plant. The highest potential copper phytoextraction by perennial peanut was in Inceptisol soil with copper removal of 2,500 g ha(-1). Also, perennial peanut showed high potential for copper phytoremoval in copper mining waste and Mollisol with 1,700 and 1,500 g of copper per hectare, respectively. In addition, perennial peanuts characterized high potential for phytoextraction and phytostabilization of copper in vineyard soils and copper mining waste.

  12. Theoretical Investigation of Oxazine 170 Perchlorate Doped Polymeric Optical Fiber Amplifier

    Directory of Open Access Journals (Sweden)

    Piotr Miluski

    2017-01-01

    Full Text Available Optical signal amplification in the waveguiding structure of optical fibers can be used for optical telecommunication systems and new light sources constructions. Organic dyes doped materials are interesting for new applications in polymeric optical fibers technology due to their benefits (efficient fluorescence, high absorption cross section, and easy processing. This article presents a numerical simulation of gain in poly(methyl methacrylate optical fiber doped by Oxazine 170 Perchlorate. The calculated gain characteristic for the used dye molar concentration (0.2·10-6–1.4·10-6 and pump power (1–10 kW is presented. The fabricated fluorescent polymeric optical fiber is also shown. The presented analysis can be used for optical amplifier construction based on dye-doped polymeric optical fiber (POF.

  13. Renal cortex copper concentration in acute copper poisoning in calves

    Directory of Open Access Journals (Sweden)

    Luis E. Fazzio

    2012-01-01

    Full Text Available The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu concentration in clinical cases of acute copper poisoning (ACP. A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.

  14. Kinetics and mechanism of the oxidation of uranium (IV) by hypochlorous acid in aqueous acidic perchlorate media

    International Nuclear Information System (INIS)

    Silverman, R.A.; Gordon, G.

    1976-01-01

    The oxidation of uranium(IV) by hypochlorous acid has been studied in aqueous sodium perchlorate--perchloric acid solutions. The reaction U 4 + + 2HOCl = UO 2 2 + + Cl 2 (aq) + 2H + proceeds appropriate to the rate law --d[U(IV)]/dt = k 0 . [U 4+ ][HOCl][H + ] -1 . At 25 0 and 3 M ionic strength, k 0 is 1.08 +- 0.07 sec -1 . Over the 1--25 0 temperature range, ΔH 2+ is 18.4 +- 0.1 kcal mole -1 , and ΔS 2+ is 3.1 +- 0.4 eu. The inverse hydrogen ion dependence of the rate law is explained by a rapid preequilibrium, in which a proton is lost from one of the reactants. A uranyl-like activated complex, [H 2 UO 2 Cl 3+ ] 2+ , is suggested, with one proton likely to be residing on each oxygen atom. Evidence is presented that the mechanism involves a two-electron transfer, with the intermediate chloride ion rapidly reacting with hypochlorous acid to form chlorine. The uranium(IV)-hypochlorous acid reaction plays an important role in the oxidation of uranium(IV) by aqueous chlorine solutions. The magnitude of this role was seriously underestimated by previous investigators

  15. High-Nitrogen-Based Pyrotechnics: Longer- and Brighter-Burning, Perchlorate-Free, Red-Light Illuminants for Military and Civilian Applications

    Science.gov (United States)

    2011-01-01

    combustion of these materials. To address the aforementioned perchlorate issues, an effort was initiated by ARDEC to remove potassium per- chlorate ...with acceptable burn times for pyrotechnic applications by using potassium nitrate– amorphous boron–crystalline boron/boron carbide–epoxy binder mixtures...3,4] Moreover, it was discovered by ARDEC that a potassium nitrate–boron carbide–epoxy binder mix- ture alone was able to generate suitable green

  16. Preparation of copper and silicon/copper powders by a gas ...

    Indian Academy of Sciences (India)

    Administrator

    aCentre for Materials Research, Department of Imaging and Applied Physics, ... Copper powder; Si/Cu composite particle; gas evaporation–condensation method; characteriza- tion. .... from the liquid metal surface, the mixed vapour of copper.

  17. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level.

  18. RECYCLING OF SCRAP AND WASTE OF COPPER AND COPPER ALLOYS IN BELARUS

    Directory of Open Access Journals (Sweden)

    S. L. Rovin

    2017-01-01

    Full Text Available The construction of a new casting and mechanical shop of unitary enterprise «Tsvetmet» in December 2015 has allowed to solve the complex problem of processing and utilization of scrap and wastes of copper and copper alloys in the Republic of Belarus. The technological processes of fire refinement of copper and manufacturing of copper rod from scrap and production of brass rod by hot pressing (extrusion of the continuously casted round billet have been mastered for the first time in the Republic of Belarus.

  19. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  20. Copper Bioleaching in Chile

    OpenAIRE

    Juan Carlos Gentina; Fernando Acevedo

    2016-01-01

    Chile has a great tradition of producing and exporting copper. Over the last several decades, it has become the first producer on an international level. Its copper reserves are also the most important on the planet. However, after years of mineral exploitation, the ease of extracting copper oxides and ore copper content has diminished. To keep the production level high, the introduction of new technologies has become necessary. One that has been successful is bioleaching. Chile had the first...

  1. SUB-PPB QUANTITATION AND CONFIRMATION OF PERCHLORATE IN DRINKING WATERS CONTAINING HIGH TOTAL DISSOLVED SOLIDS USING ION CHROMATOGRAPHY WITH MASS SPECTROMETRIC DETECTION

    Science.gov (United States)

    Perchlorate (ClO4 -) is a drinking water contaminant originating from the dissolution of the salts of ammonium, potassium, magnesium, or sodium in water. It is used primarily as an oxidant in solid propellant for rockets, missiles, pyrotechnics, as a component in air bag infla...

  2. Addition compounds of perchlorates from yttrium and lanthanides elements with the N,N,N',N'tetramethyl amide of phthalic acid

    International Nuclear Information System (INIS)

    Silva, C.P.G. da.

    1974-01-01

    The reaction between lanthanide perchlorates and yttrium with tetra methyl phthalamide (TMPA) was studied, and compounds of the general formula Ln (C 10 4 ) 3 . TMPA have been isolated. The compounds were characterized by analysis of their components, infra-red spectra, molar conductances in nitromethane and nitrobenzene, X ray powder patterns and thermal analysis. (author)

  3. A novel hydrolysis method to synthesize chromium hydroxide nanoparticles and its catalytic effect in the thermal decomposition of ammonium perchlorate

    International Nuclear Information System (INIS)

    Li, Ping; Zhou, Zhen; Xu, Hongbin; Zhang, Yi

    2012-01-01

    Highlights: ► Synthesis of Cr(OH) 3 nanoparticles in Cr 3+ –F − aqueous solution. ► The F − ion tailors coagulated materials, Cr(OH) 3 nanoparticles are obtained. ► Adding nanosized Cr(OH) 3 , AP thermal decomposition temperature decreases to 200 °C. ► The nanosized Cr(OH) 3 catalyzes NH 3 oxidation, accelerating AP thermal decomposition. - Abstract: A procedure for the preparation of spherical Cr(OH) 3 nanoparticles was developed based on the aging of chromium nitrate aqueous solutions in the presence of sodium fluoride, urea, and polyvinylpyrrolidone. Using scanning electron microscopy, transmission electron microscopy, and energy dispersive spectroscopy, the morphological characteristics of Cr(OH) 3 were controlled by altering the molar ratio of fluoride ion to chromium ion, as well as the initial pH and chromium ion concentration. The prepared nanosized Cr(OH) 3 decreased the temperature required to decompose ammonium perchlorate from 450 °C to about 250 °C as the catalyst. The possible catalytic mechanism of the thermal decomposition of ammonium perchlorate was also discussed.

  4. The copper-transporting ATPase pump and its potential role in copper-tolerance

    Science.gov (United States)

    Katie Ohno; C.A. Clausen; Frederick Green; G. Stanosz

    2016-01-01

    Copper-tolerant brown-rot decay fungi exploit intricate mechanisms to neutralize the efficacy of copper-containing preservative formulations. The production and accumulation oxalate is the most widely recognized theory regarding the mechanism of copper-tolerance in these fungi. The role of oxalate, however, may be only one part of a series of necessary components...

  5. Complexes of Th(IV) perchlorates, nitrates and thiocyanates with some heterocyclic bases

    International Nuclear Information System (INIS)

    Agarwal, R.K.; Srivastava, A.K.; Srivastava, M.; Bhakru, N.; Srivastava, T.N.

    1980-01-01

    Some Th(IV) perchlorate complexes of heterocyclic bases have been reported previously. Adducts of Th(IV) nitrates and thiocyanates with some heterocyclic N-oxides have been prepared and physico-chemical properties investigated. Comparatively little is known about the complexes of Th(IV) ion with the ligands containing nitrogen atom acting as electron donating centres. In view of this, the adducts of Th(IV) ion with certain nitrogen heterocyclic bases such as pyridine (Py), α-picoline (Pic), 2-amino pyridine (NH 2 Py), 2:4-lutidine (2,4LN), 2:6-lutidine, (2,6LN), quinoline (Q), isoquinoline (Isoq), 2,2'-bipyridine (Bipy) and 1,10-phenanthroline (Phen) were synthesised and characterised by analysis and IR absorption spectra. The results are presented and discussed. (author)

  6. Use of copper radioisotopes in investigating disorders of copper metabolism

    International Nuclear Information System (INIS)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M.; Smith, S.; Mercer, J.

    1998-01-01

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes 64 Cu (t 1/2 = 12.8 hr) and 67 Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  7. Recovery of Copper from Copper Slag by Hydrometallurgy Method, from Iraqi Factories Waste

    Directory of Open Access Journals (Sweden)

    Bahaa Sami Mahdi

    2018-05-01

    Full Text Available   In this research, the recovery of copper from copper slag is investigated using hydrometallurgy method. Slag samples were taken from Al-Shaheed State Company. The results of the chemical analysis showed that the slag contained 11.4% of copper. The recovery process included two stages; the first stage is leaching using diluted sulfuric acid. The most important variables that effect on the leaching process was studied, such as acid concentration, hydrogen peroxide adding, particle size, liquid to solid, stirring speed and leaching time by changing the condition and the stabilizing of other factors at room temperature.               The second stage is precipitation of copper from leaching solution by zinc powder with different weights and times, at room temperature and 1.5 PH value. The results of the first stage manifested that about 99.7% of the copper have been dissolved at the following operational conditions: 50% acid concentration, 5 ml hydrogen peroxide adding, particle size (-75+53 micron, 1:10 liquid to solid, 500 rpm stirring speed and 25 min of leaching time. The highest percentage of copper precipitation in the second stage was 99.8% when added 3gm zinc powder at 20 min. The XRD result revealed that the predominant phase was pure copper. The results of EDS exhibited that a few percentage of oxygen appeared with copper powder. The final of copper recovery ratio was 99.3% with 99.2% purity.

  8. Bacterial Killing by Dry Metallic Copper Surfaces▿

    OpenAIRE

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2010-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important fir...

  9. Effects of stimulation of copper bioleaching on microbial community in vineyard soil and copper mining waste.

    Science.gov (United States)

    Andreazza, Robson; Okeke, Benedict C; Pieniz, Simone; Bortolon, Leandro; Lambais, Márcio R; Camargo, Flávio A O

    2012-04-01

    Long-term copper application in vineyards and copper mining activities cause heavy metal pollution sites. Such sites need remediation to protect soil and water quality. Bioremediation of contaminated areas through bioleaching can help to remove copper ions from the contaminated soils. Thus, the aim of this work was to evaluate the effects of different treatments for copper bioleaching in two diverse copper-contaminated soils (a 40-year-old vineyard and a copper mining waste) and to evaluate the effect on microbial community by applying denaturing gradient gel electrophoresis (DGGE) of 16S ribosomal DNA amplicons and DNA sequence analysis. Several treatments with HCl, H(2)SO(4), and FeSO(4) were evaluated by stimulation of bioleaching of copper in the soils. Treatments and extractions using FeSO(4) and H(2)SO(4) mixture at 30°C displayed more copper leaching than extractions with deionized water at room temperature. Treatment with H(2)SO(4) supported bioleaching of as much as 120 mg kg(-1) of copper from vineyard soil after 115 days of incubation. DGGE analysis of the treatments revealed that some treatments caused greater diversity of microorganisms in the vineyard soil compared to the copper mining waste. Nucleotide Blast of PCR-amplified fragments of 16S rRNA gene bands from DGGE indicated the presence of Rhodobacter sp., Silicibacter sp., Bacillus sp., Paracoccus sp., Pediococcus sp., a Myxococcales, Clostridium sp., Thiomonas sp., a firmicute, Caulobacter vibrioides, Serratia sp., and an actinomycetales in vineyard soil. Contrarily, Sphingomonas was the predominant genus in copper mining waste in most treatments. Paracoccus sp. and Enterobacter sp. were also identified from DGGE bands of the copper mining waste. Paracoccus species is involved in the copper bioleaching by sulfur oxidation system, liberating the copper bounded in the soils and hence promoting copper bioremediation. Results indicate that stimulation of bioleaching with a combination of FeSO(4

  10. Current trends in copper theft prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mastrofrancesco, A. [Electrical Safety Authority, ON (Canada)

    2009-07-01

    Copper is used in electrical wiring, water and gas piping, currency, and in household items. An increase in the price and demand for copper has made copper theft a profitable venture for some thieves. Copper consumed in North America is typically supplied by recycling. Scrap dealers may pay near-market prices for pure copper wires. However, copper theft poses a serious threat to the safety of utility workers and the public. Power outages caused by copper theft are now affecting grid reliability. This paper examined technologies and techniques used to prevent copper theft as part of a security strategy for utilities. Attempts to steal copper can leave utility substations unsecured and accessible to children. The theft of neutral grounds will cause the local distribution company (LDC) to malfunction and may cause power surges in homes as well as appliance fires. Utilities are now looking at using a hybrid steel and copper alternative to prevent copper theft. Asset identification techniques are also being used to identify the original owners of the copper and more easily prosecute thieves. Automated monitoring techniques are also being used to increase substation security. Utilities are also partnering with law enforcement agencies and pressuring governments to require scrap dealers to record who they buy from. It was concluded that strategies to prevent copper theft should be considered as part of an overall security strategy for utilities. tabs., figs.

  11. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation

    Science.gov (United States)

    Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei

    2017-09-01

    A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.

  12. Preparation of graphite dispersed copper composite on copper plate with CO2 laser

    Science.gov (United States)

    Yokoyama, S.; Ishikawa, Y.; Muizz, M. N. A.; Hisyamudin, M. N. N.; Nishiyama, K.; Sasano, J.; Izaki, M.

    2018-01-01

    It was tried in this work to prepare the graphite dispersed copper composite locally on a copper plate with a CO2 laser. The objectives of this study were to clear whether copper graphite composite was prepared on a copper plate and how the composite was prepared. The carbon content at the laser spot decreased with the laser irradiation time. This mainly resulted from the elimination by the laser trapping. The carbon content at the outside of the laser spot increased with time. Both the laser ablation and the laser trapping did not act on the graphite particles at the outside of the laser spot. Because the copper at the outside of the laser spot melted by the heat conduction from the laser spot, the particles were fixed by the wetting. However, the graphite particles were half-floated on the copper plate. The Vickers hardness decreased with an increase with laser irradiation time because of annealing.

  13. {Tris[2-(imidazol-2-ylmethyliminoethyl]methylammonium}iron(II tris(perchlorate dihydrate

    Directory of Open Access Journals (Sweden)

    Greg A. Brewer

    2008-01-01

    Full Text Available The title complex, [Fe(C19H27N10](ClO43·2H2O, is a new polymorph of an iron(II Schiff base complex of tris(2-aminoethylmethylammonium with imidazole-2-carboxaldehyde. The octahedral FeII atom is bound to three facial imidazole N atoms with average Fe—Nimidazole and Fe—Nimine bond distances of 1.963 (5 and 1.951 (5 Å, respectively. The central N atom of the tripodal ligand is outside the bonding distance at 3.92 Å. The crystal packing is stabilized by the hydrogen-bonding interactions between the two water molecules (acceptor and two of the three imidazole NH groups (donor. The third imidazole NH group (donor forms a hydrogen bond to one of the three perchlorate counter-ions (acceptor.

  14. Antimicrobial Properties of Copper Nanoparticles and Amino Acid Chelated Copper Nanoparticles Produced by Using a Soya Extract

    Science.gov (United States)

    DeAlba-Montero, I.; Morales-Sánchez, Elpidio; Araujo-Martínez, Rene

    2017-01-01

    This paper reports a comparison of the antibacterial properties of copper-amino acids chelates and copper nanoparticles against Escherichia coli, Staphylococcus aureus, and Enterococcus faecalis. These copper-amino acids chelates were synthesized by using a soybean aqueous extract and copper nanoparticles were produced using as a starting material the copper-amino acids chelates species. The antibacterial activity of the samples was evaluated by using the standard microdilution method (CLSI M100-S25 January 2015). In the antibacterial activity assays copper ions and copper-EDTA chelates were included as references, so that copper-amino acids chelates can be particularly suitable for acting as an antibacterial agent, so they are excellent candidates for specific applications. Additionally, to confirm the antimicrobial mechanism on bacterial cells, MTT assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) was carried out. A significant enhanced antimicrobial activity and a specific strain were found for copper chelates over E. faecalis. Its results would eventually lead to better utilization of copper-amino acids chelate for specific application where copper nanoparticles can be not used. PMID:28286459

  15. The Hyrkkoelae native copper mineralization as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1996-10-01

    The Hyrkkoelae U-Cu mineralization is located in southwestern Finland, near the Palmottu analogue site. The age of the mineralization is estimated to be between 1.8 and 1.7 Ga. Petrological and mineralogical studies have demonstrated that this mineralization has many geological features that parallel those of the sites being considered for nuclear waste disposal in Finland. A particular feature is the existence of native copper and copper sulfides in open fractures in the near-surface zone. This allows us to study the native copper corrosion process in analogous conditions as expected to dominate in the nuclear fuel waste repository. The occurrence of uranyl compounds at these fractures permits also considerations about the sorption properties of the engineered barrier material (metallic copper) and its corrosion products. From the study of mineral assemblages or paragenesis, it appears that the formation of copper sulfide (djurleite, Cu 1.934 ) after native copper (Cu 0 ) under anoxic (reducing) conditions is enhanced by the availability of dissolved HS - in the groundwater circulating in open fractures in the near-surface zone. The minimum concentration of HS - in the groundwater is estimated to be of the order of 10 -5 M (∼ 10 -4 g/l) and the minimum pH value not lower than about 7.8 as indicated by the presence of calcite crystals in the same fracture. The present study is the first one that has been performed on findings of native copper in reducing, neutral to slightly alkaline groundwaters. Thus, the data obtained is of most relevance in improving models of anoxic corrosion of copper canisters. (orig.)

  16. Spectrographic determination of impurities in copper and copper oxide

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  17. Metallic copper corrosion rates, moisture content, and growth medium influence survival of copper ion-resistant bacteria

    DEFF Research Database (Denmark)

    Elguindi, J; Moffitt, S; Hasman, Henrik

    2010-01-01

    of both copper ion-resistant E. coli and E. faecium strains when samples in rich medium were spread in a thin, moist layer on copper alloys with 85% or greater copper content. E. coli strains were rapidly killed under dry conditions, while E. faecium strains were less affected. Electroplated copper...... on electroplated copper surfaces with benzotriazole coating and thermal oxide coating compared to surfaces without anti-corrosion treatment. Control of surface corrosion affected the level of copper ion influx into bacterial cells, which contributed directly to bacterial killing....

  18. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Directory of Open Access Journals (Sweden)

    Rebeca Ortega-Amaya

    2016-07-01

    Full Text Available This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs on the surface of a copper foil supporting graphene oxide (GO at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure.

  19. Functional understanding of the versatile protein copper metabolism MURR1 domain 1 (COMMD1) in copper homeostasis

    NARCIS (Netherlands)

    Fedoseienko, Alina; Bartuzi, Paulina; van de Sluis, Bart

    2014-01-01

    Copper is an important cofactor in numerous biological processes in all living organisms. However, excessive copper can be extremely toxic, so it is vital that the copper level within a cell is tightly regulated. The damaging effect of copper is seen in several hereditary forms of copper toxicity in

  20. A simple coordination complex exhibiting colour change on slight ...

    Indian Academy of Sciences (India)

    Administrator

    structure analysis. In 1979, Grenthe and co-worker. reported thermochromism of bis(NN-diethylethane-. 1,2-diamine) copper(II) perchlorate on the basis of ... ture was allowed to cool when white solid KCl sepa- rated out and it was .... A simple coordination complex exhibits colour change on slight structural modification. 733.

  1. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Science.gov (United States)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-09-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate ( I), bromo-(2-formylpyridinethiosemicarbazono)copper ( II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate ( III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I III at a concentration of 10-5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  2. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    International Nuclear Information System (INIS)

    Chumakov, Yu. M.; Tsapkov, V. I.; Jeanneau, E.; Bairac, N. N.; Bocelli, G.; Poirier, D.; Roy, J.; Gulea, A. P.

    2008-01-01

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10 -5 mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  3. Crystal structures of copper(II) chloride, copper(II) bromide, and copper(II) nitrate complexes with pyridine-2-carbaldehyde thiosemicarbazone

    Energy Technology Data Exchange (ETDEWEB)

    Chumakov, Yu. M., E-mail: chumakov.xray@phys.asm.md [Academy of Sciences of Moldova, Institute of Applied Physics (Moldova, Republic of); Tsapkov, V. I. [State University of Moldova (Moldova, Republic of); Jeanneau, E. [Universite Claude Bernard, Laboratoire des Multimateriaux et Interfaces (France); Bairac, N. N. [State University of Moldova (Moldova, Republic of); Bocelli, G. [National Research Council (IMEM-CNR), Institute of Materials for Electronics and Magnetism (Italy); Poirier, D.; Roy, J. [Centre Hospitalier Universitaire de Quebec (CHUQ) (Canada); Gulea, A. P. [State University of Moldova (Moldova, Republic of)

    2008-09-15

    The crystal structures of chloro-(2-formylpyridinethiosemicarbazono)copper dimethyl sulfoxide solvate (I), bromo-(2-formylpyridinethiosemicarbazono)copper (II), and (2-formylpyridinethiosemicarbazono)copper(II) nitrate dimethyl sulfoxide solvate (III) are determined using X-ray diffraction. In the crystals, complexes I and II form centrosymmetric dimers in which the thiosemicarbazone sulfur atom serves as a bridge and occupies the fifth coordination site of the copper atom of the neighboring complex related to the initial complex through the center of symmetry. In both cases, the coordination polyhedron of the complexing ion is a distorted tetragonal bipyramid. Complex III in the crystal structure forms polymer chains in which the copper atom of one complex forms the coordination bond with the thicarbamide nitrogen atom of the neighboring complex. In this structure, the coordination polyhedron of the central atom is an elongated tetragonal bipyramid. It is established that complexes I-III at a concentration of 10{sup -5} mol/l selectively inhibit the growth of 60 to 90 percent of the cancer tumor cells of the human myeloid leukemia (HL-60).

  4. Application of ferrous-chromate and idometric titration for the determination of copper oxidation states in the superconductor YBa2Cu3Oy

    International Nuclear Information System (INIS)

    Oku, Masaoki; Kimura, Jin; Hosoya, Minoru; Takada, Kunio; Hirokawa, Kichinosuke

    1988-01-01

    Oxidation-reduction titration methods, Fe 2+ -Cr 2 O 7 2- and I - -S 2 O 3 2- , were applied to the determination of the oxidation state of copper in the superconductor YBa 2 Cu 3 O y and related compounds. The former method presented problems in the sample dissolution and titration steps. The dissolution of the sample in low concentrations of Fe 2+ -phosphoric acid and Fe 2+ -perchloric acid takes place in two steps, the oxidation of Fe 2+ to Fe 3+ and the liberation of oxygen gas, when the liberation results in low analytical values for Cu 3+ . In addition the coexistence of cuprous ion and acids induces the oxidation of ferrous ion by dissolved oxygen and air. The problems were resolved by dissolution in 0.1 mol/l Fe 2+ -phosphoric acid and titration in an argon atmosphere. The latter method gave good results by controlling the amounts of potassium chloride, the concentration of acetic acid, and by elimination of the dissolved oxygen in acetic acid solution. The results of the two titration methods coincided with each other. (orig.)

  5. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  6. Oxalic acid overproduction by copper-tolerant brown-rot basidiomycetes on southern yellow pine treated with copper-based preservatives

    Science.gov (United States)

    Carol A. Clausen; Frederick Green

    2003-01-01

    Accumulation of oxalic acid (OA) by brown-rot fungi and precipitation of copper oxalate crystals in wood decayed by copper-tolerant decay fungi has implicated OA in the mechanism of copper tolerance. Understanding the role of OA in copper tolerance is important due to an increasing reliance on copper-based wood preservatives. In this study, four copper-tolerant brown-...

  7. Copper complexes as 'radiation recovery' agents

    International Nuclear Information System (INIS)

    Sorenson, J.R.J.

    1989-01-01

    Copper and its compounds have been used for their remedial effects since the beginning of recorded history. As early as 3000 BC the Egyptians used copper as an antiseptic for healing wounds and to sterilise drinking water; and later, ca 1550 BC, the Ebers Papyrus reports the use of copper acetate, copper sulphate and pulverised metallic copper for the treatment of eye infections. These historical uses of copper and its compounds are particularly interesting in the light of modern evidence concerning the use of certain copper complexes for the treatment of radiation sickness and more recently as an adjunct to radiotherapy for cancer patients. (author)

  8. Copper: From neurotransmission to neuroproteostasis

    Directory of Open Access Journals (Sweden)

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  9. Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size.

    Science.gov (United States)

    Hansen, Henrik K; Yianatos, Juan B; Ottosen, Lisbeth M

    2005-09-01

    Mine tailing from the El Teniente-Codelco copper mine situated in VI Region of Chile was analysed in order to evaluate the mobility and speciation of copper in the solid material. Mine tailing was sampled after the rougher flotation circuits, and the copper content was measured to 1150 mg kg (-1) dry matter. This tailing was segmented into fractions of different size intervals: 0-38, 38-45, 45-53, 53-75, 75-106, 106-150, 150-212, and >212 microm, respectively. Copper content determination, sequential chemical extraction, and desorption experiments were carried out for each size interval in order to evaluate the speciation of copper. It was found that the particles of smallest size contained 50-60% weak acid leachable copper, whereas only 32% of the copper found in largest particles could be leached in weak acid. Copper oxides and carbonates were the dominating species in the smaller particles, and the larger particles contained considerable amounts of sulphides.

  10. Hepatic copper content, urinary copper excretion, and serum ceruloplasmin in liver disease. [Activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ritland, S; Skrede, S [Rikshospitalet, Oslo (Norway); Steinnes, E [Institutt for Atomenergi, Kjeller (Norway)

    1977-01-01

    Liver copper content, urinary copper output and plasma ceruloplasmin have been evaluated in a variety of liver disorders. An activation analysis procedure for the determination of liver copper content is described. Dried biopsy samples were irradiated for two days at a thermal neutron flux of 1.5x10/sup 13/ ncm/sup -2/sec/sup -1/. After one day's delay the samples were dissolved in an acid mixture with copper carrier, and separated on an anion exchange column. The /sup 64/Cu activity in the separated fractions was recorded by gamma spectrometry using a Ge(Li) solid detector. The urinary copper excretion and the serum ceruloplasmin were determined by conventional laboratory methods.

  11. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake

    NARCIS (Netherlands)

    Berghe, van den P.V.E; Folmer, D.E.; Malingré, H.E.M.; Beurden, van E.; Klomp, A.E.M.; Sluis, van de B.; Merkx, M.; Berger, R.J.; Klomp, L.W.J.

    2007-01-01

    High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis,

  12. Thermodynamics of the complexation of ciprofloxacin with calcium and magnesium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mustafa, Jamil, E-mail: malkawi@just.edu.jo [Department of Applied Chemistry, Faculty of Arts and Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid (Jordan); Taha, Ziyad A. [Department of Applied Chemistry, Faculty of Arts and Sciences, Jordan University of Science and Technology, P.O. Box 3030, Irbid (Jordan)

    2011-07-10

    Highlights: {yields} The thermodynamics of the reactions of ciprofloxacin (CIP) with Ca(ClO{sub 4}){sub 2} and Mg(ClO{sub 4}){sub 2} were investigated by conductometric titration. {yields} The reactions of CIP with each ion produce two ionic complexes with the formulas M(CIP){sup 2+} and M(CIP){sub 2}{sup 2+}. {yields} The change in enthalpy and entropy were negative which indicate that the complexation is driven by the enthalpy change. - Abstract: The thermodynamics of the reactions of ciprofloxacin (CIP) with calcium perchlorate (Ca(ClO{sub 4}){sub 2}) and magnesium perchlorate (Mg(ClO{sub 4}){sub 2}) have been investigated in water-methanol solvent using conductometric titration. The reactions of CIP with each ion produce two ionic complexes with the general formulas M(CIP){sup 2+} and M(CIP){sub 2}{sup 2+}. The stability constants K{sub 1} and K{sub 2} at 25 {sup o}C for the complexes formed from the reaction with Ca(ClO{sub 4}){sub 2} were 8.84 x 10{sup 4} and 3.62 x 10{sup 4}, respectively. For the reaction with Mg(ClO{sub 4}){sub 2}K{sub 1} and K{sub 2} were 1.72 x 10{sup 5} and 2.50 x 10{sup 3}, respectively. The enthalpy ({Delta}H{sub 1}, {Delta}H{sub 2}, {Delta}H{sub 12}) and entropy ({Delta}S{sub 1}, {Delta}S{sub 2}, {Delta}S{sub 12}) of complexation reactions were determined from the temperature dependence of the complexation constants. The reactions of CIP with both ions are accompanied by a decrease in entropy ({Delta}S{sub 12} = -468.12 and -478.89 J/K mol for complexation with Ca(ClO{sub 4}){sub 2} and Mg(ClO{sub 4}){sub 2}, respectively) and enthalpy ({Delta}H{sub 12} = -193.09 and -192.01 kJ/mol for complexation with Ca(ClO{sub 4}){sub 2} and Mg(ClO{sub 4}){sub 2}, respectively), which indicate that the reactions are driven by the enthalpy change.

  13. Hirshfeld surface analysis of the 1,1´-(ethane-1,2-diyl)dipyridinium dication in two new salts: perchlorate and peroxodisulfate

    Czech Academy of Sciences Publication Activity Database

    Gholizadeh, M.; Pourayoubi, M.; Farimaneh, M.; Tarahhomi, A.; Dušek, Michal; Eigner, Václav

    2014-01-01

    Roč. 70, FEB (2014), s. 230-235 ISSN 0108-2701 Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : crystal structure * Hirshfeld surface analysis * fingerprint plots * perchlorate salt * peroxodisulfate salt * 1,1'-( ethane -1,2-diyl)dipyridinium dication Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.326, year: 2014

  14. An overview of electron acceptors in microbial fuel cells

    DEFF Research Database (Denmark)

    Ucar, Deniz; Zhang, Yifeng; Angelidaki, Irini

    2017-01-01

    Microbial fuel cells (MFC) have recently received increasing attention due to their promising potential in sustainable wastewater treatment and contaminant removal. In general, contaminants can be removed either as an electron donor via microbial catalyzed oxidization at the anode or removed at t...... acceptors (e.g., nitrate, iron, copper, perchlorate) and mediators....

  15. Perchlorate remediation using packed-bed bioreactors and electricity generation in microbial fuel cells (MFCs)

    Science.gov (United States)

    Min, Booki

    Two pilot-scale fixed bed bioreactors were operated in continuous mode in order to treat groundwater contaminated by perchlorate. The bioreactors were constructed and operated side-by-side at the Texas Street Well Facility in Redlands, California. Each reactor was packed with either sand or plastic media. A perchlorate-reducing bacterium, Dechlorosoma sp. KJ, was used to inoculate the bioreactors. Perchlorate was successfully removed down to a non-detectable level (microbial fuel cells (MFCs), which were run either in batch or continuous mode. In batch experiments, both a pure culture (Geobactor metallireducens) and a mixed culture (wastewater inoculum) were used as the biocatalyst, and acetate was added as substrate in the anode chamber of the MFC. Power output in a membrane MFC with either inoculum was essentially the same, with 40 +/- 1 mW/m2 for G. metallireducens and 38 +/- 1 mW/m2 for mixed culture. A different type of the MFC containing a salt bridge instead of a membrane system was examined to generate power using the same substrate and pure culture as used in the membrane MFC. Power output in the salt bridge MFC was 2.2 mW/m 2. It was found that the lower power output was directly attributed to the higher internal resistance of the salt bridge system (19920 +/- 50 O) in comparison with that of the membrane system (1286 +/- 1 O). Continuous electricity generation was examined in a flat plate microbial fuel cell (FPMFC) using domestic wastewater and specific organic substrates. The FPMFC, containing a combined electrode/proton exchange membrane (PEM), was initially acclimated for one month to domestic wastewater, and then was operated as a plug flow reactor system. Power density using domestic wastewater as a substrate was 72 +/- 1 mW/m2 at a liquid flow rate of 0.39 mL/min (1.1 hr hydraulic retention time, HRT), and COD removal was 42%. At a longer HRT of 4.0 hr, the COD removal increased to 79%, and power density was 43 mW/m2. Several organic compounds

  16. Cu,Zn-superoxide dismutase is lower and copper chaperone CCS is higher in erythrocytes of copper-deficient rats and mice.

    Science.gov (United States)

    West, Elizabeth C; Prohaska, Joseph R

    2004-09-01

    Discovery of a sensitive blood biochemical marker of copper status would be valuable for assessing marginal copper intakes. Rodent models were used to investigate whether erythrocyte concentrations of copper,zinc-superoxide dismutase (SOD), and the copper metallochaperone for SOD (CCS) were sensitive to dietary copper changes. Several models of copper deficiency were studied in postweanling male Holtzman rats, male Swiss Webster mice offspring, and both rat and mouse dams. Treatment resulted in variable but significantly altered copper status as evaluated by the presence of anemia, and lower liver copper and higher liver iron concentrations in copper-deficient compared with copper-adequate animals. Associated with this copper deficiency were consistent reductions in immunoreactive SOD and robust enhancements in CCS. In most cases, the ratio of CCS:SOD was several-fold higher in red blood cell extracts from copper-deficient compared with copper-adequate rodents. Determination of red cell CCS:SOD may be useful for assessing copper status of humans.

  17. Gibbs energy calculation of electrolytic plasma channel with inclusions of copper and copper oxide with Al-base

    Science.gov (United States)

    Posuvailo, V. M.; Klapkiv, M. D.; Student, M. M.; Sirak, Y. Y.; Pokhmurska, H. V.

    2017-03-01

    The oxide ceramic coating with copper inclusions was synthesized by the method of plasma electrolytic oxidation (PEO). Calculations of the Gibbs energies of reactions between the plasma channel elements with inclusions of copper and copper oxide were carried out. Two methods of forming the oxide-ceramic coatings on aluminum base in electrolytic plasma with copper inclusions were established. The first method - consist in the introduction of copper into the aluminum matrix, the second - copper oxide. During the synthesis of oxide ceramic coatings plasma channel does not react with copper and copper oxide-ceramic included in the coating. In the second case is reduction of copper oxide in interaction with elements of the plasma channel. The content of oxide-ceramic layer was investigated by X-ray and X-ray microelement analysis. The inclusions of copper, CuAl2, Cu9Al4 in the oxide-ceramic coatings were found. It was established that in the spark plasma channels alongside with the oxidation reaction occurs also the reaction aluminothermic reduction of the metal that allows us to dope the oxide-ceramic coating by metal the isobaric-isothermal potential oxidation of which is less negative than the potential of the aluminum oxide.

  18. Chlorine-36 abundance in natural and synthetic perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Heikoop, Jeffrey M [Los Alamos National Laboratory; Dale, M [NON LANL; Sturchio, Neil C [UNIV OF ILLIONOIS; Caffee, M [PURDUE UNIV; Belosa, A D [UNIV OF ILLINOIS; Heraty, Jr., L J [UNIV OF ILLINOIS; Bohike, J K [RESTON, VA; Hatzinger, P B [SHAW ENIVIORNMENTAL C0.; Jackson, W A [TEXAS TECH; Gu, B [ORNL

    2009-01-01

    Perchlorate (ClO{sub 4}{sup -}) is ubiquitous in the environment. It occurs naturally as a product of atmospheric photochemical reactions, and is synthesized for military, aerospace, and industrial applications. Nitrate-enriched soils of the Atacama Desert (Chile) contain high concentrations of natural ClO{sub 4}{sup -}; nitrate produced from these soils has been exported worldwide since the mid-1800's for use in agriculture. The widespread introduction of synthetic and agricultural ClO{sub 4}{sup -} into the environment has complicated attempts to understand the geochemical cycle of ClO{sub 4}{sup -}. Natural ClO{sub 4}{sup -} samples from the southwestern United States have relatively high {sup 36}Cl abundances ({sup 36}Cl/Cl = 3,100 x 10{sup -15} to 28,800 x 10{sup -15}), compared with samples of synthetic ({sup 36}Cl/Cl = 0.0 x 10{sup -15} to 40 x 10{sup -15}) and Atacama Desert ({sup 36}Cl/Cl = 0.9 x 10{sup -15} to 590 x 10{sup -15}) ClO{sub 4}{sup -}. These data give a lower limit for the initial {sup 36}Cl abundance of natural ClO{sub 4}{sup -} and provide temporal and other constraints on its geochemical cycle.

  19. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  20. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  1. Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films

    Science.gov (United States)

    Fredj, Narjes; Burleigh, T. David; New Mexico Tech Team

    2014-03-01

    This investigation describes an electrochemical technique for growing adhesive copper oxide films on copper with attractive colors ranging from gold-brown to pearl with intermediate colors from red violet to gold green. The technique consists of anodically dissolving copper at transpassive potentials in hot sodium hydroxide, and then depositing brilliant color films of Cu2O onto the surface of copper after the anodic potential has been turned off. The color of the copper oxide film depends on the temperature, the anodic potential, the time t1 of polarization, and the time t2, which is the time of immersion after potential has been turned off. The brilliant colored films were characterized using glancing angle x-ray diffraction, and the film was found to be primarily Cu2O. Cyclic voltammetry, chronopotentiometry, scanning electron microscopy, and x-ray photoelectron spectroscopy were also used to characterize these films.

  2. ANALYSIS OF THE KINETICS OF SOLVOLYSIS OF P-NITROPHENYLSULFONYLMETHYL PERCHLORATE IN BINARY ALCOHOLIC MIXTURES IN TERMS OF THE THERMODYNAMIC PROPERTIES OF THE SOLVENT MIXTURES

    NARCIS (Netherlands)

    Wijnen, J W; Engberts, J B F N; Blandamer, Michael J

    Rate constants are reported for the solvolysis of p-nitrophenylsulfonylmethyl perchlorate in binary ethanolic and methanolic mixtures at 298.2 K. Co-solvents include hydrocarbons, chlorinated hydrocarbons and 1,4-dioxane. The kinetic data are examined in terms of the effect of decreasing mole

  3. Thermal conductivity of glass copper-composite

    International Nuclear Information System (INIS)

    Kinoshita, Makoto; Terai, Ryohei; Haidai, Haruki

    1980-01-01

    Glass-metal composites are to be one of the answers for promoting thermal conduction in the glassy solids containing high-level radioactive wastes. In order to investigate the effect of metal addition on thermal conductivity of glasses, glass-copper composites were selected, and the conductivities of the composites were measured and discussed in regards to copper content and microstructure. Fully densified composites were successfully prepared by pressure sintering of the powder mixtures of glass and copper at temperatures above the yield points of the constituent glasses if the copper content was not so much. The conductivity was measured by means of a comparative method, in which the thermal gradient of the specimen was compared with that of quartz glass as standard under thermally steady state. Measurements were carried out at around 50 0 C. The thermal conductivity increased with increasing content of copper depending on the kind of copper powder used. The conductivities of the composites of the same copper content differed considerably each another. Fine copper powder was effective on increasing conductivity, and the conductivity became about threefold of that of glass by mixing the fine copper powder about 10 vol%. For the composites containing the fine copper powder less than 5 vol%, the conductivity obeyed so-called logarithmic rule, one of the mixture rules of conductivity, whereas for composites containing more than 5 vol%, the conductivity remarkably increased apart from the rule. This fact suggests that copper becomes continuous in the composite when the copper content increased beyond 5 vol%. For the composites containing coarse copper powder, the conductivity was increased not significantly, and obeyed an equation derived from the model in which conductive material dispersed in less conductive one. (author)

  4. A summary of recent developments in transportation hazard classification activities for ammonium perchlorate

    Science.gov (United States)

    Koller, A. M., Jr.; Hannum, J. A. E.

    1983-01-01

    The transportation hazard classification of Ammonium Perchlorate is discussed. A test program was completed and data were forwarded to retain a Class 5.1 designation (oxidizer) for AP which is shipped internationally. As a follow-on to the initial team effort to conduct AP tests existing data were examined and a matrix which catalogs test parameters and findings was compiled. A collection of test protocols is developed to standardize test methods for energetic materials of all types. The actions to date are summarized; the participating organizations and their roles as presently understood; specific findings on AP (matrix); and issues, lessons learned, and potential actions of particular interest to the propulsion community which may evolve as a result of future U.N. propellant transportation classification activities.

  5. Effects of organic matters coming from Chinese tea on soluble copper release from copper teapot

    International Nuclear Information System (INIS)

    Ni Lixiao; Li Shiyin

    2008-01-01

    The morphology and elemental composition of the corrosion products of copper teapot's inner-surface were characterized by the scanning electron microscopy and energy dispersive X-ray surface analysis (SEM/EDS), X-ray powder diffraction (XRD) and X-ray photon spectroscopy (XPS) analysis. It was revealed that Cu, Fe, Ca, P, Si and Al were the main elements of corrosion by-products, and the α-SiO 2 , Cu 2 O and CaCO 3 as the main mineral components on the inner-surface of copper teapot. The effects of organic matters coming from Chinese tea on soluble copper release from copper teapots in tap water were also investigated. The results showed that the doses of organic matter (as TOC), temperate and stagnation time have significant effects on the concentration of soluble copper released from copper teapots in tap water

  6. PERCHLORATE: Occurrence is Widespread but at Varying Levels; Federal Agencies Have Taken Some Actions to Respond to and Lessen Releases

    Science.gov (United States)

    2010-08-01

    presents a meaningful opportunity for reducing health risks for persons served by public water systems. History of EPA’s Investigation and Study...Colorado River region reported perchlorate in milk and various fruits and vegetables, including lettuce , but researchers concluded that few...installations. Of the 361 installations that reported not sampling, the primary reason cited for not sampling was that there was no history , record, or

  7. Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions

    International Nuclear Information System (INIS)

    Puigdomenech, I.; Taxen, C.

    2000-08-01

    The stability of copper canisters has a central role in the safety concept for the planned nuclear spent fuel repository in Sweden. The corrosion of copper canisters will be influenced by the chemical and physical environment in the near-field of the repository, and thermodynamic equilibrium calculations provide the basis for understanding this system. Thermodynamic data have been selected in this work for solids and aqueous species in the system: Cu - H 2 O - H + - H 2 - F - - Cl - - S 2- - SO 4 2- - NO 3 - - NO 2 - - NH 4 + PO 4 3- - CO 3 2+ . For some reactions and compounds, for which no experimental information on temperature effects was available, entropy and heat capacity values have been estimated. The compiled data were used to calculate thermodynamic equilibria for copper systems up to 100 deg C. The stability of copper in contact with granitic groundwaters has been illustrated using chemical equilibrium diagrams, with he following main conclusions: Dissolved sulphide and O 2 in groundwater are the most damaging components for copper corrosion. If available, HS - will react quantitatively with copper to form a variety of sulphides. However, sulphide concentrations in natural waters are usually low, because it forms sparingly soluble solids with transition metals, including Fe(II), which is wide-spread in reducing environments. Chloride can affect negatively copper corrosion. High concentrations (e.g., [Cl - ]TOT > 60 g/l) may be unfavourable for the general corrosion of copper in combination with in the following circumstances: Low pH ( + . The negative effects of Cl - are emphasised at higher temperatures. The chloride-enhancement of general corrosion may be beneficial for localised corrosion: pitting and stress corrosion cracking. The concept of redox potential, E H , has been found to be inadequate to describe copper corrosion in a nuclear repository. The available amounts of oxidants/reductants, and the stoichiometry of the corrosion reactions are

  8. Comparative genomic analyses of copper transporters and cuproproteomes reveal evolutionary dynamics of copper utilization and its link to oxygen.

    Directory of Open Access Journals (Sweden)

    Perry G Ridge

    2008-01-01

    Full Text Available Copper is an essential trace element in many organisms and is utilized in all domains of life. It is often used as a cofactor of redox proteins, but is also a toxic metal ion. Intracellular copper must be carefully handled to prevent the formation of reactive oxygen species which pose a threat to DNA, lipids, and proteins. In this work, we examined patterns of copper utilization in prokaryotes by analyzing the occurrence of copper transporters and copper-containing proteins. Many organisms, including those that lack copper-dependent proteins, had copper exporters, likely to protect against copper ions that inadvertently enter the cell. We found that copper use is widespread among prokaryotes, but also identified several phyla that lack cuproproteins. This is in contrast to the use of other trace elements, such as selenium, which shows more scattered and reduced usage, yet larger selenoproteomes. Copper transporters had different patterns of occurrence than cuproproteins, suggesting that the pathways of copper utilization and copper detoxification are independent of each other. We present evidence that organisms living in oxygen-rich environments utilize copper, whereas the majority of anaerobic organisms do not. In addition, among copper users, cuproproteomes of aerobic organisms were larger than those of anaerobic organisms. Prokaryotic cuproproteomes were small and dominated by a single protein, cytochrome c oxidase. The data are consistent with the idea that proteins evolved to utilize copper following the oxygenation of the Earth.

  9. Formation of a dinuclear copper(II) complex through the cleavage of CN bond of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole

    Energy Technology Data Exchange (ETDEWEB)

    Shardin, Rosidah; Pui, Law Kung; Yamin, Bohari M. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor (Malaysia); Kassim, Mohammad B. [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor, Malaysia and Fuel Cell Institute, Universiti Kebangsaan Malaysia, UKM 43600 Bangi, Selangor (Malaysia)

    2014-09-03

    A simple mononuclear octahedral copper(II) complex was attempted from the reaction of three moles of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole and one mole of copper(II) perchlorate hexahydrate in methanol. However, the product of the reaction was confirmed to be a dinuclear copper(II) complex with μ-(3-(pyridin-2-yl)-pyrazolato) and 3-(pyridin-2-yl)-1H-pyrazole ligands attached to each of the Cu(II) centre atom. The copper(II) ion assisted the cleavage of the C{sub benzoyl}N bond afforded a 3-(pyridin-2-yl)-1H-pyrazole molecule. Deprotonation of the 3-(pyridin-2-yl)-1H-pyrazole gave a 3-(pyridin-2-yl)-pyrazolato, which subsequently reacted with the Cu(II) ion to give the (3-(pyridin-2-yl)-pyrazolato)(3-(pyridin-2-yl)-1H-pyrazole)Cu(II) product moiety. The structure of the dinuclear complex was confirmed by x-ray crystallography. The complex crystallized in a monoclinic crystal system with P2(1)/n space group and cell dimensions of a = 12.2029(8) Å, b = 11.4010(7) Å, c = 14.4052(9) Å and β = 102.414(2)°. The compound was further characterized by mass spectrometry, CHN elemental analysis, infrared and UV-visible spectroscopy and the results concurred with the x-ray structure. The presence of d-d transition at 671 nm (ε = 116 dm{sup 3} mol{sup −1} cm{sup −1}) supports the presence of Cu(II) centres.

  10. Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site.

    Science.gov (United States)

    Fetherolf, Morgan M; Boyd, Stefanie D; Taylor, Alexander B; Kim, Hee Jong; Wohlschlegel, James A; Blackburn, Ninian J; Hart, P John; Winge, Dennis R; Winkler, Duane D

    2017-07-21

    Metallochaperones are a diverse family of trafficking molecules that provide metal ions to protein targets for use as cofactors. The copper chaperone for superoxide dismutase (Ccs1) activates immature copper-zinc superoxide dismutase (Sod1) by delivering copper and facilitating the oxidation of the Sod1 intramolecular disulfide bond. Here, we present structural, spectroscopic, and cell-based data supporting a novel copper-induced mechanism for Sod1 activation. Ccs1 binding exposes an electropositive cavity and proposed "entry site" for copper ion delivery on immature Sod1. Copper-mediated sulfenylation leads to a sulfenic acid intermediate that eventually resolves to form the Sod1 disulfide bond with concomitant release of copper into the Sod1 active site. Sod1 is the predominant disulfide bond-requiring enzyme in the cytoplasm, and this copper-induced mechanism of disulfide bond formation obviates the need for a thiol/disulfide oxidoreductase in that compartment. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. 21 CFR 73.1647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper. It...

  12. Induction of ceruloplasmin synthesis by interleukin-1 in copper deficient and copper sufficient rats

    International Nuclear Information System (INIS)

    Barber, E.F.; Cousins, R.J.

    1986-01-01

    Ceruloplasmin (Cp) is a copper-containing plasma protein important in the body's acute phase defense system. In copper sufficient rats given two injections of interleukin-1 (IL-1) at 0 and 8 h, ceruloplasmin activity began to significantly increase within 6 h, but did not peak until at least 24 h. The 24 h stimulated activity was 84 +/- 2 umole p-phenylene diamine (pPD) oxidized x min -1 x L -1 compared to a control of 43 +/- 5. These rats were injected with 100uCi 3 H-leucine (ip) 2 h before sacrifice to label newly synthesized proteins. When the 3 H immunoprecipitated by rabbit anti-rat Cp serum is expressed as a percent of the 3 H precipitated by trichloroacetic acid (TCA), the basal Cp synthesis rate was 3% of the total serum protein synthesis. The rate of Cp synthesis peaked 12 h after IL-1 injection at 7% of total serum protein synthesis and by 24 h was back to the basal rate. In copper deficient rats, IL-1 given with copper induced pPD oxidase activity, while IL-1 given alone did not stimulate activity. The basal Cp synthesis rate in these rats was 3%, the same as in the copper sufficient rats. In copper deficient rats, the Cp synthesis rate was induced by IL-1 with or without an injection of copper. Therefore, if dietary copper is in short supply, then although Cp synthesis is induced by this mediator of host defense mechanisms, Cp cannot carry out its functions

  13. Leach-SX-EW copper revalorization from overburden of abandoned copper mine Cerovo, Eastern Serbia

    Directory of Open Access Journals (Sweden)

    Stevanović Z.

    2009-01-01

    Full Text Available Hydrometallurgical processes for copper revalorization from overburden of abandoned mine Cerovo in Eastern Serbia were studied. Paper contain results of percolation leaching tests, performed with acidic mine waters accumulated in the bottom of the former open pit, followed by solvent extraction (SX and electrowinning (EW processes on achieved copper pregnant leach solutions. Usage of accumulated waste waters was objected to minimizing the environmental hazard due to uncontrolled leaking of these waters in nearby creeks and rivers. Chemical composition of acidic mine waters used for leaching tests was: (g/dm3: Cu - 0.201; Fe - 0.095; Mn - 0.041; Zn - 0.026; Ni - 0.0004; pH value - 3.3. Copper content in overburden sample used for leaching tests was 0.21% from which 64% were oxide copper minerals. In scope of leaching tests were examined influence of leaching solution pH values and iron (III concentration on copper recovery. It was established that for 120 hours of leaching on pH=1.5 without oxidant agents, copper concentration in pregnant leach solutions enriched up to 1.08g/dm3 which was enough for copper extraction from solution with SX-EW treatment. As extraction reagent in SX circuit was used LIX-984N in a kerosene diluent. Cathode current density in electrowinning cell was 220Am-2 while electrolyte temperature was kept on 50±2oC. Produced cathode copper at the end of SX-EW process has purity of 99.95% Cu.

  14. Surface films and corrosion of copper

    International Nuclear Information System (INIS)

    Hilden, J.; Laitinen, T.; Maekelae, K.; Saario, T.; Bojinov, M.

    1999-03-01

    In Sweden and Finland the spent nuclear fuel is planned to be encapsulated in cast iron canisters that have an outer shield made of copper. The copper shield is responsible for the corrosion protection of the canister construction. General corrosion of the copper is not expected to be the limiting factor in the waste repository environment when estimating the life-time of the canister construction. However, different forms of localised corrosion, i.e. pitting, stress corrosion cracking, or environmentally assisted creep fracture may cause premature failure of the copper shield. Of the probable constituents in the groundwater, nitrites, chlorides, sulphides and carbonates have been suggested to promote localised corrosion of copper. The main assumption made in planning this research program is that the surface films forming on copper in the repository environment largely determine the susceptibility of copper to the different forms of localised corrosion. The availability of reactants, which also may become corrosion rate limiting, is investigated in several other research programs. This research program consists of a set of successive projects targeted at characterising the properties of surface films on copper in repository environment containing different detrimental anions. A further aim was to assess the significance of the anion-induced changes in the stability of the oxide films with regard to localised corrosion of copper. This report summarises the results from a series of investigations on properties of surface films forming on copper in water of pH = 8.9 at temperature of 80 deg C and pressure of 2 MPa. The main results gained so far in this research program are as follows: The surface films forming on copper in the thermodynamic stability region of monovalent copper at 80 deg C consist of a bulk part (about 1 mm thick) which is a good ionic and electronic conductor, and an outer, interfacial layer (0.001 - 0.005 mm thick) which shows p-type semiconductor

  15. Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Samreen; Goddard, Russell H.; Bielmyer-Fraser, Gretchen K., E-mail: gkbielmyer@valdosta.edu

    2015-03-15

    Highlights: • Differences between CuO NP and CuCl{sub 2} exposure were characterized. • Copper accumulation in E. pallida was concentration-dependent. • E. pallida exposed to CuCl{sub 2} accumulated higher copper tissue burdens. • The oxidative stress response was greater in E. pallida exposed to CuO NP. • Both forms of copper inhibited CA activity in E. pallida. - Abstract: Increasing use of metal oxide nanoparticles (NP) by various industries has resulted in substantial output of these NP into aquatic systems. At elevated concentrations, NP may interact with and potentially affect aquatic organisms. Environmental implications of increased NP use are largely unknown, particularly in marine systems. This research investigated and compared the effects of copper oxide (CuO) NP and dissolved copper, as copper chloride (CuCl{sub 2}), on the sea anemone, Exaiptasia pallida. Sea anemones were collected over 21 days and tissue copper accumulation and activities of the enzymes: catalase, glutathione peroxidase, glutathione reductase, and carbonic anhydrase were quantified. The size and shape of CuO NP were observed using a ecanning electron microscope (SEM) and the presence of copper was confirmed by using Oxford energy dispersive spectroscopy systems (EDS/EDX). E. pallida accumulated copper in their tissues in a concentration- and time-dependent manner, with the animals exposed to CuCl{sub 2} accumulating higher tissue copper burdens than those exposed to CuO NP. As a consequence of increased copper exposure, as CuO NP or CuCl{sub 2}, anemones increased activities of all of the antioxidant enzymes measured to some degree, and decreased the activity of carbonic anhydrase. Anemones exposed to CuO NP generally had higher anti-oxidant enzyme activities than those exposed to the same concentrations of CuCl{sub 2}. This study is useful in discerning differences between CuO NP and dissolved copper exposure and the findings have implications for exposure of aquatic

  16. Performance of a pilot-scale packed bed reactor for perchlorate reduction using a sulfur oxidizing bacterial consortium.

    Science.gov (United States)

    Boles, Amber R; Conneely, Teresa; McKeever, Robert; Nixon, Paul; Nüsslein, Klaus R; Ergas, Sarina J

    2012-03-01

    A novel sulfur-utilizing perchlorate reducing bacterial consortium successfully treated perchlorate (ClO₄⁻) in prior batch and bench-scale packed bed reactor (PBR) studies. This study examined the scale up of this process for treatment of water from a ClO ₄⁻ and RDX contaminated aquifer in Cape Cod Massachusetts. A pilot-scale upflow PBR (∼250-L) was constructed with elemental sulfur and crushed oyster shell packing media. The reactor was inoculated with sulfur oxidizing ClO₄⁻ reducing cultures enriched from a wastewater seed. Sodium sulfite provided a good method of dissolved oxygen removal in batch cultures, but was found to promote the growth of bacteria that carry out sulfur disproportionation and sulfate reduction, which inhibited ClO₄⁻ reduction in the pilot system. After terminating sulfite addition, the PBR successfully removed 96% of the influent ClO₄⁻ in the groundwater at an empty bed contact time (EBCT) of 12 h (effluent ClO₄⁻ of 4.2 µg L(-1)). Simultaneous ClO₄⁻ and NO₃⁻ reduction was observed in the lower half of the reactor before reactions shifted to sulfur disproportionation and sulfate reduction. Analyses of water quality profiles were supported by molecular analysis, which showed distinct groupings of ClO₄⁻ and NO₃⁻ degrading organisms at the inlet of the PBR, while sulfur disproportionation was the primary biological process occurring in the top potion of the reactor. Copyright © 2011 Wiley Periodicals, Inc.

  17. Chemistry of the copper silicon interface

    International Nuclear Information System (INIS)

    Ford, M.J.; Sashin, V.A.; Nixon, K.

    2002-01-01

    Full text: Copper and silicon readily interdiffuse, even at room temperature, to form an interface which can be several nanometers thick. Over the years considerable effort has gone into investigating the diffusion process and chemical nature of the interface formed. Photoemission measurements give evidence for the formation of a stable suicide with a definite stoichiometry, Cu 3 Si. This is evidenced by splitting of the Si LVV Auger line and slight shifts and change in shape of the copper valence band density of states as measured by ultra-violet photoemission. In this paper we present calculations of the electronic structure of copper suicide, bulk copper and silicon, and preliminary measurements of the interface by electron momentum spectroscopy. Densities of states for copper and copper suicide are dominated by the copper 3d bands, and difference between the two compounds are relatively small. By contrast, the full band structures are quite distinct. Hence, experimental measurements of the full band structure of the copper on silicon interface, for example by EMS, have the potential to reveal the chemistry of the interface in a detailed way

  18. Accumulation and hyperaccumulation of copper in plants

    Science.gov (United States)

    Adam, V.; Trnkova, L.; Huska, D.; Babula, P.; Kizek, R.

    2009-04-01

    Copper is natural component of our environment. Flow of copper(II) ions in the environment depends on solubility of compounds containing this metal. Mobile ion coming from soil and rocks due to volcanic activity, rains and others are then distributed to water. Bio-availability of copper is substantially lower than its concentration in the aquatic environment. Copper present in the water reacts with other compounds and creates a complex, not available for organisms. The availability of copper varies depending on the environment, but moving around within the range from 5 to 25 % of total copper. Thus copper is stored in the sediments and the rest is transported to the seas and oceans. It is common knowledge that copper is essential element for most living organisms. For this reason this element is actively accumulated in the tissues. The total quantity of copper in soil ranges from 2 to 250 mg / kg, the average concentration is 30 mg / kg. Certain activities related to agriculture (the use of fungicides), possibly with the metallurgical industry and mining, tend to increase the total quantity of copper in the soil. This amount of copper in the soil is a problem particularly for agricultural production of food. The lack of copper causes a decrease in revenue and reduction in quality of production. In Europe, shows the low level of copper in total 18 million hectares of farmland. To remedy this adverse situation is the increasing use of copper fertilizers in agricultural soils. It is known that copper compounds are used in plant protection against various illnesses and pests. Mining of minerals is for the development of human society a key economic activity. An important site where the copper is mined in the Slovakia is nearby Smolníka. Due to long time mining in his area (more than 700 years) there are places with extremely high concentrations of various metals including copper. Besides copper, there are also detected iron, zinc and arsenic. Various plant species

  19. Biological perchlorate reduction in packed bed reactors using elemental sulfur.

    Science.gov (United States)

    Sahu, Ashish K; Conneely, Teresa; Nüsslein, Klaus R; Ergas, Sarina J

    2009-06-15

    Sulfur-utilizing perchlorate (ClO4-)-reducing bacteria were enriched from a denitrifying wastewater seed with elemental sulfur (S0) as an electron donor. The enrichment was composed of a diverse microbial community, with the majority identified as members of the phylum Proteobacteria. Cultures were inoculated into bench-scale packed bed reactors (PBR) with S0 and crushed oyster shell packing media. High ClO4-concentrations (5-8 mg/L) were reduced to PBR performance decreased when effluent recirculation was applied or when smaller S0 particle sizes were used, indicating that mass transfer of ClO4- to the attached biofilm was not the limiting mechanism in this process, and that biofilm acclimation and growth were key factors in overall reactor performance. The presence of nitrate (6.5 mg N/L) inhibited ClO4- reduction. The microbial community composition was found to change with ClO4- availability from a majority of Beta-Proteobacteria near the influent end of the reactor to primarily sulfur-oxidizing bacteria near the effluent end of the reactor.

  20. Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink.

    Science.gov (United States)

    Draper, Gabriel L; Dharmadasa, Ruvini; Staats, Meghan E; Lavery, Brandon W; Druffel, Thad

    2015-08-05

    Printed electronics and renewable energy technologies have shown a growing demand for scalable copper and copper precursor inks. An alternative copper precursor ink of copper nitrate hydroxide, Cu2(OH)3NO3, was aqueously synthesized under ambient conditions with copper nitrate and potassium hydroxide reagents. Films were deposited by screen-printing and subsequently processed with intense pulsed light. The Cu2(OH)3NO3 quickly transformed in less than 100 s using 40 (2 ms, 12.8 J cm(-2)) pulses into CuO. At higher energy densities, the sintering improved the bulk film quality. The direct formation of Cu from the Cu2(OH)3NO3 requires a reducing agent; therefore, fructose and glucose were added to the inks. Rather than oxidizing, the thermal decomposition of the sugars led to a reducing environment and direct conversion of the films into elemental copper. The chemical and physical transformations were studied with XRD, SEM, FTIR and UV-vis.

  1. A Study of the Optimal Model of the Flotation Kinetics of Copper Slag from Copper Mine BOR

    Science.gov (United States)

    Stanojlović, Rodoljub D.; Sokolović, Jovica M.

    2014-10-01

    In this study the effect of mixtures of copper slag and flotation tailings from copper mine Bor, Serbia on the flotation results of copper recovery and flotation kinetics parameters in a batch flotation cell has been investigated. By simultaneous adding old flotation tailings in the ball mill at the rate of 9%, it is possible to increase copper recovery for about 20%. These results are compared with obtained copper recovery of pure copper slag. The results of batch flotation test were fitted by MatLab software for modeling the first-order flotation kinetics in order to determine kinetics parameters and define an optimal model of the flotation kinetics. Six kinetic models are tested on the batch flotation copper recovery against flotation time. All models showed good correlation, however the modified Kelsall model provided the best fit.

  2. Unraveling the Amycolatopsis tucumanensis copper-resistome.

    Science.gov (United States)

    Dávila Costa, José Sebastián; Kothe, Erika; Abate, Carlos Mauricio; Amoroso, María Julia

    2012-10-01

    Heavy metal pollution is widespread causing serious ecological problems in many parts of the world; especially in developing countries where a budget for remediation technology is not affordable. Therefore, screening for microbes with high accumulation capacities and studying their stable resistance characteristics is advisable to define cost-effective any remediation strategies. Herein, the copper-resistome of the novel copper-resistant strain Amycolatopsis tucumanensis was studied using several approaches. Two dimensional gel electrophoresis revealed that proteins of the central metabolism, energy production, transcriptional regulators, two-component system, antioxidants and protective metabolites increased their abundance upon copper-stress conditions. Transcriptome analysis revealed that in presence of copper, superoxide dismutase, alkyl hydroperoxide reductase and mycothiol reductase genes were markedly induced in expression. The oxidative damage of protein and lipid from A. tucumanensis was negligible compared with that observed in the copper-sensitive strain Amycolatopsis eurytherma. Thus, we provide evidence that A. tucumamensis shows a high adaptation towards copper, the sum of which is proposed as the copper-resistome. This adaptation allows the strain to accumulate copper and survive this stress; besides, it constitutes the first report in which the copper-resistome of a strain of the genus Amycolatopsis with bioremediation potential has been evaluated.

  3. Interesting properties of some iron(II), copper(I) and copper(II ...

    Indian Academy of Sciences (India)

    Administrator

    Tridendate ligands with nitrogen centers, generally well-known as the tripod ligands, have been of considerable interest to inorganic chemists dealing with the preparation of model compounds for hemocyanin, tyrosinase etc. We have found that such ligands when complexed with iron(II) and copper(II) and copper(I) ions ...

  4. Copper Powder and Chemicals: edited proceedings of a seminar

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Various papers are presented covering the following topics: Status of Copper Chemical Industry in India, Copper Powder from Industrial Wastes, Manufacture of Copper Hydroxide and High Grade Cement Copper from Low Grade Copper Ore, Manufacture of Copper Sulphate as a By-Product, Hydrometallurgical Treatments of Copper Converter and Smelter Slage for Recovering Copper and other Non-Ferrous Metals, Recovery of Copper from Dilute Solutions, Use of Copper Compounds as Fungicides in India, Copper in Animal Husbandry, and Use of Copper Powder and Chemicals for Marine Applications. The keynote paper given at the Seminar was on Conservation of Copper for Better Use.

  5. Thermodynamic data for copper. Implications for the corrosion of copper under repository conditions

    Energy Technology Data Exchange (ETDEWEB)

    Puigdomenech, I. [Royal Inst. of Tech., Stockholm (Sweden); Taxen, C. [Swedish Corrosion Inst., Stockholm (Sweden)

    2000-08-01

    The stability of copper canisters has a central role in the safety concept for the planned nuclear spent fuel repository in Sweden. The corrosion of copper canisters will be influenced by the chemical and physical environment in the near-field of the repository, and thermodynamic equilibrium calculations provide the basis for understanding this system. Thermodynamic data have been selected in this work for solids and aqueous species in the system: Cu - H{sub 2}O - H{sup +} - H{sub 2} - F{sup -} - Cl{sup -} - S{sup 2-} - SO{sub 4}{sup 2-} - NO{sub 3}{sup -} - NO{sub 2}{sup -} - NH{sub 4}{sup +} PO{sub 4}{sup 3-} - CO{sub 3}{sup 2+} . For some reactions and compounds, for which no experimental information on temperature effects was available, entropy and heat capacity values have been estimated. The compiled data were used to calculate thermodynamic equilibria for copper systems up to 100 deg C. The stability of copper in contact with granitic groundwaters has been illustrated using chemical equilibrium diagrams, with he following main conclusions: Dissolved sulphide and O{sub 2} in groundwater are the most damaging components for copper corrosion. If available, HS{sup -} will react quantitatively with copper to form a variety of sulphides. However, sulphide concentrations in natural waters are usually low, because it forms sparingly soluble solids with transition metals, including Fe(II), which is wide-spread in reducing environments. Chloride can affect negatively copper corrosion. High concentrations (e.g., [Cl{sup -}]TOT > 60 g/l) may be unfavourable for the general corrosion of copper in combination with in the following circumstances: Low pH (< 4 at 25 deg C, or < 5 at 100 deg C). The presence of other oxidants than H{sup +}. The negative effects of Cl{sup -} are emphasised at higher temperatures. The chloride-enhancement of general corrosion may be beneficial for localised corrosion: pitting and stress corrosion cracking. The concept of redox potential, E

  6. The future of copper in China--A perspective based on analysis of copper flows and stocks.

    Science.gov (United States)

    Zhang, Ling; Cai, Zhijian; Yang, Jiameng; Yuan, Zengwei; Chen, Yan

    2015-12-01

    This study attempts to speculate on the future of copper metabolism in China based on dynamic substance flow analysis. Based on tremendous growth of copper consumption over the past 63 years, China will depict a substantially increasing trend of copper in-use stocks for the next 30 years. The highest peak will be possibly achieved in 2050, with the maximum ranging between 163 Mt and 171 Mt. After that, total stocks are expected to slowly decline 147-154 Mt by the year 2080. Owing to the increasing demand of in-use stocks, China will continue to have a profound impact on global copper consumption with its high import dependence until around 2020, and the peak demand for imported copper are expected to approach 5.5 Mt/year. Thereafter, old scrap generated by domestic society will occupy an increasingly important role in copper supply. In around 2060, approximately 80% of copper resources could come from domestic recycling of old scrap, implying a major shift from primary production to secondary production. With regard to the effect of lifetime distribution uncertainties in different end-use sectors of copper stocks on the predict results, uncertainty evaluation was performed and found the model was relatively robust to these changes. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. 21 CFR 184.1261 - Copper sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a...

  8. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    Science.gov (United States)

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively.

  9. Aquatic Life Criteria - Copper

    Science.gov (United States)

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  10. Native copper in Permian Mudstones from South Devon: A natural analogue of copper canisters for high-level radioactive waste

    International Nuclear Information System (INIS)

    Milodowski, A.E.; Styles, M.T.; Werme, L.; Oversby, V.M.

    2001-01-01

    Native copper (>99.9% Cu) sheets associated with complex uraniferous and vanadiferous concretions in Upper Permian Mudstones from south Devon (United Kingdom) have been studied as a 'natural analogue' for copper canisters designed to be used in the isolation of spent fuel and high-level radioactive wastes (HLW) for deep geological disposal. Detailed analysis demonstrates that the copper formed before the mudstones were compacted. The copper displays complex corrosion and alteration. The earliest alteration was to copper oxides, followed sequentially by the formation of copper arsenides, nickel arsenide and copper sulphide, and finally nickel arsenide accompanied by nickel-copper arsenide, copper arsenide and uranium silicates. Petrographic observations demonstrate that these alteration products also formed prior to compaction. Consideration of the published history for the region indicates that maximum compaction of the rocks will have occurred by at least the Lower Jurassic (i.e. over 176 Ma ago). Since that time the copper sheets have remained isolated by the compacted mudstones and were unaffected by further corrosion until uplift and exposure to present-day surface weathering

  11. Reactivity test between beryllium and copper

    International Nuclear Information System (INIS)

    Kawamura, H.; Kato, M.

    1995-01-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700 degrees C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper)

  12. Degradation of Adenine on the Martian Surface in the Presence of Perchlorates and Ionizing Radiation: A Reflectron Time-of-flight Mass Spectrometric Study

    Energy Technology Data Exchange (ETDEWEB)

    Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I., E-mail: ralfk@hawaii.edu [Department of Chemistry, University of Hawaii at Mānoa, Honolulu, HI 96822 (United States)

    2017-04-01

    The aim of the present work is to unravel the radiolytic decomposition of adenine (C{sub 5}H{sub 5}N{sub 5}) under conditions relevant to the Martian surface. Being the fundamental building block of (deoxy)ribonucleic acids, the possibility of survival of this biomolecule on the Martian surface is of primary importance to the astrobiology community. Here, neat adenine and adenine–magnesium perchlorate mixtures were prepared and irradiated with energetic electrons that simulate the secondary electrons originating from the interaction of the galactic cosmic rays with the Martian surface. Perchlorates were added to the samples since they are abundant—and therefore relevant oxidizers on the surface of Mars—and they have been previously shown to facilitate the radiolysis of organics such as glycine. The degradation of the samples were monitored in situ via Fourier transformation infrared spectroscopy and the electron ionization quadruple mass spectrometric method; temperature-programmed desorption profiles were then collected by means of the state-of-the-art single photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), allowing for the detection of the species subliming from the sample. The results showed that perchlorates do increase the destruction rate of adenine by opening alternative reaction channels, including the concurrent radiolysis/oxidation of the sample. This new pathway provides a plethora of different radiolysis products that were identified for the first time. These are carbon dioxide (CO{sub 2}), isocyanic acid (HNCO), isocyanate (OCN{sup −}), carbon monoxide (CO), and nitrogen monoxide (NO); an oxidation product containing carbonyl groups (R{sub 1}R{sub 2}–C=O) with a constrained five-membered cyclic structure could also be observed. Cyanamide (H{sub 2}N–C≡N) was detected in both irradiated samples as well.

  13. Degradation of Adenine on the Martian Surface in the Presence of Perchlorates and Ionizing Radiation: A Reflectron Time-of-flight Mass Spectrometric Study

    International Nuclear Information System (INIS)

    Góbi, Sándor; Bergantini, Alexandre; Kaiser, Ralf I.

    2017-01-01

    The aim of the present work is to unravel the radiolytic decomposition of adenine (C 5 H 5 N 5 ) under conditions relevant to the Martian surface. Being the fundamental building block of (deoxy)ribonucleic acids, the possibility of survival of this biomolecule on the Martian surface is of primary importance to the astrobiology community. Here, neat adenine and adenine–magnesium perchlorate mixtures were prepared and irradiated with energetic electrons that simulate the secondary electrons originating from the interaction of the galactic cosmic rays with the Martian surface. Perchlorates were added to the samples since they are abundant—and therefore relevant oxidizers on the surface of Mars—and they have been previously shown to facilitate the radiolysis of organics such as glycine. The degradation of the samples were monitored in situ via Fourier transformation infrared spectroscopy and the electron ionization quadruple mass spectrometric method; temperature-programmed desorption profiles were then collected by means of the state-of-the-art single photon photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS), allowing for the detection of the species subliming from the sample. The results showed that perchlorates do increase the destruction rate of adenine by opening alternative reaction channels, including the concurrent radiolysis/oxidation of the sample. This new pathway provides a plethora of different radiolysis products that were identified for the first time. These are carbon dioxide (CO 2 ), isocyanic acid (HNCO), isocyanate (OCN − ), carbon monoxide (CO), and nitrogen monoxide (NO); an oxidation product containing carbonyl groups (R 1 R 2 –C=O) with a constrained five-membered cyclic structure could also be observed. Cyanamide (H 2 N–C≡N) was detected in both irradiated samples as well.

  14. Thermal conductivity of tungsten–copper composites

    International Nuclear Information System (INIS)

    Lee, Sang Hyun; Kwon, Su Yong; Ham, Hye Jeong

    2012-01-01

    Highlights: ► We present the temperature dependence of the thermophysical properties for tungsten–copper composite from room temperature to 400 °C. The powders of tungsten–copper were produced by the spray conversion method and the W–Cu alloys were fabricated by the metal injection molding. Thermal conductivity and thermal expansion of tungsten–copper composite was controllable by volume fraction copper. - Abstract: As the speed and degree of integration of semiconductor devices increases, more heat is generated, and the performance and lifetime of semiconductor devices depend on the dissipation of the generated heat. Tungsten–copper alloys have high electrical and thermal conductivities, low contact resistances, and low coefficients of thermal expansion, thus allowing them to be used as a shielding material for microwave packages, and heat sinks for high power integrated circuits (ICs). In this study, the thermal conductivity and thermal expansion of several types of tungsten–copper (W–Cu) composites are investigated, using compositions of 5–30 wt.% copper balanced with tungsten. The tungsten–copper powders were produced using the spray conversion method, and the W–Cu alloys were fabricated via the metal injection molding. The tungsten–copper composite particles were nanosized, and the thermal conductivity of the W–Cu alloys gradually decreases with temperature increases. The thermal conductivity of the W–30 wt.% Cu composite was 238 W/(m K) at room temperature.

  15. Chronic copper poisoning in lambs

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D B

    1964-08-08

    This communication presented evidence of the elevation of plasma GOT (glutamic oxaloacetic transaminase or aspartate transaminase) concentration during the development of copper toxicity in some experimental lambs, and also demonstrated that plasma GOT concentration can be used to assess the course of the disease during treatment. A group of Kerry Hill lambs were fed 1 1/2 lb per day of a proprietary concentrate containing 40 parts of copper per million on a dry-matter basis in addition to hay and water ad lib. Data was included for the plasma GOT concentrations of the lambs, bled weekly after weaning from pasture to this diet. There was some variation between the individual lambs, and in one there was no increase in plasma GOT by the 20th week when all the surviving lambs were slaughtered. The concentrations of copper found in the caudate lobe of the liver and in the kidney cortex post mortem were given. The overall findings showed that the liver gave a reliable indication of the copper status of an animal whereas the kidney cortex copper concentration was a better criterion for the diagnosis of copper poisoning and was in agreement with the results of Eden, Todd, and Grocey and Thompson. Observations demonstrated the benefits resulting from the early diagnosis of chronic copper poisoning in lambs, when treatment of affected animals may be commenced before the haemolytic crisis develops. Treatment included reducing the copper intake and dosing with ammonium molybdate and sodium sulfate, and the plasma GOT concentration may be used to assess the rate of recovery. 4 references, 3 tables.

  16. High temperature oxidation of copper and copper aluminium alloys: Impact on furnace side wall cooling systems

    Science.gov (United States)

    Plascencia Barrera, Gabriel

    The high temperature oxidation behaviours of copper and dilute Cu-Al alloys were investigated. Experiments were carried out by: (i) Oxidizing under various oxygen potentials at different temperatures using a combined TG-DTA apparatus. (ii) Oxidizing in a muffle furnace (in air) at different temperatures for extended periods of time. The oxidation mechanisms were evaluated based upon the kinetic data obtained as well as by X-ray diffraction and microscopical (SEM and optical) analyses. It was found that oxidation of copper strongly depends on the temperature. Two distinct mechanisms were encountered. Between 300 and 500°C, the oxidation rate is controlled by lateral growth of the oxide on the metal surface, whereas between 600 and 1000°C oxidation is controlled by lattice diffusion of copper ions through the oxide scale. On the other hand, the partial pressure of oxygen only has a small effect on the oxidation of copper. Alloy oxidation is also dependent on the temperature. As temperature increases, more aluminium is required to protect copper from being oxidized. It was shown that if the amount of oxygen that dissolves in the alloy exceeds the solubility limit of oxygen in copper, an internal oxidation layer will develop, leading to the formation of a tarnishing scale. On the other hand if the oxygen content in the alloy lies below the solubility limit of oxygen in copper, no oxidation products will form since a tight protective alumina layer will form on the alloy surface. Surface phenomena may affect the oxidation behaviour of dilute Cu-Al alloys. Immersion tests in molten copper matte and copper converting slag, using laboratory scale cooling elements with various copper based materials, were conducted. Results from these tests showed that alloying copper with 3 to 4 wt% Al decreases the oxidation rate of pure copper by 4 orders of magnitude; however due to a significant drop in thermal conductivity, the ability to extract heat is compromised, leading to

  17. Radiative Ignition of fine-ammonium perchlorate composite propellants

    Energy Technology Data Exchange (ETDEWEB)

    Cain, Jeremy; Brewster, M. Quinn [Department of Mechanical Science and Industrial Engineering, University of Illinois, Urbana, IL 61801 (United States)

    2006-08-15

    Radiative ignition of quasi-homogeneous mixtures of ammonium perchlorate (AP) and hydroxyterminated polybutadiene (HTPB) binder has been investigated experimentally. Solid propellants consisting of fine AP (2 {mu}m) and HTPB binder ({proportional_to}76/24% by mass) were ignited by CO{sub 2} laser radiation. The lower boundary of a go/no-go ignition map (minimum ignition time vs. heat flux) was obtained. Opacity was varied by adding carbon black up to 1% by mass. Ignition times ranged from 0.78 s to 0.076 s for incident fluxes ranging from 60 W/cm{sup 2} to 400 W/cm{sup 2}. It was found that AP and HTPB are sufficiently strongly absorbing of 10.6 {mu}m CO{sub 2} laser radiation (absorption coefficient {approx}250 cm{sup -1}) so that the addition of carbon black in amounts typical of catalysts or opacitymodifying agents (up to 1%) would have only a small influence on radiative ignition times at 10.6 {mu}m. A simple theoretical analysis indicated that the ignition time-flux data are consistent with in-depth absorption effects. Furthermore, this analysis showed that the assumption of surface absorption is not appropriate, even for this relatively opaque system. For broadband visible/near-infrared radiation, such as from burning metal/oxide particle systems, the effects of in-depth absorption would probably be even stronger. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  18. Copper toxicity in housed lambs

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, A H; Valks, D A; Appleton, M A; Shaw, W B

    1969-09-27

    Copper toxicity among 170 lambs artificially reared indoors at High Mowthorpe NAAS Experimental Husbandry Farm is reported. Although only three lambs were lost it is not unreasonable to suggest that the liver copper levels of the lambs which were slaughtered would have been high and losses could have been much heavier had there been any further copper supplementation. Even a copper level of 20 ppm in lamb concentrates given to lambs reared artificially indoors is dangerous, and intakes of much less than 38 mg per lamb per day can be fatal if given of a prolonged period. 5 references, 1 table.

  19. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierra from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour.

  20. Copper localization, elemental content, and thallus colour in the copper hyperaccumulator lichen Lecanora sierrae from California

    Science.gov (United States)

    Purvis, O.W.; Bennett, J.P.; Spratt, J.

    2011-01-01

    An unusual dark blue-green lichen, Lecanora sierrae, was discovered over 30 years ago by Czehura near copper mines in the Lights Creek District, Plumas County, Northern California. Using atomic absorption spectroscopy, Czehura found that dark green lichen samples from Warren Canyon contained 4% Cu in ash and suggested that its colour was due to copper accumulation in the cortex. The present study addressed the hypothesis that the green colour in similar material we sampled from Warren Canyon in 2008, is caused by copper localization in the thallus. Optical microscopy and electron microprobe analysis of specimens of L. sierrae confirmed that copper localization took place in the cortex. Elemental analyses of L. sierrae and three other species from the same localities showed high enrichments of copper and selenium, suggesting that copper selenates or selenites might occur in these lichens and be responsible for the unusual colour. Copyright ?? 2011 British Lichen Society.

  1. Copper Recycling in the United States in 2004

    Science.gov (United States)

    Goonan, Thomas G.

    2009-01-01

    As one of a series of reports that describe the recycling of metal commodities in the United States, this report discusses the flow of copper from production through distribution and use, with particular emphasis on the recycling of industrial scrap (new scrap1) and used products (old scrap) in the year 2004. This materials flow study includes a description of copper supply and demand for the United States to illustrate the extent of copper recycling and to identify recycling trends. Understanding how materials flow from a source through disposition can aid in improving the management of natural resource delivery systems. In 2004, the U.S. refined copper supply was 2.53 million metric tons (Mt) of refined unalloyed copper. With adjustment for refined copper exports of 127,000 metric tons (t) of copper, the net U.S. refined copper supply was 2.14 Mt of copper. With this net supply and a consumer inventory decrease of 9,000 t of refined copper, 2.42 Mt of refined copper was consumed by U.S. semifabricators (brass mills, wire rod mills, ingot makers, and foundries and others) in 2004. In addition to the 2.42 Mt of refined copper consumed in 2004, U.S. copper semifabricators consumed 853,000 t of copper contained in recycled scrap. Furthermore, 61,000 t of copper contained in scrap was consumed by noncopper alloy makers, for example, steelmakers and aluminum alloy makers. Old scrap recycling efficiency for copper was estimated to be 43 percent of theoretical old scrap supply, the recycling rate for copper was 30 percent of apparent supply, and the new-scrap-to-old-scrap ratio for U.S. copper product production was 3.2 (76:24).

  2. “Pulling the plug” on cellular copper: The role of mitochondria in copper export

    OpenAIRE

    Leary, Scot C.; Winge, Dennis R.; Cobine, Paul A.

    2008-01-01

    Mitochondria contain two enzymes, Cu, Zn superoxide dismutase (Sod1) and cytochrome c oxidase (CcO), that require copper as a cofactor for their biological activity. The copper used for their metallation originates from a conserved, bioactive pool contained within the mitochondrial matrix, the size of which changes in response to either genetic or pharmacological manipulation of cellular copper status. Its dynamic nature implies molecular mechanisms exist that functionally couple mitochondria...

  3. Copper Resistance of the Emerging Pathogen Acinetobacter baumannii

    Science.gov (United States)

    Williams, Caitlin L.; Neu, Heather M.; Gilbreath, Jeremy J.; Michel, Sarah L. J.; Zurawski, Daniel V.

    2016-01-01

    ABSTRACT Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa. Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. IMPORTANCE Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic

  4. Copper Resistance of the Emerging Pathogen Acinetobacter baumannii.

    Science.gov (United States)

    Williams, Caitlin L; Neu, Heather M; Gilbreath, Jeremy J; Michel, Sarah L J; Zurawski, Daniel V; Merrell, D Scott

    2016-10-15

    Acinetobacter baumannii is an important emerging pathogen that is capable of causing many types of severe infection, especially in immunocompromised hosts. Since A. baumannii can rapidly acquire antibiotic resistance genes, many infections are on the verge of being untreatable, and novel therapies are desperately needed. To investigate the potential utility of copper-based antibacterial strategies against Acinetobacter infections, we characterized copper resistance in a panel of recent clinical A. baumannii isolates. Exposure to increasing concentrations of copper in liquid culture and on solid surfaces resulted in dose-dependent and strain-dependent effects; levels of copper resistance varied broadly across isolates, possibly resulting from identified genotypic variation among strains. Examination of the growth-phase-dependent effect of copper on A. baumannii revealed that resistance to copper increased dramatically in stationary phase. Moreover, A. baumannii biofilms were more resistant to copper than planktonic cells but were still susceptible to copper toxicity. Exposure of bacteria to subinhibitory concentrations of copper allowed them to better adapt to and grow in high concentrations of copper; this copper tolerance response is likely achieved via increased expression of copper resistance mechanisms. Indeed, genomic analysis revealed numerous putative copper resistance proteins that share amino acid homology to known proteins in Escherichia coli and Pseudomonas aeruginosa Transcriptional analysis revealed significant upregulation of these putative copper resistance genes following brief copper exposure. Future characterization of copper resistance mechanisms may aid in the search for novel antibiotics against Acinetobacter and other highly antibiotic-resistant pathogens. Acinetobacter baumannii causes many types of severe nosocomial infections; unfortunately, some isolates have acquired resistance to almost every available antibiotic, and treatment options

  5. A Systematic Approach to In Situ Bioremediation in Groundwater Including Decision Trees on In Situ Bioremediation for Nitrates, Carbon Tetrachloride, and Perchlorate

    Science.gov (United States)

    2002-08-01

    and waste, phytoremediation , aboveground denitrification, and, of course, EISBD. Please refer to this document for more details. 8.6 Applicability...facility also had associated seed treatment operations that may have contributed mercury compounds to the subsurface. The time of the releases will...the receptor community is essential. 10.8.2 Phytoremediation Bench-scale perchlorate phytoremediation studies have been conducted using parrot

  6. Ligand isotopic exchange of tris(acetylacetonato)germanium(IV) perchlorate in organic solvents

    International Nuclear Information System (INIS)

    Nagasawa, Akira; Saito, Kazuo

    1978-01-01

    The ligand isotopic exchange between tris(acetylacetonato)germanium(IV) perchlorate and acetylacetone[ 14 C] has been studied in 1,1,2,2-tetrachloroethane (TCE), nitromethane (NM), and acetonitrile (AN), at 100 - 120 0 C. In these solvents, the rate formula was R = k[H 2 O][complex]; the concentrations of the complex, free ligand, and water in solution were in the ranges from 0.01 to 0.1 mol dm -3 . The activation enthalpies and entropies for the k's are 105, 98, and 90 kJ mol -1 ; and -25, -53, and -69 JK -1 mol -1 , in TCE, NM, and AN, respectively. Influence of acid and base concentrations, and deuterium isotope effect on the rate in AN suggest that the rate controlling step of the exchange is governed by the ease of the proton transfer between the leaving and the incoming acac - in an intermediate. (auth.)

  7. Nanoscale Copper and Copper Compounds for Advanced Device Applications

    Science.gov (United States)

    Chen, Lih-Juann

    2016-12-01

    Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

  8. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Bhansali, S.; Sood, D.K.; Zmood, R.B. [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1993-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  9. Seeding of silicon by copper ion implantation for selective electroless copper plating

    Energy Technology Data Exchange (ETDEWEB)

    Bhansali, S; Sood, D K; Zmood, R B [Microelectronic and Materials Technology Centre, Royal Melbourne Institute of Technolgy, Melbourne, VIC (Australia)

    1994-12-31

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm{sup 2} using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm{sup 2} for `seed` formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by `scotch tape test`. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs.

  10. Seeding of silicon by copper ion implantation for selective electroless copper plating

    International Nuclear Information System (INIS)

    Bhansali, S.; Sood, D.K.; Zmood, R.B.

    1993-01-01

    We report on the successful use of copper(self) ion implantation into silicon to seed the electroless plating of copper on silicon (100) surfaces. Copper ions have been implanted to doses of 5E14-6.4E16 ions/cm 2 using a MEEVA ion implanter at extraction voltage of 40kV. Dose was varied in fine steps to determine the threshold dose of 2E15 Cu ions/cm 2 for 'seed' formation of copper films on silicon using a commercial electroless plating solution. Plated films were studied with Rutherford backscattering spectrometry, scanning electron microscopy, EDX and profilometry . The adhesion of films was measured by 'scotch tape test'. The adhesion was found to improve with increasing dose. However thicker films exhibited rather poor adhesion and high internal stress. SEM results show that the films grow first as isolated islands which become larger and eventually impinge into a continuous film as the plating time is increased. (authors). 5 refs., 1 tab., 3 figs

  11. COPPER RESISTANT STRAIN CANDIDA TROPICALIS RomCu5 INTERACTION WITH SOLUBLE AND INSOLUBLE COPPER COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Ie. P. Prekrasna

    2015-10-01

    Full Text Available The focus of the study was interaction of Candida tropicalis RomCu5 isolated from highland Ecuador ecosystem with soluble and insoluble copper compounds. Strain C. tropicalis RomCu5 was cultured in a liquid medium of Hiss in the presence of soluble (copper citrate and CuCl2 and insoluble (CuO and CuCO3 copper compounds. The biomass growth was determined by change in optical density of culture liquid, composition of the gas phase was measured on gas chromatograph, redox potential and pH of the culture fluid was defined potentiometrically. The concentration of soluble copper compounds was determined colorimetrically. Maximal permissible concentration of Cu2+ for C. tropicalis RomCu5 was 30 000 ppm of Cu2+ in form of copper citrate and 500 ppm of Cu2+ in form of CuCl2. C. tropicalis was metabolically active at super high concentrations of Cu2+, despite the inhibitory effect of Cu2+. C. tropicalis immobilized Cu2+ in the form of copper citrate and CuCl2 by it accumulation in the biomass. Due to medium acidification C. tropicalis dissolved CuO and CuCO3. High resistance of C. tropicalis to Cu2+ and ability to interact with soluble and insoluble copper compounds makes it biotechnologically perspective.

  12. Colloidal and electrochemical aspects of copper-CMP

    Science.gov (United States)

    Sun, Yuxia

    Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.

  13. Theft in Price-Volatile Markets: On the Relationship between Copper Price and Copper Theft

    OpenAIRE

    Sidebottom, A.; Belur, J.; Bowers, K.; Tompson, L.; Johnson, S. D.

    2011-01-01

    Recently, against a backdrop of general reductions in acquisitive crime, increases have been observed in the frequency of metal theft offences. This is generally attributed to increases in metal prices in response to global demand exceeding supply. The main objective of this article was to examine the relationship between the price of copper and levels of copper theft, focusing specifically on copper cable theft from the British railway network. Results indicated a significant positive correl...

  14. Adsorption of copper from the sulphate solution of low copper contents using the cationic resin Amberlite IR 120

    International Nuclear Information System (INIS)

    Jha, Manis Kumar; Nghiem Van Nguyen; Lee, Jae-chun; Jeong, Jinki; Yoo, Jae-Min

    2009-01-01

    In view of the increasing importance of the waste processing and recycling to meet the strict environmental regulations, the present investigation reports an adsorption process using the cationic exchanger Amberlite IR 120 for the recovery/removal of copper from the synthetic sulphate solution containing copper ≤0.7 mg/mL similar to the CMP waste effluent of electronic industry. Various process parameters, viz. contact time, solution pH, resin dose, and acid concentration of eluant were investigated for the adsorption of copper from the effluents. The 99.99% copper was found to be adsorbed from the sulphate solution containing copper 0.3-0.7 mg/mL of solution (feed pH 5) at A/R ratio 100 and eq. pH 2.5 in contact time 14 min. The mechanism for the adsorption of copper was found to follow Langmuir isotherm and second order rate. From the loaded organic, copper was eluted effectively by 1.8 M sulphuric acid at A/R ratio 25. The raffinate obtained after the recovery copper could be disposed safely without affecting the environment.

  15. Polystyrene films as barrier layers for corrosion protection of copper and copper alloys.

    Science.gov (United States)

    Románszki, Loránd; Datsenko, Iaryna; May, Zoltán; Telegdi, Judit; Nyikos, Lajos; Sand, Wolfgang

    2014-06-01

    Dip-coated polystyrene layers of sub-micrometre thickness (85-500nm) have been applied on copper and copper alloys (aluminium brass, copper-nickel 70/30), as well as on stainless steel 304, and produced an effective barrier against corrosion and adhesion of corrosion-relevant microorganisms. According to the dynamic wettability measurements, the coatings exhibited high advancing (103°), receding (79°) and equilibrium (87°) contact angles, low contact angle hysteresis (6°) and surface free energy (31mJ/m(2)). The corrosion rate of copper-nickel 70/30 alloy samples in 3.5% NaCl was as low as 3.2μm/a (44% of that of the uncoated samples), and in artificial seawater was only 0.9μm/a (29% of that of the uncoated samples). Cell adhesion was studied by fluorescence microscopy, using monoculture of Desulfovibrio alaskensis. The coatings not only decreased the corrosion rate but also markedly reduced the number of bacterial cells adhered to the coated surfaces. The PS coating on copper gave the best result, 2×10(3)cells/cm(2) (1% of that of the uncoated control). © 2013 Elsevier B.V. All rights reserved.

  16. Reparatory adaptation to copper-induced injury and occurrence of a copper-binding protein in the polycheate, Eudistylia vancouveri

    Energy Technology Data Exchange (ETDEWEB)

    Young, J.S.; Roesijadi, G.

    1983-01-01

    Chemically injured branchial pinnae of copper-treated polychaetes, Eudistylia vancouveri, regenerated while still exposed to copper. The first observations of pinna regeneration coincided with the apparent induction of a low molecular weight (approx.5000 daltons) copper-binding protein. This protein may play a role in the detoxification of copper and subsequent tissue regeneration. 7 references, 5 figures.

  17. Pathogenic adaptations to host-derived antibacterial copper

    Science.gov (United States)

    Chaturvedi, Kaveri S.; Henderson, Jeffrey P.

    2014-01-01

    Recent findings suggest that both host and pathogen manipulate copper content in infected host niches during infections. In this review, we summarize recent developments that implicate copper resistance as an important determinant of bacterial fitness at the host-pathogen interface. An essential mammalian nutrient, copper cycles between copper (I) (Cu+) in its reduced form and copper (II) (Cu2+) in its oxidized form under physiologic conditions. Cu+ is significantly more bactericidal than Cu2+ due to its ability to freely penetrate bacterial membranes and inactivate intracellular iron-sulfur clusters. Copper ions can also catalyze reactive oxygen species (ROS) generation, which may further contribute to their toxicity. Transporters, chaperones, redox proteins, receptors and transcription factors and even siderophores affect copper accumulation and distribution in both pathogenic microbes and their human hosts. This review will briefly cover evidence for copper as a mammalian antibacterial effector, the possible reasons for this toxicity, and pathogenic resistance mechanisms directed against it. PMID:24551598

  18. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  19. Simultaneous removal of perchlorate and arsenate by ion-exchange media modified with nanostructured iron (hydr)oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hristovski, Kiril [Environmental Technology Laboratory, Arizona State University, 6075 S. WMS Campus Loop W, Mesa, AZ 85212 (United States)], E-mail: kiril.hristovski@asu.edu; Westerhoff, Paul [Department of Civil and Environmental Engineering, Arizona State University, Box 5306, Tempe, AZ 85287-5306 (United States)], E-mail: p.westerhoff@asu.edu; Moeller, Teresia [SolmeteX Inc., 50 Bearfoot Road, Northborough, MA 01532 (United States)], E-mail: tmoller@solmetex.com; Sylvester, Paul [SolmeteX Inc., 50 Bearfoot Road, Northborough, MA 01532 (United States)], E-mail: psylvester@solmetex.com; Condit, Wendy [Battelle, 505 King Avenue, Columbus, OH 43201 (United States)], E-mail: conditw@battelle.org; Mash, Heath [United States Environmental Protection Agency, 26W. Martin Luther King Dr., Cincinnati, OH 45268 (United States)], E-mail: mash.heath@epa.gov

    2008-03-21

    Hybrid ion-exchange (HIX) media for simultaneous removal of arsenate and perchlorate were prepared by impregnation of non-crystalline iron (hydr)oxide nanoparticles onto strong base ion-exchange (IX) resins using two different chemical treatment techniques. In situ precipitation of Fe(III) (M treatment) resulted in the formation of sphere-like clusters of nanomaterials with diameters of {approx}5 nm, while KMnO{sub 4}/Fe(II) treatments yielded rod-like nanomaterials with diameters of 10-50 nm inside the pores of the media. The iron content of most HIX media was >10% of dry weight. The HIX media prepared via the M treatment method consistently exhibited greater arsenate adsorption capacity. The fitted Freundlich adsorption intensity parameters (q=KxC{sub E}{sup 1/n}) for arsenate (1/n < 0.6) indicated favorable adsorption trends. The K values ranged between 2.5 and 34.7 mgAs/g dry resin and were generally higher for the M treated media in comparison to the permanganate treated media. The separation factors for perchlorate over chloride ({alpha}{sub Cl{sup -}}{sup ClO{sub 4}{sup -}}) for the HIX media were lower than its untreated counterparts. The HIX prepared via the M treatment, had higher {alpha}{sub Cl{sup -}}{sup ClO{sub 4}{sup -}} than the HIX obtained by the KMnO{sub 4}/Fe(II) treatments suggesting that permanganate may adversely impact the ion-exchange base media. Short bed adsorber (SBA) tests demonstrated that the mass transport kinetics for both ions are adequately rapid to permit simultaneous removal using HIX media in a fixed bed reactor.

  20. Kinetics and Mechanism of Oxidation of Isoleucine by N-Bromophthalimide in Aqueous Perchloric Acid Medium

    Directory of Open Access Journals (Sweden)

    N. M. I. Alhaji

    2011-01-01

    Full Text Available The kinetics of oxidation of isoleucine with N-bromophthalimide has been studied in perchloric acid medium potentiometrically. The reaction is of first order each in [NBP] and [amino acid] and negative fractional order in [H+]. The rate is decreased by the addition of phthalimide. A decrease in the dielectric constant of the medium increases the rate. Addition of halide ions or acrylonitrile has no effect on the kinetics. Similarly, variation of ionic strength of the medium does not affect the reaction rate. The reaction rate has been determined at different temperatures and activation parameters have been calculated. A suitable mechanism involving hypobromous acid as reactive species has been proposed.

  1. The trade-off of availability and growth inhibition through copper for the production of copper-dependent enzymes by Pichia pastoris.

    Science.gov (United States)

    Balakumaran, Palanisamy Athiyaman; Förster, Jan; Zimmermann, Martin; Charumathi, Jayachandran; Schmitz, Andreas; Czarnotta, Eik; Lehnen, Mathias; Sudarsan, Suresh; Ebert, Birgitta E; Blank, Lars Mathias; Meenakshisundaram, Sankaranarayanan

    2016-02-20

    Copper is an essential chemical element for life as it is a part of prosthetic groups of enzymes including super oxide dismutase and cytochrome c oxidase; however, it is also toxic at high concentrations. Here, we present the trade-off of copper availability and growth inhibition of a common host used for copper-dependent protein production, Pichia pastoris. At copper concentrations ranging from 0.1 mM (6.35 mg/L) to 2 mM (127 mg/L), growth rates of 0.25 h(-1) to 0.16 h(-1) were observed with copper uptake of as high as 20 mgcopper/gCDW. The intracellular copper content was estimated by subtracting the copper adsorbed on the cell wall from the total copper concentration in the biomass. Higher copper concentrations led to stronger cell growth retardation and, at 10 mM (635 mg/L) and above, to growth inhibition. To test the determined copper concentration range for optimal recombinant protein production, a laccase gene from Aspergillus clavatus [EMBL: EAW07265.1] was cloned under the control of the constitutive glyceraldehyde-3-phosphate (GAP) dehydrogenase promoter for expression in P. pastoris. Notably, in the presence of copper, laccase expression improved the specific growth rate of P. pastoris. Although copper concentrations of 0.1 mM and 0.2 mM augmented laccase expression 4 times up to 3 U/mL compared to the control (0.75 U/mL), while higher copper concentrations resulted in reduced laccase production. An intracellular copper content between 1 and 2 mgcopper/gCDW was sufficient for increased laccase activity. The physiology of the yeast could be excluded as a reason for the stop of laccase production at moderate copper concentrations as no flux redistribution could be observed by (13)C-metabolic flux analysis. Copper and its pivotal role to sustain cellular functions is noteworthy. However, knowledge on its cellular accumulation, availability and distribution for recombinant protein production is limited. This study attempts to address one such challenge

  2. Evaluation of Perchlorate Sources in the Rialto-Colton and Chino California Subbasins using Chlorine and Oxygen Isotope Ratio Analysis

    Science.gov (United States)

    2015-03-01

    matches, air bags , chlorine bleach, safety flares, perchloric acid, and chlorate herbicides (Trumpholt et al., 2005; Aziz et al., 2006, 2008). Based...L, assuming no losses to biodegradation or other removal processes. Additional information on Atacama NO3- fertilizers as a source of ClO4- can be...in each well), the IX columns were removed from the each well, sealed in Zip-Loc type bags , placed at 4oC (or on ice), and shipped to the UIC EIGL

  3. Widespread occurrence of (per)chlorate in the Solar System

    Science.gov (United States)

    Jackson, W. Andrew; Davila, Alfonso F; Sears, Derek W. G.; Coates, John D.; McKay, Christopher P.; Brundrett, Meaghan; Estrada, Nubia; Böhlke, John Karl

    2015-01-01

    Perchlorate (ClO− 4 ) and chlorate (ClO− 3 ) are ubiquitous on Earth and ClO− 4 has also been found on Mars. These species can play important roles in geochemical processes such as oxidation of organic matter and as biological electron acceptors, and are also indicators of important photochemical reactions involving oxyanions; on Mars they could be relevant for human habitability both in terms of in situ resource utilization and potential human health effects. For the first time, we extracted, detected and quantified ClO− 4 and ClO− 3 in extraterrestrial, non-planetary samples: regolith and rock samples from the Moon, and two chondrite meteorites (Murchison and Fayetteville). Lunar samples were collected by astronauts during the Apollo program, and meteorite samples were recovered immediately after their fall. This fact, together with the heterogeneous distribution of ClO− 4 and ClO− 3 within some of the samples, and their relative abundance with respect to other soluble species (e.g., NO− 3 ) are consistent with an extraterrestrial origin of the oxychlorine species. Our results, combined with the previously reported widespread occurrence on Earth and Mars, indicate that ClO− 4 and ClO− 3 could be present throughout the Solar System.

  4. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  5. Activation determination of copper in food

    International Nuclear Information System (INIS)

    Jiranek, V.; Bludovsky, R.

    1982-01-01

    Neutron activation analysis was used for determining copper content in food. Analyzed were dried milk, flour, coffee, tea, husked rice, and liver. Bowen's kale powder with a guaranteed copper content of 3.6 to 6.5 ppm was used as a reference biological material. The instruments, chemicals and solutions used are reported. The method is described of copper separation with α-benzoinoxime and pyridine as is the procedure for the destructive activation analysis of samples. The copper concentrations in the foods under analysis were found to range within usual limits. The copper concentration determined in the reference material agreed with the measured value. The analysis confirms that the method yields reliable results. (J.B.)

  6. Chronic copper poisoning. III. Effects of copper acetate injected into the bloodstream of sheep

    Energy Technology Data Exchange (ETDEWEB)

    Todd, J R; Thompson, R H

    1964-01-01

    A study was made of the clinical and biochemical effects of injections of copper (as acetate) into the bloodstream of sheep of 100 to 130 lb. liveweight. Copper in a dose of 160 mg. caused death in 3 sheep in a few hours, and 80 mg. caused death in 3 out of 4 sheep, 2 after 2 days and 1 after 11 days. Symptoms, biochemical lesions and post-mortem appearances did not resemble those of chronic copper poisoning, but rather those of gastro-enteritis. Blood glutathione concentrations were not markedly reduced, but haemoconcentration was a prominent feature. Post-mortem examination showed gross congestion of blood vessels and marked inflammatory reactions in the abomasum and small intestine. Single injections of smaller amounts (25 to 40 mg. copper) were tolerated without effect, but repeated injections, twice daily for 2 to 3 days, caused haemolytic episodes in 3 sheep similar to the crisis of chronic copper poisoning in that a marked reduction in blood glutathione concentration and accumulation of methaemoglobin occurred. No other clinical effects were produced, however, and all three animals recovered uneventfully.

  7. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  8. Mesophilic leaching of copper sulphide sludge

    Directory of Open Access Journals (Sweden)

    VLADIMIR B. CVETKOVSKI

    2009-02-01

    Full Text Available Copper was precipitated using a sodium sulphide solution as the precipitation agent from an acid solution containing 17 g/l copper and 350 g/l sulphuric acid. The particle size of nearly 1 µm in the sulphide sludge sample was detected by optical microscopy. Based on chemical and X-ray diffraction analyses, covellite was detected as the major sulphide mineral. The batch bioleach amenability test was performed at 32 °C on the Tk31 mine mesophilic mixed culture using a residence time of 28 days. The dissolution of copper sulphide by direct catalytic leaching of the sulphides with bacteria attached to the particles was found to be worthy, although a small quantity of ferrous ions had to be added to raise the activity of the bacteria and the redox potential of the culture medium. Throughout the 22-day period of the bioleach test, copper recovery based on residue analysis indicated a copper extraction of 95 %, with copper concentration in the bioleach solution of 15 g/l. The slope of the straight line tangential to the exponential part of the extraction curve gave a copper solubilisation rate of 1.1 g/l per day. This suggests that a copper extraction of 95 % for the period of bioleach test of 13.6 days may be attained in a three-stage bioreactor system.

  9. Nanocrystalline transition metal oxides as catalysts in the thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Kapoor, Inder Pal Singh; Srivastava, Pratibha; Singh, Gurdip [Department of Chemistry, DDU Gorakhpur University, Gorakhpur (India)

    2009-08-15

    Nanocrystalline transition metal oxides (NTMOs) have been successfully prepared by three different methods: novel quick precipitation method (Cr{sub 2}O{sub 3} and Fe{sub 2}O{sub 3}); surfactant mediated method (CuO), and reduction of metal complexes with hydrazine as reducing agent (Mn{sub 2}O{sub 3}). The nano particles have been characterized by X-ray diffraction (XRD) which shows an average particle diameter of 35-54 nm. Their catalytic activity was measured in the thermal decomposition of ammonium perchlorate (AP). AP decomposition undergoes a two step process where the addition of metal oxide nanocrystals led to a shifting of the high temperature decomposition peak toward lower temperature. The kinetics of the thermal decomposition of AP and catalyzed AP has also been evaluated using model fitting and isoconversional method. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  10. Gastrointestinal and in vitro release of copper, cadmium, indium, mercury and zinc from conventional and copper-rich amalgams

    International Nuclear Information System (INIS)

    Brune, D.; Gjerdet, N.; Paulsen, G.

    1983-01-01

    Particles of a conventional lathe-cut, a spherical non-gamma 2 and a copper amalgam have been gastrointestinally administered to rats for the purpose of evaluation of the dissolution resistance. The animals were sacrificed after 20 hrs. The contents of copper, cadmium, indium, mercury and zinc in kidney, liver, lung or blood were measured using nuclear tracer techniques. From a copper amalgam an extreme release of copper was demonstrated. This study simulates the clinical conditions of elemental release from swallowed amalgam particles after amalgam insertion or after removal of old amalgam fillings. Specimens of the same types of amalgams were also exposed to artificial saliva for a period of 10 days. The amounts of copper and mercury released were measured with flame and flameless atomic absorption spectrophotometry respectively. The levels of copper and mercury released from the copper amalgam were approximately 50 times those of the two other amalgam types studied. (author)

  11. VARIABILITY OF COORDINATION COMPLEXES OF COPPER ACCUMULATED WITHIN FUNGAL COLONY IN THE PRESENCE OF COPPER-CONTAINING MINERALS

    Directory of Open Access Journals (Sweden)

    M. O. Fomina

    2014-04-01

    Full Text Available The aim of work was to elucidate the mechanisms of bioaccumulation of copper leached from minerals by fungus Aspergillus niger with great bioremedial potential due to its ability to produce chelating metabolites and transform toxic metals and minerals. The special attention was paid to the chemical speciation of copper bioaccumulated within fungal colony in the process of fungal transformation of copper-containing minerals. Chemical speciation of copper within different parts of the fungal colony was studied using solid-state chemistry methods such as synchrotron-based X-ray absorption spectroscopy providing information about the oxidation state of the target element, and its coordination environment. The analysis of the obtained X-ray absorption spectroscopy spectra was carried out using Fourier transforms of Extended X-ray Absorption Fine Structure regions, which correspond to the oscillating part of the spectrum to the right of the absorption edge. Results of this study showed that fungus A. niger was involved in the process of solubilization of copper-containing minerals resulted in leaching of mobile copper and its further immobilization by fungal biomass with variable coordination of accumulated copper within fungal colony which depended on the age and physiological/reproductive state of fungal mycelium. X-ray absorption spectroscopy data demonstrated that copper accumulated within outer zone of fungal colony with immature vegetative mycelium was coordinated with sulphur–containing ligands, in contrast to copper coordination with phosphate ligands within mature mycelium with profuse conidia in the central zone of the colony. The findings of this study not only broaden our understanding of the biogeochemical role of fungi but can also be used in the development of various fungal-based biometallurgy technologies such as bioremediation, bioaccumulation and bioleaching and in the assessment of their reliability. The main conclusion is that

  12. 21 CFR 74.3045 - [Phthalocyaninato(2-)] copper.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false [Phthalocyaninato(2-)] copper. 74.3045 Section 74...-)] copper. (a) Identity. The color additive is [phthalocyaninato(2-)] copper (CAS Reg. No. 147-14-8) having... [phthalocyaninato(2-)] copper shall conform to the following specifications and shall be free from impurities other...

  13. Oxidation-assisted graphene heteroepitaxy on copper foil.

    Science.gov (United States)

    Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François

    2016-11-10

    We propose an innovative, easy-to-implement approach to synthesize aligned large-area single-crystalline graphene flakes by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, favoring the growth of centimeter-sized copper (111) grains through the mechanism of abnormal grain growth. Second, the oxidation of the copper surface also drastically reduces the nucleation density of graphene. This oxidation/reduction sequence leads to the synthesis of aligned millimeter-sized monolayer graphene domains in epitaxial registry with copper (111). The as-grown graphene flakes are demonstrated to be both single-crystalline and of high quality.

  14. Electroforming copper targets for RTNS-II

    International Nuclear Information System (INIS)

    Kelley, W.K.; Dini, J.W.; Logan, C.M.

    1981-01-01

    Copper targets used in RTNS II, which is the world's most intense 14-MeV neutron source, contain water cooling channels for temperature control. There are two methods for fabricating these targets: (1) diffusion bonding a copper panel containing photoetched channels to another copper panel, and (2) an electroforming technique which involves filling the photoetched channels with wax, plating thick copper to seal over the channels and then removing the wax. Development of this latter process and results obtained with it are described

  15. Effects of a copper-tolerant grass (Agrostis capillaris) on the ecosystem of a copper-contaminated arable soil

    Energy Technology Data Exchange (ETDEWEB)

    Boon, G.T. [State Univ. Groningen (Netherlands); Bouwman, L.A.; Bloem, J.; Roemkens, P.F.A.M. [Research Inst. for Agrobiology and Soil Fertility, Haren (Netherlands)

    1998-10-01

    To test how a dysfunctioning ecosystem of a severely metal-polluted soil responds to renewed plant growth, a pot experiment was conducted with soil from an experimental arable field with pH and copper gradients imposed 13 years ago. In this experiment, four pH/copper combinations from this field were either planted with a pH- and copper-resistant grass cultivar or remained fallow. During a 10-week period, the dynamics of the microbial activity and of the abundances of bacteria, protozoa. and nematodes were measured, as were the dynamics of several chemical soil parameters. After 13 years of copper, which had resulted in severely reduced crop growth, no effects were observed on bacterial numbers, respiration, or protozoan numbers, but bacterial growth was strongly reduced in the low pH plots, and even more so in low pH plots enriched with copper. Of the organisms, only nematodes were negatively affected under conditions of high copper load at low pH. In these plots, numbers belonging to all feeding categories were strongly reduced. Planting of a copper-tolerant grass variety, Agrostis capillaris L. var. Parys Mountain, resulted within 10 weeks in faster bacterial growth and more protozoa and bacterivorous nematodes in comparison with fallow controls; these effects were markedly strongest in the acidic, copper-enriched soils. During incubation, fungivorous nematodes increased in all treatments, in fallow and in planted pots and in the pots with high-copper, low-pH soil. The results of this experiment suggest that introduction of plant growth is one of the major causes of increased biological activity in acidic contaminated soils. Planting such soils with metal-tolerant plant species can reestablish the necessary food base to support soil organism growth, and this can lead to numerous positive effects, reversing the loss of soil functions due to the high copper levels under acidic conditions.

  16. Carbohydrate metabolism in erythrocytes of copper deficient rats.

    Science.gov (United States)

    Brooks, S P J; Cockell, K A; Dawson, B A; Ratnayake, W M N; Lampi, B J; Belonje, B; Black, D B; Plouffe, L J

    2003-11-01

    Dietary copper deficiency is known to adversely affect the circulatory system of fructose-fed rats. Part of the problem may lie in the effect of copper deficiency on intermediary metabolism. To test this, weanling male Long-Evans rats were fed for 4 or 8 weeks on sucrose-based diets containing low or adequate copper content. Copper deficient rats had significantly lower plasma and tissue copper as well as lower plasma copper, zinc-superoxide dismutase activity. Copper deficient rats also had a significantly higher heart:body weight ratio when compared to pair-fed controls. Direct measurement of glycolysis and pentose phosphate pathway flux in erythrocytes using (13)C NMR showed no differences in carbon flux from glucose or fructose to pyruvate but a significantly higher flux through the lactate dehydrogenase locus in copper deficient rats (approximately 1.3 times, average of glucose and glucose + fructose measurements). Copper-deficient animals had significantly higher erythrocyte concentrations of glucose, fructose, glyceraldehyde 3-phosphate and NAD(+). Liver metabolite levels were also affected by copper deficiency being elevated in glycogen and fructose 1-phosphate content. The results show small changes in carbohydrate metabolism of copper deficient rats.

  17. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    Directory of Open Access Journals (Sweden)

    H. Kokes

    2014-03-01

    Full Text Available The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III hydroxide was precipitated by adjusting the pH level of the solution. Subsequently, copper sulfate pentahydrate was obtained by using various precipitants (i.e. ethanol, methanol and sulfuric acid.

  18. Effect of Copper and Iron Ions on the Sulphidizing Flotation of Copper Oxide in Copper Smelting Slag

    OpenAIRE

    Qing-qing Pan; Hui-qing Peng

    2018-01-01

    The treatment of smelting slag has attracted much attention nowadays. This study investigates the influence of Na2S, CuSO4, and FeCl3 on sulphidizing flotation of copper oxide. The results show that a proper Cu2+ concentration can increase the sulphidizing effect of copper oxide, while Fe3+ inhibits the sulphidizing effect. Further analysis shows that Cu2+ ions can reduce the surface potential, increase the S2− adsorption, then generate more polysulfide, and therefore promote the sulphidizing...

  19. The electrochemical atomic layer deposition of Pt and Pd nanoparticles on Ni foam for the electro oxidation of alcohols

    CSIR Research Space (South Africa)

    Modibedi, RM

    2013-01-01

    Full Text Available procedure The chemicals used in the preparation were Platinum solution (1mM H2PtCl6 pH = 1, SA Precious Metals), Pd solution (1mM PdCl2 pH = 1, SA Precious Metals), (copper sulphate solution (1mM CuSO4.5H2O pH = 1, Merck) were prepared in perchloric...

  20. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  1. The influence of D2O, perchlorate, and variation in temperature on the potential-dependent contractile function of frog skeletal muscle

    International Nuclear Information System (INIS)

    Foulks, J.G.; Morishita, L.

    1985-01-01

    D 2 O and perchlorate manifest opposing effects on the contractile function of skeletal muscle (amplitude of twitches and maximum K contractures, potential dependence of contraction and inactivation), and when combined the influence of one may effectively antagonize that of the other. The ratio of perchlorate concentrations required to produce effects of equal intensity, (e.g., twitch enhancement and restoration of maximum K contractures in media lacking divalent cations or containing a depressant concentration of a cationic amphipath) in H 2 O and D 2 O solutions was generally rather constant. These findings are compatible with the view that both agents can influence contractile function by virtue of their effects on solvent structure. In the absence of divalent cations, the effects of reduced temperature resemble those of D 2 O whereas the effects of increased temperature resemble those of the chaotropic anion. However, in other media, variation in temperature was found to result in additional nonsolvent effects so that low temperature could oppose rather than enhance the effects of D 2 O. These observations are discussed in terms of a model which postulates a role for solvent influences on the kinetics of two separate potential-dependent conformational transitions of membrane proteins which mediate the activation and inactivation of contraction in skeletal muscle

  2. Enrichment of copper and recycling of cyanide from copper-cyanide waste by solvent extraction

    Science.gov (United States)

    Gao, Teng-yue; Liu, Kui-ren; Han, Qing; Xu, Bin-shi

    2016-11-01

    The enrichment of copper from copper-cyanide wastewater by solvent extraction was investigated using a quaternary ammonium salt as an extractant. The influences of important parameters, e.g., organic-phase components, aqueous pH values, temperature, inorganic anion impurities, CN/Cu molar ratio, and stripping reagents, were examined systematically, and the optimal conditions were determined. The results indicated that copper was effectively concentrated from low-concentration solutions using Aliquat 336 and that the extraction efficiency increased linearly with increasing temperature. The aqueous pH value and concentrations of inorganic anion impurities only weakly affected the extraction process when varied in appropriate ranges. The CN/Cu molar ratio affected the extraction efficiency by changing the distribution of copper-cyanide complexes. The difference in gold leaching efficiency between using raffinate and fresh water was negligible.

  3. Synthesis and crystal structure of a new 2,6-dimethyl piperazine-1,4-diium perchlorate monohydrate: [C{sub 6}H{sub 16}N{sub 2}](ClO{sub 4}){sub 2} · H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Mleh, C. Ben [Université de Carthage, Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte (Tunisia); Roisnel, T. [Université de Rennes I, Centre de Diffractométrie X, UMR 6226 CNRS, Unité Sciences Chimiques de Rennes (France); Marouani, H., E-mail: houda.marouani@fsb.rnu.tn [Université de Carthage, Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte (Tunisia)

    2017-03-15

    A proton transfer compound 2,6-dimethyl piperazine-1,4-diium perchlorate monohydrate was synthesized by slow evaporation at room temperature using 2,6-dimethyl piperazine as template. The asymmetric unit contains one organic dication, two crystal graphically independent perchlorate anions and one water molecule. Each organic entities is engaged in a large number of bifurcated and non-bifurcated N–H···O (O) and C–H···O hydrogen bonds with different species and enhanced the three dimensional supramolecular network. In addition, the diprotonated piperazine ring adopts a chair conformation with the methyl groups occupying equatorial positions.

  4. Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex

    Science.gov (United States)

    Truong, Quang Duc; Kakihana, Masato

    2012-06-01

    A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.

  5. Rapid Separation of Copper Phase and Iron-Rich Phase From Copper Slag at Low Temperature in a Super-Gravity Field

    Science.gov (United States)

    Lan, Xi; Gao, Jintao; Huang, Zili; Guo, Zhancheng

    2018-06-01

    A novel approach for quickly separating a metal copper phase and iron-rich phase from copper slag at low temperature is proposed based on a super-gravity method. The morphology and mineral evolution of the copper slag with increasing temperature were studied using in situ high-temperature confocal laser scanning microscopy and ex situ scanning electron microscopy and X-ray diffraction methods. Fe3O4 particles dispersed among the copper slag were transformed into FeO by adding an appropriate amount of carbon as a reducing agent, forming the slag melt with SiO2 at low temperature and assisting separation of the copper phase from the slag. Consequently, in a super-gravity field, the metallic copper and copper matte were concentrated as the copper phase along the super-gravity direction, whereas the iron-rich slag migrated in the opposite direction and was quickly separated from the copper phase. Increasing the gravity coefficient (G) significantly enhanced the separation efficiency. After super-gravity separation at G = 1000 and 1473 K (1200 °C) for 3 minutes, the mass fraction of Cu in the separated copper phase reached 86.11 wt pct, while that in the separated iron-rich phase was reduced to 0.105 wt pct. The recovery ratio of Cu in the copper phase was as high as up to 97.47 pct.

  6. Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense

    Directory of Open Access Journals (Sweden)

    Philipp Wiemann

    2017-05-01

    Full Text Available The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs, and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically or enhancement of copper-exporting activity (CrpA in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses.

  7. Body of Knowledge (BOK) for Copper Wire Bonds

    Science.gov (United States)

    Rutkowski, E.; Sampson, M. J.

    2015-01-01

    Copper wire bonds have replaced gold wire bonds in the majority of commercial semiconductor devices for the latest technology nodes. Although economics has been the driving mechanism to lower semiconductor packaging costs for a savings of about 20% by replacing gold wire bonds with copper, copper also has materials property advantages over gold. When compared to gold, copper has approximately: 25% lower electrical resistivity, 30% higher thermal conductivity, 75% higher tensile strength and 45% higher modulus of elasticity. Copper wire bonds on aluminum bond pads are also more mechanically robust over time and elevated temperature due to the slower intermetallic formation rate - approximately 1/100th that of the gold to aluminum intermetallic formation rate. However, there are significant tradeoffs with copper wire bonding - copper has twice the hardness of gold which results in a narrower bonding manufacturing process window and requires that the semiconductor companies design more mechanically rigid bonding pads to prevent cratering to both the bond pad and underlying chip structure. Furthermore, copper is significantly more prone to corrosion issues. The semiconductor packaging industry has responded to this corrosion concern by creating a palladium coated copper bonding wire, which is more corrosion resistant than pure copper bonding wire. Also, the selection of the device molding compound is critical because use of environmentally friendly green compounds can result in internal CTE (Coefficient of Thermal Expansion) mismatches with the copper wire bonds that can eventually lead to device failures during thermal cycling. Despite the difficult problems associated with the changeover to copper bonding wire, there are billions of copper wire bonded devices delivered annually to customers. It is noteworthy that Texas Instruments announced in October of 2014 that they are shipping microcircuits containing copper wire bonds for safety critical automotive applications

  8. Atmospheric pollution with copper around the copper mine and flotation, 'Buchim', Republic of Macedonia, using biomonitoring moss and lichen technique

    International Nuclear Information System (INIS)

    Balabanova, Biljana; Bacheva, Katerina; Shajn, Robert; Stafilov, Trajche

    2009-01-01

    This paper has studied the atmospheric pollution with copper due to copper mining and flotation 'Buchim' near Radovish, Republic of Macedonia. The copper ore and ore tailings continually are exposed to open air, which occur winds carry out the fine particles in to atmosphere. Moss (Hyloconium splendens and Pleurozium schrebery) and lichen (Hypogymnia physodes and Parmelia sulcata) samples were used for biomonitoring the possible atmospheric pollution with copper in the mine vicinity. Moss and lichen samples were digested by using of microwave digestion system and copper was analyzed by atomic emission spectrometry with inductively coupled plasma (ICPAES). The obtained values for the content of copper in moss and lichen samples were statistically processed using the nonparametric and parametric analysis. Maps of areal deposition of copper show an increase content of copper in the vicinity of mine, but long distance distribution of this element is not established yet.

  9. Photoelectrochemistry of copper(I) acetylide films electrodeposited onto copper electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Zotti, G.; Cattarin, S.; Mengoli, G.; Fleischmann, M.; Peter, L.M.

    1986-01-01

    Films of copper acetylide (Cu/sub 2/C/sub 2/) were grown electrochemically on copper and characterized by transmittance and reflectance techniques. The photoelectrochemical properties of the filmed electrodes in alkaline solution indicate that Cu/sub 2/C/sub 2/ behaves as a p-type semiconducting material (1.5 eV band gap). The photocurrents depend on film thickness and aging and high resistivity or recombination losses limit the quantum yield to some 4% for thicknesses of practical importance (250 nm).

  10. Solubility and solvation of alkali metal perchlorates, tetramethyl and tetraethylammonium in aqua-ketone solvents

    International Nuclear Information System (INIS)

    Kireev, A.A.; Pak, T.G.; Bezuglyj, V.D.

    1998-01-01

    The KClO 4 , RbClO 4 , CsClO 4 , (CH 3 ) 4 NClO 4 , (C 2 H 5 ) 4 NClO 4 solubility in water and water-acetone, water-methylethylketone mixtures is determined through the method of isothermal saturation at 298.15 K. Dissociation constants of alkali metals perchlorates in acetone and its 90% mixtures (by volume) are determined conductometrically. Solubility products and standard energies of the Gibbs transfer of the studied electrolytes from water into water-acetone and water-methylethylketone solvents. It is established that the Gibbs standard energies of Na + , K + , Rb + and Cs + cations transfer from water to water-ketone solvents are close to each other. It is shown that the effect of acetone and methylethylketone on solvation of the studied electrolytes is practically similar

  11. Limited overshooting of NH{sub 4}{sup +} ions in ammonium perchlorate; Ograniczene przeskoki jonow NH{sub 4}{sup +} w nadchloranie amonowym

    Energy Technology Data Exchange (ETDEWEB)

    Birczynski, A.; Lalowicz, Z.T. [Inst. of Nuclear Physics, Cracow (Poland); Ingman, L.P.; Punkkinen, M.; Ylinen, E.E. [Wihuri Physical Lab., Turku Univ., Turku (Finland)

    1995-12-31

    The interpretation of NMR spectra for polycrystalline sample of ammonium perchlorate in helium temperature assumes the tunneling of NH{sub 4}{sup +}. Such interpretation does not agree with experimental data. The hypothesis of additional motion (fast rotation around one of C3 axis) has been checked and discussed on the base of NMR spectra of NH{sub 4}ClO{sub 4} monocrystal for the temperature range 2.1-25 K. 9 refs, 1 fig.

  12. Limited overshooting of NH{sub 4}{sup +} ions in ammonium perchlorate; Ograniczene przeskoki jonow NH{sub 4}{sup +} w nadchloranie amonowym

    Energy Technology Data Exchange (ETDEWEB)

    Birczynski, A; Lalowicz, Z T [Inst. of Nuclear Physics, Cracow (Poland); Ingman, L P; Punkkinen, M; Ylinen, E E [Wihuri Physical Lab., Turku Univ., Turku (Finland)

    1996-12-31

    The interpretation of NMR spectra for polycrystalline sample of ammonium perchlorate in helium temperature assumes the tunneling of NH{sub 4}{sup +}. Such interpretation does not agree with experimental data. The hypothesis of additional motion (fast rotation around one of C3 axis) has been checked and discussed on the base of NMR spectra of NH{sub 4}ClO{sub 4} monocrystal for the temperature range 2.1-25 K. 9 refs, 1 fig.

  13. Dissolution of copper and iron from malachite ore and precipitation of copper sulfate pentahydrate by chemical process

    OpenAIRE

    H. Kokes; M.H. Morcali; E. Acma

    2014-01-01

    The present work describes an investigation of a chemical process for the recovery of copper and iron from malachite ore. For the dissolution of copper and iron, H2SO4 was employed as well as H2O2 as an oxidizing agent. The effects of reaction temperature and time, acid concentration, liquid-to-solid ratio and agitation rate on the copper and iron percentage were investigated. Following the steps of dissolving the copper and iron sulfate and filtering, iron (III) hydroxide was precipitated by...

  14. Complete doping in solid-state by silica-supported perchloric acid as dopant solid acid: Synthesis and characterization of the novel chiral composite of poly [(±)-2-(sec-butyl) aniline

    Energy Technology Data Exchange (ETDEWEB)

    Farrokhzadeh, Abdolkarim; Modarresi-Alam, Ali Reza, E-mail: modaresi@chem.usb.ac.ir

    2016-05-15

    Poly [(±)-2-(sec-butyl) aniline]/silica-supported perchloric acid composites were synthesized by combination of poly[(±)-2-sec-butylaniline] base (PSBA) and the silica-supported perchloric acid (SSPA) as dopant solid acid in solid-state. The X-ray photoelectron spectroscopy (XPS) and CHNS results confirm nigraniline oxidation state and complete doping for composites (about 75%) and non-complete for the PSBA·HCl salt (about 49%). The conductivity of samples was (≈0.07 S/cm) in agreement with the percent of doping obtained of the XPS analysis. Also, contact resistance was determined by circular-TLM measurement. The morphology of samples by the scanning electron microscopy (SEM) and their coating were investigated by XPS, SEM-map and energy-dispersive X-ray spectroscopy (EDX). The key benefits of this work are the preparation of conductive chiral composite with the delocalized polaron structure under green chemistry and solid-state condition, the improvement of the processability by inclusion of the 2-sec-butyl group and the use of dopant solid acid (SSPA) as dopant. - Highlights: • The solid-state synthesis of the novel chiral composites of poly[(±)-2-(sec-butyl)aniline] (PSBA) and silica-supported perchloric acid (SSPA). • It takes 120 h for complete deprotonation of PSBA.HCl salt. • Use of SSPA as dopant solid acid for the first time to attain the complete doping of PSBA. • The coating of silica surface with PSBA.

  15. Rate and Regulation of Copper Transport by Human Copper Transporter 1 (hCTR1)*

    Science.gov (United States)

    Maryon, Edward B.; Molloy, Shannon A.; Ivy, Kristin; Yu, Huijun; Kaplan, Jack H.

    2013-01-01

    Human copper transporter 1 (hCTR1) is a homotrimer of a 190-amino acid monomer having three transmembrane domains believed to form a pore for copper permeation through the plasma membrane. The hCTR1-mediated copper transport mechanism is not well understood, nor has any measurement been made of the rate at which copper ions are transported by hCTR1. In this study, we estimated the rate of copper transport by the hCTR1 trimer in cultured cells using 64Cu uptake assays and quantification of plasma membrane hCTR1. For endogenous hCTR1, we estimated a turnover number of about 10 ions/trimer/s. When overexpressed in HEK293 cells, a second transmembrane domain mutant of hCTR1 (H139R) had a 3-fold higher Km value and a 4-fold higher turnover number than WT. Truncations of the intracellular C-terminal tail and an AAA substitution of the putative metal-binding HCH C-terminal tripeptide (thought to be required for transport) also exhibited elevated transport rates and Km values when compared with WT hCTR1. Unlike WT hCTR1, H139R and the C-terminal mutants did not undergo regulatory endocytosis in elevated copper. hCTR1 mutants combining methionine substitutions that block transport (M150L,M154L) on the extracellular side of the pore and the high transport H139R or AAA intracellular side mutations exhibited the blocked transport of M150L,M154L, confirming that Cu+ first interacts with the methionines during permeation. Our results show that hCTR1 elements on the intracellular side of the hCTR1 pore, including the carboxyl tail, are not essential for permeation, but serve to regulate the rate of copper entry. PMID:23658018

  16. 21 CFR 73.2647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.2647 Section 73.2647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The color additive copper powder shall conform in identity and specifications to the requirements of § 73...

  17. The Menkes and Wilson disease genes counteract in copper toxicosis in Labrador retrievers: a new canine model for copper-metabolism disorders

    Directory of Open Access Journals (Sweden)

    Hille Fieten

    2016-01-01

    Full Text Available The deleterious effects of a disrupted copper metabolism are illustrated by hereditary diseases caused by mutations in the genes coding for the copper transporters ATP7A and ATP7B. Menkes disease, involving ATP7A, is a fatal neurodegenerative disorder of copper deficiency. Mutations in ATP7B lead to Wilson disease, which is characterized by a predominantly hepatic copper accumulation. The low incidence and the phenotypic variability of human copper toxicosis hamper identification of causal genes or modifier genes involved in the disease pathogenesis. The Labrador retriever was recently characterized as a new canine model for copper toxicosis. Purebred dogs have reduced genetic variability, which facilitates identification of genes involved in complex heritable traits that might influence phenotype in both humans and dogs. We performed a genome-wide association study in 235 Labrador retrievers and identified two chromosome regions containing ATP7A and ATP7B that were associated with variation in hepatic copper levels. DNA sequence analysis identified missense mutations in each gene. The amino acid substitution ATP7B:p.Arg1453Gln was associated with copper accumulation, whereas the amino acid substitution ATP7A:p.Thr327Ile partly protected against copper accumulation. Confocal microscopy indicated that aberrant copper metabolism upon expression of the ATP7B variant occurred because of mis-localization of the protein in the endoplasmic reticulum. Dermal fibroblasts derived from ATP7A:p.Thr327Ile dogs showed copper accumulation and delayed excretion. We identified the Labrador retriever as the first natural, non-rodent model for ATP7B-associated copper toxicosis. Attenuation of copper accumulation by the ATP7A mutation sheds an interesting light on the interplay of copper transporters in body copper homeostasis and warrants a thorough investigation of ATP7A as a modifier gene in copper-metabolism disorders. The identification of two new functional

  18. Thermophysical properties and microstructure of graphite flake/copper composites processed by electroless copper coating

    International Nuclear Information System (INIS)

    Liu, Qian; He, Xin-Bo; Ren, Shu-Bin; Zhang, Chen; Ting-Ting, Liu; Qu, Xuan-Hui

    2014-01-01

    Highlights: • GF–copper composites were fabricated using a sparking plasma sintering, which involves coating GF with copper, using electroless plating technique. • The oriented graphite flake distributed homogeneously in matrix. • With the increase of flake graphite from 44 to 71 vol.%, the basal plane thermal conductivity of composites increases from 445 to 565 W m −1 K −1 and the thermal expansion of composites decreases from 8.1 to 5.0. • The obtained composites are suitable for electronic packaging materials. -- Abstract: This study focuses on the fabrication of thermal management material for power electronics applications using graphite flake reinforced copper composites. The manufacturing route involved electroless plating of copper on the graphite flake and further spark plasma sintering of composite powders. The relative density of the composites with 44–71 vol.% flakes achieved up to 98%. Measured thermal conductivities and coefficients of thermal expansion of composites ranged from 455–565 W m −1 K −1 and 8 to 5 ppm K −1 , respectively. Obtained graphite flake–copper composites exhibit excellent thermophysical properties to meet the heat dispersion and matching requirements of power electronic devices to the packaging materials

  19. Studies on the copper-poisoned soils. Part 2. Actual condition of the copper-poison in the soils and the rice plants

    Energy Technology Data Exchange (ETDEWEB)

    Koshiba, N.; Sano, Y.

    1968-01-01

    Copper contents of soils and rice plants in paddylands were correlated with growth. The results were as follows: available copper content in paddies was 181.8 ppm where the rice plants grew poorly, and was more than 4 times the value of the soil where rice plants grew favorably. The difference growth was obviously caused by available copper. The copper content of the rice plants showing poor growth was the same as those which grew well. Plants were poisoned by available copper of more than 100 ppm. The available copper contents were increased by drying processes of the paddyland soils distributed in the copper-poisoned area. 8 references, 6 tables.

  20. CopM is a novel copper-binding protein involved in copper resistance in Synechocystis sp. PCC 6803

    Science.gov (United States)

    Giner-Lamia, Joaquín; López-Maury, Luis; Florencio, Francisco J

    2015-01-01

    Copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803 comprises two operons, copMRS and copBAC, which are expressed in response to copper in the media. copBAC codes for a heavy-metal efflux–resistance nodulation and division (HME-RND) system, while copMRS codes for a protein of unknown function, CopM, and a two-component system CopRS, which controls the expression of these two operons. Here, we report that CopM is a periplasmic protein able to bind Cu(I) with high affinity (KD ∼3 × 10−16). Mutants lacking copM showed a sensitive copper phenotype similar to mutants affected in copB, but lower than mutants of the two-component system CopRS, suggesting that CopBAC and CopM constitute two independent resistance mechanisms. Moreover, constitutive expression of copM is able to partially suppress the copper sensitivity of the copR mutant strain, pointing out that CopM per se is able to confer copper resistance. Furthermore, constitutive expression of copM was able to reduce total cellular copper content of the copR mutant to the levels determined in the wild-type (WT) strain. Finally, CopM was localized not only in the periplasm but also in the extracellular space, suggesting that CopM can also prevent copper accumulation probably by direct copper binding outside the cell. PMID:25545960

  1. Corrosion of copper and copper alloys in a basaltic repository environment

    International Nuclear Information System (INIS)

    Brehm, W.F.

    1990-01-01

    Corrosion testing done on copper and copper alloys in support of the basalt repository program is discussed. Tests were performed under anoxic conditions at 50C, 100C, 150C and 200C in the presence of a saturated basalt-bentonite packing. Tests were also performed in an air/steam mixture at temperatures between 150C and 200C. Some tests, particularly those in air/steam mixtures, were done in the presence of radiation fields of 10 2 , 10 3 or 10 4 rad/h. Exposure periods were up to 28 months. A synthetic groundwater, Grande Ronde ≠4, was used. The materials studied were ASTM B402μm·a for copper and 17 μm·a for cupronickel, but the average rates were muμm·a was obtained. The rates at longer times were less than a third of this value. Corrosion increased monotonically with time and temperature. Chalcocite (Cu 2 S) was the corrosion product at 200C. There was no detectable radiation effect, and no pitting was observed. In air/steam corrosion was uniform with no pitting. Linear corrosion was observed for pure copper. The maximum corrosion penetration after 25 months was 0.13 mm at 300C; cupronickel corroded more slowly, with a maximum penetration of 0.045mm after 25 months. Cuprite (Cu 2 O) and tenorite (CuO) were identified on cupronickel, but only Cu 2 O on copper. A pronounced radiation effect was seen at 250C, but not at 150C; the surface film morphology was different under irradiation. In the short term the presence of packing increased the corrosion rate. 5 refs

  2. Copper sulphate poisoning in horses

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, M

    1975-01-01

    In the archives of the Clinic for Internal Diseases of Domestic Animals at the Veterinary Faculty of Zagreb University some thirty cases of horse disease diagnosed as copper sulphate poisoning were noted. The data correspond in many respects to the clinical findings of copper sulphate poisoning in other domestic animals. A series of experimental horse poisonings were undertaken in order to determine the toxicity of copper sulphate. The research results are as follows: Horses are sensitive to copper sulphate. Even a single application of 0.125 g/kg body weight in 1% concentration by means of incubation into the stomach causes stomach and gut disturbances and other poisoning symptoms. Poisoning occurs in two types: acute and chronic. The former appears after one to three applications of copper sulphate solution and is characterized by gastroenteritis, haemolysis, jaundice and haemoglobinuria with signs of consecutive damage of kidney, liver and other organs. The disease, from the first application to death lasts for two weeks. Chronic poisoning is caused by ingestion of dry copper sulphate in food (1% solution dried on hay or clover) for two or more months. There are chronic disturbances of stomach and gut and loss of weight, and consecutive (three to four) haemolytic crises similar to those of acute poisoning. From the beginning of poisoning to death six or more months can elapse.

  3. The effect of primary copper slag cooling rate on the copper valorization in the flotation process

    Directory of Open Access Journals (Sweden)

    Aleksandar Mihajlović

    2015-06-01

    Full Text Available Technological procedure of slow cooling slag from primary copper production is applied in the purpose of copper recovery in the level of 98.5% to blister. This technological procedure is divided into two phases, first slow cooling of slag on the air for 24 hours, and then accelerated cooling with water for 48 hours. Within the research following methods were used: calculation of nonstationary slag cooling, verification of the calculation using computer simulation of slag cooling in the software package COMSOL Multiphysics and experimental verification of simulation results. After testing of the experimentally gained samples of slowly cooled slag it was found that this technological procedure gives the best results in promoting growth or coagulation of dispersed particles of copper sulfide and copper in the slag, thereby increasing the utilization of the flotation process with a decrease of copper losses through very fine particles.

  4. Temperature and Copper Concentration Effects on the Formation of Graphene-Encapsulated Copper Nanoparticles from Kraft Lignin

    Directory of Open Access Journals (Sweden)

    Weiqi Leng

    2017-06-01

    Full Text Available The effects of temperature and copper catalyst concentration on the formation of graphene-encapsulated copper nanoparticles (GECNs were investigated by means of X-ray diffraction, Fourier transform infrared spectroscopy-attenuated total reflectance, and transmission electron microscopy. Results showed that higher amounts of copper atoms facilitated the growth of more graphene islands and formed smaller size GECNs. A copper catalyst facilitated the decomposition of lignin at the lowest temperature studied (600 °C. Increasing the temperature up to 1000 °C retarded the degradation process, while assisting the reconfiguration of the defective sites of the graphene layers, thus producing higher-quality GECNs.

  5. Use of Fatty Acid Methyl Ester Profiles to Compare Copper-Tolerant and Copper-Sensitive Strains of Pantoea ananatis.

    Science.gov (United States)

    Nischwitz, C; Gitaitis, R; Sanders, H; Langston, D; Mullinix, B; Torrance, R; Boyhan, G; Zolobowska, L

    2007-10-01

    ABSTRACT A survey was conducted to evaluate differences in fatty acid methyl ester (FAME) profiles among strains of Pantoea ananatis, causal agent of center rot of onion (Allium cepa), isolated from 15 different onion cultivars in three different sites in Georgia. Differences in FAME composition were determined by plotting principal components (PCs) in two-dimensional plots. Euclidean distance squared (ED(2)) values indicated a high degree of similarity among strains. Plotting of PCs calculated from P. ananatis strains capable of growing on media amended with copper sulfate pentahydrate (200 mug/ml) indicated that copper-tolerant strains grouped into tight clusters separate from clusters formed by wild-type strains. However, unlike copper-sensitive strains, the copper-tolerant strains tended to cluster by location. A total of 80, 60, and 73% of the strains from Tift1, Tift2, and Tattnall, respectively, exhibited either confluent growth or partial growth on copper-amended medium. However, all strains were sensitive to a mixture of copper sulfate pentahydrate (200 mug/ml) and maneb (40 mug/ml). When copper-tolerant clones were analyzed and compared with their wild-type parents, in all cases the plotting of PCs developed from copper-tolerant clones formed tight clusters separate from clusters formed by the parents. Eigenvalues generated from these tests indicated that two components provided a good summary of the data, accounting for 98, 98, and 96% of the standardized variance for strains Pna 1-15B, Pna 1-12B, and Pna 2-5A, respectively. Furthermore, feature 4 (cis-9-hexadecenoic acid/2-hydroxy-13-methyltetradecanoic acid) and feature 7 (cis-9/trans-12/cis-7-octadecenoic acid) were the highest or second highest absolute values for PC1 in all three strains of the parents versus copper-tolerant clones, and hexadecanoic acid was the highest absolute value for PC2 in all three strains. Along with those fatty acids, dodecanoic acid and feature 3 (3-hydroxytetradecanoic

  6. Studies on Cementation of Tin on Copper and Tin Stripping from Copper Substrate

    Directory of Open Access Journals (Sweden)

    Rudnik E.

    2016-06-01

    Full Text Available Cementation of tin on copper in acid chloride-thiourea solutions leads to the formation of porous layers with a thickness dependent on the immersion time. The process occurs via Sn(II-Cu(I mechanism. Chemical stripping of tin was carried out in alkaline and acid solutions in the presence of oxidizing agents. It resulted in the dissolution of metallic tin, but refractory Cu3Sn phase remained on the copper surface. Electrochemical tin stripping allows complete tin removal from the copper substrate, but porosity and complex phase composition of the tin coating do not allow monitoring the process in unambiguous way.

  7. Establishment of the conditions for the determination of the concentration of the uranyl ion in perchloric media by Fluorescence; Establecimiento de las condiciones para la determinacion de la concentracion del ion uranilo en medio perclorico por Fluorescencia

    Energy Technology Data Exchange (ETDEWEB)

    Contreras R, A.; Ordonez R, E.; Fernandez V, S.M. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: contraida@yahoo.com.mx

    2004-07-01

    The influence of the p H is reported in the spectra of luminescence of the ion uranyl in sodium perchlorate 2M. The best spectra were observed to ph <3 that to neutral and basic p Hs this is explained by the present species. They were carried out four calibration curves for the uranyl in perchloric acid media, taking into account the area under the curve, the maximum height of two characteristic peaks of this ion, in those that one observes a better correlation with the maximum height of the peak located to 486.7 nm. (Author)

  8. Electrochemical remediation of copper contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Mitojan, R.A. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study objective focused on electrochemical remediation copper polluted soils in the presence of adjuvant substances and conditions that are more effective for the treatment. Some of these substances were studied in different researches. Moreover, authors obtained a result of extraction copper rate higher than 90%. In this connection the following problems were set: - Influence organic and inorganic substances on copper mobility in soil under the DC current. - Moisture effect on copper migration in clay. - Electrochemical remediation soils different mineralogical composition. - A washing conditions contribution to electrochemical remediation of soil from copper. - Accuracy rating experimental dates. (orig.)

  9. A Study of Protection of Copper Alloys

    International Nuclear Information System (INIS)

    Kim, E. A.; Kim, S. H.; Kim, C. R.

    1974-01-01

    Volatile treatment of high capacity boiler water with hydrazine and ammonia is studied. Ammonia comes from the decomposition of excess hydrazine injected to treat dissolved oxygen. Ammonia is also injected for the control of pH. To find an effect of such ammonia on the copper alloy, the relations between pH and iron, and ammonia and copper are studied. Since the dependence of corrosion of iron on pH differs from that of copper, a range of pH was selected experimentally to minimize the corrosion rates of both copper and iron. Corrosion rates of various copper alloys are also compared

  10. Effectiveness acidic pre-cleaning for copper-gold ore

    Directory of Open Access Journals (Sweden)

    Antonio Clareti Pereira

    Full Text Available Abstract The presence of copper-bearing minerals is known to bring on many challenges during the cyanidation of gold ore, like high consumption of cyanide and low extraction of metal, which are undesirable impacts on the auriferous recovery in the subsequent process step. The high copper solubility in cyanide prevents the direct use of classical hydrometallurgical processes for the extraction of gold by cyanidation. Additionally, the application of a conventional flotation process to extract copper is further complicated when it is oxidized. As a result, an acid pre-leaching process was applied in order to clean the ore of these copper minerals that are cyanide consumers. The objective was to evaluate the amount of soluble copper in cyanide before and after acidic cleaning. From a gold ore containing copper, the study selected four samples containing 0.22%, 0.55%, 1.00% and 1.36% of copper. For direct cyanidation of the ore without pre-treatment, copper extraction by cyanide complexing ranged from 8 to 83%. In contrast, the pre-treatment carried out with sulfuric acid extracted 24% to 99% of initial copper and subsequent cyanidation extracted 0.13 to 1.54% of initial copper. The study also showed that the copper contained in the secondary minerals is more easily extracted by cyanide (83%, being followed by the copper oxy-hydroxide minerals (60%, while the copper contained in the manganese oxide is less complexed by cyanide (8% a 12%. It was possible to observe that minerals with low acid solubility also have low solubility in cyanide. Cyanide consumption decreased by about 2.5 times and gold recovery increased to above 94% after acidic pre-cleaning.

  11. Copper tolerance in Becium homblei

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, C; Stone, J

    1971-04-09

    Analyses show that Becium homblei has apparently no mechanism for limiting copper uptake. As growth proceeds, the concentration of metal increases in leaves and stems. Much of the copper is bound to structural material of the cells. There is a significant difference between the amount of extractable material in root and leaf tissues. These differences, in conjunction with the extrinsic factor of regular bush fires, were important factors in the evolution of this copper-resistant species of Becium. 9 references.

  12. 2-[5-(Pyridin-2-yl-1,3,4-thiadiazol-2-yl]pyridin-1-ium perchlorate

    Directory of Open Access Journals (Sweden)

    Abdelhakim Laachir

    2017-03-01

    Full Text Available The cation of the title molecular salt, C12H9N4S+·ClO4−, is approximately planar, with the pyridine and pyridinium rings being inclined to the central thiadiazole ring by 6.51 (9 and 9.13 (9°, respectively. The dihedral angle between the pyridine and pyridinium rings is 12.91 (10°. In the crystal, the cations are linked by N—H...O and C—H...O hydrogen bonds, involving the perchlorate anion, forming chains propagating along the [100] direction. The chains are linked by weak offset π–π interactions [inter-centroid distance = 3.586 (1 Å], forming layers parallel to the ab plane.

  13. Grape berry bacterial inhibition by different copper fungicides

    Directory of Open Access Journals (Sweden)

    Martins Guilherme

    2016-01-01

    Full Text Available Copper fungicides are widely used in viticulture. Due to its large spectrum of action, copper provides an efficient control over a great number of vine pathogens. Previous studies showed that, high levels of cupric residues can impact grape-berry microbiota, in terms of the size and population structure, reducing the diversity and the abundance. Due to the importance of grape-berry bacterial in crop health, and the potential impact of copper fungicides over the microbiota, we determined Minimum Inhibitory Concentration (MIC of different copper formulations for bacterial species isolated from grape berries. We study the Minimum Inhibitory Concentration (MIC of different copper formulations (copper sulphate (CuSO4 pure, Bordeaux mixture (CuSO4 + Ca(OH2, copper oxide (Cu2O, copper hydroxide (Cu(OH2 over 92 bacterial strains isolated from grape berries in different stages of the ripening process. The results of MIC measurements revealed that the different copper formulations have a variable inhibitory effect and among the different isolates, some species are the most resistant to all copper formulations than others. This study confirm that usage of cupric phytosanitary products should be reasonable independently of the farming system; they also provide evidence of the importance of the choice of which copper formulations are to be used regarding their impact on the grape berry bacterial microbiota.

  14. Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenwen; Luo, Qingping; Duan, Xiaohui [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China); Zhou, Yong [Eco-materials and Renewable Energy Research Center (ERERC), School of Physics, National Lab of Solid State Microstructure, ERERC, Nanjing University, Nanjing 210093 (China); Pei, Chonghua, E-mail: peichonghua@swust.edu.cn [State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, Southwest University of Science and Technology, Mianyang 621010 (China)

    2014-02-01

    Highlights: • The NGO was synthesized by nitrifying homemade GO. • The N content of resulted NGO is up to 1.45 wt.%. • The NGO can facilitate the decomposition of AP and release much heat. - Abstract: Nitrated graphene oxide (NGO) was synthesized by nitrifying homemade GO with nitro-sulfuric acid. Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy, CP/MAS {sup 13}C NMR spectra and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure of NGO. The thickness and the compositions of GO and NGO were analyzed by atomic force microscopy (AFM) and elemental analysis (EA), respectively. The catalytic effect of the NGO for the thermal decomposition of ammonium perchlorate (AP) was investigated by differential scanning calorimetry (DSC). Adding 10% of NGO to AP decreases the decomposition temperature by 106 °C and increases the apparent decomposition heat from 875 to 3236 J/g.

  15. Nitrated graphene oxide and its catalytic activity in thermal decomposition of ammonium perchlorate

    International Nuclear Information System (INIS)

    Zhang, Wenwen; Luo, Qingping; Duan, Xiaohui; Zhou, Yong; Pei, Chonghua

    2014-01-01

    Highlights: • The NGO was synthesized by nitrifying homemade GO. • The N content of resulted NGO is up to 1.45 wt.%. • The NGO can facilitate the decomposition of AP and release much heat. - Abstract: Nitrated graphene oxide (NGO) was synthesized by nitrifying homemade GO with nitro-sulfuric acid. Fourier transform infrared spectroscopy (FTIR), laser Raman spectroscopy, CP/MAS 13 C NMR spectra and X-ray photoelectron spectroscopy (XPS) were used to characterize the structure of NGO. The thickness and the compositions of GO and NGO were analyzed by atomic force microscopy (AFM) and elemental analysis (EA), respectively. The catalytic effect of the NGO for the thermal decomposition of ammonium perchlorate (AP) was investigated by differential scanning calorimetry (DSC). Adding 10% of NGO to AP decreases the decomposition temperature by 106 °C and increases the apparent decomposition heat from 875 to 3236 J/g

  16. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  17. Spatial Pattern of Copper Phosphate Precipitation Involves in Copper Accumulation and Resistance of Unsaturated Pseudomonas putida CZ1 Biofilm.

    Science.gov (United States)

    Chen, Guangcun; Lin, Huirong; Chen, Xincai

    2016-12-28

    Bacterial biofilms are spatially structured communities that contain bacterial cells with a wide range of physiological states. The spatial distribution and speciation of copper in unsaturated Pseudomonas putida CZ1 biofilms that accumulated 147.0 mg copper per g dry weight were determined by transmission electron microscopy coupled with energy dispersive X-ray analysis, and micro-X-ray fluorescence microscopy coupled with micro-X-ray absorption near edge structure (micro-XANES) analysis. It was found that copper was mainly precipitated in a 75 μm thick layer as copper phosphate in the middle of the biofilm, while there were two living cell layers in the air-biofilm and biofilm-medium interfaces, respectively, distinguished from the copper precipitation layer by two interfaces. The X-ray absorption fine structure analysis of biofilm revealed that species resembling Cu₃(PO₄)₂ predominated in biofilm, followed by Cu-Citrate- and Cu-Glutathione-like species. Further analysis by micro-XANES revealed that 94.4% of copper were Cu₃(PO₄)₂-like species in the layer next to the air interface, whereas the copper species of the layer next to the medium interface were composed by 75.4% Cu₃(PO₄)₂, 10.9% Cu-Citrate-like species, and 11.2% Cu-Glutathione-like species. Thereby, it was suggested that copper was initially acquired by cells in the biofilm-air interface as a citrate complex, and then transported out and bound by out membranes of cells, released from the copper-bound membranes, and finally precipitated with phosphate in the extracellular matrix of the biofilm. These results revealed a clear spatial pattern of copper precipitation in unsaturated biofilm, which was responsible for the high copper tolerance and accumulation of the biofilm.

  18. Seasonal and spatial patterns of metals at a restored copper mine site. I. Stream copper and zinc

    International Nuclear Information System (INIS)

    Bambic, Dustin G.; Alpers, Charles N.; Green, Peter G.; Fanelli, Eileen; Silk, Wendy K.

    2006-01-01

    Seasonal and spatial variations in metal concentrations and pH were found in a stream at a restored copper mine site located near a massive sulfide deposit in the Foothill copper-zinc belt of the Sierra Nevada, California. At the mouth of the stream, copper concentrations increased and pH decreased with increased streamflow after the onset of winter rain and, unexpectedly, reached extreme values 1 or 2 months after peaks in the seasonal hydrographs. In contrast, aqueous zinc and sulfate concentrations were highest during low-flow periods. Spatial variation was assessed in 400 m of reach encompassing an acidic, metal-laden seep. At this seep, pH remained low (2-3) throughout the year, and copper concentrations were highest. In contrast, the zinc concentrations increased with downstream distance. These spatial patterns were caused by immobilization of copper by hydrous ferric oxides in benthic sediments, coupled with increasing downstream supply of zinc from groundwater seepage. - Seasonal hydrology and benthic sediments control copper and zinc concentrations in a stream through a restored mine site

  19. Esterification from derivates of styrene by acetic acid using perchloric acid as a catalyzer; Esterificacion de derivados de estireno con acido acetico en presencia de acido perclorico como catalizador

    Energy Technology Data Exchange (ETDEWEB)

    Martinez de la Cuesta, P.J.; Rus Martinez, E.; Palomino sosa, R.; Palomino Perez, F. I. [Departamento deIngenieria Quimica, Facultad de Ciencias, Universidad de Malaga, Malaga (Spain)

    1995-11-01

    The present work is focused to develop the production of esters from derivatives of styrene by acetic acid using perchloric acid as a catalyst. The kinetics of the reaction was studied and analysis of the variables was carried out. 18 refs.

  20. Oxidation-assisted graphene heteroepitaxy on copper foil

    OpenAIRE

    Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François

    2016-01-01

    We propose an innovative, easy-to-implement approach to synthesize large-area singlecrystalline graphene sheets by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, f...