WorldWideScience

Sample records for copper oxide superconductors

  1. Fracture toughness for copper oxide superconductors

    Science.gov (United States)

    Goretta, K.C.; Kullberg, M.L.

    1993-04-13

    An oxide-based strengthening and toughening agent, such as tetragonal ZrO[sub 2] particles, has been added to copper oxide superconductors, such as superconducting YBa[sub 2]Cu[sub 3]O[sub x] (123) to improve its fracture toughness (K[sub IC]). A sol-gel coating which is non-reactive with the superconductor, such as Y[sub 2]BaCuO[sub 5] (211) on the ZrO[sub 2] particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO[sub 2] coated with 211 yielded a 123 composite with a K[sub IC] of 4.5 MPa(m)[sup 0.5].

  2. Fracture toughness for copper oxide superconductors

    Science.gov (United States)

    Goretta, Kenneth C.; Kullberg, Marc L.

    1993-01-01

    An oxide-based strengthening and toughening agent, such as tetragonal Zro.sub.2 particles, has been added to copper oxide superconductors, such as superconducting YBa.sub.2 Cu.sub.3 O.sub.x (123) to improve its fracture toughness (K.sub.IC). A sol-gel coating which is non-reactive with the superconductor, such as Y.sub.2 BaCuO.sub.5 (211) on the ZrO.sub.2 particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO.sub.2 coated with 211 yielded a 123 composite with a K.sub.IC of 4.5 MPa(m).sup.0.5.

  3. Mottness in high-temperature copper-oxide superconductors

    International Nuclear Information System (INIS)

    Phillips, Philip; Choy, T.-P.; Leigh, Robert G

    2009-01-01

    The standard theory of metals, Fermi liquid theory, hinges on the key assumption that although the electrons interact, the low-energy excitation spectrum stands in a one-to-one correspondence with that of a non-interacting system. In the normal state of the copper-oxide high-temperature superconductors, drastic deviations from the Fermi liquid picture are obtained, highlighted by a pseudogap, broad spectral features and T-linear resistivity. A successful theory in this context must confront the highly constraining scaling argument which establishes that all 4-Fermi interactions are irrelevant (except for pairing) at a Fermi surface. This argument lays plain that new low-energy degrees of freedom are necessary. This paper focuses on the series of experiments on copper-oxide superconductors which reveal that the number of low-energy addition states per electron per spin exceeds unity, in direct violation of the key Fermi liquid tenet. These experiments point to new degrees of freedom, not made out of the elemental excitations, as the key mechanism by which Fermi liquid theory breaks down in the cuprates. A recent theoretical advance which permits an explicit integration of the high-energy scale in the standard model for the cuprates reveals the source of the new dynamical degrees of freedom at low energies, a charge 2e bosonic field which has nothing to do with pairing but rather represents the mixing with the high-energy scales. We demonstrate explicitly that at half-filling, this new degree of freedom provides a dynamical mechanism for the generation of the charge gap and antiferromagnetism in the insulating phase. At finite doping, many of the anomalies of the normal state of the cuprates including the pseudogap, T-linear resistivity and the mid-infrared band are reproduced. A possible route to superconductivity is explored

  4. Bond-length fluctuations in the copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Goodenough, John B [Texas Materials Institute, ETC 9.102, University of Texas at Austin, Austin, TX 78712 (United States)

    2003-02-26

    Superconductivity in the copper oxides occurs at a crossover from localized to itinerant electronic behaviour, a transition that is first order. A spinodal phase segregation is normally accomplished by atomic diffusion; but where it occurs at too low a temperature for atomic diffusion, it may be realized by cooperative atomic displacements. Locally cooperative, fluctuating atomic displacements may stabilize a distinguishable phase lying between a localized-electron phase and a Fermi-liquid phase; this intermediate phase exhibits quantum-critical-point behaviour with strong electron-lattice interactions making charge transport vibronic. Ordering of the bond-length fluctuations at lower temperatures would normally stabilize a charge-density wave (CDW), which suppresses superconductivity. It is argued that in the copper oxide superconductors, crossover occurs at an optimal doping concentration for the formation of ordered two-electron/two-hole bosonic bags of spin S = 0 in a matrix of localized spins; the correlation bags contain two holes in a linear cluster of four copper centres ordered within alternate Cu-O-Cu rows of a CuO{sub 2} sheet. This ordering is optimal at a hole concentration per Cu atom of p {approx} 1/6, but it is not static. Hybridization of the vibronic electrons with the phonons that define long-range order of the fluctuating (Cu-O) bond lengths creates barely itinerant, vibronic quasiparticles of heavy mass. The heavy itinerant vibrons form Cooper pairs having a coherence length of the dimension of the bosonic bags. It is the hybridization of electrons and phonons that, it is suggested, stabilizes the superconductive state relative to a CDW state. (topical review)

  5. Positron trapping at defects in copper oxide superconductors

    International Nuclear Information System (INIS)

    McMullen, T.; Jena, P.; Khanna, S.N.; Li, Y.; Jensen, K.O.

    1991-01-01

    Positron states and lifetimes at defects in the copper oxide superconductors La 2-x Sr x CuO 4 , YBa 2 Cu 3 O 7-x , and Bi 2 Sr 2 CaCu 2 O 8+x are calculated with use of the superposed-atom model. In the Bi 2 Sr 2 CaCu 2 O 8+x compound, we find that the smaller metal-ion vacancies appear to only bind positrons weakly, while missing oxygens do not trap positrons. In contrast, metal-ion vacancies in La 2-x Sr x CuO 4 and YBa 2 Cu 3 O 7-x bind positrons by ∼1 eV, and oxygen-related defects appear to be the weak-binding sites in these materials. The sites that bind positrons only weakly, by energies ∼k BT , are of particular interest in view of the complex temperature dependences of the annihilation characteristics that are observed in these materials

  6. Experimental Consequences of Mottness in High-Temperature Copper-Oxide Superconductors

    Science.gov (United States)

    Chakraborty, Shiladitya

    2009-01-01

    It has been more than two decades since the copper-oxide high temperature superconductors were discovered. However, building a satisfactory theoretical framework to study these compounds still remains one of the major challenges in condensed matter physics. In addition to the mechanism of superconductivity, understanding the properties of the…

  7. Asymptotic Slavery in the Copper Oxide High Temperature Superconductors

    Science.gov (United States)

    Phillips, Philip

    2004-05-01

    Vast progress in theoretical solid state physics has been made by constructing models which mimic the low-energy properties of solids. Essential to the success of this program is the separability of the high and low energy degrees of freedom. While it is hoped that a high energy reduction can be made to solve the problem of high temperature superconductivity in the copper oxide materials, I will show that no consistent theory is possible if the high energy scale is removed. At the heart of the problem is the mixing of all energy scales (that is, UV-IR mixing) in the copper-oxide materials. Optical experiments demonstrate that the number of low-energy degrees of freedom is derived from a high energy scale. The implications of the inseparability of the high and low energy degrees of freedom on the phase diagram of the cuprates is discussed.

  8. Fracton pairing mechanism for unconventional superconductors: Self-assembling organic polymers and copper-oxide compounds

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, J.

    2002-01-01

    Self-assembling organic polymers and copper-oxide compounds are two classes of unconventional superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen-Cooper-Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical...... or holes) exchange fracton excitations, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the unconventional superconductors. For the copper oxides, the superconducting transition temperature T-c as predicted by the fracton mechanism is of the order of similar to......150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate...

  9. Splitting of the resistive transition of copper oxide superconductors: Intrinsic double superconducting transitions versus extrinsic effects

    International Nuclear Information System (INIS)

    Pomar, A.; Curras, S.R.; Veira, J.A.; Vidal, F.

    1996-01-01

    To prove the possible existence of an intrinsic double superconducting transition in the high-temperature copper oxide superconductors (HTSC), an effect recently attributed by various groups to different intrinsic properties of these materials (including unconventional wave pairing), we present in this paper high resolution data of the electrical resistivity, ρ(T), around the superconducting transition of different single crystal and polycrystal YBa 2 Cu 3 O 7-δ samples. The analysis of the temperature derivative of these ρ(T) data strongly suggests that (i) with a temperature resolution well to within 20 mK, the intrinsic resistive transition of the HTSC does not present any double transition anomaly and (ii) the double peak structure observed in dρ(T)/dT by some authors is probably an extrinsic effect (associated with stoichiometric inhomogeneities in some cases, and with experimental artifacts in other cases). copyright 1996 The American Physical Society

  10. Anderson Hamiltonian description of the experimental electronic structure and magnetic interactions of copper oxide superconductors

    International Nuclear Information System (INIS)

    Shen, Z.; Allen, J.W.; Yeh, J.J.

    1987-01-01

    We describe valence-band and core-level photoemission data for copper oxide superconductors using the Anderson Hamiltonian applied to an impurity-cluster configuration-interaction model. We obtain experimental values of the parameters of the model the copper X oxygen charge transfer energy Δ∼0.4 eV, the d-d Coulomb interaction U∼6 eV, and the ligand-d hybridization T∼2.4 eV. Using these parameters, we evaluate the linear Cu-O-Cu superexchange interaction J and find it is dominated by the charge-transfer fluctuations. The magnitude obtained for J is much larger than typical Neel temperatures of these materials, and is somewhat larger than that estimated from applying the resonating-valence-bond picture to La 2 CuO 4 . We point out that for Δ >Δ, the charge-transfer degrees of freedom, and the lattice aspects of the Anderson lattice Hamiltonian, should not be neglected in constructing models for the high-T/sub c/ superconductivity. We also emphasize our resonant-photoemission result that the very small density of states at or near the Fermi level in all these materials has a substantial contribution from Cu 3d states, suggesting their importance for the superconductivity. We report other details of the resonant-photoemission data involving La and Ba states in the materials containing these elements

  11. Oxide superconductors

    International Nuclear Information System (INIS)

    Cava, R.J.

    2000-01-01

    This article briefly reviews ceramic superconductors from historical and materials perspectives. It describes the factors that distinguish high-temperature cuprate superconductors from most electronic ceramics and places them in the context of other families of superconducting materials. Finally, it describes some of the scientific issues presently being actively pursued in the search for the mechanism for high-temperature superconductivity and the directions of research into new superconducting ceramics in recent years

  12. Powder of a copper oxide superconductor precursor, fabrication process and use for the preparation of superconducting oxide

    International Nuclear Information System (INIS)

    Dehaudt, P.

    1990-01-01

    The precursor powder comprises at least a copper compound (hydroxide, oxide and hydroxynitrates), at least a rare earth and/or yttrium compound (nitrates, hydroxides and hydroxynitrates) or bismuth oxide and at least an alkaline earth nitrate. It can be prepared by atomization drying of a suspension a copper precipitate or coprecipitate and other elements of the superconducting oxide in solution [fr

  13. Critical-temperature inhomogeneities and resistivity rounding in copper oxide superconductors

    International Nuclear Information System (INIS)

    Maza, J.; Vidal, F.

    1991-01-01

    By using effective-medium approaches, we obtain the onset of the electrical-resistivity rounding, above the normal-superconducting transition, associated with inhomogeneities of the mean-field critical temperature T c0 at scales larger than the superconducting correlation length. These results are compared with available data in single-crystal and single-phase (to within 4%) polycrystalline YBa 2 Cu 3 O 7-δ samples. This comparison shows that the measured resistivity rounding cannot be explained by these types of local T c0 inhomogeneities. Complementarily, our calculations allow us to check some proposals on T c0 inhomogeneities associated with local sample strains or oxygen-content variations. The interplay between T c0 inhomogeneities and superconducting order-parameter fluctuations (SCOPF) leads to the conclusion that in the mean-field-like region (MFR) above the superconducting transition, the T c0 inhomogeneity contribution to the measured resistivity rounding in high-quality (single-phase) cuprate oxide superconductors is negligible. In contrast, our analysis confirms that in the MFR these effects may be explained quantitatively on the grounds of the Lawrence-Doniach theory for SCOPF

  14. Continuous lengths of oxide superconductors

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  15. Electronic structure and electron-phonon coupling in layered copper oxide superconductors

    International Nuclear Information System (INIS)

    Pickett, W.E.; Cohen, R.E.; Krakauer, H.

    1991-01-01

    Experimental data on the layered Cu-O superconductors seem more and more to reflect normal Fermi-liquid behavior and substantial correspondence with band structure predictions. Recent self-consistent, microscopic band theoretic calculations of the electronic structure, lattice instabilities, phonon frequencies, and electron-phonon coupling characteristics and strength for La 2 CuO 4 and YBa 2 Cu 3 O 7 are reviewed. A dominant feature of the coupling is a novel Madelung-like contribution which would be screened out in high density of states superconductors but survives in cuprates because of weak screening. Local density functional theory correctly predicts the instability of (La, Ba) 2 CuO 4 to both the low-temperature orthorhombic phase (below room temperature) and the lower-temperature tetragonal phase (below 50 K). (orig.)

  16. Microgravity Processing of Oxide Superconductors

    Science.gov (United States)

    Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus; McCallum, William; Peters, Palmer (Technical Monitor)

    2000-01-01

    The primary goal is to understand the microstructures which develop under the nonequilibrium solidification conditions achieved by melt processing in copper oxide superconductor systems. More specifically, to define the liquidus at the Y- 1:2:3 composition, the Nd-1:2:3 composition, and several intermediate partial substitution points between pure Y-1:2:3 and Nd-1:2:3. A secondary goal has been to understand resultant solidification morphologies and pathways under a variety of experimental conditions and to use this knowledge to better characterize solidification phenomena in these systems.

  17. Annealing experiments on and high-temperature behavior of the superconductor yttrium barium copper oxide (YBa2Cu3Ox)

    NARCIS (Netherlands)

    Brabers, V.A.M.; Jonge, de W.J.M.; Bosch, L.A.; Steen, van der C.; de Groote, A.M.W.; Verheyen, A.A.; Vennix, C.W.H.M.

    1988-01-01

    The high temperature behaviour (300–1100 K) of the superconductor YBa2Cu3Ox has been studied by annealing experiments, thermal dilatation, thermogravimetry and measurements of the electrical resistance and thermoelectric power. For the fast oxidation process of this compound, reaction enthalpies

  18. Syntactic intergrowth problems with BCSCO and fabrication difficulties therefrom. [Bismuth-Calcium-Strontium-Copper-Oxide superconductors

    Science.gov (United States)

    Morgan, P. E. D.; Ratto, J. J.; Housley, R. M.; Porter, J. R.

    1988-01-01

    EDXS performed on isolated particles of the Bi-Ca-Sr-Cu-O high-temperature ceramic superconductor has verified the presence of significant elemental exchange between the Ca and Sr, and, to a lesser extent, between Cu and Bi. Two primary preparations, identified as primarily 24.4 A and 30.6 A, respectively, are identified. The Cu:Bi ratio in the 30.6 A material is approximately 1:1 for most particles, although only a few particles of the nominally 24.4 A material have the expected 1:2 ratio. No unequivocal assignment of atomic composition to the predominantly 24.4 A or 30.6 A appears possible, if major syntactic problems are present.

  19. Quantum Spin Models for Copper Oxide Chains in High-T{sub c} Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Haugerud, H.

    1996-12-31

    This doctoral thesis presents some of the most important features of high temperature superconductors, emphasizing the properties of YBa{sub 2}Cu{sub 3}O{sub 6+x} (YBCO). The family of Hubbard-like models is considered and a simplified version of the Emery model derived. This model is applied to fermions on a cyclic chain and solved analytically in the strong correlation limit. For realistic model parameter values the effects of an external magnetic field is investigated by numerical diagonalization. Applying the Emery model to finite cyclic Cu-O chains it is shown that the behaviour of the chains is typical for a 1D Fermi-liquid. The relatively small difference between the values of the local charge and the local magnetic moment indicates that the degree of correlation in this system is very high. The ground state of the Emery model is shown to be antiferromagnetic for half and quarter filling, resembling the ground state of the Heisenberg model. The role of the ensemble of Cu-O chain fragments of the oxygen deficient planes of YBCO is addressed. By applying the Emery model to short Cu-O chains and calculating the free energy of the chains, the parameters of an Ising like lattice gas model are estimated. Several thermodynamical quantities are calculated by applying Monte Carlo technique to the model. The charge transfer from the chains to the planes is shown to correspond to the measured values of T{sub c}. The phase diagram and the average chain length agree well with experiments. The model is also capable of explaining the behaviour of the REBCO series of superconductors, where RE are various rare earth ions. A framework for simultaneously visualizing and computing numerical quantities from lattice simulations is presented and illustrated. 195 refs., 69 figs., 4 tabs.

  20. Processing yttrium-barium-copper oxide superconductor zero gravity using a double float zone surface

    International Nuclear Information System (INIS)

    Pettit, D.R.; Peterson, D.E.; Kubat-Martin, K.A.; Petrovic, J.J.; Sheinberg, H.; Coulter, Y.; Day, D.E.

    1997-04-01

    The effects of processing YBa 2 Cu 3 O x (Y123) superconductor in the near-zero gravity (0g) environment provided by the NASA KC-135 airplane flying on parabolic trajectories were studied. A new sheet float zone furnace, designed for this study, enabled fast temperature ramps. Up to an 18-gram sample was processed with each parabola. Samples of Y123 were processed as bulk sheets, composites containing Ag and Pd, and films deposited on single crystal Si and MgO substrates. The 0g-processed samples were multi-phase yet retained a localized Y123 stoichiometry where a single ground-based (1g) oxygen anneal at temperatures of 800 C recovered nearly 100-volume percent superconducting Y123. The 1g processed control samples remained multi-phase after the same ground-based anneal with less than 45 volume percent as superconducting Y123. The superconducting transition temperature was 91 K for both 0g and 1g processed samples. A 29 wt.% Ag/Y123 composite had a transition temperature of 93 K. Melt texturing of bulk Y123 in 0g produced aligned grains about a factor of three larger than in analogous 1g samples. Transport critical current densities were at or below 18 A/cm 2 , due to the formation of cracks caused by the rapid heating rates required by the short time at 0g. Y123 deposited on single crystal Si and MgO in 0g was 30 vol.% y123 without an anneal. A weak superconducting transition at 80 K on MgO showed that substrate interactions occurred

  1. Ferromagnet / superconductor oxide superlattices

    Science.gov (United States)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  2. Application of ferrous-chromate and idometric titration for the determination of copper oxidation states in the superconductor YBa2Cu3Oy

    International Nuclear Information System (INIS)

    Oku, Masaoki; Kimura, Jin; Hosoya, Minoru; Takada, Kunio; Hirokawa, Kichinosuke

    1988-01-01

    Oxidation-reduction titration methods, Fe 2+ -Cr 2 O 7 2- and I - -S 2 O 3 2- , were applied to the determination of the oxidation state of copper in the superconductor YBa 2 Cu 3 O y and related compounds. The former method presented problems in the sample dissolution and titration steps. The dissolution of the sample in low concentrations of Fe 2+ -phosphoric acid and Fe 2+ -perchloric acid takes place in two steps, the oxidation of Fe 2+ to Fe 3+ and the liberation of oxygen gas, when the liberation results in low analytical values for Cu 3+ . In addition the coexistence of cuprous ion and acids induces the oxidation of ferrous ion by dissolved oxygen and air. The problems were resolved by dissolution in 0.1 mol/l Fe 2+ -phosphoric acid and titration in an argon atmosphere. The latter method gave good results by controlling the amounts of potassium chloride, the concentration of acetic acid, and by elimination of the dissolved oxygen in acetic acid solution. The results of the two titration methods coincided with each other. (orig.)

  3. Submillimeter wave ESR of copper-oxides

    International Nuclear Information System (INIS)

    Ohta, Hitoshi; Motokawa, Mitsuhiro

    1993-01-01

    Since the discovery of high T c superconductors the magnetism of various copper-oxides has attracted much interest. Especially the magnetism of strong spin correlation systems in various CuO 4 networks is of great interest because it is well known that the superconductivity is occurring in the CuO 2 plane of the high T c superconductors. Here the authors will show some of their work done on copper-oxides by submillimeter wave ESR. The submillimeter wave ESR can provide the frequency region of 90 ∼ 3,100 GHz and the pulse magnetic field up to 30T

  4. Inter- and intragranular properties of bismuth calcium strontium copper oxide (Bi2CaSr2Cu2Oy) superconductors

    NARCIS (Netherlands)

    Emmen, J.H.P.M.; Brabers, V.A.M.; Steen, van der C.; Dalderop, J.H.J.; Lenczowski, S.K.J.; Jonge, de W.J.M.

    1989-01-01

    The granular behaviour of sintered bulk Bi2CaSr2Cu2Oy superconductor is investigated by resistivity and ¿ac measurements. The observed temperature and magnetic field dependence is discussed within the framework of a granular model. The frequency dependence of the intragranular losses leads to a flux

  5. Property and microstructural nonuniformity in the yttrium-barium-copper-oxide superconductor determined from electrical, magnetic, and ultrasonic measurements

    International Nuclear Information System (INIS)

    Roth, D.J.

    1991-01-01

    This dissertation is presented in two major chapters. In the first chapter, the use of ultrasonic velocity for estimating pore fraction in YBCO and other polycrystalline materials is reviewed, modeled, and statistically analyzed. This chapter provides the basis for using ultrasonic velocity to interrogate microstructure. In the second chapter, (1) the effect of pore fraction (0.10-0.25) on superconductor properties of YBCO samples is characterized, (2) spatial (within-sample) variations in microstructure and superconductor properties are investigated and (3) the effect of oxygen content on elastic behavior is examined. Experimental methods used included a.c. susceptibility, electrical, and ultrasonic-velocity measurements. Superconductor properties measured included transition temperature, magnetic transition width, transport and magnetic critical current density, magnetic shielding, a.c. loss, and sharpness of the voltage-current characteristic. Superconductor properties including within-sample uniformity were generally poorest for samples containing the lowest (0.10) pore fraction. Ultrasonic velocity was linearly related to pore fraction thereby allowing sample classification. Changes in superconducting behavior were observed consistent with changes in oxygen content

  6. Correlations between frequency of infra-red active vibrational modes and copper-oxygen distance in copper oxides, application to superconductors

    International Nuclear Information System (INIS)

    Ganguly, P.; Infante, C.; Siddiqi, S.A.; Sreedhar, K.

    1990-05-01

    The infra-red spectra of a large number of ternary Cu(II) oxides with at least a quasi square-planar coordination of oxygen around the copper ions have been studied. The frequency of the bands with the highest frequency, υ max , is found to correlate extremely well with the shortest Cu-O distance. υ max increases at an impressive rate of ∼ 20 cm -1 per .01 A when the Cu-O distance becomes less than 1.97 A, which is the Cu 2+ -O 2- distance in square-planar CuO 4 complexes as obtained from empirical ionic radii considerations. The marked sensitivity may be used as a ''titration'' procedure not only to assign bands but also to obtain diagnostic information about local coordination in compounds derived, for example, from the YBa 2 Cu 3 O 7-d structure such as LaCaBaCu 3 O 7-d . The only example where this correlation fails is in the two-layer non-superconducting oxides derived from La 2 (Ca,Sr)Cu 2 O 6 . the significance of this result is discussed. The marked dependence of frequency on the bond-distance is qualitatively examined in terms of an increased electron-phonon coupling to account for the observed tendency of the superconducting transition temperature to go through a maximum as the average basal plane Cu-O distance is decreased. (author). 52 refs, 6 figs

  7. Ceramic superconductors II

    International Nuclear Information System (INIS)

    Yan, M.F.

    1988-01-01

    This volume compiles papers on ceramic superconductors. Topics include: structural patterns in High-Tc superconductors, phase equilibria of barium oxide superconductors, localized electrons in tetragonal YBa/sub 2/Cu/sub 3/O/sub 7-δ/, lattice and defect structure and properties of rare earth/alkaline earth-copper-oxide superconductors, alternate candidates for High-Tc superconductors, perovskite-structure superconductors; superconductive thin film fabrication, and superconductor/polymer composites

  8. Strain effects in oxide superconductors

    International Nuclear Information System (INIS)

    Wada, H.; Kuroda, T.; Sekine, H.; Yuyama, M.; Itoh, K.

    1991-01-01

    Strain sensitivities of superconducting properties are critical to high magnetic field applications of superconductors, since critical temperature, T c , upper critical field, H c2 , and critical current (density), I c (J c ), are all degraded under strains. Oxide superconductors so far known are all very fragile, thus requiring to be fabricated in the form of composite. In the case of practical metallic superconductors, such as Nb 3 Sn and V 3 Ga, the so-called bronze method has been developed where these superconducting intermetallics are enveloped in a ductile metallic sheath. Recently, a fabrication method similar to the bronze method has been developed for the Bi 2 Sr 2 Ca 2 Cu 3 O x superconductors using Ag tubes as sheath. In the present study mono- and multicore BiPbSrCaCuO tape conductors were prepared by means of this Ag-sheath composite method, and examined in terms of strain sensitivity by measuring their T c and I c (J c ) under bending or tensile strains. (orig.)

  9. Muon-spin rotation (. mu. SR) study of the temperature dependence of the London penetration depth in copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Keller, H.; Kuendig, W.; Savic, I.M.; Simmler, H.; Staeuble-Puempin, B.; Warden, M.; Zech, D.; Zimmermann, P. (Physik-Inst., Univ. Zurich (Germany)); Kaldis, E.; Karpinski, J.; Rusiecki, S. (Lab. fuer Festkoerperphysik, ETH Zurich (Switzerland)); Brewer, J.H.; Riseman, T.M.; Schneider, J.W. (TRIUMF and Dept. of Physics, Univ. of British Columbia, Vancouver (Canada)); Maeno, Y.; Rossel, C. (IBM Research Div., Zurich Research Lab., Rueschlikon (Switzerland))

    1991-12-01

    A {mu}SR study of the temperature dependence of the London penetration depth {lambda} in sintered samples of YBa{sub 2}Cu{sub 3}O{sub x} (with various oxygen contents x), YBa{sub 2}Cu{sub 4}O{sub 8} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} is presented. It is found that the temperature behavior of {lambda} of all these cuprate superconductors is consistent with conventional s-wave pairing. However, there are significant differences concerning the exact temperature dependence of {lambda} in these materials. In YBa{sub 2}Cu{sub 3}O{sub x} with high x, the behavior of {lambda}(T) is well described by the two-fluid model (strong coupling), whereas {lambda}(T) in YBa{sub 2}Cu{sub 3}O{sub x} with low x, YBa{sub 2}Cu{sub 4}O{sub 8} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} is in better agreement with weak-coupling BCS theory. Possible reasons for the different temperature behavior of {lambda} in these materials are discussed. (orig.).

  10. Highly oxidized superconductors

    Science.gov (United States)

    Morris, Donald E.

    1994-01-01

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.

  11. Preparation of a calcium-substituted copper-rich yttrium barium copper oxide superconductor from a spray-dried nitrate precursor

    International Nuclear Information System (INIS)

    Gyurov, G.; Khristova, I.; Peshev, P.; Abrashev, M.V.

    1993-01-01

    A calcium-substituted YBa 2 Cu 4 O 8 (1-2-4) high-temperature superconductor is synthesized from a precursor obtained by spray-drying of a nitrate solution containing the corresponding metals in a stoichiometric ratio. The synthesis takes place during one-stage heat-treatment of the precursor at 800 C in an oxygen flow under a pressure of 1 atm within a relatively short period of time, additives as well as intermediate grinding and pressing of the products being not needed. Measurements of the a.c. susceptibility have revealed a very sharp superconducting transition which is comparable with that of samples prepared under a high pressure. The transition in Ca-substituted YBa 2 Cu 4 O 8 occurs at a temperature by about 8 K higher than T c of the Ca-free phase. Raman spectra suggest that during the substitution calcium does not occupy barium positions in the YBa 2 Cu 4 O 8 lattice

  12. Structure, stoichiometry and spectroscopy of oxide superconductors

    Science.gov (United States)

    Rao, C. N. R.

    In the new oxide superconductors, structure and oxygen stoichiometry play the most crucial role. Thus, all the high-temperature oxide superconductors are orthorhombic perovskites with low-dimensional features. Oxygen stoichiometry in YBa2Cu3O7-δ has an important bearing on the structure as well as superconductivity. This is equally true in the La3-xBa3+xCu 6O14+δ system of which only the 123 oxide (x = 1) with the orthorhombic structure shows high Tc. Orthorhombicity though not essential, is generally found ; it is necessary for the formation of twins. The nature of oxygen and copper in the cuprates has been examined by electron spectroscopy. Copper in these cuprates is only in 1 + and 2 + states. It seems likely that oxygen holes are responsible for superconductivity of the cuprates as well as Ba(Bi, Pb)O3. High Tc superconductivity is also found in oxides of the Bi-(Ca, Sr)-Cu-O and related oxides possessing Cu-O sheets. Dans les nouveaux oxydes supraconducteurs, la structure et la stoechiométrie de l'oxygène jouent un rôle absolument crucial. Ainsi, tous les oxydes supraconducteurs à haute température critique sont des pérovskites orthorhombiques possédant des propriétés de basse dimensionnalité. La stoechiométrie de l'oxygène dans YBa2Cu3O7- δ a une influence importante tant sur la structure que sur la supraconductibilité. Ceci est également valable pour les composés du type La3 -xBa3 + xCu 6O14 + δ parmi lesquels seul l'oxyde 123 (x = 1) à structure orthorhombique présente un grand T. Bien que ce ne soit pas essentiel, cette orthorhombicité est fréquente ; elle est nécessaire à la formation de macles. La nature de l'oxygène et du cuivre a été observée par spectroscopie électronique... Dans ces cuprates, le cuivre est dans les seuls états de valence + 1 et + 2. Vraisemblablement, les trous logés sur l'oxygène sont responsables de la supraconductibilité des cuprates comme de Ba(Bi, Pb)O3. La supraconductibilité existe aussi

  13. Dependence of stability of metastable superconductors on copper fraction

    International Nuclear Information System (INIS)

    Elrod, S.A.; Lue, J.W.; Miller, J.R.; Dresner, L.

    1980-12-01

    The stability of composite superconductors operating in the metastable regime depends upon such factors as matrix resistivity, cooled surface dimensions, fraction of critical current, and volume fraction of stabilizer. By assuming constant thermophysical properties, we developed analytic expressions for the energy and voltage of the minimum propagating zone (MPZ). With other factors held constant, these expressions have been used to predict composite superconductor stability as a function of copper fraction: lower copper fractions lead to higher MPZ energies. MPZ voltages have been measured for three NbTi/Cu composites having different copper fractions and different critical current densities for several magnetic fields and transport currents. Experimental MPZ voltages have been used to calculate an effective heat transfer coefficient, which is subsequently used to calculate the MPZ energy. The experimental MPZ energies support the theoretical expectation that lower copper fractions lead to higher stability in the metastable regime

  14. Processing of Mixed Oxide Superconductors

    Science.gov (United States)

    1990-07-01

    rapid changes world wide a major research centre on high Tc superconductors was awarded to Cambridge which involved moving the work and people to a...reports and paper is in the appendices. Separation Ceramic superconductors tend to be mixtures of phases, especially when first discovered. It would...properties of the superconducting state will in principle allow superconducting material to be levitated from the non superconductor and several designs

  15. Microgravity Processing of Oxide Superconductors

    Science.gov (United States)

    Olive, James R.; Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus

    1999-01-01

    Considerable effort has been concentrated on the synthesis and characterization of high T(sub c) oxide superconducting materials. The YBaCuO system has received the most intense study, as this material has shown promise for the application of both thin film and bulk materials. There are many problems with the application of bulk materials- weak links, poor connectivity, small coherence length, oxygen content and control, environmental reactivity, phase stability, incongruent melting behavior, grain boundary contamination, brittle mechanical behavior, and flux creep. The extent to which these problems are intrinsic or associated with processing is the subject of controversy. This study seeks to understand solidification processing of these materials, and to use this knowledge for alternative processing strategies, which, at the very least, will improve the understanding of bulk material properties and deficiencies. In general, the phase diagram studies of the YBaCuO system have concentrated on solid state reactions and on the Y2BaCuO(x) + liquid yields YBa2Cu3O(7-delta) peritectic reaction. Little information is available on the complete melting relations, undercooling, and solidification behavior of these materials. In addition, rare earth substitutions such as Nd and Gd affect the liquidus and phase relations. These materials have promising applications, but lack of information on the high temperature phase relations has hampered research. In general, the understanding of undercooling and solidification of high temperature oxide systems lags behind the science of these phenomena in metallic systems. Therefore, this research investigates the fundamental melting relations, undercooling, and solidification behavior of oxide superconductors with an emphasis on improving ground based synthesis of these materials.

  16. Rf and microwave measurements at Los Alamos on oxide superconductors

    International Nuclear Information System (INIS)

    Migliori, A.; Reagor, D.W.; Peterson, D.E.; Willis, J.O.; Fisk, Z.; Smith, R.C.

    1988-01-01

    Los Alamos National Laboratory has made a substantial commitment to develop oxide superconductors for RF and microwave cavity applications. The program involves materials development, complete microstructure characterization, static thermal and electrical characterization, RF loss measurements and microwave complex-conductivity measurements. Of the high-frequency techniques, three are nearing completion and one has produced preliminary results. Those still under development include a 3 GHz Nb cavity capable of 4 K operation, a LN 2 -cooled 2.25 GHz copper cavity having a Q of 2 x 10 4 , capable of operation from 15 K to 300 K, and a picosecond-laser/photo-diode driven microstripline technique which will provide complex conductivity information from 20 GHz to 200 GHz and from 10 K to 300 K. Because all of the techniques employed sense the impedance of the samples, their sensitivity to intrinsic properties such as conductivity or surface resistance is dependent on sample geometry. However, for easily handled samples, the Nb cavity can detect losses at least four order of magnitude lower than copper, the copper cavity can detect losses two orders of magnitude lower than copper and the microstripline can detect losses comparable to copper. The technique which has produced results is a coaxial microwave bridge. In this work they report results of measurements on sintered samples using the bridge; future work will concentrate on films. 2 references, 1 figure

  17. High-Tc copper oxide superconductors and related novel materials dedicated to prof K. A. Müller on the occasion of his 90th birthday

    CERN Document Server

    Keller, Hugo; Bianconi, Antonio

    2017-01-01

    Authored by many of the world's leading experts on high-Tc superconductivity, this volume presents a panorama of ongoing research in the field, as well as insights into related multifunctional materials. The contributions cover many different and complementary aspects of the physics and materials challenges, with an emphasis on superconducting materials that have emerged since the discovery of the cuprate superconductors, for example pnictides, MgB2, H2S and other hydrides. Special attention is also paid to interface superconductivity. In addition to superconductors, the volume also addresses materials related to polar and multifunctional ground states, another class of materials that owes its discovery to Prof. Müller's ground-breaking research on SrTiO3.

  18. Composite superconductors with copper-aluminum stabilizing matrix

    International Nuclear Information System (INIS)

    Keilin, V.E.; Anashkin, O.P.; Krivikh, A.V.; Kiriya, I.V.; Kovalev, I.A.; Dolgosheev, P.I.; Rychagov, A.V.; Sytnikov, V.E.

    1992-01-01

    A new type of composite superconductors has been developed. They consist of one or several (cabled) multifilamentary wires with low Cu-to-Sc ratio which are embedded and soldered into grooves made in matrix of rectangular cross-section. The latter consists of aluminum core metallurgically plated with a thin copper sheath. Such conductors combine the advantages of both aluminum and copper as stabilizing materials. They have low density, exhibit almost not magnetoresistance, are relatively cheap and can be produced in very long pieces. Copper plating offers the possibility of soft soldering thus ensuring good electrical and thermal contact between superconducting wires and stabilizing matrix, and helping to join pieces to each other. the properties of two Nb-Ti conductors (3.5 x 2 mm 2 and 7x4 mm 2 ) are described in more detail. The first is used in SC coils for whole-body magnetoresonance tomography, and the second will be used in a open-quotes thinclose quotes coil for charged particles detector. The influence of aluminum purity on SC magnet behavior is also briefly discussed

  19. Numerical simulation of CICC design based on optimization of ratio of copper to superconductor

    International Nuclear Information System (INIS)

    Jiang Huawei; Li Yuan; Yan Shuailing

    2007-01-01

    For cable-in-conduit conductor (CICC) structure design, a numeric simulation is proposed for conductor configuration based on optimization of ratio of copper to superconductor. The simulation outcome is in agreement with engineering design one. (authors)

  20. on THICKNESS OF COPPER (|) OXIDE

    African Journals Online (AJOL)

    2006-12-20

    Dec 20, 2006 ... known materials to be used as semiconductor devices. The oxide is. Observed to be an attractive starting material for the production of solar cells for low cost terrestrial conversion of solar energy to electricity. Copper (I) oxide is one Of the earliest known photovoltaic materials and the first in which the ...

  1. A phenomenological approach to high Tc oxide superconductors

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Das, M.P.; Saif, A.G.

    1987-06-01

    Oxide superconductors are described in terms of macroscopic wave functions Ψ and Φ corresponding, respectively, to electron pairs of the superconducting and insulating states. In terms of the total free energy of the system, including the effect of interaction, we discuss the electrodynamic responses of the oxide superconductors in relation with the experiments to data. (author). 10 refs

  2. On the electronegativity of the high-Tc oxide superconductor

    International Nuclear Information System (INIS)

    Zhang Liyuan.

    1991-08-01

    We employ a very useful quantity, the electronegativity, to classify the superconductor. The value of the group average electronegativity to separate superconductor into two categories is 2. Each category has unique chemical bond features. The high-T c oxide superconductor belongs to the second category with group average electronegativity being larger than 2. Their unusual bond nature also gives new insight into some essential factors beneficial to enhance superconductivity. (author). 9 refs, 2 tabs

  3. Soldering of copper-clad niobium--titanium superconductor composite

    International Nuclear Information System (INIS)

    Moorhead, A.J.; Woodhouse, J.J.; Easton, D.S.

    1977-04-01

    When superconductivity is applied to various electrical devices, the joining of the superconducting material and the performance of the joints are generally crucial to the successful operation of the system. Although many techniques are being considered for joining composite superconductors, soldering is the most common. We determined the wetting and flow behavior of various solder and flux combinations on a copper-clad Nb-Ti composite, developed equipment and techniques for soldering and inspection of lap joints, and determined the shear strength of joints at temperatures down to -269 0 C (4 0 K). We studied 15 solders and 17 commercial and experimental fluxes in the wettability and flow tests. A resistance unit was built for soldering test specimens. A series of samples soldered with 80 Pb-20 Sn, 83 Pb-15 Sn-2 Sb, 97.5 Pb-1.5 Ag-1 Sn, 80 In-15 Pb-5 Ag, or 25 In-37.5 Pb-37.5 Sn (wt percent) was inspected by three nondestructive techniques. Through-transmission ultrasound gave the best correlation with nonbond areas revealed in peel tests. Single-lap shear specimens soldered with 97.5 Pb-1.5 Ag-1 Sn had the highest strength (10.44 ksi, 72 MPa) and total elongation (0.074 in., 1.88 mm) at -269 0 C (4 0 K) of four solders tested

  4. Powder processing of high Tc oxide superconductors and their properties

    International Nuclear Information System (INIS)

    Vajpei, A.C.; Upadhyaya, G.S.

    1992-01-01

    Powder processing of ceramics is an established technology and in the area of high T c superconductors, its importance is felt even more significantly. The present monograph is an attempt in this direction to explore the perspectives and practice of powder processing routes towards control and optimization of the microstructure and pertinent properties of high T c oxide superconductors. The monograph consists of 6 chapters. After a very brief introduction (Chapter 1), Chapter 2 describes various classes of high T c oxide superconductors and their phase equilibria. Chapter 3 highlights the preparation of oxide superconductor powders through various routes and details their subtle distinctions. Chapter 4 briefly covers characterisation of the oxide superconductors, laying emphasis on the process-analysis and microstructure. Chapter 5 describes in detail various fabrication techniques for bulk superconductors through the powder routes. The last Chapter (Chapter 6) describing properties of bulk oxide superconductors, discusses the role of subtituents, compositional variations and processing methods on such properties. References are given at the end of each chapter. (orig.)

  5. Copper based superconductors by the combination of blocking and mediating layers

    International Nuclear Information System (INIS)

    Shimizu, K.; Nobumasa, H.; Kawai, T.

    1992-01-01

    Copper based high temperature superconductors are composed of Cu-O 2 sheets in combination with thin atomic mediating layers and thick blocking layers which mediate and intercept interactions between Cu-O 2 sheets, respectively. New possible superconductors can be designed by the stacking of the Cu-O 2 sheets along with the periodic insertion of the mediating layers and different kinds of blocking layers. (orig.)

  6. Electrochemical treatment of an oxide material, application to superconductors, and obtained superconductors

    International Nuclear Information System (INIS)

    Grenier, J.C.; Pouchard, M.; Wattiaux, A.

    1991-01-01

    The present invention describes the electrochemical treatment of a superconductor oxide so as to modify its stoichiometry. These materials comprise in their anionic lattice oxygenated and hydrogenated species. These treated materials are prepared by an electrochemical process in which the oxide is an electrode in a liquid electrolysis. 3 refs., 3 figs

  7. Spectrographic determination of impurities in copper and copper oxide

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  8. Persistent-current switch for pancake coils of rare earth-barium-copper-oxide high-temperature superconductor: Design and test results of a double-pancake coil operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K)

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Timing; Michael, Philip C.; Bascuñán, Juan; Iwasa, Yukikazu, E-mail: iwasa@jokaku.mit.edu [Francis Bitter Magnet Laboratory, Plasma Science and Fusion Center, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139 (United States); Voccio, John [Wentworth Institute of Technology, 550 Huntington Ave, Boston, Massachusetts 02115 (United States); Hahn, Seungyong [National High Magnetic Field Laboratory, Florida State University, Tallahassee, 2031 Paul Dirac Drive, Florida 32310 (United States)

    2016-08-22

    We present design and test results of a superconducting persistent current switch (PCS) for pancake coils of rare-earth-barium-copper-oxide, REBCO, high-temperature superconductor (HTS). Here, a REBCO double-pancake (DP) coil, 152-mm ID, 168-mm OD, 12-mm high, was wound with a no-insulation technique. We converted a ∼10-cm long section in the outermost layer of each pancake to a PCS. The DP coil was operated in liquid nitrogen (77–65 K) and in solid nitrogen (60–57 K). Over the operating temperature ranges of this experiment, the normal-state PCS enabled the DP coil to be energized; thereupon, the PCS resumed the superconducting state and the DP coil field decayed with a time constant of 100 h, which would have been nearly infinite, i.e., persistent-mode operation, were the joint across the coil terminals superconducting.

  9. Method of depositing thin films of high temperature Bi-Sr-Ca-Cu-O-based ceramic oxide superconductors

    International Nuclear Information System (INIS)

    Budd, K.D.

    1991-01-01

    This patent describes a method. It comprises preparing a liquid precursor of a Bi-Sr-Ca-Cu-O- based ceramic oxide superconductor phase, wherein the liquid precursor comprises an alkoxyalkanol, copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate, wherein the liquid precursor has a cation ratio sufficient to form the desired stoichiometry in the ceramic oxide superconductor phase when the liquid precursor is heated to a temperature and for a time sufficient to provide the desired ceramic oxide superconductor phase, and wherein the copper acrylate, strontium acrylate, bismuth nitrate, and calcium nitrate are mutually soluble in the alkoxyalkanol; applying the liquid precursor to a substrate, wherein the substrate is one of an oxide ceramic, a metal selected from the group consisting of Ag and Ni, and Si; and heating the substrate in an oxygen-containing atmosphere with the liquid precursor applied thereon to a temperature and for a time sufficient to form a thin film comprising at least one Bi-Sr- Ca-Cu-O-based high temperature ceramic oxide superconductor phase

  10. Redox mechanisms and superconductivity in layered copper oxides

    International Nuclear Information System (INIS)

    Raveau, B.; Michel, C.; Hervieu, M.; Provost, J.

    1992-01-01

    Redox reactions in high T c superconductors cuprates are complex and play an important role in superconductivity: oxygen non-stoichiometry is influencing the critical temperature, and rock salt layers interact with copper layers. 25 refs., 7 figs

  11. Interactions between iron oxides and copper oxides under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    McGarvey, G B; Owen, D G

    1995-08-01

    Under hydrothermal conditions, magnetite and hematite have been shown to undergo interconversion reactions, the extent of which is controlled in part by the presence of copper oxides. In oxygenated water, the degree to which magnetite was oxidized to hematite was found to be dependent on the presence of CuO or Cu{sub 2}O. When these materials were absent, the oxidation of magnetite was limited by the dissolved oxygen in the aqueous system. Participation of the copper oxides in the oxidation process was confirmed by more complete conversion of magnetite was also influenced by the presence of the copper oxides. In addition to driving the reduction to completion, the presence of the copper oxides also exerted a strong influence over the morphology of the magnetite that formed. (author). 13 refs., 1 tab., 3 figs.

  12. Candidate muon-probe sites in oxide superconductors

    International Nuclear Information System (INIS)

    Dawson, W.K.; Tibbs, K.; Weathersby, S.P.; Boekema, C.; Chan, K.B.

    1988-01-01

    Two independent search methods (potential-energy and magnetic-dipole-field calculations) are used to determine muon stop sites in the RBa 2 Cu 3 O/sub x/ (x≅7) superconductors. Possible sites, located about 1 A away from oxygen ions, have been found and are prime candidates as muon-probe locations. The results are discussed in light of existing muon-spin-relaxation (μSR) data of these exciting oxides, and compared to H- and positron-oxide superconductor studies. Further work is in progress to establish in detail the muon-probe sites; this knowledge is an essential ingredient for a correct interpretation of μSR data of high-temperature superconducting oxides

  13. Synthesis and characterization of Eichhornia-mediated copper oxide ...

    Indian Academy of Sciences (India)

    In this paper, we report the biosynthesis and characterization of copper oxide nanoparticles ... copper oxide nanoparticles by simple, cost-effective and ecofriendly method as an alternative to other available ... Currently, zinc oxide, gold, silver.

  14. Dense high temperature ceramic oxide superconductors

    Science.gov (United States)

    Landingham, Richard L.

    1993-01-01

    Dense superconducting ceramic oxide articles of manufacture and methods for producing these articles are described. Generally these articles are produced by first processing these superconducting oxides by ceramic processing techniques to optimize materials properties, followed by reestablishing the superconducting state in a desired portion of the ceramic oxide composite.

  15. Synthesis of highly phase pure BSCCO superconductors

    Science.gov (United States)

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1995-11-21

    An article and method of manufacture (Bi, Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  16. Fault current limiter using bulk oxides superconductors

    International Nuclear Information System (INIS)

    Belmont, O.; Ferracci, P.; Porcar, L.; Barbut, J.M.; Tixador, P.; Noudem, J.G.; Bourgault, D.; Tournier, R.

    1998-01-01

    We study the limitation possibilities of bulk Bi high T c materials. For this we test these materials with AC or DC currents above their critical currents. We study particularly the evolution of the voltage with time or with current. The material, the value of the current and the time duration play important parts. For sintered Bi samples the voltage depends only on the current even for values much larger than the critical current. With textured samples the V(I) curves shows an hysteretic behaviour due to a warming up. The textured materials are more interesting than sintered ones in terms of required volume for the current limitation. In both cases the superconductors are in a dissipative state but not in the normal state. This state is nevertheless reached if the dissipated energy inside the sample is sufficient. We have tried to apply a magnetic field on the samples in order to trigger a more effective limitation. The voltage increases but with a limited effect for currents much higher (3-4 times) than the critical zero field current. We think that the dissipative state is due mainly to the grain boundaries which become resistive above the critical current. (orig.)

  17. Superconductors

    International Nuclear Information System (INIS)

    1988-01-01

    The chapter 6.3 p. 143 to 153 of this book deals with superconductors 19 items are briefly presented with address of manufacturer or laboratory to contact, mainly in the USA or Japan. In particular magnets, films, high temperature superconductors and various applications are presented [fr

  18. Structural phase transitions and superconductivity in lanthanum copper oxides

    International Nuclear Information System (INIS)

    Crawford, M.K.; Harlow, R.L.; McCarron, E.M.

    1996-01-01

    Despite the enormous effort expended over the past ten years to determine the mechanism underlying high temperature superconductivity in cuprates there is still no consensus on the physical origin of this fascinating phenomenon. This is a consequence of a number of factors, among which are the intrinsic difficulties in understanding the strong electron correlations in the copper oxides, determining the roles played by antiferromagnetic interactions and low dimensionality, analyzing the complex phonon dispersion relationships, and characterizing the phase diagrams which are functions of the physical parameters of temperature and pressure, as well as the chemical parameters of stoichiometry and hole concentration. In addition to all of these intrinsic difficulties, extrinsic materials issues such as sample quality and homogeneity present additional complications. Within the field of high temperature superconductivity there exists a subfield centered around the material originally reported to exhibit high temperature superconductivity by Bednorz and Mueller, Ba doped La 2 CuO 4 . This is structurally the simplest cuprate superconductor. The authors report on studies of phase differences observed between such base superconductors doped with Ba or Sr. What these studies have revealed is a fascinating interplay of structural, magnetic and superconducting properties which is unique in the field of high temperature superconductivity and is summarized in this paper

  19. Superconductor made by electrolyzed and oxidized water

    OpenAIRE

    Liu, Chia-Jyi; Wu, Tsung-Hsien; Hsu, Lin-Li; Wang, Jung-Sheng; Chen, Shu-Yo; Chang, Wei Jen; Lin, Jiunn-Yuan

    2006-01-01

    By deintercalation of Na+ followed by inserting bilayers of water molecules into the host lattice, the layered cobalt oxide of gamma-Na0.7CoO2 undergoes a topotactic transformation to a layered cobalt oxyhydrate of Na0.35(H2O)1.3CoO2-delta with the c-axis expanded from c = 10.9 anstrom to c = 19.6 anstrom. In this paper, we demonstrate that the superconducting phase of c = 19.6 anstrom can be directly obtained by simply immersing gamma-Na0.7CoO2 powders in electrolyzed/oxidized (EO) water, wh...

  20. Briefing on superconductor developments

    International Nuclear Information System (INIS)

    Larbalestier, D.

    1987-01-01

    In this paper, the author covers the technology of the new oxide superconductors and how they might relate to the existing superconductors. He discusses old-fashioned superconductors; the material science of superconductors; the new oxide superconductors; and the future of oxide superconductors. 13 figures, 1 table

  1. Superconductors

    CERN Document Server

    Narlikar, A V

    2014-01-01

    Superconductors is neither about basic aspects of superconductivity nor about its applications, but its mainstay is superconducting materials. Unusual and unconventional features of a large variety of novel superconductors are presented and their technological potential as practical superconductors assessed. The book begins with an introduction to basic aspects of superconductivity. The presentation is readily accessible to readers from a diverse range of scientific and technical disciplines, such as metallurgy, materials science, materials engineering, electronic and device engineering, and chemistry. The derivation of mathematical formulas and equations has been kept to a minimum and, wherever necessary, short appendices with essential mathematics have been added at the end of the text. The book is not meant to serve as an encyclopaedia, describing each and every superconductor that exists, but focuses on important milestones in their exciting development.

  2. c-Plane oriented Bi-oxide superconductor

    International Nuclear Information System (INIS)

    Kugimiya, K.; Kawashima, S.; Inoue, O.; Adachi, S.

    1988-01-01

    A newly found Bi-Sr-Ca-Cu-O superconductor with T c =80 K was synthesized in an almost pure phase. It is a laminar oxide with an Aurivillius phase and easily breaks into thin flakes. By slip-casting the flakes under pressure or by hot-pressing sintered bodies of isostatically formed green compacts, c-planes of the phase were highly oriented by more than 95%, mostly 98.5%. Sintered compacts generally contained materials with T c of 80 and 110 K as proved by the Meissner effect. 11 refs.; 6 figs

  3. A simple model to estimate the optimal doping of p - Type oxide superconductors

    Directory of Open Access Journals (Sweden)

    Adir Moysés Luiz

    2008-12-01

    Full Text Available Oxygen doping of superconductors is discussed. Doping high-Tc superconductors with oxygen seems to be more efficient than other doping procedures. Using the assumption of double valence fluctuations, we present a simple model to estimate the optimal doping of p-type oxide superconductors. The experimental values of oxygen content for optimal doping of the most important p-type oxide superconductors can be accounted for adequately using this simple model. We expect that our simple model will encourage further experimental and theoretical researches in superconducting materials.

  4. Epitaxial heterojunctions of oxide semiconductors and metals on high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor); Hunt, Brian D. (Inventor); Foote, Marc C. (Inventor)

    1994-01-01

    Epitaxial heterojunctions formed between high temperature superconductors and metallic or semiconducting oxide barrier layers are provided. Metallic perovskites such as LaTiO3, CaVO3, and SrVO3 are grown on electron-type high temperature superconductors such as Nd(1.85)Ce(0.15)CuO(4-x). Alternatively, transition metal bronzes of the form A(x)MO(3) are epitaxially grown on electron-type high temperature superconductors. Also, semiconducting oxides of perovskite-related crystal structures such as WO3 are grown on either hole-type or electron-type high temperature superconductors.

  5. The superconductor

    International Nuclear Information System (INIS)

    Lad, J.K.

    1979-01-01

    Techniques for fabrication of a few important superconductors like Nb, Ti and Nb 3 Sn are described. Copper or bronze or both can be used as a matrix in the superconductor. Current densities obtained for different ratios of copper to superconductor are studied. The specifications of multi-filament Nb 3 Sn superconductors are given. The relative merits of the two superconductors are discussed. The temperature range obtained is approximately 3 0 K and a magnetic field of 9T(tesla) can be achieved. (A.K.)

  6. Electronic structure of the high-temperature oxide superconductors

    International Nuclear Information System (INIS)

    Pickett, W.E.

    1989-01-01

    Since the discovery of superconductivity above 30 K by Bednorz and Mueller in the La copper oxide system, the critical temperature has been raised to 90 K in YBa 2 Cu 3 O 7 and to 110 and 125 K in Bi-based and Tl-based copper oxides, respectively. In the two years since this Nobel-prize-winning discovery, a large number of electronic structure calculations have been carried out as a first step in understanding the electronic properties of these materials. In this paper these calculations (mostly of the density-functional type) are gathered and reviewed, and their results are compared with the relevant experimental data. The picture that emerges is one in which the important electronic states are dominated by the copper d and oxygen p orbitals, with strong hybridization between them. Photon, electron, and positron spectroscopies provide important information about the electronic states, and comparison with electronic structure calculations indicates that, while many features can be interpreted in terms of existing calculations, self-energy corrections (''correlations'') are important for a more detailed understanding. The antiferromagnetism that occurs in some regions of the phase diagram poses a particularly challenging problem for any detailed theory. The study of structural stability, lattice dynamics, and electron-phonon coupling in the copper oxides is also discussed. Finally, a brief review is given of the attempts so far to identify interaction constants appropriate for a model Hamiltonian treatment of many-body interactions in these materials

  7. Condensation on Superhydrophobic Copper Oxide Nanostructures

    OpenAIRE

    Enright, Ryan; Miljkovic, Nenad; Dou, Nicholas; Nam, Youngsuk; Wang, Evelyn N.

    2013-01-01

    Condensation is an important process in both emerging and traditional power generation and water desalination technologies. Superhydrophobic nanostructures promise enhanced condensation heat transfer by reducing the characteristic size of departing droplets via a surface-tension-driven mechanism [1]. In this work, we investigated a scalable synthesis technique to produce oxide nanostructures on copper surfaces capable of sustaining superhydrophobic condensation and characterized the growth an...

  8. Copper Tellurium Oxides - A Playground for Magnetism.

    Energy Technology Data Exchange (ETDEWEB)

    Norman, M. R.

    2018-04-15

    A variety of copper tellurium oxide minerals are known, and many of them exhibit either unusual forms of magnetism, or potentially novel spin liquid behavior. Here, I review a number of the more interesting materials with a focus on their crystalline symmetry and, if known, the nature of their magnetism. Many of these exist (so far) in mineral form only, and most have yet to have their magnetic properties studied. This means a largely unexplored space of materials awaits our exploration.

  9. Oxide glass to high temperature ceramic superconductors - a novel route

    International Nuclear Information System (INIS)

    Chaudhuri, B.K.; Som, K.K.

    1992-01-01

    Recently it has been discovered that many of transition metal oxide (TMO) glasses like Bi-Sr-Ca-Cu-O, Y-Ba-Cu-O, Bi-Pb-Sr-Ca-Cu-O etc. can be directly converted to the corresponding high temperature superconducting phases by properly annealing the respective glasses. In this review recent developements in this field are summarised. The structural, electrical, dielectrical, magnetic, optical, and other properties of these new type of (TMO) glass systems have been elucidated comparing them with the corresponding results of already known (TMO) glasses which do not become superconductors on annealing above their glass transition temperatures (T g ). The electrical properties of this novel glass system have been analysed with reference to the various existing theoretical models based on polaron hopping conduction mechanism. The electrical, magnetic, and other properties of the respective superconductors obtained from their corresponding glass phases by annealing above (T g ) and the possibility of drawing wires, ribbons etc. from these glass matrices and then converting them to their high T c superconducting phases have also been discussed. (author). 107 refs., 32 figs., 5 tabs

  10. Copper oxide--copper sulfate water-splitting cycle

    Energy Technology Data Exchange (ETDEWEB)

    Foh, S. E.; Schreiber, J. D.; Dafler, J. R.

    1978-08-01

    A hybrid copper oxide--copper sulfate thermochemical water-splitting cycle, IGT's H-5, has been demonstrated in the laboratory with recycled materials. The optimum configuration and operating conditions for the electrolytic hydrogen-producing step have not yet been defined. With cooperative funding (A.G.A./G.R.I./DOE) a conceptual flowsheet was developed for this cycle and a load-line efficiency of about 37% calculated. This figure is the result of a single iteration on the original base case flow sheet and compares well with the values calculated for other processes at this stage of development. An iterative optimization of process conditions would improve efficiency. The data required to perform an economic analysis are not yet available and the electrolysis step must be more fully defined. An attractive process efficiency, relatively few corrosive materials, and few gas-phase separations are attributes of Cycle H-5 that lead us to believe hydrogen costs (to be developed during future analyses) would be improved significantly over similar processes analyzed to date.

  11. Development of highly faceted reduced graphene oxide-coated copper oxide and copper nanoparticles on a copper foil surface

    Directory of Open Access Journals (Sweden)

    Rebeca Ortega-Amaya

    2016-07-01

    Full Text Available This work describes the formation of reduced graphene oxide-coated copper oxide and copper nanoparticles (rGO-Cu2ONPs, rGO-CuNPs on the surface of a copper foil supporting graphene oxide (GO at annealing temperatures of 200–1000 °C, under an Ar atmosphere. These hybrid nanostructures were developed from bare copper oxide nanoparticles which grew at an annealing temperature of 80 °C under nitrogen flux. The predominant phase as well as the particle size and shape strongly depend on the process temperature. Characterization with transmission electron microscopy and scanning electron microscopy indicates that Cu or Cu2O nanoparticles take rGO sheets from the rGO network to form core–shell Cu–rGO or Cu2O–rGO nanostructures. It is noted that such ones increase in size from 5 to 800 nm as the annealing temperature increases in the 200–1000 °C range. At 1000 °C, Cu nanoparticles develop a highly faceted morphology, displaying arm-like carbon nanorods that originate from different facets of the copper crystal structure.

  12. Superconductors

    International Nuclear Information System (INIS)

    Ekin, J.W.

    1983-01-01

    This chapter attempts to provide an introductory guide to interpreting handbook data on practical, high-current, superconducting materials, principally for magnet applications. An overview is given of the properties and operational limits of superconductive materials, as well as techniques used to fabricate practical superconducting wires. Topics considered include critical temperature, critical magnetic field, Type I and Type II superconductors, upper critical field values for practical materials, the temperature dependence of critical field and upper critical field, critical current, critical current density values for practical materials, the measurement of critical current, composite fabrication, stability, ac losses, eddy current loss, hysteretic loss, mechanical properties, critical current degradation, and superconducting materals selection and composite design

  13. Electronic structure of the copper oxides

    International Nuclear Information System (INIS)

    Pickett, W.E.; Cohen, R.E.; Singh, D.; Krakauer, H.

    1989-01-01

    Since the discovery of the high temperature superconducting copper oxides a great deal has been learned from experiment about their behavior. From the theoretical side, there continues to be developments both within the band picture and from the model Hamiltonian viewpoint emphasizing correlations. In this paper the authors discuss these complementary viewpoints in relation to some of the experimental data. Due to their background in the band structure area, they approach the discussion by evaluating which phenomena can be (or has been) accounted for by the standard band approach, and point out which properties appear to require more intricate treatments of correlation

  14. Oxidation-assisted graphene heteroepitaxy on copper foil.

    Science.gov (United States)

    Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François

    2016-11-10

    We propose an innovative, easy-to-implement approach to synthesize aligned large-area single-crystalline graphene flakes by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, favoring the growth of centimeter-sized copper (111) grains through the mechanism of abnormal grain growth. Second, the oxidation of the copper surface also drastically reduces the nucleation density of graphene. This oxidation/reduction sequence leads to the synthesis of aligned millimeter-sized monolayer graphene domains in epitaxial registry with copper (111). The as-grown graphene flakes are demonstrated to be both single-crystalline and of high quality.

  15. Oxidation-assisted graphene heteroepitaxy on copper foil

    OpenAIRE

    Reckinger, Nicolas; Tang, Xiaohui; Joucken, Frédéric; Lajaunie, Luc; Arenal, Raul; Dubois, Emmanuel; Hackens, Benoît; Henrard, Luc; Colomer, Jean-François

    2016-01-01

    We propose an innovative, easy-to-implement approach to synthesize large-area singlecrystalline graphene sheets by chemical vapor deposition on copper foil. This method doubly takes advantage of residual oxygen present in the gas phase. First, by slightly oxidizing the copper surface, we induce grain boundary pinning in copper and, in consequence, the freezing of the thermal recrystallization process. Subsequent reduction of copper under hydrogen suddenly unlocks the delayed reconstruction, f...

  16. Thermal contact conductance of metallic coated BiCaSrCuO superconductor/copper interfaces at cryogenic temperatures

    International Nuclear Information System (INIS)

    Ochterbeck, J.M.; Peterson, G.P.; Fletcher, L.S.

    1992-01-01

    The effects of vapor deposited coatings on the thermal contact conductance of cold pressed, normal state BiCaSrCuO superconductor/oxygen-free copper interfaces were experimentally investigated over a pressure range of 200 to 2,000 kPa. Using traditional vapor deposition processes, thin coatings of indium or lead were applied to the superconductor material to determine the effect on the heat transfer occurring at the interface. The test data indicate that the contact conductance can be enhanced using these coatings, with indium providing the greater enhancement. The experimental program revealed the need for a better understanding and control of the vapor deposition process when using soft metallic coatings. Also, the temperature-dependent microhardness of copper was experimentally determined and found to increase by approximately 35 percent as the temperature decreased from 300 to 85 K. An empirical model was developed to predict the effect of soft coatings on the thermal contact conductance of the superconductor/copper interfaces. When applied, the model agreed well with the data obtained in this investigation at low coating thicknesses but overpredicted the data as the thickness increased. In addition, the model agreed very well with data obtained in a previous investigation for silvercoated nickel substrates at all coating thicknesses

  17. Preparation and investigations of thermal properties of copper oxide ...

    Indian Academy of Sciences (India)

    The effects of copper oxide, aluminium oxide and graphite on the thermal and structural properties of the organic ... solar energy, and heat regulation of electronics, biomedical ..... We gratefully acknowledge the financial support provided by.

  18. High temperature oxidation of copper and copper aluminium alloys: Impact on furnace side wall cooling systems

    Science.gov (United States)

    Plascencia Barrera, Gabriel

    The high temperature oxidation behaviours of copper and dilute Cu-Al alloys were investigated. Experiments were carried out by: (i) Oxidizing under various oxygen potentials at different temperatures using a combined TG-DTA apparatus. (ii) Oxidizing in a muffle furnace (in air) at different temperatures for extended periods of time. The oxidation mechanisms were evaluated based upon the kinetic data obtained as well as by X-ray diffraction and microscopical (SEM and optical) analyses. It was found that oxidation of copper strongly depends on the temperature. Two distinct mechanisms were encountered. Between 300 and 500°C, the oxidation rate is controlled by lateral growth of the oxide on the metal surface, whereas between 600 and 1000°C oxidation is controlled by lattice diffusion of copper ions through the oxide scale. On the other hand, the partial pressure of oxygen only has a small effect on the oxidation of copper. Alloy oxidation is also dependent on the temperature. As temperature increases, more aluminium is required to protect copper from being oxidized. It was shown that if the amount of oxygen that dissolves in the alloy exceeds the solubility limit of oxygen in copper, an internal oxidation layer will develop, leading to the formation of a tarnishing scale. On the other hand if the oxygen content in the alloy lies below the solubility limit of oxygen in copper, no oxidation products will form since a tight protective alumina layer will form on the alloy surface. Surface phenomena may affect the oxidation behaviour of dilute Cu-Al alloys. Immersion tests in molten copper matte and copper converting slag, using laboratory scale cooling elements with various copper based materials, were conducted. Results from these tests showed that alloying copper with 3 to 4 wt% Al decreases the oxidation rate of pure copper by 4 orders of magnitude; however due to a significant drop in thermal conductivity, the ability to extract heat is compromised, leading to

  19. Role of copper oxides in contact killing of bacteria.

    Science.gov (United States)

    Hans, Michael; Erbe, Andreas; Mathews, Salima; Chen, Ying; Solioz, Marc; Mücklich, Frank

    2013-12-31

    The potential of metallic copper as an intrinsically antibacterial material is gaining increasing attention in the face of growing antibiotics resistance of bacteria. However, the mechanism of the so-called "contact killing" of bacteria by copper surfaces is poorly understood and requires further investigation. In particular, the influences of bacteria-metal interaction, media composition, and copper surface chemistry on contact killing are not fully understood. In this study, copper oxide formation on copper during standard antimicrobial testing was measured in situ by spectroscopic ellipsometry. In parallel, contact killing under these conditions was assessed with bacteria in phosphate buffered saline (PBS) or Tris-Cl. For comparison, defined Cu2O and CuO layers were thermally generated and characterized by grazing incidence X-ray diffraction. The antibacterial properties of these copper oxides were tested under the conditions used above. Finally, copper ion release was recorded for both buffer systems by inductively coupled plasma atomic absorption spectroscopy, and exposed copper samples were analyzed for topographical surface alterations. It was found that there was a fairly even growth of CuO under wet plating conditions, reaching 4-10 nm in 300 min, but no measurable Cu2O was formed during this time. CuO was found to significantly inhibit contact killing, compared to pure copper. In contrast, thermally generated Cu2O was essentially as effective in contact killing as pure copper. Copper ion release from the different surfaces roughly correlated with their antibacterial efficacy and was highest for pure copper, followed by Cu2O and CuO. Tris-Cl induced a 10-50-fold faster copper ion release compared to PBS. Since the Cu2O that primarily forms on copper under ambient conditions is as active in contact killing as pure copper, antimicrobial objects will retain their antimicrobial properties even after oxide formation.

  20. Understanding the superconductivity in copper oxides

    CERN Document Server

    2019-01-01

    The aim of this book is to clarify the situation by adopting a very different approach from the above electronic/magnetic models, where explicitly local dynamical distortions are considered. These are distinctly different from conventional phonons which are a property of the infinite translational invariant symmetric lattice. The local dynamical distortions are shown to account for bulk properties and provide consistent and quantitative agreement with experimental data together with explicit predictions. Selected published experimental and theoretical papers are presented which support the above arguments, but have been ignored on purpose by the originators of the RVB/t-J bubble. To summarize the scope of this book, comprising nine chapters, it is shown, that the phenomenon of HTS in copper oxides is much better understood than publically claimed by RVB/t-J followers. Using the words of B. Laughlin, the presence of the antiferromagnetism in HTS masks the underlying physics where vibronic bipolarons with spin...

  1. Irradiation effects in superconductor oxides. Effets d'irradiation dans les oxydes supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Rullier-Albenque, F; Konczykowski, M [CEA-Ecole Polytechnique, 91 - Palaiseau (France). Lab. d' Etudes des Solides Irradies

    1993-01-01

    Several effects of irradiation on the 92 K - oxide superconductor YBa[sub 2]Cu[sub 3]O[sub 7] are reported. Whatever irradiation type, the critical temperature T[sub c] is found to decrease and the resistivity to increase. At sufficiently high damage levels, YBa[sub 2]Cu[sub 3]O[sub 7] is no longer superconducting and even displays a semiconducting-like behaviour. The alterations of superconducting properties are clearly related to oxygen defects - in the CuO[sub 2] planes or CuO chains... but we have shown experimentally that copper defects are also important. Magnetic properties of YBa[sub 2]Cu[sub 3]O[sub 7] in mixed state are also very sensitive to irradiation. By pinning the flux lines, irradiation defects can considerably increase the critical current density j[sub c]. At present, irradiations by highly energetic heavy ions (6 GeV Pb for instance), which produce cylindrical tubes of amorphous material (latent tracks) throughout the whole thickness of the samples, are probably the most efficient way to enhance j[sub c]. (Author). 18 refs., 7 figs.

  2. Doping dependent tunneling conductance in SDW ordered copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.in [Condensed Matter Physics Group, Dept. of Applied Physics and Ballistics, F.M. University, 756 019 Balasore, Orissa (India); Panda, S.K. [K.D. Science College, Pochilima, Hinjilicut, 761 101 Ganjam, Orissa (India)

    2011-07-15

    The model calculation reports the co-existences of s-wave superconductivity and spin density wave (SDW) in high-T{sub c} cuprates. The doping dependence of the phase diagram explains the experimental observations qualitatively. The calculated tunneling spectra explains the observed multiple peak structures. This calculation provides an alternative to BCS formalism to calculate order parameters from the spectra. It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-T{sub c} systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green's functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green's functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.

  3. Microstructure and properties of bismuth calcium strontium copper oxide superconductors

    NARCIS (Netherlands)

    Emmen, J.H.P.M.; Brabers, V.A.M.; Jonge, de W.J.M.; Steen, C.V.D.; Dalderop, J.H.J.; Geppaart, P.M.A.; Kopinga, K.

    1989-01-01

    Electric and magnetic properties of sintered and compact-zone-melted samples of BiCaSrCuO were measured. The results were interpreted with a theoretical model, in which the samples consist of small superconducting granules weakly coupled by Josephson junctions.

  4. Doping dependent tunneling conductance in SDW ordered copper oxide superconductors

    International Nuclear Information System (INIS)

    Rout, G.C.; Panda, S.K.

    2011-01-01

    The model calculation reports the co-existences of s-wave superconductivity and spin density wave (SDW) in high-T c cuprates. The doping dependence of the phase diagram explains the experimental observations qualitatively. The calculated tunneling spectra explains the observed multiple peak structures. This calculation provides an alternative to BCS formalism to calculate order parameters from the spectra. It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-T c systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green's functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green's functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.

  5. Doping dependent tunneling conductance in SDW ordered copper oxide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C., E-mail: gcr@iopb.res.in [Condensed Matter Physics Group, Dept. of Applied Physics and Ballistics, F.M. University, 756 019 Balasore, Orissa (India); Panda, S K [K.D. Science College, Pochilima, Hinjilicut, 761 101 Ganjam, Orissa (India)

    2011-07-15

    The model calculation reports the co-existences of s-wave superconductivity and spin density wave (SDW) in high-T{sub c} cuprates. The doping dependence of the phase diagram explains the experimental observations qualitatively. The calculated tunneling spectra explains the observed multiple peak structures. This calculation provides an alternative to BCS formalism to calculate order parameters from the spectra. It is observed that doping suppresses the long range anti-ferromagnetic order and induces superconducting phase for a suitable doping. In order to study this effect, we present a model study of the doping dependence of the tunneling conductance in high-T{sub c} systems. The system is described by the Hamiltonian consisting of spin density wave (SDW) and s-wave type superconducting interaction in presence of varying impurity concentrations. The gap equations are calculated by using Green's functions technique of Zubarev. The gap equations and the chemical potential are solved self-consistently. The imaginary part of the electron Green's functions shows the quasi-particle density of states which represent the tunneling conductance observed by the scanning tunneling microscopy (STM). We investigate the effect of impurity on the gap equations as well as on the tunneling conductance. The results will be discussed based on the experimental observations.

  6. High-Tc superconductor quantum interference devices

    International Nuclear Information System (INIS)

    1991-01-01

    This patent describes a superconductive quantum interferometric device for sensing a characteristic of a magnetic field. It comprises a substrate having a surface, the substrate being selected from the group which consists of strontium titanate, aluminum oxide, sapphire, ZrO 2 and mixtures thereof; a coating of MgO on the surface of the substrate; two identical thin-strip films of a high-critical temperature superconductor on the coating, each of the films having a pair of mutually parallel arms in the form of superconductor strips extending toward and aligned with super conductor strips forming corresponding arms of the other thin-strip film, and a crossbar strip connecting the arms of each thin-strip film at right angles to the arms, the high-critical-temperature superconductor being selected from the group which consists of yttrium-barium-calcium-copper-oxides, bismuth-strontium-calcium-copper-oxides, thallium-barium-copper-oxides, thallium-barium-calcium-copper-oxides, barium oxide: potassium oxide: bismuth oxides, and calcium oxide: zinc oxide: iron oxides; and insulating films on the coating between corresponding free ends of the arms thin-strip films, the insulating films being composed of a material selected from the group which consists of silicon dioxide, silicon nitride, magnesium oxide and mixture thereof

  7. solution growth and characterization of copper oxide thin films ...

    African Journals Online (AJOL)

    Thin films of copper oxide (CuO) were grown on glass slides by using the solution growth technique. Copper cloride (CuCl ) and potassium telluride (K T O ) were used. Buffer 2 2e 3 solution was used as complexing agent. The solid state properties and optical properties were obtained from characterization done using PYE ...

  8. Synthesis of copper hydroxide branched nanocages and their transformation to copper oxide

    KAUST Repository

    LaGrow, Alec P.; Sinatra, Lutfan; Elshewy, Ahmed M.; Huang, Kuo-Wei; Katsiev, Khabiboulakh; Kirmani, Ahmad R.; Amassian, Aram; Anjum, Dalaver H.; Bakr, Osman

    2014-01-01

    Copper oxide nanostructures have been explored in the literature for their great promise in the areas of energy storage and catalysis, which can be controlled based on their shape. Herein we describe the synthesis of complex branched nanocages

  9. Gibbs energy calculation of electrolytic plasma channel with inclusions of copper and copper oxide with Al-base

    Science.gov (United States)

    Posuvailo, V. M.; Klapkiv, M. D.; Student, M. M.; Sirak, Y. Y.; Pokhmurska, H. V.

    2017-03-01

    The oxide ceramic coating with copper inclusions was synthesized by the method of plasma electrolytic oxidation (PEO). Calculations of the Gibbs energies of reactions between the plasma channel elements with inclusions of copper and copper oxide were carried out. Two methods of forming the oxide-ceramic coatings on aluminum base in electrolytic plasma with copper inclusions were established. The first method - consist in the introduction of copper into the aluminum matrix, the second - copper oxide. During the synthesis of oxide ceramic coatings plasma channel does not react with copper and copper oxide-ceramic included in the coating. In the second case is reduction of copper oxide in interaction with elements of the plasma channel. The content of oxide-ceramic layer was investigated by X-ray and X-ray microelement analysis. The inclusions of copper, CuAl2, Cu9Al4 in the oxide-ceramic coatings were found. It was established that in the spark plasma channels alongside with the oxidation reaction occurs also the reaction aluminothermic reduction of the metal that allows us to dope the oxide-ceramic coating by metal the isobaric-isothermal potential oxidation of which is less negative than the potential of the aluminum oxide.

  10. Transpassive Dissolution of Copper and Rapid Formation of Brilliant Colored Copper Oxide Films

    Science.gov (United States)

    Fredj, Narjes; Burleigh, T. David; New Mexico Tech Team

    2014-03-01

    This investigation describes an electrochemical technique for growing adhesive copper oxide films on copper with attractive colors ranging from gold-brown to pearl with intermediate colors from red violet to gold green. The technique consists of anodically dissolving copper at transpassive potentials in hot sodium hydroxide, and then depositing brilliant color films of Cu2O onto the surface of copper after the anodic potential has been turned off. The color of the copper oxide film depends on the temperature, the anodic potential, the time t1 of polarization, and the time t2, which is the time of immersion after potential has been turned off. The brilliant colored films were characterized using glancing angle x-ray diffraction, and the film was found to be primarily Cu2O. Cyclic voltammetry, chronopotentiometry, scanning electron microscopy, and x-ray photoelectron spectroscopy were also used to characterize these films.

  11. Copper Doping of Zinc Oxide by Nuclear Transmutation

    Science.gov (United States)

    2014-03-27

    Copper Doping of Zinc Oxide by Nuclear Transmutation THESIS Matthew C. Recker, Captain, USAF AFIT-ENP-14-M-30 DEPARTMENT OF THE AIR FORCE AIR...NUCLEAR TRANSMUTATION THESIS Presented to the Faculty Department of Engineering Physics Graduate School of Engineering and Management Air Force...COPPER DOPING OF ZINC OXIDE BY NUCLEAR TRANSMUTATION Matthew C. Recker, BS Captain, USAF Approved: //signed// 27 February 2014 John W. McClory, PhD

  12. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles

    International Nuclear Information System (INIS)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-01-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV–vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. - Highlights: • Biogenic synthesis of copper oxide nanoparticles by leaf extract of Ficus religiosa • Characterized via UV–vis, FT-IR, DLS, FE-SEM with EDAX and XRD • Protein may act as an encapsulating, reducing and stabilizing

  13. Anticancer activity of Ficus religiosa engineered copper oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sankar, Renu; Maheswari, Ramasamy; Karthik, Selvaraju [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India); Shivashangari, Kanchi Subramanian, E-mail: shivashangari@gmail.com [Regional Forensic Science Laboratory, Tiruchirapalli, Tamilnadu (India); Ravikumar, Vilwanathan, E-mail: ravikumarbdu@gmail.com [Department of Biochemistry, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu (India)

    2014-11-01

    The design, synthesis, characterization and application of biologically synthesized nanomaterials have become a vital branch of nanotechnology. There is a budding need to develop a method for environmentally benign metal nanoparticle synthesis, that do not use toxic chemicals in the synthesis protocols to avoid adverse effects in medical applications. Here, it is a report on an eco-friendly process for rapid synthesis of copper oxide nanoparticles using Ficus religiosa leaf extract as reducing and protecting agent. The synthesized copper oxide nanoparticles were confirmed by UV–vis spectrophotometer, absorbance peaks at 285 nm. The copper oxide nanoparticles were analyzed with field emission-scanning electron microscope (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS) and X-ray diffraction (XRD) spectrum. The FE-SEM and DLS analyses exposed that copper oxide nanoparticles are spherical in shape with an average particle size of 577 nm. FT-IR spectral analysis elucidates the occurrence of biomolecules required for the reduction of copper oxide ions. Zeta potential studies showed that the surface charge of the formed nanoparticles was highly negative. The XRD pattern revealed that synthesized nanoparticles are crystalline in nature. Further, biological activities of the synthesized nanoparticles were confirmed based on its stable anti-cancer effects. The apoptotic effect of copper oxide nanoparticles is mediated by the generation of reactive oxygen species (ROS) involving the disruption of mitochondrial membrane potential (Δψm) in A549 cells. The observed characteristics and results obtained in our in vitro assays suggest that the copper nanoparticles might be a potential anticancer agent. - Highlights: • Biogenic synthesis of copper oxide nanoparticles by leaf extract of Ficus religiosa • Characterized via UV–vis, FT-IR, DLS, FE-SEM with EDAX and XRD • Protein may act as an encapsulating, reducing and stabilizing

  14. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Directory of Open Access Journals (Sweden)

    Sarah Triboulet

    Full Text Available Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide or of their biocidal properties (copper oxide, increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  15. Comparative proteomic analysis of the molecular responses of mouse macrophages to titanium dioxide and copper oxide nanoparticles unravels some toxic mechanisms for copper oxide nanoparticles in macrophages.

    Science.gov (United States)

    Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Collin-Faure, Véronique; Chevallet, Mireille; Diemer, Hélène; Gerdil, Adèle; Proamer, Fabienne; Strub, Jean-Marc; Habert, Aurélie; Herlin, Nathalie; Van Dorsselaer, Alain; Carrière, Marie; Rabilloud, Thierry

    2015-01-01

    Titanium dioxide and copper oxide nanoparticles are more and more widely used because of their catalytic properties, of their light absorbing properties (titanium dioxide) or of their biocidal properties (copper oxide), increasing the risk of adverse health effects. In this frame, the responses of mouse macrophages were studied. Both proteomic and targeted analyses were performed to investigate several parameters, such as phagocytic capacity, cytokine release, copper release, and response at sub toxic doses. Besides titanium dioxide and copper oxide nanoparticles, copper ions were used as controls. We also showed that the overall copper release in the cell does not explain per se the toxicity observed with copper oxide nanoparticles. In addition, both copper ion and copper oxide nanoparticles, but not titanium oxide, induced DNA strands breaks in macrophages. As to functional responses, the phagocytic capacity was not hampered by any of the treatments at non-toxic doses, while copper ion decreased the lipopolysaccharide-induced cytokine and nitric oxide productions. The proteomic analyses highlighted very few changes induced by titanium dioxide nanoparticles, but an induction of heme oxygenase, an increase of glutathione synthesis and a decrease of tetrahydrobiopterin in response to copper oxide nanoparticles. Subsequent targeted analyses demonstrated that the increase in glutathione biosynthesis and the induction of heme oxygenase (e.g. by lovastatin/monacolin K) are critical for macrophages to survive a copper challenge, and that the intermediates of the catecholamine pathway induce a strong cross toxicity with copper oxide nanoparticles and copper ions.

  16. DT fusion neutron irradiation of ORNL magnesium oxide crystals and BNL--LASL superconductor wires

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1978-01-01

    The DT fusion neutron irradiation of two ORNL magnesium oxide crystals and eleven BNL-LASL superconductor wires is described. The sample position and neutron dose record are given. The maximum neutron fluence on any sample was 2.16 x 10 16 neutrons/cm 2

  17. Determination of copper oxidizing power in superconducting yttrium ceramics

    International Nuclear Information System (INIS)

    Pontaler, R.P.; Lebed', N.B.

    1989-01-01

    A new photometric method for determining the formal copper degree of oxidation and oxygen deficiency in superconducting high-temperature oxides containing yttrium, barium and copper is developed. The method is based on oxidation of Co(2) complex with EDTA by Cu(3) ions in acetrate buffer solution with pH 4.2-4.7 and allows one to determine 1-10% of Cu(3). Relative standard deviation when determining Cu(3) makes up 0.03-0.05. Using a qualitative reaction with the application of sodium vanadate hydrochloride solution the absence of peroxide compound in superconducting yttrium ceramics is ascertained

  18. Comparative effects of dissolved copper and copper oxide nanoparticle exposure to the sea anemone, Exaiptasia pallida

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Samreen; Goddard, Russell H.; Bielmyer-Fraser, Gretchen K., E-mail: gkbielmyer@valdosta.edu

    2015-03-15

    Highlights: • Differences between CuO NP and CuCl{sub 2} exposure were characterized. • Copper accumulation in E. pallida was concentration-dependent. • E. pallida exposed to CuCl{sub 2} accumulated higher copper tissue burdens. • The oxidative stress response was greater in E. pallida exposed to CuO NP. • Both forms of copper inhibited CA activity in E. pallida. - Abstract: Increasing use of metal oxide nanoparticles (NP) by various industries has resulted in substantial output of these NP into aquatic systems. At elevated concentrations, NP may interact with and potentially affect aquatic organisms. Environmental implications of increased NP use are largely unknown, particularly in marine systems. This research investigated and compared the effects of copper oxide (CuO) NP and dissolved copper, as copper chloride (CuCl{sub 2}), on the sea anemone, Exaiptasia pallida. Sea anemones were collected over 21 days and tissue copper accumulation and activities of the enzymes: catalase, glutathione peroxidase, glutathione reductase, and carbonic anhydrase were quantified. The size and shape of CuO NP were observed using a ecanning electron microscope (SEM) and the presence of copper was confirmed by using Oxford energy dispersive spectroscopy systems (EDS/EDX). E. pallida accumulated copper in their tissues in a concentration- and time-dependent manner, with the animals exposed to CuCl{sub 2} accumulating higher tissue copper burdens than those exposed to CuO NP. As a consequence of increased copper exposure, as CuO NP or CuCl{sub 2}, anemones increased activities of all of the antioxidant enzymes measured to some degree, and decreased the activity of carbonic anhydrase. Anemones exposed to CuO NP generally had higher anti-oxidant enzyme activities than those exposed to the same concentrations of CuCl{sub 2}. This study is useful in discerning differences between CuO NP and dissolved copper exposure and the findings have implications for exposure of aquatic

  19. Effect of Copper and Iron Ions on the Sulphidizing Flotation of Copper Oxide in Copper Smelting Slag

    OpenAIRE

    Qing-qing Pan; Hui-qing Peng

    2018-01-01

    The treatment of smelting slag has attracted much attention nowadays. This study investigates the influence of Na2S, CuSO4, and FeCl3 on sulphidizing flotation of copper oxide. The results show that a proper Cu2+ concentration can increase the sulphidizing effect of copper oxide, while Fe3+ inhibits the sulphidizing effect. Further analysis shows that Cu2+ ions can reduce the surface potential, increase the S2− adsorption, then generate more polysulfide, and therefore promote the sulphidizing...

  20. Surface characteristics, copper release, and toxicity of nano- and micrometer-sized copper and copper(II) oxide particles: a cross-disciplinary study.

    OpenAIRE

    Midander, Klara; Cronholm, Pontus; Karlsson, Hanna L.; Elihn, Karine; Moller, Lennart; Leygraf, Christofer; Wallinder, Inger Odnevall

    2009-01-01

    An interdisciplinary and multianalytical research effort is undertaken to assess the toxic aspects of thoroughly characterized nano- and micrometer-sized particles of oxidized metallic copper and copper(II) oxide in contact with cultivated lung cells, as well as copper release in relevant media. All particles, except micrometer-sized Cu, release more copper in serum-containing cell medium (supplemented Dulbecco's minimal essential medium) compared to identical exposures in phosphate-buffered ...

  1. How to determine Hc1 of high Tc oxide superconductors

    International Nuclear Information System (INIS)

    Cao Xiaowen; Huang Sunli

    1989-12-01

    The magnetizations of cylinder Bi 1.7 Pb 0.3 Sr 2 Ca 2 Cu 3 O y bulk superconductor whose length is shorten step by step has shown that H c1 is independent of the length of cylinder, i.e. independent of the demagnetic factor, as the length is larger than the diameter, whereas it is dependent of demagnetic factor, as the length is smaller than the diameter. But the demagnetization factor is a constant about 1/4 for l< d

  2. The oxidation of copper catalysts during ethylene epoxidation.

    Science.gov (United States)

    Greiner, M T; Jones, T E; Johnson, B E; Rocha, T C R; Wang, Z J; Armbrüster, M; Willinger, M; Knop-Gericke, A; Schlögl, R

    2015-10-14

    The oxidation of copper catalysts during ethylene epoxidation was characterized using in situ photoemission spectroscopy and electron microscopy. Gas chromatography, proton-transfer reaction mass spectrometry and electron-ionization mass spectrometry were used to characterize the catalytic properties of the oxidized copper. We find that copper corrodes during epoxidation in a 1 : 1 mixture of oxygen and ethylene. The catalyst corrosion passes through several stages, beginning with the formation of an O-terminated surface, followed by the formation of Cu2O scale and eventually a CuO scale. The oxidized catalyst exhibits measurable activity for ethylene epoxidation, but with a low selectivity of 8/2500) Cu2O forms and eventually covers the surface.

  3. The chemical transformation of copper in aluminium oxide during heating

    International Nuclear Information System (INIS)

    Wei, Y-L; Wang, H-C; Yang, Y-W; Lee, J-F

    2004-01-01

    Thermal treatment has recently been emerging as a promising environmental technology to stabilize heavy metal-containing industrial sludge. This study used x-ray absorption spectroscopy (XAS) to identify the species of copper contaminant contained in aluminium oxide that is one of the main compositions of sludge and soil. Results indicate that the originally loaded copper nitrate was transformed into Cu(OH) 2 after its dissolution in the aluminium oxide slurry. Extended x-ray absorption fine structure (EXAFS) fitting indicates that the main copper species in the 105 deg. C dried Cu(NO 3 ) 2 -loaded aluminium oxide is Cu(OH) 2 which accounts for ca. 75% of the loaded copper. After thermal treatment at 500 deg. C for 1 h, both x-ray absorption near-edge structure (XANES) and EXAFS fitting results show that CuO became the prevailing copper species (about 85%); the rest of the copper consisted of ∼ 15% Cu(OH) 2 and a negligible amount of Cu(NO 3 ) 2 . It was found that most Cu(OH) 2 and Cu(NO 3 ) 2 decomposed into CuO at 500 deg. C. Further increase of the heating temperature from 500 to 900 deg. C resulted in more decomposition of Cu(OH) 2 and Cu(NO 3 ) 2 ; therefore CuO remained as the main copper species. However, it was suggested that about 15% of the loaded copper formed CuAl 2 O 4 through the chemical reaction between CuO and Al 2 O 3 at 900 deg. C

  4. Copper Recovery from Yulong Complex Copper Oxide Ore by Flotation and Magnetic Separation

    Science.gov (United States)

    Han, Junwei; Xiao, Jun; Qin, Wenqing; Chen, Daixiong; Liu, Wei

    2017-09-01

    A combined process of flotation and high-gradient magnetic separation was proposed to utilize Yulong complex copper oxide ore. The effects of particle size, activators, Na2S dosage, LA (a mixture of ammonium sulfate and ethylenediamine) dosage, activating time, collectors, COC (a combination collector of modified hydroxyl oxime acid and xanthate) dosage, and magnetic intensity on the copper recovery were investigated. The results showed that 74.08% Cu was recovered by flotation, while the average grade of the copper concentrates was 21.68%. Another 17.34% Cu was further recovered from the flotation tailing by magnetic separation at 0.8 T. The cumulative recovery of copper reached 91.42%. The modifier LA played a positive role in facilitating the sulfidation of copper oxide with Na2S, and the combined collector COC was better than other collectors for the copper flotation. This technology has been successfully applied to industrial production, and the results are consistent with the laboratory data.

  5. HREM study of Bi-oxide based high Tc superconductors

    International Nuclear Information System (INIS)

    Hewat, E.A.

    1988-01-01

    A HREM study of the superstructure and structural defects in Bi 2-x Pb x Sr 2 CaCu 2 O 8 and Bi 2-x Pb x (SrCa) 2 CuO 6 (for x=0 and x=0.4) is presented. The superstructures are shown to involve waves of distortion along the b-axis. These waves are locked on to the lattice positions so that they have a local wave length of 4,5,6,7 or 8 times the basic unit cell. The superstructures are composed of roughly periodic combinations of these basic building blocks (waves). The lead doped superconductors show a less pronounced but more complicated superstructure along b where two distinct periodicities close to 4 and 7 times the basic unit cell predominate. In each of the compounds studied the superstructure, in the better ordered crystals, is shown to be commensurate with a unit cell between 5 and 23 times the basic unit cell. The superstructure in Bi 2-x Pb x Sr 2 CaCu 2 O 8 is orthorhombic where as the superstructure in Bi 2-x Pb x (SrCa) 2 CuO 6 is monoclinic. All these superconductors have a low ''twin'' density (ie density of 90 0 twist boundaries). They exhibit many dislocations and dislocation arrays associated with the weak bonding between BiO planes. They also form non-stoechiometric stacking faults with local changes in the c-axis spacing between layers

  6. Copper oxide resistive switching memory for e-textile

    Directory of Open Access Journals (Sweden)

    Jin-Woo Han

    2011-09-01

    Full Text Available A resistive switching memory suitable for integration into textiles is demonstrated on a copper wire network. Starting from copper wires, a Cu/CuxO/Pt sandwich structure is fabricated. The active oxide film is produced by simple thermal oxidation of Cu in atmospheric ambient. The devices display a resistance switching ratio of 102 between the high and low resistance states. The memory states are reversible and retained over 107 seconds, with the states remaining nondestructive after multiple read operations. The presented device on the wire network can potentially offer a memory for integration into smart textile.

  7. Carbon monoxide oxidation over three different states of copper: Development of a model metal oxide catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jernigan, Glenn Geoffrey [California Univ., Berkeley, CA (United States). Dept. of Chemistry

    1994-10-01

    Carbon monoxide oxidation was performed over the three different oxidation states of copper -- metallic (Cu), copper (I) oxide (Cu2O), and copper (II) oxide (CuO) as a test case for developing a model metal oxide catalyst amenable to study by the methods of modern surface science and catalysis. Copper was deposited and oxidized on oxidized supports of aluminum, silicon, molybdenum, tantalum, stainless steel, and iron as well as on graphite. The catalytic activity was found to decrease with increasing oxidation state (Cu > Cu2O > CuO) and the activation energy increased with increasing oxidation state (Cu, 9 kcal/mol < Cu2O, 14 kcal/mol < CuO, 17 kcal/mol). Reaction mechanisms were determined for the different oxidation states. Lastly, NO reduction by CO was studied. A Cu and CuO catalyst were exposed to an equal mixture of CO and NO at 300--350 C to observe the production of N2 and CO2. At the end of each reaction, the catalyst was found to be Cu2O. There is a need to study the kinetics of this reaction over the different oxidation states of copper.

  8. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete

    DEFF Research Database (Denmark)

    Thit, Amalie; Ramskov, Tina; Croteau, Marie-Noële Croteau

    2016-01-01

    the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically...

  9. Quantum Monte Carlo simulations for high-Tc superconductors

    International Nuclear Information System (INIS)

    Muramatsu, A.; Dopf, G.; Wagner, J.; Dieterich, P.; Hanke, W.

    1992-01-01

    Quantum Monte Carlo simulations for a multi-band model of high-Tc superconductors are reviewed with special emphasis on the comparison of different observabels with experiments. It is shown that a give parameter set of the three-band Hubbard model leads to a consistent description of normal-state propteries as well as pairing correlation function for the copper-oxide superconductors as a function of doping and temperature. (orig.)

  10. Native oxide formation on pentagonal copper nanowires: A TEM study

    Science.gov (United States)

    Hajimammadov, Rashad; Mohl, Melinda; Kordas, Krisztian

    2018-06-01

    Hydrothermally synthesized copper nanowires were allowed to oxidize in air at room temperature and 30% constant humidity for the period of 22 days. The growth of native oxide layer was followed up by high-resolution transmission electron microscopy and diffraction to reveal and understand the kinetics of the oxidation process. Copper oxides appear in the form of differently oriented crystalline phases around the metallic core as a shell-like layer (Cu2O) and as nanoscopic islands (CuO) on the top of that. Time dependent oxide thickness data suggests that oxidation follows the field-assisted growth model at the beginning of the process, as practically immediately an oxide layer of ∼2.8 nm thickness develops on the surface. However, after this initial rapid growth, the local field attenuates and the classical parabolic diffusion limited growth plays the main role in the oxidation. Because of the single crystal facets on the side surface of penta-twinned Cu nanowires, the oxidation rate in the diffusion limited regime is lower than in polycrystalline films.

  11. Solid state solubility of copper oxides in hydroxyapatite

    Science.gov (United States)

    Zykin, Mikhail A.; Vasiliev, Alexander V.; Trusov, Lev A.; Dinnebier, Robert E.; Jansen, Martin; Kazin, Pavel E.

    2018-06-01

    Samples containing copper oxide doped hydroxyapatite with the composition Ca10(PO4)6(CuxOH1-x-δ)2, x = 0.054 - 0.582, in the mixture with CuO/Cu2O were prepared by a solid-state high-temperature treatment at varying annealing temperatures and at different partial water vapor and oxygen pressures. The crystal structures of the apatite compounds were refined using powder X-ray diffraction patterns and the content of copper ions x in the apatite was determined. Copper ions enter exclusively into the apatite trigonal channels formally substituting protons of OH-groups and the hexagonal cell parameters grow approximately linearly with x, the channel volume mostly expanding while the remaining volume of the crystal lattice changing only slightly. The equilibrium copper content in the apatite increases drastically, by almost a factor of 10 with the annealing temperature rising from 800° to 1200°C. The reduction of the water partial pressure leads to a further increase of x, while the dependence of x on the oxygen partial pressure exhibits a maximum. The observed relations are consistent with the proposed chemical reactions implying the copper introduction is followed by the release of a considerable quantity of gaseous products - water and oxygen. The analysis of interatomic distances suggests that the maximum content of copper ions in the channel cannot exceed 2/3.

  12. Irradiation effects of high temperature superconductor of lanthanoid oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Koh-ichi; Kohara, Takao [Himeji Inst. of Tech., Hyogo (Japan)

    1996-04-01

    Neutron irradiation effects on excess oxygen were studied by neutron irradiation on La{sub 2}CuO{sub 4} treated with high pressure oxygen. La{sub 2}CuO{sub 4} was prepared by the usual method and annealed for 10 h under the oxygen pressure of 800-2000 atm. at 600degC. The superconducting transition temperature (Tc) is 27-32K before irradiation (La{sub 2}CuO{sub 4+d}, amount of excess oxygen d=0.03-0.12). Neutron irradiation was carried out by two kinds of experiments. Low irradiation dose test at low temperature (LTL: {approx}20-200K, storage in LN{sub 2}) showed Tc decreased more slowly than that of high temperature range. Experiment at high temperature (Hyd:{approx}80deg{yields}, storage at room temperature) showed -10K/10{sup 18}n/cm{sup 2}, the decrease of Tc was three times larger than that of YBCO type superconductor. (S.Y.)

  13. Semiempirical search for oxide superconductors based on bond valence sums

    International Nuclear Information System (INIS)

    Tanaka, S.; Fukushima, N.; Niu, H.; Ando, K.

    1992-01-01

    Relationships between crystal structures and electronic states of layered transition-metal oxides are analyzed in the light of bond valence sums. Correlations between the superconducting transition temperature T c and the bond-valence-sum parameters are investigated for the high-T c cuprate compounds. Possibility of making nonsuperconducting oxides superconducting is discussed. (orig.)

  14. Bioleaching of copper oxide ore by Pseudomonas aeruginosa

    Science.gov (United States)

    Shabani, M. A.; Irannajad, M.; Azadmehr, A. R.; Meshkini, M.

    2013-12-01

    Bioleaching is an environmentally friendly method for extraction of metal from ores. In this study, bioleaching of copper oxide ore by Pseudomonas aeruginosa was investigated. Pseudomonas aeruginosa is a heterotrophic bacterium that can produce various organic acids in an appropriate culture medium, and these acids can operate as leaching agents. The parameters, such as particle size, glucose percentage in the culture medium, bioleaching time, and solid/liquid ratio were optimized. Optimum bioleaching conditions were found as follows: particle size of 150-177 μm, glucose percentage of 6%, bioleaching time of 8 d, and solid/liquid ratio of 1:80. Under these conditions, 53% of copper was extracted.

  15. Effects of irradiation on the copper normal metal of a composite superconductor

    International Nuclear Information System (INIS)

    Williams, J.M.; Klabunde, C.E.; Redman, J.K.; Coltman, R.R. Jr.; Chaplin, R.L.

    1978-01-01

    This report presents a new body of magnetoresistance data for copper that were obtained in neutron irradiation experiments at 4K and 330K. These data are combined with previously obtained results on initial damage rates and saturation effects to yield a projection of total resistivity vs neutron dose (expressed in displacements per atom) for copper in service at < 10 K in a magnetic field

  16. Microstructure and Mechanical Properties of Graphene Oxide/Copper Composites

    Directory of Open Access Journals (Sweden)

    HONG Qi-hu

    2016-09-01

    Full Text Available Graphene oxide/copper (GO/Cu composites were successfully synthesized through the ball milling and vacuum hot press sintering process. The morphologies of the mixture powders, and the microstructure and mechanical properties of GO/Cu composites were investigated by OM, SEM, XRD, hardness tester and electronic universal testing machine, respectively. The results show that the GO/Cu composites are compact. Graphene oxide with flake morphology is uniformly dispersed and well consolidated with copper matrix. When the mass fraction of graphene oxide is 0.5%, the microhardness and compress strength at RT reach up to 63HV and 276MPa, increased by 8.6% and 28%, respectively. The strengthening mechanism is load transfer effect, dislocation strengthening and fine crystal reinforcing.

  17. Effect of Copper and Iron Ions on the Sulphidizing Flotation of Copper Oxide in Copper Smelting Slag

    Directory of Open Access Journals (Sweden)

    Qing-qing Pan

    2018-01-01

    Full Text Available The treatment of smelting slag has attracted much attention nowadays. This study investigates the influence of Na2S, CuSO4, and FeCl3 on sulphidizing flotation of copper oxide. The results show that a proper Cu2+ concentration can increase the sulphidizing effect of copper oxide, while Fe3+ inhibits the sulphidizing effect. Further analysis shows that Cu2+ ions can reduce the surface potential, increase the S2− adsorption, then generate more polysulfide, and therefore promote the sulphidizing flotation. However, Fe3+ ions would increase the surface potential, reduce the S2− adsorption, generate more sulfur element, and therefore inhibit the sulphidizing flotation.

  18. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    International Nuclear Information System (INIS)

    Krockenberger, Y.

    2006-01-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  19. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Krockenberger, Y.

    2006-07-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  20. Improvement of oxidation resistance of copper by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, M.L.; Cheng, T.C. [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan (China); Lin, M.C. [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, No. 250, Wu-Hsing Street, Taipei 110, Taiwan (China); Lin, H.C., E-mail: hclinntu@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan (China); Chen, M.J., E-mail: mjchen@ntu.edu.tw [Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan (China)

    2012-10-01

    Graphical abstract: Results of glancing incident angle diffraction (GIXD) show the bare-Cu specimen was attacked by oxidation, whereas the coated-Cu specimens prevented from this problem. Highlights: Black-Right-Pointing-Pointer Deposition of Al{sub 2}O{sub 3} films on pure copper by an atomic layer deposition (ALD) technique. Black-Right-Pointing-Pointer Analysis of properties of the films coated at various substrate temperatures using the ALD technique. Black-Right-Pointing-Pointer Identification of the improvement of oxidation resistance of pure copper by the ALD-Al{sub 2}O{sub 3} films. Black-Right-Pointing-Pointer Assessment of the durability of the ALD-Al{sub 2}O{sub 3} films by adhesion strength. - Abstract: Al{sub 2}O{sub 3} films were deposited by the atomic layer deposition (ALD) technique onto pure copper at temperatures in the range 100-200 Degree-Sign C. The chemical composition, microstructure, and mechanic properties of the ALD-deposited Al{sub 2}O{sub 3} films were systematically analyzed. The variations in the film characteristics with substrate temperature were observed. Oxidation trials revealed that 20-nm-thick Al{sub 2}O{sub 3} films deposited at a substrate temperature as low as 100 Degree-Sign C suppress oxidative attack on pure copper. The Al{sub 2}O{sub 3} films also showed excellent durability of adhesion strength, according to predictions using the Coffin-Manson model based on the results of accelerated temperature cycling tests. These features indicate that ALD-deposited Al{sub 2}O{sub 3} film is a very promising candidate to be a protective coating for pure copper.

  1. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    International Nuclear Information System (INIS)

    Labidi, A.; Bejaoui, A.; Ouali, H.; Akkari, F. Chaffar; Hajjaji, A.; Gaidi, M.; Kanzari, M.; Bessais, B.; Maaref, M.

    2011-01-01

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  2. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    Labidi, A., E-mail: Ahmed_laabidi@yahoo.fr [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Bejaoui, A.; Ouali, H. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Akkari, F. Chaffar [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Hajjaji, A.; Gaidi, M. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Maaref, M. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia)

    2011-09-15

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  3. Stage specific effects of soluble copper and copper oxide nanoparticles during sea urchin embryo development and their relation to intracellular copper uptake.

    Science.gov (United States)

    Torres-Duarte, Cristina; Ramos-Torres, Karla M; Rahimoff, René; Cherr, Gary N

    2017-08-01

    The effects of exposure to either soluble copper (copper sulfate) or copper oxide nanoparticles (nano-CuO) during specific early developmental stages of sea urchin embryos were analyzed. Soluble copper caused significant malformations in embryos (skeletal malformations, delayed development or gut malformations) when present at any given stage, while cleavage stage was the most sensitive to nano-CuO exposure causing skeletal malformations and decreased total antioxidant capacity. The stage specificity was linked to higher endocytic activity during the first hours of development that leads to higher accumulation of copper in specific cells critical for development. Results indicate that nano-CuO results in higher accumulation of copper inside of embryos and this intracellular copper is more persistent as compared to soluble copper. The possible implications later in development are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Influence of titanium oxide films on copper nucleation during electrodeposition

    International Nuclear Information System (INIS)

    Chang, Hyun K.; Choe, Byung-Hak; Lee, Jong K.

    2005-01-01

    Copper electrodeposition has an important industrial role because of various interconnects used in electronic devices such as printed wire boards. With an increasing trend in device miniaturization, in demand are void-free, thin copper foils of 10 μm thick or less with a very low surface profile. In accordance, nucleation kinetics of copper was studied with titanium cathodes that were covered with thin, passive oxide films of 2-3 nm. Such an insulating oxide layer with a band gap of 3 eV is supposed to nearly block charge transfer from the cathode to the electrolyte. However, significant nucleation rates of copper were observed. Pipe tunneling mechanism along a dislocation core is reasoned to account for the high nucleation kinetics. A dislocation core is proposed to be a high electron tunneling path with a reduced energy barrier and a reduced barrier thickness. In supporting the pipe tunneling mechanism, both 'in situ' and 'ex situ' scratch tests were performed to introduce extra dislocations into the cathode surface, that is, more high charge paths via tunneling, before electrodeposition

  5. Optimum copper to superconductor ratio in cables for superconducting magnets at 1.9 K

    International Nuclear Information System (INIS)

    Wolf, R.

    1994-01-01

    In this paper the optimum copper to superconducting ratio is calculated to prevent quenching for superconducting cables used in accelerator magnets like the LHC dipoles, operating in superfluid helium at 1.9K. The duration of the perturbations leading to a quench are estimated from flux measurements made with pickup coils in the LHC dipole models. The optimum copper to superconducting ratio is then found by studying the minimum quench energy and the influence of the length and the duration or the perturbation and heat transfer to the surroundings. A comparison is made of the behavior at temperatures of 1.9 and 4.3 K

  6. Inhomogeneous superconductors

    International Nuclear Information System (INIS)

    Tinkham, M.

    1978-01-01

    The coherence length xi and penetration depth lambda set the characteristic length scales in superconductors, typically 100 to 5,000 A. A lattice of flux lines, each carrying a single quantum, can penetrate type II superconductors, i.e., those for which kappa identical with lambda/xi > 1/√2. Inhomogeneities on the scale of the flux lattice spacing are required to pin the lattice to prevent dissipative flux motion. Recent work using voids as pinning centers has demonstrated this principle, but practical materials rely on cold-work, inclusions of second phases, etc., to provide the inhomogeneity. For stability against thermal fluctuations, the superconductor should have the form of many filaments of diameter 10 to 100 μm imbedded in a highly conductive normal metal matrix. Such wire is made by drawing down billets of copper containing rods of the superconductor. An alternative approach is the metallurgical one of Tsuei, which leads to thousands of superconducting filamentary segments in a copper matrix. The superconducting proximity effect causes the whole material to superconduct at low current densities. At high current densities, the range of the proximity effect is reduced so that the effective superconducting volume fraction falls below the percolation threshold, and a finite resistance arises from the copper matrix. But, because of the extremely elongated filaments, this resistance is orders of magnitude lower than that of the normal wire, and low enough to permit the possibility of technical applications

  7. Making superconductors

    International Nuclear Information System (INIS)

    McDonald, W.K.

    1981-01-01

    A method is described of producing composite rod or wire of increased strength and fineness wherein the composite is formed by reducing a lamina of two metals which have been rolled to form a cylindrical billet in which one of the metals is in expanded form. The composite produced can be encased in copper and fabricated to produce a superconductor. Alloys contemplated for producing superconductors are Nb 3 Sn, Nb 3 Ga, Nb 3 Ge, Nb 3 Si, Nb-Ti, V 3 Ga, V 3 Si, V 3 Sn, V 3 Al, and V 3 Ge laminated on bronze, Al, Cu, Ta, or combinations thereof. (author)

  8. Changes of soft X-ray emission spectra of oxygen and copper in high Tc superconductors

    International Nuclear Information System (INIS)

    Fukushima, Sei; Gohshi, Yohichi; Kohiki, Shigemi; Saitoh, Naoki

    1989-01-01

    X-ray induced soft X-ray emission spectroscopy is one of the bulk analysis methods used to characterize high-Tc superconductor. In this report, some observations on the changes in O Kα and Cu L spectra of thin layer LnBa 2 Cu 3 O 7-δ (Ln=Er,Gd) samples are presented. From the measurement of O Kα, no discernible difference was found between those of Gd compounds which were composed single phase or not. It may be said that the electronic structure of p state localized on the O is not sensitive to the change of Tc or zero-resistance temperature. From the measurement of Cu L spectra, it was found that Cu Lα of only Gd containing compounds has a low energy shoulder

  9. Controlled synthesis of the antiperovskite oxide superconductor Sr3‑x SnO

    Science.gov (United States)

    Hausmann, J. N.; Oudah, M.; Ikeda, A.; Yonezawa, S.; Maeno, Y.

    2018-05-01

    A large variety of perovskite oxide superconductors are known, including some of the most prominent high-temperature and unconventional superconductors. However, superconductivity among the oxidation state inverted material class, the antiperovskite oxides, was recently reported for the first time. In this superconductor, Sr3‑x SnO, the unconventional ionic state Sn4‑ is realized and possible unconventional superconductivity due to a band inversion has been discussed. Here, we discuss an improved facile synthesis method, making it possible to control the strontium deficiency in Sr3‑x SnO. Additionally, a synthesis method above the melting point of Sr3SnO is presented. We show temperature dependence of magnetization and electrical resistivity for superconducting strontium deficient Sr3‑x SnO (T c ∼ 5 K) and for Sr3SnO without a superconducting transition in alternating current susceptibility down to 0.15 K. Further, we reveal a significant effect of strontium raw material purity on the superconductivity and achieve substantially increased M/M Meissner (∼1) compared to the highest value reported so far. More detailed characterizations utilizing powder x-ray diffraction and energy-dispersive x-ray spectroscopy show that a minor cubic phase, previously suggested to be another Sr3‑x SnO phase with a slightly larger lattice parameter, is SrO. The improved characterization and controlled synthesis reported herein enable detailed investigations on the superconducting nature and its dependency on the strontium deficiency in Sr3‑x SnO.

  10. Application of high-pressure techniques: stabilization and oxidation-state control of novel superconductive and related multi-layered copper oxides

    International Nuclear Information System (INIS)

    Yamauchi, H.; Karppinen, M.

    2000-01-01

    Copper oxide superconductors possess multi-layered structures with a layer sequence of -CuO 2 -(Q-CuO 2 ) n-1 -AO-(MO 1±δ ) m -AO- or -CuO 2 -B-(O 2 -B) s-1 -CuO 2 -AO-(MO 1±δ ) m -AO- along the elongated c axis. Based on this layer sequence, the known copper oxide structures are categorized as members of the homologous series, M m A r Q n-1 Cu n O m+r+2 +n ±δ (M-mr(n-1)n ; category A) or M m A 2k B s Cu 1+k O m +4k +2s±δ (M-m(2k)s (1+k ); category B). Stabilization of such structures especially in the case of high values of the n /s parameter, i.e. the higher members of the homologous series, has been demonstrated to be apparently promoted under high pressures and/or strongly oxidizing conditions. Consequently, techniques for applying both high oxygen gas pressures (10-2000 atm) and ultra-high solid-medium pressures (2-8 GPa) have been advantageously utilized in synthesizing various superconductive copper oxide phases. Especially the ultra-high solid-medium pressure synthesis carried out in the so-called cubic-anvil/belt-type apparatus has proven to be extremely successful in synthesizing novel superconductive phases. In order to achieve high partial pressures of oxygen in the solid-medium environment, 'external' oxygen-generating oxides such as KClO 4 , KClO 3 and Ag 2 O 2 are commonly added to the precursor mixtures. It is emphasized that in some cases it is possible to utilize 'internal' oxidizing agents alone, i.e. highly oxidized precursors such as BaCuO 2+δ and Ba 2 Cu 3 O 5+δ containing metal constituents common with the desired copper oxide phase only. In the present paper, the potential and applications of high-pressure techniques in synthesizing multi-layered copper oxides and related structures are reviewed and discussed with emphasis on the important 'historical' discoveries of novel phases and the present status of controlled production of high-quality samples of such phases. (author)

  11. Comparison between micro- and nanosized copper oxide and water soluble copper chloride: interrelationship between intracellular copper concentrations, oxidative stress and DNA damage response in human lung cells.

    Science.gov (United States)

    Strauch, Bettina Maria; Niemand, Rebecca Katharina; Winkelbeiner, Nicola Lisa; Hartwig, Andrea

    2017-08-01

    Nano- and microscale copper oxide particles (CuO NP, CuO MP) are applied for manifold purposes, enhancing exposure and thus the potential risk of adverse health effects. Based on the pronounced in vitro cytotoxicity of CuO NP, systematic investigations on the mode of action are required. Therefore, the impact of CuO NP, CuO MP and CuCl 2 on the DNA damage response on transcriptional level was investigated by quantitative gene expression profiling via high-throughput RT-qPCR. Cytotoxicity, copper uptake and the impact on the oxidative stress response, cell cycle regulation and apoptosis were further analysed on the functional level. Cytotoxicity of CuO NP was more pronounced when compared to CuO MP and CuCl 2 in human bronchial epithelial BEAS-2B cells. Uptake studies revealed an intracellular copper overload in the soluble fractions of both cytoplasm and nucleus, reaching up to millimolar concentrations in case of CuO NP and considerably lower levels in case of CuO MP and CuCl 2 . Moreover, CuCl 2 caused copper accumulation in the nucleus only at cytotoxic concentrations. Gene expression analysis in BEAS-2B and A549 cells revealed a strong induction of uptake-related metallothionein genes, oxidative stress-sensitive and pro-inflammatory genes, anti-oxidative defense-associated genes as well as those coding for the cell cycle inhibitor p21 and the pro-apoptotic Noxa and DR5. While DNA damage inducible genes were activated, genes coding for distinct DNA repair factors were down-regulated. Modulation of gene expression was most pronounced in case of CuO NP as compared to CuO MP and CuCl 2 and more distinct in BEAS-2B cells. GSH depletion and activation of Nrf2 in HeLa S3 cells confirmed oxidative stress induction, mainly restricted to CuO NP. Also, cell cycle arrest and apoptosis induction were most distinct for CuO NP. The high cytotoxicity and marked impact on gene expression by CuO NP can be ascribed to the strong intracellular copper ion release, with subsequent

  12. Isomorphic Structural Transition in the β-Pyrochlore Oxide Superconductor KOs2O6

    Science.gov (United States)

    Yamaura, Jun-ichi; Takigawa, Masashi; Yamamuro, Osamu; Hiroi, Zenji

    2010-04-01

    A phase transition observed at Tp = 7.65 K in the β-pyrochlore oxide superconductor KOs2O6 is studied by means of heat capacity, 39K-NMR, and X-ray diffraction measurements using high-quality single crystals. We find evidence of an isomorphic structural transition at Tp without the off-center freezing of the K ion even below Tp. It is possibly related to the rattling motion of the K ion in an oversized atomic cage.

  13. Low-temperature specific heat of the β-pyrochlore oxide superconductors under high pressure

    Science.gov (United States)

    Isono, T.; Iguchi, D.; Machida, Y.; Izawa, K.; Salce, B.; Flouquet, J.; Ogusu, H.; Yamaura, J.; Hiroi, Z.

    2011-01-01

    We report the results of the low-temperature specific heat measurements of the single crystalline β-pyrochlore oxide superconductors AOs 2O 6 (A=K, Rb, and Cs) under high pressure up to 13 GPa. We find that superconducting transition temperature ( Tc) monotonically increases for CsOs 2O 6 and RbOs 2O 6, while the one for KOs 2O 6 decreases by applying the pressure. With further increasing the pressure, Tc is suddenly suppressed at the same lattice volume for all compounds, concomitant with the first-order structural phase transition.

  14. Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents by X-ray photoelectron spectroscopy and scanning electron microscopy

    Science.gov (United States)

    Siriwardane, Ranjani V.; Poston, James A.

    1993-05-01

    Characterization of copper oxides, iron oxides, and zinc copper ferrite desulfurization sorbents was performed by X-ray photoelectron spectroscopy and scanning electron microscopy/energy-dispersive spectroscopy at temperatures of 298 to 823 K. Analysis of copper oxides indicated that the satellite structure of the Cu22p region was absent in the Cu(I) state but was present in the Cu(II) state. Reduction of CuO at room temperature was observed when the ion gauge was placed close to the sample. The satellite structure was absent in all the copper oxides at 823 K in vacuum. Differentiation of the oxidation state of copper utilizing both Cu(L 3M 4,5M 4,5) X-ray-induced Auger lines and Cu2p satellite structure, indicated that the copper in zinc copper ferrite was in the + 1 oxidation state at 823 K. This + 1 state of copper was not significantly changed after exposure to H 2, CO, and H 2O. There was an increase in Cu/Zn ratio and a decrease in Fe/Zn ratio on the surface of zinc copper ferrite at 823 K compared to that at room temperature. These conditions of copper offered the best sulfidation equilibrium for the zinc copper ferrite desulfurization sorbent. Analysis of iron oxides indicated that there was some reduction of both Fe 2O 3 and FeO at 823K. The iron in zinc copper ferrite was similar to that of Fe 2O 3 at room temperature but there was some reduction of this Fe(III) state to Fe(II) at 823 K. This reduction was more enhanced in the presence of H 2 and CO. Reduction to Fe(II) may not be desirable for the lifetime of the sorbent.

  15. Inelastic electron scattering influence on the strong coupling oxide superconductors

    International Nuclear Information System (INIS)

    Gabovich, A.M.; Voitenko, A.I.

    1995-01-01

    The superconducting order parameters Δ and energy gap Δ g are calculated taking into account the pair-breaking inelastic quasiparticle scattering by thermal Bose-excitations, e.g., phonons. The treatment is self-consistent because the scattering amplitude depends on Δ. The superconducting transition for any strength of the inelastic scattering is the phase transition of the first kind and the dependences Δ (T) and Δ g (T) tend to rectangular curve that agrees well with the experiment for high-Tc oxides. On the basis of the developed theory the nuclear spin-lattice relaxation rate R s in the superconducting state is calculated. The Hebel-Slichter peak in R s (T) is shown to disappear for strong enough inelastic scattering

  16. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    OpenAIRE

    Terence K. S. Wong; Siarhei Zhuk; Saeid Masudy-Panah; Goutam K. Dalapati

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion e...

  17. Facile Synthesis of Copper Oxide Nanoparticles via Electrospinning

    Directory of Open Access Journals (Sweden)

    Abdullah Khalil

    2014-01-01

    Full Text Available A novel approach for synthesizing copper oxide (CuO nanoparticles (NPs through electrospinning is reported. The approach is based on producing rough and discontinuous electrospun nanofibers from a precursor based on copper acetate salt and polyvinyl alcohol (PVA polymer. Selectively removing the polymeric phase from the fibers produced highly rough CuO nanofibers, which were composed of NPs that are weakly held together in a one-dimensional (1D manner. Sonication in a suitable liquid under controlled conditions completely disintegrated the nanofibers into NPs, resulting in the formation of uniform CuO NPs suspension. Aberration corrected high resolution transmission electron microscope (HRTEM showed that the obtained NPs are highly crystalline and nearly sphere-like with a diameter of 30 to 70 nm. Thus, electrospinning, which is a low cost and industrially scalable technique, can also be employed for economic and large scale synthesis of NPs.

  18. HTMR: an experimental tokamak reactor with hybrid copper/superconductor toroidal field magnet

    International Nuclear Information System (INIS)

    Avanzini, P.G.; Raia, G.; Rosatelli, F.; Zampaglione, V.

    1985-01-01

    The feasibility of a hybrid configuration superconducting coils/copper coils for a next generation tokamak TF magnet has been investigated. On the basis of this hybrid solution, the conceptual design has been developed for a medium-high toroidal field tokamak reactor (HTMR). The results of this study show the possibility of designing a tokamak reactor with reduced size in comparison with other INTOR like devices, still gaining some margins in front of the uncertainties in the scaling laws for plasma physics parameters and retaining the presence of a blanket with a tritium breeding ratio of about 1

  19. Electro-oxidation of methanol on copper in alkaline solution

    International Nuclear Information System (INIS)

    Heli, H.; Jafarian, M.; Mahjani, M.G.; Gobal, F.

    2004-01-01

    The electro-oxidation of methanol on copper in alkaline solutions has been studied by the methods of cyclic voltammetry, quasi-steady state polarization and chronoamperometry. It has been found that in the course of an anodic potential sweep the electro-oxidation of methanol follows the formation of Cu III and is catalysed by this species through a mediated electron transfer mechanism. The reaction also continues in the early stages of the reversed cycle until it is stopped by the prohibitively negative potentials. The process is diffusion controlled and the current-time responses follow Cottrellian behavior. The rate constants, turnover frequency, anodic transfer coefficient and the apparent activation energy of the electro-oxidation reaction are reported

  20. Asymptotically exact solution of a local copper-oxide model

    International Nuclear Information System (INIS)

    Zhang Guangming; Yu Lu.

    1994-03-01

    We present an asymptotically exact solution of a local copper-oxide model abstracted from the multi-band models. The phase diagram is obtained through the renormalization-group analysis of the partition function. In the strong coupling regime, we find an exactly solved line, which crosses the quantum critical point of the mixed valence regime separating two different Fermi-liquid (FL) phases. At this critical point, a many-particle resonance is formed near the chemical potential, and a marginal-FL spectrum can be derived for the spin and charge susceptibilities. (author). 15 refs, 1 fig

  1. Fracture toughness of oxide-dispersion strengthened copper

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, D.J. [Oak Ridge National Lab., TN (United States)

    1996-10-01

    The fracture toughness of an oxide-dispersion strengthened copper alloy AL-15 has been examined at room temperature and 250{degrees}C, in air and in vacuum (< 10{sup {minus}6} torr). Increasing test temperature causes a significant decrease in the fracture toughness of this material, in either air or vacuum environments. In addition, specimens oriented in the T-L orientation (crack growth parallel to the extrusion direction) show significantly lower toughness than those in the L-T orientation (crack growth perpendicular to the extrusion direction).

  2. Investigation of the interaction of copper(II) oxide and electron beam irradiation crosslinkable polyethylene

    International Nuclear Information System (INIS)

    Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C.T.; Haraveen, K.J.S.; Tee, Tiam-Ting; Rahmat, A.R.

    2015-01-01

    In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.

  3. Investigation of the interaction of copper(II) oxide and electron beam irradiation crosslinkable polyethylene

    Energy Technology Data Exchange (ETDEWEB)

    Bee, Soo-Tueen, E-mail: direct.beest@gmail.com [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Sin, Lee Tin, E-mail: direct.tinsin@gmail.com [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Ratnam, C.T. [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Haraveen, K.J.S.; Tee, Tiam-Ting [Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000 Kajang, Selangor (Malaysia); Rahmat, A.R. [Department of Polymer Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia)

    2015-10-01

    In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.

  4. Speciation of Raney Copper Oxide during High-Temperature Desulfurization

    International Nuclear Information System (INIS)

    Wang, T. C.; Chen, C. Y.; Huang, H.-L.; Wang, H. Paul; Wei Yuling

    2007-01-01

    Speciation of copper in the Raney copper oxides (R-CuO) during high-temperature desulfurization has been studied by X-ray absorption spectroscopy. The preedge XANES spectra (8975-8979 eV) of R-CuO exhibit a very weak 1s-to-3d transition forbidden by the selection rule in the case of the perfect octahedral symmetry. A shoulder at 8985-8988 eV and an intense band at 8994-9002 eV can be attributed to the 1s-to-4p transition that indicates the existence of the Cu(II) species. The preedge band at 8981-8984 eV can be attributed to the dipole-allowed 1s-to-4p transition of Cu(I), suggesting an existence of Cu2S during sulfurization. An enhanced absorbance at 9003 eV shows that Cu(0) species may be formed in the sulfurized R-CuO. The main copper species in regenerated R-CuO are CuO (96%) and Cu2S (4%)

  5. The study on a new superconductor (oxide Ba-Y-Cu) with high critical temperature Tc by positron annihilation

    International Nuclear Information System (INIS)

    Zhang Caigu; Yu Zhuxing; Wang Zhu; Huang Zhe; Zhou Jun

    1987-01-01

    The study on a new superconductor oxide Ba-Y-Cu with high critical temperature Tc is described. The experimental results show that positron lifetime reducing reflects variable curve of resistance with temperature. A peak of positron lifetime is appeared at critical temperature

  6. On the combination of the Cooper pair and the Ogg pair in the high-Tc oxide superconductor

    International Nuclear Information System (INIS)

    Zhang Liyuan.

    1991-08-01

    In this paper it is argued that the superconductivity of the high-T c oxide superconductor (HTOS) can be explained by the combinating mechanism of the Cooper pair and the Ogg pair. The properties of the superconducting state of the HTOS have been calculated under this mechanism, and the theoretical results are overall consistent with the experiment. (author). 37 refs

  7. The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent : Part II. the regeneration of copper sulfide to copper oxide - An experimental study

    NARCIS (Netherlands)

    Ter Maat, H.; Hogendoorn, J. A.; Versteeg, G. F.

    2005-01-01

    Aim of this study was to investigate the possibilities for a selective and efficient method to convert copper(II) sulfide (CuS) into copper(II) oxide (CuO). The oxidation of copper sulfide has been studied experimentally using a thermogravimetric analyzer (TGA) at temperatures ranging from 450 to

  8. Study of decomposition kinetics of volatile β-diketonates of yttrium, barium and copper in flow reactor

    International Nuclear Information System (INIS)

    Devyatykh, G.G.; Gavrishchuk, E.M.; Gibin, A.M.; Dadanov, A.Yu.; Dzyubenko, N.G.; Kaul', A.R.; Nichiporuk, R.V.; Snezhko, N.T.; Ul'yanov, A.A.

    1990-01-01

    Heterogeneous oxidative decomposition of adduct of yttrium acetylacetonate with o-phenanthroline, copper acetylacetonate and barium dipivaloylmethanate in a flow-type reactor was carried out. The basic kinetic characteristics of chemical precipitation processes of films of yttrium, copper and barium oxides, which are components of high-temperature superconductors, were obtained. The values of activation energy of precipitation process of yttrium, copper and barium oxides constituted 76±10, 108±15, 81±12 (t 600 deg C) respectively

  9. Structural studies of metal oxides related to High-Tc superconductors

    International Nuclear Information System (INIS)

    Hjorth, M.

    1990-02-01

    The project was started in order to investigate metal oxide structures related in some way to high-T c superconductors, using the crystallographic methods available; and in order to be able to use crystallographic methods in ways that go beyond routine applications in order to contribute to the crystallographic knowledge concerning these oxides. The project goes a step outside the boarders normally defined by using the term ''high-T c superconductors'', thus studying metal oxides from a more general crystallographic viewpoint. The methods used are the expansions of the spherical atom model, and of the thermal probability density function, and combination of X-ray work with high resolution electron microscopy. The use of the expanded diffraction models presents problems such as bad convergence in least squares refinement, physical unreasonable parameters, problems with interpretation of the results and difficulties due to missing or insufficient computer programs. The use of these models is discussed. Dynamical theory is applied when considering electron diffraction results. The theory is presented, focusing on the modifications of the standard theory used for some of the structures considered in the thesis, and in overview on other theoretical topics is given. A presentation is given of the structures which have been considered and of earlier work on related compounds, of the problems and solutions applied to the compound discussed and of the results obtained. The results are discussed. The appendices describe published papers and the work not directly connected to the main topics, e.g. implementation and development of computer programs. (AB) 172 refs

  10. Response functions of a superlattice with a basis: A model for oxide superconductors

    International Nuclear Information System (INIS)

    Griffin, A.

    1988-01-01

    The new high-T/sub c/ oxide superconductors appear to be superlattice structures with a basis composed of metallic sheets as well as metallic chains. Using a simple free-electron-gas model for the sheets and chains, we obtain the dielectric function ε(q,ω) of such a multilayer system within the random-phase approximation (RPA). We give results valid for arbitrary wave vector q appropriate to sheets and chains (as in the orthorhombic phase of Y-Ba-Cu-O) as well as for two different kinds of sheets (such as may be present in the Bi-Ca-Sr-Cu-O superconductors). The occurrence of acoustic plasmons is a general phenomenon in such superlattices, as shown by an alternative formulation based on the exact response functions for the individual sheets and chains, in which only the interchain (sheet) Coulomb interaction is treated in the RPA. These results generalize the long-wavelength expressions recently given in the literature. We also briefly discuss the analogous results for two arrays of mutually perpendicular chains, such as found in Hg chain compounds

  11. Binary copper oxide semiconductors: From materials towards devices

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, B.K.; Polity, A.; Reppin, D.; Becker, M.; Hering, P.; Klar, P.J.; Sander, T.; Reindl, C.; Benz, J.; Eickhoff, M.; Heiliger, C.; Heinemann, M. [1. Physics Institute, Justus-Liebig University of Giessen (Germany); Blaesing, J.; Krost, A. [Institute of Experimental Physics (IEP), Otto-von-Guericke University Magdeburg (Germany); Shokovets, S. [Institute of Physics, Ilmenau University of Technology (Germany); Mueller, C.; Ronning, C. [Institute of Solid State Physics, Friedrich Schiller University Jena (Germany)

    2012-08-15

    Copper-oxide compound semiconductors provide a unique possibility to tune the optical and electronic properties from insulating to metallic conduction, from bandgap energies of 2.1 eV to the infrared at 1.40 eV, i.e., right into the middle of the efficiency maximum for solar-cell applications. Three distinctly different phases, Cu{sub 2}O, Cu{sub 4}O{sub 3}, and CuO, of this binary semiconductor can be prepared by thin-film deposition techniques, which differ in the oxidation state of copper. Their material properties as far as they are known by experiment or predicted by theory are reviewed. They are supplemented by new experimental results from thin-film growth and characterization, both will be critically discussed and summarized. With respect to devices the focus is on solar-cell performances based on Cu{sub 2}O. It is demonstrated by photoelectron spectroscopy (XPS) that the heterojunction system p-Cu{sub 2}O/n-AlGaN is much more promising for the application as efficient solar cells than that of p-Cu{sub 2}O/n-ZnO heterojunction devices that have been favored up to now. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Copper substrate as a catalyst for the oxidation of chemical vapor deposition-grown graphene

    International Nuclear Information System (INIS)

    Li, Zhiting; Zhou, Feng; Parobek, David; Shenoy, Ganesh J.; Muldoon, Patrick; Liu, Haitao

    2015-01-01

    We report the catalytic effect of copper substrate on graphene–oxygen reaction at high temperature. Previous studies showed that graphene grown on copper are mostly defect-free with strong oxidation resistance. We found that a freshly prepared copper-supported graphene sample can be completely oxidized in trace amount of oxygen (<3 ppm) at 600 °C within 2 h. Both X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) suggest that upon ambient air exposure, oxygen molecules diffuse into the space between graphene and copper, resulting in the formation of copper oxide which acts as catalytic sites for the graphene-oxygen reaction. This result has important implications for the characterization, processing, and storage of copper-supported graphene samples. - Graphical abstract: The copper substrate enhances the thermel oxidation of single-layer graphene. - Highlights: • A copper-supported graphene can be oxidized in Ar (O 2 <3 ppm, 600 °C, 2 h). • O 2 intercalates between graphene and copper upon exposure to air. • The copper foil should not be considered as an inert substrate

  13. Electrochemical synthesis and characterization of copper (I oxide

    Directory of Open Access Journals (Sweden)

    Bugarinović Sanja J.

    2009-01-01

    Full Text Available The quest and need for clean and economical energy sources have increased interest in the development of thin film cells technologies. Electrochemical deposition is an attractive method for synthesis of thin films. It offers the advantages of low synthesis temperature, low cost and high purity. Copper (I oxide or cuprous oxide is an oxide semiconductor which is used as the anodic material in the form of thin film in lithium batteries and solar cells. The cathodic process of synthesis of cuprous oxide thin film is carried out in a potentiostatic mode from the organic electrolyte. The process parameters are chosen in that way to accomplish maximum difference between the potentials at which Cu2O and CuO are obtained. The electrochemical characterization was carried out by cyclic voltammetry. The electrodeposition techniques are particularly well suited for the deposition of single elements but it is also possible to carry out simultaneous depositions of several elements and syntheses of well-defined alternating layers of metals and oxides with thicknesses down to a few nm. Nanomaterials exhibit novel physical properties and play an important role in fundamental research. In addition, cuprous oxide is commonly used as a pigment, a fungicide, and an antifouling agent for marine paints. It is insoluble in water and organic solvents. This work presents the examinations of the influence of bath, temperature, pH and current density on the characteristics of electrochemically synthesized cuprous oxide. In the 'classic' process of synthesis, which is carried out under galvanostatic conditions on the anode, the grain size of the powder decreases with the increase in current density while the grain colour becomes lighter. The best commercial quality of the Cu2O (grain size, colour, content of choride was obtained at the temperature of 80°C, concentration of NaCl of 3 mol/dm3 and current density of 400 A/m2.

  14. Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping

    Energy Technology Data Exchange (ETDEWEB)

    Dadras, S., E-mail: dadras@alzahra.ac.ir; Dehghani, S.; Davoudiniya, M.; Falahati, S.

    2017-06-01

    In this research, we report the synthesis and characterization of YBa{sub 2}Cu{sub 3}O{sub 7-δ} (YBCO) high temperature superconductor prepared by sol-gel method and doped with Graphene Oxide (GO) in different weight percentages, 0, 0.1, 0.7 and 1 % wt. The x-ray diffraction (XRD) analysis confirms the formation of orthorhombic phase of superconductivity for all the prepared samples. We found that GO doping reduces the crystalline size of the samples. We evaluated the effects of GO doping on the normal state resistivity (ρ), superconducting transition temperature (T{sub c}) and critical current density (J{sub c}). The results show that the GO doping has a positive effect on these properties. Also, the highest J{sub c} is obtained for the 0.7 %wt GO doped YBCO compound that its critical current density is about 15 times more than the J{sub c} of pure one in 0.4 T magnetic field. The scanning electron microscope (SEM) analysis shows that there are better connections between the grains of GO doped samples. - Highlights: • Graphene Oxide doping increased the YBCO critical current density. • Graphene Oxide creates a better connection between the YBCO grains. • The normal resistivity of samples were decreased by GO doping to YBCO compounds. • Graphene Oxide doping has a positive effect on the critical transition temperature.

  15. Anisotropic vortex pinning in the β-pyrochlore oxide superconductor KOs 2O 6

    Science.gov (United States)

    Ishii, Y.; Yamaura, J.; Okamoto, Y.; Maeda, A.; Hiroi, Z.

    2011-11-01

    Vortex pinning in the β-pyrochlore oxide superconductor KOs2O6 with Tc = 9.6 K is investigated by measuring magnetic torque. A large anisotropy of magnetic torque is observed in the superconducting state below Tp = 7.6 K, where a first-order structural transition takes place, in spite of the inherent isotropic nature of the structural and electronic properties. Magnetic torque is enhanced at external magnetic fields parallel to the [1 1 1] and [0 0 1] directions. Moreover, a pronounced peak effect is also observed in the magnetic field dependence of the torque in these two directions. We consider that the observed anisotropy is related to a microstructure associated with the structural transition.

  16. Copper oxide thin films anchored on glass substrate by sol gel spin coating technique

    Science.gov (United States)

    Krishnaprabha, M.; Venu, M. Parvathy; Pattabi, Manjunatha

    2018-05-01

    Owing to the excellent optical, thermal, electrical and photocatalytic properties, copper oxide nanoparticles/films have found applications in optoelectronic devices like solar/photovoltaic cells, lithium ion batteries, gas sensors, catalysts, magnetic storage media etc. Copper oxide is a p-type semiconductor material having a band gap energy varying from 1.2 eV-2.1 eV. Syzygium Samarangense fruit extract was used as reducing agent to synthesize copper oxide nanostructures at room temperature from 10 mM copper sulphate pentahydrate solution. The synthesized nanostructures are deposited onto glass substrate by spin coating followed by annealing the film at 200 °C. Both the copper oxide colloid and films are characterized using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) techniques. Presence of 2 peaks at 500 nm and a broad peak centered around 800 nm in the UV-Vis absorbance spectra of copper oxide colloid/films is indicative of the formation of anisotropic copper oxide nanostructures is confirmed by the FESEM images which showed the presence of triangular shaped and rod shaped particles. The rod shaped particles inside island like structures were found in unannealed films whereas the annealed films contained different shaped particles with reduced sizes. The elemental analysis using EDS spectra of copper oxide nanoparticles/films showed the presence of both copper and oxygen. Electrical properties of copper oxide nanoparticles are affected due to quantum size effect. The electrical studies carried out on both unannealed and annealed copper oxide films revealed an increase in resistivity with annealing of the films.

  17. Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen

    Science.gov (United States)

    Sivaraj, Rajeshwari; Rahman, Pattanathu K. S. M.; Rajiv, P.; Salam, Hasna Abdul; Venckatesh, R.

    2014-12-01

    This investigation explains the biosynthesis and characterization of copper oxide nanoparticles from an Indian medicinal plant by an eco-friendly method. The main objective of this study is to synthesize copper oxide nanoparticles from Tabernaemontana divaricate leaves through a green chemistry approach. Highly stable, spherical copper oxide nanoparticles were synthesized by using 50% concentration of Tabernaemontana leaf extract. Formation of copper oxide nanoparticles have been characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analysis. All the analyses revealed that copper oxide nanoparticles were 48 ± 4 nm in size. Functional groups and chemical composition of copper oxide were also confirmed. Antimicrobial activity of biogenic copper oxide nanoparticles were investigated and maximum zone of inhibition was found in 50 μg/ml copper oxide nanoparticles against urinary tract pathogen (Escherichia coli).

  18. Synthesis of copper hydroxide branched nanocages and their transformation to copper oxide

    KAUST Repository

    LaGrow, Alec P.

    2014-08-21

    Copper oxide nanostructures have been explored in the literature for their great promise in the areas of energy storage and catalysis, which can be controlled based on their shape. Herein we describe the synthesis of complex branched nanocages of copper hydroxide with an alternating stacked morphology. The size of the nanocages\\' core and the length of the branches can be controlled by the temperature and ratio of surfactant used, varying the length from 85 to 232 nm long, and varying the core size from 240 to 19 nm. The nanostructures\\' unique morphology forms by controlling the growth of an initial spherical seed, and the crystallization of the anisotropic arms. The Cu(OH)2 nanostructures can be converted to polycrystalline CuO branched nanocages and Cu2O nanoframes. We show that the branched nanocage morphology of CuO has markedly superior catalytic properties to previous reports with CuO nanomaterials, resulting in a rapid and efficient catalyst for C-S coupling. © 2014 American Chemical Society.

  19. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete, Part I

    DEFF Research Database (Denmark)

    Ramskov, Tina; Thit, Amalie; Croteau, Marie-Noelle

    2015-01-01

    Copper oxide (CuO) nanoparticles (NPs) are widely used, and likely released into the aquatic environment. Both aqueous (i.e., dissolved Cu) and particulate Cu can be taken up by organisms. However, how exposure routes influence the bioavailability and subsequent toxicity of Cu remains largely...... unknown. Here, we assess the importance of exposure routes (water and sediment) and Cu forms (aqueous and nanoparticulate) on Cu bioavailability and toxicity to the freshwater oligochaete, Lumbriculus variegatus, a head-down deposit-feeder. We characterize the bioaccumulation dynamics of Cu in L....... In nature, L. variegatus is potentially exposed to Cu via both water and sediment. However, sediment progressively becomes the predominant exposure route for Cu in L. variegatus as Cu partitioning to sediment increases...

  20. Copper oxide assisted cysteine hierarchical structures for immunosensor application

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Chandra Mouli [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India); Sumana, Gajjala, E-mail: sumanagajjala@gmail.com [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Tiwari, Ida [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India)

    2014-09-08

    The present work describes the promising electrochemical immunosensing strategy based on copper (II) assisted hierarchical cysteine structures (CuCys) varying from star to flower like morphology. The CuCys having average size of 10 μm have been synthesised using L-Cysteine as initial precursor in presence of copper oxide under environmentally friendly conditions in aqueous medium. To delineate the synthesis mechanism, detailed structural investigations have been carried out using characterization techniques such as X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The electrochemical behaviour of self-assembled CuCys on gold electrode shows surface controlled electrode reaction with an apparent electron transfer rate constant of 3.38 × 10{sup −4 }cm s{sup −1}. This innovative platform has been utilized to fabricate an immunosensor by covalently immobilizing monoclonal antibodies specific for Escherichia coli O157:H7 (E. coli). Under the optimal conditions, the fabricated immunosensor is found to be sensitive and specific for the detection of E. coli with a detection limit of 10 cfu/ml.

  1. Electrochemical treatment of an oxide material, application to superconductors, and obtained superconductors. Procede de traitement electrochimique d'un materiau sous forme oxyde, application aux supraconducteurs et supraconducteurs ainsi obtenus

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, J C; Pouchard, M; Wattiaux, A

    1991-06-07

    The present invention describes the electrochemical treatment of a superconductor oxide so as to modify its stoichiometry. These materials comprise in their anionic lattice oxygenated and hydrogenated species. These treated materials are prepared by an electrochemical process in which the oxide is an electrode in a liquid electrolysis. 3 refs., 3 figs.

  2. Interaction of dimethylamine with clean and partially oxidized copper surfaces

    Science.gov (United States)

    Kelber, J. A.; Rogers, J. W.; Banse, B. A.; Koel, B. E.

    1990-05-01

    The interaction of dimethylamine (DMA) with partially oxidized polycrystalline copper [Cu(poly)] and clean and partially oxidized Cu(110) between 110 and 500 K has been examined using electron stimulated desorption (ESD), high resolution electron energy loss spectroscopy (HREELS) and temperature programmed desorption (TPD). ESD mass spectra of the DMA adsorbed on O/Cu(poly) between 112 and 230 K consistently display peaks at 44 amu [(CH 3) 2N] + and 46 amu [(CH 3) 2NH-H] +, but no significant parent peak at 45 amu [(CH 3) 2NH] +, even though this last feature is prominent in the gas-phase mass spectrum. OH - is not observed at temperatures below 184 K and the yield at higher temperatures is much less than that of O +. HREELS of DMA on clean and oxygen covered Cu(110) obtained at temperatures between 100 and 320 K show characteristic vibrational spectra for molecular DMA and no OH(a) vibrational modes. TPD results show that the desorption profiles of all the major peaks in the DMA mass spectrum follow that of the parent peak with no evidence for production of H 2O. The ESD, HREELS and TPD results all indicate that DMA is molecularly and reversibly adsorbed, with no significant formation of surface hydroxyl species. The results indicate that preferential adsorption of amines from amine/epoxy mixtures onto metal oxide surfaces could passivate the surface and prevent subsequent bonding to the epoxy resin.

  3. Vacancy-Mediated Magnetism in Pure Copper Oxide Nanoparticles

    Science.gov (United States)

    2010-01-01

    Room temperature ferromagnetism (RTF) is observed in pure copper oxide (CuO) nanoparticles which were prepared by precipitation method with the post-annealing in air without any ferromagnetic dopant. X-ray photoelectron spectroscopy (XPS) result indicates that the mixture valence states of Cu1+ and Cu2+ ions exist at the surface of the particles. Vacuum annealing enhances the ferromagnetism (FM) of CuO nanoparticles, while oxygen atmosphere annealing reduces it. The origin of FM is suggested to the oxygen vacancies at the surface/or interface of the particles. Such a ferromagnet without the presence of any transition metal could be a very good option for a class of spintronics. PMID:20671775

  4. Comparison of copper heptonate with copper oxide wire particles as copper supplements for sheep on pasture of high molybdenum content.

    Science.gov (United States)

    Judson, G J; Babidge, P J

    2002-10-01

    To assess the effectiveness of intramuscular injection of copper heptonate (CuHep) and an oral dose of copper oxide wire particles (COWP) in preventing Cu inadequacy in adult and young sheep on pasture of high Mo content. Field experiments with flocks of mature Merino wethers and crossbred weaners. Adult wethers were given 25 or 37.5 mg Cu as CuHep, 2.5 g COWP or no Cu treatment. The weaners were given 12.5 or 25 mg Cu as CuHep, 1.25 g COWP or no Cu treatment. At intervals over the next 12 (adults) or 8 (weaners) months the sheep were weighed and samples of blood and liver were collected for trace element assay. Wool samples collected from the adults at the end of the experiment were assessed for physical characteristics. The higher dosage of CuHep raised liver Cu above control group values for at least 9 months in adults and 3 months in weaners. The lower dosage of CuHep was similarly effective for 3 months in adults but was without effect in weaners. In adults the response to COWP matched that to the higher dosage of CuHep; in weaners it was greater, lasting at least 5 months. No changes indicative of Cu deficiency, apart from a depressed body weight in adults, were seen. In sheep on pasture of high Mo content a single intramuscular injection of CuHep providing 37.5 mg Cu to adults or 25 mg Cu to weaners will raise liver Cu reserves for at least 9 and 3 months respectively and may be an acceptable alternative to COWP for preventing seasonal Cu deficiency in sheep in southern Australia.

  5. Superconductivity at 2.8 K and 1.5 kbar in κ-(BEDT-TTF)2Cu2(CN)3: The first organic superconductor containing a polymeric copper cyanide anion

    International Nuclear Information System (INIS)

    Geiser, Urs; Wang Hau, H.; Carlson, K.D.; Williams, J.M.; Charlier, H.A. Jr.; Heindl, J.E.; Yaconi, G.A.; Love, B.J.; Lathrop, M.W.; Schirber, J.E.; Overmyer, D.L.; Ren, Jingquing; Whangbo, Myung-Hwan

    1991-01-01

    Attempts to synthesize new k-phase superconductors have concentrated on ET salts with complex anions composed of Cu(I) or Ag(I) metal ions and pseudohalide anions. The 'targeted anion approach', by use of a preformed anion found in KCu 2 (CN) 3 .H 2 O and the presence of trace amounts of water, led to the discovery of the first copper-cyanide containing superconductor, K-(ET) 2 Cu 2 (CN) 3 . The crystal structure, superconducting properties, and band electronic structure are described in this article. The complex k-(ET) 2 Cu 2 (CN) 3 is in many ways similar to the superconductor K-(ET) 2 Cu[N(CN) 2 ]Cl, the superconductor with the highest T c reported to date. 28 refs., 3 figs

  6. Review of Fabrication Methods, Physical Properties, and Applications of Nanostructured Copper Oxides Formed via Electrochemical Oxidation

    Directory of Open Access Journals (Sweden)

    Wojciech J. Stepniowski

    2018-05-01

    Full Text Available Typically, anodic oxidation of metals results in the formation of hexagonally arranged nanoporous or nanotubular oxide, with a specific oxidation state of the transition metal. Recently, the majority of transition metals have been anodized; however, the formation of copper oxides by electrochemical oxidation is yet unexplored and offers numerous, unique properties and applications. Nanowires formed by copper electrochemical oxidation are crystalline and composed of cuprous (CuO or cupric oxide (Cu2O, bringing varied physical and chemical properties to the nanostructured morphology and different band gaps: 1.44 and 2.22 eV, respectively. According to its Pourbaix (potential-pH diagram, the passivity of copper occurs at ambient and alkaline pH. In order to grow oxide nanostructures on copper, alkaline electrolytes like NaOH and KOH are used. To date, no systemic study has yet been reported on the influence of the operating conditions, such as the type of electrolyte, its temperature, and applied potential, on the morphology of the grown nanostructures. However, the numerous reports gathered in this paper will provide a certain view on the matter. After passivation, the formed nanostructures can be also post-treated. Post-treatments employ calcinations or chemical reactions, including the chemical reduction of the grown oxides. Nanostructures made of CuO or Cu2O have a broad range of potential applications. On one hand, with the use of surface morphology, the wetting contact angle is tuned. On the other hand, the chemical composition (pure Cu2O and high surface area make such materials attractive for renewable energy harvesting, including water splitting. While compared to other fabrication techniques, self-organized anodization is a facile, easy to scale-up, time-efficient approach, providing high-aspect ratio one-dimensional (1D nanostructures. Despite these advantages, there are still numerous challenges that have to be faced, including the

  7. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Energy Technology Data Exchange (ETDEWEB)

    Horak, P., E-mail: phorak@ujf.cas.cz [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Řež (Czech Republic); Bejsovec, V.; Vacik, J.; Lavrentiev, V. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Řež (Czech Republic); Vrnata, M. [Department of Physics and Measurements, The University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Kormunda, M. [Department of Physics, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem (Czech Republic); Danis, S. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)

    2016-12-15

    Highlights: • A rapid oxidation process of thin copper films. • Sheet resistance up to 10{sup 9} Ω/◊. • Mixed oxide phase at 200 °C with significant hydroxide presence. • Gas sensing response to 1000 ppm of hydrogen and methanol vapours. • Increased sensitivity with Pd and Au catalyst to hydrogen and methanol, respectively. - Abstract: Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C–600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C–600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu{sub 2}O phase was identified. However, the oxidation at 200 °C led to a more complicated composition − in the depth Cu{sub 2}O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH){sub 2}. A limited amount of Cu{sub 2}O was also found in samples annealed at 600 °C. The sheet resistance R{sub S} of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing R{sub S} was measured in the range 2.64 MΩ/□–2.45 GΩ/□. The highest R{sub S} values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the {sup 16}O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed

  8. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Czech Academy of Sciences Publication Activity Database

    Horák, Pavel; Bejšovec, Václav; Vacík, Jiří; Lavrentiev, Vasyl; Vrňata, M.; Kormunda, M.; Daniš, S.

    2016-01-01

    Roč. 389, DEC (2016), s. 751-759 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk(CZ) LM2011019 Institutional support: RVO:61389005 Keywords : Copper oxide * ion beam sputtering * Van der Pauw * nuclear reaction analysis * gas sensing Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.387, year: 2016

  9. The evidence of unconventional pairing in heavy fermion superconductors and high-Tc superconductors

    International Nuclear Information System (INIS)

    Tien, C.; Wur, C.S.; Jiang, I.M.

    1989-01-01

    Recently there has been a great deal of interest in two classes of superconductors, heavy fermion superconductors and high T c copper oxide superconductors. The behavior and nature of superconductivity in these two classes of materials are very similar. The temperature dependences of spin-lattice relaxation time (T 1 ) and spin-spin relaxation time (T 2 ) of 9 Be in UBe 13 are quite similar to those of 63 Cu and 89 Y in YBa 2 Cu 3 O 7-δ . The Knight shift of UBe 13 is unchanged during the superconducting phase transition. The Knight shift of YBa 2 Cu 3 O 7-δ changes from the value in the normal state K n /K s = 1 at T ≥ T c to K n /K s = 0.5 at T = 6 K. Both do not approach zero as expected in BCS theory. The acoustic attenuation is enhanced just below T c instead of rapid drop near T c for these two superconducting system. Neither the enhancement, the temperature variation, nor any other anomalous behaviors appear to be mirrored in EPR data for heavy Fermion superconductors and high T c superconductors. This strongly suggests that the unconventional pairing mechanism which induces superconductivity in heavy fermion materials might also involve in high T c superconductors

  10. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    International Nuclear Information System (INIS)

    Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna; Jana, Madhurya; Pramanik, Panchanan; Karmakar, Parimal

    2014-01-01

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain

  11. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    Energy Technology Data Exchange (ETDEWEB)

    Laha, Dipranjan; Pramanik, Arindam [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India); Laskar, Aparna [CSIR-Indian Institute of Chemical Biology, Kolkata 700032 (India); Jana, Madhurya [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India); Pramanik, Panchanan [Department of Chemistry, Indian Institute of Technology, Kharagpur 721302 (India); Karmakar, Parimal, E-mail: pkarmakar_28@yahoo.co.in [Department of Life Science and Biotechnology, Jadavpur University, 188, Raja S C Mallick Road, Kolkata 700032 (India)

    2014-11-15

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.

  12. Copper and Zinc Oxide Composite Nanostructures for Solar Energy Harvesting

    Science.gov (United States)

    Wu, Fei

    Solar energy is a clean and sustainable energy source to counter global environmental issues of rising atmospheric CO2 levels and depletion of natural resources. To extract useful work from solar energy, silicon-based photovoltaic devices are extensively used. The technological maturity and the high quality of silicon (Si) make it a material of choice. However limitations in Si exist, ranging from its indirect band gap to low light absorption coefficient and energy and capital intensive crystal growth schemes. Therefore, alternate materials that are earth-abundant, benign and simpler to process are needed for developing new platforms for solar energy harvesting applications. In this study, we explore oxides of copper (CuO and Cu2O) in a nanowire morphology as alternate energy harvesting materials. CuO has a bandgap of 1.2 eV whereas Cu2O has a bandgap of 2.1 eV making them ideally suited for absorbing solar radiation. First, we develop a method to synthesize vertical, single crystalline CuO and Cu2O nanowires of ~50 microm length and aspect ratios of ~200. CuO nanowire arrays are synthesized by thermal oxidation of Cu foils. Cu2O nanowire arrays are synthesized by thermal reduction of CuO nanowires. Next, surface engineering of these nanowires is achieved using atomic layer deposition (ALD) of ZnO. By depositing 1.4 nm of ZnO, a highly defective surface is produced on the CuO nanowires. These defects are capable of trapping charge as is evident through persistent photoconductivity measurements of ZnO coated CuO nanowires. The same nanowires serve as efficient photocatalysts reducing CO2 to CO with a yield of 1.98 mmol/g-cat/hr. Finally, to develop a robust platform for flexible solar cells, a protocol to transfer vertical CuO nanowires inside flexible polydimethylsiloxane (PDMS) is demonstrated. Embedded CuO nanowires-ZnO pn junctions show a VOC of 0.4 V and a JSC of 10.4 microA/cm2 under white light illumination of 5.7 mW/cm2. Thus, this research provides broad

  13. Fluorescence brightness and photostability of individual copper (I) oxide nanocubes.

    Science.gov (United States)

    Zohora, Nafisa; Kandjani, Ahmad Esmaielzadeh; Orth, Antony; Brown, Hannah M; Hutchinson, Mark R; Gibson, Brant C

    2017-12-04

    Conventional organic fluorophores lose their ability to fluoresce after repeated exposure to excitation light due to photobleaching. Therefore, research into emerging bright and photostable nanomaterials has become of great interest for a range of applications such as bio-imaging and tracking. Among these emerging fluorophores, metal oxide-based nanomaterials have attracted significant attention as a potential multifunctional material with photocatalytic and angeogenisis abilities in addition to fluorescnce applications. However, most of these applications are highly dependent on size, morphology, and chemo-physical properties of individual particles. In this manuscript, we present a method to study the intrinsic optical characteristics of individual copper (I) oxide (Cu 2 O) nanocubes. When excited at 520 nm using only 11 µW excitation power (1.7 W/cm2), individual nanocubes were observed to emit light with peak wavelengths ~760 nm which is conveniently within the near-infrared 1 (NIR1) biological window where tissue autofluorescence is minimal. Bright and photostable fluorescence was observed with intensities up to 487 K counts/s under constant illumination for at least 2 minutes with a brightness approximately four times higher than the autofluorescence from a fixed cumulus-oocyte complex. With near-IR emission, high fluorescence brightness, and outstanding photostability, Cu 2 O nanocubes are attractive candidates for long-term fluorescent bioimaging applications.

  14. Catalytic degradation of brominated flame retardants by copper oxide nanoparticles

    Science.gov (United States)

    Dror, I.; Yecheskel, Y.; Berkowitz, B.

    2013-12-01

    Brominated flame retardants (BFRs) have been added to various products like plastic, textile, electronics and synthetic polymers at growing rates. In spite of the clear advantages of reducing fire damages, many of these BFRs may be released to the environment after their beneficial use which may lead to contamination of water resources. In this work we present the catalytic degradation of two brominated flame retardants (BFRs), tribromoneopentyl alcohol (TBNPA) and 2,4 dibromophenol (2,4-DBP) by copper oxide nanoparticles (nCuO) in aqueous solution. The degradation kinetics, the debromination, and the formation of intermediates by nCuO catalysis are compared to Fenton oxidation and to reduction by nano zero-valent iron (nZVI). The two studied BFRs are shown to degrade fully by the nCuO system within hours to days. Shorter reaction times showed differences in reaction pathways and kinetics for the two compounds. The 2,4-DBP showed faster degradation than TBNPA, by nCuO catalysis. Relatively high resistance to degradation was recorded for 2,4-DBP with nZVI, yielding 20% degradation after 24 h, while the TBNPA was degraded by 85% within 12 hours. A catalytic mechanism for radical generation and BFR degradation by nCuO is proposed. It is further suggested that H2O2 plays an essential role in the activation of the catalyst.

  15. COPPER AND COPPER-CONTAINING PESTICIDES: METABOLISM, TOXICITY AND OXIDATIVE STRESS

    Directory of Open Access Journals (Sweden)

    Viktor Husak

    2015-05-01

    Full Text Available The purpose of this paper is to provide a brief review of the current knowledge regarding metabolism and toxicity of copper and copper-based pesticides in living organisms. Copper is an essential trace element in all living organisms (bacteria, fungi, plants, and animals, because it participates in different metabolic processes and maintain functions of organisms. The transport and metabolism of copper in living organisms is currently the subject of many studies. Copper is absorbed, transported, distributed, stored, and excreted in the body via the complex of homeostatic processes, which provide organisms with a needed constant level of this micronutrient and avoid excessive amounts. Many aspects of copper homeostasis were studied at the molecular level. Copper based-pesticides, in particularly fungicides, bacteriocides and herbicides, are widely used in agricultural practice throughout the world. Copper is an integral part of antioxidant enzymes, particularly copper-zinc superoxide dismutase (Cu,Zn-SOD, and plays prominent roles in iron homeostasis. On the other hand, excess of copper in organism has deleterious effect, because it stimulates free radical production in the cell, induces lipid peroxidation, and disturbs the total antioxidant capacity of the body. The mechanisms of copper toxicity are discussed in this review also.

  16. Acid leaching of oxide-sulphide copper ore prior the flotation: A way for an increased metal recovery

    Directory of Open Access Journals (Sweden)

    Sokić Miroslav D.

    2015-01-01

    Full Text Available Copper mine "Cerovo"- East Serbia as well as the other ore bodies in its vicinity contain a significant amount of oxide copper minerals in their uper layers (>40%. Processing of such mixed ores by the existing concentration technologies leads to a substantial copper losses (<60%. Reduction of "oxide copper", by acid leaching prior the flotation concentration, can increase the overall copper efficiency up to more than 70% in the single-stage leaching, achieving an efficiency in the flotation concentration stage higher than 75%. Based on the performed experimental results the flow sheet for processing of the mixed oxide-sulphide copper ore is proposed.

  17. The anodization synthesis of copper oxide nanosheet arrays and their photoelectrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Xia [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zheng, Hongmei [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Xu, Guangqing, E-mail: gqxu1979@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Zhao, Jiebo [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Cui, Lihua [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); School of Materials Science and Engineering, Beifang University of Nationalities, Yinchuan 750021 (China); Cui, Jiewu; Qin, Yongqiang; Wang, Yan [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Zhang, Yong [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China); Wu, Yucheng, E-mail: ycwu@hfut.edu.cn [School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 (China); Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei 230009 (China)

    2017-08-01

    Graphical abstract: Current-time and potential-time curves of the copper foil anodization process, CV of copper substrate in anodization solution and SEM morphologies of anodization products on Cu substrates obtained at different time. - Highlights: • Copper oxides nanosheet arrays were achieved via anodization method. • The growth mechanisms of the copper anodization process were studied. • Photoelectrochemical performances of copper oxides NSAs were studied. - Abstract: We studied the growth of copper oxide nanosheet arrays on copper foil via a simple anodization method. The structures, morphologies, and elemental compositions of the specimens were characterized with an X-ray diffractometer, scanning electron microscope, high resolution transmission electron microscope, and X-ray photoelectron spectrometer. The copper oxide (Cu{sub 2}O and CuO) nanosheet arrays were comprised of 30-nm-thick nanosheets that stand vertically on the Cu substrate. The anodizing parameters, such as the current density, temperature, and polyethylene glycol concentration, were optimized to obtain the regular nanosheet arrays. The optical absorption properties of the anodized products were evaluated using a diffuse reflectance spectrometer, and broad and strong optical absorption bands arising from the UV to visible region were observed. The photoelectrochemical performance of the nanosheet arrays was measured with chronoamperometry and cyclic voltammetry on an electrochemical workstation equipped with a Xe lamp (wavelength >400 nm). A negative photocurrent was obtained due to the p-type semiconductor of the copper oxides. The copper oxide nanosheet arrays achieve the highest photocurrent of 0.4 mA/cm{sup 2} at the current density of 1.0 A/dm{sup 2}, temperature of 70 °C, and polyethylene glycol concentration of 0.5 g/L.

  18. Properties of Copper Doped Neodymium Nickelate Oxide as Cathode Material for Solid Oxide Fuel Cells

    Directory of Open Access Journals (Sweden)

    Lee Kyoung-Jin

    2016-06-01

    Full Text Available Mixed ionic and electronic conducting K2NiF4-type oxide, Nd2Ni1-xCuxO4+δ (x=0~1 powders were synthesized by solid state reaction technique and solid oxide fuel cells consisting of a Nd2Ni1-xCuxO4+δ cathode, a Ni-YSZ anode and ScSZ as an electrolyte were fabricated. The effect of copper substitution for nickel on the electrical and electrochemical properties was examined. Small amount of copper doping (x=0.2 resulted in the increased electrical conductivity and decreased polarization resistance. It appears that this phenomenon was associated with the high mean valence of nickel and copper and the resulting excess oxygen (δ. It was found that power densities of the cell with the Nd2Ni1-xCuxO4+δ (x=0.1 and 0.2 cathode were higher than that of the cell with the Nd2NiO4+δ cathode.

  19. Theory of disordered superconductors

    International Nuclear Information System (INIS)

    Wysokinski, K.I.

    1991-01-01

    The influence of disorder on the superconducting transition temperature is discussed. The main steps on the way to complete theory of disordered superconductors follows the steps in the authors' understanding of disorder and its effect on the quasiparticles in metals. Loosely speaking one can distinguish three such steps. First is the study of weakly disordered systems and this resulted in famous, celebrated Anderson theorem. The second step is ultimately connected with the coherent potential approximation as a method to study the spectrum and transport in concentrated alloys. The discovery of the role of usually neglected interferences between scattered waves in disordered conductors leading to decrease in mobility and increase of the mutual interactions between quantum particles, known as localization and interaction effects has given the new impetus to the theory of superconductivity. This is third step to be discussed in this lecture. The authors limit themselves to homogeneous bulk superconductors. In this paper some experiments on thin films as well as on copper oxides related to the presented theory are briefly mentioned

  20. Eight-fold quantum states blossom in a high-temperature superconductor

    CERN Multimedia

    2003-01-01

    "Researchers based at Lawrence Berkeley National Laboratory and the University of California at Berkeley have used a scanning tunneling microscope (STM) to reveal eight-fold patterns of quasiparticle interference in the high-temperature superconductor Bi-2212 (bismuth strontium calcium copper oxide)" (2 pages).

  1. Literature review on the properties of cuprous oxide Cu{sub 2}O and the process of copper oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Korzhavyi, P. A.; Johansson, B. (Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm (Sweden))

    2011-10-15

    The purpose of the present review is to provide a reference guide to the most recent data on the properties of copper(I) oxide as well as on the atomic processes involved in the initial stages of oxidation of copper. The data on the structure of surfaces, as obtained from atomic-resolution microscopy studies (for example, STM) or from first-principles calculations, are reviewed. Information of this kind may be useful for understanding the atomic mechanisms of corrosion and stress-corrosion cracking of copper

  2. Literature review on the properties of cuprous oxide Cu2O and the process of copper oxidation

    International Nuclear Information System (INIS)

    Korzhavyi, P. A.; Johansson, B.

    2011-10-01

    The purpose of the present review is to provide a reference guide to the most recent data on the properties of copper(I) oxide as well as on the atomic processes involved in the initial stages of oxidation of copper. The data on the structure of surfaces, as obtained from atomic-resolution microscopy studies (for example, STM) or from first-principles calculations, are reviewed. Information of this kind may be useful for understanding the atomic mechanisms of corrosion and stress-corrosion cracking of copper

  3. Thin films of copper oxide and copper grown by atomic layer deposition for applications in metallization systems of microelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Waechtler, Thomas

    2010-05-25

    Copper-based multi-level metallization systems in today's ultralarge-scale integrated electronic circuits require the fabrication of diffusion barriers and conductive seed layers for the electrochemical metal deposition. Such films of only several nanometers in thickness have to be deposited void-free and conformal in patterned dielectrics. The envisaged further reduction of the geometric dimensions of the interconnect system calls for coating techniques that circumvent the drawbacks of the well-established physical vapor deposition. The atomic layer deposition method (ALD) allows depositing films on the nanometer scale conformally both on three-dimensional objects as well as on large-area substrates. The present work therefore is concerned with the development of an ALD process to grow copper oxide films based on the metal-organic precursor bis(trin- butylphosphane)copper(I)acetylacetonate [({sup n}Bu{sub 3}P){sub 2}Cu(acac)]. This liquid, non-fluorinated {beta}-diketonate is brought to react with a mixture of water vapor and oxygen at temperatures from 100 to 160 C. Typical ALD-like growth behavior arises between 100 and 130 C, depending on the respective substrate used. On tantalum nitride and silicon dioxide substrates, smooth films and selfsaturating film growth, typical for ALD, are obtained. On ruthenium substrates, positive deposition results are obtained as well. However, a considerable intermixing of the ALD copper oxide with the underlying films takes place. Tantalum substrates lead to a fast self-decomposition of the copper precursor. As a consequence, isolated nuclei or larger particles are always obtained together with continuous films. The copper oxide films grown by ALD can be reduced to copper by vapor-phase processes. If formic acid is used as the reducing agent, these processes can already be carried out at similar temperatures as the ALD, so that agglomeration of the films is largely avoided. Also for an integration with subsequent

  4. Thin films of copper oxide and copper grown by atomic layer deposition for applications in metallization systems of microelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Waechtler, Thomas

    2010-05-25

    Copper-based multi-level metallization systems in today's ultralarge-scale integrated electronic circuits require the fabrication of diffusion barriers and conductive seed layers for the electrochemical metal deposition. Such films of only several nanometers in thickness have to be deposited void-free and conformal in patterned dielectrics. The envisaged further reduction of the geometric dimensions of the interconnect system calls for coating techniques that circumvent the drawbacks of the well-established physical vapor deposition. The atomic layer deposition method (ALD) allows depositing films on the nanometer scale conformally both on three-dimensional objects as well as on large-area substrates. The present work therefore is concerned with the development of an ALD process to grow copper oxide films based on the metal-organic precursor bis(trin- butylphosphane)copper(I)acetylacetonate [({sup n}Bu{sub 3}P){sub 2}Cu(acac)]. This liquid, non-fluorinated {beta}-diketonate is brought to react with a mixture of water vapor and oxygen at temperatures from 100 to 160 C. Typical ALD-like growth behavior arises between 100 and 130 C, depending on the respective substrate used. On tantalum nitride and silicon dioxide substrates, smooth films and selfsaturating film growth, typical for ALD, are obtained. On ruthenium substrates, positive deposition results are obtained as well. However, a considerable intermixing of the ALD copper oxide with the underlying films takes place. Tantalum substrates lead to a fast self-decomposition of the copper precursor. As a consequence, isolated nuclei or larger particles are always obtained together with continuous films. The copper oxide films grown by ALD can be reduced to copper by vapor-phase processes. If formic acid is used as the reducing agent, these processes can already be carried out at similar temperatures as the ALD, so that agglomeration of the films is largely avoided. Also for an integration with subsequent

  5. Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon

    International Nuclear Information System (INIS)

    Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

    1999-01-01

    Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors

  6. Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon.

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

    1999-07-21

    Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors.

  7. Heterometallic and homometallic complexes containing bifunctional ligands and their application in high-temperature oxide superconductor materials

    Science.gov (United States)

    Breeze, Steven R.

    We have been interested in the development of soluble precursors for the production of YBasb2Cusb3Osb{7-delta} and Bisb2(Ca,Sr)sbn+1CusbnOsb(2n + 4) + delta, superconductor materials. Several heterometallic and homometallic complexes containing the constituent metals of these superconductors and bifunctional ligands such as aminoalcohols, acetates and thioethers have been isolated and structurally characterized. The thermal decomposition properties and magnetic properties of some of these compounds have been investigated. The first ligand system investigated involved 1,3-bis(dimethylamino)-2-propanol (bdmapH). By varying the ratio of bdmapH, Cu(OCHsb3)sb2, and M(Osb2CCFsb3)sb2 (M = Ca, Sr) several heterometallic complexes have been obtained, including Srsb2Cusb2(bdmap)sb4(Osb2CCFsb3)sb4, CaCu(bdmap)sb2(Osb2CCFsb3)sb3(Hsb2O), Srsb2Cusb4(bdmap)sb6-(Osb2CCFsb3)sb4(musb 3-OH)sb2(THF)sb2 and SrCusb2(bdmap)sb3(Osb2CCFsb3)sb3(THF). With the exception of Srsb2Cusb4(bdmap)sb6(Osb2CCFsb3)sb4(musb 3-OH)sb2(THF)sb2, these compounds thermally decompose to form mixtures of fluorides and oxides. An analogous acetate compound SrCusb2(bdmap)sb3(Osb2CCHsb3)sb3(THF) has been produced, which forms the corresponding oxide at high temperature. A bismuth dimer, Bisb2(bdmap)sb2(Osb2CCHsb3)sb4(Hsb2O), has also been obtained. Superconducting powder of the Bisb2Srsb2CaCusb2Osb{8 + delta} and epitaxial superconducting films of the YBasb2Cusb3Osb{7-delta} superconductor have been produced using the bdmap and acetate ligands as cross-linking reagents. The second ligand system investigated involved di-2-pyridylmethanediol. Only homonuclear complexes have been obtained by using this ligand, including the mononuclear compound Cu ((2-py)sb2CO(OH)) sb2(HOsb2CCH sb3)sb2*CHsb2Clsb2, the tetranuclear compound Cusb4 ((2-py)sb2CO(OH)) sb2(Osb2CCHsb 3)sb6(Hsb2O)sb2*CHsb2Clsb2, and the bismuth dimer Bisb2 ((2-py)sb2CO(OH)) sb2(Osb 2CCFsb3)sb4*(THF)sb2. The tetranuclear Cusb4 compound was found to be

  8. Preparation and properties of high-Tc Bi-oxide superconductors

    International Nuclear Information System (INIS)

    Maeda, H.

    1989-01-01

    Bulk superconductors of Pb-doped Bi-oxide system (BSCCO) dominated with the high-Tc phase have the critical transition temperature, Tc of 110 K, and the upper critical fields, H c2 of 140 T at OK and 60 T at 77 K. A highly dense and a highly oriented microstructure is obtained by inserting an intermediate uniaxial pressing process. The critical current density, Jc at 77 K in zero field, Jc (77K,OT) of some 5000 A/cm 2 can be easily obtained by this process, and the field dependence of Jc is also improved. Flexible high-Tc BSCCO ribbons with a Jc (77K,Ot) of 1850 A/cm 2 have been successfully prepared by the combined process of doctor blade casting, cold rolling and sintering. Aq-sheeted multifilamentary wires with 1330 filaments and tapes with 30 filaments have also been successfully fabricated and the 36-filament tape shows a Jc(77K,OT) of 1050 A/cm 2 . (Auth.). 7 refs.; 7 figs

  9. A novel anti-influenza copper oxide containing respiratory face mask.

    Science.gov (United States)

    Borkow, Gadi; Zhou, Steve S; Page, Tom; Gabbay, Jeffrey

    2010-06-25

    Protective respiratory face masks protect the nose and mouth of the wearer from vapor drops carrying viruses or other infectious pathogens. However, incorrect use and disposal may actually increase the risk of pathogen transmission, rather than reduce it, especially when masks are used by non-professionals such as the lay public. Copper oxide displays potent antiviral properties. A platform technology has been developed that permanently introduces copper oxide into polymeric materials, conferring them with potent biocidal properties. We demonstrate that impregnation of copper oxide into respiratory protective face masks endows them with potent biocidal properties in addition to their inherent filtration properties. Both control and copper oxide impregnated masks filtered above 99.85% of aerosolized viruses when challenged with 5.66+/-0.51 and 6.17+/-0.37 log(10)TCID(50) of human influenza A virus (H1N1) and avian influenza virus (H9N2), respectively, under simulated breathing conditions (28.3 L/min). Importantly, no infectious human influenza A viral titers were recovered from the copper oxide containing masks within 30 minutes (masks. Similarly, the infectious avian influenza titers recovered from the copper oxide containing masks were masks 5.03+/-0.54 log(10)TCID(50). The copper oxide containing masks successfully passed Bacterial Filtration Efficacy, Differential Pressure, Latex Particle Challenge, and Resistance to Penetration by Synthetic Blood tests designed to test the filtration properties of face masks in accordance with the European EN 14683:2005 and NIOSH N95 standards. Impregnation of copper oxide into respiratory protective face masks endows them with potent anti-influenza biocidal properties without altering their physical barrier properties. The use of biocidal masks may significantly reduce the risk of hand or environmental contamination, and thereby subsequent infection, due to improper handling and disposal of the masks.

  10. The role of oxide structure on copper wire to the rubber adhesion

    Science.gov (United States)

    Su, Yea-Yang; Shemenski, Robert M.

    2000-07-01

    Most metals have an oxide layer on the surface. However, the structure of the oxide varies with the matrix composition, and depends upon the environmental conditions. A bronze coating, nominal composition of 98.5% Cu and balance of Sn, is applied to steel wire for reinforcing pneumatic tire beads and to provide adhesion to rubber. This work studied the influence of copper oxides on the bronze coating on adhesion during vulcanization. To emphasize the oxide structures, electrolytic tough pitch (ETP) copper wire was used instead of the traditional bronze-coated tire bead wire. Experimental results confirmed the hypothesis that cuprous oxide (Cu 2O) could significantly improve bonding between copper wire and rubber, and demonstrated that the interaction between rubber and oxide layer on wire is an electrochemical reaction.

  11. Highly conductive grain boundaries in copper oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deuermeier, Jonas, E-mail: j.deuermeier@campus.fct.unl.pt [Department of Materials Science, Faculty of Science and Technology, i3N/CENIMAT, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal); Department of Materials and Earth Sciences, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, D-64287 Darmstadt (Germany); Wardenga, Hans F.; Morasch, Jan; Siol, Sebastian; Klein, Andreas, E-mail: aklein@surface.tu-darmstadt.de [Department of Materials and Earth Sciences, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, D-64287 Darmstadt (Germany); Nandy, Suman; Calmeiro, Tomás; Martins, Rodrigo; Fortunato, Elvira [Department of Materials Science, Faculty of Science and Technology, i3N/CENIMAT, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-06-21

    High conductivity in the off-state and low field-effect mobility compared to bulk properties is widely observed in the p-type thin-film transistors of Cu{sub 2}O, especially when processed at moderate temperature. This work presents results from in situ conductance measurements at thicknesses from sub-nm to around 250 nm with parallel X-ray photoelectron spectroscopy. An enhanced conductivity at low thickness is explained by the occurrence of Cu(II), which is segregated in the grain boundary and locally causes a conductivity similar to CuO, although the surface of the thick film has Cu{sub 2}O stoichiometry. Since grains grow with an increasing film thickness, the effect of an apparent oxygen excess is most pronounced in vicinity to the substrate interface. Electrical properties of Cu{sub 2}O grains are at least partially short-circuited by this effect. The study focuses on properties inherent to copper oxide, although interface effects cannot be ruled out. This non-destructive, bottom-up analysis reveals phenomena which are commonly not observable after device fabrication, but clearly dominate electrical properties of polycrystalline thin films.

  12. Properties of Spray Pyrolysied Copper Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2017-02-01

    Full Text Available Copper oxide (CuO thin films were deposited on well cleaned glass substrates by spray pyrolysis technique (SPT from cupric acetate (Cu(CH3COO2.H2O precursor solutions of 0.05 – 0.15 M molar concentrations (MC at a substrate temperature of 350 °C and at an air pressure of 1 bar. Effect of varying MC on the surface morphology, structural optical and electrical properties of CuO thin films were investigated. XRD patterns of the prepared films revealed the formation of CuO thin films having monoclinic structure with the main CuO (111 orientation and crystalline size ranging from 8.02 to 9.05 nm was observed. The optical transmission of the film was found to decrease with the increase of MC. The optical band gap of the thin films for 0.10 M was fond to be 1.60 eV. The room temperature electrical resistivity varies from 31 and 24 ohm.cm for the films grown with MC of 0.05 and 0.10 M respectively. The change in resistivity of the films was studied with respect to the change in temperature was shown that semiconductor nature is present. This information is expected to underlie the successful development of CuO films for solar windows and other semi-conductor applications including gas sensors.

  13. Electrical Characterization of Spherical Copper Oxide Memristive Array Sensors

    Science.gov (United States)

    2014-03-27

    47 4.2 A 47 µm flake reaching between two spheres . . . . . . . . . . . . . . . . . . 47 x Figure Page 4.3 The XRD pattern shows the copper spheres...image of the copper sphere surface and a zoomed view of emphasizing the flaking feature on the surface. These images depict just one sphere to...spheres. Placed next to one-another, a copper flake extending 47 µm such as that shown in Figure 4.1 can result in an electrical short, which may

  14. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Science.gov (United States)

    Horak, P.; Bejsovec, V.; Vacik, J.; Lavrentiev, V.; Vrnata, M.; Kormunda, M.; Danis, S.

    2016-12-01

    Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C-600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C-600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu2O phase was identified. However, the oxidation at 200 °C led to a more complicated composition - in the depth Cu2O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH)2. A limited amount of Cu2O was also found in samples annealed at 600 °C. The sheet resistance RS of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing RS was measured in the range 2.64 MΩ/□-2.45 GΩ/□. The highest RS values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the 16O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed an increased response to hydrogen at 300 °C, while Au-covered films were more sensitive to methanol vapours at 350 °C.

  15. Transmission electron microscopy and Raman characterization of copper (I) oxide microspheres composed of nanoparticles

    International Nuclear Information System (INIS)

    Wang Wenzhong; Tu Ya; Wang Lijuan; Liang Yujie; Shi Honglong

    2013-01-01

    Highlights: ► Raman spectroscopy of copper (I) oxide microspheres were investigated. ► Infrared active mode is greatly activated in Raman scattering spectrum. ► Infrared active mode shows up in Raman spectrum of copper (I) oxide microspheres. ► The defects existed in spheres could be responsible for the observed Raman property. - Abstract: The high-resolution transmission electron microscope and Raman spectroscopy were used to investigate the microstructures and Raman scattering property of copper (I) oxide microspheres composed of nanoparticles. High-resolution transmission electron microscope images indicate that the copper (I) oxide microspheres are composed of nanoparticles with random growth direction, indicating that there are many defects in microspheres. The Raman spectrum shows that infrared active mode, which must be odd parity and is Raman forbidden for bulk crystal due to its inversion symmetry, is activated and shows up in Raman scattering spectrum. On the basis of investigations of the microstructure features of copper (I) oxide microspheres, we attribute the appearance of IR active mode in Raman scattering spectrum to the breakdown of the symmetry of the lattice due to the presence of defects in the prepared copper (I) oxide microspheres as observed in HRTEM images.

  16. Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements

    Science.gov (United States)

    Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene

    2011-03-01

    The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.

  17. Examination of Critical Length Effect in Copper Interconnects With Oxide and Low-k Dielectrics

    International Nuclear Information System (INIS)

    Thrasher, Stacye; Gall, Martin; Justison, Patrick; Hernandez, Richard; Kawasaki, Hisao; Capasso, Cristiano; Nguyen, Timothy

    2004-01-01

    As technology moves toward faster microelectronic devices with smaller feature sizes, copper is replacing aluminum-copper alloy and low-k dielectric is replacing oxide as the materials of choice for advanced interconnect integrations. Copper not only brings to the table the advantage of lower resistivity, but also exhibits better electromigration performance when compared to Al(Cu). Low-k dielectric materials are advantageous because they reduce power consumption and improve signal delay. Due to these advantages, the industry trend is moving towards integrating copper and low-k dielectric for high performance interconnects. The purpose of this study is to evaluate the critical length effect in single-inlaid copper interconnects and determine the critical product (jl)c, for a variety of integrations, examining the effect of ILD (oxide vs. low-k), geometry, and stress temperature

  18. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Selishcheva, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna, E-mail: joanna.kolny@uni-oldenburg.de [University of Oldenburg, Energy and Semiconductor Research Laboratory, Institute of Physics (Germany)

    2012-02-15

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In{sub 2}O{sub 3} surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV-Vis-absorption spectroscopy are used to characterize the samples.

  19. Copper-assisted shape control in colloidal synthesis of indium oxide nanoparticles

    International Nuclear Information System (INIS)

    Selishcheva, Elena; Parisi, Jürgen; Kolny-Olesiak, Joanna

    2012-01-01

    Indium oxide is an important n-type transparent semiconductor, finding application in solar cells, sensors, and optoelectronic devices. We present here a novel non-injection synthesis route for the preparation of colloidal indium oxide nanocrystals by using oleylamine (OLA) as ligand and as solvent. Indium oxide with cubic crystallographic structure is formed in a reaction between indium acetate and OLA, the latter is converted to oleylamide during the synthesis. The shape of the nanocrystals can be influenced by the addition of copper ions. When only indium (III) acetate is used as precursor flower-shaped indium oxide nanoparticles are obtained. Addition of copper salts such as copper (I) acetate, copper (II) acetate, copper (II) acetylacetonate, or copper (I) chloride, under otherwise identical reaction conditions changes the shape of nanoparticles to quasi-spherical or elongated. The anions, except for chloride, do not influence the shape of the resulting nanocrystals. This finding suggests that adsorption of copper ions on the In 2 O 3 surface during the nanoparticles growth is responsible for shape control, whereas changes in the reactivity of the In cations caused by the presence of different anions play a secondary role. X-ray diffraction, transmission electron microscopy, nuclear magnetic resonance, energy dispersive X-ray analysis, and UV–Vis-absorption spectroscopy are used to characterize the samples.

  20. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy

    KAUST Repository

    Zhang, Zhonghai; Wang, Peng

    2012-01-01

    focused on n-type metal oxide semiconductors as photoanodes, whereas studies of p-type metal oxide semiconductors as photocathodes where hydrogen is generated are scarce. In this paper, highly efficient and stable copper oxide composite photocathode

  1. Influence of antimony oxide on the properties of YBa[sub 2]Cu[sub 3]O[sub 7-x] superconductors prepared by melt quenching

    Energy Technology Data Exchange (ETDEWEB)

    Tenzler, T.; Altakh, O.; Zaitzev, O. (Mendeleev Univ. of Chemical Technology, Moscow (Russia))

    1992-12-01

    The potential usefulness of glass-technological procedures to prepare oxidic high-temperature superconductors is well-known. Samples in the system Y-Ba-Cu-O have been produced by a melt process and subsequent annealing steps. Antimony oxides have been added to the base system and their influence on the properties of the products has been studied. The samples have been analyzed by X-ray diffraction and differential thermogravimetry as well as by electrical resistance measurements. With the addition of antimony oxides the type and quantities of the crystalline phases changed both in the quenched samples and in the samples annealed at temperatures above 900deg C and also the density increased. It was found that the samples containing antimony oxides as well as the samples of the base system become superconductors at a temperature higher than the liquid nitrogen temperature. Only the annealing time is much less than that for the pure superconductor. (orig.).

  2. In Situ Study of Thermal Stability of Copper Oxide Nanowires at Anaerobic Environment

    Directory of Open Access Journals (Sweden)

    Lihui Zhang

    2014-01-01

    Full Text Available Many metal oxides with promising electrochemical properties were developed recently. Before those metal oxides realize the use as an anode in lithium ion batteries, their thermal stability at anaerobic environment inside batteries should be clearly understood for safety. In this study, copper oxide nanowires were investigated as an example. Several kinds of in situ experiment methods including in situ optical microscopy, in situ Raman spectrum, and in situ transmission electron microscopy were adopted to fully investigate their thermal stability at anaerobic environment. Copper oxide nanowires begin to transform as copper(I oxide at about 250°C and finish at about 400°C. The phase transformation proceeds with a homogeneous nucleation.

  3. Facial Skin Lifting and Brightening Following Sleep on Copper Oxide Containing Pillowcases

    Directory of Open Access Journals (Sweden)

    Gadi Borkow

    2016-07-01

    Full Text Available Copper plays a key role in many of the physiological processes that occur in the skin. Previously it was found that sleeping on pillowcases impregnated with microscopic copper oxide particles results in reduction of wrinkles and fine lines. In the current study, it was examined if sleeping on copper oxide impregnated pillowcases results also in skin lifting and skin brightness. A four week, double blind, randomized study was performed, during which 45 women, aged 37–54, slept on copper oxide containing pillowcases (test group, n = 23 or on control pillowcases without copper oxide (control group, n = 22. Facial and eye skin surface was measured using an F-ray 3D measurement system and surface analysis was conducted using Image-pro® plus. Skin brightness was measured using a tristimulus colorimeter. Sleeping on the test pillowcases resulted in statistically significant skin lifting on the cheek area (p = 0.039 and eye area (p = 0.001 after four weeks of use as compared to baseline. The mean skin brightness in those sleeping on the test pillowcases increased after two (p = 0.024 and four weeks (p = 0.008. No statistically significant changes occurred during the study in the study participants using the control pillowcases. Statistically significant differences between both groups were recorded at two and four weeks for skin brightness and skin lifting, respectively. In conclusion, sleeping on copper oxide containing pillowcases results in facial skin lifting and brightness of the skin.

  4. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid

    Science.gov (United States)

    Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.

    2018-05-01

    Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.

  5. Method of making Tl-Sr-Ca-Cu-oxide superconductors comprising heating at elevated pressures in a sealed container

    International Nuclear Information System (INIS)

    Lechtev, W.L.; Osofsky, M.S.; Skelton, E.F.; Toth, L.E.

    1992-01-01

    This patent describes a method of forming a Tl-Sr-Ca-Cu-oxide high T c superconductor. It comprises forming a reaction mixture of the oxides of Sr, Cu, Ca, and Tl in stoichiometric proportions to make a Tl-Sr-Ca-Cu-oxide high T c superconducting compound; compressing the reaction mixture into a hard body; placing the hard body into a container for containing thallium vapor; evacuating and sealing the hard body in the container; heating the hard body and the container at a temperature of about 800 degrees C to about 950 degrees C and under pressure of at least about 30,000 psi until the container metal around the hard body and the oxides of Tl, Sr, Ca, and Cu react to form a superconducting compound; and cooling the superconducting compound to room temperature and returning the superconducting compound to atmospheric pressure

  6. Copper-mediated oxidative degradation of catecholamines and oxidative damage of protein

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, P.R.; Harria, M.I.N.; Felix, J.M.; Hoffmann, M.E. [Universidade Estadual de Campinas, SP (Brazil). Inst. de Biologia

    1997-12-31

    Full text. Degradative oxidation of catecholamines has been a matter of large interest in recent years due to the evidences associating their autoxidation with the etiology of neurotoxic and cardiotoxic processes. In this work we present data on the degradative oxidation of catecholamines of physiological importance: isoproterenol (IP), epinephrine (EP), norepinephrine (NEP), deoxyepinephrine (DEP) and dopamine (DA). The degradative oxidation of the catecholamines was followed by measurement of spectral changes and oxygen consumption by neutral aqueous solutions. The data show that Cu{sup 2+} strongly accelerated the rate of catecholamine oxidation, following the decreasing order; EP>DEP>IP>NEP>DA. The production of superoxide anion radical during catecholamine oxidation was very slow, even in the presence of Cu{sup 2+}. The ability of IP to induce damages on bovine serum albumin (BSA) was determined by measuring the formation of carbonyl-groups in the protein, detected by reduction with tritiated Na BH{sub 4}. The incubation of BSA with IP (50-500{mu}M), in the presence of 100{mu}M Cu{sup 2+} leaded to an increased and dose dependent {sup 3} H-incorporation by the oxidized protein. The production of oxidative damage by IP/Cu{sup 2+} was accompanied by marked BSA fragmentation, detected by SDS-polyacrylamide gel dependent (25-400{mu}M IP) des appearance of the original BSA band and appearance of smaller fragments spread in the gel, when incubation has been done in the presence of 100{mu}M Cu{sup 2+}. These results suggest that copper-catalysed oxidative degradation of proteins induced by catecholamines might be critically involved in the toxic action of these molecules

  7. Synthesis, characterization and biological studies of copper oxide nanostructures

    Science.gov (United States)

    Jillani, Saquf; Jelani, Mohsan; Hassan, Najam Ul; Ahmad, Shahbaz; Hafeez, Muhammad

    2018-04-01

    The development of synthetic methods has been broadly accepted as an area of fundamental importance to the understanding and application of nanoscale materials. It allows the individual to modulate basic parameters such as morphology, particle size, size distributions, and composition. Several methods have been developed to synthesize CuO nanostructures with diverse morphologies, sizes, and dimensions using different chemical and physical based approaches. In this work, CuO nanostructures have been synthesized by aqueous precipitation method and simple chemical deposition method. The characterization of these products has been carried out by the x-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR) and UV–vis spectroscopy. Biological activity such as antibacterial nature of synthesized CuO is also explored. XRD peaks analysis revealed the monoclinic crystalline phase of copper oxide nanostructures. While the rod-like and particle-like morphologies have been observed in SEM results. FTIR spectra have confirmed the formation of CuO nanoparticles by exhibiting its characteristic peaks corresponding to 494 cm‑1 and 604 cm‑1. The energy band gap of the as-prepared CuO nanostructures determined from UV–vis spectra is found to be 2.18 eV and 2.0 eV for precipitation and chemically deposited samples respectively. The antibacterial activity results described that the synthesized CuO nanoparticles showed better activity against Staphylococcus aureus. The investigated results suggested the synthesis of highly stable CuO nanoparticles with significant antibacterial activities.

  8. Increased sensitivity of apolipoprotein E knockout mice to copper-induced oxidative injury to the liver.

    Science.gov (United States)

    Chen, Yuan; Li, Bin; Zhao, Ran-ran; Zhang, Hui-feng; Zhen, Chao; Guo, Li

    2015-04-10

    Apolipoprotein E (ApoE) genotypes are related to clinical presentations in patients with Wilson's disease, indicating that ApoE may play an important role in the disease. However, our understanding of the role of ApoE in Wilson's disease is limited. High copper concentration in Wilson's disease induces excessive generation of free oxygen radicals. Meanwhile, ApoE proteins possess antioxidant effects. We therefore determined whether copper-induced oxidative damage differ in the liver of wild-type and ApoE knockout (ApoE(-/-)) mice. Both wild-type and ApoE(-/-) mice were intragastrically administered with 0.2 mL of copper sulfate pentahydrate (200 mg/kg; a total dose of 4 mg/d) or the same volume of saline daily for 12 weeks, respectively. Copper and oxidative stress markers in the liver tissue and in the serum were assessed. Our results showed that, compared with the wild-type mice administered with copper, TBARS as a marker of lipid peroxidation, the expression of oxygenase-1 (HO-1), NAD(P)H dehydrogenase, and quinone 1 (NQO1) significantly increased in the ApoE(-/-) mice administered with copper, meanwhile superoxide dismutase (SOD) activity significantly decreased. Thus, it is concluded that ApoE may protect the liver from copper-induced oxidative damage in Wilson's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Selective leaching process for the recovery of copper and zinc oxide from copper-containing dust.

    Science.gov (United States)

    Wu, Jun-Yi; Chang, Fang-Chih; Wang, H Paul; Tsai, Ming-Jer; Ko, Chun-Han; Chen, Chih-Cheng

    2015-01-01

    The purpose of this study was to develop a resource recovery procedure for recovering copper and zinc from dust produced by copper smelting furnaces during the manufacturing of copper-alloy wires. The concentrations of copper in copper-containing dust do not meet the regulation standards defined by the Taiwan Environmental Protection Administration; therefore, such waste is classified as hazardous. In this study, the percentages of zinc and copper in the dust samples were approximately 38.4% and 2.6%, respectively. To reduce environmental damage and recover metal resources for industrial reuse, acid leaching was used to recover metals from these inorganic wastes. In the first stage, 2 N of sulphuric acid was used to leach the dust, with pH values controlled at 2.0-3.0, and a solid-to-liquid ratio of 1:10. The results indicated that zinc extraction efficiency was higher than 95%. A selective acid leaching process was then used to recover the copper content of the residue after filtration. In the second stage, an additional 1 N of sulphuric acid was added to the suspension in the selective leaching process, and the pH value was controlled at 1.5-2.0. The reagent sodium hydroxide (2 N) was used as leachate at a pH greater than 7. A zinc hydroxide compound formed during the process and was recovered after drying. The yields for zinc and copper were 86.9-93.5% and 97.0-98.9%, respectively.

  10. Study on the CMP characteristics of a copper passivity layer formed by dipping in an oxidizer

    International Nuclear Information System (INIS)

    Choi, Youn-Ok; Lee, Woo-Sun; Choi, Gwon-Woo; Lee, Kang-Yeon; Kim, Nam-Oh

    2011-01-01

    Copper has been the material for ultra-large-scale integrated circuits owing to its excellent electromigration resistance and low electrical resistance. The polishing mechanism of metal chemical mechanical polishing (CMP) has been reported to be a repeated process of passive oxide layer formation through the use of on oxidizer and then the abrasion action of the slurry. However, because copper is softer and more sensitive to corrosion than tungsten, the slurry composition and the polishing mechanism during the copper CMP process may be more complicated. In a general Cu-CMP process, a mixture of an alumina-based slurry and an oxidizer in proper proportion is used in order to form a passive oxide layer such as CuO and CuO 2 . However, a conventional CMP process consumes an unnecessary amount of slurry to formed the passive layer. Therefore, in this paper, we propose a new method. The copper samples were oxidized by dipping in an oxidizer for an appropriate time to minimize the consumption of slurry before the CMP process. Then, we performed the CMP process. In order to compare the polishing characteristics of the copper thin film, we discuss the CMP removal rate and non-uniformity, as well as the microstructure of the surface and a layer cross-section based on a scanning.

  11. Fabrication of visible light-triggered photocatalytic materials from the coupling of n-type zinc oxide and p-type copper oxide

    Science.gov (United States)

    Gorospe, A. B.; Herrera, M. U.

    2017-04-01

    Coupling of copper oxide (CuO) and zinc oxide (ZnO) was done by chemical precipitation method. In this method, copper sulfate pentahydrate and zinc sulfate heptahydrate salt precursors were separately dissolved in distilled water; then were mixed together. The copper sulfate-zinc sulfate solution was then combined with a sodium hydroxide solution. The precipitates were collected and washed in distilled water and ethanol several times, then filtered and dried. The dried sample was grounded, and then undergone heat treatment. After heating, the sample was grounded again. Zinc oxide powder and copper oxide powder were also fabricated using chemical precipitation method. X-Ray Diffraction measurements of the coupled CuO/ZnO powder showed the presence of CuO and ZnO in the fabricated sample. Furthermore, other peaks shown by XRD were also identified corresponding to copper, copper (II) oxide, copper sulfate and zinc sulfate. Results of the photocatalytic activity investigation show that the sample exhibited superior photocatalytic degradation of methyl orange under visible light illumination compared to copper oxide powder and zinc oxide powder. This may be attributed to the lower energy gap at the copper oxide-zinc oxide interface, compared to zinc oxide, allowing visible light to trigger its photocatalytic activity.

  12. Electrodeposited porous and amorphous copper oxide film for application in supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Patake, V.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, (M.S.) (India); Joshi, S.S. [Clean Energy Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of); Lokhande, C.D. [Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, (M.S.) (India); Clean Energy Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: l_chandrakant@yahoo.com; Joo, Oh-Shim [Clean Energy Research Center, Korea Institute of Science and Technology, Cheongryang, Seoul 130-650 (Korea, Republic of)], E-mail: joocat@kist.rre.kr

    2009-03-15

    In present study, the porous amorphous copper oxide thin films have been deposited from alkaline sulphate bath. The cathodic electrodeposition method was employed to deposit copper oxide film at room temperature on stainless steel substrate. Their structural and surface morphological properties were investigated by means of X-ray diffraction (XRD) and scanning electron micrograph (SEM), respectively. To propose this as a new material for possible application in the supercapacitor, its electrochemical properties have been studied in aqueous 1 M Na{sub 2}SO{sub 4} electrolyte using cyclic voltammetry. The structural analysis from XRD pattern showed the formation of amorphous copper oxide film on the substrate. The surface morphological studies from scanning electron micrographs revealed the formation of porous cauliflower-like copper oxide film. The cyclic voltammetric curves showed symmetric nature and increase in capacitance with increase in film thickness. The maximum specific capacitance of 36 F g{sup -1} was exhibited for the 0.6959 mg cm{sup -2} film thickness. This shows that low-cost copper oxide electrode will be a potential application in supercapacitor.

  13. Synergetic effect of copper-plating wastewater as a catalyst for the destruction of acrylonitrile wastewater in supercritical water oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Young Ho; Lee, Hong-shik; Lee, Young-Ho [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Kim, Jaehoon; Kim, Jae-Duck [Supercritical Fluid Research Laboratory, Energy and Environment Research Division, Korea Institute of Science and Technology (KIST), 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Youn-Woo, E-mail: ywlee@snu.ac.kr [School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, 599 Gwanangno, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2009-08-15

    A new supercritical water oxidation process for the simultaneous treatment of mixed wastewater containing wastewater from acrylonitrile manufacturing processes and copper-plating processes was investigated using a continuous tubular reactor system. Experiments were carried out at temperatures ranging from 400 to 600 deg. C and a pressure of 25 MPa. The residence time was fixed at 2 s by changing the flow rates of feeds, depending on reaction temperature. The initial total organic carbon (TOC) concentration of the wastewaters and the O{sub 2} concentration at the reactor inlet were kept constant at 0.49 and 0.74 mol/L. It was confirmed that the copper-plating wastewater accelerated the TOC conversion of acrylonitrile wastewater from 17.6% to 67.3% at a temperature of 450 deg. C. Moreover, copper and copper oxide nanoparticles were generated in the process of supercritical water oxidation (SCWO) of mixed wastewater. 99.8% of copper in mixed wastewater was recovered as solid copper and copper oxides at a temperature of 600 deg. C, with their average sizes ranging from 150 to 160 nm. Our study showed that SCWO provides a synergetic effect for simultaneous treatment of acrylonitrile and copper-plating wastewater. During the reaction, the oxidation rate of acrylonitrile wastewater was enhanced due to the in situ formation of nano-catalysts of copper and/or copper oxides, while the exothermic decomposition of acrylonitrile wastewater supplied enough heat for the recovery of solid copper and copper oxides from copper-plating wastewater. The synergetic effect of wastewater treatment by the newly proposed SCWO process leads to full TOC conversion, color removal, detoxification, and odor elimination, as well as full recovery of copper.

  14. Highly Conductive and Reliable Copper-Filled Isotropically Conductive Adhesives Using Organic Acids for Oxidation Prevention

    Science.gov (United States)

    Chen, Wenjun; Deng, Dunying; Cheng, Yuanrong; Xiao, Fei

    2015-07-01

    The easy oxidation of copper is one critical obstacle to high-performance copper-filled isotropically conductive adhesives (ICAs). In this paper, a facile method to prepare highly reliable, highly conductive, and low-cost ICAs is reported. The copper fillers were treated by organic acids for oxidation prevention. Compared with ICA filled with untreated copper flakes, the ICA filled with copper flakes treated by different organic acids exhibited much lower bulk resistivity. The lowest bulk resistivity achieved was 4.5 × 10-5 Ω cm, which is comparable to that of commercially available Ag-filled ICA. After 500 h of 85°C/85% relative humidity (RH) aging, the treated ICAs showed quite stable bulk resistivity and relatively stable contact resistance. Through analyzing the results of x-ray diffraction, x-ray photoelectron spectroscopy, and thermogravimetric analysis, we found that, with the assistance of organic acids, the treated copper flakes exhibited resistance to oxidation, thus guaranteeing good performance.

  15. Electrochemical Water Oxidation and Stereoselective Oxygen Atom Transfer Mediated by a Copper Complex.

    Science.gov (United States)

    Kafentzi, Maria-Chrysanthi; Papadakis, Raffaello; Gennarini, Federica; Kochem, Amélie; Iranzo, Olga; Le Mest, Yves; Le Poul, Nicolas; Tron, Thierry; Faure, Bruno; Simaan, A Jalila; Réglier, Marius

    2018-04-06

    Water oxidation by copper-based complexes to form dioxygen has attracted attention in recent years, with the aim of developing efficient and cheap catalysts for chemical energy storage. In addition, high-valent metal-oxo species produced by the oxidation of metal complexes in the presence of water can be used to achieve substrate oxygenation with the use of H 2 O as an oxygen source. To date, this strategy has not been reported for copper complexes. Herein, a copper(II) complex, [(RPY2)Cu(OTf) 2 ] (RPY2=N-substituted bis[2-pyridyl(ethylamine)] ligands; R=indane; OTf=triflate), is used. This complex, which contains an oxidizable substrate moiety (indane), is used as a tool to monitor an intramolecular oxygen atom transfer reaction. Electrochemical properties were investigated and, upon electrolysis at 1.30 V versus a normal hydrogen electrode (NHE), both dioxygen production and oxygenation of the indane moiety were observed. The ligand was oxidized in a highly diastereoselective manner, which indicated that the observed reactivity was mediated by metal-centered reactive species. The pH dependence of the reactivity was monitored and correlated with speciation deduced from different techniques, ranging from potentiometric titrations to spectroscopic studies and DFT calculations. Water oxidation for dioxygen production occurs at neutral pH and is probably mediated by the oxidation of a mononuclear copper(II) precursor. It is achieved with a rather low overpotential (280 mV at pH 7), although with limited efficiency. On the other hand, oxygenation is maximum at pH 8-8.5 and is probably mediated by the electrochemical oxidation of an antiferromagnetically coupled dinuclear bis(μ-hydroxo) copper(II) precursor. This constitutes the first example of copper-centered oxidative water activation for a selective oxygenation reaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Simple Copper Catalysts for the Aerobic Oxidation of Amines: Selectivity Control by the Counterion.

    Science.gov (United States)

    Xu, Boran; Hartigan, Elizabeth M; Feula, Giancarlo; Huang, Zheng; Lumb, Jean-Philip; Arndtsen, Bruce A

    2016-12-19

    We describe the use of simple copper-salt catalysts in the selective aerobic oxidation of amines to nitriles or imines. These catalysts are marked by their exceptional efficiency, operate at ambient temperature and pressure, and allow the oxidation of amines without expensive ligands or additives. This study highlights the significant role counterions can play in controlling selectivity in catalytic aerobic oxidations. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Superconductor with improved persistence characteristics

    International Nuclear Information System (INIS)

    Stekly, Z. J. J.; Strauss, B. P.

    1984-01-01

    In a multifilamentary superconductor, plural filaments are separated from one another by a ductile nonsuperconducting copper matrix. The niobium titanium filaments are arrayed through the copper, with one filament being substantially larger than the others, and preferably, centrally located in the wire. Preferably also, the other filaments are arrayed in an annular configuration about the periphery of the wire

  18. Copper and CuNi alloys substrates for HTS coated conductor applications protected from oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Segarra, M; Diaz, J; Xuriguera, H; Chimenos, J M; Espiell, F [Dept. of Chemical Engineering and Metallurgy, Univ. of Barcelona, Barcelona (Spain); Miralles, L [Lab. d' Investigacio en Formacions Geologiques. Dept. of Petrology, Geochemistry and Geological Prospecting, Univ. of Barcelona, Barcelona (Spain); Pinol, S [Inst. de Ciencia de Materials de Barcelona, Bellaterra (Spain)

    2003-07-01

    Copper is an interesting substrate for HTS coated conductors for its low cost compared to other metallic substrates, and for its low resistivity. Nevertheless, mechanical properties and resistance to oxidation should be improved in order to use it as substrate for YBCO deposition by non-vacuum techniques. Therefore, different cube textured CuNi tapes were prepared by RABIT as possible substrates for deposition of high critical current density YBCO films. Under the optimised conditions of deformation and annealing, all the studied CuNi alloys (2%, 5%, and 10% Ni) presented (100) left angle 001 right angle cube texture which is compatible for YBCO deposition. Textured CuNi alloys present higher tensile strength than pure copper. Oxidation resistance of CuNi tapes under different oxygen atmospheres was also studied by thermogravimetric analysis and compared to pure copper tapes. Although the presence of nickel improves mechanical properties of annealed copper, it does not improve its oxidation resistance. However, when a chromium buffer layer is electrodeposited on the tape, oxygen diffusion is slowed down. Chromium is, therefore, useful for protecting copper and CuNi alloys from oxidation although its recrystallisation texture, (110), is not suitable for coated conductors. (orig.)

  19. A novel anti-influenza copper oxide containing respiratory face mask.

    Directory of Open Access Journals (Sweden)

    Gadi Borkow

    Full Text Available BACKGROUND: Protective respiratory face masks protect the nose and mouth of the wearer from vapor drops carrying viruses or other infectious pathogens. However, incorrect use and disposal may actually increase the risk of pathogen transmission, rather than reduce it, especially when masks are used by non-professionals such as the lay public. Copper oxide displays potent antiviral properties. A platform technology has been developed that permanently introduces copper oxide into polymeric materials, conferring them with potent biocidal properties. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that impregnation of copper oxide into respiratory protective face masks endows them with potent biocidal properties in addition to their inherent filtration properties. Both control and copper oxide impregnated masks filtered above 99.85% of aerosolized viruses when challenged with 5.66+/-0.51 and 6.17+/-0.37 log(10TCID(50 of human influenza A virus (H1N1 and avian influenza virus (H9N2, respectively, under simulated breathing conditions (28.3 L/min. Importantly, no infectious human influenza A viral titers were recovered from the copper oxide containing masks within 30 minutes (< or = 0.88 log(10TCID(50, while 4.67+/-1.35 log(10TCID(50 were recovered from the control masks. Similarly, the infectious avian influenza titers recovered from the copper oxide containing masks were < or = 0.97+/-0.01 log(10TCID(50 and from the control masks 5.03+/-0.54 log(10TCID(50. The copper oxide containing masks successfully passed Bacterial Filtration Efficacy, Differential Pressure, Latex Particle Challenge, and Resistance to Penetration by Synthetic Blood tests designed to test the filtration properties of face masks in accordance with the European EN 14683:2005 and NIOSH N95 standards. CONCLUSIONS/SIGNIFICANCE: Impregnation of copper oxide into respiratory protective face masks endows them with potent anti-influenza biocidal properties without altering their physical

  20. Oxidation of aromatic alcohols on zeolite-encapsulated copper amino acid complexes

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Teixeira Florencio, J.M. [Kaiserslautern Univ. (Germany). Dept. of Chemistry, Chemical Technology

    1998-12-31

    Copper complexes of the amino acids histidine, arginine and lysine have been introduced into the supercages of zeolite Y and, for the first time, into the large intracrystalline cavities of zeolites EMT and MCM-22. The resulting host/guest compounds are characterized by X-ray powder diffraction, UV/VIS-spectroscopy in the diffuse reflectance mode and by catalytic tests in the liquid-phase oxidation of aromatic alcohols (viz. benzyl alcohol, 2- and 3-methylbenzyl alcohol and 2,5-dimethylbenzyl alcohol) with tertiary-butylhydroperoxide as oxidant. It was observed that intracrystalline copper-amino acid complexes possess remarkable catalytic activity, yielding the corresponding aromatic aldehydes and acids. (orig.)

  1. Spiral spin state in high-temperature copper-oxide superconductors: Evidence from neutron scattering measurements

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    2005-01-01

    An effective spiral spin phase ground state provides a new paradigm for the high-temperature superconducting cuprates. It accounts for the recent neutron scattering observations of spin excitations regarding both the energy dispersion and the intensities, including the "universal" rotation by 45...... model. The form of the exchange interaction function reveals the effects of the Fermi surface, and the unique shape predicts large quantum spin fluctuations in the ground state....

  2. Copper oxide/N-silicon heterojunction photovoltaic device

    Science.gov (United States)

    Feng, Tom; Ghosh, Amal K.

    1982-01-01

    A photovoltaic device having characteristics of a high efficiency solar cell comprising a Cu.sub.x O/n-Si heterojunction. The Cu.sub.x O layer is formed by heating a deposited copper layer in an oxygen containing ambient.

  3. Local valence balance in the structure of a high-temperature superconductor

    International Nuclear Information System (INIS)

    Nalbandyan, V.B.

    1990-01-01

    Hitherto superconductivity of complex oxides has been observed only if the metal is present in a mixed (nonintegral) degree of oxidation. It is of interest to verify the statement that in YBa 2 Cu 3 O x there is no copper in a degree of oxidation above 2+; instead of this, part of the oxygen is in the degree of oxidation 1-. Thus, the calculations of the valence forces tell against the presence of copper in a mixed degree of oxidation between 2+ and 3+ in high-temperature superconductors of the stoichiometric composition RBa 2 Cu 3 O 7 . In two-dimensional layers, copper is in the degree of oxidation 2+ (or even lower), while the electron holes are concentrated in one-dimensional chains - either in the form Cu(3+) or in the form O(1-)

  4. Behavior of Copper Oxide Nanoparticles in Soil Pore Waters as Influenced by Soil Characteristics, Bacteria, and Wheat Roots

    OpenAIRE

    Hortin, Joshua

    2017-01-01

    The goal of this project was to study the behavior of copper oxide nanoparticles in soil environments. Copper oxide nanoparticles have antimicrobial properties and may also be used in agricultural settings to provide a source of copper for plant health, but accidental or misapplication of these nanoparticles to soil may be damaging to the plant and its associated bacteria. Dissolved soil organic matter that is present in soil pore waters dissolved nanoparticles, but did not dissolve the ex...

  5. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells.

    Science.gov (United States)

    Wong, Terence K S; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K

    2016-04-07

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu₂O), cupric oxide (CuO) and copper (III) oxide (Cu₄O₃) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu₂O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of Al x Ga 1- x O onto thermal Cu₂O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu₂O nanopowder. CuO/Cu₂O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu₄O₃/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10 -2 %.

  6. Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen.

    Science.gov (United States)

    Sivaraj, Rajeshwari; Rahman, Pattanathu K S M; Rajiv, P; Salam, Hasna Abdul; Venckatesh, R

    2014-12-10

    This investigation explains the biosynthesis and characterization of copper oxide nanoparticles from an Indian medicinal plant by an eco-friendly method. The main objective of this study is to synthesize copper oxide nanoparticles from Tabernaemontana divaricate leaves through a green chemistry approach. Highly stable, spherical copper oxide nanoparticles were synthesized by using 50% concentration of Tabernaemontana leaf extract. Formation of copper oxide nanoparticles have been characterized by UV-Vis absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) with energy dispersive X-ray analysis (EDX) and transmission electron microscopy (TEM) analysis. All the analyses revealed that copper oxide nanoparticles were 48±4nm in size. Functional groups and chemical composition of copper oxide were also confirmed. Antimicrobial activity of biogenic copper oxide nanoparticles were investigated and maximum zone of inhibition was found in 50μg/ml copper oxide nanoparticles against urinary tract pathogen (Escherichia coli). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Bioaccumulation and effects of different-shaped copper oxide nanoparticles in the deposit-feeding snail Potamopyrgus antipodarum

    DEFF Research Database (Denmark)

    Ramskov, Tina; Selck, Henriette; Banta, Gary Thomas

    2014-01-01

    Copper oxide (CuO) nanoparticles (NPs) are among the most widely used engineered NPs and are thus likely to end up in the environment, predominantly in sediments. Copper oxide NPs have been found to be toxic to a variety of (mainly pelagic) organisms, but to differing degrees. In the present stud...

  8. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Shoshani-Dror, Dana [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Weksler-Zangen, Sarah [Diabetes Research Unit, Hebrew University Hadassah Medical School and Hospital, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester, MN (United States); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2012-12-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  9. The effect of copper deficiency on fetal growth and liver anti-oxidant capacity in the Cohen diabetic rat model

    International Nuclear Information System (INIS)

    Ergaz, Zivanit; Shoshani-Dror, Dana; Guillemin, Claire; Neeman-azulay, Meytal; Fudim, Liza; Weksler-Zangen, Sarah; Stodgell, Christopher J.; Miller, Richard K.; Ornoy, Asher

    2012-01-01

    High sucrose low copper diet induces fetal growth restriction in the three strains of the Cohen diabetic rats: an inbred copper deficient resistant (CDr), an inbred copper deficient sensitive (CDs that become diabetic on high sucrose low copper diet -HSD) and an outbred Wistar derived Sabra rats. Although those growth restricted fetuses also exhibit increased oxidative stress, antioxidants do not restore normal growth. In the present study, we evaluated the role of copper deficiency in the HSD induced fetal growth restriction by adding to the drinking water of the rats 1 ppm or 2 ppm of copper throughout their pregnancy. Fetal and placental growth in correlation with fetal liver copper content and anti-oxidant capacity was evaluated on day 21 of pregnancy. HSD compared to regular chow induced fetal growth restriction, which was most significant in the Cohen diabetic sensitive animals. The addition of 1 ppm and 2 ppm copper to the drinking water normalized fetal growth in a dose dependent manner and reduced the degree of hyperglycemia in the diabetes sensitive rats. The CDs fetuses responded to the HSD with lower catalase like activity, and less reduced superoxide dismutase levels compared to the Sabra strain, and had high malondialdehyde levels even when fed regular chow. Immunostaining was higher for nitrotyrosine among the CDr and higher for hypoxia factor 1 α among the CDs. We conclude that in our model of dietary-induced fetal growth restriction, copper deficiency plays a major etiologic role in the decrease of fetal growth and anti-oxidant capacity. -- Highlights: ► High sucrose low copper diet restricted fetal growth in the Cohen diabetic rat model ► Maternal copper blood levels directly correlated with fetal liver copper content ► Copper supplementation decreased embryonic resorption in the inbred strains ► Copper supplementation reduced hyperglycemia in the sucrose sensitive inbred strain ► Copper supplementation alleviated growth restriction and

  10. Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioaccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttallii.

    Science.gov (United States)

    Regier, Nicole; Cosio, Claudia; von Moos, Nadia; Slaveykova, Vera I

    2015-06-01

    In this study, the uptake and sub-toxic effects of CuO nanoparticles (CuO-NPs), dissolved Cu(II) alone or in combination with UV radiation on the aquatic macrophyte Elodea nuttallii were studied. Emphasis was on Cu accumulation, growth, photosynthesis and the oxidative stress related enzymes peroxidase (POD) and superoxide dismutase (SOD). The results showed stronger Cu accumulation in plants exposed to 10 mg L(-1) CuO-NPs, corresponding to 1.4-2 mg L(-1) dissolved Cu(II), than to 256 μg L(-1) Cu(II). However, the ratio between the accumulated Cu and dissolved Cu in CuO treatments was lower than in Cu(II) treatments. Additional UV exposure increased accumulation in both treatments, with the effect being stronger for Cu accumulation from CuO-NPs than for dissolved Cu(II). Photosynthetic capacity was strongly reduced by UV treatment, whereas remained unaffected by Cu(II) or CuO-NP treatments. Similarly, the increase of SOD activity was more pronounced in the UV treatments. On the other hand, POD activity enhancement was strongest in the plants exposed to CuO-NPs for 24 h. Expression of the copper transporter COPT1 as revealed by RT-qPCR was inhibited by Cu(II) and CuO-NP treatment, limiting the uptake of excess Cu into the cells. Overall, the combined exposure of E. nuttallii to UV radiation with CuO-NPs or Cu(II) has a higher impact than exposure to CuO-NPs or Cu(II) alone. The results imply that heavy pollution of natural water with CuO-NPs or dissolved Cu might have stronger effects in combination with natural UV irradiation on organisms in situ. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effects of Copper Oxide Nanoparticles on Antioxidant Enzyme Activities and on Tissue Accumulation of Oreochromis niloticus.

    Science.gov (United States)

    Tunçsoy, Mustafa; Duran, Servet; Ay, Özcan; Cicik, Bedii; Erdem, Cahit

    2017-09-01

    Accumulation of copper oxide nanoparticles (CuO NPs) in gill, liver and muscle tissues of Oreochromis niloticus and its effects on superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities in gill and liver tissues were studied after exposing the fish to 20 µg/L Cu over 15 days. Copper levels and enzyme activities in tissues were determined using spectrophotometric (ICP-AES and UV) techniques respectively. No mortality was observed during the experiments. Copper levels increased in gill and liver tissues of O. niloticus compared to control when exposed to CuO NPs whereas exposure to metal had no effect on muscle level at the end of the exposure period. Highest accumulation of copper was observed in liver while no accumulation was detected in muscle tissue. SOD, CAT activities decreased and GPx activity increased in gill and liver tissues when exposed to CuO NPs.

  12. Evidence of a spin resonance mode in the iron-based superconductor Ba(0.6)K(0.4)Fe2As2 from scanning tunneling spectroscopy.

    Science.gov (United States)

    Shan, Lei; Gong, Jing; Wang, Yong-Lei; Shen, Bing; Hou, Xingyuan; Ren, Cong; Li, Chunhong; Yang, Huan; Wen, Hai-Hu; Li, Shiliang; Dai, Pengcheng

    2012-06-01

    We used high-resolution scanning tunneling spectroscopy to study the hole-doped iron pnictide superconductor Ba(0.6)K(0.4)Fe(2)As(2) (T(c)=38 K). Features of a bosonic excitation (mode) are observed in the measured quasiparticle density of states. The bosonic features are intimately associated with the superconducting order parameter and have a mode energy of ~14 meV, similar to the spin resonance measured by inelastic neutron scattering. These results indicate a strong electron-spin excitation coupling in iron pnictide superconductors, similar to that in high-T(c) copper oxide superconductors.

  13. Cellular membrane accommodation of copper-induced oxidative conditions in the coral Seriatopora caliendrum

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chuan-Ho, E-mail: chtang@nmmba.gov.tw [Institute of Marine Biodiversity and Evolutionary Biology, National Dong Hwa University, Pingtung, Taiwan, ROC (China); National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC (China); Lin, Ching-Yu [Institute of Environmental Health, National Taiwan University, Taipei City, Taiwan, ROC (China); Lee, Shu-Hui [Center of General Education, National Kaohsiung Marine University, Kaohsiung, Taiwan, ROC (China); Wang, Wei-Hsien [National Museum of Marine Biology and Aquarium, Pingtung, Taiwan, ROC (China); Department of Marine Biotechnology and Resources and Asia-Pacific Ocean Research Center, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC (China)

    2014-03-01

    Highlights: • Coral cells alter membrane lipid to accommodate copper-induce oxidative conditions • Coral membrane repair occur due to lipid alterations • Zooxanthellae release results from membrane repair by symbiosome fusion • Copper-induced lipid alterations perturb membrane-related functions in coral cells • Copper chronic effect on coral fitness are related to long-term membrane perturbation - Abstract: Oxidative stress has been associated with copper-induced toxicity in scleractinian corals. To gain insight into the accommodation of the cellular membrane to oxidative conditions, a pocilloporid coral, Seriatopora caliendrum, was exposed to copper at distinct, environmentally relevant dose for various lengths of time. Glycerophosphocholine profiling of the response of the coral to copper exposure was characterized using a validated method. The results indicate that coral lipid metabolism is programmed to induce membrane alterations in response to the cellular deterioration that occurs during the copper exposure period. Decreasing lyso-phosphatidylcholines and exchanging polyunsaturated phosphatidylcholines for polyunsaturated plasmanylcholines were the initial actions taken to prevent membrane permeabilization. To relax/resist the resulting membrane strain caused by cell/organelle swelling, the coral cells inversely exchanged polyunsaturated plasmanylcholines for polyunsaturated phosphatidylcholines and further increased the levels of monounsaturated glycerophosphocholines. At the same time, the levels of saturated phosphatidylcholines were also increased to increase membrane rigidity and protect against oxidative attack. Interestingly, such alterations in lipid metabolism were also required for membrane fusion to repair the deteriorated membranes by repopulating them with proximal lipid reservoirs, similar to symbiosome membranes. Additionally, increasing saturated and monounsaturated plasmanylcholines and inhibiting the suppression of saturated lyso

  14. Cellular membrane accommodation of copper-induced oxidative conditions in the coral Seriatopora caliendrum

    International Nuclear Information System (INIS)

    Tang, Chuan-Ho; Lin, Ching-Yu; Lee, Shu-Hui; Wang, Wei-Hsien

    2014-01-01

    Highlights: • Coral cells alter membrane lipid to accommodate copper-induce oxidative conditions • Coral membrane repair occur due to lipid alterations • Zooxanthellae release results from membrane repair by symbiosome fusion • Copper-induced lipid alterations perturb membrane-related functions in coral cells • Copper chronic effect on coral fitness are related to long-term membrane perturbation - Abstract: Oxidative stress has been associated with copper-induced toxicity in scleractinian corals. To gain insight into the accommodation of the cellular membrane to oxidative conditions, a pocilloporid coral, Seriatopora caliendrum, was exposed to copper at distinct, environmentally relevant dose for various lengths of time. Glycerophosphocholine profiling of the response of the coral to copper exposure was characterized using a validated method. The results indicate that coral lipid metabolism is programmed to induce membrane alterations in response to the cellular deterioration that occurs during the copper exposure period. Decreasing lyso-phosphatidylcholines and exchanging polyunsaturated phosphatidylcholines for polyunsaturated plasmanylcholines were the initial actions taken to prevent membrane permeabilization. To relax/resist the resulting membrane strain caused by cell/organelle swelling, the coral cells inversely exchanged polyunsaturated plasmanylcholines for polyunsaturated phosphatidylcholines and further increased the levels of monounsaturated glycerophosphocholines. At the same time, the levels of saturated phosphatidylcholines were also increased to increase membrane rigidity and protect against oxidative attack. Interestingly, such alterations in lipid metabolism were also required for membrane fusion to repair the deteriorated membranes by repopulating them with proximal lipid reservoirs, similar to symbiosome membranes. Additionally, increasing saturated and monounsaturated plasmanylcholines and inhibiting the suppression of saturated lyso

  15. Examining mechanism of toxicity of copper oxide nanoparticles to Saccharomyces cerevisiae and Caenorhabditis elegans

    Science.gov (United States)

    Mashock, Michael J.

    Copper oxide nanoparticles (CuO NPs) are an up and coming technology increasingly being used in industrial and consumer applications and thus may pose risk to humans and the environment. In the present study, the toxic effects of CuO NPs were studied with two model organisms Saccharomyces cerevisiae and Caenorhabditis elegans. The role of released Cu ions during dissolution of CuO NPs in growth media were studied with freshly suspended, aged NPs, and the released Cu 2+ fraction. Exposures to the different Cu treatments showed significant inhibition of S. cerevisiae cellular metabolic activity. Inhibition from the NPs was inversely proportional to size and was not fully explained by the released Cu ions. S. cerevisiae cultures grown under respiring conditions demonstrated greater metabolic sensitivity when exposed to CuO NPs compared to cultures undergoing fermentation. The cellular response to both CuO NPs and released Cu ions on gene expression was analyzed via microarray analysis after an acute exposure. It was observed that both copper exposures resulted in an increase in carbohydrate storage, a decrease in protein production, protein misfolding, increased membrane permeability, and cell cycle arrest. Cells exposed to NPs up-regulated genes related to oxidative phosphorylation but also may be inducing cell cycle arrest by a different mechanism than that observed with released Cu ions. The effect of CuO NPs on C. elegans was examined by using several toxicological endpoints. The CuO NPs displayed a more inhibitory effect, compared to copper sulfate, on nematode reproduction, feeding, and development. We investigated the effects of copper oxide nanoparticles and copper sulfate on neuronal health, a known tissue vulnerable to heavy metal toxicity. In transgenic C. eleganswith neurons expressing a green fluorescent protein reporter, neuronal degeneration was observed in up to 10% of the population after copper oxide nanoparticle exposure. Additionally, nematode

  16. The role of the native oxide shell on the microwave sintering of copper metal powder compacts

    International Nuclear Information System (INIS)

    Mahmoud, Morsi M.; Link, Guido; Thumm, Manfred

    2015-01-01

    Highlights: • Thin oxide native layer had a critical role on microwave sintering of copper. • Explain why microwaves interact with copper powder differently than its bulk. • Abnormal expansion in copper is due to the plastic deformation and crack formation. • In-situ setup gives important insight about the microwave sintering of metals. • Microwave sintering is a promising candidate technology in powder metallurgy. - Abstract: Successful microwave sintering of several metal powders had been reported by many researchers with remarkable improvements in the materials properties and/or in the overall process. However, the concept behind microwave heating of metal powders has not been fully understood till now, as it is well known that bulk metals reflect microwaves. The progress of microwave sintering of copper metal powder compacts was investigated via combining both in-situ electrical resistivity and dilatometry measurements that give important information about microstructural changes with respect to the inter-particle electrical contacts during sintering. The sintering behavior of copper metal powders was depending on the type of the gas used, particle size, the initial green density, the soaking sintering time and the thin oxide layer on the particles surfaces. The thin copper oxide native layer (ceramics) that thermodynamically formed on the particles surfaces under normal handling and ambient environmental conditions had a very critical and important role in the microwave absorption and interaction, the sintering behavior and the microstructural changes. This finding could help to have a fundamental understanding of why MW’s interact with copper metal powder in a different way than its bulk at room temperature, i.e. why a given metal powder could be heated using microwaves while its bulk reflects it

  17. Surfactant-free electrodeposition of reduced graphene oxide/copper composite coatings with enhanced wear resistance

    Science.gov (United States)

    Mai, Y. J.; Zhou, M. P.; Ling, H. J.; Chen, F. X.; Lian, W. Q.; Jie, X. H.

    2018-03-01

    How to uniformly disperse graphene sheets into the electrolyte is one of the main challenges to synthesize graphene enhanced nanocomposites by electrodeposition. A surfactant-free colloidal solution comprised of copper (II)-ethylene diamine tetra acetic acid ([CuIIEDTA]2-) complexes and graphene oxide (GO) sheets is proposed to electrodeposit reduced graphene oxide/copper (RGO/Cu) composite coatings. Anionic [CuIIEDTA]2- complexes stably coexist with negatively charged GO sheets due to the electrostatic repulsion between them, facilitating the electrochemical reduction and uniform dispersion of GO sheets into the copper matrix. The RGO/Cu composite coatings are well characterized by XRD, Raman, SEM and XPS. Their tribological behavior as a function of RGO content in composite coatings and normal loads are investigated. Also the chemical composition and topography of the wear tracks for the composite coatings are analyzed to deduce the lubricating and anti-wear mechanism of RGO/Cu composite coatings.

  18. Friction in levitated superconductors

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1988-01-01

    A type I superconductor levitated above a magnet of low symmetry has a unique equilibrium position about which it may oscillate freely. In contrast, a type II superconductor has a continuous range of stable equilibrium positions and orientations where it floats rigidly without swinging or orbiting as if it were stuck in sand. A strong internal friction conspicuously indicates the existence and unpinning of flux lines in oxide superconductors levitated above liquid nitrogen. It is shown how these effects follow from the hysteretic magnetization curves and how the energy is dissipated

  19. Selective Electrocatalytic Activity of Ligand Stabilized Copper Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, Douglas R; Ohodnicki, Paul R; Kail, Brian W; Matranga, Christopher

    2011-01-01

    Ligand stabilization can influence the surface chemistry of Cu oxide nanoparticles (NPs) and provide unique product distributions for electrocatalytic methanol (MeOH) oxidation and CO{sub 2} reduction reactions. Oleic acid (OA) stabilized Cu{sub 2}O and CuO NPs promote the MeOH oxidation reaction with 88% and 99.97% selective HCOH formation, respectively. Alternatively, CO{sub 2} is the only reaction product detected for bulk Cu oxides and Cu oxide NPs with no ligands or weakly interacting ligands. We also demonstrate that OA stabilized Cu oxide NPs can reduce CO{sub 2} into CO with a {approx}1.7-fold increase in CO/H{sub 2} production ratios compared to bulk Cu oxides. The OA stabilized Cu oxide NPs also show 7.6 and 9.1-fold increases in CO/H{sub 2} production ratios compared to weakly stabilized and non-stabilized Cu oxide NPs, respectively. Our data illustrates that the presence and type of surface ligand can substantially influence the catalytic product selectivity of Cu oxide NPs.

  20. Copper(II)–imida‐salen Complexes Encapsulated into NaY Zeolite for Oxidations Reactions

    DEFF Research Database (Denmark)

    Kuźniarska‐Biernacka, Iwona; Carvalho, M. Alice; Rasmussen, Søren Birk

    2013-01-01

    The oxidation of phenol, cychohexanol and hydroquinone has been screened in the presence of copper(II) complexes with the Schiff‐base salen ligand, 1,5‐bis[(E)‐5‐chloro‐2‐hydroxybenzylideneamino]‐1H‐imidazole‐4‐carbonitrile, and encapsulated into NaY zeolite by using two different methods. The new...

  1. Three-Dimensional Reduced Graphene Oxide Network on Copper Foam as High-performance Supercapacitor Electrodes

    DEFF Research Database (Denmark)

    Dey, Ramendra Sundar; Chi, Qijin

    E lectrochemically generated copper foam (Cuf) could serve as an effective template for fabrication of three - dimensional (3D) reduced graphe n e oxide (rGO) network s. Here we present a facile approach to preparation of 3D rGO network supported by Cuf a s binder - free and current collector - i...

  2. Copper(II)-catalyzed electrophilic amination of quinoline N-oxides with O-benzoyl hydroxylamines.

    Science.gov (United States)

    Li, Gang; Jia, Chunqi; Sun, Kai; Lv, Yunhe; Zhao, Feng; Zhou, Kexiao; Wu, Hankui

    2015-03-21

    Copper acetate-catalyzed C-H bond functionalization amination of quinoline N-oxides was achieved using O-benzoyl hydroxylamine as an electrophilic amination reagent, thereby affording the desired products in moderate to excellent yields. Electrophilic amination can also be performed in good yield on a gram scale.

  3. Copper-promoted oxidative coupling of enamides and alkynes for the synthesis of substituted pyrroles.

    Science.gov (United States)

    Zhao, Mi-Na; Ren, Zhi-Hui; Wang, Yao-Yu; Guan, Zheng-Hui

    2014-02-10

    An efficient copper-promoted oxidative coupling of enamides with alkynes has been developed for the synthesis of substituted pyrroles. The reaction proceeded through C-H and N-H bond functionalization of enamides under mild conditions. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Facile synthesis of benzofurans via copper-catalyzed aerobic oxidative cyclization of phenols and alkynes.

    Science.gov (United States)

    Zeng, Wei; Wu, Wanqing; Jiang, Huanfeng; Huang, Liangbin; Sun, Yadong; Chen, Zhengwang; Li, Xianwei

    2013-07-28

    Regioselective synthesis of polysubstituted benzofurans using a copper catalyst and molecular oxygen from phenols and alkynes in a one-pot procedure has been reported. The transformation consists of a sequential nucleophilic addition of phenols to alkynes and oxidative cyclization. A wide variety of phenols and alkynes can be used in the same manner.

  5. Selective low temperature NH3 oxidation to N2 on copper-based catalysts

    NARCIS (Netherlands)

    Gang, L.; Grondelle, van J.; Anderson, B.G.; Santen, van R.A.

    1999-01-01

    TPD, TPR, UV-visible spectroscopy, and high-resolution electron microscopy (HREM) have been used to characterize the state and reactivity of alumina-supported copper-based catalysts for the oxidation of ammonia to nitrogen. The results of HREM and UV spectra show that a CuAl2O4-like phase is more

  6. Site-Specific Reactivity of Copper Chabazite Zeolites with Nitric Oxide, Ammonia, and Oxygen

    DEFF Research Database (Denmark)

    Godiksen, Anita; Isaksen, Oliver L.; Rasmussen, Søren B.

    2018-01-01

    In-situ electron paramagnetic resonance (EPR) spectroscopy was applied to dilute copper chabazite (CHA) zeolites under gas flows relevant for the selective catalytic reduction of NO with ammonia (NH3-SCR). Under both reducing and oxidizing conditions, we observed differences in reactivity between...

  7. Copper (I) oxide (Cu 2 ) based solar cells - a review | Abdu | Bayero ...

    African Journals Online (AJOL)

    Copper (I) oxide (Cu2O) is a potential material for the fabrication of low cost solar cells for terrestrial application. A detailed survey on the previous work so far carried out on Cu2O based solar cells has been presented. The aspects discussed include the fabrication of Schottky (metal/semiconductor) barrier Cu2O solar cells, ...

  8. Copper/ascorbic acid dyad as a catalytic system for selective aerobic oxidation of amines

    Czech Academy of Sciences Publication Activity Database

    Šrogl, Jiří; Voltrová, Svatava

    2009-01-01

    Roč. 11, č. 4 (2009), s. 843-845 ISSN 1523-7060 Institutional research plan: CEZ:AV0Z40550506 Keywords : copper * ascorbic acid * oxidative deamination Subject RIV: CC - Organic Chemistry Impact factor: 5.420, year: 2009

  9. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    OpenAIRE

    Abdulkareem Mohammed Ali Al-Sammarraie; Mazin Hasan Raheema

    2017-01-01

    The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and therm...

  10. POLYPYRROLE COATED CELLULOSIC SUBSTRATE MODIFIED BY COPPER OXIDE AS ELECTRODE FOR NITRATE ELECTROREDUCTION

    OpenAIRE

    A. HAMAM; D. OUKIL; A. DIB; H. HAMMACHE; L. MAKHLOUFI; B. SAIDANI

    2015-01-01

    The aim of this work is to synthesize polypyrrole (PPy) films on nonconducting cellulosic substrate and modified by copper oxide particles for use in the nitrate electroreduction process. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is conducted by using FeCl3 as an oxidant and pyrrole as monomer. The thickness and topography of the different PPy films obtained were estimated using a profilometer apparatus. The electrochemical reactivity of the obtained electr...

  11. Glucose Oxidation on Gold-modified Copper Electrode

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jieun; Pyo, Sung Gyu; Son, Hyungbin; Kim, Sookil [Chung-Ang Univ., Seoul (Korea, Republic of); Ahn, Sang Hyun; Son, Hyungbin [Korea Institute of Science and Technology, Seoul (Korea, Republic of)

    2013-09-15

    The activities of Au-modified Cu electrodes toward glucose oxidation are evaluated according to their fabrication conditions and physico-chemical properties. The Au-modified Cu electrodes are fabricated by the galvanic displacement of Au on a Cu substrate and the characteristics of the Au particles are controlled by adjusting the displacement time. From the glucose oxidation tests, it is found that the Au modified Cu has superior activity to the pure Au or Cu film, which is evidenced by the negative shift in the oxidation potential and enhanced current density during the electrochemical oxidation. Though the activity of the Au nanoparticles is a contributing factor, the enhanced activity of the Au-modified Cu electrode is due to the increased oxidation number of Cu through the electron transfer from Cu to more electronegative Au. The depletion of electron in Cu facilitates the oxidation of glucose. The stability of the Au-modified Cu electrode was also studied by chronoamperometry.

  12. Comparison of oxidation resistance of copper treated by beam-line ion implantation and plasma immersion ion implantation

    International Nuclear Information System (INIS)

    An Quanzhang; Li Liuhe; Hu Tao; Xin Yunchang; Fu, Ricky K.Y.; Kwok, D.T.K.; Cai Xun; Chu, Paul K.

    2009-01-01

    Copper which has many favorable properties such as low cost, high thermal and electrical conductivity, as well as easy fabrication and joining is one of the main materials in lead frames, interconnects, and foils in flexible circuits. Furthermore, copper is one of the best antibacterial materials. However, unlike aluminum oxide or chromium oxide, the surface copper oxide layer does not render sufficient protection against oxidation. In this work, in order to improve the surface oxidation resistance of Cu, Al and N were introduced into copper by plasma immersion ion implantation (PIII) and beam-line ion implantation (BII). The implantation fluences of Al and N were 2 x 10 17 ions cm -2 and 5 x 10 16 ions cm -2 , respectively. The implanted and untreated copper samples were oxidized in air at 260 deg. C for 1 h. The X-ray diffraction (XRD), scanning electron microscopy (SEM), as well as X-ray photoelectron spectroscopy (XPS) results indicate that both implantation methods can enhance the oxidation resistance of copper but to different extent. PIII is superior to BII in enhancing the oxidation resistance of copper. The effects and possible mechanisms are discussed.

  13. Weak coupling theory of high temperature superconductors

    International Nuclear Information System (INIS)

    Labbe, J.

    1990-01-01

    Many theories of the high T c superconductors are founded on the hypothesis that the electron-electron correlations are so strong in these materials that, in the absence of doping or internal charge transfer, they should be Mott insulators. The authors consider this hypothesis as unlikely for the following reasons. At first, very strong correlations would arise from a very large repulsive Coulomb energy between electrons within each atom. This would be the case only with very strongly localized atomic orbitals, as for instance the f orbitals in the rare earths, leading to very narrow energy bands. But in the copper oxides, the d orbitals of copper, or the p orbitals of oxygen, are not so strongly localized, and thus the intra-atomic repulsive Coulomb energy has no reason to be much larger than in the simple transitional metals or their other compounds

  14. Effect of ion irradiation on the optical properties and room temperature oxidation of copper surface

    Energy Technology Data Exchange (ETDEWEB)

    Poperenko, L.V.; Ramadan Shaaban, Essam; Khanh, N.Q.; Stashchuk, V.S.; Vinnichenko, M.V.; Yurgelevich, I.V.; Nosach, D.V.; Lohner, T

    2004-05-01

    Ex situ and in situ spectroellipsometric investigation of room temperature oxidation of ion-implanted copper surface was performed. The ellipsometer is capable to measure simultaneously the ellipsometric parameters {psi} and {delta} at 88 different wavelength values in the range of 280-760 nm within a few minutes in the high precision operation mode using two zone averaging and within a fraction of a second in the one zone operation mode. The native oxide layer formed earlier on the surface of the copper was sputtered off during the aluminum ion implantation. In situ study of the growth of the newly formed native oxide layer on the ion implanted surface was carried out. Ion beam analytical measurements were performed to gain further information on the native oxide layer. The absolute number of the oxygen atoms in the native copper oxide layer was determined. The depth distribution of the implanted aluminum was extracted from Rutherford backscattering spectra. It is found that Al implantation enhanced the oxidation resistance.

  15. Effect of ion irradiation on the optical properties and room temperature oxidation of copper surface

    International Nuclear Information System (INIS)

    Poperenko, L.V.; Ramadan Shaaban, Essam; Khanh, N.Q.; Stashchuk, V.S.; Vinnichenko, M.V.; Yurgelevich, I.V.; Nosach, D.V.; Lohner, T.

    2004-01-01

    Ex situ and in situ spectroellipsometric investigation of room temperature oxidation of ion-implanted copper surface was performed. The ellipsometer is capable to measure simultaneously the ellipsometric parameters Ψ and Δ at 88 different wavelength values in the range of 280-760 nm within a few minutes in the high precision operation mode using two zone averaging and within a fraction of a second in the one zone operation mode. The native oxide layer formed earlier on the surface of the copper was sputtered off during the aluminum ion implantation. In situ study of the growth of the newly formed native oxide layer on the ion implanted surface was carried out. Ion beam analytical measurements were performed to gain further information on the native oxide layer. The absolute number of the oxygen atoms in the native copper oxide layer was determined. The depth distribution of the implanted aluminum was extracted from Rutherford backscattering spectra. It is found that Al implantation enhanced the oxidation resistance

  16. Acute and sub-lethal exposure to copper oxide nanoparticles causes oxidative stress and teratogenicity in zebrafish embryos.

    Science.gov (United States)

    Ganesan, Santhanamari; Anaimalai Thirumurthi, Naveenkumar; Raghunath, Azhwar; Vijayakumar, Savitha; Perumal, Ekambaram

    2016-04-01

    Nano-copper oxides are a versatile inorganic material. As a result of their versatility, the immense applications and usage end up in the environment causing a concern for the lifespan of various beings. The ambiguities surround globally on the toxic effects of copper oxide nanoparticles (CuO-NPs). Hence, the present study endeavored to study the sub-lethal acute exposure effects on the developing zebrafish embryos. The 48 hpf LC50 value was about 64 ppm. Therefore, we have chosen the sub-lethal dose of 40 and 60 ppm for the study. Accumulation of CuO-NPs was evidenced from the SEM-EDS and AAS analyzes. The alterations in the AChE and Na(+)/K(+)-ATPase activities disrupted the development process. An increment in the levels of oxidants with a concomitant decrease in the antioxidant enzymes confirmed the induction of oxidative stress. Oxidative stress triggered apoptosis in the exposed embryos. Developmental anomalies were observed with CuO-NPs exposure in addition to oxidative stress in the developing embryos. Decreased heart rate and hatching delay hindered the normal developmental processes. Our work has offered valuable data on the connection between oxidative stress and teratogenicity leading to lethality caused by CuO-NPs. A further molecular mechanism unraveling the uncharted connection between oxidative stress and teratogenicity will aid in the safe use of CuO-NPs. Copyright © 2015 John Wiley & Sons, Ltd.

  17. [Use of copper oxide wire particles (Copinox) for the prevention of congenital copper deficiency in a herd of German Improved Fawn breed of goat].

    Science.gov (United States)

    Winter, P; Hochsteiner, W; Chizzola, R

    2004-10-01

    In a herd of German Improved Fawn breed of goat in the year 2000 neonatal kid losses due to congenital copper deficiencies were observed. To clarify the problems and to prevent losses in the next breeding season serum copper levels of 10 dams and four control Boer goats were investigated at four time points during one year. Additionally ten kids of the following year were sampled and the serum copper levels were studied. Immediatly after parturition and 8 weeks later the dams showed low serum copper levels (10.4 +/- 11.1 micromol/l, 5.7 +/- 2.9 micromol/l resp.). At the end of the pasture season an increase of serum copper could be measured (19.3 +/- 16.0 micromol/l). To prevent enzootic ataxia due to congenital copper deficiency, the dams were treated with copper oxide wire particles in the next late gestation. At this time point serum copper concentrations started to decrease (18.5 +/- 8.4 micromol/l). The re-examination 3 month later demonstrated an increase of the serum mean copper concentrations up to 23.4 micromol/l in the dams and to 16.2 micromol/l in the kids. The serum copper levels were significantly higher compared to the levels the year before. Big variation of the serum copper levels in the control Boer goats occurred during the year, but no clinical symptoms of copper deficiency could be observed. The copper levels in the grass and soil samples were 6.8 mg/kg and 0.2 mg/kg dry substance, respectively. A secondary copper deficiency based on cadmium could be excluded through the low levels of soil samples. The contents of sulphur and molybdenum were not determined. The results indicate that the German Improved Fawn breed of goats suffered from a primary copper deficiency due to the inefficient mineral supplementation. The administration of Copinox in the last third of the gestation leads to a continious raising of the copper concentrations in the serum and is suited to prevent ataxia due to congential copper deficiency in neonatal kids.

  18. Deep impurity levels in n-type copper oxides

    International Nuclear Information System (INIS)

    Ovchinnikov, S.G.

    1994-01-01

    The density of Nd 2-x Ce x CuO 4 monoparticle states was calculated by the method of precise diagonalization of multielectron hamiltonian of 6-zone model for CuO cluster. Emergence of a deep impurity state of a symmetry in the middle of dielectric slit, which is a mixture of d z 2-states of copper and a 1 -molecular orbital of oxygen, is shown. Fluctuation of parameters of p-d jump and energies of charge transfer provide additional fine impurity levels near the bottom of conductivity zone and ceiling of valency zone. 30 refs., 4 figs

  19. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities

    Science.gov (United States)

    Hahn, C.; Hans, M.; Hein, C.; Mancinelli, R. L.; Mücklich, F.; Wirth, R.; Rettberg, P.; Hellweg, C. E.; Moeller, R.

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of

  20. Influence of superconductor film composition on adhesion strength of coated conductors

    Energy Technology Data Exchange (ETDEWEB)

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2015-11-20

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare- earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples.

  1. Influence of superconductor film composition on adhesion strength of coated conductors

    International Nuclear Information System (INIS)

    Kesgin, Ibrahim; Khatri, Narayan; Liu, Yuhao; Delgado, Louis; Galstyan, Eduard; Selvamanickam, Venkat

    2016-01-01

    The effect of high temperature superconductor (HTS) film composition on the adhesion strength of rare-earth barium copper oxide coated conductors (CCs) has been studied. It has been found that the mechanical integrity of the superconductor layer is very susceptible to the defects especially those along the ab plane, probably due to the weak interfaces between the defects and the matrix. Gd and Y in the standard composition were substituted with Sm and the number of in-plane defects was drastically reduced. Consequently, a four-fold increase in adhesion or peeling strength in Sm-based CCs was achieved compared to the standard GdYBCO samples. (paper)

  2. Determination of HCl and VOC Emission from Thermal Degradation of PVC in the Absence and Presence of Copper, Copper(II Oxide and Copper(II Chloride

    Directory of Open Access Journals (Sweden)

    Ahamad J. Jafari

    2009-01-01

    Full Text Available Polyvinyl chloride (PVC has played a key role in the development of the plastic industry over the past 40 years. Thermal degradation of PVC leads to formation of many toxic pollutants such as HCl, aromatic and volatile organic carbon vapors. Thermal degradation of PVC and PVC in the present of copper, cupric oxide and copper(II chloride were investigated in this study using a laboratory scale electrical furnace. HCl and Cl- ion were analyzed by a Dionex ion chromatograph and VOCs compounds were analyzed using GC or GC-MS. The results showed that HCl plus Cl- ion and benzene formed about 99% and 80% respectively in the first step of thermal degradation under air atmosphere. The presence of cupric oxide increases the percentage of short chain hydrocarbons more than 184% and decreases the amount of the major aromatic hydrocarbon and HCl plus Cl- ion to 90% and 65% respectively. The total aromatic hydrocarbon emitted less than when atmosphere was air and difference was statistically significant (Pvalue<0.000

  3. Synthesis and property of powders of oxide superconductor by the spray drying and the mist pyrolysis method

    Energy Technology Data Exchange (ETDEWEB)

    Awano, M.; Takagi, H.; Torii, Y.; Tsuzuki, A.; Murayama, N.; Ishii, E. (Government Industrial Research Inst., Nagoya (Japan)); Sudo, E. (Tokyo Kokyu Rozai Co. Ltd., Fukuoka (Japan))

    1989-01-01

    Powders of oxide superconductor (Ba-Y-Cu-O and Bi-Pb-Sr-Ca-Cu-O systems) were synthesized by the spray drying and the mist pyrolysis methods. Fine Ba{sub 2}YCu{sub 3}O{sub 7-y} particles with diameter of 0.1-0.3 {mu}m were produced by the spray drying of the oxalates coprecipitated slurry and following calcination at 800deg C. By the pyrolyzing of nitrates mist containing Ba{sup 2+},Y{sup 3+},Cu{sup 2+} ions in the reaction zone heated at 950-980deg C fine particles were also produced. For Bi-Pb-Sr-Ca-Cu-O system, above mentioned methods were effective to produce fine homogeneous particles of compound at intermediate stage to high Tc phase. Sintered body made from these fine homogeneous powders were densified to about 95-98% of theoretical densitiy. (orig.).

  4. Copper Oxidation through Nucleation Sites of Chemical Vapor Deposited Graphene

    DEFF Research Database (Denmark)

    Luo, Birong; Whelan, Patrick Rebsdorf; Shivayogimath, Abhay

    2016-01-01

    We investigate the nucleation defect-triggered oxidation of Cu covered by CVD graphene during postannealing in air. The results reveal that different growth conditions may induce imperfect nucleation of graphene, and cause creation of defects near the nucleation point such as pin holes...... and amorphous carbon. These defects would serve as a pathway for the diffusion of 02 during thermal annealing, allowing oxidation of Cu to progress gradually from the nucleation center toward the growth edge. The oxidation process follows the graphene morphology closely; the shape of the oxidized area of Cu has...... a striking resemblance to that of the graphene flakes. Our work demonstrates that inferior graphene nucleation in CVD processes can compromise the oxidation resistance of a graphene-coated Cu substrate, and indirectly reveal the structure and integrity of graphene, which is of fundamental importance...

  5. Copper based anodes for bio-ethanol fueled low-temperature solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kondakindi, R.R.; Karan, K. [Queen' s Univ., Kingston, ON (Canada)

    2003-07-01

    Laboratory studies have been conducted to develop a low-temperature solid oxide fuel cell (SOFC) fueled by bio-ethanol. SOFCs are considered to be a potential source for clean and efficient electricity. The use of bio-ethanol to power the SOFC contributes even further to reducing CO{sub 2} emissions. The main barrier towards the development of the proposed SOFC is the identification of a suitable anode catalyst that prevents coking during electro-oxidation of ethanol while yielding good electrical performance. Copper was selected as the catalyst for this study. Composite anodes consisting of copper catalysts and gadolinium-doped ceria (GDC) electrolytes were prepared using screen printing of GDC and copper oxide on dense GDC electrolytes and by wet impregnation of copper nitrate in porous GDC electrolytes followed by calcination and sintering. The electrical conductivity of the prepared anodes was characterized to determine the percolation threshold. Temperature-programmed reduction and the Brunner Emmett Teller (BET) methods were used to quantify the catalyst dispersion and surface area. Electrochemical performance of the single-cell SOFC with a hydrogen-air system was used to assess the catalytic activities. Electrochemical Impedance Spectroscopy was used to probe the electrode kinetics.

  6. Copper-Catalyzed Eglinton Oxidative Homocoupling of Terminal Alkynes: A Computational Study

    Directory of Open Access Journals (Sweden)

    Jesús Jover

    2015-01-01

    Full Text Available The copper(II acetate mediated oxidative homocoupling of terminal alkynes, namely, the Eglinton coupling, has been studied with DFT methods. The mechanism of the whole reaction has been modeled using phenylacetylene as substrate. The obtained results indicate that, in contrast to some classical proposals, the reaction does not involve the formation of free alkynyl radicals and proceeds by the dimerization of copper(II alkynyl complexes followed by a bimetallic reductive elimination. The calculations demonstrate that the rate limiting-step of the reaction is the alkyne deprotonation and that more acidic substrates provide faster reactions, in agreement with the experimental observations.

  7. Ag2CuMnO4: A new silver copper oxide with delafossite structure

    International Nuclear Information System (INIS)

    Munoz-Rojas, David; Subias, Gloria; Oro-Sole, Judith; Fraxedas, Jordi; Martinez, Benjamin; Casas-Cabanas, Montse; Canales-Vazquez, Jesus; Gonzalez-Calbet, Jose; Garcia-Gonzalez, Ester; Walton, Richard I.; Casan-Pastor, Nieves

    2006-01-01

    The use of hydrothermal methods has allowed the synthesis of a new silver copper mixed oxide, Ag 2 CuMnO 4 , the first example of a quaternary oxide containing both elements. It crystallizes with the delafossite 3R structure, thus being the first delafossite to contain both Ag and Cu. Synthesis conditions affect the final particle size (30-500nm). Powder X-ray diffraction Rietveld refinement indicates a trigonal structure (R3-bar m) and cell parameters a=2.99991A and c=18.428A, where Cu and Mn are disordered within the octahedral B positions in the plane and linearly coordinated Ag occupies de A position between layers. X-ray absorption near edge spectroscopy (XANES) for copper and manganese, and XPS for silver evidence +2, +4, and +1 oxidation states. The microstructure consists of layered particles that may form large twins showing 5nm nanodomains. Finally, magnetic measurements reveal the existence of ferromagnetic coupling yielding in-plane moments that align antiferromagnetically at lower temperatures. The singularity of the new phase resides on the fact that is an example of a bidimensional arrangement of silver and copper in an oxide that also shows clear bidimensionality in its physical properties. That is of special relevance to the field of high T c superconducting oxides, while the ferromagnetic coupling in a bidimensional system deserves itself special attention

  8. Tuning of structural, light emission and wetting properties of nanostructured copper oxide-porous silicon matrix formed on electrochemically etched copper-coated silicon substrates

    Science.gov (United States)

    Naddaf, M.

    2017-01-01

    Matrices of copper oxide-porous silicon nanostructures have been formed by electrochemical etching of copper-coated silicon surfaces in HF-based solution at different etching times (5-15 min). Micro-Raman, X-ray diffraction and X-ray photoelectron spectroscopy results show that the nature of copper oxide in the matrix changes from single-phase copper (I) oxide (Cu2O) to single-phase copper (II) oxide (CuO) on increasing the etching time. This is accompanied with important variation in the content of carbon, carbon hydrides, carbonyl compounds and silicon oxide in the matrix. The matrix formed at the low etching time (5 min) exhibits a single broad "blue" room-temperature photoluminescence (PL) band. On increasing the etching time, the intensity of this band decreases and a much stronger "red" PL band emerges in the PL spectra. The relative intensity of this band with respect to the "blue" band significantly increases on increasing the etching time. The "blue" and "red" PL bands are attributed to Cu2O and porous silicon of the matrix, respectively. In addition, the water contact angle measurements reveal that the hydrophobicity of the matrix surface can be tuned from hydrophobic to superhydrophobic state by controlling the etching time.

  9. High temperature superconductor current leads

    International Nuclear Information System (INIS)

    Zeimetz, B.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Full text: The use of superconductors in high electrical current applications (magnets, transformers, generators etc.) usually requires cooling with liquid Helium, which is very expensive. The superconductor itself produces no heat, and the design of Helium dewars is very advanced. Therefore most of the heat loss, i.e. Helium consumption, comes from the current lead which connects the superconductor with its power source at room temperature. The current lead usually consists of a pair of thick copper wires. The discovery of the High Temperature Superconductors makes it possible to replace a part of the copper with superconducting material. This drastically reduces the heat losses because a) the superconductor generates no resistive heat and b) it is a very poor thermal conductor compared with the copper. In this work silver-sheathed superconducting tapes are used as current lead components. The work comprises both the production of the tapes and the overall design of the leads, in order to a) maximize the current capacity ('critical current') of the superconductor, b) minimize the thermal conductivity of the silver clad, and c) optimize the cooling conditions

  10. Virgin olive oil blended polyurethane micro/nanofibers ornamented with copper oxide nanocrystals for biomedical applications

    Directory of Open Access Journals (Sweden)

    Amna T

    2014-02-01

    Full Text Available Touseef Amna,1 M Shamshi Hassan,2 Jieun Yang,1 Myung-Seob Khil,2 Ki-Duk Song,3 Jae-Don Oh,3 Inho Hwang1 1Department of Animal Sciences and Biotechnology, 2Department of Organic Materials and Fiber Engineering, Chonbuk National University, Jeonju, South Korea; 3Genomic Informatics Center, Hankyong National University, Anseong, South Korea Abstract: Recently, substantial interest has been generated in using electrospun biomimetic nanofibers of hybrids, particularly organic/inorganic, to engineer different tissues. The present work, for the first time, introduced a unique natural and synthetic hybrid micronanofiber wound dressing, composed of virgin olive oil/copper oxide nanocrystals and polyurethane (PU, developed via facile electrospinning. The as-spun organic/inorganic hybrid micronanofibers were characterized by scanning electron microscopy (SEM, energy dispersive X-ray analysis, X-ray diffraction, electron probe microanalysis, and transmission electron microscopy. The interaction of cells with scaffold was studied by culturing NIH 3T3 fibroblasts on an as-spun hybrid micronanofibrous mat, and viability, proliferation, and growth were assessed. The 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay results and SEM observation showed that the hybrid micronanofibrous scaffold was noncytotoxic to fibroblast cell culture and was found to benefit cell attachment and proliferation. Hence our results suggest the potential utilization of as-spun micronanoscaffolds for tissue engineering. Copper oxide–olive oil/PU wound dressing may exert its positive beneficial effects at every stage during wound-healing progression, and these micronanofibers may serve diverse biomedical applications, such as tissue regeneration, damaged skin treatment, wound healing applications, etc. Conclusively, the fabricated olive oil–copper oxide/PU micronanofibers combine the benefits of virgin olive oil and copper oxide, and therefore hold great promise for

  11. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    Directory of Open Access Journals (Sweden)

    Terence K. S. Wong

    2016-04-01

    Full Text Available The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O, cupric oxide (CuO and copper (III oxide (Cu4O3 is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu2O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD of AlxGa1−xO onto thermal Cu2O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu2O nanopowder. CuO/Cu2O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu4O3/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10−2%.

  12. Current Status and Future Prospects of Copper Oxide Heterojunction Solar Cells

    Science.gov (United States)

    Wong, Terence K. S.; Zhuk, Siarhei; Masudy-Panah, Saeid; Dalapati, Goutam K.

    2016-01-01

    The current state of thin film heterojunction solar cells based on cuprous oxide (Cu2O), cupric oxide (CuO) and copper (III) oxide (Cu4O3) is reviewed. These p-type semiconducting oxides prepared by Cu oxidation, sputtering or electrochemical deposition are non-toxic, sustainable photovoltaic materials with application potential for solar electricity. However, defects at the copper oxide heterojunction and film quality are still major constraining factors for achieving high power conversion efficiency, η. Amongst the Cu2O heterojunction devices, a maximum η of 6.1% has been obtained by using pulsed laser deposition (PLD) of AlxGa1−xO onto thermal Cu2O doped with Na. The performance of CuO/n-Si heterojunction solar cells formed by magnetron sputtering of CuO is presently limited by both native oxide and Cu rich copper oxide layers at the heterointerface. These interfacial layers can be reduced by using a two-step sputtering process. A high η of 2.88% for CuO heterojunction solar cells has been achieved by incorporation of mixed phase CuO/Cu2O nanopowder. CuO/Cu2O heterojunction solar cells fabricated by electrodeposition and electrochemical doping has a maximum efficiency of 0.64% after surface defect passivation and annealing. Finally, early stage study of Cu4O3/GaN deposited on sapphire substrate has shown a photovoltaic effect and an η of ~10−2%. PMID:28773398

  13. Effects of sputtering power on properties of copper oxides thin films deposited on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ooi, P. K.; Ng, S. S.; Abdullah, M. J. [Nano-Optoelectronics Research and Technology Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2015-04-24

    Copper oxides are deposited by radio frequency sputtering using copper target in the mixture of argon and oxygen gasses. The structural and optical properties of the copper oxides deposited at different sputtering powers have been investigated. All the films are single phase polycrystalline. At low RF power (100 W), the film is monoclinic structure of cupric oxide (CuO). Meanwhile, the films are cubic structure of cuprous oxide (Cu2O) at higher RF power. Field emission scanning electron microscopy images show the films have different morphologies with small grain size and consist of a lot of voids. The analysis of energy dispersive X-ray spectroscopy shows that the ratio of Cu to O is increased as the RF power increased. From the ultraviolet–visible spectroscopy, the films have a broad absorption edge in the range of 300–500 nm. The band gap of the films grown at RF power of 100 W, and 120 W and above, were 1.18 eV and 2.16 eV, respectively.

  14. EXAMINATION OF THE OXIDATION PROTECTION OF ZINC COATINGS FORMED ON COPPER ALLOYS AND STEEL SUBSTRATES

    International Nuclear Information System (INIS)

    Papazoglou, M.; Chaliampalias, D.; Vourlias, G.; Pavlidou, E.; Stergioudis, G.; Skolianos, S.

    2010-01-01

    The exposure of metallic components at aggressive high temperature environments, usually limit their usage at similar application because they suffer from severe oxidation attack. Copper alloys are used in a wide range of high-quality indoor and outdoor applications, statue parts, art hardware, high strength and high thermal conductivity applications. On the other hand, steel is commonly used as mechanical part of industrial set outs or in the construction sector due to its high mechanical properties. The aim of the present work is the examination of the oxidation resistance of pack cementation zinc coatings deposited on copper, leaded brass and steel substrates at elevated temperature conditions. Furthermore, an effort made to make a long-term evaluation of the coated samples durability. The oxidation results showed that bare substrates appear to have undergone severe damage comparing with the coated ones. Furthermore, the mass gain of the uncoated samples was higher than this of the zinc covered ones. Particularly zinc coated brass was found to be more resistant to oxidation conditions in which it was exposed as it has the lower mass gain as compared to the bare substrates and zinc coated copper. Zinc coated steel was also proved to be more resistive than the uncoated steel.

  15. Correlation between optical and structural properties of copper oxide electrodeposited on ITO glass

    Energy Technology Data Exchange (ETDEWEB)

    Messaoudi, O., E-mail: olfamassaoudi@gmail.com [Laboratoire de Photovoltaïque, Centre des Recherches et des Technologies de l’Energie, Technopole BorjCedria, B.P. 95, Hammammlif 2050 (Tunisia); Makhlouf, H.; Souissi, A.; Ben assaker, I.; Karyaoui, M. [Laboratoire de Photovoltaïque, Centre des Recherches et des Technologies de l’Energie, Technopole BorjCedria, B.P. 95, Hammammlif 2050 (Tunisia); Bardaoui, A. [Laboratoire de Photovoltaïque, Centre des Recherches et des Technologies de l’Energie, Technopole BorjCedria, B.P. 95, Hammammlif 2050 (Tunisia); Physics department, Taif University (Saudi Arabia); Oueslati, M. [Unité de nano matériaux et photoniques, Faculté des Sciences de Tunis, ElManar1, 2092 Tunis (Tunisia); Chtourou, R. [Laboratoire de Photovoltaïque, Centre des Recherches et des Technologies de l’Energie, Technopole BorjCedria, B.P. 95, Hammammlif 2050 (Tunisia)

    2014-10-25

    Highlights: • Copper oxide films were grown by electrodeposition method with different applied potential. • Forouhi and Bloomer ellipsometric model were used. • Correlation between structural and optical proprieties was done. - Abstract: In this paper we study the growth of copper oxide (Cu{sub 2}O) thin films on indium tin oxide (ITO)-coated glass substrate by electrochemical deposition. We vary the applied potential from −0.50 to −0.60 V vs. Ag/AgCl in order to have a pure Cu{sub 2}O. The copper oxide thin films properties are obtained using Spectroscopic Ellipsometry (SE) in the frame of the Forouhi and Bloomer model. This model demonstrates that depending on the applied cathodic potential pure or mixed phases of CuO and Cu{sub 2}O can be obtained. Structural, morphological and optical properties are performed in order to confirm the SE results. X-ray diffraction analysis of the films reveals a mixed phase for a potential lower than −0.60V vs. Ag/AgCl while a high purity is obtained for this last potential. The optical band gap energy (E{sub g}) is evaluated using the tauc relation. Pure Cu{sub 2}O having a band gap of E{sub g} = 2.5 eV and a thickness around 900 nm are therefore successfully obtained with an applied potential of −0.60 V. Raman measurements show the characteristic modes of Cu{sub 2}O with a contribution of CuO modes at 618 cm{sup −1}. The intensity of the CuO modes decreases as the applied cathodic potential increases, leading to pure copper oxide layers.

  16. Analysis of the hybrid copper oxide-copper sulfate cycle for the thermochemical splitting of water for hydrogen production

    International Nuclear Information System (INIS)

    Gonzales, Ross B.; Law, Victor J.; Prindle, John C.

    2009-01-01

    The hybrid copper oxide-copper sulfate water-splitting thermochemical cycle involves two principal steps: (1) hydrogen production from the electrolysis of water, SO 2 (g) and CuO(s) at room temperature and (2) the thermal decomposition of the CuSO 4 product to form oxygen and SO 2 , which is recycled to the first step. A four-reaction version of the cycle (known in the literature as Cycle H-5) was used as the basis of the present work. For several of the four reactions, a rotating batch reactor sequence is proposed in order to overcome equilibrium limitations. Pinch technology was used to optimize heat integration. Sensitivity analyses revealed it to be economically more attractive to use a 10 C approach to minimize heat loss (rather than 20 C). Using standard Aspen Plus features and the Peng-Robinson equation of state for separations involving oxygen and sulfur oxides, a proposed flowsheet for the cycle was generated to yield ''Level 3'' results. A cost analysis of the designed plant (producing 100 million kmol/yr hydrogen) indicates a total major equipment cost of approximately $45 million. This translates to a turnkey plant price (excluding the cost of the high-temperature heat source or electrolyzer internals) of approximately $360 million. Based on a $2.50/kg selling price for hydrogen, gross annual revenue could be on the order of $500 million, resulting in a reasonable payback period when all capital and operating costs are considered. Previous efficiency estimates using Level 1 and Level 2 methods gave the process efficiency in the neighborhood of 47-48%. The Level 3 efficiency computation was 24-25% depending on the approach temperature used for recuperation. If the low quality heat rejected by the process can be recovered and used elsewhere, the Level 3 analysis could be as high as 51-53%. (author)

  17. Preparation of Dispersion-Hardened Copper by Internal Oxidation

    DEFF Research Database (Denmark)

    Brøndsted, Povl; Sørensen, Ole Toft

    1978-01-01

    Internal oxidation experiments in CO2/CO atmospheres on Cu-Al alloys for preparation of dispersion-hardened Cu are described. The oxygen pressures of the atmospheres used in the experiments were controlled with a solid electrolyte oxygen cell based on ZrO2 (CaO). The particle size distributions o...

  18. Oxidation Kinetics of Copper: An Experiment in Solid State Chemistry.

    Science.gov (United States)

    Ebisuzaki, Y.; Sanborn, W. B.

    1985-01-01

    Oxidation kinetics in metals and the role defects play in diffusion-controlled reactions are discussed as background for a junior/senior-level experiment in the physical or inorganic chemistry laboratory. Procedures used and typical data obtained are provided for the experiment. (JN)

  19. Electrocatalytic Water Oxidation by a Homogeneous Copper Catalyst Disfavors Single-Site Mechanisms.

    Science.gov (United States)

    Koepke, Sara J; Light, Kenneth M; VanNatta, Peter E; Wiley, Keaton M; Kieber-Emmons, Matthew T

    2017-06-28

    Deployment of solar fuels derived from water requires robust oxygen-evolving catalysts made from earth abundant materials. Copper has recently received much attention in this regard. Mechanistic parallels between Cu and single-site Ru/Ir/Mn water oxidation catalysts, including intermediacy of terminal Cu oxo/oxyl species, are prevalent in the literature; however, intermediacy of late transition metal oxo species would be remarkable given the high d-electron count would fill antibonding orbitals, making these species high in energy. This may suggest alternate pathways are at work in copper-based water oxidation. This report characterizes a dinuclear copper water oxidation catalyst, {[(L)Cu(II)] 2 -(μ-OH) 2 }(OTf) 2 (L = Me 2 TMPA = bis((6-methyl-2-pyridyl)methyl)(2-pyridylmethyl)amine) in which water oxidation proceeds with high Faradaic efficiency (>90%) and moderate rates (33 s -1 at ∼1 V overpotential, pH 12.5). A large kinetic isotope effect (k H /k D = 20) suggests proton coupled electron transfer in the initial oxidation as the rate-determining step. This species partially dissociates in aqueous solution at pH 12.5 to generate a mononuclear {[(L)Cu(II)(OH)]} + adduct (K eq = 0.0041). Calculations that reproduce the experimental findings reveal that oxidation of either the mononuclear or dinuclear species results in a common dinuclear intermediate, {[LCu(III)] 2 -(μ-O) 2 } 2+ , which avoids formation of terminal Cu(IV)═O/Cu(III)-O • intermediates. Calculations further reveal that both intermolecular water nucleophilic attack and redox isomerization of {[LCu(III)] 2 -(μ-O) 2 } 2+ are energetically accessible pathways for O-O bond formation. The consequences of these findings are discussed in relation to differences in water oxidation pathways between Cu catalysts and catalysts based on Ru, Ir, and Mn.

  20. Facile synthesis of flower like copper oxide and their application to hydrogen peroxide and nitrite sensing

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2011-12-01

    Full Text Available Abstract Background The detection of hydrogen peroxide (H2O2 and nitrite ion (NO2- is of great important in various fields including clinic, food, pharmaceutical and environmental analyses. Compared with many methods that have been developed for the determination of them, the electrochemical detection method has attracted much attention. In recent years, with the development of nanotechnology, many kinds of micro/nano-scale materials have been used in the construction of electrochemical biosensors because of their unique and particular properties. Among these catalysts, copper oxide (CuO, as a well known p-type semiconductor, has gained increasing attention not only for its unique properties but also for its applications in many fields such as gas sensors, photocatalyst and electrochemistry sensors. Continuing our previous investigations on transition-metal oxide including cuprous oxide and α-Fe2O3 modified electrode, in the present paper we examine the electrochemical and electrocatalytical behavior of flower like copper oxide modified glass carbon electrodes (CuO/GCE. Results Flower like copper oxide (CuO composed of many nanoflake was synthesized by a simple hydrothermal reaction and characterized using field-emission scanning electron microscopy (FE-SEM and X-ray diffraction (XRD. CuO modified glass carbon electrode (CuO/GCE was fabricated and characterized electrochemically. A highly sensitive method for the rapid amperometric detection of hydrogen peroxide (H2O2 and nitrite (NO2- was reported. Conclusions Due to the large specific surface area and inner characteristic of the flower like CuO, the resulting electrode show excellent electrocatalytic reduction for H2O2 and oxidation of NO2-. Its sensitivity, low detection limit, fast response time and simplicity are satisfactory. Furthermore, this synthetic approach can also be applied for the synthesis of other inorganic oxides with improved performances and they can also be extended to

  1. A TEMPO-free copper-catalyzed aerobic oxidation of alcohols.

    Science.gov (United States)

    Xu, Boran; Lumb, Jean-Philip; Arndtsen, Bruce A

    2015-03-27

    The copper-catalyzed aerobic oxidation of primary and secondary alcohols without an external N-oxide co-oxidant is described. The catalyst system is composed of a Cu/diamine complex inspired by the enzyme tyrosinase, along with dimethylaminopyridine (DMAP) or N-methylimidazole (NMI). The Cu catalyst system works without 2,2,6,6-tetramethyl-l-piperidinoxyl (TEMPO) at ambient pressure and temperature, and displays activity for un-activated secondary alcohols, which remain a challenging substrate for catalytic aerobic systems. Our work underscores the importance of finding alternative mechanistic pathways for alcohol oxidation, which complement Cu/TEMPO systems, and demonstrate, in this case, a preference for the oxidation of activated secondary over primary alcohols. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reply to the ''Comment on 'Observation of trapped O2 in high-Tc metal oxide superconductors' ''

    International Nuclear Information System (INIS)

    Chen, C.H.; Phillips, R.C.; Payne, M.G.

    1990-01-01

    Desorption of O 2 in certain high-T c superconductors was observed from scraping the surfaces of superconductors by Rosenberg and Wen. Their conclusion agrees with the results from the observation of O 2 trapping by a laser ablation of superconductors. However, the local heating due to the scraping process can possibly raise the local surface temperature significantly higher than the temperature of the bulk

  3. Flexible substrate compatible solution processed P-N heterojunction diodes with indium-gallium-zinc oxide and copper oxide

    Energy Technology Data Exchange (ETDEWEB)

    Choudhary, Ishan; Deepak, E-mail: saboo@iitk.ac.in

    2017-04-15

    Highlights: • Both n and p-type semiconductors are solution processed. • Temperature compatibility with flexible substrates such as polyimide. • Compatibility of p-type film (CuO) on n-type film (IZO). • Diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. • Construction of band alignment using XPS. - Abstract: Printed electronics on flexible substrates requires low temperature and solution processed active inks. With n-type indium-gallium-zinc oxide (IGZO) based electronics maturing for thin film transistor (TFT), we here demonstrate its heterojunction diode with p-copper oxide, prepared by sol-gel method and processed at temperatures compatible with polyimide substrates. The phase obtained for copper oxide is CuO. When coated on n-type oxide, it is prone to develop morphological features, which are minimized by annealing treatment. Diodes of p-CuO films with IGZO are of poor quality due to its high resistivity while, conducting indium-zinc oxide (IZO) films yielded good diode with rectification ratio of 10{sup 4} and operating voltage <1.5 V. A detailed measurement at the interface by X-ray photoelectron spectroscopy and optical absorption ascertained the band alignment to be of staggered type. Consistently, the current in the diode is established to be due to electrons tunnelling from n-IZO to p-CuO.

  4. Real-time oxide evolution of copper protected by graphene and boron nitride barriers

    DEFF Research Database (Denmark)

    Galbiati, Miriam; Stoot, Adam Carsten; Mackenzie, David

    2017-01-01

    and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real......-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.......Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion...

  5. Real-time oxide evolution of copper protected by graphene and boron nitride barriers.

    Science.gov (United States)

    Galbiati, M; Stoot, A C; Mackenzie, D M A; Bøggild, P; Camilli, L

    2017-01-09

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.

  6. Positron annihilation in sodium and copper β-vanadium oxide bronzes

    International Nuclear Information System (INIS)

    Dryzek, J.; Rogowska, E.

    1990-01-01

    Studies of copper and sodium β-vanadium oxide bronzes are performed using positron annihilation measured with a long slit angular correlation apparatus. The dependences of peak coincidence rate on temperature (40 to 310deg C) are obtained for different concentrations of donor atoms in the case of copper vanadium oxide bronzes. A three-states model corresponding to the annihilation of positrons in donor atom sublattice is applied for the description of the experimental data. The creation enthalpy of vacancies for that sublattice is equal to (0.60 ± 0.01) eV for Na 0.33 V 2 O 5 and equal to (0.64 ± 0.01) eV for Cu x V 2 O 5 . (author)

  7. Phase and structural transformations in annealed copper coatings in relation to oxide whisker growth

    Energy Technology Data Exchange (ETDEWEB)

    Dorogov, M.V.; Priezzheva, A.N. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Vlassov, S., E-mail: vlassovs@ut.ee [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Kink, I.; Shulga, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Dorogin, L.M. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Lõhmus, R. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Tyurkov, M.N.; Vikarchuk, A.A. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Romanov, A.E. [Togliatti State University, Belorusskaya 14, 445667 Togliatti (Russian Federation); Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); ITMO University, Kronverkskiy 49, 197101 Saint Petersburg (Russian Federation); Ioffe Physical Technical Institute, RAS, Polytechnicheskaya 26, 194021 Saint Petersburg (Russian Federation)

    2015-08-15

    Highlights: • Coatings prepared by Cu microparticle electrodeposition. • Structural and phase transformation in Cu coatings annealed at 400 °C. • Annealing is accompanied by intensive growth of CuO whiskers. • Layered oxide phases (Cu{sub 2}O and CuO) in the coating are characterized. • Formation of volumetric defects in the coating is demonstrated. - Abstract: We describe structural and phase transformation in copper coatings made of microparticles during heating and annealing in air in the temperature range up to 400 °C. Such thermal treatment is accompanied by intensive CuO nanowhisker growth on the coating surface and the formation of the layered oxide phases (Cu{sub 2}O and CuO) in the coating interior. X-ray diffraction and focused ion beam (FIB) are employed to characterize the multilayer structure of annealed copper coatings. Formation of volumetric defects such as voids and cracks in the coating is demonstrated.

  8. Effects of radiation damage in ion-implanted thin films of metal-oxide superconductors

    International Nuclear Information System (INIS)

    Clark, G.J.; Marwick, A.D.; Koch, R.H.; Laibowitz, R.B.

    1987-01-01

    The effects of ion implantation into thin films of the superconductor YBa 2 Cu 3 O/sub x/ have been studied. Using oxygen and arsenic ions, the superconducting transition temperature T/sub c/, the change in room-temperature electrical properties from conducting to insulating, and the crystalline to amorphous structural transition in the films were studied as a function of ion dose. The deposited energy required to change T/sub c/ was found to be 0.2 eV/atom, while 1--2 eV/atom was required to affect the room-temperature conductivity, and 4 eV/atom to render the film amorphous. This hierarchy of effects is discussed in terms of the damage mechanisms involved

  9. A peroxynitrite complex of copper: formation from a copper-nitrosyl complex, transformation to nitrite and exogenous phenol oxidative coupling or nitration.

    Science.gov (United States)

    Park, Ga Young; Deepalatha, Subramanian; Puiu, Simona C; Lee, Dong-Heon; Mondal, Biplab; Narducci Sarjeant, Amy A; del Rio, Diego; Pau, Monita Y M; Solomon, Edward I; Karlin, Kenneth D

    2009-11-01

    Reaction of nitrogen monoxide with a copper(I) complex possessing a tridentate alkylamine ligand gives a Cu(I)-(*NO) adduct, which when exposed to dioxygen generates a peroxynitrite (O=NOO(-))-Cu(II) species. This undergoes thermal transformation to produce a copper(II) nitrito (NO(2) (-)) complex and 0.5 mol equiv O(2). In the presence of a substituted phenol, the peroxynitrite complex effects oxidative coupling, whereas addition of chloride ion to dissociate the peroxynitrite moiety instead leads to phenol ortho nitration. Discussions include the structures (including electronic description) of the copper-nitrosyl and copper-peroxynitrite complexes and the formation of the latter, based on density functional theory calculations and accompanying spectroscopic data.

  10. Operating experience gained during the copper oxide plugging incident in Koeberg unit 1 generator stator

    Energy Technology Data Exchange (ETDEWEB)

    Mellor, S.P.; Matthee, F.W. [ESKOM, Koeberg Nuclear Power Station (South Africa)

    2002-07-01

    In June 1999 Koeberg's unit 1 started to experience adverse operating conditions which were later ascribed to blockages in the hollow conductors of the generator stator. These blockages were attributed to copper oxide plugs which developed progressively during the following year and culminated in reduced power operation. Many attempts were made to address the plugging by implementing various off-line and on-line cleaning processes. Subsequent to a successful on-line cleaning operation, the unit was returned to full power and the chemistry regime for the stator cooling water system was changed to allow for operation at an elevated pH. This paper discusses Koeberg's experience with copper oxide blockages, describes the initial indications of the problem and the impact on the operating parameters. The remainder of the paper focuses on the actions taken to address the deteriorating situation and the different cleaning methods implemented to remove the copper oxide deposits. The paper concludes with the current status of the unit 1 generator stator and the lessons learned during the resolution of this problem. (authors)

  11. Operating experience gained during the copper oxide plugging incident in Koeberg unit 1 generator stator

    International Nuclear Information System (INIS)

    Mellor, S.P.; Matthee, F.W.

    2002-01-01

    In June 1999 Koeberg's unit 1 started to experience adverse operating conditions which were later ascribed to blockages in the hollow conductors of the generator stator. These blockages were attributed to copper oxide plugs which developed progressively during the following year and culminated in reduced power operation. Many attempts were made to address the plugging by implementing various off-line and on-line cleaning processes. Subsequent to a successful on-line cleaning operation, the unit was returned to full power and the chemistry regime for the stator cooling water system was changed to allow for operation at an elevated pH. This paper discusses Koeberg's experience with copper oxide blockages, describes the initial indications of the problem and the impact on the operating parameters. The remainder of the paper focuses on the actions taken to address the deteriorating situation and the different cleaning methods implemented to remove the copper oxide deposits. The paper concludes with the current status of the unit 1 generator stator and the lessons learned during the resolution of this problem. (authors)

  12. Chromatic annuli formation and sample oxidation on copper thin films by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    He, Shutong [Ultrafast Laser Laboratory, Key Laboratory of Opto-Electronic Information Technical Science of Ministry of Education, College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072 (China); Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Amoruso, Salvatore [Dipartimento di Fisica, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli (Italy); Pang, Dongqing; Wang, Chingyue; Hu, Minglie, E-mail: huminglie@tju.edu.cn [Ultrafast Laser Laboratory, Key Laboratory of Opto-Electronic Information Technical Science of Ministry of Education, College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072 (China)

    2016-04-28

    We report an experimental investigation on the irradiation of copper thin films with high repetition rate femtosecond laser pulses (1040 nm, 50 MHz), in ambient air and liquid water. We observe a novel, striking phenomenon of chromatic copper oxides (CuO and Cu{sub 2}O) annuli generation. The characteristic features of the chromatic copper oxide annuli are studied by exploiting micro-Raman spectroscopy, optical and scanning electron microscopies. In the case of irradiation in water, the seldom investigated effects of the immersion time, t{sub w}, after irradiation with a fixed number of pulses are analyzed, and an intriguing dependence of the color of the chromatic annuli on t{sub w} is observed. This remarkable behavior is explained by proposing an interpretation scenario addressing the various processes involved in the process. Our experimental findings show that Cu{sub 2}O nanoparticles (size of ≈20 nm) and Cu{sub 2}O nanocubes (nanocube edges of ≈30, ≈60 nm) can be effectively generated by exploiting high repetition rate laser-assisted oxidation.

  13. Flue gas cleanup using the Moving-Bed Copper Oxide Process

    Energy Technology Data Exchange (ETDEWEB)

    Pennline, Henry W; Hoffman, James S

    2013-10-01

    The use of copper oxide on a support had been envisioned as a gas cleanup technique to remove sulfur dioxide (SO{sub 2}) and nitric oxides (NO{sub x}) from flue gas produced by the combustion of coal for electric power generation. In general, dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available wet scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. The Moving-Bed Copper Oxide Process is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. In this regenerable sorbent technique, the use of the copper oxide sorbent was originally in a fluidized bed, but the more recent effort developed the use of the sorbent in a moving-bed reactor design. A pilot facility or life-cycle test system was constructed so that an integrated testing of the sorbent over absorption/regeneration cycles could be conducted. A parametric study of the total process was then performed where all process steps, including absorption and regeneration, were continuously operated and experimentally evaluated. The parametric effects, including absorption temperature, sorbent and gas residence times, inlet SO{sub 2} and NO{sub x} concentration, and flyash loadings, on removal efficiencies and overall operational performance were determined. Although some of the research results have not been previously published because of previous collaborative restrictions, a summary of these past findings is presented in this communication. Additionally, the potential use of the process for criteria pollutant removal in oxy-firing of fossil fuel for carbon sequestration purposes is discussed.

  14. Dependency of the band gap of electrodeposited Copper oxide thin films on the concentration of copper sulfate (CuSO4.5H2O) and pH in bath solution for photovoltaic applications

    KAUST Repository

    Islam, Md. Anisul

    2016-03-10

    In this study, Copper oxide thin films were deposited on copper plate by electrodeposition process in an electrolytic bath containing CuSO4.5H2O, 3M lactic acid and NaOH. Copper oxide films were electrodeposited at different pH and different concentration of CuSO4.5H2O and the optical band gap was determined from their absorption spectrum which was obtained from UV-Vis absorption spectroscopy. It was found that copper oxide films which were deposited at low concentration of CuSO4.5H2O have higher band gap than those deposited at higher bath concentration. The band gap of copper oxide films also significantly changes with pH of the bath solution. It was also observed that with the increase of the pH of bath solution band gap of copper oxide film decreased. © 2015 IEEE.

  15. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    Energy Technology Data Exchange (ETDEWEB)

    Ergaz, Zivanit, E-mail: zivanit@hadassah.org.il [Hebrew University Hadassah Medical School, Jerusalem (Israel); Guillemin, Claire [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Neeman-azulay, Meytal; Weinstein-Fudim, Liza [Hebrew University Hadassah Medical School, Jerusalem (Israel); Stodgell, Christopher J.; Miller, Richard K. [Department of Obstetrics and Gynecology, University of Rochester, Rochester (United States); Szyf, Moshe [Department of Pharmacology and Therapeutics, McGill University, Montreal (Canada); Ornoy, Asher [Hebrew University Hadassah Medical School, Jerusalem (Israel)

    2014-05-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  16. Placental oxidative stress and decreased global DNA methylation are corrected by copper in the Cohen diabetic rat

    International Nuclear Information System (INIS)

    Ergaz, Zivanit; Guillemin, Claire; Neeman-azulay, Meytal; Weinstein-Fudim, Liza; Stodgell, Christopher J.; Miller, Richard K.; Szyf, Moshe; Ornoy, Asher

    2014-01-01

    Fetal Growth Restriction (FGR) is a leading cause for long term morbidity. The Cohen diabetic sensitive rats (CDs), originating from Wistar, develop overt diabetes when fed high sucrose low copper diet (HSD) while the original outbred Sabra strain do not. HSD induced FGR and fetal oxidative stress, more prominent in the CDs, that was alleviated more effectively by copper than by the anti-oxidant vitamins C and E. Our aim was to evaluate the impact of copper or the anti-oxidant Tempol on placental size, protein content, oxidative stress, apoptosis and total DNA methylation. Animals were mated following one month of HSD or regular chow diet and supplemented throughout pregnancy with either 0, 1 or 2 ppm of copper sulfate or Tempol in their drinking water. Placental weight on the 21st day of pregnancy decreased in dams fed HSD and improved upon copper supplementation. Placental/fetal weight ratio increased among the CDs. Protein content decreased in Sabra but increased in CDs fed HSD. Oxidative stress biochemical markers improved upon copper supplementation; immunohistochemistry for oxidative stress markers was similar between strains and diets. Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. Placental global DNA methylation was decreased only among the CDs dams fed HSD. We conclude that FGR in this model is associated with smaller placentae, reduced DNA placental methylation, and increased oxidative stress that normalized with copper supplementation. DNA hypomethylation makes our model a unique method for investigating genes associated with growth, oxidative stress, hypoxia and copper. - Highlights: • Sensitive Cohen diabetic rats (CDs) had small placentae and growth restricted fetuses. • CDs dams fed high sucrose low copper diet had placental global DNA hypomethylation. • Caspase 3 was positive in more placentae of dams fed HSD than those fed RD. • Oxidative stress parameters improved by Tempol and resolved by copper

  17. Effect of self purification on the structural optical and electrical properties of copper doped oxidized Zn films

    International Nuclear Information System (INIS)

    Koshy, Obey; Abdul Khadar, M.

    2015-01-01

    The effect of self purification mechanism is studied on oxidized Cu–Zn thin films. Oxidized Cu–Zn thin films were prepared by thermal evaporation on glass substrates. XRD studies indicate that the oxidized Cu–Zn thin films are of hexagonal wurtzite structure. AFM images shows that with increase in copper wt. percent the nanoparticle morphology of oxidized Zn film turned to one dimensional nanorod morphology. XPS spectra of the oxidized Cu–Zn thin films shows the oxidized state of zinc and copper. The PL spectra of oxidized Zn film showed a strong and narrow near band edge emission at 380 nm whereas in the case of oxidized Cu–Zn thin films the emission showed peak near 410 nm corresponding to peak related to copper. With increase in copper content, the intensity of the defect emission decreased due to the self purification mechanism in nanomaterials. In addition the resistivity of doped films increased due to the self purification mechanism in nanomaterials. - Highlights: • Copper doping in ZnO resulted in the increase in blue emission due to defect levels formed. • The intensity of the luminescence peak of the doped film sample decreased and resistivity increased due to the self purification mechanism in nanomaterials.

  18. Mechanical Properties of Oxide Films on Electrolytic In-process Dressing (ELID) Copper-based Grinding Wheel

    Science.gov (United States)

    Kuai, J. C.; Wang, J. W.; Jiang, C. R.; Zhang, H. L.; Yang, Z. B.

    2018-05-01

    The mechanical properties of oxide films on copper based grinding wheel were studied by nanoindentation technique. The analysis of load displacement shows that the creep phenomenon occurs during the loading stage. Results show that the oxide film and the matrix have different characteristics, and the rigidity of the copper based grinding wheel is 0.6-1.3mN/nm, which is weaker than that of the matrix; the hardness of the oxide film is 2000-2300MPa, which is higher than the matrix; and the elastic modulus of the oxide film is 100-120GPa, also higher than the matrix.

  19. Copper oxide nanoparticles induce the transcriptional modulation of oxidative stress-related genes in Arbacia lixula embryos.

    Science.gov (United States)

    Giannetto, Alessia; Cappello, Tiziana; Oliva, Sabrina; Parrino, Vincenzo; De Marco, Giuseppe; Fasulo, Salvatore; Mauceri, Angela; Maisano, Maria

    2018-06-14

    Copper oxide nanoparticles (CuO NPs) are widely used in various industrial applications, i.e. semiconductor devices, batteries, solar energy converter, gas sensor, microelectronics, heat transfer fluids, and have been recently recognized as emerging pollutants of increasing concern for human and marine environmental health. Therefore, the toxicity of CuO NPs needs to be thoroughly understood. In this study, we evaluated the potential role of oxidative stress in CuO NP toxicity by exploring the molecular response of Arbacia lixula embryos to three CuO NP concentrations (0.7, 10, 20 ppb) by investigating the transcriptional patterns of oxidative stress-related genes (catalase and superoxide dismutase) and metallothionein, here cloned and characterized for the first time. Time- and concentration-dependent changes in gene expression were detected in A. lixula embryos exposed to CuO NPs, up to pluteus stage (72 h post-fertilization, hpf), indicating that oxidative stress is one of the toxicity mechanisms for CuO NPs. These findings provide new insights into the comprehension of the molecular mechanisms underlying copper nanoparticle toxicity in A. lixula sea urchin and give new tools for monitoring of aquatic areas, thus corroborating the suitability of this embryotoxicity assay for future evaluation of impacted sites. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Copper-promoted methylene C-H oxidation to a ketone derivative by O2.

    Science.gov (United States)

    Deville, Claire; McKee, Vickie; McKenzie, Christine J

    2017-01-17

    The methylene group of the ligand 1,2-di(pyridin-2-yl)-ethanone oxime (dpeo) is slowly oxygenated by the O 2 in air under ambient conditions when [Cu(dpeo) 2 ](ClO 4 ) 2 is dissolved in ethanol or acetonitrile. An initial transient ketone product, 2-(hydroxyimino)-1,2-di(pyridine-2-yl)ethanone, (hidpe) was characterized in the heteroleptic copper(ii) complex [Cu(bpca)(hidpe)](ClO 4 ). The co-ligand in this complex, N-(2'-pyridylcarbonyl)pyridine-2-carboximidate (bpca - ), is derived from a copper-promoted Beckmann rearrangement of hidpe. In the presence of bromide only [Cu(bpca)Br] is isolated. When significant water is present in reaction mixtures copper complexes of dpeo, hidpe and bpca - are not recovered and [Cu(pic) 2 H 2 O] is isolated. This occurs since two equivalents of picolinate are ultimately generated from one equivalent of oxidized and hydrolysed dpeo. The copper-dependent O 2 activation and consequent stoichiometric dpeo C-H oxidation is reminiscent of the previously observed catalysis of dpeo oxidation by Mn(ii) [C. Deville, S. K. Padamati, J. Sundberg, V. McKee, W. R. Browne, C. J. McKenzie, Angew. Chem., Int. Ed., 2016, 55, 545-549]. By contrast dpeo oxidation is not observed during complexation reactions with other late transition metal(ii) ions (M = Fe, Co, Ni, Zn) under aerobic conditions. In these cases bis and tris complexes of bidentate dpeo are isolated in good yields. It is interesting to note that dpeo is not oxidised by H 2 O 2 in the absence of Cu or Mn, suggesting that metal-based oxidants capable of C-H activation are produced from the dpeo-Cu/Mn systems and specifically O 2 . The metastable copper complexes [Cu(dpeo) 2 ](ClO 4 ) 2 and [Cu(bpca)(hidpe)](ClO 4 ), along with [NiX 2 (dpeo) 2 ] (X = Cl, Br), [Ni(dpeo) 3 ](ClO 4 ) 2 , [Co(dpeo) 3 ](ClO 4 ) 3 and the mixed valence complex [Fe III Fe(dpeo-H) 3 (dpeo) 3 ](PF 6 ) 4 , have been structurally characterized.

  1. Defect studies in copper-based p-type transparent conducting oxides

    Science.gov (United States)

    Ameena, Fnu

    Among other intrinsic open-volume defects, copper vacancy (VCu) has been theoretically identified as the major acceptor in p-type Cu-based semiconducting transparent oxides, which has potential as low-cost photovoltaic absorbers in semi-transparent solar cells. A series of positron annihilation experiments with pure Cu, Cu2O, and CuO presented strong presence of VCu and its complexes in the copper oxides. The lifetime data also showed that the density of VCu was becoming higher as the oxidation state of Cu increased which was consistent with the decrease in the formation energy of VCu. Doppler broadening measurements further indicated that electrons with low momentum made more contribution to the contributed as pure Cu oxidizes to copper oxides. The metastable defects are known to be generated in Cu2O upon illumination and it has been known to affect the performance of Cu2O-based hetero-junctions used in solar cells. The metastable effect was studied using positron annihilation lifetime spectroscopy and its data showed the change in the defect population upon light exposure and the minimal effect of light-induced electron density increase in the bulk of materials to the average lifetime of the positrons. The change in the defect population is concluded to be related to the dissociation and association of VCu -- V Cu complexes. For example, the shorter lifetime under light was ascribed to the annihilation with smaller size vacancies, which explains the dissociation of the complexes with light illumination. Doppler broadening of the annihilation was independent of light illumination, which suggested that the chemical nature of the defects remained without change upon their dissociation and association -- only the size distribution of copper vacancies varied. The delafossite metal oxides, CuMIIIO2 are emerging wide-bandgap p-type semiconductors. In this research, the formation energies of structural vacancies are calculated using Van Vechten cavity model as an attempt

  2. Structural and optical properties of pure and copper doped zinc oxide nanoparticles

    Science.gov (United States)

    Sajjad, Muhammad; Ullah, Inam; Khan, M. I.; Khan, Jamshid; Khan, M. Yaqoob; Qureshi, Muhammad Tauseef

    2018-06-01

    Pure and copper-doped zinc oxide nanoparticles (NPs) have been synthesized via chemical co-precipitation method where hydrazine is used as reducing agent and aqueous extract of Euphorbia milii plant as capping agent. Main objectives of the reported work are to investigate the effect of copper doping on crystal structure of ZnO nanoparticles; to study the effect of copper doping on optical band gap of ZnO nanoparticles and photoluminescence (PL) study of pure and copper-doped ZnO nanoparticles. To achieve the aforementioned objectives, XRD and SEM tests were performed for the identification and confirmation of crystal structure and morphology of the prepared samples. From XRD data the average grain size for pure ZnO was observed to be 24.62 nm which was first decreased to 18.95 nm for 5 wt% Cu-doped sample and then it was found to increase up to 37.80 nm as the Cu doping was increased to 7 wt%. Optical band gap of pure and Cu-doped ZnO nanoparticles was calculated from diffuse reflectance spectroscopy (DRS) spectra and was found to decrease from 3.13 eV to 2.94 eV as the amount of Cu increases up to 7 wt%. In photoluminescence study, PL technique was used and enhanced visible spectrum was observed. For further characterization FT-IR and EDX tests were also carried out.

  3. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    International Nuclear Information System (INIS)

    Huanosta-Gutiérrez, T.; Dantas, Renato F.; Ramírez-Zamora, R.M.; Esplugas, S.

    2012-01-01

    Highlights: ► We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. ► The copper slag was effective to remove organic pollutants (phenol) from water. ► During experimentation, Cu and Fe leaching were not higher than the acceptable levels. ► Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments promoted biodegradability increment of the contaminated water. ► The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H 2 O 2 (slag/H 2 O 2 ) and H 2 O 2 /UV (slag/H 2 O 2 /UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD 5 /TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  4. Auger electron spectroscopy study of initial stages of oxidation in a copper - 19.6-atomic-percent-aluminum alloy

    Science.gov (United States)

    Ferrante, J.

    1973-01-01

    Auger electron spectroscopy was used to examine the initial stages of oxidation of a polycrystalline copper - 19.6 a/o-aluminum alloy. The growth of the 55-eV aluminum oxide peak and the decay of the 59-, 62-, and 937-eV copper peaks were examined as functions of temperature, exposure, and pressure. Pressures ranged from 1x10 to the minus 7th power to 0.0005 torr of O2. Temperatures ranged from room temperature to 700 C. A completely aluminum oxide surface layer was obtained in all cases. Complete disappearance of the underlying 937-eV copper peak was obtained by heating at 700 C in O2 at 0.0005 torr for 1 hr. Temperature studies indicated that thermally activated diffusion was important to the oxidation studies. The initial stages of oxidation followed a logarithmic growth curve.

  5. Applications of high-temperature superconductors in power technology

    International Nuclear Information System (INIS)

    Hull, John R

    2003-01-01

    Since the discovery of the first high-temperature superconductors (HTSs) in the late 1980s, many materials and families of materials have been discovered that exhibit superconductivity at temperatures well above 20 K. Of these, several families of HTSs have been developed for use in electrical power applications. Demonstration of devices such as motors, generators, transmission lines, transformers, fault-current limiters, and flywheels in which HTSs and bulk HTSs have been used has proceeded to ever larger scales. First-generation wire, made from bismuth-based copper oxides, was used in many demonstrations. The rapid development of second-generation wire, made by depositing thin films of yttrium-based copper oxide on metallic substrates, is expected to further accelerate commercial applications. Bulk HTSs, in which large single-grain crystals are used as basic magnetic components, have also been developed and have potential for electrical power applications

  6. Nobel Prize winner visits CERN’s superconductors

    CERN Multimedia

    2008-01-01

    On Wednesday 23 April Georg Bednorz, who won the Nobel Prize for physics in 1987, visited CERN along with 44 of his colleagues from the IBM Zurich Research Laboratory. Georg Bednorz (second from right) with colleagues from the IBM Zurich Research Laboratory in the LHC tunnel. On their arrival, Jos Engelen, the Chief Scientific Officer, gave the IBM group an introduction to CERN. Bednorz came to CERN only recently for the Open Days to give a seminar, but unfortunately did not have time to visit the experiments, so this trip was organised instead. Along with Alex Müller, Bednorz was awarded the Noble Prize for his discovery of superconductivity for the so-called high temperature superconductors, essentially copper-oxide-based compounds showing superconductivity at temperatures much higher than had previously been thought possible. The LHC magnets are built with low-temperature superconductors but many current leads that supply power to the LHC cryostats are made with...

  7. Microstructure and critical current density in high-Tc metal oxide superconductors

    International Nuclear Information System (INIS)

    Johnson, S.M.; Gusman, M.I.

    1992-03-01

    Superconductor powders in the U-Ba-Cu-O (YBCO) and Bi-Pb-Sr-Ca-Cu-O (BSCCO) systems were synthesized by freeze-drying. Powders were characterized, and processed into samples for evaluation of superconducting behavior. Freeze-drying is attractive because the powders have high purity, are homogeneous, have a small size and are active. YBCO powders can be sintered to high density at 890 degrees C. Many compositions, processing approaches and heat treatments were explored in an effort to understand relations between microstructure and critical density, and to improve the critical current density. Powders were also formed into sputtering targets for coating preparation at Stanford University. The highest critical current density achieved with the YBCO powders was ∼15,000 A/cm 2 at 4.2K and 0.5T using powders treated to prevent carbon contamination. The BSCCO materials with the highest critical current density, ∼30,000 A/cm 2 at the same conditions were formed by heat treating melted and quenched samples. All critical current density measurements were made by Stanford University, a subcontractor to this effort. Stanford University also prepared coatings by off-axis magnetron sputtering

  8. Methanol oxidation at platinized copper particles prepared by galvanic replacement

    Directory of Open Access Journals (Sweden)

    Ioanna Mintsouli

    2016-04-01

    Full Text Available Bimetallic Pt-Cu particles have been prepared by galvanic replacement of Cu precursor nanoparticles, upon the treatment of the latter with a chloro-platinate acidic solution. The resulting particles, typically a few tens of nm large, were supported on high surface area carbon (Vulcan® XC–72R, Cabot and tested as electrodes. Surface electrochemistry in deaerated acid solutions was similar to that of pure Pt, indicating the existence of a Pt shell (hence the particles are denoted as Pt(Cu. Pt(Cu/C supported catalysts exhibit superior carbon monoxide and methanol oxidation activity with respect to their Pt/C analogues when compared on a per electroactive surface area basis, due to the modification of Pt activity by Cu residing in the particle core. However, as a result of large particle size and agglomeration phenomena, Pt(Cu/C are still inferior to Pt/C when compared on a mass specific activity basis.

  9. Use of copper oxide wire particles to control gastrointestinal nematodes in goats.

    Science.gov (United States)

    Burke, J M; Terrill, T H; Kallu, R R; Miller, J E; Mosjidis, J

    2007-10-01

    The objectives of these experiments were to determine the optimal dose of copper oxide wire particles (COWP) necessary to reduce gastrointestinal nematode (GIN) infection in young and mature goats naturally infected with Haemonchus contortus or a mixed infection and to determine whether the effectiveness could be enhanced through feeding management. Two experiments were conducted during cooler months in Georgia, and 4 experiments were conducted during warmer spring or summer months in Arkansas. Meat goats received 0 up to 10 g of COWP under a variety of management conditions. In all experiments, blood and feces were collected every 3 or 7 d from 6 to 42 d to determine blood packed cell volume (PCV) and fecal egg counts (FEC) to estimate the degree of GIN infection. In mature goats grazing fall pasture, mean FEC of 0 g of COWP-treated goats increased, and those of 4 g of COWP-treated goats remained low on d 0, 7, and 14 (COWP x d, P 0.10), which were lower on d 7 through 21 (COWP x date, P copper toxicity, was effective in reducing FEC in young goats, and 5 g of COWP was effective in older goats. Copper oxide does not appear to be effective in controlling newly acquired L4 stage (preadult) larvae, which also feed on blood, leading to decreased PCV in newly infected goats.

  10. A structure study of copper oxide for monolayer dispersion of anatase supported

    International Nuclear Information System (INIS)

    Zi Fenlan; Yu Xiaofeng; Guo Hongyou; Cai Xiaohai; Yang Pengcheng; Wu Nianzu; Xie Yaning; Zang Jing; Hu Tiandou

    2002-01-01

    The monolayer dispersion of copper oxide on the surface of anatase and its effect on the properties have been studied by X-ray photoelectron spectroscopy (XPS) and X-ray extended absorption fine structure (EXAFS). XPS results give an utmost dispersion capacity of 7.2 mg/gTiO 2 . Strong interactions between copper oxide and anatase can be seen from EXAFS results. The structure of the supported CuO species is strongly dependent on the amount of CuO loading. When the content of CuO loading is below the utmost dispersion capacity, the surface of CuO/TiO 2 is dominated by the highly dispersed CuO species having no -Cu-O-Cu- chains. The copper ion is located in an octahedral coordination environment, and the Cu-O coordination distance is much longer than that in pure crystalline CuO. When CuO loading is exceeds the utmost dispersion capacity, crystalline CuO is formed on the surface of CuO/TiO 2 . From the result of the structure study, it is Cu-O octahedral coordination and coordination distance change in comparison with pure crystalline CuO on the surface CuO/TiO 2 that have catalytic activity

  11. Enhanced electrochemical oxidation of methanol on copper electrodes modified by electrocorrosion and electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Carugno, Sofía [INQUIMAE – DQIAQF, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires (Argentina); Chassaing, Elisabeth [IRDEP (UMR7174), EDF R and D, 6 Quai Watier, 78401 Chatou (France); Rosso, Michel [LPMC (UMR7643), CNRS, Ecole Polytechnique, F91128 Palaiseau Cedex (France); González, Graciela A., E-mail: graciela@qi.fcen.uba.ar [INQUIMAE – DQIAQF, Facultad de Ciencias, Exactas y Naturales, Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 1428 Buenos Aires (Argentina)

    2014-02-14

    In this paper, we report a study of electrocatalytic oxidation of methanol on copper electrodes subjected to different surface treatments, either electrocorrosion or electrodeposition in the absence of strong hydrogen co-deposition. The surface morphology of treated electrodes was examined by Field Emission Scanning Electron Microscopy (FE-SEM). The effect of different treatment conditions and the methanol concentration dependence were evaluated by cyclic voltammetric technique. The results indicate that the oxidation of methanol can be enhanced by a suitable micro and nano structure generated by these treatments. This enhanced electrode activity is related to an increase of the effective surface area and/or to an increase of the surface concentration of electroactive molecules or intermediates. - Highlights: • We presented simple treatments to increase the response of copper electrodes. • Copper electrodes were modified by electrocorrosion and electrodeposition. • Scanning Electron Microscopy images reveal the effects of the different treatments. • The response is enhanced by an area increase and/or intermediates concentration. • For each treatment the concentration range of the diffusion control is analyzed.

  12. Strengthening effect of reduced graphene oxide in steel clad copper rod

    Science.gov (United States)

    Gao, Haitao; Liu, Xianghua; Ai, Zhengrong; Zhang, Shilong; Liu, Lizhong

    2016-11-01

    Reduced graphene oxide has been extensively used as reinforcing agent owing to their high mechanical properties. In this work, an attempt is made to synthesize steel clad copper rod reinforced with reduced graphene oxide (RGO) by the combination of powder-in-tube and intermediate annealing (IA). Experiments show that the Fe/RGO/Cu composites manifest better mechanical properties than Fe/Cu composites. In the process of groove rolling, RGO acts as effective binder, which can greatly improve the adhesive strength of copper scrap and two metals. Moreover, the strengthening effect of RGO is tightly related to its dispersion state. The RGO diffuses much more uniformly on the metallic substrate under the IA temperature of 1100 °C than 800 °C, which can be characterized by less deformation twins appearing at the interface of core copper and the formation of Fe-RGO-Cu transition belt at the bonding interface. In this case, the peak hardness, tensile strength and shear strength of Fe/RGO/Cu composites are 52 HV, 125 and 41 MPa higher than those of the Fe/Cu composites, respectively. The difference of strengthening effect and mechanisms of RGO under 800 and 1100 °C of IA are systematically discussed by referring to experimental results.

  13. Organic superconductors

    International Nuclear Information System (INIS)

    Bulaevskij, L.N.; Shchegolev, I.F.

    1986-01-01

    Main achievements in creating new organic conducting materials - synthetic metals and superconductors, are considered. The processes of superconductivity occurrence in organic materials are discussed. It is shown that conjugated bonds between C and H atoms in organic molecules play an important role in this case. At present ''crystal direction'' in organic superconductor synthesis is mainly developed. Later on, organic superconductor crystals are supposed to be introduced into usual polymers, e.g. polyethylene

  14. Thin film superconductors and process for making same

    Science.gov (United States)

    Nigrey, P.J.

    1988-01-21

    A process for the preparation of oxide superconductors from high-viscosity non-aqueous solution is described. Solutions of lanthanide nitrates, alkaline earth nitrates and copper nitrates in a 1:2:3 stoichiometric ratio, when added to ethylene glycol containing citric acid solutions, have been used to prepare highly viscous non-aqueous solutions of metal mixed nitrates-citrates. Thin films of these compositions are produced when a layer of the viscous solution is formed on a substrate and subjected to thermal decomposition.

  15. Nuclear hyperfine interactions and chemical bonding in high TC superconductors

    International Nuclear Information System (INIS)

    Danon, J.

    1987-01-01

    Nuclear quadrupole resonances of Cu 63 and Fe 57 Moessbauer spectroscopy of the high temperature superconductor YBa 2 Cu 3 O 7-γ e described together with synchrotron radiation studies of the copper oxidation states in this material. The Moessbauer spectra of 57 Fe in the two distinct crystallographic sites of the Cu atoms in YBa 2 Cu 3 O 7-γ are very similar from the quadrupole coupling point of view although exhibiting markedly different values for the isomer shift. The role of oxygen vacancies in the hyperfine interactions is discussed. (author) [pt

  16. Electrochemical Oxidation of Silver and Copper in Aqueous Basic Media and in Fused Hydroxide Electrolytes

    Directory of Open Access Journals (Sweden)

    Tejada-Rosales, E. M.

    2004-04-01

    Full Text Available The anodic oxidations of copper and silver electrodes in basic media are reported. Experiments were conducted both in aqueous NaOH solutions and in a flux of molten NaOH/KOH eutectic. The oxidation processes were studied by means of cyclic voltammetry and chronoamperometries and the phases obtained were systematically characterized by x-ray diffraction. The ranges of stability of each phase in the different media studied are reported. In addition to known oxides of copper or silver, a new silver oxide was isolated.

    En este trabajo se describe la oxidación anódico de electrodos de plata y de cobre en medios básicos. Se han utilizado tanto medios acuosos como hidróxidos fundidos (eutéctico NaOH/KOH. Los procesos de oxidación se han estudiado mediante voltametría cíclica y cronoamperometría, y las fases resultantes han sido caracterizadas por difracción de Rayos X. Los rangos de estabilidad encontrados para cada uno dependen del medio utilizado. Además de óxidos conocidos de cobre y de plata, se ha aislado un nuevo óxido de plata.

  17. Plasma Deposition and Characterization of Copper-doped Cobalt Oxide Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Jacek TYCZKOWSKI

    2013-09-01

    Full Text Available A series of pure and copper-doped cobalt oxide films was prepared by plasma-enhanced metalorganic chemical vapor deposition (PEMOCVD. The effect of Cu-doping on the chemical structure and morphology of the deposited films was investigated. Raman and FTIR spectroscopies were used to characterize the chemical structure and morphology of the produced films. The bulk composition and homogeneity of the samples were investigated by energy dispersive X-ray microanalysis (EDX, and X-ray photoelectron spectroscopy (XPS was employed to assess the surface chemical composition of pure and doped materials. The obtained results permit to affirm that the PEMOCVD technique is a simple, versatile and efficient method for providing homogeneous layers of cobalt oxides with a different content of copper. It has been found that pure cobalt oxide films mainly contain Co3O4 in the form of nanoclusters whereas the films doped with Cu are much more complex, and CoOx (also Co3O4, mixed Co-Cu oxides and CuOx nanoclusters are detected in them. Preliminary catalytical tests show that Cu-doped cobalt oxide films allow to initiate catalytic combustion of n-hexane at a lower temperature compared to the pure cobalt oxide (Co3O4 films. From what has been stated above, the plasma-deposited thin films of Cu-doped cobalt oxides pave the way towards a new class of nanomaterials with interesting catalytic properties. DOI: http://dx.doi.org/10.5755/j01.ms.19.3.2320

  18. Hydrogen and deuterium permeation in copper alloys, copper--gold brazing alloys, gold, and the in situ growth of stable oxide permeation barriers

    International Nuclear Information System (INIS)

    Begeal, D.R.

    1978-01-01

    The deuterium permeation through several copper alloys has been measured over a temperature range of 550 to 830 K using the membrane technique. In some cases, the hydrogen permeability was also measured. The results were divided into three categories: common alloys, gold alloys, and stable oxide forming alloys. Common alloys which showed typical bulk metallic diffusion with litle change in the permeation activation energy as compared to copper (77 kJ/mol for D 2 ) were: (additions are in weight percent) 5% Sn, 2.3% U, 0.15% Zr, 4% Sn+4% Pb+4% Zn, 3% Si, and 7% Al+2% Fe. Compared to copper, the D 2 permeability at 573 K was reduced by factors of 2.0, 2.7, 4.5, 5.3, 5.9, and 7.0, respectively. A series of gold--copper alloys including pure gold, 80% Au, 50% Au, 49% Au, and 35% Au also showed typical bulk metallic diffusion with a trend of decreasing permeability (increasing activation energies for permeation) with increasing gold content. There were also pronounced inflections or shifts in the permeability at approx.370 0 C, or about the order--disorder transition for Cu 3 Au and CuAu, for the 80% and 50% alloys. Two alloys did not exhibit bulk metallic permeation behavior and the permeabiltiy was in fact controlled by surface oxide layers. It was found that a layer of beryllium oxide could be formed on Cu+2% Be and a layer of aluminum oxide could be formed on Cu+7% Al+2% Si. As compared to 0.25 mm-thick copper, the deuterium permeability at 500 0 C was reduced by a factor of approx.250 for Cu--Be and approx.1000 for Cu--Al--Si. The activation energies for deuterium permeation were 98 kJ/mol and 132 kJ/mol, respectively. The mechanism for the oxide growth is the high-temperature hydrogen reduction of nearby less stable oxides, simultaneous with oxidation of the active metal, Be or Al, by trace amounts of water in the hydrogen. Ion microprobe mass analysis identified the oxide layers as containing beryllium or aluminum but not containing copper

  19. Theory of novel normal and superconducting states in doped oxide high-Tc superconductors

    International Nuclear Information System (INIS)

    Dzhumanov, S.

    2001-10-01

    A consistent and complete theory of the novel normal and superconducting (SC) states of doped high-T c superconductors (HTSC) is developed by combining the continuum model of carrier self-trapping, the tight-binding model and the novel Fermi-Bose-liquid (FBL) model. The ground-state energy of carriers in lightly doped HTSC is calculated within the continuum model and adiabatic approximation using the variational method. The destruction of the long-range antiferromagnetic (AF) order at low doping x≥ x cl ≅0.015, the formation of the in-gap states or bands and novel (bi)polaronic insulating phases at x c2 ≅0.06-0.08, and the new metal- insulator transition at x≅x c2 in HTSC are studied within the continuum model of impurity (defect) centers and large (bi)polarons by using the appropriate tight-binding approximations. It is found that the three-dimensional (3d) large (bi)polarons are formed at ε ∞ /ε 0 ≤0.1 and become itinerant when the (bi)polaronic insulator-to-(bi)polaronic metal transitions occur at x x c2 . We show that the novel pseudogapped metallic and SC states in HTSC are formed at x c2 ≤x≤x p ≅0.20-0.24. We demonstrate that the large polaronic and small BCS-like pairing pseudogaps opening in the excitation spectrum of underdoped (x c2 BCS =0.125), optimally doped (x BCS o ≅0.20) and overdoped (x>x o ) HTSC above T c are unrelated to superconductivity and they are responsible for the observed anomalous optical, transport, magnetic and other properties of these HTSC. We develop the original two-stage FBL model of novel superconductivity describing the combined novel BCS-like pairing scenario of fermions and true superfluid (SF) condensation scenario of composite bosons (i.e. bipolarons and cooperons) in any Fermi-systems, where the SF condensate gap Δ B and the BCS-like pairing pseudogap Δ F have different origins. The pair and single particle condensations of attracting 3d and two- dimensional (2d) composite bosons are responsible for

  20. The new superconductors: Prospects for applications

    International Nuclear Information System (INIS)

    Wolsky, A.M.; Giese, R.F.; Daniels, E.J.

    1989-01-01

    Two years ago several groups around the world, excited by the discovery by K. Alex Mueller and J. Georg Bednorz of the IBM Zurich Research Laboratory of a superconducting ceramic oxide, developed an yttrium-barium-copper oxide that superconducted at 90 K. Since then other investigators have found two separate families of copper oxides, one incorporating bismuth and the other thallium, that superconduct at between 110 and 120 K. These high-temperature superconductors could be cooled to 77 degrees K with liquid nitrogen, which is cheap and abundant. This immediately suggested that certain applications of superconductivity long considered not to be economic or practical might be feasible. Yet many of the envisioned applications-generators and motors, energy storage, magnetically levitating trains-raise the same issues to which Onnes referred. It is not yet known whether the new materials can be made easily workable-strong and flexible enough to fashion into wire and other useful forms. Nor is it known whether they can be made to carry large currents and operate in intense magnetic fields. Whether the new discoveries will prove fruitful will depend on the progress made toward achieving design requirements for known applications and on identifying new applications as yet unforeseen. Indeed, such new applications may well have the greater impact. No one foresaw today's most important commercial use of superconductivity, magnetic-resonance imaging for medical diagnosis, in the 1960's, when niobium-3-tin and niobium-titanium were found to remain superconducting while carrying high currents in the presence of sizable magnetic fields. Leaving aside the unforeseen, an informed view of the economic and technical advantages of the new superconductors can help guide attempts to achieve the applications now being envisioned

  1. Direct measurement of the Cu oxidation number of cuprate superconductor ceramics

    International Nuclear Information System (INIS)

    Dankhazi, Z.; Szasz, A.; Kojnok, J.; Gal, M.; Torkos, K.; Solymos, K.; Kirchmayr, H.; Mueller, H.; Watson, L.M.

    1991-01-01

    The Cu oxidation number of YBa 2 Cu 3 O 7 was measured directly by soft X-ray fluorescent spectroscopy both at room temperature and at liquid N 2 temperature. The measurements are based on a calibration curve from different Ba-O compounds. The effects of changes in oxidation number above and below the transition temperature and its role in high-T c superconductivity are discussed

  2. Induction of oxidative DNA damage by mesalamine in the presence of copper: A potential mechanism for mesalamine anticancer activity

    International Nuclear Information System (INIS)

    Zimmerman, Ryan P.; Jia, Zhenquan; Zhu, Hong; Vandjelovic, Nathan; Misra, Hara P.; Wang, Jianmin; Li, Yunbo

    2011-01-01

    Mesalamine is the first line pharmacologic intervention for patients with ulcerative colitis, and recent epidemiologic studies have demonstrated a protective association between therapeutic use of the drug and colorectal carcinoma. However, the mechanism by which this protection is afforded has yet to be elucidated. Because copper is found at higher than normal concentrations in neoplastic cell nuclei and is known to interact with phenolic compounds to generate reactive oxygen species, we investigated whether the reaction of mesalamine/copper was able to induce oxidative DNA strand breaks in φX-174 RF I plasmid DNA, and the various components of the mechanism by which the reaction occurred. Plasmid DNA strand breaks were induced by pharmacologically relevant concentrations of mesalamine in the presence of a micromolar concentration of Cu(II), and damage was inhibited by bathocuproinedisulfonic acid (BCS) and catalase. Further, we showed that the reaction of copper with mesalamine consumed molecular oxygen, which was inhibited by BCS. Electron paramagnetic resonance spectral analysis of the reaction of copper/mesalamine indicated the presence of the hydroxyl radical, which was inhibited by both BCS and catalase. This study demonstrates for the first time that through a copper-redox cycling mechanism, the copper-mediated oxidation of mesalamine is a pro-oxidant interaction that generates hydroxyl radicals which may participate in oxidative DNA damage. These results demonstrate a potential mechanism of the anticancer effects of mesalamine in patients with ulcerative colitis.

  3. Water treatment with exceptional virus inactivation using activated carbon modified with silver (Ag) and copper oxide (CuO) nanoparticles.

    Science.gov (United States)

    Shimabuku, Quelen Letícia; Arakawa, Flávia Sayuri; Fernandes Silva, Marcela; Ferri Coldebella, Priscila; Ueda-Nakamura, Tânia; Fagundes-Klen, Márcia Regina; Bergamasco, Rosangela

    2017-08-01

    Continuous flow experiments (450 mL min -1 ) were performed in household filter in order to investigate the removal and/or inactivation of T4 bacteriophage, using granular activated carbon (GAC) modified with silver and/or copper oxide nanoparticles at different concentrations. GAC and modified GAC were characterized by X-ray diffractometry, specific surface area, pore size and volume, pore average diameter, scanning electron microscopy, transmission electron microscopy, zeta potential and atomic absorption spectroscopy. The antiviral activity of the produced porous media was evaluated by passing suspensions of T4 bacteriophage (∼10 5  UFP/mL) through filters. The filtered water was analyzed for the presence of the bacteriophage and the release of silver and copper oxide. The porous media containing silver and copper oxide nanoparticles showed high inactivation capacity, even reaching reductions higher than 3 log. GAC6 (GAC/Ag0.5%Cu1.0%) was effective in the bacteriophage inactivation, reaching 5.53 log reduction. The levels of silver and copper released in filtered water were below the recommended limits (100 ppb for silver and 1000 ppb for copper) in drinking water. From this study, it is possible to conclude that activated carbon modified with silver and copper oxide nanoparticles can be used as a filter for virus removal in the treatment of drinking water.

  4. Development of micro-coulometry for measuring oxygen content in copper oxides

    International Nuclear Information System (INIS)

    Sato, Fumiaki; Fujihara, Masaaki; Kambe, Shiro; Ishii, Osamu

    2006-01-01

    A micro-coulometry system was newly developed and employed for measuring the oxygen content in copper oxides using a reduced amount of material. To achieve this reduction in sample size, Ar flow rate, and coulometric current were optimized. When using 5.0 mg of YBa 2 Cu 3 O 6.71 , which is about 1/10 the amount used in conventional coulometry, the oxygen content was successfully determined to be 6.68 ± 0.03, Ar flow rate, and coulometric current were 0.1 l/min, and 1.0 mA, respectively. It was found to be necessary to continue to pass Ar through the solution before coulometry more than ten minutes and during the coulometric measurement. This method will be useful for measuring the oxygen content of oxide samples smaller than 10 mg, i.e. oxide materials produced in small quantities for electronic applications

  5. High-rate reduction of copper oxide using atmospheric-pressure inductively coupled plasma microjets

    International Nuclear Information System (INIS)

    Tajima, Satomi; Tsuchiya, Shouichi; Matsumori, Masashi; Nakatsuka, Shigeki; Ichiki, Takanori

    2011-01-01

    Reduction of copper oxide was performed using an atmospheric-pressure inductively coupled plasma (AP-ICP) microjet while varying the input power P between 15 and 50 W. Cuprous oxide (Cu 2 O) and cupric oxide (CuO) were formed on the sputtered Cu surface by thermal annealing. Dynamic behavior of the microplasma jet, optical emission from H atoms, the substrate temperature, chemical bonding states of the treated surface, and the thickness of the reduced Cu layer were measured to study the fundamental reduction process. Surface composition and the thickness of the reduced Cu layer changed significantly with P. Rapid reduction of CuO and Cu 2 O was achieved at a rate of 493 nm/min at P = 50 W since high-density H atoms were produced by the AP-ICP microjet.

  6. High-rate reduction of copper oxide using atmospheric-pressure inductively coupled plasma microjets

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Satomi; Tsuchiya, Shouichi [Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-8656 (Japan); Matsumori, Masashi; Nakatsuka, Shigeki [Panasonic Factory Solutions Co., Ltd., 2-7 Matsuba-cho, Kadoma-city, Osaka, 571-8502 (Japan); Ichiki, Takanori, E-mail: ichiki@sogo.t.u-tokyo.ac.jp [Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, 113-8656 (Japan); Institute of Engineering Innovation, Graduate School of Engineering, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656 (Japan)

    2011-08-01

    Reduction of copper oxide was performed using an atmospheric-pressure inductively coupled plasma (AP-ICP) microjet while varying the input power P between 15 and 50 W. Cuprous oxide (Cu{sub 2}O) and cupric oxide (CuO) were formed on the sputtered Cu surface by thermal annealing. Dynamic behavior of the microplasma jet, optical emission from H atoms, the substrate temperature, chemical bonding states of the treated surface, and the thickness of the reduced Cu layer were measured to study the fundamental reduction process. Surface composition and the thickness of the reduced Cu layer changed significantly with P. Rapid reduction of CuO and Cu{sub 2}O was achieved at a rate of 493 nm/min at P = 50 W since high-density H atoms were produced by the AP-ICP microjet.

  7. Effect of annealing temperature on the PEC performance of electrodeposited copper oxides

    Science.gov (United States)

    Marathey, Priyanka; Pati, Ranjan; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    In this work, we have deposited Cu2O film on fluorine doped tin oxide (FTO) substrate by electrodeposition. Pure CuO phase has been obtained by annealing the electrodeposited Cu2O film at optimized temperature (500°C) for two hours in air. Copper(I) oxide films showed good photo response with a current density of 0.54mA/cm2 at 0 V vs RHE. It is evident from UV-Visible spectroscopic analysis that the bandgap of Cu(I) and Cu(II) oxides differs from each other resulting in significant change in photo current for these two phases, observed in the PEC study. However CuO film showed better stability as compared to Cu2O film.

  8. Effect of copper oxide wire particles dosage and feed supplement level on Haemonchus contortus infection in lambs.

    Science.gov (United States)

    Burke, J M; Miller, J E; Olcott, D D; Olcott, B M; Terrill, T H

    2004-09-02

    The objective of the experiment was to determine the optimal dose of copper oxide wire particles (COWPs) to reduce infection of Haemonchus contortus in male lambs. Five to six-month-old hair breed lambs were housed on concrete and fed 450 (L; n = 25) or 675 g (H; n = 25) corn/soybean meal supplement and bermudagrass hay. In July, lambs were inoculated with 10,000 L(3) larvae (97% H. contortus; Day 0). Lambs were administered 0, 2, 4, or 6 g COWP on Day 28. Concentrations of copper in the liver were determined. There were no effects of supplement level on concentrations of copper in the liver and a linear relationship existed between COWP treatment and concentrations of copper in liver (P copper in the liver of the COWP treatment groups. PCV values were more favorable for lambs fed the higher level of supplement, especially when FEC were greater than 8000 epg.

  9. Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness

    Science.gov (United States)

    Barthwal, Sumit; Lim, Si-Hyung

    2015-02-01

    We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.

  10. Ultra-small (r1 year) copper oxide quantum dots with wide band gap

    Science.gov (United States)

    Talluri, Bhusankar; Prasad, Edamana; Thomas, Tiju

    2018-01-01

    Practical use of quantum dots (QDs) will rely on processes that enable (i) monodispersity, (ii) scalability, (iii) green approaches to manufacturing them. We demonstrate, a green, rapid, soft chemical, and industrial viable approach for obtaining quasi-spherical, ultra-small (size ∼2.4 ± 0.5 nm), stable (>1 yr), and monodispersed copper oxide QDs (r gap (Eg∼5.3 eV), this substantial band gap increase is currently inexplicable using Brus' equation, and is likely due to surface chemistry of these strongly confined QDs. Capping with triethanolamine (TEA) results in reduction in the average particle diameter from 9 ± 4 nm to 2.4 ± 0.5 nm and an increase of zeta potential (ξ) from +12 ± 2 mV to +31 ± 2 mV. XPS and electron diffraction studies indicate that capped copper oxide QDs which have TEA chemisorbed on its surface are expected to partly stabilize Cu (I) resulting in mixed phase in these QDs. This result is likely to inform efforts that involve achieving monodisperse microstructures and nano-structures, of oxides with a tendency for multivalency.

  11. Polypyrrole Coated Cellulosic Substrate Modified by Copper Oxide as Electrode for Nitrate Electroreduction

    Science.gov (United States)

    Hamam, A.; Oukil, D.; Dib, A.; Hammache, H.; Makhloufi, L.; Saidani, B.

    2015-08-01

    The aim of this work is to synthesize polypyrrole (PPy) films on nonconducting cellulosic substrate and modified by copper oxide particles for use in the nitrate electroreduction process. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is conducted by using FeCl3 as an oxidant and pyrrole as monomer. The thickness and topography of the different PPy films obtained were estimated using a profilometer apparatus. The electrochemical reactivity of the obtained electrodes was tested by voltamperometry technique and electrochemical impedance spectroscopy. Secondly, the modification of the PPy film surface by incorporation of copper oxide particles is conducted by applying a galvanostatic procedure from a CuCl2 solution. The SEM, EDX and XRD analysis showed the presence of CuO particles in the polymer films with dimensions less than 50 nm. From cyclic voltamperometry experiments, the composite activity for the nitrate electroreduction reaction was evaluated and the peak of nitrate reduction is found to vary linearly with initial nitrate concentration.

  12. Reactive nanophase oxide additions to melt-processed high-{Tc} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K.C.; Brandel, B.P.; Lanagan, M.T.; Hu, J.; Miller, D.J.; Sengupta, S. [Argonne National Lab., IL (United States); Parker, J.C.; Ali, M.N. [Nanophase Technologies Corp., Darien, IL (United States); Chen, Nan [Illinois Superconductor Corp., Evanston, IL (United States)

    1994-10-01

    Nanophase TiO{sub 2} and Al{sub 2}O{sub 3} powders were synthesized by a vapor-phase process and mechanically mixed with stoichiometric YBa{sub 2}Cu{sub 3}O{sub x} and TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} powders in 20 mole % concentrations. Pellets produced from powders with and without nanophase oxides were heated in air or O{sub 2} above the peritectic melt temperature and slow-cooled. At 4.2 K, the intragranular critical current density (J{sub c}) increased dramatically with the oxide additions. At 35--50 K, effects of the oxide additions were positive, but less pronounced. At 77 K, the additions decreased J{sub c}, probably because of inducing a depresion of the transition temperature.

  13. Plasma vapor deposited n-indium tin oxide/p-copper indium oxide heterojunctions for optoelectronic device applications

    Science.gov (United States)

    Jaya, T. P.; Pradyumnan, P. P.

    2017-12-01

    Transparent crystalline n-indium tin oxide/p-copper indium oxide diode structures were fabricated on quartz substrates by plasma vapor deposition using radio frequency (RF) magnetron sputtering. The p-n heterojunction diodes were highly transparent in the visible region and exhibited rectifying current-voltage (I-V) characteristics with a good ideality factor. The sputter power during fabrication of the p-layer was found to have a profound effect on I-V characteristics, and the diode with the p-type layer deposited at a maximum power of 200 W exhibited the highest value of the diode ideality factor (η value) of 2.162, which suggests its potential use in optoelectronic applications. The ratio of forward current to reverse current exceeded 80 within the range of applied voltages of -1.5 to +1.5 V in all cases. The diode structure possessed an optical transmission of 60-70% in the visible region.

  14. Copper-Assisted Oxidative Trifluoromethylthiolation of 2,3-Allenoic Acids with AgSCF3.

    Science.gov (United States)

    Pan, Shen; Huang, Yangen; Xu, Xiu-Hua; Qing, Feng-Ling

    2017-09-01

    The oxidative trifluoromethylthiolation of 2,3-allenoic acids with AgSCF 3 in the presence of (NH 4 ) 2 S 2 O 8 and catalytic copper salt was investigated. A series of 4-aryl-2,3-allenoic acids underwent radical trifluoromethylthiolation/intramolecular cyclization to afford β-trifluoromethylthiolated butenolides, which were conveniently transformed into trifluoromethylthiolated furan derivatives. In contrast, 2-monosubstituted 2,3-allenoic acids were converted into the corresponding 3,4-bis(trifluoromethylthio)but-2-enoic-acids under similar reaction conditions.

  15. Electronic structure of the copper oxides: Band picture versus correlated behavior

    Energy Technology Data Exchange (ETDEWEB)

    Pickett, W E; Cohen, R E; Singh, D [Naval Research Lab., Washington, DC (USA); Krakauer, H [Coll. of William and Mary, Williamsburg, VA (USA)

    1989-12-01

    In the 2 1/2 years since the discovery of the high temperature superconducting copper oxides, a great deal has been learned from experiment about their behavior. From the theoretical side, there continues to be developments both within the band picture and from the model Hamiltonian viewpoint emphasizing correlations. In this paper we discuss briefly these complementary viewpoints in relation to certain of the experimental data. Due to our background in the band structure area, we approach the discussion by evaluating which phenomena can be (or has been) accounted for by the standard band approach, and point out which properties appear to require more intricate treatments of correlation. (orig.).

  16. Phytofabrication and characterization of monodisperse copper oxide nanoparticles using Albizia lebbeck leaf extract

    Science.gov (United States)

    Jayakumarai, G.; Gokulpriya, C.; Sudhapriya, R.; Sharmila, G.; Muthukumaran, C.

    2015-12-01

    Simple effective and rapid approach for the green synthesis of copper oxide nanoparticles (CONPs) using of Albizia lebbeck leaf extract was investigated in this study. Various instrumental techniques were adopted to characterize the synthesized CONPs, viz. UV-Vis spectroscopy, SEM, TEM, EDS and XRD. The synthesized CONPs were found to be spherical in shape and size less than 100 nm. It could be concluded that A. lebbeck leaf extract can be used as a cheap and effective reducing agent for CONPs production in large scale.

  17. Genotoxicity of copper oxide nanoparticles with different surface chemistry on rat bone marrow mesenchymal stem cells

    DEFF Research Database (Denmark)

    Zhang, Wenjing; Jiang, Pengfei; Chen, Wei

    2016-01-01

    The surface chemistry of nanoparticles (NPs) is one of the critical factors determining their cellular responses. In this study, the cytotoxicity and genotoxicity of copper oxide (CuO) NPs with a similar size but different surface chemistry to rat bone marrow mesenchymal stem cells (MSCs) were......V and showed a similar tendency to form agglomerates with a size of ∼200 nm in cell culture environment. The cytotoxicity of CuO NPs to MSCs at various concentrations and incubation periods were firstly evaluated. The CuO NPs showed dose-dependent and time-dependent toxicity to MSCs, and their surface...

  18. Effect of Nano-Al2O3 on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus

    Science.gov (United States)

    Li, Xiaomin; Zhou, Suyang; Fan, Wenhong

    2016-01-01

    Nano-Al2O3 has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al2O3 is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al2O3 and heavy metals as well as the effect of nano-Al2O3 on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al2O3 towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al2O3 reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al2O3 decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al2O3. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al2O3. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water. PMID:27294942

  19. Effect of Nano-Al₂O₃ on the Toxicity and Oxidative Stress of Copper towards Scenedesmus obliquus.

    Science.gov (United States)

    Li, Xiaomin; Zhou, Suyang; Fan, Wenhong

    2016-06-09

    Nano-Al₂O₃ has been widely used in various industries; unfortunately, it can be released into the aquatic environment. Although nano-Al₂O₃ is believed to be of low toxicity, it can interact with other pollutants in water, such as heavy metals. However, the interactions between nano-Al₂O₃ and heavy metals as well as the effect of nano-Al₂O₃ on the toxicity of the metals have been rarely investigated. The current study investigated copper toxicity in the presence of nano-Al₂O₃ towards Scenedesmus obliquus. Superoxide dismutase activity and concentration of glutathione and malondialdehyde in cells were determined in order to quantify oxidative stress in this study. Results showed that the presence of nano-Al₂O₃ reduced the toxicity of Cu towards S. obliquus. The existence of nano-Al₂O₃ decreased the growth inhibition of S. obliquus. The accumulation of copper and the level of oxidative stress in algae were reduced in the presence of nano-Al₂O₃. Furthermore, lower copper accumulation was the main factor that mitigated copper toxicity with the addition of nano-Al₂O₃. The decreased copper uptake could be attributed to the adsorption of copper onto nanoparticles and the subsequent decrease of available copper in water.

  20. XPS and GDOES Characterization of Porous Coating Enriched with Copper and Calcium Obtained on Tantalum via Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Krzysztof Rokosz

    2016-01-01

    Full Text Available XPS and GDOES characterizations of porous coatings on tantalum after Plasma Electrolytic Oxidation (PEO at 450 V for 3 minutes in electrolyte containing concentrated (85% phosphoric acid with calcium nitrate and copper (II nitrate are described. Based on the obtained data, it may be concluded that the PEO coating consists of tantalum (Ta5+, calcium (Ca2+, copper (Cu2+  and Cu+, and phosphates (PO43-. It has to be pointed out that copper and calcium are distributed throughout the volume. The authors also propose a new model of PEO, based on the derivative of GDOES signals with sputtering time.

  1. Critical current characteristics in high T/sub c/ oxide superconductors

    International Nuclear Information System (INIS)

    Matsushita, T.; Ni, B.

    1989-01-01

    Critical current densities are theoretically estimated for single-crystalline thin films, polycrystalline bulk materials with oriented and random textures of superconducting oxides. The percolation theory is used and the effect of depression of the transport current through grain boundaries is taken into account. A comparison is made with existing experimental results

  2. Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba

    International Nuclear Information System (INIS)

    Perreault, François; Popovic, Radovan; Dewez, David

    2014-01-01

    In this report, we investigated how the presence of a polymer shell (poly(styrene-co-butyl acrylate) alters the toxicity of CuO NPs in Lemna gibba. Based on total Cu concentration, core–shell CuO NPs were 10 times more toxic than CuO NPs, inducing a 50% decrease of growth rate at 0.4 g l −1 after 48-h of exposure while a concentration of 4.5 g l −1 was required for CuO NPs for a similar effect. Toxicity of CuO NPs was mainly due to NPs solubilization in the media. Based on the accumulated copper content in the plants, core–shell CuO NPs induced 4 times more reactive oxygen species compared to CuO NPs and copper sulfate, indicating that the presence of the polymer shell changed the toxic effect induced in L. gibba. This effect could not be attributed to the polymer alone and reveals that surface modification may change the nature of NPs toxicity. -- Highlights: • Bare and polymer-coated CuO nanoparticles were toxic to Lemna gibba. • Toxicity of bare CuO was mainly due to solubilized soluble copper. • Coated CuO accumulated inside the plants four times more. • Formation of reactive oxygen species was increased by polymer coating. • Coating of nanomaterials modifies mechanisms of action at cellular level. -- Polymer coating increases oxidative stress effect by core–shell CuO nanoparticles

  3. Plant polyphenols mobilize nuclear copper in human peripheral lymphocytes leading to oxidatively generated DNA breakage: implications for an anticancer mechanism.

    Science.gov (United States)

    Shamim, Uzma; Hanif, Sarmad; Ullah, M F; Azmi, Asfar S; Bhat, Showket H; Hadi, S M

    2008-08-01

    It was earlier proposed that an important anti-cancer mechanism of plant polyphenols may involve mobilization of endogenous copper ions, possibly chromatin-bound copper and the consequent pro-oxidant action. This paper shows that plant polyphenols are able to mobilize nuclear copper in human lymphocytes, leading to degradation of cellular DNA. A cellular system of lymphocytes isolated from human peripheral blood and comet assay was used for this purpose. Incubation of lymphocytes with neocuproine (a cell membrane permeable copper chelator) inhibited DNA degradation in intact lymphocytes. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. This study has further shown that polyphenols are able to degrade DNA in cell nuclei and that such DNA degradation is inhibited by neocuproine as well as bathocuproine (both of which are able to permeate the nuclear pore complex), suggesting that nuclear copper is mobilized in this reaction. Pre-incubation of lymphocyte nuclei with polyphenols indicates that it is capable of traversing the nuclear membrane. This study has also shown that polyphenols generate oxidative stress in lymphocyte nuclei which is inhibited by scavengers of reactive oxygen species (ROS) and neocuproine. These results indicate that the generation of ROS occurs through mobilization of nuclear copper resulting in oxidatively generated DNA breakage.

  4. Altered serum copper homeostasis suggests higher oxidative stress and lower antioxidant capability in patients with chronic hepatitis B.

    Science.gov (United States)

    Huang, Yansong; Zhang, Yuan; Lin, Zhexuan; Han, Ming; Cheng, Hongqiu

    2018-06-01

    Copper homeostasis can be altered by inflammation. This study aimed to investigate the alteration of serum copper homeostasis and to explore its clinical significance in patients with chronic hepatitis B (CHB).Thirty-two patients with CHB and 10 aged- and sex-matched healthy controls were recruited. Analyses included serum levels of total copper (TCu), copper ions (Cu), small molecule copper (SMC), ceruloplasmin (CP), Cu/Zn superoxide dismutase 1 (SOD1), urinary copper, and the activities of serum CP and SOD1.The serum TCu and urinary copper levels in patients with CHB were significantly higher than the controls (P = .04 and .003), while the serum Cu was lower than the controls (P = .0002). CP and SOD1 activities in the serum were significantly lower in patients with CHB compared to controls (P = .005) despite higher serum concentrations. In addition, serum alanine aminotransferase inversely correlated with serum CP activity (P = .0318, r = -0.4065).Serum copper homeostasis was altered in this cohort of patients with CHB. The results suggest increased oxidative stress and impaired antioxidant capability in patients with CHB, in addition to necroinflammation. These results may provide novel insights into the diagnosis and treatment of patients with CHB.

  5. Evaluation of Synthesizing Al2O3 Nano Particles in Copper Matrix by Mechanical Alloying of Cu-1% Al and Copper Oxide

    Directory of Open Access Journals (Sweden)

    S. Safi

    2017-06-01

    Full Text Available Strengthening of copper matrix by dispersion of metallic oxides particles as an efficient way to increase strength without losing thermal and electrical conductivities has been recognized for many years. Such a composite can withstand high temperatures and keep its properties. Such copper alloys have many applications especially in high temperature including resistance welding electrodes, electrical motors and switches. In the present work, at first, the Cu-1%Al solid solution was prepared by the mechanical alloying process via 48 hours of milling. Subsequently, 0.66 gr of copper oxide was added to Cu-1%Al solid solution and mechanically milled for different milling times of 0,16, 32, 48 hours. The milled powder mixtures were investigated by X-Ray Diffraction and scanning electron microscopy techniques. The lattice parameter of Cu increased at first, but then decreased at longer milling times. The internal strain increased and the average Cu crystal size decreased during milling process.The particle size decreased during the whole process. With increasing annealing temprature from 450°C to 750°C, the microhardness values of samples decreased at the beginning but then increased. From these results, it can be concluded that nanosize aluminaparticles are formed in the copper matrix.

  6. Fluorescence-based detection of nitric oxide in aqueous and methanol media using a copper(II) complex.

    Science.gov (United States)

    Mondal, Biplab; Kumar, Pankaj; Ghosh, Pokhraj; Kalita, Apurba

    2011-03-14

    The quenched fluorescent intensity of a copper(II) complex, 1, of a fluorescent ligand, in degassed methanol or aqueous (buffered at pH 7.2) solution, was found to reappear on exposure to nitric oxide. Thus, it can function as a fluorescence based nitric oxide sensor. It has been found that the present complex can be used to sense nanomolar quantities of nitric oxide in both methanol and pH 7.2 buffered-water medium.

  7. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    Science.gov (United States)

    Rieke, Peter C [Pasco, WA; Coffey, Gregory W [Richland, WA; Pederson, Larry R [Kennewick, WA; Marina, Olga A [Richland, WA; Hardy, John S [Richland, WA; Singh, Prabhaker [Richland, WA; Thomsen, Edwin C [Richland, WA

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  8. Relative contributions of copper oxide nanoparticles and dissolved copper to Cu uptake kinetics of Gulf killifish (Fundulus grandis) embryos

    Science.gov (United States)

    Jiang, Chuanjia; Castellon, Benjamin T.; Matson, Cole W.; Aiken, George R.; Hsu-Kim, Heileen

    2017-01-01

    The toxicity of soluble metal-based nanomaterials may be due to the uptake of metals in both dissolved and nanoparticulate forms, but the relative contributions of these different forms to overall metal uptake rates under environmental conditions are not quantitatively defined. Here, we investigated the linkage between the dissolution rates of copper(II) oxide (CuO) nanoparticles (NPs) and their bioavailability to Gulf killifish (Fundulus grandis) embryos, with the aim of quantitatively delineating the relative contributions of nanoparticulate and dissolved species for Cu uptake. Gulf killifish embryos were exposed to dissolved Cu and CuO NP mixtures comprising a range of pH values (6.3–7.5) and three types of natural organic matter (NOM) isolates at various concentrations (0.1–10 mg-C L–1), resulting in a wide range of CuO NP dissolution rates that subsequently influenced Cu uptake. First-order dissolution rate constants of CuO NPs increased with increasing NOM concentration and for NOM isolates with higher aromaticity, as indicated by specific ultraviolet absorbance (SUVA), while Cu uptake rate constants of both dissolved Cu and CuO NP decreased with NOM concentration and aromaticity. As a result, the relative contribution of dissolved Cu and nanoparticulate CuO species for the overall Cu uptake rate was insensitive to NOM type or concentration but largely determined by the percentage of CuO that dissolved. These findings highlight SUVA and aromaticity as key NOM properties affecting the dissolution kinetics and bioavailability of soluble metal-based nanomaterials in organic-rich waters. These properties could be used in the incorporation of dissolution kinetics into predictive models for environmental risks of nanomaterials.

  9. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Huanosta-Gutierrez, T. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Dantas, Renato F., E-mail: falcao@angel.qui.ub.es [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Ramirez-Zamora, R.M. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Esplugas, S. [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. Black-Right-Pointing-Pointer The copper slag was effective to remove organic pollutants (phenol) from water. Black-Right-Pointing-Pointer During experimentation, Cu and Fe leaching were not higher than the acceptable levels. Black-Right-Pointing-Pointer Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments promoted biodegradability increment of the contaminated water. Black-Right-Pointing-Pointer The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H{sub 2}O{sub 2} (slag/H{sub 2}O{sub 2}) and H{sub 2}O{sub 2}/UV (slag/H{sub 2}O{sub 2}/UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD{sub 5}/TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  10. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    International Nuclear Information System (INIS)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin

    2014-01-01

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  11. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin [Chungnam National University, Daejeon (Korea, Republic of)

    2014-11-15

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  12. a Positron Study of the Electronic Structure of Yttrium Barium Copper Oxide.

    Science.gov (United States)

    Haghighi, Hossein

    The work described in this thesis is concerned with a study of the electronic structure of the high T _{c} superconductor YBa _2Cu_3O _7 using the technique of two dimensional angular correlation of annihilation radiation (2D-ACAR). We have studied this compound with a view to clarifying whether YBa_2Cu_3O _7 possess a Fermi surface. The numerous different theories that have been proposed to explain the superconductivity phase of these types of materials can be classified into two main groups. The theories in the first group assume the existence of a conventional Fermi fluid and Fermi surface. The alternative more exotic models do not require a Fermi surface but are based on the Mott-Hubbard model of strongly correlated charge and spin excitations. Prior to this work all 2D-ACAR studies of YBa _2Cu_3O _7 involved twinned crystals and modest statistics and little of significance was learned other than that, consistent with that of predictions of theory, the positron was preferentially annihilating on the copper-oxygen chains. The studies of untwinned crystals of YBa_2Cu _3O_7, herein described are of much higher statistics and resulted in one of the clearest imaginable manifestations of a Fermi surface in the form of an extended discontinuity in the measured momentum spectrum. This discontinuity is even more apparent in the LCW-folded spectrum with a form and profile in substantial agreement with the theoretical predictions of a Gamma-X electron ridge Fermi surface section arising from states in the Cu-O chains.

  13. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  14. Synthesis of Arylthiopyrimidines by Copper-catalyzed Aerobic Oxidative C-S Cross-coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ok Suk; Kim, Hyeji; Sohn, Jeong-Hun [Chungnam National University, Daejeon (Korea, Republic of); Lee, Hee-Seung [KAIST, Daejeon (Korea, Republic of); Shin, Hyunik [Yonsung Fine Chemicals R and D Center, Suwon (Korea, Republic of)

    2016-02-15

    Copper-catalyzed C–S cross-coupling reactions have been considered as powerful tools in synthetic chemistry and utilized for diverse heterocycle syntheses. In the reactions, the aspects of no need of ligands has been particular advantage over other metal catalysis. We have developed a Cu-catalyzed cascade reaction for the synthesis of fully substituted 2-arylthiopyrimidines from 3,4-dihydropyrimidine-2(1H)-thiones (DHPMs) under aerobic conditions. This cascade reaction of DHPM with aryl iodide proceeds presumably via sequential tautomerization, C–S cross-coupling, and oxidative dehydrogenation (oxidation followed by elimination). Considering that DHPM substrates were easily synthesized by Biginelli three component coupling reaction of aryl aldehyde, β-ketoester, and thiourea, the present method provides a direct access toward diverse 2-arylthiopyrimidines which have been used as a prominent substructure of drug molecules.

  15. Electrodeposited Reduced Graphene Oxide Films on Stainless Steel, Copper, and Aluminum for Corrosion Protection Enhancement

    Directory of Open Access Journals (Sweden)

    Abdulkareem Mohammed Ali Al-Sammarraie

    2017-01-01

    Full Text Available The enhancement of corrosion protection of metals and alloys by coating with simple, low cost, and highly adhered layer is still a main goal of many workers. In this research graphite flakes converted into graphene oxide using modified Hammers method and then reduced graphene oxide was electrodeposited on stainless steel 316, copper, and aluminum for corrosion protection application in seawater at four temperatures, namely, 20, 30, 40, and 50°C. All corrosion measurements, kinetics, and thermodynamics parameters were established from Tafel plots using three-electrode potentiostat. The deposited films were examined by FTIR, Raman, XRD, SEM, and AFM techniques; they revealed high percentages of conversion to the few layers of graphene with confirmed defects.

  16. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yu-Seon [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Zhuo, Kai [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of); Yoo, Tae Kyong [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Chung, Chan-Hwa, E-mail: chchung@skku.edu [School of Chemical Engineering, Sungkyunkwan University, Suwon 16419 (Korea, Republic of); Farad Materials Co., Ltd., Suwon 16419 (Korea, Republic of)

    2016-12-15

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu{sub 2}O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  17. Fabrication of dendritic silver-coated copper powders by galvanic displacement reaction and their thermal stability against oxidation

    International Nuclear Information System (INIS)

    Park, Yu-Seon; An, Chang Yong; Kannan, Padmanathan Karthick; Seo, Nary; Zhuo, Kai; Yoo, Tae Kyong; Chung, Chan-Hwa

    2016-01-01

    Highlights: • The dendritic silver-coated copper powders with high specific surface area have been prepared using a simple wet chemical reduction process at room temperature. • It is found that the Cu starts to be oxidized into Cu_2O followed by CuO at elevated temperatures. • The more amount of Ag-coating provides the less oxidation, which confirms that the Ag-shell prevents the Cu-core from oxidation. • The resistivity of dendritic 33.27 wt.% Ag-coated Cu powders was measured to 25.67 μΩ cm after the annealing at 150 °C for 30 min. - Abstract: Two steps of wet chemical processes have been developed for the preparation of core-shell nanostructures of copper and silver, which is a facile and low cost method for the production of large quantity of dendritic powders. First step involves a galvanic displacement reaction with hydrogen evolution which is the motive force of spontaneous electrochemical reaction. To achieve the core-shell structure, silver has been coated on the dendritic copper using the galvanic displacement reaction. The dendritic silver-coated copper powders exhibit high surface-area, excellent conductivity, and good oxidation resistance. It has been found that silver-coated copper powders maintain the electrical conductivity even after annealing at 150 °C for several to tens of minutes, thus it is a promising material and an alternative to pure silver powders in printed electronics application.

  18. Kinetics and mechanism of auto- and copper-catalyzed oxidation of 1,4-naphthohydroquinone.

    Science.gov (United States)

    Yuan, Xiu; Miller, Christopher J; Pham, A Ninh; Waite, T David

    2014-06-01

    Although quinones represent a class of organic compounds that may exert toxic effects both in vitro and in vivo, the molecular mechanisms involved in quinone species toxicity are still largely unknown, especially in the presence of transition metals, which may both induce the transformation of the various quinone species and result in generation of harmful reactive oxygen species. In this study, the oxidation of 1,4-naphthohydroquinone (NH2Q) in the absence and presence of nanomolar concentrations of Cu(II) in 10 mM NaCl solution over a pH range of 6.5-7.5 has been investigated, with detailed kinetic models developed to describe the predominant mechanisms operative in these systems. In the absence of copper, the apparent oxidation rate of NH2Q increased with increasing pH and initial NH2Q concentration, with concomitant oxygen consumption and peroxide generation. The doubly dissociated species, NQ(2-), has been shown to be the reactive species with regard to the one-electron oxidation by O2 and comproportionation with the quinone species, both generating the semiquinone radical (NSQ(·-)). The oxidation of NSQ(·-) by O2 is shown to be the most important pathway for superoxide (O2(·-)) generation with a high intrinsic rate constant of 1.0×10(8)M(-1)s(-1). Both NSQ(·-) and O2(·-) served as chain-propagating species in the autoxidation of NH2Q. Cu(II) is capable of catalyzing the oxidation of NH2Q in the presence of O2 with the oxidation also accelerated by increasing the pH. Both the uncharged (NH2Q(0)) and the mono-anionic (NHQ(-)) species were found to be the kinetically active forms, reducing Cu(II) with an intrinsic rate constant of 4.0×10(4) and 1.2×10(7)M(-1)s(-1), respectively. The presence of O2 facilitated the catalytic role of Cu(II) by rapidly regenerating Cu(II) via continuous oxidation of Cu(I) and also by efficient removal of NSQ(·-) resulting in the generation of O2(·-). The half-cell reduction potentials of various redox couples at neutral p

  19. Differential reflectometry of thin film metal oxides on copper, tungsten, molybdenum and chromium

    International Nuclear Information System (INIS)

    Urban, F.K. III; Hummel, R.E.; Verink, E.D. Jr.

    1982-01-01

    A differential reflectometry study was undertaken to investigate the characteristics of thin oxide films on metal substrates. The oxides were produced by heating pure metals of copper, tungsten, molybdenum and chromium in dry oxygen. A new 'halfpolishing' technique was applied to obtain specimens with a step in oxide thickness in order to make them suitable for differential reflectometry. It was found that oxides formed this way yielded the same differential reflectograms as by electrochemical oxidation. A mathematical model involving the interaction of light with a thin corrosion product on metal substrates was applied to generate computer calculated differential reflectograms utilizing various optical constants and thicknesses of the assumed film. Three different thickness ranges have been identified. (a) For large film thicknesses, the differential reflectograms are distinguished by a sequence of interference peaks. (b) If the product of thickness and refraction index of the films is smaller than about 40 nm, no interference peaks are present. Any experimentally observed peaks in differential reflectograms of these films are caused entirely by electron interband transitions. (c) In an intermediate thickness range, superposition of interference and interband peaks are observed. (author)

  20. Method of fabricating composite superconductors

    International Nuclear Information System (INIS)

    Koike, Y.; Shiraki, H.; Suzuki, E.; Yoshida, M.

    1977-01-01

    A method of making stabilized superconductors of a composition such as Nb 3 Sn is disclosed. The method includes forming a stock product comprising a tin base alloy as a core with a copper jacket and having a niobium tube clad thereon. The stock product is then embedded in a good thermally and electrically conducting matrix which is then coreduced until the desired size is obtained. This cold worked product is then submitted to a heat treatment to form superconductors of Nb 3 Sn

  1. Photo-induced changes in nano-copper oxide for optoelectronic applications

    Science.gov (United States)

    Hendi, A. A.; Rashad, M.

    2018-06-01

    Copper oxide (CuO) nanoparticles (NPs) have been prepared using microwave irradiation. A mother material was copper nitrate in distilled water. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used for characterizing the NPs powders. Thermal Gravimetric Analysis (TGA) and Differential Thermal Analysis (DTA) were measured for as-prepared CuO NPs. The obtained oxides NPs were confirmed produced during chemical precipitation by these characterizions. These NPs were dropped on top of glass substrate for measuring the optical characterizions. Both linear and nonlinear optical properties of the as-prepared CuO NP films were studied. The optical energy gap of the as-prepared CuO NP films is equal to 3.98 eV, which is higher than that of the bulk material. The effect of ultraviolet (UV) light irradiation on the CuO NP films was investigated at 2 and 5 h for study the photo-induced effect. The optical properties of CuO NP films were measured as a function of these UV irradiation time. The optical constants for as-prepared and irradiated CuO NP films were calculated which reflect the affect of UV irradiation time. As observed from these optical results, a highly forced for optoelectronic applications.

  2. Quantitative assessment of intermolecular interactions by atomic force microscopy imaging using copper oxide tips

    Science.gov (United States)

    Mönig, Harry; Amirjalayer, Saeed; Timmer, Alexander; Hu, Zhixin; Liu, Lacheng; Díaz Arado, Oscar; Cnudde, Marvin; Strassert, Cristian Alejandro; Ji, Wei; Rohlfing, Michael; Fuchs, Harald

    2018-05-01

    Atomic force microscopy is an impressive tool with which to directly resolve the bonding structure of organic compounds1-5. The methodology usually involves chemical passivation of the probe-tip termination by attaching single molecules or atoms such as CO or Xe (refs 1,6-9). However, these probe particles are only weakly connected to the metallic apex, which results in considerable dynamic deflection. This probe particle deflection leads to pronounced image distortions, systematic overestimation of bond lengths, and in some cases even spurious bond-like contrast features, thus inhibiting reliable data interpretation8-12. Recently, an alternative approach to tip passivation has been used in which slightly indenting a tip into oxidized copper substrates and subsequent contrast analysis allows for the verification of an oxygen-terminated Cu tip13-15. Here we show that, due to the covalently bound configuration of the terminal oxygen atom, this copper oxide tip (CuOx tip) has a high structural stability, allowing not only a quantitative determination of individual bond lengths and access to bond order effects, but also reliable intermolecular bond characterization. In particular, by removing the previous limitations of flexible probe particles, we are able to provide conclusive experimental evidence for an unusual intermolecular N-Au-N three-centre bond. Furthermore, we demonstrate that CuOx tips allow the characterization of the strength and configuration of individual hydrogen bonds within a molecular assembly.

  3. Structural, spectroscopic and biological investigation of copper oxides nanoparticles with various capping agents

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, A., E-mail: ana.maria.nowak@gmail.com [A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland); Szade, J.; Talik, E.; Ratuszna, A. [A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland); Ostafin, M. [Agricultural University of Cracow, Department of Microbiology, Krakow (Poland); Peszke, J. [A. Chelkowski Institute of Physics, University of Silesia, Katowice (Poland)

    2014-06-01

    Powder composed of copper oxides nanoparticles with various capping agents has been synthesized and characterized with the use of X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Polyvinyl alcohol (PVA), glycol propylene, glycerin and glycerin plus ammonia were used as capping agents. The scanning electron microscopy (SEM) studies showed that nanoparticles form agglomerates with the size from 80 to 120 nm while particles size determined from the XRD experiment was in the range from 7 to 21 nm. XPS and XRD experiments revealed that depending on capping and reducing agents used in the synthesis nanoparticles are composed of Cu{sub 2}O, CuO or a mixture of them. The biological activity test performed for a selected sample where the capping agent was glycerin plus ammonia has shown promising killing/inhibiting behavior, very effective especially for Gram negatives bacteria. - Highlights: • We obtained copper oxide nanoparticles in a powder form. • Several capping agents were tested. • Structural and chemical tests showed that the main component were Cu{sub 2}O and CuO. • The size of nanoparticles was in the range 7–21 nm. • Nanoparticles with glycerin and ammonia capping agent showed good antibacterial properties.

  4. Copper nanofiber-networked cobalt oxide composites for high performance Li-ion batteries

    Directory of Open Access Journals (Sweden)

    Shim Hee-Sang

    2011-01-01

    Full Text Available Abstract We prepared a composite electrode structure consisting of copper nanofiber-networked cobalt oxide (CuNFs@CoO x . The copper nanofibers (CuNFs were fabricated on a substrate with formation of a network structure, which may have potential for improving electron percolation and retarding film deformation during the discharging/charging process over the electroactive cobalt oxide. Compared to bare CoO x thin-film (CoO x TF electrodes, the CuNFs@CoO x electrodes exhibited a significant enhancement of rate performance by at least six-fold at an input current density of 3C-rate. Such enhanced Li-ion storage performance may be associated with modified electrode structure at the nanoscale, improved charge transfer, and facile stress relaxation from the embedded CuNF network. Consequently, the CuNFs@CoO x composite structure demonstrated here can be used as a promising high-performance electrode for Li-ion batteries.

  5. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    Energy Technology Data Exchange (ETDEWEB)

    Koparanova, N.; Simov, S. (Bylgarska Akademiya na Naukite, Sofia. Inst. po Fizika na Tvyrdoto Tyalo); Genchev, D. (Bylgarska Akademiya na Naukite, Sofia. Inst. za Yadrena Izsledvaniya i Yadrena Energetika); Metchenov, G. (Research Inst. of Criminalistics and Criminology, Sofia (Bulgaria))

    1985-02-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more.

  6. Growth of cadmium oxide whiskers on cadmium sulphide single crystals with copper as growth activator

    International Nuclear Information System (INIS)

    Koparanova, N.; Simov, S.

    1985-01-01

    Some results on the growth and morphology of cadmium oxide whiskers, obtained on cadmium sulphide single crystals with copper as a growth activator, are presented in this work. Cadmium oxide whiskers have been obtained on brace 112-bar0 brace faces of cadmium sulphide plates with a copper layer deposited in advance. The whiskers grew during the annealing of the plates in a weak stream of technically pure argon at temperatures 670 to 730 deg C for 15 min to 3.5 h. Details about the procedure have been given elsewhere. The composition and morphology of the whiskers have been studied by an X-ray microanalyser JEOL 35 DDS and a scanning electron microscope JEOL, JSM 35. The optical microscopic observations have shown that after annealing, a gray-black granular layer is formed on the cadmium sulphide single crystals and this layer can easily be separated from the crystal substrate. Under the granular layer the crystal is heavily damaged. The whiskers grow on the granular layer and they are coloured yellow-brown or red-brown. The maximum whisker length attains several hundreds of micrometres and in some cases up to 1 mm or more. (author)

  7. Effects of RF plasma treatment on spray-pyrolyzed copper oxide films on silicon substrates

    Science.gov (United States)

    Madera, Rozen Grace B.; Martinez, Melanie M.; Vasquez, Magdaleno R., Jr.

    2018-01-01

    The effects of radio-frequency (RF) argon (Ar) plasma treatment on the structural, morphological, electrical and compositional properties of the spray-pyrolyzed p-type copper oxide films on n-type (100) silicon (Si) substrates were investigated. The films were successfully synthesized using 0.3 M copper acetate monohydrate sprayed on precut Si substrates maintained at 350 °C. X-ray diffraction revealed cupric oxide (CuO) with a monoclinic structure. An apparent improvement in crystallinity was realized after Ar plasma treatment, attributed to the removal of residues contaminating the surface. Scanning electron microscope images showed agglomerated monoclinic grains and revealed a reduction in size upon plasma exposure induced by the sputtering effect. The current-voltage characteristics of CuO/Si showed a rectifying behavior after Ar plasma exposure with an increase in turn-on voltage. Four-point probe measurements revealed a decrease in sheet resistance after plasma irradiation. Fourier transform infrared spectral analyses also showed O-H and C-O bands on the films. This work was able to produce CuO thin films via spray pyrolysis on Si substrates and enhancement in their properties by applying postdeposition Ar plasma treatment.

  8. Copper oxide nanoparticles analysis with water as base fluid for peristaltic flow in permeable tube with heat transfer.

    Science.gov (United States)

    Akbar, Noreen Sher; Raza, M; Ellahi, R

    2016-07-01

    The peristaltic flow of a copper oxide water fluid investigates the effects of heat generation and magnetic field in permeable tube is studied. The mathematical formulation is presented, the resulting equations are solved exactly. The obtained expressions for pressure gradient, pressure rise, temperature, velocity profile are described through graphs for various pertinent parameters. It is found that pressure gradient is reduce with enhancement of particle concentration and velocity profile is upturn, beside it is observed that temperature increases as more volume fraction of copper oxide. The streamlines are drawn for some physical quantities to discuss the trapping phenomenon. Copyright © 2016. Published by Elsevier Ireland Ltd.

  9. Heteroepitaxial growth of strained multilayer thin films of high-temperature superconductors

    International Nuclear Information System (INIS)

    Gross, R.; Gupta, A.; Olsson, E.; Segmueller, A.; Koren, G.

    1991-01-01

    Recently, the heteroepitaxial growth of multilayer structures of different copper oxide superconductors has been reported by several groups. In general, two different types of multilayer structures should be distinguished. The first kind of mulitlayer is formed by high-T c materials having the same crystal structure and almost the same lattice constants, as for example ReBa 2 Cu 3 O 7 (Re=rare earth) multilayers with alternating Re-elements. In these multilayers the two different rare earth copper oxides (Y/Dy, Y/Pr) have the same orthorhombic unit cell. Due to the very similar lattice constants, the misfit strain is easily accommodated without the formation of defects. The second kind of multilayer is formed by layers of materials having different crystal structure and lattice parameters. In these multilayers the misfit can be coherently accommodated below a critical modulation thickness as discussed below. This renders possible the heteroepitaxial growth of strained multilayer structures, both of two copper oxides of different crystal structure, as has been demonstrated recently for the system YBa 2 Cu 3 O 7-δ /Nd 1.83 Ce 0.17 CuO x , and of superconducting copper oxides and insulating materials. For multilayers of different copper oxides, a combination of almost all high-Tc materials should be possible, since the presence of the CuO 2 sheets in these materials results in similar lattice constants in their basal planes ('a' and 'b'). (orig./BHO)

  10. Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense

    Directory of Open Access Journals (Sweden)

    Philipp Wiemann

    2017-05-01

    Full Text Available The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs, and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically or enhancement of copper-exporting activity (CrpA in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses.

  11. Environmental health hazards of e-cigarettes and their components: Oxidants and copper in e-cigarette aerosols

    International Nuclear Information System (INIS)

    Lerner, Chad A.; Sundar, Isaac K.; Watson, Richard M.; Elder, Alison; Jones, Ryan; Done, Douglas; Kurtzman, Rachel; Ossip, Deborah J.; Robinson, Risa; McIntosh, Scott; Rahman, Irfan

    2015-01-01

    To narrow the gap in our understanding of potential oxidative properties associated with Electronic Nicotine Delivery Systems (ENDS) i.e. e-cigarettes, we employed semi-quantitative methods to detect oxidant reactivity in disposable components of ENDS/e-cigarettes (batteries and cartomizers) using a fluorescein indicator. These components exhibit oxidants/reactive oxygen species reactivity similar to used conventional cigarette filters. Oxidants/reactive oxygen species reactivity in e-cigarette aerosols was also similar to oxidant reactivity in cigarette smoke. A cascade particle impactor allowed sieving of a range of particle size distributions between 0.450 and 2.02 μm in aerosols from an e-cigarette. Copper, being among these particles, is 6.1 times higher per puff than reported previously for conventional cigarette smoke. The detection of a potentially cytotoxic metal as well as oxidants from e-cigarette and its components raises concern regarding the safety of e-cigarettes use and the disposal of e-cigarette waste products into the environment. - Highlights: • E-cigarettes disposal is associated with environmental health hazard/pollution. • Oxidants associated with electronic cigarette components and aerosols. • Metal copper and nanoparticles detected in electronic cigarette aerosols. • Environmental disposal of e-cigarettes components must be regulated with guidelines. - An electronic cigarette with disposable cartomizer exhibits oxidant reactivity similar to conventional cigarettes and releases copper and other particles associated with its aerosols

  12. High-T/sub c/ oxide superconductors prepared by spray-drying method

    International Nuclear Information System (INIS)

    Nakamura, N.; Nakano, T.; Goth, S.; Shimotomai, M.

    1988-01-01

    A spray-drying method has been worked out to prepare the superconducting oxide YBa/sub 2/Cu/sub 3/O/sub x/ by using aqueous solution of acetates of the component metals. Spray-dried powders have shown to be very reactive and full calcination has been easily attained at 900 0 C for 12 hrs. The density of the ceramics sintered at 950 0 C for 12 hrs has reached a value of 98% of the theoretical density. The resistivity of the spray-dry processed sample is 150μΩ-cm at the onset temperature and the residual resistivity extrapolated to O K is almost zero. It is also found that degradation of the superconducting state by application of magnetic field is much improved for the spray-dry processed samples

  13. The effect of copper-amended fertiliser and copper oxide wire particles on the copper status of farmed red deer (Cervus elaphus) and their progeny.

    Science.gov (United States)

    Grace, N D; Wilson, P R; Quinn, A K

    2005-02-01

    To determine changes in serum and liver copper concentrations in postnatal, weaner, yearling, and mature deer after grazing pasture topdressed with copper (Cu) at two rates of application of copper sulphate (CuSO4(.)5H2O), and following oral administration of copper oxide (CuO) wire particles to some of the deer. In mid-March 2000 (Year 1), 1.1-ha paddocks (two/treatment) of ryegrass/white clover pasture received either 0 (Control), 6 (Low) or 12 (High) kg CuSO4(.)5H2O /ha applied with 250 kg potash superphosphate/ha. They were grazed by 4-month-old red deer hinds (n=11/treatment) from mid-April 2000 until early March 2001. In mid-March 2001 (Year 2), the pastures were topdressed again as for Year 1, and the original hinds, now yearlings which had grazed as a single group between studies, were returned to their respective treatments in mid-April 2001 and remained on the trial until mid-March 2002. They were mated during April/May. The pastures were also grazed by pregnant mature hinds (n=8/treatment) from mid-May 2001. As the Cu status (i.e. liver Cu concentration) of the yearling hinds on the pasture treated with 6 kg CuSO4(.)5H2O/ha was not significantly different from the untreated animals, in late July 2001 the yearling and mature deer on this treatment were treated orally with 10 g CuO wire particles. The mature hinds calved in November and the yearling hinds in December. Pasture samples were collected at about monthly intervals to determine concentrations of Cu and other minerals. In Year 1, liver biopsies and blood samples were collected at 4-6-weekly intervals for determination of Cu concentrations. In Year 2, samples were collected similarly at 6-12-weekly intervals. Liver biopsies and blood were also collected from progeny, along with milk from their dams. Liveweights were determined at 3-7-monthly intervals, as well as data on calving/mortality rates. Pasture Cu concentrations before the application of CuSO4(.)5H2O were 6-9 mg Cu/kg dry matter (DM) and

  14. Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae

    Directory of Open Access Journals (Sweden)

    Sun Y

    2016-03-01

    Full Text Available Yan Sun, Gong Zhang, Zizi He, Yajie Wang, Jianlin Cui, Yuhao Li Department of Pathology, Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, People’s Republic of China Abstract: Copper oxide nanoparticles (CuO NPs are used for a variety of purposes in a wide range of commercially available products. Some CuO NPs probably end up in the aquatic systems, thus raising concerns about aqueous exposure toxicity, and the impact of CuO NPs on liver development and neuronal differentiation remains unclear. In this study, particles were characterized using Fourier transform infrared spectra, scanning electron microscopy, and transmission electron microscopy. Zebrafish embryos were continuously exposed to CuO NPs from 4 hours postfertilization at concentrations of 50, 25, 12.5, 6.25, or 1 mg/L. The expression of gstp1 and cyp1a was examined by quantitative reverse transcription polymerase chain reaction. The expression of tumor necrosis factor alpha and superoxide dismutase 1 was examined by quantitative reverse transcription polymerase chain reaction and Western blotting. Liver development and retinal neurodifferentiation were analyzed by whole-mount in situ hybridization, hematoxylin–eosin staining, and immunohistochemistry, and a behavioral test was performed to track the movement of larvae. We show that exposure of CuO NPs at low doses has little effect on embryonic development. However, exposure to CuO NPs at concentrations of 12.5 mg/L or higher leads to abnormal phenotypes and induces an inflammatory response in a dose-dependent pattern. Moreover, exposure to CuO NPs at high doses results in an underdeveloped liver and a delay in retinal neurodifferentiation accompanied by reduced locomotor ability. Our data demonstrate that short-term exposure to CuO NPs at high doses shows hepatotoxicity and neurotoxicity in zebrafish embryos and larvae. Keywords: copper oxide nanoparticles

  15. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper

    Science.gov (United States)

    Li, Christina W.; Ciston, Jim; Kanan, Matthew W.

    2014-04-01

    The electrochemical conversion of CO2 and H2O into liquid fuel is ideal for high-density renewable energy storage and could provide an incentive for CO2 capture. However, efficient electrocatalysts for reducing CO2 and its derivatives into a desirable fuel are not available at present. Although many catalysts can reduce CO2 to carbon monoxide (CO), liquid fuel synthesis requires that CO is reduced further, using H2O as a H+ source. Copper (Cu) is the only known material with an appreciable CO electroreduction activity, but in bulk form its efficiency and selectivity for liquid fuel are far too low for practical use. In particular, H2O reduction to H2 outcompetes CO reduction on Cu electrodes unless extreme overpotentials are applied, at which point gaseous hydrocarbons are the major CO reduction products. Here we show that nanocrystalline Cu prepared from Cu2O (`oxide-derived Cu') produces multi-carbon oxygenates (ethanol, acetate and n-propanol) with up to 57% Faraday efficiency at modest potentials (-0.25 volts to -0.5 volts versus the reversible hydrogen electrode) in CO-saturated alkaline H2O. By comparison, when prepared by traditional vapour condensation, Cu nanoparticles with an average crystallite size similar to that of oxide-derived copper produce nearly exclusive H2 (96% Faraday efficiency) under identical conditions. Our results demonstrate the ability to change the intrinsic catalytic properties of Cu for this notoriously difficult reaction by growing interconnected nanocrystallites from the constrained environment of an oxide lattice. The selectivity for oxygenates, with ethanol as the major product, demonstrates the feasibility of a two-step conversion of CO2 to liquid fuel that could be powered by renewable electricity.

  16. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part II: Subcellular distribution following sediment exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thit, Amalie, E-mail: athitj@ruc.dk [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Ramskov, Tina, E-mail: tramskov@hotmail.com [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Croteau, Marie-Noële, E-mail: mcroteau@usgs.gov [Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Selck, Henriette [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark)

    2016-11-15

    Highlights: • L. variegatus was exposed to sediment spiked with either aqueous Cu or nanoparticulate CuO. • Both aqueous and nanoparticulate Cu were marginally accumulated by L. variegatus. • Elimination of Cu accumulated from both forms was limited. • The subcellular distribution of accumulated Cu varied between Cu forms. • The use of a tracer, greater exposure concentration and duration are recommended. - Abstract: The use and likely incidental release of metal nanoparticles (NPs) is steadily increasing. Despite the increasing amount of published literature on metal NP toxicity in the aquatic environment, very little is known about the biological fate of NPs after sediment exposures. Here, we compare the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically enriched {sup 65}Cu was used as a tracer. Neither burrowing behavior or survival was affected by the exposure. Once incorporated into tissue, Cu loss was negligible over 10 d of elimination in clean sediment (Cu elimination rate constants were not different from zero). With the exception of day 10, differences in bioaccumulation and subcellular distribution between Cu forms were either not detectable or marginal. After 10 d of exposure to Cu-Aq, the accumulated Cu was primarily partitioned in the subcellular fraction containing metallothionein-like proteins (MTLP, ≈40%) and cellular debris (CD, ≈30%). Cu concentrations in these fractions were significantly higher than in controls. For worms exposed to CuO NPs for 10 d, most of the accumulated Cu was partitioned in the CD fraction (≈40%), which was the only subcellular fraction where the Cu concentration was significantly higher than for the control group. Our results indicate that L. variegatus

  17. A tunable amorphous p-type ternary oxide system: The highly mismatched alloy of copper tin oxide

    Energy Technology Data Exchange (ETDEWEB)

    Isherwood, Patrick J. M., E-mail: P.J.M.Isherwood@lboro.ac.uk; Walls, John M. [CREST, School of Electronic, Electrical and Systems Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Butler, Keith T.; Walsh, Aron [Centre for Sustainable Technologies and Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2015-09-14

    The approach of combining two mismatched materials to form an amorphous alloy was used to synthesise ternary oxides of CuO and SnO{sub 2}. These materials were analysed across a range of compositions, and the electronic structure was modelled using density functional theory. In contrast to the gradual reduction in optical band gap, the films show a sharp reduction in both transparency and electrical resistivity with copper contents greater than 50%. Simulations indicate that this change is caused by a transition from a dominant Sn 5s to Cu 3d contribution to the upper valence band. A corresponding decrease in energetic disorder results in increased charge percolation pathways: a “compositional mobility edge.” Contributions from Cu(II) sub band-gap states are responsible for the reduction in optical transparency.

  18. Comparison of Preparation Methods of Copper Based PGMFree Diesel-Soot Oxidation Catalysts

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2011-05-01

    Full Text Available CuO-CeO2 systems have been proposed as a promising catalyst for low temperature diesel-soot oxidation. CuO-CeO2 catalysts prepared by various methods were examined for air oxidation of the soot in a semi batch tubular flow reactor. The air oxidation of soot was carried out under tight contact with soot/catalyst ratio of 1/10. Air flow rate was 150 ml/min, soot-catalyst mixture was 110 mg, heating rate was 5 0C/min. Prepared catalysts were calcined at 500 0C and their stability was examined by further heating to 800 0C for 4 hours. It was found that the selectivity of all the catalysts was nearly 100% to CO2 production. It was observed that the activity and stability of the catalysts greatly influenced by the preparation methods. The strong interaction between CuO and CeO2 is closely related to the preparation route that plays a crucial role in the soot oxidation over the CuO-CeO2 catalysts. The ranking order of the preparation methods of the catalysts in the soot oxidation performance is as follows: sol-gel > urea nitrate combustion > Urea gelation method > thermal decomposition > co-precipitation. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 27th June 2010, Revised: 7th August 2010; Accepted: 13rd October 2010[How to Cite: R. Prasad, V.R. Bella. (2011. Comparison of Preparation Methods of Copper Based PGMFree Diesel-Soot Oxidation Catalysts. Bulletin of Chemical Reaction Engineering and Catalysis, 6(1: 15-21. doi:10.9767/bcrec.6.1.822.15-21][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.1.822.15-21 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/822 | View in 

  19. Evaluation of a commercially available molybdate formulation and zinc oxide boluses in preventing hepatic copper accumulation and thus enzootic icterus in sheep

    Directory of Open Access Journals (Sweden)

    C.J. Botha

    2001-07-01

    Full Text Available The efficacy of a molybdate formulation and a zinc oxide bolus as prophylactic agents for enzootic icterus was evaluated in sheep. Before copper loading, liver biopsies were performed on 12 male, 6-month-old, Mutton Merino sheep to determine hepatic copper (Cu and zinc (Zn concentrations. The animals were restrictively randomised according to liver copper concentrations to 3 treatment groups (n = 4 to achieve similar mean liver copper concentrations per group. All sheep received 4 m /kg of a 0.5 %aqueous solution of CuSO4·5H2O intraruminally 7 days per week for 10 weeks. On Day 0 the sheep in the Mo-group were injected subcutaneously with 42 mg molybdenum (Mo contained in a commercial molybdate formulation. The animals in the Zn-group each received a zinc oxide bolus, containing 43 g zinc oxide, via a rumen cannula. Treatment was repeated on Day 42. Four animals served as untreated controls. Urinary copper excretion, plasma copper concentration, haematocrit and glutamate dehydrogenase (GLDH activity were determined throughout the trial. The animals were sacrificed after 10 weeks and liver samples were submitted for histopathological examination. Liver and kidney copper and zinc concentrations were determined. Neither the molybdate treatment nor the zinc oxide boluses prevented hepatic copper accumulation. The urinary copper excretion, plasma copper concentration, haematocrit and GLDH activity were not significantly different (P > 0.05 from the controls.

  20. High-energy helium backscattering for the compositional analysis of thin-film oxide-superconductors

    International Nuclear Information System (INIS)

    Hubbard, K.M.; Martin, J.A.; Muenchausen, R.E.; Tesmer, J.R.; Nastasi, M.

    1989-01-01

    Recent experiments have demonstrated that the broad elastic-scattering resonance for 8.8 MeV helium bombardment of oxygen can be exploited to measure the oxygen content of YBaCuO thin films. A potential difficulty with such measurements is distortion of the backscattering spectrum due to resonant scattering from the substrate elements, which could prevent the accurate integration of peak areas. We have measured the elastic scattering cross sections for Sr and Ti, relative to Gd, with He ions in the energy range of 2.2--8.8 MeV, and a scattering angle of 166 degree. The results verify that resonant scattering from the substrate does not interfere with the high-energy compositional analysis of YBaCuO films deposited on SrTiO 3 . Scattering cross sections for Ca, measured relative to Ba, have also been determined for application to the analysis of BiSrCaCuO and TlCaBaCuO films. Because of resonant scattering from Ca at beam energies above 6 MeV, two backscattering measurements are required for these materials: one at 8.8 MeV to determine the O content, and one at or below 6 MeV to determine the Ca content. Anticipating a more general applicability of this technique to the analysis of metal-oxide films, data are also presented for a number of elements, as an empirical guideline, which give the beam energies above which scattering cross sections deviate from their Rutherford values, and must be determined experimentally. 10 refs., 6 figs., 4 tabs

  1. Copper oxide as efficient catalyst for oxidative dehydrogenation of alcohols with air

    DEFF Research Database (Denmark)

    Poreddy, Raju; Engelbrekt, Christian; Riisager, Anders

    2015-01-01

    The oxidative dehydrogenation of alcohols to carbonyl compounds was studied using CuO nanoparticle catalysts prepared by solution synthesis in buffered media. CuO nanoparticles synthesized in N-cyclohexyl- 3-aminopropanesulfonic acid buffer showed high catalytic activity for the oxidation...... of benzylic, alicyclic and unsaturated alcohols to their corresponding carbonyl compounds with excellent selectivities. The observed trend in activity for conversion of substituted alcohols suggested a β-H elimination step to be involved, thus enabling a possible reaction mechanism for oxidative...... dehydrogenation of benzyl alcohols to be proposed. The use of CuO as an inexpensive and efficient heterogeneous catalyst under aerobic conditions provides a new noble metal-free and green reaction protocol for carbonyl compound synthesis....

  2. Mechanism of melatonin protection against copper-ascorbate-induced oxidative damage in vitro through isothermal titration calorimetry.

    Science.gov (United States)

    Ghosh, Arnab K; Naaz, Shamreen; Bhattacharjee, Bharati; Ghosal, Nirajan; Chattopadhyay, Aindrila; Roy, Souvik; Reiter, Russel J; Bandyopadhyay, Debasish

    2017-07-01

    Involvement of oxidative stress in cardiovascular diseases is well established. Melatonin's role as an antioxidant and free radical scavenger via its receptor dependent and receptor independent pathways is well known. The aim of this study is to identify and elaborate upon a third mechanism by which melatonin is able to abrogate oxidative stress. Oxidative stress was induced in vitro, by copper (0.2mM)-ascorbate (1mM) in isolated goat heart mitochondria, cytosol and peroxisomes and they were co-incubated with graded doses of melatonin. Similar experiments in a cell-free chemical system involving two pure antioxidant enzymes, Cu-Zn superoxide dismutase and catalase was also carried out. Biochemical changes in activity of these antioxidant enzymes were analysed. Isothermal titration calorimetric studies with pure Cu-Zn superoxide dismutase and catalase were also carried out. Incubation with copper-ascorbate led to alteration in activity of Cu-Zn superoxide dismutase and catalase which were found to be protected upon co-incubation with melatonin (80μM for catalase and 1μM for others). Results of isothermal titration calorimetric studies with pure Cu-Zn superoxide dismutase and catalase along with different combinations of copper chloride, ascorbic acid and melatonin suggest that when melatonin is present in the reaction medium along with copper-ascorbate, it restrains the copper-ascorbate molecules by binding with them physically along with scavenging the free radicals generated by them. The present study suggests that possibly, binding of melatonin with antioxidant enzymes masks the vulnerable sites of these antioxidant enzymes, thus preventing oxidative damage by copper-ascorbate molecules. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Adsorption and oxidation of SO₂in a fixed-bed reactor using activated carbon produced from oxytetracycline bacterial residue and impregnated with copper.

    Science.gov (United States)

    Zhou, Baohua; Yu, Lei; Song, Hanning; Li, Yaqi; Zhang, Peng; Guo, Bin; Duan, Erhong

    2015-02-01

    The SO₂removal ability (including adsorption and oxidation ability) of activated carbon produced from oxytetracycline bacterial residue and impregnated with copper was investigated. The activated carbon produced from oxytetracycline bacterial residue and modified with copper was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The effects of the catalysts, SO₂concentration, weight hourly space velocity, and temperature on the SO₂adsorption and oxidation activity were evaluated. Activated carbon produced from oxytetracycline bacterial residue and used as catalyst supports for copper oxide catalysts provided high catalytic activity for the adsorbing and oxidizing of SO₂from flue gases.

  4. Novel p-n heterojunction copper phosphide/cuprous oxide photocathode for solar hydrogen production.

    Science.gov (United States)

    Chen, Ying-Chu; Chen, Zhong-Bo; Hsu, Yu-Kuei

    2018-08-01

    A Copper phosphide (Cu 3 P) micro-rod (MR) array, with coverage by an n-Cu 2 O thin layer by electrodeposition as a photocathode, has been directly fabricated on copper foil via simple electro-oxidation and phosphidation for photoelectrochemical (PEC) hydrogen production. The morphology, structure, and composition of the Cu 3 P/Cu 2 O heterostructure are systematically analyzed using a scanning electron microscope (SEM), X-ray diffraction and X-ray photoelectron spectra. The PEC measurements corroborate that the p-Cu 3 P/n-Cu 2 O heterostructural photocathode illustrates efficient charge separation and low charge transfer resistance to achieve the highest photocurrent of 430 μA cm -2 that is greater than other transition metal phosphide materials. In addition, a detailed energy diagram of the p-Cu 3 P/n-Cu 2 O heterostructure was investigated using Mott-Schottky analysis. Our study paves the way to explore phosphide-based materials in a new class for solar energy applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Copper(II) oxide solubility behavior in aqueous sodium phosphate solutions at elevated temperatures

    International Nuclear Information System (INIS)

    Ziemniak, S.E.; Jones, M.E.; Combs, K.E.S.

    1990-02-01

    A platinum-lined, flowing autoclave facility is used to investigate the solubility behavior of copper(II) oxide (CuO) in aqueous sodium phosphate solutions at temperatures between 292 and 535 K. Copper solubilities are observed to increase continuously with temperature and phosphate concentration. The measured solubility is examined via a Cu(II) ion hydrolysis/complexing model and thermodynamic functions for the hydrolysis/complexing reactions are obtained from a least- squares analysis of the data. Altogether, thermochemical properties are established for five anionic complexes: Cu(OH) 3 - , Cu(OH) 4 = , Cu(OH) 2 (HPO 4 ) = , Cu(OH) 3 (H 2 PO 4 ) = , and Cu(OH) 2 (PO 4 ) ≡ . Precise thermochemical parameters are also derived for the Cu(OH) + hydroxocomplex based on CuO solubility behavior previously observed in pure water (*) at elevated temperatures. The relative ease of Cu(II) ion hydrolysis is such that Cu(OH) 3 - species become the preferred hydroxocomplex for pH ≥ 9.4. 20 refs., 8 figs., 6 tabs

  6. The impact of hydrogen and oxidizing impurities in chemical vapor deposition of graphene on copper

    Science.gov (United States)

    Choubak, Saman

    Graphene, the single-atom layer of carbon, has attracted scientists and technologists due to its outstanding physical and opto/electronic properties. The use of graphene in practical applications requires a reliable and cost-effective method to produce large area graphene films with low defects and controlled thicknesses. Direct growth of graphene using chemical vapor deposition (CVD) on copper, in which carbonaceous gaseous species react with the metal substrate in the presence of hydrogen at high temperatures (850-1100° C), led to high coverage of high quality graphene, opening up a promising future for methods of this type and a large step towards commercial realization of graphene products. The present thesis deals with the synthesis of graphene via low pressure CVD (LP-CVD) on copper catalyst using methane as the carbon precursor. The focus is mainly on the determination of the role of hydrogen and oxidizing impurities during graphene formation with an ultimate purpose: to elucidate a viable and reproducible method for the production of high quality graphene films compatible with industrial manufacturing processes. The role of molecular hydrogen in graphene CVD is explored in the first part of the thesis. Few studies claimed that molecular hydrogen etches graphene films on copper by conducting annealing experiments. On the other hand, we speculated that this graphene etching reaction is due to the presence of trace amount of oxygen in the furnace atmosphere. Thus, we took another approach and designed systematic annealing experiments to investigate the role of hydrogen in the etching reaction of graphene on copper foils. No evidence of graphene etching on copper was observed when purified ultra high purity (UHP) hydrogen was used at 825 °C and 500 mTorr. Nevertheless, graphene films exposed to the unpurified UHP hydrogen were etched due to the presence of oxidizing impurities. Our results show that hydrogen is not responsible for graphene etching reaction

  7. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.; Ravishankar, T.N.; Ramakrishnappa, T.; Nagaraju, Doddahalli H.; Krishna Pai, Ranjith

    2015-01-01

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic

  8. Cathodic reduction of the duplex oxide films formed on copper in air with high relative humidity at 60 deg C

    International Nuclear Information System (INIS)

    Seo, M.; Ishikawa, Y.; Kodaira, M.; Sugimoto, A.; Nakayama, S.; Watanabe, M.; Furuya, S.; Minamitani, R.; Miyata, Y.; Nishikata, A.; Notoya, T.

    2005-01-01

    The cathodic reduction of duplex air-formed oxide film on copper was performed at a constant current density of i c = -50 μA cm -2 in deaerated 0.1 M KCl solution to investigate the sequence of cathodic reduction of each oxide layer and its mechanism. The single-phase thick CuO film on copper was also cathodically reduced at i c = -50 μA cm -2 or -2.5 mA cm -2 . The surface characterizations of the air-formed oxide film and single-phase CuO film before cathodic reduction and after partial or complete cathodic reduction were performed by XPS and X-ray diffraction, respectively. The two plateau regions appeared in the potential vs. time curve during cathodic reduction of the duplex air-formed oxide film on copper, while one plateau region was observed in the potential-time curve during cathodic reduction of the single-phase CuO film on copper. The potential in the first plateau region for the air-formed film coincided with that in the plateau region for the CuO film. The results of XPS and X-ray diffraction suggested that in the first plateau region, the outer CuO layer is directly reduced to metallic Cu, while in the second plateau region, the inner Cu 2 O layer is reduced to metallic Cu

  9. Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper

    DEFF Research Database (Denmark)

    Bertheussen, Erlend; Verdaguer Casadevall, Arnau; Ravasio, Davide

    2016-01-01

    Oxide-derived copper (OD-Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at −0.3 V (vs. RHE). By using static headspace-gas chromatography for liquid phase analysis, we identify acetaldehyde as a minor...

  10. Tannic acid promotes ion release of copper oxide nanoparticles: Impacts from solution pH change and complexation reactions.

    NARCIS (Netherlands)

    Zhao, Jing; Liu, Yang; Pan, Bo; Gao, Guoqian; Liu, Ying; Liu, Siqian; Liang, Ni; Zhou, Dandan; Vijver, Martina G; Peijnenburg, Willie J G M

    2017-01-01

    The increasing number of applications in which copper oxide nanoparticles (CuO NPs) are used, may lead to potential release of CuO NPs into the environment. However, the impact of natural organic matters on the behavior and fate of CuO NPs in aquatic media is still largely unknown. In this study,

  11. Improvement and Evaluation of Copper Oxidation Experimental Procedure for the Introduction of the Law of Definite Proportion

    Science.gov (United States)

    Yamashita, Shuichi; Kashiwaguma, Yasuyuki; Hayashi, Hideko; Pietzner, Verena

    2017-01-01

    In science classes, students usually learn about the law of definite proportions by the oxidation of copper. However, common procedures usually do not lead to proper results. This leads to confusion among the students because their experimental results do not fit to the theoretical values. Therefore, we invented a new procedure for this experiment…

  12. Examination of commercially available copper oxide wire particles in combination with albendazole for control of gastrointestinal nematodes in lambs

    Science.gov (United States)

    Alternatives to synthetic anthelmintics remain critical due to the prevalence of anthelmintic resistance. The objective of the experiment was to determine the efficacy of copper oxide wire particles (COWP) from three commercial sources to control Haemonchus contortus in lambs. Naturally infected Ka...

  13. Photoelectrochemical and electrocatalytic properties of thermally oxidized copper oxide for efficient solar fuel production

    KAUST Repository

    Garcia Esparza, Angel T.; Limkrailassiri, Kevin; Leroy, Fré dé ric; Rasul, Shahid; Yu, Weili; Lin, Liwei; Takanabe, Kazuhiro

    2014-01-01

    We report the use of a facile and highly scalable synthesis process to control growth products of earth-abundant Cu-based oxides and their application in relevant photoelectrochemical and electrochemical solar fuel generation systems. Characterization of the synthesized Cu(I)/Cu(II) oxides indicates that their surface morphology and chemical composition can be simply tuned by varying two synthesis parameters (time and temperature). UV-Vis spectroscopy and impedance spectroscopy studies are performed to estimate the band structures and electronic properties of these p-type semiconductor materials. Photoelectrodes made of Cu oxides possess favorable energy band structures for production of hydrogen from water; the position of their conduction band is ≈1 V more negative than the water-reduction potential. High acceptor concentrations on the order of 1018-1019 cm-3 are obtained, producing large electric fields at the semiconductor-electrolyte interface and thereby enhancing charge separation. The highly crystalline pristine samples used as photocathodes in photoelectrochemical cells exhibit high photocurrents under AM 1.5G simulated illumination. When the samples are electrochemically reduced under galvanostatic conditions, the co-existence of the oxide with metallic Cu on the surface seems to function as an effective catalyst for the selective electrochemical reduction of CO2. © the Partner Organisations 2014.

  14. Five-fold way to new high Tc superconductors

    Indian Academy of Sciences (India)

    Discovery of high c superconductivity in La2−BaCuO4 by Bednorz and Muller in 1986 was a breakthrough in the 75-year long search for new superconductors. Since then new high c superconductors, not involving copper, have also been discovered. Superconductivity in cuprates also inspired resonating valence ...

  15. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    Science.gov (United States)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  16. Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine

    Science.gov (United States)

    Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.

    2013-02-01

    Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.

  17. Synthesis of graphene oxide-copper molybdate (GO-CuM) nanocomposites for photocatalytic application

    Science.gov (United States)

    Singh, Gajendar; Bhargava, V. Sai; Sharma, Manu

    2018-05-01

    Transition metal molybdates (TMBs) MMoO4 (M=Ni, Cu, Fe, Zn, Co, etc.) based nanocomposites have been considered as remarkable materials in the field of electronics, optics, catalysis, supercapicitors and energy storage devices. Nanocomposites of TMBs with graphene oxide have also been chosen as an effective material in photocatalytic application. GO-CuM nanocomposites were synthesized by ultra-sonication method at RT, followed by reflux route for preparation of CuM and GO by modified Hemmer's method. As prepared nanocomposites were characterized using analytical techniques such as PXRD, SEM, FT-IR and UV-Visible spectroscopy. The enhanced photocatalytic activity of Methylene blue (MB) dye was observed by GO-CuM nanocomposites as compared to pure copper molybdate. GO-CuM nanocomposites show high photodegradation rate (0.094 min-1) whereas CuM was degraded only 30 % with the rate of 0.0029 min-1. The high photocatalytic efficiency is due to the presence of graphene oxide that helps to delay the charge recombination in photocatalytic reaction The effect of the different amount of graphene oxide on the photocatalytic activity of as prepared photocatalyst has also been investigated.

  18. An RBS study of thin PLD and MOCVD strontium copper oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Kantor, Z. [Institute of Physics, University of Pannonia, H-8200 Veszprem (Hungary); Papadopoulou, E.L.; Aperathitis, E. [Inst. Electronic Struture and Laser, Foundation for Research and Technology - Hellas, P.O. Box 1527, Heraklion 71110 (Greece); Deschanvres, J.-L. [LMPG INP Grenoble-Minatec, BP 257, 38016 Grenoble Cedex 1 (France); Somogyi, K. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)], E-mail: karoly.somogyi@microvacuum.com; Szendro, I. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)

    2008-09-30

    Strontium copper oxide (SCO) has been studied as p-type transparent (VIS) conductive oxide material. Also theoretical studies suggested p-type conductivity of the SrCu{sub 2}O{sub 2} composition. SCO thin layers, with thicknesses of 30-2000 nm, were deposited on glass and silicon substrates both by pulsed laser deposition (PLD) and by MOCVD method. The as-grown layers showed high electrical resistance. Due to an annealing process, the resistivity significantly decreased and the layers showed p-type conductivity. Optical transparency measured on samples grown on glass substrates was found about or above 80%, including also thickness dependence. RBS measurements were applied for the determination of the chemical composition profile of the layers. A comparison revealed some specific differences between as-grown and annealed PLD samples. Due to the annealing, the ratio of oxide phases was changed and a vertical inhomogeneity in chemical composition was observed. Our measurements revealed also the influence of the deposition technique and of the substrate.

  19. Effects of copper oxide wire particle bolus therapy on trichostrongyle fecal egg counts in exotic artiodactylids.

    Science.gov (United States)

    Fontenot, Deidre K; Kinney-Moscona, Allyson; Kaplan, Ray M; Miller, James

    2008-12-01

    Four species of artiodactylids (scimitar-horned oryx [Oryx dama]), roan antelope [Hippotragus equinus], blackbuck [Antilope cervicapra]), and blesbok [Damaliscus pygargus phillipsi]) totaling 13 animals were treated with a one-time 12.5-g dose of copper oxide wire particles (COWPs) in a bolus form. Pretreatment, individual trichostrongyle fecal egg counts (FECs) were performed using the McMaster technique. Individual posttreatment FECs were performed every 7 days for 35 days beginning 7 days after bolus administration, and FEC reduction ratios (FECRRs) expressed as percentage reductions from pretreatment values were calculated every 7 days. Mean FECRRs for the 13 animals were 93% +/- 16%, 98% +/- 7%, 91% +/- 28%, 94% +/- 16%, and 90% +/- 13% at 7, 14, 21, 28, and 35 days posttreatment, respectively. These data demonstrate that COWPs in a bolus form were an effective method for reducing FEC in exotic artiodactylids. Based on this limited data, COWPs show promise as an anthelmintic alternative for exotic artiodactylids in zoologic collections.

  20. Piper betle-mediated synthesis, characterization, antibacterial and rat splenocyte cytotoxic effects of copper oxide nanoparticles.

    Science.gov (United States)

    Praburaman, Loganathan; Jang, Jum-Suk; Muthusamy, Govarthanan; Arumugam, Sengottaiyan; Manoharan, Koildhasan; Cho, Kwang-Min; Min, Cho; Kamala-Kannan, Seralathan; Byung-Taek, Oh

    2016-09-01

    The study reports a simple, inexpensive, and eco-friendly synthesis of copper oxide nanoparticles (CuONPs) using Piper betle leaf extract. Formation of CuONPs was confirmed by UV-visible spectroscopy at 280 nm. Transmission electron microscopy (TEM) images showed that the CuONPs were spherical, with an average size of 50-100 nm. The scanning electron microscopy (SEM)-energy dispersive spectroscopy (EDS) peak was observed approximately at 1 and 8 keV. The X-ray diffraction (XRD) studies indicated that the particles were crystalline in nature. CuONPs effectively inhibited the growth of phytopathogens Ralstonia solanacearum and Xanthomonas axonopodis. The cytotoxic effect of the synthesized CuONPs was analyzed using rat splenocytes. The cell viability was decreased to 94% at 300 μg/mL.

  1. Copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines: synthesis of imidazopyridine derivatives.

    Science.gov (United States)

    Yu, Jipan; Jin, Yunhe; Zhang, Hao; Yang, Xiaobo; Fu, Hua

    2013-12-02

    A novel, efficient, and practical method for the synthesis of imidazopyridine derivatives has been developed through the copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines with N-(alkylidene)-4H-1,2,4-triazol-4-amines. The procedure occurs by cleavage of the N-N bond in the N-(alkylidene)-4H-1,2,4-triazol-4-amines and activation of an aryl C-H bond in the substituted pyridines. This is the first example of the preparation of imidazopyridine derivatives by using pyridines as the substrates by transition-metal-catalyzed C-H functionalization. This method should provide a novel and efficient strategy for the synthesis of other nitrogen heterocycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Thermoelectric Properties of Hot-Pressed and PECS-Sintered Magnesium-Doped Copper Aluminum Oxide

    Science.gov (United States)

    Liu, Chang; Morelli, Donald T.

    2011-05-01

    Copper aluminum oxide (CuAlO2) is considered as a potential candidate for thermoelectric applications. Partially magnesium-doped CuAlO2 bulk pellets were fabricated using solid-state reactions, hot-pressing, and pulsed electric current sintering (PECS) techniques. X-ray diffraction and scanning electron microscopy were adopted for structural analysis. High-temperature transport property measurements were performed on hot-pressed samples. Electrical conductivity increased with Mg doping before secondary phases became significant, while the Seebeck coefficient displayed the opposite trend. Thermal conductivity was consistently reduced as the Mg concentration increased. Effects of Mg doping, preparation conditions, and future modification on this material's properties are discussed.

  3. Irradiation performance of oxide dispersion strengthened copper alloys to 150 dpa at 415 degree C

    International Nuclear Information System (INIS)

    Edwards, D.J.; Kumar, A.S.; Anderson, K.R.; Stubbins, J.F.; Garner, F.A.; Hamilton, M.L.

    1991-11-01

    Results have been obtained on the post-irradiation properties of various oxide dispersion strengthened copper alloys irradiated from 34 to 150 dpa at 415 degrees C in the Fast Flux Test Facility. The GlidCop alloys strengthened by Al 2 O 3 continue to outperform other alloys with respect to swelling resistance, and retention of both electrical conductivity and yield strength. Several castable ODS alloys and a Cr 2 O 3 -strengthened alloy show increasingly poor resistance to radiation, especially in their swelling behavior. A HfO 2 -strengthened alloy retains most of its strength and its electrical conductivity reaches a constant level after 50 dpa, but it exhibits a higher residual radioactivity

  4. A new rapid chemical route to prepare reduced graphene oxide using copper metal nanoparticles

    International Nuclear Information System (INIS)

    Wu Tao; Gao Jianping; Xu Xiaoyang; Qiu Haixia; Wang Wei; Gao Chunjuan

    2013-01-01

    Copper metal nanoparticles were used as a reducing agent to reduce graphene oxide (GO). The reaction was complete in about 10 min and did not involve the use of any toxic reagents or acids that are typically used in the reduction of GO by Zn and Fe powders. The high reduction activity of the Cu nanoparticles, compared to Cu powder, may be the result of the formation of Cu 2 O nanoparticles. The effect of the mass ratio of the metal to GO for this reduction was also investigated. The reduction of the GO was verified by ultraviolet–visible absorption spectroscopy, x-ray diffraction, thermogravimetric analysis, Raman spectroscopy, x-ray photoelectron spectroscopy and transmission electron microscopy. After reduction, Cu 2 O supported on reduced GO was formed and showed superior catalytic ability for the degradation of a model dye pollutant, methylene blue. (paper)

  5. Copper:molybdenum sub-oxide blend as transparent conductive electrode (TCE) indium free

    Science.gov (United States)

    Hssein, Mehdi; Cattin, Linda; Morsli, Mustapha; Addou, Mohammed; Bernède, Jean-Christian

    2016-05-01

    Oxide/metal/oxide structures have been shown to be promising alternatives to ITO. In such structures, in order to decrease the high light reflection of the metal film it is embedded between two metal oxides dielectric. MoO3-x is often used as oxide due to its capacity to be a performing anode buffer layer in organic solar cells, while silver is the metal the most often used [1]. Some attempts to use cheaper metal such as copper have been done. However it was shown that Cu diffuses strongly into MoO3-x [2]. Here we used this property to grow simple new transparent conductive oxide (TCE), i.e., Cu: MoO3-x blend. After the deposition of a thin Cu layer, a film of MoO3-x is deposited by sublimation. An XPS study shows more than 50% of Cu is present at the surface of the structure. In order to limit the Cu diffusion an ultra-thin Al layer is deposited onto MoO3-x. Then, in order to obtain a good hole collecting contact with the electron donor of the organic solar cells, a second MoO3-x layer is deposited. After optimization of the thickness of the different layers, the optimum structure is as follow: Cu (12 nm) : MoO3-x (20 nm)/Al (0.5 nm)/ MoO3-x (10 nm). The sheet resistance of this structure is Rsq = 5.2 Ω/sq. and its transmittance is Tmax = 65%. The factor of merit ϕM = T10/Rsq. = 2.41 × 10-3 Ω-1, which made this new TCE promising as anode in organic solar cells. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  6. Antimicrobial Effect of Copper Oxide Nanoparticles on Some Oral Bacteria and Candida Species

    Directory of Open Access Journals (Sweden)

    Amiri M

    2017-03-01

    Full Text Available Statement of Problem: Acid producing bacteria including Streptococcus mutans and lactobacilli cause tooth demineralization and lead to tooth decay. Also, oral colonization of the species of Candida has been reported in many studies that are resistant to antifungal agents. Objectives: In this study, antibacterial and antifungal effects of nano-CuO were studied against some oral bacteria and yeast fungi. Materials and Methods: The minimum inhibitory concentrations (MICs of copper oxide nanoparticles (CuO NPs for oral bacterial and fungal test strains were determined in 96-well microtiter plate technique. The agar diffusion test (ADT was employed to assess the antifungal properties of nystatin. Results: The MIC50 value of CuO NPs was determined at the range of 1–10 µg/ml for S. mutans, < 1 µg/ml for L. acidophilus, and 10 µg/ml for L. casei. Higher concentrations of CuO NPs (100-1000 µg/ml were effective on the bacterial cell growth, resulting in 100% reduction in the optical density in TSB medium. The cells of Candida albicans, C. krusei and C. glabrata were treated with CuO NPs and the results showed a decrease in fungal growth at a concentration of 1-1000 µg/ml in TSB medium. The MIC50 value of CuO NPs was determined 1000 µg/ml for three species of Candida. The diameter of growth inhibition zones of 1100 µg/ml nystatin was obtained 15-21 mm for clinical isolates of three species of Candida. Conclusions: With respect to the potential bactericidal activity of CuO NPs on various cariogenic bacteria examined in this study, these NPs could be introduce as a candidate control agent for preventing dental caries or dental infections. In our study, on the other hand, Nano copper oxide had a weak effect on the candida species.

  7. Intrinsically water-repellent copper oxide surfaces; An electro-crystallization approach

    Science.gov (United States)

    Akbari, Raziyeh; Ramos Chagas, Gabriela; Godeau, Guilhem; Mohammadizadeh, Mohammadreza; Guittard, Frédéric; Darmanin, Thierry

    2018-06-01

    Use of metal oxide thin layers is increased due to their good durability under environmental conditions. In this work, the repeatable nanostructured crystalite Cu2O thin films, developed by electrodeposition method without any physical and chemical modifications, demonstrate good hydrophobicity. Copper (I) oxide (Cu2O) layers were fabricated on gold/Si(1 0 0) substrates by different electrodeposition methods i.e. galvanostatic deposition, cyclic voltammetry, and pulse potentiostatic deposition and using copper sulfate (in various concentrations) as a precursor. The greatest crystalline face on prepared Cu2O samples is (1 1 1) which is the most hydrophobic facet of Cu2O cubic structure. Indeed, different crystallite structures such as nanotriangles and truncated octahedrons were formed on the surface for various electrodeposition methods. The increase of the contact angle (θw) measured by the rest time, reaching to about 135°, was seen at different rates and electrodeposition methods. In addition, two-step deposition surfaces were also prepared by applying two of the mentioned methods, alternatively. In general, the morphology of the two-step deposition surfaces showed some changes compared to that of one-step samples, allowing the formation of different crystallite shapes. Moreover, the wettability behavior showd the larger θw of the two-step deposition layers compared to the related one-step deposition layers. Therefore, the highest observed θw was related to the one of two-step deposition layers due to the creation of small octahedral structures on the surface, having narrow and deep valleys. However, there was an exception which was due to the resulted big structures and broad valleys on the surface. So, it is possible to engineer different crystallites shapes using the proposed two-step deposition method. It is expected that hydrophobic crystallite thin films can be used in environmental and electronic applications to save energy and materials properties.

  8. 3D-copper oxide and copper oxide/few-layer graphene with screen printed nanosheet assembly for ultrasensitive non-enzymatic glucose sensing

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhimei [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Pan, Peng, E-mail: panpeny@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Liu, Xuewen [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Yang, Zhengchun; Wei, Jun [Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Wei, Zhen, E-mail: weizhenxinxi@163.com [Tianjin Key Laboratory of Film Electronic and Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China); Advanced Materials and Printed Electronics Center, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin, 300384 (China)

    2017-02-01

    Screen-printed copper oxide (CuO) and CuO/few-layer graphene on graphite electrodes were used to fabricate the ultrasensitive nonenzymatic glucose biosensors. Flower-like CuO and flower-like CuO/few-layer graphene composites were prepared by screen-printing method and characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HETEM). On the basis of their cyclic voltammetry (CV) and chronoamperometry results, it was concluded that the addition of graphene to CuO significantly improved the performance of the fabricated glucose sensors, exhibiting high and reproducible sensitivity of 3120 μAmM{sup −1} cm{sup −2} with three linear ranges from 4 μM to 13.5 mM and the detection limit of 4 μM (S/N = 3) in a fast response time of 2 s. In addition, the fabricated sensors could effectively avoid the disturbance by interferents, such as Ascorbic Acid (AA), Uric Acid (UA), and Dopamine (DA). Most importantly, the testing results of real blood serum samples demonstrated that the electrodes were applicable and acceptable for the determination of glucose concentrations in human serum. The efficiencies of two non-enzymatic glucose biosensors for glucose determination were comparable with that of a commercial enzymatic sensor. - Highlights: • The method 2D nanosheet turns to 3D microflower by using screen printing was proposed. • Few-layer graphene added improved the sensor’s performance on base of CuO functional material. • Two ultrasensitive non-enzymatic glucose sensors were successfully fabricated. • The proposed sensor shows a high sensitivity of 3120 μA mM{sup −1} cm{sup −2}.

  9. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, U.

    1995-04-25

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  10. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  11. Persistence of the efficacy of copper oxide wire particles against Haemonchus contortus in sheep.

    Science.gov (United States)

    Galindo-Barboza, A J; Torres-Acosta, J F J; Cámara-Sarmiento, R; Sandoval-Castro, C A; Aguilar-Caballero, A J; Ojeda-Robertos, N F; Reyes-Ramírez, R; España-España, E

    2011-03-10

    The aim was to determine the persistent efficacy of copper oxide wire particles (COWP) against Haemonchus contortus in sheep, using the harmonization guidelines protocol. Thirty-six male lambs (2 months old) reared free of gastrointestinal nematodes were used (average body weight of 10.8±3.8kg). Before and for the duration of the study, lambs were kept in raised cages with slatted floors and were offered ad libitum a complete mixed diet. Animals were divided into six groups (n=6): one non-treated control group (G0) and five groups treated with one COWP capsule (1.7g of copper oxide; Copinox(®)). Animals in each group were treated on pre-defined dates before the artificial infection was applied: days -35 (G1), -28 (G2), -21 (G3), -14 (G4) and -7 (G5). On day 0 animals were infected with 3700 H. contortus infective larvae per animal. Animals were humanely slaughtered between days 22 and 23 post-infection. The abomasums were individually washed to obtain the contents. These organs were subjected to separate artificial digestions. Adult parasites were counted from the abomasum contents and the larvae from the digested material. Worm burden geometric means were calculated for each group. A significant worm burden reduction in either of the treated groups (G1, G2, G3, G4, and G5) compared to the control (G0) was considered as persistence of the anthelmintic effect. Copper levels were determined from individual liver samples of each animal. The geometric mean worm burden of the control group (G0) was 1959. Compared to the control, worm burdens geometric means were significantly reduced in groups G1 (1108), G4 (528) and G5 (1063) (P<0.03). Efficacies in G1, G4 and G5 were 43.4%, 73.0% and 45.7% respectively. No significant reduction was found for G2 (1342) and G3 (1430). A larger quantity of Cu was found in the livers of treated animals compared to the control group (P<0.05) except for G3 (P=0.06). A negative association between Cu liver content and worm burdens was

  12. Characterization of copper-zinc mixed oxide system in relation to different precursor structure and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Porta, P; De Rossi, S; Ferraris, G [Centro del CNR su ' Struttura e Attivia Catalitica di Sistemi di Ossidi' (SACSO), Rome (Italy); Pompa, F [ENEA, TIB Scienza dei Materiali, Rome (Italy)

    1991-03-01

    Hydroxycarbonate and hydroxynitrate precursors of CuO-ZnO catalysts (Cu/Zn atomic ratio=67/33) have been prepared by two different methods; the precursor obtained by precipitation at 333 K and constant pH=8 from mixed nitrate solution with excess of sodium bicarbonate consisted of zincian malachite and aurichalcite, while that obtained by addition of sodium carbonate solution to Cu-Zn nitrate solution is essentially copper hydroxynitrate plus some amount of aurichalcite. By thermal decomposition at 623 K both types of precursor gave a mixture of CuO and ZnO. The mixed oxides were then treated at 873, 1073 and 1273 K in air. X-ray diffraction, diffuse reflectance spectroscopy, scanning electron microscopy and surface area determination were used to characterize the mixed oxide systems. The precursor containing zincian malachite plus aurichalcite, after calcination at 623 K gave rise to well dispersed and much smaller particles of CuO and ZnO than the precursor containing copper hydroxynitrate plus aurichalcite. No Cu{sup 2+} in solid solution in the ZnO zincite structure Zn{sup 2+} in the CuO tenorite lattice were detected by reflectance spectroscopy up to 873 K; the presence of tetrahedral copper (Cu{sub x}Zn{sub 1-x}O solid solution formation at least at the surface) was evident only in samples calcined at temperatures higher than 1073 K. X-ray diffraction analysis for lattice parameter determination showed that only for samples treated at 1273 K both Cu{sub x}Zn{sub 1-x}O and Zn{sub y}Cu{sub 1-y}O solid solution formations are detectable. An unexpected volume decrease of Zn{sub y}Cu{sub 1-y}O with respect to pure CuO was revealed; the introduction of zinc in the tenorite structure probably changes the local metal symmetry from nearly square planar towards octahedral, producing an overall less distorted and more compact structure. (orig.).

  13. Optimisation of Copper Oxide Impregnation on Carbonised Oil Palm Empty Fruit Bunch for Nitric Oxide Removal using Response Surface Methodology

    Science.gov (United States)

    Ahmad, Norhidayah; Yong, Sing Hung; Ibrahim, Naimah; Ali, Umi Fazara Md; Ridwan, Fahmi Muhammad; Ahmad, Razi

    2018-03-01

    Oil palm empty fruit bunch (EFB) was successfully modified with phosphoric acid hydration followed by impregnation with copper oxide (CuO) to synthesize CuO modified catalytic carbon (CuO/EFBC) for low-temperature removal of nitric oxide (NO) from gas streams. CuO impregnation was optimised through response surface methodology (RSM) using Box-Behnken Design (BBD) in terms of metal loading (5-20%), sintering temperature (200-800˚C) and sintering time (2-6 hours). The model response for the variables was NO adsorption capacity, which was obtained from an up-flow column adsorption experiment with 100 mL/min flow of 500 ppm NO/He at different operating conditions. The optimum operating variables suggested by the model were 20% metal loading, 200˚C sintering temperature and 6 hours sintering time. A good agreement (R2 = 0.9625) was achieved between the experimental data and model prediction. ANOVA analysis indicated that the model terms (metal loading and sintering temperature) are significant (Prob.>F less than 0.05).

  14. Optimisation of Copper Oxide Impregnation on Carbonised Oil Palm Empty Fruit Bunch for Nitric Oxide Removal using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Ahmad Norhidayah

    2018-01-01

    Full Text Available Oil palm empty fruit bunch (EFB was successfully modified with phosphoric acid hydration followed by impregnation with copper oxide (CuO to synthesize CuO modified catalytic carbon (CuO/EFBC for low-temperature removal of nitric oxide (NO from gas streams. CuO impregnation was optimised through response surface methodology (RSM using Box-Behnken Design (BBD in terms of metal loading (5-20%, sintering temperature (200-800˚C and sintering time (2-6 hours. The model response for the variables was NO adsorption capacity, which was obtained from an up-flow column adsorption experiment with 100 mL/min flow of 500 ppm NO/He at different operating conditions. The optimum operating variables suggested by the model were 20% metal loading, 200˚C sintering temperature and 6 hours sintering time. A good agreement (R2 = 0.9625 was achieved between the experimental data and model prediction. ANOVA analysis indicated that the model terms (metal loading and sintering temperature are significant (Prob.>F less than 0.05.

  15. Design study of SMES system using high temperature superconductors

    International Nuclear Information System (INIS)

    Yoshihara, T.; Masuda, M.; Shintomi, T.; Hasegawa, J.

    1988-01-01

    Various studies of high Tc superconductors are being energetically pursued all over the world, since IBM Zurich Research Laboratory reported on the superconducting oxide. A new design using a high Tc superconductor is under study for 5000 MWh, on the assumption that it is available like conventional superconductors. Problems related to the Tc SMES system, mainly thermal insulation, refrigeration system, stability of superconductors, etc., are considered. Some design examples of high Tc SMES system are proposed

  16. Sealed glass coating of high temperature ceramic superconductors

    Science.gov (United States)

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  17. The superconductor (Tl,Hg,Ca)2(Ba,Sr)2(Ca,Sr,Tl)Cu2O7.6

    International Nuclear Information System (INIS)

    Valldor, M.; Bryntse, I.; Morawski, A.

    2002-01-01

    In the title 2212-type superconductor (thallium mercury calcium barium strontium copper oxide), which contains both Tl and Hg in the charge reservoir (CR), Sr is located at both alkali-earth (AE) metal sites. Ca enters the CR at the same time as Tl shares the smaller AE site, which increases the apical Cu-Cu distance significantly. The structure causes the superconducting Cu-O layers to become significantly puckered. (orig.)

  18. Preparation of copper (I) oxide nanohexagon decorated reduced graphene oxide nanocomposite and its application in electrochemical sensing of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Sivasubramanian, R., E-mail: rss@psgias.ac.in; Biji, P.

    2016-08-15

    Highlights: • Cu{sub 2}O nanohexagon–reduced graphene oxide (rGO) nanocomposite has been prepared by in-situ reduction method. • The rGO-Cu{sub 2}O/GCE exhibited excellent catalytic properties for dopamine due to the synergistic action of the nanocomposite. • The proposed sensor is highly selective toward dopamine in the presence of ascorbic acid and uric acid. - Graphical Abstract: - Abstract: An electrochemical sensor using copper (I) oxide nanostructure decorated reduced graphene oxide (rGO) nanocomposite has been proposed for selective detection of dopamine. The rGO–Cu{sub 2}O nanocomposite was synthesized by in-situ chemical reduction method and was characterized using Transmission Electron Microscope (TEM), Energy Dispersive X-ray (EDX) analysis, X-ray Diffraction (XRD) patterns, Fourier Transform Infrared (FTIR), UV–vis and Raman Spectroscopy, respectively. From Cyclic Voltammetric (CV) studies, it was inferred that rGO–Cu{sub 2}O/GCE exhibits excellent electrocatalytic activity toward dopamine, which is attributed to the enhanced conductivity as well as the synergistic effect of the nanocomposite. The sensing was carried out using Differential Pulse Voltammetry (DPV) wherefrom a Limit of Detection (LOD) of 50 nM with a linear range from 10 µM to 900 µM was estimated. The effect of potential interfering agents such as Uric Acid (UA), Ascorbic Acid (AA), glucose, K{sup +}, Na{sup +}, Cl{sup −}, and SO{sub 4}{sup −} ions toward sensing were investigated. The performance of the sensor toward the estimation of dopamine in human blood and urine samples were analyzed. The facile method for the preparation of a nanocomposite in conjunction with the low detection limit and the wide linear range for dopamine sensing is the advantage of this present study.

  19. Synergy of iron and copper oxides in the catalytic formation of PCDD/Fs from 2-monochlorophenol.

    Science.gov (United States)

    Potter, Phillip M; Guan, Xia; Lomnicki, Slawomir M

    2018-07-01

    Transition metal oxides present in waste incineration systems have the ability to catalyze the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) through surface reactions involving organic dioxin precursors. However, studies have concentrated on the catalytic effects of individual transition metal oxides, while the complex elemental composition of fly ash introduces the possibility of synergistic or inhibiting effects between multiple, catalytically active components. In this study, we have tested fly ash surrogates containing different ratios (by weight) of iron (III) oxide and copper (II) oxide. Such Fe 2 O 3 /CuO mixed-oxide surrogates (in the Fe:Cu ratio of 3.5, 0.9 and 0.2 ) were used to study the cooperative effects between two transition metals that are present in high concentrations in most combustion systems and are known to individually catalyze the formation of PCDD/Fs. The presence of both iron and copper oxides increased the oxidative power of the fly ash surrogates in oxygen rich conditions and led to extremely high PCDD/F yields under pyrolytic conditions (up to >5% yield) from 2-monochlorophenol precursor. PCDD/F congener profiles from the mixed oxide samples are similar to results obtained from only CuO, however the total PCDD/F yield increases with increasing Fe 2 O 3 content. Careful analysis of the reaction products and changes to the oxidation states of active metals indicate the CuO surface sites are centers for reaction while the Fe 2 O 3 is affecting the bonds in CuO and increasing the ability of copper centers to form surface-bound radicals that are precursors to PCDD/Fs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Study of thin metal films and oxide materials for nanoelectronics applications

    OpenAIRE

    De Los Santos Valladares, Luis

    2012-01-01

    Appendix A Pages 132-134 have been removed from this online version of the thesis for publisher copyright reasons. These had contained page images from the cover of Nanotechnology, Vol. 21, Nov 2010 and its corresponding web alert Different types of thin metal films and oxide materials are studied for their potential application in nanoelectronics: gold and copper films, nickel nanoelectrodes, oxide nanograin superconductors, carboxyl ferromagnetic microspheres and graphene oxide...

  1. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Quesnel, David J. [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the

  2. Ferrate(VI) and ferrate(V) oxidation of cyanide, thiocyanate, and copper(I) cyanide

    International Nuclear Information System (INIS)

    Sharma, Virender K.; Yngard, Ria A.; Cabelli, Diane E.; Clayton Baum, J.

    2008-01-01

    Cyanide (CN - ), thiocyanate (SCN - ), and copper(I) cyanide (Cu(CN) 4 3- ) are common constituents in the wastes of many industrial processes such as metal finishing and gold mining, and their treatment is required before the safe discharge of effluent. The oxidation of CN - , SCN - , and Cu(CN) 4 3- by ferrate(VI) (Fe VI O 4 2- ; Fe(VI)) and ferrate(V) (Fe V O 4 3- ; Fe(V)) has been studied using stopped-flow and premix pulse radiolysis techniques. The rate laws for the oxidation of cyanides were found to be first-order with respect to each reactant. The second-order rate constants decreased with increasing pH because the deprotonated species, FeO 4 2- , is less reactive than the protonated Fe(VI) species, HFeO 4 - . Cyanides react 10 3 -10 5 times faster with Fe(V) than with Fe(VI). The Fe(V) reaction with CN - proceeds by sequential one-electron reductions from Fe(V) to Fe(IV) to Fe(III). However, a two-electron transfer process from Fe(V) to Fe(III) occurs in the reaction of Fe(V) with SCN - and Cu(CN) 4 3- . The toxic CN - species of cyanide wastes is converted into relatively non-toxic cyanate (NCO - ). Results indicate that Fe(VI) is highly efficient in removing cyanides from electroplating rinse water and gold mill effluent

  3. Increased response to oxidative stress challenge of nano-copper-induced apoptosis in mesangial cells

    International Nuclear Information System (INIS)

    Xu, Pengjuan; Li, Zhigui; Zhang, Xiaochen; Yang, Zhuo

    2014-01-01

    Recently, many studies reported that nanosized copper particles (nano-Cu, the particle size was around 15–30 nm), one of the nanometer materials, could induce nephrotoxicity. To detect the effect of nano-Cu on mesangial cells (MCs), and investigate the underlying mechanism, MCs were treated with different concentrations of nano-Cu (1, 10, and 30 μg/mL) to determine the oxidative stress and apoptotic changes. It was revealed that nano-Cu could induce a decreased viability in MCs together with a significant increase in the number of apoptotic cells by using cell counting kit-8 assay and flow cytometry. The apoptotic morphological changes induced by nano-Cu in MCs were demonstrated by Hochest33342 staining. Results showed that nano-Cu induced the nuclear fragmentation in MCs. Meanwhile, nano-Cu significantly increased the levels of reactive oxygen species, especially increased the levels of H 2 O 2 . It also decreased the activity of total SOD enzyme. In addition, when pre-treated with N-(2-mercaptopropionyl)-glycine, the cell apoptosis induced by nano-Cu was significantly decreased. These results suggest that oxidative stress plays an important role in the nano-Cu toxicity in MCs, which may be the main mechanism of nano-Cu-induced nephrotoxicity

  4. Non-Enzymatic Glucose Sensing Using Carbon Quantum Dots Decorated with Copper Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Houcem Maaoui

    2016-10-01

    Full Text Available Perturbations in glucose homeostasis is critical for human health, as hyperglycemia (defining diabetes leads to premature death caused by macrovascular and microvascular complications. However, the simple and accurate detection of glucose in the blood at low cost remains a challenging task, although it is of great importance for the diagnosis and therapy of diabetic patients. In this work, carbon quantum dots decorated with copper oxide nanostructures (CQDs/Cu2O are prepared by a simple hydrothermal approach, and their potential for electrochemical non-enzymatic glucose sensing is evaluated. The proposed sensor exhibits excellent electrocatalytic activity towards glucose oxidation in alkaline solutions. The glucose sensor is characterized by a wide concentration range from 6 µM to 6 mM, a sensitivity of 2.9 ± 0.2 µA·µM−1·cm−2, and a detection limit of 6 µM at a signal-to-noise ratio S/N = 3. The sensors are successfully applied for glucose determination in human serum samples, demonstrating that the CQDs/Cu2O-based glucose sensor satisfies the requirements of complex sample detection with adapted potential for therapeutic diagnostics.

  5. Bioflotation of sulfide minerals with Acidithiobacillus ferrooxidans in relation to copper activation and surface oxidation.

    Science.gov (United States)

    Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E

    2012-09-01

    Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation.

  6. Experience with copper oxide production in antiproton source components at Fermi National Accelerator Laboratory

    International Nuclear Information System (INIS)

    Ader, Christine R.; Harms, Elvin R. Jr; Morgan, James P.

    2000-01-01

    The Antiproton (Pbar) Source at Fermi National Accelerator Laboratory is a facility comprised of a target station, two rings called the Debuncher and Accumulator and the transport lines between those rings and the remainder of the particle accelerator complex. Water is by far the most common medium for carrying excess heat away from components, primarily electromagnets, in this facility. The largest of the water systems found in Pbar is the 95 degree Fahrenheit Low Conductivity Water (LCW) system. LCW is water which has had free ions removed, increasing its resistance to electrical current. This water circuit is used to cool magnets, power supplies, and stochastic cooling components and typically has a resistivity of 11--18 megaohms-cm. For more than ten years the Antiproton rings were plagued with overheating magnets due to plugged water-cooling channels. Various repairs have been tried over the years with no permanent success. Throughout all of this time, water samples have indicated copper oxide, CuO, as the source of the contamination. Matters came to a head in early 1997 following a major underground LCW leak between the Central Utilities Building and the Antiproton Rings enclosures. Over a span of several weeks following system turn-on, some twenty magnets overheated leading to unreliable Pbar source operation. Although it was known that oxygen in the system reacts with the copper tubing to form CuO, work to remedy this problem was not undertaken until this time period. Leaks, large quantities of make-up water, infrequent filter replacement, and thermal cycling also result in an increase in the corrosion product release rate. A three-pronged approach has been implemented to minimize the amount of copper oxide available to plug the magnets: (1) installation of an oxygen removal system capable of achieving dissolved oxygen concentrations in the parts per billion (ppb) range; (2) regular closed-loop filter/flushing of the copper headers and magnets and stainless

  7. Preliminary study of copper oxide nanoparticles acoustic and magnetic properties for medical imaging

    Science.gov (United States)

    Perlman, Or; Weitz, Iris S.; Azhari, Haim

    2015-03-01

    The implementation of multimodal imaging in medicine is highly beneficial as different physical properties may provide complementary information, augmented detection ability, and diagnosis verification. Nanoparticles have been recently used as contrast agents for various imaging modalities. Their significant advantage over conventional large-scale contrast agents is the ability of detection at early stages of the disease, being less prone to obstacles on their path to the target region, and possible conjunction to therapeutics. Copper ions play essential role in human health. They are used as a cofactor for multiple key enzymes involved in various fundamental biochemistry processes. Extremely small size copper oxide nanoparticles (CuO-NPs) are readily soluble in water with high colloidal stability yielding high bioavailability. The goal of this study was to examine the magnetic and acoustic characteristics of CuO-NPs in order to evaluate their potential to serve as contrast imaging agent for both MRI and ultrasound. CuO-NPs 7nm in diameter were synthesized by hot solution method. The particles were scanned using a 9.4T MRI and demonstrated a concentration dependent T1 relaxation time shortening phenomenon. In addition, it was revealed that CuO-NPs can be detected using the ultrasonic B-scan imaging. Finally, speed of sound based ultrasonic computed tomography was applied and showed that CuO-NPs can be clearly imaged. In conclusion, the preliminary results obtained, positively indicate that CuO-NPs may be imaged by both MRI and ultrasound. The results motivate additional in-vivo studies, in which the clinical utility of fused images derived from both modalities for diagnosis improvement will be studied.

  8. The potential to control Haemonchus contortus in indigenous South African goats with copper oxide wire particles.

    Science.gov (United States)

    Vatta, A F; Waller, P J; Githiori, J B; Medley, G F

    2009-06-10

    The high prevalence of resistance of Haemonchus contortus to all major anthelmintic groups has prompted investigations into alternative control methods in South Africa, including the use of copper oxide wire particle (COWP) boluses. To assess the efficacy of COWP against H. contortus in indigenous South African goats, 18 male faecal egg-count-negative goats were each given ca.1200 infective larvae of H. contortus three times per week during weeks 1 and 2 of the experiment. These animals made up an "established" infection group (ESTGRP). At the start of week 7, six goats were each given a 2-g COWP bolus orally; six goats received a 4-g COWP bolus each and six animals were not treated. A further 20 goats constituted a "developing" infection group (DEVGRP). At the beginning of week 1, seven of the DEVGRP goats were given a 2-g COWP bolus each; seven goats were treated with a 4-g COWP bolus each and no bolus was given to a further six animals. During weeks 1-6, each of these DEVGRP goats was given ca. 400 H. contortus larvae three times per week. All 38 goats were euthanized for worm recovery from the abomasa and small intestines in week 11. In the ESTGRP, the 2-g and 4-g COWP boluses reduced the worm burdens by 95% and 93%, respectively compared to controls (mean burden+/-standard deviation, SD: 23+/-33, 30+/-56 and 442+/-518 worms, P=0.02). However, in the DEVGRP goats, both the 2-g and 4-g COWP treatments were ineffective in reducing the worm burdens relative to the controls (mean burdens+/-SD: 1102+/-841, 649+/-855, 1051+/-661 worms, P=0.16). Mean liver copper levels did not differ between the ESTGRP goats treated with 2-g COWP, 4-g COWP or no COWP (mean+/-standard error of the mean, SEM, in ppm: 93.7+/-8.3; 101.5+/-8.3; 71.8+/-8.3, P=0.07) nor did they differ between the DEVGRP goats (mean+/-SEM, in ppm: 74.1+/-9.1; 75.4+/-9.1; 74.9+/-10.0, P>0.99). The copper values were considered adequate, but not high, for goats. The COWP boluses have the potential to be used

  9. Cuprous oxide thin films prepared by thermal oxidation of copper layer. Morphological and optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Karapetyan, Artak, E-mail: karapetyan@cinam.univ-mrs.fr [Aix Marseille Université, CINaM, 13288, Marseille (France); Institute for Physical Research of NAS of Armenia, Ashtarak-2 0203 (Armenia); Reymers, Anna [Russian-Armenian (Slavonic) University, H.Emin st.123, Yerevan 375051 (Armenia); Giorgio, Suzanne; Fauquet, Carole [Aix Marseille Université, CINaM, 13288, Marseille (France); Sajti, Laszlo [Laser Zentrum Hannover e.V. Hollerithallee 8, 30419 Hannover (Germany); Nitsche, Serge [Aix Marseille Université, CINaM, 13288, Marseille (France); Nersesyan, Manuk; Gevorgyan, Vladimir [Russian-Armenian (Slavonic) University, H.Emin st.123, Yerevan 375051 (Armenia); Marine, Wladimir [Aix Marseille Université, CINaM, 13288, Marseille (France)

    2015-03-15

    Structural and optical characterization of crystalline Cu{sub 2}O thin films obtained by thermal oxidation of Cu films at two different temperatures 800 °C and 900 °C are investigated in this work. X-ray diffraction measurements indicate that synthesized films consist of single Cu{sub 2}O phase without any interstitial phase and show a nano-grain structure. Scanning Electron Microscopy observations indicate that the Cu{sub 2}O films have a micro-scale roughness whereas High Resolution Transmission Electron Microscopy highlights that the nanocrystalline structure is formed by superposition of nearly spherical nanocrystals smaller than 30 nm. Photoluminescence spectra of these films exhibit at room temperature two well-resolved emission peaks at 1.34 eV due to defects energy levels and at 1.97 eV due to phonon-assisted recombination of the 1s orthoexciton in both film series. Emission characteristics depending on the laser power is deeply investigated to determine the origin of recorded emissions. Time-integrated spectra of the 1s orthoexciton emission reveals the presence of oxygen defects below the conduction band edge under non-resonant two-photon excitation using a wide range of excitations wavelengths. Optical absorption coefficients at room temperature are obtained from an accurate analysis of their transmission and reflection spectra, whereas the optical band gap energy is estimated at about 2.11 eV. Results obtained are of high relevance especially for potential applications in semiconductor devices such as solar cells, optical sources and detectors. - Highlights: • Nanostructured Cu{sub 2}O thin films were synthesized by thermal oxidation of Cu films. • The PL spectra of nanostructured thin films revealed two well-resolved emission peaks. • The PL properties were investigated under a broad range of experimental conditions. • Inter-band transition in the infrared range has been associated to V{sub Cu} and V{sub O} vacancies. • Absorption

  10. Response of ammonia oxidizing archaea and bacteria to decabromodiphenyl ether and copper contamination in river sediments.

    Science.gov (United States)

    Wang, Linqiong; Li, Yi; Niu, Lihua; Zhang, Wenlong; Zhang, Huanjun; Wang, Longfei; Wang, Peifang

    2018-01-01

    Ammonia oxidation plays a fundamental role in river nitrogen cycling ecosystems, which is normally governed by both ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB). Co-contamination of typical emerging pollutant Polybrominated diphenyl ethers (PBDEs) and heavy metal on AOA and AOB communities in river sediments remains unknown. In this study, multiple analytical tools, including high-throughput pyrosequencing and real-time quantitative PCR (qPCR), were used to reveal the ammonia monooxygenase (AMO) activity, subunit alpha (amoA) gene abundance, and community structures of AOA and AOB in river sediments. It was found that the inhibition of AMO activities was increased with the increase of decabromodiphenyl ether (BDE 209, 1-100 mg kg -1 ) and copper (Cu, 50-500 mg kg -1 ) concentrations. Moreover, the synergic effects of BDE 209 and Cu resulted in a higher AMO activity reduction than the individual pollutant BDE 209. The AOA amoA copy number declined by 75.9% and 83.2% and AOB amoA gene abundance declined 82.8% and 90.0% at 20 and 100 mg kg -1 BDE 209 with a 100 mg kg -1 Cu co-contamination, respectively. The pyrosequencing results showed that both AOB and AOA community structures were altered, with a higher change of AOB than that of AOA. The results demonstrated that the AOB microbial community may be better adapted to BDE 209 and Cu pollution, while AOA might possess a greater capacity for stress resistance. Our study provides a better understanding of the ecotoxicological effects of heavy metal and micropollutant combined exposure on AOA and AOB in river sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Sonochemical fabrication of petal array-like copper/nickel oxide composite foam as a pseudocapacitive material for energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, Namachivayam; Edison, Thomas Nesakumar Jebakumar Immanuel [School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Sethuraman, Mathur Gopalakrishnan, E-mail: mgsethu@gmail.com [Department of Chemistry, Gandhigram Rural Institute – Deemed University, Gandhigram, 624 302, Dindigul District, Tamil Nadu (India); Lee, Yong Rok, E-mail: yrlee@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of)

    2017-02-28

    Highlights: • A composite Ni foam textured with Cu particles was fabricated by a sonication method. • The foam can be used as a pseudocapacitive material for energy storage applications. • The foam has a high specific capacitance of 1773 F g{sup −1} at a scan rate of 5 mV s{sup −1}. - Abstract: Copper/nickel oxide composite foam (Cu/Ni) with petal array-like textures were successfully fabricated via a facile sonochemical approach, and its applications as a pseudocapacitive material for energy storage were examined. The nickel foam was immersed into a mixture of copper chloride (CuCl{sub 2}) and hydrochloric acid (HCl) and subsequently sonicated for 30 min at 60 °C. As a result of galvanic replacement, nickel was oxidized while copper was reduced, and the walls of the nickel foam were coated with copper particles. Studies using field emission scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopic analyses confirmed the morphology and chemical structure of the as-obtained Cu/Ni oxide composite foam. The supercapacitive performance of the as-fabricated Cu/Ni oxide composite foam was evaluated in 2 M KOH by employing cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy analyses. Cyclic voltammograms revealed that the Cu/Ni oxide composite foam exhibited pseudocapacitive behavior and delivered a high specific capacitance of 1773 F g{sup −1} at a scan rate of 5 mV s{sup −1}. This improvement may be attributed to the morphology, surface functionalization with heteroatoms, hydrogen evolution, and high conductivity, along with the low resistance due to short path lengths for electron transportation.

  12. N,N-diethyldithiocarbamate promotes oxidative stress prior to myelin structural changes and increases myelin copper content

    International Nuclear Information System (INIS)

    Viquez, Olga M.; Lai, Barry; Ahn, Jae Hee; Does, Mark D.; Valentine, Holly L.; Valentine, William M.

    2009-01-01

    Dithiocarbamates are a commercially important class of compounds that can produce peripheral neuropathy in humans and experimental animals. Previous studies have supported a requirement for copper accumulation and enhanced lipid peroxidation in dithiocarbamate-mediated myelinopathy. The study presented here extends previous investigations in two areas. Firstly, although total copper levels have been shown to increase within the nerve it has not been determined whether copper is increased within the myelin compartment, the primary site of lesion development. Therefore, the distribution of copper in sciatic nerve was characterized using synchrotron X-ray fluorescence microscopy to determine whether the neurotoxic dithiocarbamate, N,N-diethyldithiocarbamate, increases copper levels in myelin. Secondly, because lipid peroxidation is an ongoing process in normal nerve and the levels of lipid peroxidation products produced by dithiocarbamate exposure demonstrated an unusual cumulative dose response in previous studies the biological impact of dithiocarbamate-mediated lipid peroxidation was evaluated. Experiments were performed to determine whether dithiocarbamate-mediated lipid peroxidation products elicit an antioxidant response through measuring the protein expression levels of three enzymes, superoxide dismutase 1, heme oxygenase 1, and glutathione transferase α, that are linked to the antioxidant response element promoter. To establish the potential of oxidative injury to contribute to myelin injury the temporal relationship of the antioxidant response to myelin injury was determined. Myelin structure in peripheral nerve was assessed using multi-exponential transverse relaxation measurements (MET 2 ) as a function of exposure duration, and the temporal relationship of protein expression changes relative to the onset of changes in myelin integrity were determined. Initial assessments were also performed to explore the potential contribution of dithiocarbamate

  13. The oxidative p-dichlorobenzene dechlorinating in the presence of copper (ΙΙ complexes and nitrogen (ΙΙ, ΙV oxides

    Directory of Open Access Journals (Sweden)

    Valentina Yemelyanova

    2012-12-01

    Full Text Available The results of dechlorination in the solution CuCl2–TBP–NaNO2–О2–Н2О kinetics research are presented in the article. All system components influence to the dechlorination process is studied and quantitatively described. The composition of copper intermediate complexes participating in reaction is studied by the instrumentality of UV-spectroscopy. Established part of binuclear copper complexes in the catalytic intermediate complex constants of formation were estimated and compared with the kinetic and spectrophotometric methods. The composition of the intermediate complexes responsible for process is defined, the mechanism scheme is offered, the p-dichlorobenzene dechlorination limiting stage including redox-disintegration of the intermediate complex consisting of dimeric complex of copper (II, I chloride, nitrogen oxide and p-dichlorobenzene is defined.

  14. Comparative toxicity of copper oxide bulk and nano particles in Nile Tilapia; Oreochromis niloticus: Biochemical and oxidative stress

    Directory of Open Access Journals (Sweden)

    Amr A. Abdel-Khalek

    2015-10-01

    Full Text Available Nile Tilapia; Oreochromis niloticus are commonly used in the assessment of aquatic environment quality and also considered as useful bio-indicators during environmental pollution monitoring. The LC50/96 h of copper oxide (bulk & nano particles [CuO (BPs & NPs] were 2205 & 150 mg/l, respectively. Two tested concentrations of CuO (BPs & NPs were selected: the first concentration was equivalent to (1/10 (220.5 & 15 mg/l, and the second was equivalent to (1/20 (110.25 & 7.5 mg/l LC50/96 h·CuO (BPs & NPs, respectively. While serum glucose, liver function tests (AST, ALT and ALP and kidney function tests (creatinine and uric acid showed a significant increase, serum total proteins, albumin, globulin and total lipids showed a significant decrease. Both liver and gill tissues of the studied fish showed a reduction in GSH content and an elevation in MDA and GPx activities. The present study also showed an elevation in liver CAT & SOD activities when exposed to both concentrations of CuO BPs and in the case of gills when exposed to both concentrations of CuO (BPs & NPs, although activity of these enzymes showed an inhibition in the liver when exposed to both concentrations of CuO NPs. The present study investigated whether CuO NPs are more toxic than CuO BPs.

  15. Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation

    KAUST Repository

    Gondal, M. A.; Qahtan, Talal F.; Dastageer, Mohamed Abdulkader; Saleh, Tawfik A.; Maganda, Yasin W.; Anjum, Dalaver H.

    2013-01-01

    Pulsed laser ablation in liquid (PLAL) with 532 nm wavelength laser with 5 ns pulse duration is used to produce the nanostructure copper oxide and the effects of oxidizing media (deionized water and hydrogen peroxide) on the composition, morphology and optical properties of the product materials produced by PLAL were studied. XRD and TEM studies indicate that in the absence of hydrogen peroxide, the product material is in two phases (Cu/Cu2O) with the spherical nanoparticle structure, whereas in the presence of hydrogen peroxide in the liquid medium, the product material revealed other two phases (Cu/CuO) with nanorod-like structure. The optical studies revealed a considerable red shift (3.34-2.5 eV) in the band gap energy in the case of hydrogen peroxide in the liquid medium in PLAL synthesis compared to the one in the absence of it. Also the product material in the presence of hydrogen peroxide in the liquid medium showed a reduced photoluminescence intensity indicating the reduced electron-hole recombination rate. The red shift in the band gap energy and the reduced electron-hole recombination rate make the product material an ideal photocatalyst to harvest solar radiation for various applications. The most relevant signals on the FTIR spectrum for the samples are the absorption bands in the region between 450 and 700 cm-1 which are the characteristics bands of copperoxygen bonds. The reported laser ablation approach for the synthesis of Cu2O and CuO nanoparticles has the advantages of being clean method with controlled particle properties. © 2013 Elsevier B.V. All rights reserved.

  16. Effects of oxidizing medium on the composition, morphology and optical properties of copper oxide nanoparticles produced by pulsed laser ablation

    KAUST Repository

    Gondal, M. A.

    2013-12-01

    Pulsed laser ablation in liquid (PLAL) with 532 nm wavelength laser with 5 ns pulse duration is used to produce the nanostructure copper oxide and the effects of oxidizing media (deionized water and hydrogen peroxide) on the composition, morphology and optical properties of the product materials produced by PLAL were studied. XRD and TEM studies indicate that in the absence of hydrogen peroxide, the product material is in two phases (Cu/Cu2O) with the spherical nanoparticle structure, whereas in the presence of hydrogen peroxide in the liquid medium, the product material revealed other two phases (Cu/CuO) with nanorod-like structure. The optical studies revealed a considerable red shift (3.34-2.5 eV) in the band gap energy in the case of hydrogen peroxide in the liquid medium in PLAL synthesis compared to the one in the absence of it. Also the product material in the presence of hydrogen peroxide in the liquid medium showed a reduced photoluminescence intensity indicating the reduced electron-hole recombination rate. The red shift in the band gap energy and the reduced electron-hole recombination rate make the product material an ideal photocatalyst to harvest solar radiation for various applications. The most relevant signals on the FTIR spectrum for the samples are the absorption bands in the region between 450 and 700 cm-1 which are the characteristics bands of copperoxygen bonds. The reported laser ablation approach for the synthesis of Cu2O and CuO nanoparticles has the advantages of being clean method with controlled particle properties. © 2013 Elsevier B.V. All rights reserved.

  17. Electronic bound states in parity-preserving QED3 applied to high-Tc cuprate superconductors

    International Nuclear Information System (INIS)

    Christiansen, H.R.; Cima, O.M. Del; Ferreira Junior, M.M.; Maranhao Univ., Sao Luis, MA; Helayel-Neto, J.A.; Centro Brasileiro de Pesquisas Fisicas

    2001-08-01

    We consider a parity-preserving QED 3 model with spontaneous breaking of the gauge symmetry as a framework for the evaluation of the electron-electron interaction potential underlying high-T e superconductivity. The fact that resulting potential, - C s K o (Mr), is non-confining and weak (in the sense of Kato) strongly suggests the mechanism of pair-condensation. This potential, compatible with an s-wave order parameters, is then applied to the Schrodinger equation for the sake of numerical calculations, thereby enforcing the existence of bound states. The results worked out by means of our theoretical framework are checked by considering a number of phenomenological data extracted from different copper oxide superconductors. The agreement may motivate a deeper analysis of our model viewing an application to quasi-planar cuprate superconductors. The data analyzed here suggest an energy scale of 1-10 meV for the breaking of the U(1)-symmetry. (author)

  18. Nano Copper Oxide-Modified Carbon Cloth as Cathode for a Two-Chamber Microbial Fuel Cell.

    Science.gov (United States)

    Dong, Feng; Zhang, Peng; Li, Kexun; Liu, Xianhua; Zhang, Pingping

    2016-12-09

    In this work, Cu₂O nanoparticles were deposited on a carbon cloth cathode using a facile electrochemical method. The morphology of the modified cathode, which was characterized by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) tests, showed that the porosity and specific surface area of the cathode improved with longer deposition times. X-ray photoelectron spectroscopy (XPS) and cyclic voltammetry (CV) results showed that cupric oxide and cuprous oxide coexisted on the carbon cloth, which improved the electrochemical activity of cathode. The cathode with a deposition time of 100 s showed the best performance, with a power density twice that of bare carbon cloth. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) results revealed that moderate deposition of nano copper oxide on carbon cloth could dramatically reduce the charge transfer resistance, which contributed to the enhanced electrochemical performance. The mediation mechanism of copper oxide nanocatalyst was illustrated by the fact that the recycled conversion between cupric oxide and cuprous oxide accelerated the electron transfer efficiency on the cathode.

  19. Chapter 27. Superconductors

    International Nuclear Information System (INIS)

    Vavra, O.

    2007-01-01

    In this chapter author deals with superconductors and superconductivity. Different chemical materials used as high-temperature superconductors are presented. Some applications of superconductivity are presented.

  20. Electrochemical behavior of copper metal core/oxide shell ultra-fine particles on mercury electrodes in aqueous dispersions

    Czech Academy of Sciences Publication Activity Database

    Korshunov, A.; Heyrovský, Michael

    2009-01-01

    Roč. 629, 1-2 (2009), s. 23-29 ISSN 0022-0728 R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : ultrafine copper powders * surface oxide layers * aqueous dispersions * voltammetry * Hg electrodes Subject RIV: CG - Electrochemistry Impact factor: 2.580, year: 2007

  1. Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxide-Derived Copper

    DEFF Research Database (Denmark)

    Bertheussen, Erlend; Verdaguer Casadevall, Arnau; Ravasio, Davide

    2016-01-01

    Oxide-derived copper (OD-Cu) electrodes exhibit unprecedented CO reduction performance towards liquid fuels, producing ethanol and acetate with >50 % Faradaic efficiency at −0.3 V (vs. RHE). By using static headspace-gas chromatography for liquid phase analysis, we identify acetaldehyde as a mino...... solutions using NMR spectroscopy, requiring alternative methods for detection and quantification. Our results represent an important step towards understanding the CO reduction mechanism on OD-Cu electrodes....

  2. Plastic superconductor bearings any size-any shape: 77 K and up

    Science.gov (United States)

    Reick, Franklin G.

    1991-01-01

    'Friction free' bearings at 77 K or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape, and postforming machining. The material is hard and abrasive. It is possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas, and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feed for LN2 is used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material is molded with the internal surfaces shielded by the Meissner effect. It can be thought of as the DC magnetic analog of the Faraday cage and the inside is the 'Meissner space'. It is selective. The AC fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics.

  3. Plastic superconductor bearings any size-any shape: 77 K and up

    International Nuclear Information System (INIS)

    Reick, F.G.

    1991-01-01

    'Friction free' bearings at 77 K or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape, and postforming machining. The material is hard and abrasive. It is possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas, and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feed for LN2 is used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material is molded with the internal surfaces shielded by the Meissner effect. It can be thought of as the DC magnetic analog of the Faraday cage and the inside is the 'Meissner space'. It is selective. The AC fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics

  4. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    Science.gov (United States)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  5. Microdistribution of copper-carbonate and iron oxide nanoparticles in treated wood

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Hiroshi, E-mail: mhiroshi@ffpri.affrc.go.jp; Kiguchi, Makoto [Forestry and Forest Products Research Institute (Japan); Evans, Philip D. [University of British Columbia, Centre for Advanced Wood Processing (Canada)

    2009-07-15

    Aqueous dispersions of copper-carbonate nanoparticles and microparticles have just begun to be exploited commercially for the preservative treatment of wood. The success of the new systems will depend, in part, on the uniform distribution of the preservative in wood and the ability of copper to penetrate cell walls. We examined the distribution of copper in wood treated with a nano-Cu preservative. Copper particles are not uniformly distributed in treated wood, but they accumulate in voids that act as the flow paths for liquids in wood. Particles are deposited on, but not within cell walls. Nevertheless, elemental copper is present within cell walls, but at a lower level than that in wood treated with a conventional wood preservative. These findings suggest that nano-Cu preservatives are able to deliver bioactive components into wood cell walls even though the majority of copper particles are too large to penetrate the cell wall's nanocapillary network.

  6. "Fluctuoscopy" of Superconductors

    Science.gov (United States)

    Varlamov, A. A.

    Study of fluctuation phenomena in superconductors (SCs) is the subject of great fundamental and practical importance. Understanding of their physics allowed to clear up the fundamental properties of SC state. Being predicted in 1968, one of the fluctuation effects, namely paraconductivity, was experimentally observed almost simultaneously. Since this time, fluctuations became a noticeable part of research in the field of superconductivity, and a variety of fluctuation effects have been discovered. The new wave of interest to fluctuations (FL) in superconductors was generated by the discovery of cuprate oxide superconductors (high-temperature superconductors, HTS), where, due to extremely short coherence length and low effective dimensionality of the electron system, superconductive fluctuations manifest themselves in a wide range of temperatures. Moreover, anomalous properties of the normal state of HTS were attributed by many theorists to strong FL in these systems. Being studied in the framework of the phenomenological Ginzburg-Landau theory and, more extensively, in diagrammatic microscopic approach, SC FLs side by side with other quantum corrections (weak localization, etc.) became a new tool for investigation and characterization of such new systems as HTS, disordered electron systems, granular metals, Josephson structures, artificial super-lattices, etc. The characteristic feature of SC FL is their strong dependence on temperature and magnetic fields in the vicinity of phase transition. This allows one to definitely separate the fluctuation effects from other contributions and to use them as the source of information about the microscopic parameters of a material. By their origin, SC FLs are very sensitive to relaxation processes, which break phase coherence. This allows using them for versatile characterization of SC. Today, one can speak about the " fluctuoscopy" of superconductive systems. In review, we present the qualitative picture both of thermodynamic

  7. Enhanced reactive adsorption of hydrogen sulfide on the composites of graphene/graphite oxide with copper (hydr)oxychlorides.

    Science.gov (United States)

    Mabayoje, Oluwaniyi; Seredych, Mykola; Bandosz, Teresa J

    2012-06-27

    Composites of copper (hydr)oxychlorides with graphite oxide or graphene were synthesized and used as adsorbents of hydrogen sulfide at dynamic conditions at ambient temperatures. The materials were extensively characterized before and after adsorption in order to link their performance to the surface features. X-ray diffraction, FTIR, thermal analysis, TEM, SEM/EDX, and adsorption of nitrogen were used. It was found that the composite with graphene has the most favorable surface features enhancing reactive adsorption of hydrogen sulfide. The presence of moisture in the H2S stream has a positive effect on the removal process owing to the dissociation process. H2S is retained on the surface via a direct replacement of OH groups and via acid-base reactions with the copper (hydr)oxide. Highly dispersed reduced copper species on the surface of the composite with graphene enhance activation of oxygen and cause formation of sulfites and sulfates. Higher conductivity of the graphene phase than that of graphite oxide helps in electron transfer in redox reactions.

  8. Interaction between copper oxide wire particles and Duddingtonia flagrans in lambs.

    Science.gov (United States)

    Burke, J M; Miller, J E; Larsen, M; Terrill, T H

    2005-11-25

    An experiment was completed to determine if copper oxide wire particles (COWP) had any effect on the activity of the nematode-trapping fungus Duddingtonia flagrans in growing lambs. COWP has been used recently as a dewormer in small ruminants because of nematode resistance to anthelmintics. D. flagrans has been used to control free-living stages of parasitic nematodes in livestock. Katahdin and Dorper lambs, 4 months of age, were administered no or 4 g COWP (n=24/dose) in early October 2003. Haemonchus contortus was the predominant gastrointestinal parasite during the trial, which was acquired naturally from pasture. Half the lambs from each COWP group were supplemented with corn/soybean meal with or without D. flagrans for 35 days. Fecal egg counts (FEC) and packed cell volume (PCV) were determined weekly between days 0 (day of COWP administration) and 35. Feces from lambs in each treatment group were pooled and three replicates per group were cultured for 14 days at room temperature. Larvae (L3) were identified and counted per gram of feces cultured. Treatment with COWP was effective in decreasing FEC, which remained low compared with FEC from lambs not treated with COWP. This led to an increase in PCV in these lambs (COWP x day, Pcopper on H. contortus, and the additional larval reducing effect exerted by the nematode destroying fungus D. flagrans, the expected result would be a much lower larval challenge on pasture when these two tools are used together in a sustainable control strategy.

  9. A topical antibacterial ointment made of Zn-doped copper oxide nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Deokar, Archana R. [Bar-Ilan University, Department of Chemistry (Israel); Shalom, Yakov [Bar-Ilan University, The Mina and Everard Goodman Faculty of Life Sciences (Israel); Perelshtein, I.; Perkas, N.; Gedanken, A., E-mail: Aharon.Gedanken@biu.ac.il [Bar-Ilan University, Department of Chemistry (Israel); Banin, E., E-mail: ehud.banin@biu.ac.il [Bar-Ilan University, The Mina and Everard Goodman Faculty of Life Sciences (Israel)

    2016-08-15

    A zinc-doped copper oxide nanocomposite (Zn–CuO NC, Cu{sub 0.89}Zn{sub 0.11}O)-based antibacterial ointment was formulated and validated. Morphological examinations yielded spherical nanoparticles varying in size from 3 to 5 nm. The antibiofilm efficacy of the Zn–CuO NC-based ointment was evaluated using a biofilm prevention and disruption model against common wound pathogens, both gram-positive Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis ATCC 12228 (S. aureus and S. epidermidis) and gram-negative Pseudomonas aeruginosa ATCC 27853 (P. aeruginosa). Ointments comprising Zn–CuO NC with different weight percentages demonstrated high antibiofilm activity both in prevention and disruption biofilm models. The highest antibiofilm activity was found against S. epidermidis and S. aureus compared to P. aeruginosa. Zn–CuO NC-based ointment was competing equally with commercial gentamicin ointment for preventing the biofilms of S. epidermidis and S. aureus. Furthermore, interestingly we observed that our formulated ointment demonstrates better biofilm disruption capabilities against P. aeruginosa and S. aureus compared to commercial gentamicin ointment. These results suggest that Zn–CuO NC-based topical antibacterial ointments may provide a valuable solution for treating wound infections.

  10. Beneficial behavior of nitric oxide in copper-treated medicinal plants.

    Science.gov (United States)

    Liu, Shiliang; Yang, Rongjie; Pan, Yuanzhi; Ren, Bo; Chen, Qibing; Li, Xi; Xiong, Xi; Tao, Jianjun; Cheng, Qingsu; Ma, Mingdong

    2016-08-15

    Despite numerous reports implicating nitric oxide (NO) in the environmental-stress responses of plants, the specific metabolic and ionic mechanisms of NO-mediated adaptation to metal stress remain unclear. Here, the impacts of copper (Cu) and NO donor (SNP, 50μM) alone or in combination on the well-known medicinal plant Catharanthus roseus L. were investigated. Our results showed that Cu markedly increased Cu(2+) accumulation, decreased NO production, and disrupted mineral equilibrium and proton pumps, thereby stimulating a burst of ROS; in addition, SNP ameliorates the negative toxicity of Cu, and cPTIO reverses this action. Furthermore, the accumulations of ROS and NO resulted in reciprocal changes. Interestingly, nearly all of the investigated amino acids and the total phenolic content in the roots were promoted by the SNP treatment but were depleted by the Cu+SNP treatment, which is consistent with the self-evident increases in phenylalanine ammonia-lyase activity and total soluble phenol content induced by SNP. Unexpectedly, leaf vincristine and vinblastine as well as the total alkaloid content (ca. 1.5-fold) were decreased by Cu but markedly increased by SNP (+38% and +49% of the control levels). This study provides the first evidence of the beneficial behavior of NO, rather than other compounds, in depleting Cu toxicity by regulating mineral absorption, reestablishing ATPase activities, and stimulating secondary metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. In situ spectroscopic monitoring of CO2 reduction at copper oxide electrode.

    Science.gov (United States)

    Wang, Liying; Gupta, Kalyani; Goodall, Josephine B M; Darr, Jawwad A; Holt, Katherine B

    2017-04-28

    Copper oxide modified electrodes were investigated as a function of applied electrode potential using in situ infrared spectroscopy and ex situ Raman and X-ray photoelectron spectroscopy. In deoxygenated KHCO 3 electrolyte bicarbonate and carbonate species were found to adsorb to the electrode during reduction and the CuO was reduced to Cu(i) or Cu(0) species. Carbonate was incorporated into the structure and the CuO starting material was not regenerated on cycling to positive potentials. In contrast, in CO 2 saturated KHCO 3 solution, surface adsorption of bicarbonate and carbonate was not observed and adsorption of a carbonato-species was observed with in situ infrared spectroscopy. This species is believed to be activated, bent CO 2 . On cycling to negative potentials, larger reduction currents were observed in the presence of CO 2 ; however, less of the charge could be attributed to the reduction of CuO. In the presence of CO 2 CuO underwent reduction to Cu 2 O and potentially Cu, with no incorporation of carbonate. Under these conditions the CuO starting material could be regenerated by cycling to positive potentials.

  12. DNA-hosted copper nanoclusters/graphene oxide based fluorescent biosensor for protein kinase activity detection.

    Science.gov (United States)

    Wang, Mengke; Lin, Zihan; Liu, Qing; Jiang, Shan; Liu, Hua; Su, Xingguang

    2018-07-05

    A novel fluorescent biosensor for protein kinase activity (PKA) detection was designed by applying double-strands DNA-hosted copper nanoclusters (dsDNA-CuNCs) and graphene oxide (GO). One DNA strand of the dsDNA consisted of two domains, one domain can hybridize with another complementary DNA strand to stabilize the fluorescent CuNCs and another domain was adenosine 5'-triphosphate (ATP) aptamer. ATP aptamer of the dsDNA-CuNCs would be spontaneously absorbed onto the GO surface through π-π stacking interactions. Thus GO can efficiently quench the fluorescence (FL) of dsDNA-CuNCs through fluorescence resonance energy transfer (FRET). In the present of ATP, ATP specifically combined with ATP aptamer to form ATP-ATP aptamer binding complexes, which had much less affinity to GO, resulting in the fluorescence recovery of the system. Nevertheless, in the presence of PKA, ATP could be translated into ADP and ADP could not combine with ATP aptamer resulting in the fluorescence quenching of dsDNA-CuNCs again. According to the change of the fluorescence signal, PKA activity could be successfully monitored in the range of 0.1-5.0 U mL -1 with a detection limit (LOD) of 0.039 U mL -1 . Besides, the inhibitory effect of H-89 on PKA activity was studied. The sensor was performed for PKA activity detection in cell lysates with satisfactory results. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. I.C. Engine emission reduction by copper oxide catalytic converter

    Science.gov (United States)

    Venkatesan, S. P.; Shubham Uday, Desai; Karan Hemant, Borana; Rajarshi Kushwanth Goud, Kagita; Lakshmana Kumar, G.; Pavan Kumar, K.

    2017-05-01

    The toxic gases emitted from diesel engines are more than petrol engines. Predicting the use of diesel engines, even more in future, this system is developed and can be used to minimize the harmful gases. Toxic gases include NOX, CO, HC and Smoke which are harmful to the atmosphere as well as to the human beings. The main aim of this work is to fabricate system, where the level of intensity of toxic gases is controlled through chemical reaction to more agreeable level. This system acts itself as an exhaust system; hence there is no needs to fit separate the silencer. The whole assembly is fitted in the exhaust pipe from engine. In this work, catalytic converter with copper oxide as a catalyst, by replacing noble catalysts such as platinum, palladium and rhodium is fabricated and fitted in the engine exhaust. With and without catalytic converter, the experimentations are carried out at different loads such as 0%, 25%, 50%, 75%, and 100% of maximum rated load. From the experimental results it is found that the maximum reduction is 32%, 61% and 21% for HC, NOx and CO respectively at 100% of maximum rated load when compared to that of without catalytic converter. This catalytic converter system is cash effective and more economical than the existing catalytic converter.

  14. Catalytic and recyclability properties of phytogenic copper oxide nanoparticles derived from Aglaia elaeagnoidea flower extract

    Directory of Open Access Journals (Sweden)

    G. Manjari

    2017-07-01

    Full Text Available The phytogenic synthesis method to highly active, recoverable and recyclable heterogeneous copper oxide nanocatalyst and encapsulated within biomaterial that acts as a nontoxic and renewable source of reducing and stabilizing agent. The biosynthesized CuO NPs were characterized using UV–Vis absorption spectroscopy, X-ray diffraction (XRD, field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDX, transmission electron microscopy (TEM and thermo gravimetric analysis-differential scanning calorimetry (TGA–DSC, techniques. The formation of CuO NPs with the size 20–45 nm range is shown in TEM image. Significantly, in aqueous phase CuO NPs have high catalytic activity for the reduction of Congo red (CR, methylene blue (MB and 4-nitrophenol (4-NP in the presence of the sodium borohydride (NaBH4 at room temperature. In addition, CuO NPs catalyst can be easily recovered by centrifugation and reused for 6 cycles with more than 90% conversion efficiency. CuO nanocatalyst, leaching after catalytic application was investigated by ICPAES (Inductively coupled plasma atomic emission spectroscopy. CuO NPs possess great prospects in reduction of pernicious dyes and nitro organic pollutants in water.

  15. Optical and Electrical Properties of Copper Oxide Thin Films Synthesized by Spray Pyrolysis Technique

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2015-08-01

    Full Text Available Copper oxide (CuO thin films have been synthesized on to glass substrates at different temperatures in the range 250-450 °C by spray pyrolysis technique from aqueous solution using cupric acetate Cu(CH3COO2·H2O as a precursor. The structure of the deposited CuO thin films characterized by X-ray diffraction, the surface morphology was observed by a scanning electron microscope, the presence of elements was detected by energy dispersive X-ray analysis, the optical transmission spectra was recorded by ultraviolet-visible spectroscopy and electrical resistivity was studied by Van-der Pauw method. All the CuO thin films, irrespective of growth temperature, showed a monoclinic structure with the main CuO (111 orientation, and the crystallite size was about 8.4784 Å for the thin film synthesized at 350 °C. The optical transmission of the as-deposited film is found to decrease with the increase of substrate temperature, the optical band gap of the thin films varies from 1.90 to 1.60 eV and the room temperature electrical resistivity varies from 30 to18 Ohm·cm for the films grown at different substrate temperatures.

  16. Mechanism of via failure in copper/organosilicate glass interconnects induced by oxidation

    International Nuclear Information System (INIS)

    Min, Woo Sig; Kim, Dong Joon; Pyo, Sung Gyu; Park, Sang Jong; Choi, Jin Tae; Kim, Sibum

    2007-01-01

    Annealing for copper/organosilicate glass (Cu/OSG) dual damascene (DD) structure resulted in via resistance increase when Ta or TaN x film by ionized physical vapor deposition (iPVD) method was used as a barrier metal. The percentage increase in via resistance was higher in smaller vias. In spite of the huge increase of more than 50% in via resistance during annealing, any Cu voids in a single via or via chains of the DD structure were not observed. Instead, large amount of oxygen was detected at the interface between the barrier metal and Cu in the bottom of the vias. It was found that via resistance increase during annealing was caused by oxidation of the barrier metal at the via bottom. Improvement of the step coverage of the barrier metal inhibited the via resistance increase even after the high temperature annealing at 500 deg. C. It means that the oxygen atoms diffused out from the OSG film were blocked by the barrier metal covering the side wall of the vias

  17. A topical antibacterial ointment made of Zn-doped copper oxide nanocomposite

    International Nuclear Information System (INIS)

    Deokar, Archana R.; Shalom, Yakov; Perelshtein, I.; Perkas, N.; Gedanken, A.; Banin, E.

    2016-01-01

    A zinc-doped copper oxide nanocomposite (Zn–CuO NC, Cu_0_._8_9Zn_0_._1_1O)-based antibacterial ointment was formulated and validated. Morphological examinations yielded spherical nanoparticles varying in size from 3 to 5 nm. The antibiofilm efficacy of the Zn–CuO NC-based ointment was evaluated using a biofilm prevention and disruption model against common wound pathogens, both gram-positive Staphylococcus aureus ATCC 25923 and Staphylococcus epidermidis ATCC 12228 (S. aureus and S. epidermidis) and gram-negative Pseudomonas aeruginosa ATCC 27853 (P. aeruginosa). Ointments comprising Zn–CuO NC with different weight percentages demonstrated high antibiofilm activity both in prevention and disruption biofilm models. The highest antibiofilm activity was found against S. epidermidis and S. aureus compared to P. aeruginosa. Zn–CuO NC-based ointment was competing equally with commercial gentamicin ointment for preventing the biofilms of S. epidermidis and S. aureus. Furthermore, interestingly we observed that our formulated ointment demonstrates better biofilm disruption capabilities against P. aeruginosa and S. aureus compared to commercial gentamicin ointment. These results suggest that Zn–CuO NC-based topical antibacterial ointments may provide a valuable solution for treating wound infections.

  18. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  19. Ternary superconductors

    International Nuclear Information System (INIS)

    Giorgi, A.L.

    1987-01-01

    Ternary superconductors constitute a class of superconducting compounds with exceptional properties such as high transition temperatures (≅ 15.2 K), extremely high critical fields (H c2 >60 Tesla), and the coexistence of superconductivity and long-range magnetic order. This has generated great interest in the scientific community and resulted in a large number of experimental and theoretical investigations in which many new ternary compounds have been discovered. A review of some of the properties of these ternary compounds is presented with particular emphasis on the ternary molybdenum chalcogenides and the ternary rare earth transition metal tetraborides. The effect of partial substitution of a second metal atom to form pseudoternary compounds is examined as well as some of the proposed correlations between the superconducting transition temperature and the structural and electronic properties of the ternary superconductors

  20. Superconductor Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gömöry, F [Bratislava, Inst. Elect. Eng. (Slovakia)

    2014-07-01

    Superconductors used in magnet technology could carry extreme currents because of their ability to keep the magnetic flux motionless. The dynamics of the magnetic flux interaction with superconductors is controlled by this property. The cases of electrical transport in a round wire and the magnetization of wires of various shapes (circular, elliptical, plate) in an external magnetic field are analysed. Resistance to the magnetic field penetration means that the field produced by the superconducting magnet is no longer proportional to the supplied current. It also leads to a dissipation of electromagnetic energy. In conductors with unequal transverse dimensions, such as flat cables, the orientation with respect to the magnetic field plays an essential role. A reduction of magnetization currents can be achieved by splitting the core of a superconducting wire into fine filaments; however, new kinds of electrical currents that couple the filaments consequently appear. Basic formulas allowing qualitative analyses of various flux dynamic cases are presented.

  1. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  2. Effectiveness of copper oxide wire particles for Haemonchus contortus control in sheep.

    Science.gov (United States)

    Knox, M R

    2002-04-01

    To assess the efficacy of copper oxide wire particles (COWP) for the control of H contortus infections in grazing sheep. In experiment 1, 40 worm-free Merino hoggets (11 to 12 months of age) were divided into four equal groups and allocated to separate 0.8 ha pasture plots. Two groups then received 2.5 g COWP whereas the other two groups were untreated. From 1 week after COWP treatment all lambs received a weekly infection of 2000 H contortus larvae. At week 8, six sheep from the untreated group were then allocated to two groups and treated with either 2.5 or 5.0 g of COWP to establish therapeutic efficacy of treatment. Experiment 2 followed a similar protocol but was conducted with 40 worm-free Merino lambs (3 to 4 months of age) and no assessment of therapeutic efficacy was made. In experiment 1 no significant difference in faecal worm egg counts was observed between treatments and faecal worm egg counts remained less than 3000 epg in all animals. Total worm counts were reduced by 37% by COWP treatment (P = 0.055). Both 2.5 g and 5.0 g doses of COWP at 8 weeks of infection reduced faecal worm egg counts by > 85% with the higher dose giving an earlier response to treatment. In experiment 2, faecal worm egg counts at 4 and 6 weeks were reduced by more than 90% in the COWP treated lambs and worm numbers were 54% lower after 6 weeks when all remaining untreated lambs had to be treated for haemonchosis. Mean faecal worm egg counts in the COWP lambs remained below 3500 epg and clinical disease did not develop in the majority of lambs before the end of the experiment at 10 weeks. Treatment with COWPs appears to have the potential to reduce establishment and worm fecundity of Haemonchus spp for an extended period and may offer livestock producers a supplementary means of reducing larval contamination of pasture particularly in areas where anthelmintic resistance is a problem and copper supplementation is likely to be beneficial.

  3. Characterization of hafnium oxide resistive memory layers deposited on copper by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.D.; Bishop, S.M. [SUNY College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY 12203 (United States); Leedy, K.D. [Air Force Research Laboratory, 2241 Avionics Circle, Wright Patterson Air Force Base, Dayton, OH 45433 (United States); Cady, N.C., E-mail: ncady@albany.edu [SUNY College of Nanoscale Science and Engineering, 255 Fuller Road, Albany, NY 12203 (United States)

    2014-07-01

    Hafnium oxide-based resistive memory devices have been fabricated on copper bottom electrodes. The HfO{sub x} active layers in these devices were deposited by atomic layer deposition (ALD) at 250 °C with tetrakis(dimethylamido)hafnium(IV) as the metal precursor and an O{sub 2} plasma as the reactant. Depth profiles of the HfO{sub x} by X-ray photoelectron spectroscopy and secondary ion mass spectroscopy revealed a copper concentration on the order of five atomic percent throughout the HfO{sub x} film. In addition to the Cu doped HfO{sub x}, a thin layer (20 nm) of Cu{sub x}O is present at the surface. This surface layer is believed to have formed during the ALD process, and greatly complicates the analysis of the switching mechanism. The resistive memory structures fabricated from the ALD HfO{sub x} exhibited non-polar resistive switching, independent of the top metal electrode (Ni, Pt, Al, Au). Resistive switching current voltage (I–V) curves were analyzed using Schottky emission and ionic hopping models to gain insight into the physical mechanisms underpinning the device behavior. During the forming process it was determined that, at voltages in excess of 2.5 V, an ionic hopping model is in good agreement with the I–V data. The extracted ion hopping distance ∼ 4 Å was within the range of interatomic spacing of HfO{sub 2} during the forming process consistent with ionic motion of Cu{sup 2+} ions. Lastly the on state I–V data was dominated at larger voltages by Schottky emission with an estimated barrier height of ∼ 0.5 eV and a refractive index of 2.59. The consequence of the Schottky emission analysis indicates the on state resistance to be a product of a Pt/Cu{sub 2}O/Cu filament(s)/Cu{sub 2}O/Cu structure. - Highlights: • HfO{sub 2} was grown via atomic layer deposition at 250 and 100 °C on Cu substrates. • A Cu{sub 2}O surface layer and Cu doping were observed in post-deposition of HfO{sub 2}. • Resistive memory devices were fabricated and

  4. Copper induced oxidative stresses, antioxidant responses and phytoremediation potential of Moso bamboo (Phyllostachys pubescens)

    Science.gov (United States)

    Chen, Junren; Shafi, Mohammad; Li, Song; Wang, Ying; Wu, Jiasen; Ye, Zhengqian; Peng, Danli; Yan, Wenbo; Liu, Dan

    2015-09-01

    Moso bamboo is recognized as phytoremediation plant due to production of huge biomass and high tolerance in stressed environment. Hydroponics and pot experiments were conducted to investigate mechanism of copper tolerance and to evaluate copper accumulation capacity of Moso bamboo. In hydroponics experiment there was non significant variation in MDA contents of leaves compared with control. SOD and POD initially indicated enhancing trend with application of 5 μM Cu and then decreased consistently with application of 25 and 100 μM Cu. Application of each additional increment of copper have constantly enhanced proline contents while maximum increase of proline was observed with application of 100 μM copper. In pot experiment chlorophyll and biomass initially showed increasing tendency and decreased gradually with application of each additional increment of Cu. Normal growth of Moso bamboo was observed with application of 100 mg kg-1 copper. However, additional application of 300 or 600 mg kg-1 copper had significantly inhibited growth of Moso bamboo. The concentration of Cu in Moso bamboo has attained the levels of 340, 60, 23 mg kg-1 in roots, stems and leaves respectively. The vacuoles were the main organs which accumulated copper and reduced toxicity of copper as studied by TEM-DEX technology.

  5. Unconventional superconductivity in heavy fermionic and high-Tc superconductors

    International Nuclear Information System (INIS)

    Volovik, G.E.

    1989-01-01

    Splitting of the superconducting transition and glass spectrum in heavy fermion companies and oxide superconductors are discussed. The multicomponent order parameter leads to splitting of transition due to magnetic field, impurities, orthorhombic distortion, etc... Linear specific heat in oxide superconductors may be explained in terms of the Fermi-surface arising in superconducting state if interband is pairing strong enough

  6. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process

    International Nuclear Information System (INIS)

    Xiu Furong; Zhang Fushen

    2009-01-01

    An effective and benign process for copper and lead recovery from waste printed circuit boards (PCBs) was developed. In the process, the PCBs was pre-treated in supercritical water, then subjected to electrokinetic (EK) process. Experimental results showed that supercritical water oxidation (SCWO) process was strong enough to decompose the organic compounds of PCBs, and XRD spectra indicated that copper and lead were oxidized into CuO, Cu 2 O and β-PbO 2 in the process. The optimum SCWO treatment conditions were 60 min, 713 K, 30 MPa, and EK treatment time, constant current density were 11 h, 20 mA cm -2 , respectively. The recovery percentages of copper and lead under optimum SCWO + EK treatment conditions were around 84.2% and 89.4%, respectively. In the optimized EK treatment, 74% of Cu was recovered as a deposit on the cathode with a purity of 97.6%, while Pb was recovered as concentrated solutions in either anode (23.1%) or cathode (66.3%) compartments but little was deposited on the electrodes. It is believed that the process is effective and practical for Cu and Pb recovery from waste electric and electronic equipments.

  7. The anthocyanidin delphinidin mobilizes endogenous copper ions from human lymphocytes leading to oxidative degradation of cellular DNA

    International Nuclear Information System (INIS)

    Hanif, Sarmad; Shamim, Uzma; Ullah, M.F.; Azmi, Asfar S.; Bhat, Showket H.; Hadi, S.M.

    2008-01-01

    Epidemiological and experimental evidence exists to suggest that pomegranate and its juice possess chemopreventive and anticancer properties. The anthocyanidin delphinidin is a major polyphenol present in pomegranates and has been shown to be responsible for these effects. Plant polyphenols are recognized as naturally occurring antioxidants but also catalyze oxidative DNA degradation of cellular DNA either alone or in the presence of transition metal ions such as copper. In this paper we show that similar to various other classes of polyphenols, delphinidin is also capable of causing oxidative degradation of cellular DNA. Lymphocytes were exposed to various concentrations of delphinidin (10, 20, 50 μM) for 1 h and the DNA breakage was assessed using single cell alkaline gel electrophoresis (Comet assay). Inhibition of DNA breakage by several scavengers of reactive oxygen species (ROS) indicated that it is caused by the formation of ROS. Incubation of lymphocytes with neocuproine (a cell membrane permeable Cu(I) chelator) inhibited DNA degradation in intact lymphocytes in a dose dependent manner. Bathocuproine, which is unable to permeate through the cell membrane, did not cause such inhibition. We have further shown that delphinidin is able to degrade DNA in cell nuclei and that such DNA degradation is also inhibited by neocuproine suggesting that nuclear copper is mobilized in this reaction. These results indicate that the generation of ROS possibly occurs through mobilization of endogenous copper ions. The results are in support of our hypothesis that the prooxidant activity of plant polyphenols may be an important mechanism for their anticancer properties

  8. Structure and properties of YBa2Cu3O7-δ superconductor doped with bulk cadmium oxide

    Directory of Open Access Journals (Sweden)

    A Echresh

    2010-09-01

    Full Text Available In this paper, the Y1-xCdxBa2Cu3O7-δ superconductor with x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5 are prepared using the solid state method and the structure, electrical resistance, critical current density and critical temperature of it, have been studied. The results show that these doping do not affect so much on the structure and lattice parameters. The electrical resistance of samples increased with doping. A little amount of doping cadmium improve critical current density such that the sample x=0.1 has a maximum critical current density among the samples. The critical temperature with doping cadmium up to x=0.2 has little fluctuation and its variation can be ignored, but by increasing up to x=0.5 the critical temperature decreases gradually.

  9. Oxidation study on as-bonded intermetallic of copper wire–aluminum bond pad metallization for electronic microchip

    International Nuclear Information System (INIS)

    Joseph Sahaya Anand, T.; Yau, Chua Kok; Huat, Lim Boon

    2012-01-01

    In this work, influence of Copper free air ball (FAB) oxidation towards Intermetallic Compound (IMC) at Copper wire–Aluminum bond pad metallization (Cu/Al) is studied. Samples are synthesized with different Copper FAB oxidation condition by turning Forming Gas supply ON and OFF. Studies are performed using Optical Microscope (OM), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and line-scan Energy Dispersive X-ray (EDX). SEM result shows there is a cross-sectional position offset from center in sample synthesized with Forming Gas OFF. This is due to difficulty of determining the position of cross-section in manual grinding/polishing process and high occurrence rate of golf-clubbed shape of oxidized Copper ball bond. TEM inspection reveals that the Copper ball bond on sample synthesized with Forming Gas OFF is having intermediate oxidation. Besides, the presence of IMC at the bonding interface of Cu/Al for both samples is seen. TEM study shows voids form at the bonding interface of Forming Gas ON sample belongs to unbonded area; while that in Forming Gas OFF sample is due to volume shrinkage of IMC growth. Line-scan EDX shows the phases present in the interfaces of as-bonded samples are Al 4 Cu 9 (∼3 nm) for sample with Forming Gas ON and mixed CuAl and CuAl 2 (∼15 nm) for sample with Forming Gas OFF. Thicker IMC in sample with Forming Gas OFF is due to cross-section is positioned at high stress area that is close to edge of ball bond. Mechanical ball shear test shows that shear strength of sample with Forming Gas OFF is about 19% lower than that of sample with Forming Gas ON. Interface temperature is estimated at 437 °C for as-bonded sample with Forming Gas ON by using empirical parabolic law of volume diffusion. -- Highlights: ► 3 nm Al 4 Cu 9 are found in sample prepared with Forming Gas ON. ► 15 nm mixed CuAl + CuAl 2 are found in sample prepared with Forming Gas OFF. ► Voids are present at the bonding interfaces of both

  10. Oxidation study on as-bonded intermetallic of copper wire-aluminum bond pad metallization for electronic microchip

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Sahaya Anand, T., E-mail: anand@utem.edu.my [Faculty of Manufacturing Engineering, University Technical Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); Yau, Chua Kok [Faculty of Manufacturing Engineering, University Technical Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka (Malaysia); University of Technical Malaysia Supported by Infineon Technology - Malaysia - Sdn. Bhd., Melaka (Malaysia); Huat, Lim Boon [Department of Innovation, Infineon Technology - Malaysia - Sdn. Bhd., FTZ Batu Berendam, 75350 Melaka (Malaysia)

    2012-10-15

    In this work, influence of Copper free air ball (FAB) oxidation towards Intermetallic Compound (IMC) at Copper wire-Aluminum bond pad metallization (Cu/Al) is studied. Samples are synthesized with different Copper FAB oxidation condition by turning Forming Gas supply ON and OFF. Studies are performed using Optical Microscope (OM), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and line-scan Energy Dispersive X-ray (EDX). SEM result shows there is a cross-sectional position offset from center in sample synthesized with Forming Gas OFF. This is due to difficulty of determining the position of cross-section in manual grinding/polishing process and high occurrence rate of golf-clubbed shape of oxidized Copper ball bond. TEM inspection reveals that the Copper ball bond on sample synthesized with Forming Gas OFF is having intermediate oxidation. Besides, the presence of IMC at the bonding interface of Cu/Al for both samples is seen. TEM study shows voids form at the bonding interface of Forming Gas ON sample belongs to unbonded area; while that in Forming Gas OFF sample is due to volume shrinkage of IMC growth. Line-scan EDX shows the phases present in the interfaces of as-bonded samples are Al{sub 4}Cu{sub 9} ({approx}3 nm) for sample with Forming Gas ON and mixed CuAl and CuAl{sub 2} ({approx}15 nm) for sample with Forming Gas OFF. Thicker IMC in sample with Forming Gas OFF is due to cross-section is positioned at high stress area that is close to edge of ball bond. Mechanical ball shear test shows that shear strength of sample with Forming Gas OFF is about 19% lower than that of sample with Forming Gas ON. Interface temperature is estimated at 437 Degree-Sign C for as-bonded sample with Forming Gas ON by using empirical parabolic law of volume diffusion. -- Highlights: Black-Right-Pointing-Pointer 3 nm Al{sub 4}Cu{sub 9} are found in sample prepared with Forming Gas ON. Black-Right-Pointing-Pointer 15 nm mixed CuAl + CuAl{sub 2} are found

  11. Efficacy of copper oxide wire particles against gastrointestinal nematodes in sheep and goats.

    Science.gov (United States)

    Soli, F; Terrill, T H; Shaik, S A; Getz, W R; Miller, J E; Vanguru, M; Burke, J M

    2010-02-26

    Profitable sheep and goat production in the USA is severely limited by gastrointestinal nematode (GIN) parasitism, particularly by Haemonchus contortus. Copper oxide wire particles (COWP) have anti-parasitic properties in the diet of small ruminants, but efficacy of COWP may differ between sheep and goats. In a study with weaned kids (Kiko x Spanish cross, 6 months old) and lambs (Katahdin or Dorper x Blackface crosses, 5 months old), grazing the same pasture area in Central Georgia, 2g of COWP in a gel capsule was given to half the animals of each species, while the other half were given no COWP. Fecal and blood samples were taken weekly to determine GIN fecal egg counts (FEC) and blood packed cell volume (PCV). After COWP treatment, animals were grazed for 4 weeks and then slaughtered, with adult GIN recovered from the abomasum and small intestines for counting and identification to species. For both sheep and goats, COWP treatment reduced EPG (P<0.05), increased PCV (P<0.05), and lowered abomasal GIN numbers (P<0.05). For EPG, these differences were 82.5 and 90.5% for sheep and goats, respectively, 26 days after treatment, while adult H. contortus were 67.2 and 85.8% lower for COWP-treated sheep and goats, respectively. In this study, COWP treatment was equally effective against H. contortus infection in lambs and kids and appears to be an effective method of controlling H. contortus infection for up to 6 weeks in small ruminants following weaning.

  12. Alteration of neurotransmission and skeletogenesis in sea urchin Arbacia lixula embryos exposed to copper oxide nanoparticles.

    Science.gov (United States)

    Cappello, Tiziana; Vitale, Valeria; Oliva, Sabrina; Villari, Valentina; Mauceri, Angela; Fasulo, Salvatore; Maisano, Maria

    2017-09-01

    The extensive use of copper oxide nanoparticles (CuO NPs) in many applications has raised concerns over their toxicity on environment and human health. Herein, the embryotoxicity of CuO NPs was assessed in the black sea urchin Arbacia lixula, an intertidal species commonly present in the Mediterranean. Fertilized eggs were exposed to 0.7, 10 and 20ppb of CuO NPs, until pluteus stage. Interferences with the normal neurotransmission pathways were observed in sea urchin embryos. In detail, evidence of cholinergic and serotoninergic systems affection was revealed by dose-dependent decreased levels of choline and N-acetyl serotonin, respectively, measured by nuclear magnetic resonance (NMR)-based metabolomics, applied for the first time to our knowledge on sea urchin embryos. The metabolic profile also highlighted a significant CuO NP dose-dependent increase of glycine, a component of matrix proteins involved in the biomineralization process, suggesting perturbed skeletogenesis accordingly to skeletal defects in spicule patterning observed previously in the same sea urchin embryos. However, the expression of skeletogenic genes, i.e. SM30 and msp130, did not differ among groups, and therefore altered primary mesenchyme cell (PMC) migration was hypothesized. Other unknown metabolites were detected from the NMR spectra, and their concentrations found to be reflective of the CuO NP exposure levels. Overall, these findings demonstrate the toxic potential of CuO NPs to interfere with neurotransmission and skeletogenesis of sea urchin embryos. The integrated use of embryotoxicity tests and metabolomics represents a highly sensitive and effective tool for assessing the impact of NPs on aquatic biota. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Copper sulfide microspheres wrapped with reduced graphene oxide for high-capacity lithium-ion storage

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yiyong; Li, Kun; Wang, Yunhui; Zeng, Jing; Ji, Panying; Zhao, Jinbao, E-mail: jbzhao@xmu.edu.cn

    2016-11-15

    Highlights: • We prepare the nanocomposites of Cu{sub x}S microspheres wrapped with rGO. • As-prepared Cu{sub x}S/rGO can effectively accommodate large volume changes. • As-prepared Cu{sub x}S/rGO supply a 2D conductive network. • As-prepared Cu{sub x}S/rGO trap the polysulfides generated during the discharge–charge. • The Cu{sub x}S/rGO has high capacity, cycle stability and excellent rate capability. - Abstract: In this study, a facile two-step approach was developed to prepare the nanocomposites (Cu{sub x}S/rGO) of copper sulfide (Cu{sub x}S) microspheres wrapped with reduced graphene oxide (rGO). The morphology and structure of Cu{sub x}S/rGO materials were researched by using SEM, XRD and laser Raman spectroscopy. As-prepared Cu{sub x}S/rGO nanocomposites, as an active anode material in LIBs, showed distinctly improved electrochemical characteristics, superior cycling stability and high rate capability. Due to the synergistic effect between the Cu{sub x}S microspheres and the rGO nanosheets, as-prepared Cu{sub x}S/rGO nanocomposites could effectively alleviate large volume changes, provide a 2D conductive network and trap the diffusion of polysulfides during the discharge–charge processes, therefore, the Cu{sub x}S/rGO nanocomposites showed excellent electrochemical characteristics.

  14. Beneficial behavior of nitric oxide in copper-treated medicinal plants

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shiliang, E-mail: liushiliang9@163.com [College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130 (China); Yang, Rongjie; Pan, Yuanzhi [College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130 (China); Ren, Bo [Institute of Biotechnology & Breeding, Sichuan Academy of Forestry, Chengdu, Sichuan 610081 (China); Chen, Qibing; Li, Xi [College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130 (China); Xiong, Xi [College of Agriculture, Food & Natural Resources, University of Missouri, Columbia, MO 65211 (United States); Tao, Jianjun [College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130 (China); Cheng, Qingsu [Division of Life Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Department of Electrical & Biomedical Engineering, University of Nevada, Reno, NV 89557 (United States); Ma, Mingdong, E-mail: 610245498@qq.com [College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130 (China)

    2016-08-15

    Highlights: • Endogenous NO and ROS accumulation were inversely related. • Selected amino acids in the roots were increased by SNP. • NO induced regulation of phenolic metabolism for protection against Cu toxicity. • SNP improved the vincristine, vinblastine and total alkaloid contents in Cu-treated plants. - Abstract: Despite numerous reports implicating nitric oxide (NO) in the environmental-stress responses of plants, the specific metabolic and ionic mechanisms of NO-mediated adaptation to metal stress remain unclear. Here, the impacts of copper (Cu) and NO donor (SNP, 50 μM) alone or in combination on the well-known medicinal plant Catharanthus roseus L. were investigated. Our results showed that Cu markedly increased Cu{sup 2+} accumulation, decreased NO production, and disrupted mineral equilibrium and proton pumps, thereby stimulating a burst of ROS; in addition, SNP ameliorates the negative toxicity of Cu, and cPTIO reverses this action. Furthermore, the accumulations of ROS and NO resulted in reciprocal changes. Interestingly, nearly all of the investigated amino acids and the total phenolic content in the roots were promoted by the SNP treatment but were depleted by the Cu + SNP treatment, which is consistent with the self-evident increases in phenylalanine ammonia-lyase activity and total soluble phenol content induced by SNP. Unexpectedly, leaf vincristine and vinblastine as well as the total alkaloid content (ca. 1.5-fold) were decreased by Cu but markedly increased by SNP (+38% and +49% of the control levels). This study provides the first evidence of the beneficial behavior of NO, rather than other compounds, in depleting Cu toxicity by regulating mineral absorption, reestablishing ATPase activities, and stimulating secondary metabolites.

  15. High-temperature superconductors learn from heavy fermions

    International Nuclear Information System (INIS)

    Varma, C.

    1998-01-01

    Physicists have been intrigued by the nature of high-temperature superconductors since they were discovered 12 years ago. Superconducting materials lose their electrical resistance below a transition temperature, T c , and certain copper-oxide compounds remain superconducting at temperatures up to 160 K. Research into these materials has been driven by fundamental, yet intractable, questions about the basic concepts of condensed-matter physics and the mechanisms of superconductivity. A key question is how the electrons come together to form the Cooper pairs responsible for superconductivity. Physicists at Cambridge University have now studied two heavy-fermion compounds experimentally, and have found that the electron pairing is caused by magnetic effects (N Mathur et al. 1998 Nature 394 39). In this article the author describes their research. (UK)

  16. Olson sees how they conduct (High Tc superconductors)

    International Nuclear Information System (INIS)

    Olson, C.

    1989-01-01

    Thanks to Cliff Olson's synchrotron radiation measurements of the surface of several of the new high-temperature superconducting materials, these ceramic-like crystals can now be classified as metals. This means their electronic band structure meets the criteria for a metal or conductor, rather than those of an insulator, or of a semiconductor. Working with graduate assistant Liu, Olson has now measured the energy gap in crystals of a bismuth-strontium-calcium-copper oxide with a 100K or 300K transition temperature. They determined that the superconductivity gap is isotropic, or independent of direction within the layer. This is significant, because the high temperature materials are all anisotropic, layered in flat sheets, a fact that had led to speculations about a very different kind of superconducting coupling in these materials. The superconducting mechanism now turns out to be the same as that in classical superconductors

  17. Study of transport properties of copper/zinc-oxide-nanorods-based Schottky diode fabricated on textile fabric

    International Nuclear Information System (INIS)

    Khan, Azam; Hussain, Mushtaque; Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Nur, Omer; Willander, Magnus

    2013-01-01

    In this work, a copper/zinc-oxide (ZnO)-nanorods-based Schottky diode was fabricated on the textile fabric substrate. ZnO nanorods were grown on a silver-coated textile fabric substrate by using the hydrothermal route. Scanning electron microscopy and x-ray diffraction techniques were used for the structural study. The electrical characterization of copper/ZnO-nanorods-based Schottky diodes was investigated by using a semiconductor parameter analyzer and an impedance spectrometer. The current density–voltage (J–V) and capacitance–voltage (C–V) measurements were used to estimate the electrical parameters. The threshold voltage (V th ), ideality factor (η), barrier height (ϕ b ), reverse saturation current density (J s ), carrier concentration (N D ) and built-in potential (V bi ) were determined by using experimental data and (simulated) curve fitting. This study describes the possible fabrication of electronic and optoelectronic devices on textile fabric substrate with an acceptable performance. (paper)

  18. Spherulitic copper–copper oxide nanostructure-based highly sensitive nonenzymatic glucose sensor

    Directory of Open Access Journals (Sweden)

    Das G

    2015-08-01

    Full Text Available Gautam Das, Thao Quynh Ngan Tran, Hyon Hee Yoon Department of Chemical and Biological Engineering, Gachon University, Seongnam, Republic of South Korea Abstract: In this work, three different spherulitic nanostructures Cu–CuOA, Cu–CuOB, and Cu–CuOC were synthesized in water-in-oil microemulsions by varying the surfactant concentration (30 mM, 40 mM, and 50 mM, respectively. The structural and morphological characteristics of the Cu–CuO nanostructures were investigated by ultraviolet–visible (UV–vis spectroscopy, X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy techniques. The synthesized nanostructures were deposited on multiwalled carbon nanotube (MWCNT-modified indium tin oxide (ITO electrodes to fabricate a nonenzymatic highly sensitive amperometric glucose sensor. The performance of the ITO/MWCNT/Cu–CuO electrodes in the glucose assay was examined by cyclic voltammetry and chronoamperometric studies. The sensitivity of the sensor varied with the spherulite type; Cu–CuOA, Cu–CuOB, and Cu–CuOC exhibited a sensitivity of 1,229, 3,012, and 3,642 µA mM-1·cm-2, respectively. Moreover, the linear range is dependent on the structure types: 0.023–0.29 mM, 0.07–0.8 mM, and 0.023–0.34 mM for Cu–CuOA, Cu–CuOB, and Cu–CuOC, respectively. An excellent response time of 3 seconds and a low detection limit of 2 µM were observed for Cu–CuOB at an applied potential of +0.34 V. In addition, this electrode was found to be resistant to interference by common interfering agents such as urea, cystamine, l-ascorbic acid, and creatinine. The high performance of the Cu–CuO spherulites with nanowire-to-nanorod outgrowths was primarily due to the high surface area and stability, and good three-dimensional structure. Furthermore, the ITO/MWCNT/Cu–CuOB electrode applied to real urine and serum sample showed satisfactory performance. Keywords: copper oxide, multiwalled

  19. Forms of adsorption and transition states of oxidation of carbon monoxide by molecular oxygen and dissociation of nitrogen monooxide, catalyzed by monovalent copper

    Science.gov (United States)

    Ermakov, A. I.; Mashutin, V. Y.; Vishnjakov, A. V.

    With the help of the results of semiempirical (parametric method 3) and ab initio (second-order Møller-Plesset [MP2] unrestricted Hartree-Fock [UHF] 6-31G**, unrestricted density functional theory [UDFT] 6-31G** Becke's three-parameter exchange functional and the gradient-corrected functional of Lee, Yang, and Paar [B3LYP] and UDFT LANL2DZ B3LYP) quantum-chemical calculations has been studied the complexation CO and NO with molecular hydroxide of copper(I). The influence of charge defects has been simulated by the calculations of anionic, neutral, and cationic systems. It is shown that CO and NO are mainly coordinated by nonoxygen atom on an atom of copper(I) hydroxide as one- and two-center forms. These forms are suitable for appearance of prereactionary complexes of catalytic oxidation CO by molecular oxygen and decomposition NO into atoms of nitrogen and oxygen. The corresponding prereactionary complexes for systems with participation of copper(II) hydroxide and copper(III) hydroxide are not revealed. The calculations predict inhibiting impact of copper(II) and copper(III) of the observed reactions. Computed stability of complexes CO and NO with copper(I) hydroxide and activation energy of catalytic conversion of monooxides essentially depend on an excessive charge of the system. Introduction of electron-donating additives into copper(I) hydroxide promotes rise of catalytic activity of copper(I) compound.

  20. Investigation of copper(I sulphide leaching in oxidative hydrochloric acid solution

    Directory of Open Access Journals (Sweden)

    Branislav Marković

    2015-12-01

    Full Text Available Present work is focused on the copper (I sulphide leaching with sodium chloride in hydrochloric acid solution and with introduction of gaseous oxygen. Chemical reactions of leaching and their thermodynamic probabilities are predicted based on the literature data and products which were formed during the process and the overall leaching reaction was defined. The influence of temperature and time on the leaching degree of copper was experimentally determined. The quantity of dissolved copper increases with the increase of both investigated parameters. Elemental sulphur was formed as the main leaching product, precipitated at the particle surfaces and chloride ions have a role to disrupt the creation of this passive layer.

  1. Reversing Size-Dependent Trends in the Oxidation of Copper Clusters through Support Effects: Reversing Size-Dependent Trends in the Oxidation of Copper Clusters through Support Effects

    Energy Technology Data Exchange (ETDEWEB)

    Mammen, Nisha [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, -560064 Bangalore India; Spanu, Leonardo [Shell Technology Center, Shell India Markets Private Limited, -560048 Bangalore India; Tyo, Eric C. [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Yang, Bing [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Halder, Avik [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Seifert, Sönke [X-ray Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Pellin, Michael J. [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Vajda, Stefan [Materials Science Division, Argonne National Laboratory, 60439 Argonne IL USA; Institute for Molecular Engineering, The University of Chicago, 60637 Chicago IL USA; Narasimhan, Shobhana [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, -560064 Bangalore India

    2017-12-22

    Having the ability to tune the oxidation state of Cu nanoparticles is essential for their utility as catalysts. The degree of oxidation that maximizes product yield and selectivity is known to vary, depending on the particular reaction. Using first principles calculations and XANES measurements, we show that for subnanometer sizes in the gas phase, smaller Cu clusters are more resistant to oxidation. However, this trend is reversed upon deposition on an alumina support. We are able to explain this result in terms of strong cluster-support interactions, which differ significantly for the oxidized and elemental clusters. The stable cluster phases also feature novel oxygen stoichiometries. Our results suggest that one can tune the degree of oxidation of Cu catalysts by optimizing not just their size, but also the support they are deposited on.

  2. Copper-catalyzed oxidative desulfurization-oxygenation of thiocarbonyl compounds using molecular oxygen: an efficient method for the preparation of oxygen isotopically labeled carbonyl compounds.

    Science.gov (United States)

    Shibahara, Fumitoshi; Suenami, Aiko; Yoshida, Atsunori; Murai, Toshiaki

    2007-06-21

    A novel copper-catalyzed oxidative desulfurization reaction of thiocarbonyl compounds, using molecular oxygen as an oxidant and leading to formation of carbonyl compounds, has been developed, and the utility of the process is demonstrated by its application to the preparation of a carbonyl-18O labeled sialic acid derivative.

  3. Characterization and Catalytic Activity for the Oxidation of Ethane and Propane on Platinum and Copper Supported on CeO2/Al2O3

    Directory of Open Access Journals (Sweden)

    Cataluña R.

    1998-01-01

    Full Text Available Ethane and propane oxidation on platinum and copper supported on Al2O3 and CeO2/Al2O3 catalysts were studied comparatively by examining reaction rates as a function of temperature. Results show that the addition of cerium oxide shifts the catalytic activity to higher temperatures. This negative influence is less pronounced in the case of supported copper samples, which on the basis of EPR and FTIR of adsorbed CO results is attributed to the low relative amount of this metal is in contact with ceria. The decrease in activity the presence of ceria might be due to changes in metal particle size or to the stabilization of the oxidized states of the metals, induced by their interactions with cerium oxide. The higher activity of platinum, in comparison with copper, is attributed to its higher reducibility along with an easier hydrocarbon activation on that metal.

  4. Highly efficient aerobic oxidation of alcohols by using less-hindered nitroxyl-radical/copper catalysis: optimum catalyst combinations and their substrate scope.

    Science.gov (United States)

    Sasano, Yusuke; Kogure, Naoki; Nishiyama, Tomohiro; Nagasawa, Shota; Iwabuchi, Yoshiharu

    2015-04-01

    The oxidation of alcohols into their corresponding carbonyl compounds is one of the most fundamental transformations in organic chemistry. In our recent report, 2-azaadamantane N-oxyl (AZADO)/copper catalysis promoted the highly chemoselective aerobic oxidation of unprotected amino alcohols into amino carbonyl compounds. Herein, we investigated the extension of the promising AZADO/copper-catalyzed aerobic oxidation of alcohols to other types of alcohol. During close optimization of the reaction conditions by using various alcohols, we found that the optimum combination of nitroxyl radical, copper salt, and solution concentration was dependent on the type of substrate. Various alcohols, including highly hindered and heteroatom-rich ones, were efficiently oxidized into their corresponding carbonyl compounds under mild conditions with lower amounts of the catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Localized superconductors

    International Nuclear Information System (INIS)

    Ma, M.; Lee, P.A.

    1985-01-01

    We study the effects of Anderson localization on superconductivity by using a Bardeen-Cooper-Schrieffer (BCS)-type trial wave function which pairs electrons in exact time-reversed eigenstates of the single-particle Hamiltonian. Within this approximation, and neglecting localization effects on the effective Coulomb repulsion and the electron-phonon coupling, we find that superconductivity persists below the mobility edge. In fact, Anderson's theorem is valid in the localized phase as long as rhoΔ 0 L/sup d/ > 1 (rho is the density of states averaged over +- Δ 0 of the Fermi energy, Δ 0 the BCS gap parameter, and L the localization length). Hence the gap order parameter Δ(r) remains uniform in space at the BCS value Δ 0 . The superfluid density and response to electromagnetic perturbations, however, show marked differences from the ''dirty superconductor'' regime. For rhoΔ 0 L/sup d/ < 1, Δ(r) fluctuates spatially and eventually drops to zero. In the limit when states are site localized, the system crosses over into the ''Anderson negative-U glass.'' Considerations beyond the trial wave-function approximation will speed up the destruction of superconductivity. The superconductor formed from localized states has the property that its quasiparticle excitations are also localized. Such excitations can be probed by observing the normal current in a tunneling junction

  6. Neutron irradiation effects in advanced superconductors

    International Nuclear Information System (INIS)

    Yoshida, H.; Kodaka, H.; Miyata, K.; Hayashi, Y.; Atobe, K.

    1988-01-01

    This paper reports the effects of neutron irradiation on superconducting transitions studied by susceptibility and resistivity measurements for A15 type compounds, Laves-phase compounds and oxide superconductors. For A15 superconductors, the transition temperature (T c ) decreased with increasing neutron fluence and showed large drop started at about 5 x 10 18 n/cm 2 (E > 0.1 MeV). Post-irradiation annealing gave recovery of T c , but the behaviors were different for the materials with different composition and microstructure. The Laves-phase compounds showed less degradation than the A15 superconductors. For oxide superconductors very sensitive transition change was observed, including the radiation-induced superconductivity

  7. Excellent Tribological Properties of Lower Reduced Graphene Oxide Content Copper Composite by Using a One-Step Reduction Molecular-Level Mixing Process

    Directory of Open Access Journals (Sweden)

    Haibin Nie

    2018-04-01

    Full Text Available Reduced graphene oxide (RGO composite copper matrix powders were fabricated successfully by using a modified molecular-level mixing (MLM method. Divalent copper ions (Cu2+ were adsorbed in oxygen functional groups of graphene oxide (GO as a precursor, then were reduced simultaneously by one step chemical reduction. RGO showed a distribution converting from a random to a three-dimensional network in the copper matrix when its content increased to above 1.0 wt.% The tribological tests indicated that the friction coefficient of the composite with 1.0 wt.% RGO decreased markedly from 0.6 to 0.07 at an applied load of 10 N, and the wear rate was about one-third of pure copper. The excellent tribological properties were attributed to a three-dimensional and uniform distribution, which contributes to improving toughness and adhesion strength.

  8. Stabilized superconductors

    International Nuclear Information System (INIS)

    Wong, J.

    1975-01-01

    The stable, high field, high current composite wire comprises multiple filaments in a depleted bronze matrix, each filament comprising a type II superconducting, beta-tungsten structure, intermetallic compound layer jacketing and metallurgically bonded to a stabilizing copper core, directly or via an intermediate layer of refractory metal

  9. Effects of vacuum annealing on the optical and electrical properties of p-type copper-oxide thin-film transistors

    International Nuclear Information System (INIS)

    Sohn, Joonsung; Song, Sang-Hun; Kwon, Hyuck-In; Nam, Dong-Woo; Cho, In-Tak; Lee, Jong-Ho; Cho, Eou-Sik

    2013-01-01

    We have investigated the effects of vacuum annealing on the optical and electrical properties of the p-type copper-oxide thin-film transistors (TFTs). The vacuum annealing of the copper-oxide thin-film was performed using the RF magnetron sputter at various temperatures. From the x-ray diffraction and UV-vis spectroscopy, it is demonstrated that the high-temperature vacuum annealing reduces the copper-oxide phase from CuO to Cu 2 O, and increases the optical transmittance in the visible part of the spectrum. The fabricated copper-oxide TFT does not exhibit the switching behavior under low-temperature vacuum annealing conditions. However, as the annealing temperature increases, the drain current begins to be modulated by a gate voltage, and the TFT exhibits a high current on–off ratio over 10 4 as the vacuum annealing temperature increases over 450 °C. These results show that the vacuum annealing process can be an effective method of simultaneously improving the optical and electrical performances in p-type copper-oxide TFTs. (paper)

  10. Modification of Titanium Dioxide Nanoparticles With Copper Oxide Co-Catalyst for Photo catalytic Degradation of 2,4-Dichlorophenoxyacetic Acid

    International Nuclear Information System (INIS)

    Leny Yuliati; Siah, W.R.; Nur Azmina Roslan; Mustaffa Shamsuddin

    2016-01-01

    2,4-dichlorophenoxyacetic acid (2,4-D) is a common herbicide that has been used widely. Due to its excessive usage, the 2,4-D herbicides can cause contamination over agricultural land and water bodies. In the present work, a simple impregnation method was used to modify the commercial titanium dioxide (P25 TiO_2) nanoparticles with the copper oxide. The prepared samples were characterized by X-ray Diffraction (XRD), reflectance UV-visible and fluorescence spectroscopies. It was observed that the incorporation of copper oxide did not significantly affect the crystal structure of P25 TiO_2. On the other hand, the presence of copper oxide was confirmed by reflectance UV-visible and fluorescence spectroscopies. The activity of the prepared sample was evaluated for photo catalytic removal of the 2,4-D. The photo catalytic activity of the TiO_2 increased with the increase of copper oxide loading up to 0.5 mol %. Unfortunately, the higher loading amount of copper oxide resulted in the lower photo catalytic activity. This study suggested that the higher photo catalytic activities obtained on the low loading samples were due to the lower electron-hole recombination. (author)

  11. Heterojunction between the delafossite TCO n-copper indium oxide and p-Si for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Keerthi, K.; Nair, B. G.; Philip, R. R., E-mail: reenatara@rediffmail.com [Thin film research lab, Union Christian College, Aluva, Cochin, Kerala (India); Masuzawa, T.; Saito, I.; Okano, K. [Department Of Material Science, International Christian University (Japan); Johns, N. [Indian Institute of Technology, Bombay (India)

    2016-05-23

    Junction formation of n-copper indium oxide (CIO) (extrinsically undoped) with p-Si leading to conversion of photons in the UV-Vis range is being reported for the first time. I-V and temporal photoconductivity data confirm positively the carrier generation in CIO under irradiation while optical absorbance data furnish its band gap to be ~ 3.1 eV. Ultraviolet photoelectron spectroscopy is used to study the electronic band structure of CIO on Si and to construct a schematic diagram of the hetero-junction to explain the observed photovoltaic phenomena.

  12. High temperature superconducting material: Bismuth strontium calcium copper oxide. (Latest citations from the Aerospace database). Published Search

    International Nuclear Information System (INIS)

    1993-11-01

    The bibliography contains citations concerning the development, fabrication, and analysis of a high temperature superconducting material based on bismuth-strontium-calcium-copper-oxides (Bi-Sr-Ca-Cu-O). Topics include the physical properties, structural and compositional analysis, magnetic field and pressure effects, and noble metal dopings of Bi-Sr-Ca-Cu-O based systems. The highest transition temperature recorded to date for this material was 120 degrees Kelvin. Fabrication methods and properties of Bi-Sr-Ca-Cu-O films and ceramics are also considered. (Contains 250 citations and includes a subject term index and title list.)

  13. Kinetics of the oxidative hydroxylation of tetraphosphorus in the presence of copper(II) chloride modified by humic (fulvo-) acid

    OpenAIRE

    Zhaksyntay Kairbekov; Dina Akbayeva; Zh. Eshova

    2012-01-01

    It was established that in mild conditions (50-70 oC, РО2= 1 atm) white phosphorus effectively is oxidized by oxygen in water-toluene solutions of copper(II) chloride modified by humic (fulvo-) acid to give mainly phosphoric acid. Humic (fulvo-) acid was extracted from brown coal of domestic deposit Kiyakty. For determination of optimum parameters of fulvo-acid extraction the laboratory experiments were carried out using the method of experiment planning. The kinetics, intermediate and final ...

  14. Direct electroplating of copper on tantalum from ionic liquids in high vacuum: origin of the tantalum oxide layer.

    Science.gov (United States)

    Schaltin, Stijn; D'Urzo, Lucia; Zhao, Qiang; Vantomme, André; Plank, Harald; Kothleitner, Gerald; Gspan, Christian; Binnemans, Koen; Fransaer, Jan

    2012-10-21

    In this paper, it is shown that high vacuum conditions are not sufficient to completely remove water and oxygen from the ionic liquid 1-ethyl-3-methylimidazolium chloride. Complete removal of water demands heating above 150 °C under reduced pressure, as proven by Nuclear Reaction Analysis (NRA). Dissolved oxygen gas can only be removed by the use of an oxygen scavenger such as hydroquinone, despite the fact that calculations show that oxygen should be removed completely by the applied vacuum conditions. After applying a strict drying procedure and scavenging of molecular oxygen, it was possible to deposit copper directly on tantalum without the presence of an intervening oxide layer.

  15. Environmental health hazards of e-cigarettes and their components: Oxidants and copper in e-cigarette aerosols.

    Science.gov (United States)

    Lerner, Chad A; Sundar, Isaac K; Watson, Richard M; Elder, Alison; Jones, Ryan; Done, Douglas; Kurtzman, Rachel; Ossip, Deborah J; Robinson, Risa; McIntosh, Scott; Rahman, Irfan

    2015-03-01

    To narrow the gap in our understanding of potential oxidative properties associated with Electronic Nicotine Delivery Systems (ENDS) i.e. e-cigarettes, we employed semi-quantitative methods to detect oxidant reactivity in disposable components of ENDS/e-cigarettes (batteries and cartomizers) using a fluorescein indicator. These components exhibit oxidants/reactive oxygen species reactivity similar to used conventional cigarette filters. Oxidants/reactive oxygen species reactivity in e-cigarette aerosols was also similar to oxidant reactivity in cigarette smoke. A cascade particle impactor allowed sieving of a range of particle size distributions between 0.450 and 2.02 μm in aerosols from an e-cigarette. Copper, being among these particles, is 6.1 times higher per puff than reported previously for conventional cigarette smoke. The detection of a potentially cytotoxic metal as well as oxidants from e-cigarette and its components raises concern regarding the safety of e-cigarettes use and the disposal of e-cigarette waste products into the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Environmental Health Hazards of e-Cigarettes and their Components: Oxidants and Copper in e-cigarette aerosols

    Science.gov (United States)

    Lerner, Chad A.; Sundar, Isaac K.; Watson, Richard M.; Elder, Alison; Jones, Ryan; Done, Douglas; Kurtzman, Rachel; Ossip, Deborah J.; Robinson, Risa; McIntosh, Scott; Rahman, Irfan

    2014-01-01

    To narrow the gap in our understanding of potential oxidative properties associated with Electronic Nicotine Delivery systems (ENDS) i.e. e-cigarettes, we employed semi-quantitative methods to detect oxidant reactivity in disposable components of ENDS/e-cigarettes (batteries and cartomizers) using a fluorescein indicator. These components exhibit oxidants/reactive oxygen species reactivity similar to used conventional cigarette filters. Oxidants/reactive oxygen species reactivity in e-cigarette aerosols was also similar to oxidant reactivity in cigarette smoke. A cascade particle impactor allowed sieving of a range of particle size distributions between 0.450 and 2.02 μm in aerosols from an e-cigarette. Copper, being among these particles, is 6.1 times higher per puff than reported previously for conventional cigarette smoke. The detection of a potentially cytotoxic metal as well as oxidants from e-cigarette and its components raises concern regarding the safety of e-cigarettes use and the disposal of e-cigarette waste products into the environment. PMID:25577651

  17. OXIDATIVE STRESS IN HUMAN THYROID GLAND UNDER IODINE DEFICIENCY NODULAR GOITER: FROM HARMLESSNESS TO HAZARD DEPENDING ON COPPER AND IODINE SUBCELLULAR DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    H. Falfushynska

    2014-12-01

    Conclusions. Excess of copper unbound to metallothionein in goitrous-changed tissue and high level of inorganic iodine could be the reason for elevated DNA fragmentation and increased lysosomal membrane permeability and activation of antioxidant defense. The main criterions of goiter formation were represented by low level of organificated iodine and high level of DNA damage in thyroid gland. KEY WORDS: iodine deficiency nodular colloidal goiter, iodine, copper, metallothioneins, oxidative stress, cytotoxicity

  18. Fragile charge order in the nonsuperconducting ground state of the underdoped high-temperature superconductors.

    Science.gov (United States)

    Tan, B S; Harrison, N; Zhu, Z; Balakirev, F; Ramshaw, B J; Srivastava, A; Sabok-Sayr, S A; Sabok, S A; Dabrowski, B; Lonzarich, G G; Sebastian, Suchitra E

    2015-08-04

    The normal state in the hole underdoped copper oxide superconductors has proven to be a source of mystery for decades. The measurement of a small Fermi surface by quantum oscillations on suppression of superconductivity by high applied magnetic fields, together with complementary spectroscopic measurements in the hole underdoped copper oxide superconductors, point to a nodal electron pocket from charge order in YBa2Cu3(6+δ). Here, we report quantum oscillation measurements in the closely related stoichiometric material YBa2Cu4O8, which reveals similar Fermi surface properties to YBa2Cu3(6+δ), despite the nonobservation of charge order signatures in the same spectroscopic techniques, such as X-ray diffraction, that revealed signatures of charge order in YBa2Cu3(6+δ). Fermi surface reconstruction in YBa2Cu4O8 is suggested to occur from magnetic field enhancement of charge order that is rendered fragile in zero magnetic fields because of its potential unconventional nature and/or its occurrence as a subsidiary to more robust underlying electronic correlations.

  19. Dependency of the band gap of electrodeposited Copper oxide thin films on the concentration of copper sulfate (CuSO4.5H2O) and pH in bath solution for photovoltaic applications

    KAUST Repository

    Islam, Md. Anisul; Nurani, Sheikh Jaber; Karim, Md. Adnan; Rahman, Abu Sadat Md. Sayem; Abdul Halim, Md. Md. Ansar Ali

    2016-01-01

    concentration of CuSO4.5H2O and the optical band gap was determined from their absorption spectrum which was obtained from UV-Vis absorption spectroscopy. It was found that copper oxide films which were deposited at low concentration of CuSO4.5H2O have higher

  20. Growth of high-temperature superconductor crystals from flux

    International Nuclear Information System (INIS)

    Demianets, L.N.; Bykov, A.B.; Melnikov, O.K.; Stishov, S.M.

    1991-01-01

    Crystallization of high-temperature superconductors was studied in La-Sr-Cu-O, Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O systems. Platelet crystals YBa 2 Cu 3 Osub(6.5+x) were obtained by spontaneous crystallization from homogeneous nonstoichiometric melts enriched in barium and copper oxides. Lasub(2-x)Sr x CuO 4 was prepared by slow cooling of melts enriched in copper oxide. Bi 2 (Sr, Ca)sub(n+1)Cu n O y , (n=1;2) was obtained by melting zone travelling. The crystals show transition to superconducting state at T=93K, ΔT 0.2-0.5 K (Y, Ba cuprate), T=87K, ΔT 2K (Bi, Sr, Ca-cuprate). La, Sr-cuprate single crystals obtained by Czochralski method did not show transition to superconducting state. For flux-grown crystals T c was 5-26 K depending on the composition, growth and heat treatment. The short characterization of some accessory phases (Ba 3 Y 2 Cu 3 PtO 10 , Casub(1.75)Srsub(1.5)Cusub(0.75)PtO 6 , BaCuO 2 , Ba 41 Cu 44 O 84 Cl 2 ) is reported. (author). 15 ref s., 8 figs