WorldWideScience

Sample records for copper nitrides

  1. Method to grow group III-nitrides on copper using passivation layers

    Science.gov (United States)

    Li, Qiming; Wang, George T; Figiel, Jeffrey T

    2014-06-03

    Group III-nitride epilayers can be grown directly on copper substrates using intermediate passivation layers. For example, single crystalline c-plane GaN can be grown on Cu (110) substrates with MOCVD. The growth relies on a low temperature AlN passivation layer to isolate any alloying reaction between Ga and Cu.

  2. Ab initio calculations of non-stoichiometric copper nitride, pure and with palladium

    International Nuclear Information System (INIS)

    Moreno-Armenta, Maria G.; Soto, Gerardo; Takeuchi, Noboru

    2011-01-01

    Research highlights: → The most stable arrangement corresponds to the Cu 3 N-anti ReO 3 structure. → Formation energy of Cu 32 Vac 0 N 8 and Cu 24 Pd 8 Vac 0 N 8 are very similar. → The biggest volume in the compound is Cu 31 Pd 1 Vac 0 N 8/ . → Small amount introduction of extra metal atoms in copper nitride is possible. - Abstract: We present first principles calculations of copper nitride by using periodic density functional theory within a plane-wave ultrasoft pseudopotential scheme. The insertions of extra Cu and/or Pd atoms in the empty sites, vacancy reorganization, and substitution of Cu by Pd atoms were studied. We have used an equivalent reduced-symmetry 2 x 2 x 2 Cu 3 N-like cubic super-cell. Small Cu and/or Pd concentrations and vacancy rearrangements in the copper sub-lattice were conveniently calculated in these low-symmetry cells. We cover probable situations like: the occupation of the initially empty copper sites by (1) copper atoms, and by (2) palladium; (3) the relocation of vacancies in the copper sub-lattice; and (4) the substitution of small quantities of copper by palladium atoms in the copper sub-lattice. The equilibrium volumes and energies after relaxing the atomic positions are compared to those of intrinsic copper nitride. We found that the most stable arrangement corresponds to the ideal stoichiometric Cu 3 N. We also found that any deviation from this ideal configuration shift the semiconductor state to a metallic or semi-metallic one.

  3. Sputter deposition of tantalum-nitride films on copper using an rf-plasma

    International Nuclear Information System (INIS)

    Walter, K.C.; Fetherston, R.P.; Sridharan, K.; Chen, A.; Shamim, M.M.; Conrad, J.R.

    1994-01-01

    A tantalum-nitride film was successfully deposited at ambient temperature on copper with a modified ion-assisted-deposition (IAD) technique. The process uses an argon and nitrogen plasma to sputter deposit from a tantalum rf-cathode and ion implant the deposited film simultaneously. Both argon and nitrogen ions are used for sputtering and ion implantation. Auger spectroscopy and x-ray diffraction were used to characterize the resulting film

  4. Real-time oxide evolution of copper protected by graphene and boron nitride barriers

    DEFF Research Database (Denmark)

    Galbiati, Miriam; Stoot, Adam Carsten; Mackenzie, David

    2017-01-01

    and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real......-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.......Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion...

  5. Real-time oxide evolution of copper protected by graphene and boron nitride barriers.

    Science.gov (United States)

    Galbiati, M; Stoot, A C; Mackenzie, D M A; Bøggild, P; Camilli, L

    2017-01-09

    Applying protective or barrier layers to isolate a target item from the environment is a common approach to prevent or delay its degradation. The impermeability of two-dimensional materials such as graphene and hexagonal boron nitride (hBN) has generated a great deal of interest in corrosion and material science. Owing to their different electronic properties (graphene is a semimetal, whereas hBN is a wide-bandgap insulator), their protection behaviour is distinctly different. Here we investigate the performance of graphene and hBN as barrier coatings applied on copper substrates through a real-time study in two different oxidative conditions. Our findings show that the evolution of the copper oxidation is remarkably different for the two coating materials.

  6. Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gallardo-Vega, C.; Cruz, W. de la

    2006-01-01

    Copper nitride thin films were prepared on glass and silicon substrates by ablating a copper target at different pressure of nitrogen. The films were characterized in situ by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and ex situ by X-ray diffraction (XRD). The nitrogen content in the samples, x = [N]/[Cu], changed between 0 and 0.33 for a corresponding variation in nitrogen pressure of 9 x 10 -2 to 1.3 x 10 -1 Torr. Using this methodology, it is possible to achieve sub-, over- and stoichiometric films by controlling the nitrogen pressure. The XPS results show that is possible to obtain copper nitride with x = 0.33 (Cu 3 N) and x = 0.25 (Cu 4 N) when the nitrogen pressure is 1.3 x 10 -1 and 5 x 10 -2 Torr, respectively. The lattice constants obtained from XRD results for copper nitride with x = 0.25 is of 3.850 A and with x = 0.33 have values between 3.810 and 3.830 A. The electrical properties of the films were studied as a function of the lattice constant. These results show that the electrical resistivity increases when the lattice parameter is decreasing. The electrical resistivity of copper nitride with x = 0.25 was smaller than samples with x = 0.33

  7. Study of the structure and electrical properties of the copper nitride thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo-Vega, C. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Km. 107 Carretera Tijuana-Ensenada, A. Postal 2732, 22860, Ensenada B.C. (Mexico)]. E-mail: gallardo@ccmc.unam.mx; Cruz, W. de la [Centro de Ciencias de la Materia Condensada, UNAM, Km. 107 Carretera Tijuana-Ensenada, A. Postal 2681, 22860, Ensenada B.C. (Mexico)

    2006-09-15

    Copper nitride thin films were prepared on glass and silicon substrates by ablating a copper target at different pressure of nitrogen. The films were characterized in situ by X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and ex situ by X-ray diffraction (XRD). The nitrogen content in the samples, x = [N]/[Cu], changed between 0 and 0.33 for a corresponding variation in nitrogen pressure of 9 x 10{sup -2} to 1.3 x 10{sup -1} Torr. Using this methodology, it is possible to achieve sub-, over- and stoichiometric films by controlling the nitrogen pressure. The XPS results show that is possible to obtain copper nitride with x = 0.33 (Cu{sub 3}N) and x = 0.25 (Cu{sub 4}N) when the nitrogen pressure is 1.3 x 10{sup -1} and 5 x 10{sup -2} Torr, respectively. The lattice constants obtained from XRD results for copper nitride with x = 0.25 is of 3.850 A and with x = 0.33 have values between 3.810 and 3.830 A. The electrical properties of the films were studied as a function of the lattice constant. These results show that the electrical resistivity increases when the lattice parameter is decreasing. The electrical resistivity of copper nitride with x = 0.25 was smaller than samples with x = 0.33.

  8. Morphology and thermal stability of Ti-doped copper nitride films

    International Nuclear Information System (INIS)

    Fan Xiaoyan; Wu Zhiguo; Li Huajun; Geng Baisong; Li Chun; Yan Pengxun

    2007-01-01

    A weakly Ti-doped copper nitride (Cu 3 N) film was prepared by cylindrical magnetron sputtering. The XPS results indicate that Ti atoms do not substitute for the Cu atoms but probably locate at the grain boundaries. The columnar grains size is about half of that of the undoped Cu 3 N film and the surface is smoother. For weakly Ti-doped Cu 3 N films, a dense layer appears on top of the columnar crystals. The RMS of the Cu film formed by annealing of the weakly Ti-doped Cu 3 N film is more than twice larger than that of the film before annealing. Compared with the undoped Cu 3 N film, it possesses fine thermal stability both in vacuum and in atmosphere

  9. Synthesis of nanoscale copper nitride thin film and modification of the surface under high electronic excitation.

    Science.gov (United States)

    Ghosh, S; Tripathi, A; Ganesan, V; Avasthi, D K

    2008-05-01

    Nanoscale (approximately 90 nm) Copper nitride (Cu3N) films are deposited on borosilicate glass and Si substrates by RF sputtering technique in the reactive environment of nitrogen gas. These films are irradiated with 200 MeV Au15+ ions from Pelletron accelerator in order to modify the surface by high electronic energy deposition of heavy ions. Due to irradiation (i) at incident ion fluence of 1 x 10(12) ions/cm2 enhancement of grains, (ii) at 5 x 10912) ions/cm2 mass transport on the films surface, (iii) at 2 x 10(13) ions/cm2 line-like features on Cu3N/glass and nanometallic structures on Cu3N/Si surface are observed. The surface morphology is examined by atomic force microscope (AFM). All results are explained on the basis of a thermal spike model of ion-solid interaction.

  10. Micromachining and dicing of sapphire, gallium nitride and micro LED devices with UV copper vapour laser

    International Nuclear Information System (INIS)

    Gu, E.; Jeon, C.W.; Choi, H.W.; Rice, G.; Dawson, M.D.; Illy, E.K.; Knowles, M.R.H.

    2004-01-01

    Gallium nitride (GaN) and sapphire are important materials for fabricating photonic devices such as high brightness light emitting diodes (LEDs). These materials are strongly resistant to wet chemical etching and also, low etch rates restrict the use of dry etching. Thus, to develop alternative high resolution processing and machining techniques for these materials is important in fabricating novel photonic devices. In this work, a repetitively pulsed UV copper vapour laser (255 nm) has been used to machine and dice sapphire, GaN and micro LED devices. Machining parameters were optimised so as to achieve controllable machining and high resolution. For sapphire, well-defined grooves 30 μm wide and 430 μm deep were machined. For GaN, precision features such as holes on a tens of micron length scale have been fabricated. By using this technique, compact micro LED chips with a die spacing 100 and a 430 μm thick sapphire substrate have been successfully diced. Measurements show that the performances of LED devices are not influenced by the UV laser machining. Our results demonstrate that the pulsed UV copper vapour laser is a powerful tool for micromachining and dicing of photonic materials and devices

  11. Electronic structure of copper nitrides as a function of nitrogen content

    International Nuclear Information System (INIS)

    Gordillo, N.; Gonzalez-Arrabal, R.; Diaz-Chao, P.; Ares, J.R.; Ferrer, I.J.; Yndurain, F.; Agulló-López, F.

    2013-01-01

    The nitrogen content dependence of the electronic properties for copper nitride thin films with an atomic percentage of nitrogen ranging from 26 ± 2 to 33 ± 2 have been studied by means of optical (spectroscopic ellipsometry), thermoelectric (Seebeck), and electrical resistivity measurements. The optical spectra are consistent with direct optical transitions corresponding to the stoichiometric semiconductor Cu 3 N plus a free-carrier contribution, essentially independent of temperature, which can be tuned in accordance with the N-excess. Deviation of the N content from stoichiometry drives to significant decreases from − 5 to − 50 μV/K in the Seebeck coefficient and to large enhancements, from 10 −3 up to 10 Ω cm, in the electrical resistivity. Band structure and density of states calculations have been carried out on the basis of the density functional theory to account for the experimental results. - Highlights: ► Electronic structure of N-rich Cu 3 N ► Stoichiometric films behave as an intrinsic semiconductor. ► N excess drives to the introduction of a narrow band at the Fermi level. ► Decrease of the Seebeck coefficient when increasing nitrogen content ► Increase of the electrical resistivity when increasing nitrogen content

  12. Understanding and control of bipolar self-doping in copper nitride

    Science.gov (United States)

    Fioretti, Angela N.; Schwartz, Craig P.; Vinson, John; Nordlund, Dennis; Prendergast, David; Tamboli, Adele C.; Caskey, Christopher M.; Tuomisto, Filip; Linez, Florence; Christensen, Steven T.; Toberer, Eric S.; Lany, Stephan; Zakutayev, Andriy

    2016-05-01

    Semiconductor materials that can be doped both n-type and p-type are desirable for diode-based applications and transistor technology. Copper nitride (Cu3N) is a metastable semiconductor with a solar-relevant bandgap that has been reported to exhibit bipolar doping behavior. However, deeper understanding and better control of the mechanism behind this behavior in Cu3N is currently lacking in the literature. In this work, we use combinatorial growth with a temperature gradient to demonstrate both conduction types of phase-pure, sputter-deposited Cu3N thin films. Room temperature Hall effect and Seebeck effect measurements show n-type Cu3N with 1017 electrons/cm3 for low growth temperature (≈35 °C) and p-type with 1015 holes/cm3-1016 holes/cm3 for elevated growth temperatures (50 °C-120 °C). Mobility for both types of Cu3N was ≈0.1 cm2/Vs-1 cm2/Vs. Additionally, temperature-dependent Hall effect measurements indicate that ionized defects are an important scattering mechanism in p-type films. By combining X-ray absorption spectroscopy and first-principles defect theory, we determined that VCu defects form preferentially in p-type Cu3N, while Cui defects form preferentially in n-type Cu3N, suggesting that Cu3N is a compensated semiconductor with conductivity type resulting from a balance between donor and acceptor defects. Based on these theoretical and experimental results, we propose a kinetic defect formation mechanism for bipolar doping in Cu3N that is also supported by positron annihilation experiments. Overall, the results of this work highlight the importance of kinetic processes in the defect physics of metastable materials and provide a framework that can be applied when considering the properties of such materials in general.

  13. Surface Modification of C17200 Copper-Beryllium Alloy by Plasma Nitriding of Cu-Ti Gradient Film

    Science.gov (United States)

    Zhu, Y. D.; Yan, M. F.; Zhang, Y. X.; Zhang, C. S.

    2018-03-01

    In the present work, a copper-titanium film of gradient composition was firstly fabricated by the dual magnetron sputtering through power control and plasma nitriding of the film was then conducted to modify C17200 Cu alloy. The results showed that the prepared gradient Cu-Ti film by magnetron sputtering was amorphous. After plasma nitriding at 650 °C, crystalline Cu-Ti intermetallics appeared in the multi-phase coating, including CuTi2, Cu3Ti, Cu3Ti2 and CuTi. Moreover, even though the plasma nitriding duration of the gradient Cu-Ti film was only 0.5 h, the mechanical properties of the modified Cu surface were obviously improved, with the surface hardness enhanced to be 417 HV0.01, the wear rate to be 0.32 × 10-14 m3/Nm and the friction coefficient to be 0.075 at the load of 10 N, which are all more excellent than the C17200 Cu alloy. In addition, the wear mechanism also changed from adhesion wear for C17200 Cu substrate to abrasive wear for the modified surface.

  14. Understanding and control of bipolar self-doping in copper nitride

    International Nuclear Information System (INIS)

    Fioretti, Angela N.; Tamboli, Adele C.; Caskey, Christopher M.; Toberer, Eric S.; Schwartz, Craig P.; Nordlund, Dennis; Vinson, John; Prendergast, David; Tuomisto, Filip; Linez, Florence; Christensen, Steven T.; Lany, Stephan; Zakutayev, Andriy

    2016-01-01

    Semiconductor materials that can be doped both n-type and p-type are desirable for diode-based applications and transistor technology. Copper nitride (Cu_3N) is a metastable semiconductor with a solar-relevant bandgap that has been reported to exhibit bipolar doping behavior. However, deeper understanding and better control of the mechanism behind this behavior in Cu_3N is currently lacking in the literature. In this work, we use combinatorial growth with a temperature gradient to demonstrate both conduction types of phase-pure, sputter-deposited Cu_3N thin films. Room temperature Hall effect and Seebeck effect measurements show n-type Cu_3N with 10"1"7 electrons/cm"3 for low growth temperature (≈35 °C) and p-type with 10"1"5 holes/cm"3–10"1"6 holes/cm"3 for elevated growth temperatures (50 °C–120 °C). Mobility for both types of Cu_3N was ≈0.1 cm"2/Vs–1 cm"2/Vs. Additionally, temperature-dependent Hall effect measurements indicate that ionized defects are an important scattering mechanism in p-type films. By combining X-ray absorption spectroscopy and first-principles defect theory, we determined that V_C_u defects form preferentially in p-type Cu_3N, while Cu_i defects form preferentially in n-type Cu_3N, suggesting that Cu_3N is a compensated semiconductor with conductivity type resulting from a balance between donor and acceptor defects. Based on these theoretical and experimental results, we propose a kinetic defect formation mechanism for bipolar doping in Cu_3N that is also supported by positron annihilation experiments. Overall, the results of this work highlight the importance of kinetic processes in the defect physics of metastable materials and provide a framework that can be applied when considering the properties of such materials in general.

  15. Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Rampelberg, Geert; Devloo-Casier, Kilian; Deduytsche, Davy; Detavernier, Christophe [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000 Ghent (Belgium); Schaekers, Marc [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Blasco, Nicolas [Air Liquide Electronics US, L.P., 46401 Landing Parkway, Fremont, California 94538 (United States)

    2013-03-18

    Thin vanadium nitride (VN) layers were grown by atomic layer deposition using tetrakis(ethylmethylamino)vanadium and NH{sub 3} plasma at deposition temperatures between 70 Degree-Sign C and 150 Degree-Sign C on silicon substrates and polymer foil. X-ray photoelectron spectroscopy revealed a composition close to stoichiometric VN, while x-ray diffraction showed the {delta}-VN crystal structure. The resistivity was as low as 200 {mu}{Omega} cm for the as deposited films and further reduced to 143 {mu}{Omega} cm and 93 {mu}{Omega} cm by annealing in N{sub 2} and H{sub 2}/He/N{sub 2}, respectively. A 5 nm VN layer proved to be effective as a diffusion barrier for copper up to a temperature of 720 Degree-Sign C.

  16. Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin; Duan, Ting; Sui, Yanhui; Meng, Changgong; Han, Yu

    2014-01-01

    We addressed the electronic structure of Cu atoms embedded in hexagonal boron nitride (h-BN) and their catalytic role in CO oxidation by first-principles-based calculations. We showed that Cu atoms prefer to bind directly with the localized defects

  17. Copper atoms embedded in hexagonal boron nitride as potential catalysts for CO oxidation: A first-principles investigation

    KAUST Repository

    Liu, Xin

    2014-01-01

    We addressed the electronic structure of Cu atoms embedded in hexagonal boron nitride (h-BN) and their catalytic role in CO oxidation by first-principles-based calculations. We showed that Cu atoms prefer to bind directly with the localized defects on h-BN, which act as strong trapping sites for Cu atoms and inhibit their clustering. The strong binding of Cu atoms at boron vacancy also up-shifts the energy level of Cu-d states to the Fermi level and promotes the formation of peroxide-like intermediate. CO oxidation over Cu atoms embedded in h-BN would proceed through the Langmuir-Hinshelwood mechanism with the formation of a peroxide-like complex by reaction of coadsorbed CO and O2, with the dissociation of which the a CO2 molecule and an adsorbed O atom are formed. Then, the embedded Cu atom is regenerated by the reaction of another gaseous CO with the remnant O atom. The calculated energy barriers for the formation and dissociation of peroxide complex and regeneration of embedded Cu atoms are as low as 0.26, 0.11 and 0.03 eV, respectively, indicating the potential high catalytic performance of Cu atoms embedded in h-BN for low temperature CO oxidation. © the Partner Organisations 2014.

  18. Enhancing the wettability of high aspect-ratio through-silicon vias lined with LPCVD silicon nitride or PE-ALD titanium nitride for void-free bottom-up copper electroplating

    NARCIS (Netherlands)

    Saadaoui, M.; Zeijl, H. van; Wien, W.H.A.; Pham, H.T.M.; Kwakernaak, C.; Knoops, H.C.M.; Erwin Kessels, W.M.M.; Sanden, R.M.C.M. van de; Voogt, F.C.; Roozeboom, F.; Sarro, P.M.

    2011-01-01

    One of the critical steps toward producing void-free and uniform bottom-up copper electroplating in high aspect-ratio (AR) through-silicon vias (TSVs) is the ability of the copper electrolyte to spontaneously flow through the entire depth of the via. This can be accomplished by reducing the

  19. Enhancing the Wettability of High Aspect-Ratio Through-Silicon Vias Lined with LPCVD Silicon Nitride or PE-ALD Titanium Nitride for Void-Free Bottom-Up Copper Electroplating

    NARCIS (Netherlands)

    Saadaoui, M.; van Zeijl, H.; Wien, W. H. A.; Pham, H. T. M.; Kwakernaak, C.; Knoops, H. C. M.; Kessels, W. M. M.; R. van de Sanden,; Voogt, F. C.; Roozeboom, F.; Sarro, P. M.

    2011-01-01

    One of the critical steps toward producing void-free and uniform bottom-up copper electroplating in high aspect-ratio (AR) through-silicon vias (TSVs) is the ability of the copper electrolyte to spontaneously flow through the entire depth of the via. This can be accomplished by reducing the

  20. Separation of zirconium--hafnium by nitride precipitation

    International Nuclear Information System (INIS)

    Anderson, R.N.; Parlee, N.A.

    1977-01-01

    A method is described for the separation of a light reactive metal (e.g., zirconium) from a heavy reactive metal (e.g., hafnium) by forming insoluble nitrides of the metals in a molten metal solvent (e.g., copper) inert to nitrogen and having a suitable density for the light metal nitride to form a separate phase in the upper portion of the solvent and for the heavy metal nitride to form a separate phase in the lower portion of the solvent. Nitriding is performed by maintaining a nitrogen-containing atmosphere over the bath. The light and heavy metals may be an oxide mixture and carbothermically reduced to metal form in the same bath used for nitriding. The nitrides are then separately removed and decomposed to form the desired separate metals. 16 claims, 1 figure

  1. Plasma nitriding of steels

    CERN Document Server

    Aghajani, Hossein

    2017-01-01

    This book focuses on the effect of plasma nitriding on the properties of steels. Parameters of different grades of steels are considered, such as structural and constructional steels, stainless steels and tools steels. The reader will find within the text an introduction to nitriding treatment, the basis of plasma and its roll in nitriding. The authors also address the advantages and disadvantages of plasma nitriding in comparison with other nitriding methods. .

  2. Electrochemical studies of Copper, Tantalum and Tantalum Nitride surfaces in aqueous solutions for applications in chemical-mechanical and electrochemical-mechanical planarization

    Science.gov (United States)

    Sulyma, Christopher Michael

    This report will investigate fundamental properties of materials involved in integrated circuit (IC) manufacturing. Individual materials (one at a time) are studied in different electrochemical environmental solutions to better understand the kinetics associated with the polishing process. Each system tries to simulate a real CMP environment in order to compare our findings with what is currently used in industry. To accomplish this, a variety of techniques are used. The voltage pulse modulation technique is useful for electrochemical processing of metal and alloy surfaces by utilizing faradaic reactions like electrodeposition and electrodissolution. A theoretical framework is presented in chapter 4 to facilitate quantitative analysis of experimental data (current transients) obtained in this approach. A typical application of this analysis is demonstrated for an experimental system involving electrochemical removal of copper surface layers, a relatively new process for abrasive-free electrochemical mechanical planarization of copper lines used in the fabrication of integrated circuits. Voltage pulse modulated electrodissolution of Cu in the absence of mechanical polishing is activated in an acidic solution of oxalic acid and hydrogen peroxide. The current generated by each applied voltage step shows a sharp spike, followed by a double-exponential decay, and eventually attains the rectangular shape of the potential pulses. For the second system in chapter 5, open-circuit potential measurements, cyclic voltammetry and Fourier transform impedance spectroscopy have been used to study pH dependent surface reactions of Cu and Ta rotating disc electrodes (RDEs) in aqueous solutions of succinic acid (SA, a complexing agent), hydrogen peroxide (an oxidizer), and ammonium dodecyl sulfate (ADS, a corrosion inhibitor for Cu). The surface chemistries of these systems are relevant for the development of a single-slurry approach to chemical mechanical planarization (CMP) of Cu

  3. Preparation of uranium nitride

    International Nuclear Information System (INIS)

    Potter, R.A.; Tennery, V.J.

    1976-01-01

    A process is described for preparing actinide-nitrides from massive actinide metal which is suitable for sintering into low density fuel shapes by partially hydriding the massive metal and simultaneously dehydriding and nitriding the dehydrided portion. The process is repeated until all of the massive metal is converted to a nitride

  4. Electrochemical properties of lanthanum nitride with calcium nitride additions

    International Nuclear Information System (INIS)

    Lesunova, R.P.; Fishman, L.S.

    1986-01-01

    This paper reports on the electrochemical properties of lanthanum nitride with calcium nitride added. The lanthanum nitride was obtained by nitriding metallic lanthanum at 870 K in an ammonia stream. The product contained Cl, Pr, Nd, Sm, Fe, Ca, Cu, Mo, Mg, Al, Si, and Be. The calcium nitride was obtained by nitriding metallic calcium in a nitrogen stream. The conductivity on the LaN/C 3 N 2 system components are shown as a function of temperature. A table shows the solid solutions to be virtually electronic conductors and the lanthanum nitride a mixed conductor

  5. Superconducting structure with layers of niobium nitride and aluminum nitride

    International Nuclear Information System (INIS)

    Murduck, J.M.; Lepetre, Y.J.; Schuller, I.K.; Ketterson, J.B.

    1989-01-01

    A superconducting structure is formed by depositing alternate layers of aluminum nitride and niobium nitride on a substrate. Deposition methods include dc magnetron reactive sputtering, rf magnetron reactive sputtering, thin-film diffusion, chemical vapor deposition, and ion-beam deposition. Structures have been built with layers of niobium nitride and aluminum nitride having thicknesses in a range of 20 to 350 Angstroms. Best results have been achieved with films of niobium nitride deposited to a thickness of approximately 70 Angstroms and aluminum nitride deposited to a thickness of approximately 20 Angstroms. Such films of niobium nitride separated by a single layer of aluminum nitride are useful in forming Josephson junctions. Structures of 30 or more alternating layers of niobium nitride and aluminum nitride are useful when deposited on fixed substrates or flexible strips to form bulk superconductors for carrying electric current. They are also adaptable as voltage-controlled microwave energy sources. 8 figs

  6. Ion nitriding of aluminium

    International Nuclear Information System (INIS)

    Fitz, T.

    2002-09-01

    The present study is devoted to the investigation of the mechanism of aluminium nitriding by a technique that employs implantation of low-energy nitrogen ions and diffusional transport of atoms. The nitriding of aluminium is investigated, because this is a method for surface modification of aluminium and has a potential for application in a broad spectrum of fields such as automobile, marine, aviation, space technologies, etc. However, at present nitriding of aluminium does not find any large scale industrial application, due to problems in the formation of stoichiometric aluminium nitride layers with a sufficient thickness and good quality. For the purposes of this study, ion nitriding is chosen, as an ion beam method with the advantage of good and independent control over the process parameters, which thus can be related uniquely to the physical properties of the resulting layers. Moreover, ion nitriding has a close similarity to plasma nitriding and plasma immersion ion implantation, which are methods with a potential for industrial application. (orig.)

  7. Metal Nitrides for Plasmonic Applications

    DEFF Research Database (Denmark)

    Naik, Gururaj V.; Schroeder, Jeremy; Guler, Urcan

    2012-01-01

    Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications.......Metal nitrides as alternatives to metals such as gold could offer many advantages when used as plasmonic material. We show that transition metal nitrides can replace metals providing equally good optical performance for many plasmonic applications....

  8. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    Takano, Masahide; Itoh, Akinori; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  9. Silicon nitride nanosieve membrane

    NARCIS (Netherlands)

    Tong, D.H.; Jansen, Henricus V.; Gadgil, V.J.; Bostan, C.G.; Berenschot, Johan W.; van Rijn, C.J.M.; Elwenspoek, Michael Curt

    2004-01-01

    An array of very uniform cylindrical nanopores with a pore diameter as small as 25 nm has been fabricated in an ultrathin micromachined silicon nitride membrane using focused ion beam (FIB) etching. The pore size of this nanosieve membrane was further reduced to below 10 nm by coating it with

  10. Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides.

    Science.gov (United States)

    Wang, Zixing; Kochat, Vidya; Pandey, Prafull; Kashyap, Sanjay; Chattopadhyay, Soham; Samanta, Atanu; Sarkar, Suman; Manimunda, Praveena; Zhang, Xiang; Asif, Syed; Singh, Abhisek K; Chattopadhyay, Kamanio; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-08-01

    Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C 2 H 2 , B powder, and NH 3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Copper hypersensitivity

    DEFF Research Database (Denmark)

    Fage, Simon W; Faurschou, Annesofie; Thyssen, Jacob P

    2014-01-01

    hypersensitivity, a database search of PubMed was performed with the following terms: copper, dermatitis, allergic contact dermatitis, contact hypersensitivity, contact sensitization, contact allergy, patch test, dental, IUD, epidemiology, clinical, and experimental. Human exposure to copper is relatively common...

  12. Nitriding of high speed steel

    International Nuclear Information System (INIS)

    Doyle, E.D.; Pagon, A.M.; Hubbard, P.; Dowey, S.J.; Pilkington, A.; McCulloch, D.G.; Latham, K.; DuPlessis, J.

    2010-01-01

    Current practice when nitriding HSS cutting tools is to avoid embrittlement of the cutting edge by limiting the depth of the diffusion zone. This is accomplished by reducing the nitriding time and temperature and eliminating any compound layer formation. However, in many applications there is an argument for generating a compound layer with beneficial tribological properties. In this investigation results are presented of a metallographic, XRD and XPS analysis of nitrided surface layers generated using active screen plasma nitriding and reactive vapour deposition using cathodic arc. These results are discussed in the context of built up edge formation observed while machining inside a scanning electron microscope. (author)

  13. Defects in dilute nitrides

    International Nuclear Information System (INIS)

    Chen, W.M.; Buyanova, I.A.; Tu, C.W.; Yonezu, H.

    2005-01-01

    We provide a brief review our recent results from optically detected magnetic resonance studies of grown-in non-radiative defects in dilute nitrides, i.e. Ga(In)NAs and Ga(Al,In)NP. Defect complexes involving intrinsic defects such as As Ga antisites and Ga i self interstitials were positively identified.Effects of growth conditions, chemical compositions and post-growth treatments on formation of the defects are closely examined. These grown-in defects are shown to play an important role in non-radiative carrier recombination and thus in degrading optical quality of the alloys, harmful to performance of potential optoelectronic and photonic devices based on these dilute nitrides. (author)

  14. Plasmonic Titanium Nitride Nanostructures via Nitridation of Nanopatterned Titanium Dioxide

    DEFF Research Database (Denmark)

    Guler, Urcan; Zemlyanov, Dmitry; Kim, Jongbum

    2017-01-01

    Plasmonic titanium nitride nanostructures are obtained via nitridation of titanium dioxide. Nanoparticles acquired a cubic shape with sharper edges following the rock-salt crystalline structure of TiN. Lattice constant of the resulting TiN nanoparticles matched well with the tabulated data. Energy...

  15. Optical characterization of gallium nitride

    NARCIS (Netherlands)

    Kirilyuk, Victoria

    2002-01-01

    Group III-nitrides have been considered a promising system for semiconductor devices since a few decades, first for blue- and UV-light emitting diodes, later also for high-frequency/high-power applications. Due to the lack of native substrates, heteroepitaxially grown III-nitride layers are usually

  16. Hot pressing of uranium nitride and mixed uranium plutonium nitride

    International Nuclear Information System (INIS)

    Chang, J.Y.

    1975-01-01

    The hot pressing characteristics of uranium nitride and mixed uranium plutonium nitride were studied. The utilization of computer programs together with the experimental technique developed in the present study may serve as a useful purpose of prediction and fabrication of advanced reactor fuel and other high temperature ceramic materials for the future. The densification of nitrides follow closely with a plastic flow theory expressed as: d rho/ dt = A/T(t) (1-rho) [1/1-(1-rho)/sup 2/3/ + B1n (1-rho)] The coefficients, A and B, were obtained from experiment and computer curve fitting. (8 figures) (U.S.)

  17. Electrospun Gallium Nitride Nanofibers

    International Nuclear Information System (INIS)

    Melendez, Anamaris; Morales, Kristle; Ramos, Idalia; Campo, Eva; Santiago, Jorge J.

    2009-01-01

    The high thermal conductivity and wide bandgap of gallium nitride (GaN) are desirable characteristics in optoelectronics and sensing applications. In comparison to thin films and powders, in the nanofiber morphology the sensitivity of GaN is expected to increase as the exposed area (proportional to the length) increases. In this work we present electrospinning as a novel technique in the fabrication of GaN nanofibers. Electrospinning, invented in the 1930s, is a simple, inexpensive, and rapid technique to produce microscopically long ultrafine fibers. GaN nanofibers are produced using gallium nitrate and dimethyl-acetamide as precursors. After electrospinning, thermal decomposition under an inert atmosphere is used to pyrolyze the polymer. To complete the preparation, the nanofibers are sintered in a tube furnace under a NH 3 flow. Both scanning electron microscopy and profilometry show that the process produces continuous and uniform fibers with diameters ranging from 20 to a few hundred nanometers, and lengths of up to a few centimeters. X-ray diffraction (XRD) analysis shows the development of GaN nanofibers with hexagonal wurtzite structure. Future work includes additional characterization using transmission electron microscopy and XRD to understand the role of precursors and nitridation in nanofiber synthesis, and the use of single nanofibers for the construction of optical and gas sensing devices.

  18. Method for producing polycrystalline boron nitride

    International Nuclear Information System (INIS)

    Alexeevskii, V.P.; Bochko, A.V.; Dzhamarov, S.S.; Karpinos, D.M.; Karyuk, G.G.; Kolomiets, I.P.; Kurdyumov, A.V.; Pivovarov, M.S.; Frantsevich, I.N.; Yarosh, V.V.

    1975-01-01

    A mixture containing less than 50 percent of graphite-like boron nitride treated by a shock wave and highly defective wurtzite-like boron nitride obtained by a shock-wave method is compressed and heated at pressure and temperature values corresponding to the region of the phase diagram for boron nitride defined by the graphite-like compact modifications of boron nitride equilibrium line and the cubic wurtzite-like boron nitride equilibrium line. The resulting crystals of boron nitride exhibit a structure of wurtzite-like boron nitride or of both wurtzite-like and cubic boron nitride. The resulting material exhibits higher plasticity as compared with polycrystalline cubic boron nitride. Tools made of this compact polycrystalline material have a longer service life under impact loads in machining hardened steel and chilled iron. (U.S.)

  19. Zirconium nitride hard coatings

    International Nuclear Information System (INIS)

    Roman, Daiane; Amorim, Cintia Lugnani Gomes de; Soares, Gabriel Vieira; Figueroa, Carlos Alejandro; Baumvol, Israel Jacob Rabin; Basso, Rodrigo Leonardo de Oliveira

    2010-01-01

    Zirconium nitride (ZrN) nanometric films were deposited onto different substrates, in order to study the surface crystalline microstructure and also to investigate the electrochemical behavior to obtain a better composition that minimizes corrosion reactions. The coatings were produced by physical vapor deposition (PVD). The influence of the nitrogen partial pressure, deposition time and temperature over the surface properties was studied. Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM) and corrosion experiments were performed to characterize the ZrN hard coatings. The ZrN films properties and microstructure changes according to the deposition parameters. The corrosion resistance increases with temperature used in the films deposition. Corrosion tests show that ZrN coating deposited by PVD onto titanium substrate can improve the corrosion resistance. (author)

  20. Pyrochemical reprocessing of nitride fuel

    International Nuclear Information System (INIS)

    Nakazono, Yoshihisa; Iwai, Takashi; Arai, Yasuo

    2004-01-01

    Electrochemical behavior of actinide nitrides in LiCl-KCl eutectic melt was investigated in order to apply pyrochemical process to nitride fuel cycle. The electrode reaction of UN and (U, Nd)N was examined by cyclic voltammetry. The observed rest potential of (U, Nd)N depended on the equilibrium of U 3+ /UN and was not affected by the addition of NdN of 8 wt.%. (author)

  1. Superplastic forging nitride ceramics

    Science.gov (United States)

    Panda, P.C.; Seydel, E.R.; Raj, R.

    1988-03-22

    A process is disclosed for preparing silicon nitride ceramic parts which are relatively flaw free and which need little or no machining, said process comprising the steps of: (a) preparing a starting powder by wet or dry mixing ingredients comprising by weight from about 70% to about 99% silicon nitride, from about 1% to about 30% of liquid phase forming additive and from 1% to about 7% free silicon; (b) cold pressing to obtain a preform of green density ranging from about 30% to about 75% of theoretical density; (c) sintering at atmospheric pressure in a nitrogen atmosphere at a temperature ranging from about 1,400 C to about 2,200 C to obtain a density which ranges from about 50% to about 100% of theoretical density and which is higher than said preform green density, and (d) press forging workpiece resulting from step (c) by isothermally uniaxially pressing said workpiece in an open die without initial contact between said workpiece and die wall perpendicular to the direction of pressing and so that pressed workpiece does not contact die wall perpendicular to the direction of pressing, to substantially final shape in a nitrogen atmosphere utilizing a temperature within the range of from about 1,400 C to essentially 1,750 C and strain rate within the range of about 10[sup [minus]7] to about 10[sup [minus]1] seconds[sup [minus]1], the temperature and strain rate being such that surface cracks do not occur, said pressing being carried out to obtain a shear deformation greater than 30% whereby superplastic forging is effected.

  2. Nitride stabilized core/shell nanoparticles

    Science.gov (United States)

    Kuttiyiel, Kurian Abraham; Sasaki, Kotaro; Adzic, Radoslav R.

    2018-01-30

    Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.

  3. Copper Test

    Science.gov (United States)

    ... in the arm and/or a 24-hour urine sample is collected. Sometimes a health practitioner performs a liver ... disease , a rare inherited disorder that can lead to excess storage of copper in the liver, brain, and other ...

  4. Leachability of nitrided ilmenite in hydrochloric acid

    CSIR Research Space (South Africa)

    Swanepoel, JJ

    2010-10-01

    Full Text Available Titanium nitride in upgraded nitrided ilmenite (bulk of iron removed) can selectively be chlorinated to produce titanium tetrachloride. Except for iron, most other components present during this low temperature (ca. 200 °C) chlorination reaction...

  5. Aluminum nitride insulating films for MOSFET devices

    Science.gov (United States)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  6. Leachability of nitrided ilmenite in hydrochloric acid

    OpenAIRE

    Swanepoel, J.J.; van Vuuren, D.S.; Heydenrych, M.

    2011-01-01

    Titanium nitride in upgraded nitrided ilmenite (bulk of iron removed) can selectively be chlorinated to produce titanium tetrachloride. Except for iron, most other components present during this low temperature (ca. 200°C) chlorination reaction will not react with chlorine. It is therefore necessary to remove as much iron as possible from the nitrided ilmenite. Hydrochloric acid leaching is a possible process route to remove metallic iron from nitrided ilmenite without excessive dissolution o...

  7. Fabrication of vanadium nitride by carbothermal nitridation reaction

    International Nuclear Information System (INIS)

    Wang Xitang; Wang Zhuofu; Zhang Baoguo; Deng Chengji

    2005-01-01

    Vanadium nitride is produced from V 2 O 5 by carbon-thermal reduction and nitridation. When the sintered temperature is above 1273 K, VN can be formed, and the nitrogen content of the products increased with the firing temperature raised, and then is the largest when the sintered temperature is 1573 K. The C/V 2 O 5 mass ratio of the green samples is the other key factor affecting on the nitrogen contents of the products. The nitrogen content of the products reaches the most when the C/V 2 O 5 mass ratio is 0.33, which is the theoretical ratio of the carbothermal nitridation of V 2 O 5 . (orig.)

  8. Simulation of the Nitriding Process

    Science.gov (United States)

    Krukovich, M. G.

    2004-01-01

    Simulation of the nitriding process makes it possible to solve many practical problems of process control, prediction of results, and development of new treatment modes and treated materials. The presented classification systematizes nitriding processes and processes based on nitriding, enables consideration of the theory and practice of an individual process in interrelation with other phenomena, outlines ways for intensification of various process variants, and gives grounds for development of recommendations for controlling the structure and properties of the obtained layers. The general rules for conducting the process and formation of phases in the layer and properties of the treated surfaces are used to create a prediction computational model based on analytical, numerical, and empirical approaches.

  9. Precipitation of metal nitrides from chloride melts

    International Nuclear Information System (INIS)

    Slater, S.A.; Miller, W.E.; Willit, J.L.

    1996-01-01

    Precipitation of actinides, lanthanides, and fission products as nitrides from molten chloride melts is being investigated for use as a final cleanup step in treating radioactive salt wastes generated by electrometallurgical processing of spent nuclear fuel. The radioactive components (eg, fission products) need to be removed to reduce the volume of high-level waste that requires disposal. To extract the fission products from the salt, a nitride precipitation process is being developed. The salt waste is first contacted with a molten metal; after equilibrium is reached, a nitride is added to the metal phase. The insoluble nitrides can be recovered and converted to a borosilicate glass after air oxidation. For a bench-scale experimental setup, a crucible was designed to contact the salt and metal phases. Solubility tests were performed with candidate nitrides and metal nitrides for which there are no solubility data. Experiments were performed to assess feasibility of precipitation of metal nitrides from chloride melts

  10. Reaction-bonded silicon nitride

    International Nuclear Information System (INIS)

    Porz, F.

    1982-10-01

    Reaction-bonded silicon nitride (RBSN) has been characterized. The oxidation behaviour in air up to 1500 0 C and 3000 h and the effects of static and cyclic oxidation on room-temperature strength have been studied. (orig./IHOE) [de

  11. Ion nitridation - physical and technological aspects

    International Nuclear Information System (INIS)

    Elbern, A.W.

    1980-01-01

    Ion nitridation, is a technique which allows the formation of a controlled thickness of nitrides in the surface of the material, using this material as the cathode in a low pressure glow discharge, which presents many advantages over the conventional method. A brief review of the ion nitriding technique, the physical fenomena involved, and we discuss technological aspects of this method, are presented. (Author) [pt

  12. Silicon nitride-fabrication, forming and properties

    International Nuclear Information System (INIS)

    Yehezkel, O.

    1983-01-01

    This article, which is a literature survey of the recent years, includes description of several methods for the formation of silicone nitride, and five methods of forming: Reaction-bonded silicon nitride, sintering, hot pressing, hot isostatic pressing and chemical vapour deposition. Herein are also included data about mechanical and physical properties of silicon nitride and the relationship between the forming method and the properties. (author)

  13. Topotactic synthesis of vanadium nitride solid foams

    International Nuclear Information System (INIS)

    Oyama, S.T.; Kapoor, R.; Oyama, H.T.; Hofmann, D.J.; Matijevic, E.

    1993-01-01

    Vanadium nitride has been synthesized with a surface area of 120 m 2 g -1 by temperature programmed nitridation of a foam-like vanadium oxide (35 m 2 g -1 ), precipitated from vanadate solutions. The nitridation reaction was established to be topotactic and pseudomorphous by x-ray powder diffraction and scanning electron microscopy. The crystallographic relationship between the nitride and oxide was {200}//{001}. The effect of precursor geometry on the product size and shape was investigated by employing vanadium oxide solids of different morphologies

  14. Microhardness and microplasticity of zirconium nitride

    International Nuclear Information System (INIS)

    Neshpor, V.S.; Eron'yan, M.A.; Petrov, A.N.; Kravchik, A.E.

    1978-01-01

    To experimentally check the concentration dependence of microhardness of 4 group nitrides, microhardness of zirconium nitride compact samples was measured. The samples were obtained either by bulk saturation of zirconium iodide plates or by chemical precipitation from gas. As nitrogen content decreased within the limits of homogeneity of zirconium nitride samples where the concentration of admixed oxygen was low, the microhardness grew from 1500+-100 kg/mm 2 for ZrNsub(1.0) to 27000+-100 kg/mm 2 for ZrNsub(0.78). Microplasticity of zirconium nitride (resistance to fracture) decreased, as the concentration of nitrogen vacancies was growing

  15. Investigation of hexagonal boron nitride as an atomically thin corrosion passivation coating in aqueous solution.

    Science.gov (United States)

    Zhang, Jing; Yang, Yingchao; Lou, Jun

    2016-09-09

    Hexagonal boron nitride (h-BN) atomic layers were utilized as a passivation coating in this study. A large-area continuous h-BN thin film was grown on nickel foil using a chemical vapor deposition method and then transferred onto sputtered copper as a corrosion passivation coating. The corrosion passivation performance in a Na2SO4 solution of bare and coated copper was investigated by electrochemical methods including cyclic voltammetry (CV), Tafel polarization and electrochemical impedance spectroscopy (EIS). CV and Tafel analysis indicate that the h-BN coating could effectively suppress the anodic dissolution of copper. The EIS fitting result suggests that defects are the dominant leakage source on h-BN films, and improved anti-corrosion performances could be achieved by further passivating these defects.

  16. Study of aluminum nitride precipitation in Fe- 3%Si steel

    Directory of Open Access Journals (Sweden)

    F.L. Alcântara

    2013-01-01

    Full Text Available For good performance of electrical steels it is necessary a high magnetic induction and a low power loss when submitted to cyclic magnetization. A fine dispersion of precipitates is a key requirement in the manufacturing process of Fe- 3%Si grain oriented electrical steel. In the production of high permeability grain oriented steel precipitate particles of copper and manganese sulphides and aluminium nitride delay normal grain growth during primary recrystallization, causing preferential growth of grains with Goss orientation during secondary recrystallization. The sulphides precipitate during the hot rolling process. The aluminium nitride particles are formed during hot rolling and the hot band annealing process. In this work AlN precipitation during hot deformation of a high permeability grain oriented 3%Si steel is examined. In the study, transfer bar samples were submitted to controlled heating, compression and cooling treatments in order to simulate a reversible hot rolling finishing. The samples were analyzed using the transmission electron microscope (TEM in order to identify the precipitates and characterize size distribution. Precipitate extraction by dissolution method and analyses by inductively coupled plasma optical emission spectrometry (ICP-OES were used to quantify the precipitation. The results allowed to describe the precipitation kinetics by a precipitation-time-temperature (PTT diagram for AlN formation during hot rolling.

  17. Nitride alloy layer formation of duplex stainless steel using nitriding process

    Science.gov (United States)

    Maleque, M. A.; Lailatul, P. H.; Fathaen, A. A.; Norinsan, K.; Haider, J.

    2018-01-01

    Duplex stainless steel (DSS) shows a good corrosion resistance as well as the mechanical properties. However, DSS performance decrease as it works under aggressive environment and at high temperature. At the mentioned environment, the DSS become susceptible to wear failure. Surface modification is the favourable technique to widen the application of duplex stainless steel and improve the wear resistance and its hardness properties. Therefore, the main aim of this work is to nitride alloy layer on the surface of duplex stainless steel by the nitriding process temperature of 400°C and 450°C at different time and ammonia composition using a horizontal tube furnace. The scanning electron microscopy and x-ray diffraction analyzer are used to analyse the morphology, composition and the nitrided alloy layer for treated DSS. The micro hardnesss Vickers tester was used to measure hardness on cross-sectional area of nitrided DSS. After nitriding, it was observed that the hardness performance increased until 1100 Hv0.5kgf compared to substrate material of 250 Hv0.5kgf. The thickness layer of nitride alloy also increased from 5μm until 100μm due to diffusion of nitrogen on the surface of DSS. The x-ray diffraction results showed that the nitride layer consists of iron nitride, expanded austenite and chromium nitride. It can be concluded that nitride alloy layer can be produced via nitriding process using tube furnace with significant improvement of microstructural and hardness properties.

  18. Method of preparation of uranium nitride

    Science.gov (United States)

    Kiplinger, Jaqueline Loetsch; Thomson, Robert Kenneth James

    2013-07-09

    Method for producing terminal uranium nitride complexes comprising providing a suitable starting material comprising uranium; oxidizing the starting material with a suitable oxidant to produce one or more uranium(IV)-azide complexes; and, sufficiently irradiating the uranium(IV)-azide complexes to produce the terminal uranium nitride complexes.

  19. Atomic Resolution Microscopy of Nitrides in Steel

    DEFF Research Database (Denmark)

    Danielsen, Hilmar Kjartansson

    2014-01-01

    MN and CrMN type nitride precipitates in 12%Cr steels have been investigated using atomic resolution microscopy. The MN type nitrides were observed to transform into CrMN both by composition and crystallography as Cr diffuses from the matrix into the MN precipitates. Thus a change from one...

  20. Low temperature anodic bonding to silicon nitride

    DEFF Research Database (Denmark)

    Weichel, Steen; Reus, Roger De; Bouaidat, Salim

    2000-01-01

    Low-temperature anodic bonding to stoichiometric silicon nitride surfaces has been performed in the temperature range from 3508C to 4008C. It is shown that the bonding is improved considerably if the nitride surfaces are either oxidized or exposed to an oxygen plasma prior to the bonding. Both bu...

  1. Fusion bonding of silicon nitride surfaces

    DEFF Research Database (Denmark)

    Reck, Kasper; Østergaard, Christian; Thomsen, Erik Vilain

    2011-01-01

    While silicon nitride surfaces are widely used in many micro electrical mechanical system devices, e.g. for chemical passivation, electrical isolation or environmental protection, studies on fusion bonding of two silicon nitride surfaces (Si3N4–Si3N4 bonding) are very few and highly application...

  2. Alloy Effects on the Gas Nitriding Process

    Science.gov (United States)

    Yang, M.; Sisson, R. D.

    2014-12-01

    Alloy elements, such as Al, Cr, V, and Mo, have been used to improve the nitriding performance of steels. In the present work, plain carbon steel AISI 1045 and alloy steel AISI 4140 were selected to compare the nitriding effects of the alloying elements in AISI 4140. Fundamental analysis is carried out by using the "Lehrer-like" diagrams (alloy specific Lehrer diagram and nitriding potential versus nitrogen concentration diagram) and the compound layer growth model to simulate the gas nitriding process. With this method, the fundamental understanding for the alloy effect based on the thermodynamics and kinetics becomes possible. This new method paves the way for the development of new alloy for nitriding.

  3. Growth and Characterisation of Pulsed-Laser Deposited Tin Thin Films on Cube-Textured Copper at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Szwachta G.

    2016-06-01

    Full Text Available High-quality titanium nitride thin films have been grown on a cube-textured copper surface via pulsed laser deposition. The growth of TiN thin films has been very sensitive to pre-treatment procedure and substrate temperature. It is difficult to grow heteroexpitaxial TiN films directly on copper tape due to large differences in lattice constants, thermal expansion coefficients of the two materials as well as polycrystalline structure of substrate. The X-Ray diffraction measurement revealed presence of high peaks belonged to TiN(200 and TiN(111 thin films, depending on used etcher of copper surface. The electron diffraction patterns of TiN(200/Cu films confirmed the single-crystal nature of the films with cube-on-cube epitaxy. The high-resolution microscopy on our films revealed sharp interfaces between copper and titanium nitride with no presence of interfacial reaction.

  4. Solvothermal synthesis: a new route for preparing nitrides

    CERN Document Server

    Demazeau, G; Denis, A; Largeteau, A

    2002-01-01

    Solvothermal synthesis appears to be an interesting route for preparing nitrides such as gallium nitride and aluminium nitride, using ammonia as solvent. A nitriding additive is used to perform the reaction and, in the case of gallium nitride, is encapsulated by melt gallium. The syntheses are performed in the temperature range 400-800 deg. C and in the pressure range 100-200 MPa. The synthesized powders are characterized by x-ray diffraction and scanning electron microscopy. Finely divided gallium nitride GaN and aluminium nitride AlN, both with wurtzite-type structure, can be obtained by this route.

  5. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zajtsev, A.M.

    1985-01-01

    Three optically active defects are detected in mono- and polycrystal cubic boron nitride (β-BN). Analysis of intensity of temperature dependences, halfwidth and energy shift of 1.76 eV narrow phononless line (center GC-1) makes it possible to interprete the observed cathodoluminescence spectra an optical analog of the Moessbaner effect. Comparison of the obtained results with the known data for diamond monocrystals makes it possible to suggest that the detected center GC-1 is a nitrogen vacancy . The conclusion, concerning the Moessbauer optical spectra application, is made to analyze structural perfection of β-BN crystal lattice

  6. Surface analysis in steel nitrides by using Moessbauer spectroscopy

    International Nuclear Information System (INIS)

    Figueiredo, R.S. de.

    1991-07-01

    The formation of iron nitride layer at low temperatures, 600-700 K, by Moessbauer spectroscopy is studied. These layers were obtained basically through two different processes: ion nitriding and ammonia gas nitriding. A preliminary study about post-discharge nitriding was made using discharge in hollow cathode as well as microwave excitation. The assembly of these chambers is also described. The analysis of the nitrided samples was done by CEMS and CXMS, aided by optical microscopy, and the CEMS and CXMS detectors were constructed by ourselves. We also made a brief study about these detectors, testing as acetone as the mixture 80% He+10% C H 4 as detection gases for the use of CEMS. The surface analysis of the samples showed that in the ammonia gas process nitriding the nitrided layer starts by the superficial formation of an iron nitride rich nitrogen. By thermal evolution this nitride promotes the diffusion of nitrogen and the formation of other more stable nitrides. (author)

  7. Simple process to fabricate nitride alloy powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong-Joo; Kim, Keon Sik; Rhee, Young Woo; Oh, Jang-Soo; Kim, Jong Hun; Koo, Yang Hyun

    2013-01-01

    Uranium mono-nitride (UN) is considered as a fuel material [1] for accident-tolerant fuel to compensate for the loss of fissile fuel material caused by adopting a thickened cladding such as SiC composites. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. Among them, a direct nitriding process of metal is more attractive because it has advantages in the mass production of high-purity powders and the reusing of expensive 15 N 2 gas. However, since metal uranium is usually fabricated in the form of bulk ingots, it has a drawback in the fabrication of fine powders. The Korea Atomic Energy Research Institute (KAERI) has a centrifugal atomisation technique to fabricate uranium and uranium alloy powders. In this study, a simple reaction method was tested to fabricate nitride fuel powders directly from uranium metal alloy powders. Spherical powder and flake of uranium metal alloys were fabricated using a centrifugal atomisation method. The nitride powders were obtained by thermal treating the metal particles under nitrogen containing gas. The phase and morphology evolutions of powders were investigated during the nitriding process. A phase analysis of nitride powders was also part of the present work. KAERI has developed the centrifugal rotating disk atomisation process to fabricate spherical uranium metal alloy powders which are used as advanced fuel materials for research reactors. The rotating disk atomisation system involves the tasks of melting, atomising, and collecting. A nozzle in the bottom of melting crucible introduces melt at the center of a spinning disk. The centrifugal force carries the melt to the edge of the disk and throws the melt off the edge. Size and shape of droplets can be controlled by changing the nozzle size, the disk diameter and disk speed independently or simultaneously. By adjusting the processing parameters of the centrifugal atomiser, a spherical and flake shape

  8. Multilevel Dual Damascene copper interconnections

    Science.gov (United States)

    Lakshminarayanan, S.

    Copper has been acknowledged as the interconnect material for future generations of ICs to overcome the bottlenecks on speed and reliability present with the current Al based wiring. A new set of challenges brought to the forefront when copper replaces aluminum, have to be met and resolved to make it a viable option. Unit step processes related to copper technology have been under development for the last few years. In this work, the application of copper as the interconnect material in multilevel structures with SiO2 as the interlevel dielectric has been explored, with emphasis on integration issues and complete process realization. Interconnect definition was achieved by the Dual Damascene approach using chemical mechanical polishing of oxide and copper. The choice of materials used as adhesion promoter/diffusion barrier included Ti, Ta and CVD TiN. Two different polish chemistries (NH4OH or HNO3 based) were used to form the interconnects. The diffusion barrier was removed during polishing (in the case of TiN) or by a post CMP etch (as with Ti or Ta). Copper surface passivation was performed using boron implantation and PECVD nitride encapsulation. The interlevel dielectric way composed of a multilayer stack of PECVD SiO2 and SixNy. A baseline process sequence which ensured the mechanical and thermal compatibility of the different unit steps was first created. A comprehensive test vehicle was designed and test structures were fabricated using the process flow developed. Suitable modifications were subsequently introduced in the sequence as and when processing problems were encountered. Electrical characterization was performed on the fabricated devices, interconnects, contacts and vias. The structures were subjected to thermal stressing to assess their stability and performance. The measurement of interconnect sheet resistances revealed lower copper loss due to dishing on samples polished using HNO3 based slurry. Interconnect resistances remained stable upto 400o

  9. Antwerp Copper Plates

    DEFF Research Database (Denmark)

    Wadum, Jørgen

    1999-01-01

    In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes.......In addition to presenting a short history of copper paintings, topics detail artists’ materials and techniques, as well as aspects of the copper industry, including mining, preparation and trade routes....

  10. Copper and Copper Proteins in Parkinson's Disease

    Science.gov (United States)

    Rivera-Mancia, Susana; Diaz-Ruiz, Araceli; Tristan-Lopez, Luis; Rios, Camilo

    2014-01-01

    Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson's disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson's disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson's disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson's disease and that a mutation in ATP7B could be associated with Parkinson's disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology. PMID:24672633

  11. Separation of copper-64 from copper phthalocyanine

    International Nuclear Information System (INIS)

    Battaglin, R.I.M.

    1979-01-01

    The separation of copper-64 from irradiated copper phthalocyanine by Szilard-Chalmers effect is studied. Two methods of separation are used: one of them is based on the dissolution of the irradiated dry compound in concentrated sulfuric acid following its precipitation in water. In the other one the compound is irradiated with water in paste form following treatment with water and hydrochloric acid. The influence of the crystal form of the copper phthalocyanine on the separation yield of copper-64 is shown. Preliminary tests using the ionic exchange technique for purification and changing of copper-64 sulfate to chloride form are carried out. The specific activity using the spectrophotometric technique, after the determination of the copper concentration in solution of copper-64, is calculated. (Author) [pt

  12. Microstructural Characterization of Low Temperature Gas Nitrided Martensitic Stainless Steel

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2015-01-01

    The present work presents microstructural investigations of the surface zone of low temperature gas nitrided precipitation hardening martensitic stainless steel AISI 630. Grazing incidence X-ray diffraction was applied to investigate the present phases after successive removal of very thin sections...... of the sample surface. The development of epsilon nitride, expanded austenite and expanded martensite resulted from the low temperature nitriding treatments. The microstructural features, hardness and phase composition are discussed with emphasis on the influence of nitriding duration and nitriding potential....

  13. Process for the production of metal nitride sintered bodies and resultant silicon nitride and aluminum nitride sintered bodies

    Science.gov (United States)

    Yajima, S.; Omori, M.; Hayashi, J.; Kayano, H.; Hamano, M.

    1983-01-01

    A process for the manufacture of metal nitride sintered bodies, in particular, a process in which a mixture of metal nitrite powders is shaped and heated together with a binding agent is described. Of the metal nitrides Si3N4 and AIN were used especially frequently because of their excellent properties at high temperatures. The goal is to produce a process for metal nitride sintered bodies with high strength, high corrosion resistance, thermal shock resistance, thermal shock resistance, and avoidance of previously known faults.

  14. New Routes to Lanthanide and Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Butt, D.P.; Jaques, B.J.; Osterberg, D.D. [Boise State University, 1910 University Dr., Boise, Idaho 83725-2075 (United States); Marx, B.M. [Concurrent Technologies Corporation, Johnstown, PA (United States); Callahan, P.G. [Carnegie Mellon University, Pittsburgh, PA (United States); Hamdy, A.S. [Central Metallurgical R and D Institute, Helwan, Cairo (Egypt)

    2009-06-15

    The future of nuclear energy in the U.S. and its expansion worldwide depends greatly on our ability to reduce the levels of high level waste to minimal levels, while maintaining proliferation resistance. Implicit in the so-called advanced fuel cycle is the need for higher levels of fuel burn-up and consequential use of complex nuclear fuels comprised of fissile materials such as Pu, Am, Np, and Cm. Advanced nitride fuels comprised ternary and quaternary mixtures of uranium and these actinides have been considered for applications in advanced power plants, but there remain many processing challenges as well as necessary qualification testing. In this presentation, the advantages and disadvantages of nitride fuels are discussed. Methods of synthesizing the raw materials and sintering of fuels are described including a discussion of novel, low cost routes to nitrides that have the potential for reducing the cost and footprint of a fuel processing plant. Phase pure nitrides were synthesized via four primary methods; reactive milling metal flakes in nitrogen at room temperature, directly nitriding metal flakes in a pure nitrogen atmosphere, hydriding metal flakes prior to nitridation, and carbo-thermically reducing the metal oxide and carbon mixture prior to nitridation. In the present study, the sintering of UN, DyN, and their solid solutions (U{sub x}, Dy{sub 1-x}) (x = 1 to 0.7) were also studied. (authors)

  15. Chemical vapor deposition of refractory ternary nitrides for advanced diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Custer, Jonathan S.; Fleming, James G.; Roherty-Osmun, Elizabeth; Smith, Paul Martin

    1998-09-22

    Refractory ternary nitride films for diffusion barriers in microelectronics have been grown using chemical vapor deposition. Thin films of titanium-silicon-nitride, tungsten-boron-nitride, and tungsten-silicon-nitride of various compositions have been deposited on 150 mm Si wafers. The microstructure of the films are either fully amorphous for the tungsten based films, or nauocrystalline TiN in an amorphous matrix for titanium-silicon-nitride. All films exhibit step coverages suitable for use in future microelectronics generations. Selected films have been tested as diffusion barriers between copper and silicon, and generally perform extremely weH. These fiIms are promising candidates for advanced diffusion barriers for microelectronics applications. The manufacturing of silicon wafers into integrated circuits uses many different process and materials. The manufacturing process is usually divided into two parts: the front end of line (FEOL) and the back end of line (BEOL). In the FEOL the individual transistors that are the heart of an integrated circuit are made on the silicon wafer. The responsibility of the BEOL is to wire all the transistors together to make a complete circuit. The transistors are fabricated in the silicon itself. The wiring is made out of metal, currently aluminum and tungsten, insulated by silicon dioxide, see Figure 1. Unfortunately, silicon will diffuse into aluminum, causing aluminum spiking of junctions, killing transistors. Similarly, during chemical vapor deposition (CVD) of tungsten from ~fj, the reactivity of the fluorine can cause "worn-holes" in the silicon, also destroying transistors. The solution to these problems is a so-called diffusion barrier, which will allow current to pass from the transistors to the wiring, but will prevent reactions between silicon and the metal.

  16. Preparation of aluminum nitride-silicon carbide nanocomposite powder by the nitridation of aluminum silicon carbide

    NARCIS (Netherlands)

    Itatani, K.; Tsukamoto, R.; Delsing, A.C.A.; Hintzen, H.T.J.M.; Okada, I.

    2002-01-01

    Aluminum nitride (AlN)-silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g-1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich

  17. Residual Stress Induced by Nitriding and Nitrocarburizing

    DEFF Research Database (Denmark)

    Somers, Marcel A.J.

    2005-01-01

    The present chapter is devoted to the various mechanisms involved in the buildup and relief of residual stress in nitrided and nitrocarburized cases. The work presented is an overview of model studies on iron and iron-based alloys. Subdivision is made between the compound (or white) layer......, developing at the surfce and consisting of iron-based (carbo)nitrides, and the diffusion zone underneath, consisting of iron and alloying element nitrides dispersed in af ferritic matrix. Microstructural features are related directly to the origins of stress buildup and stres relief....

  18. Surface modification of titanium by plasma nitriding

    Directory of Open Access Journals (Sweden)

    Kapczinski Myriam Pereira

    2003-01-01

    Full Text Available A systematic investigation was undertaken on commercially pure titanium submitted to plasma nitriding. Thirteen different sets of operational parameters (nitriding time, sample temperature and plasma atmosphere were used. Surface analyses were performed using X-ray diffraction, nuclear reaction and scanning electron microscopy. Wear tests were done with stainless steel Gracey scaler, sonic apparatus and pin-on-disc machine. The obtained results indicate that the tribological performance can be improved for samples treated with the following conditions: nitriding time of 3 h; plasma atmosphere consisting of 80%N2+20%H2 or 20%N2+80%H2; sample temperature during nitriding of 600 or 800 degreesC.

  19. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1999-01-01

    As a prerequisite for predictability of properties obtained by a nitriding treatment of iron-based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present (even) the description of thermodynamic equilibrium...... of pure iron-nitrogen phases has not been achieved fully. It has been shown that taking into account ordering of nitrogen in the epsilon and gamma' iron-nitride phases, leads to an improved understanding of the Fe-N phase diagram. Although thermodynamics indicate the state the system strives for......, the nitriding result is determined largely by the kinetics of the process. The nitriding kinetics have been shown to be characterised by the occurring local near-equilibria and stationary states at surfaces and interfaces, and the diffusion coefficient of nitrogen in the various phases, for which new data have...

  20. Compressive creep of silicon nitride

    International Nuclear Information System (INIS)

    Silva, C.R.M. da; Melo, F.C.L. de; Cairo, C.A.; Piorino Neto, F.

    1990-01-01

    Silicon nitride samples were formed by pressureless sintering process, using neodymium oxide and a mixture of neodymium oxide and yttrio oxide as sintering aids. The short term compressive creep behaviour was evaluated over a stress range of 50-300 MPa and temperature range 1200 - 1350 0 C. Post-sintering heat treatments in nitrogen with a stepwise decremental variation of temperature were performed in some samples and microstructural analysis by X-ray diffraction and transmission electron microscopy showed that the secondary crystalline phase which form from the remnant glass are dependent upon composition and percentage of aditives. Stress exponent values near to unity were obtained for materials with low glass content suggesting grain boundary diffusion accommodation processes. Cavitation will thereby become prevalent with increase in stress, temperature and decrease in the degree of crystallization of the grain boundary phase. (author) [pt

  1. Cathodoluminescence of cubic boron nitride

    International Nuclear Information System (INIS)

    Tkachev, V.D.; Shipilo, V.B.; Zaitsev, A.M.

    1985-01-01

    Three types of optically active defect were observed in single-crystal and polycrystalline cubic boron nitride (β-BN). An analysis of the temperature dependences of the intensity, half-width, and energy shift of a narrow zero-phonon line at 1.76 eV (GC-1 center) made it possible to interpret the observed cathodoluminescence spectra as an optical analog of the Moessbauer effect. A comparison of the results obtained in the present study with the available data on diamond single crystals made it possible to identify the observed GC-1 center as a nitrogen vacancy. It was concluded that optical Moessbauer-type spectra can be used to analyze structure defects in the crystal lattice of β-BN

  2. Waveguide silicon nitride grating coupler

    Science.gov (United States)

    Litvik, Jan; Dolnak, Ivan; Dado, Milan

    2016-12-01

    Grating couplers are one of the most used elements for coupling of light between optical fibers and photonic integrated components. Silicon-on-insulator platform provides strong confinement of light and allows high integration. In this work, using simulations we have designed a broadband silicon nitride surface grating coupler. The Fourier-eigenmode expansion and finite difference time domain methods are utilized in design optimization of grating coupler structure. The fully, single etch step grating coupler is based on a standard silicon-on-insulator wafer with 0.55 μm waveguide Si3N4 layer. The optimized structure at 1550 nm wavelength yields a peak coupling efficiency -2.6635 dB (54.16%) with a 1-dB bandwidth up to 80 nm. It is promising way for low-cost fabrication using complementary metal-oxide- semiconductor fabrication process.

  3. Electrochemical Solution Growth of Magnetic Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Todd C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pearce, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    Magnetic nitrides, if manufactured in bulk form, would provide designers of transformers and inductors with a new class of better performing and affordable soft magnetic materials. According to experimental results from thin films and/or theoretical calculations, magnetic nitrides would have magnetic moments well in excess of current state of the art soft magnets. Furthermore, magnetic nitrides would have higher resistivities than current transformer core materials and therefore not require the use of laminates of inactive material to limit eddy current losses. However, almost all of the magnetic nitrides have been elusive except in difficult to reproduce thin films or as inclusions in another material. Now, through its ability to reduce atmospheric nitrogen, the electrochemical solution growth (ESG) technique can bring highly sought after (and previously inaccessible) new magnetic nitrides into existence in bulk form. This method utilizes a molten salt as a solvent to solubilize metal cations and nitrogen ions produced electrochemically and form nitrogen compounds. Unlike other growth methods, the scalable ESG process can sustain high growth rates (~mm/hr) even under reasonable operating conditions (atmospheric pressure and 500 °C). Ultimately, this translates into a high throughput, low cost, manufacturing process. The ESG process has already been used successfully to grow high quality GaN. Below, the experimental results of an exploratory express LDRD project to access the viability of the ESG technique to grow magnetic nitrides will be presented.

  4. Nitride fuels irradiation performance data base

    International Nuclear Information System (INIS)

    Brozak, D.E.; Thomas, J.K.; Peddicord, K.L.

    1987-01-01

    An irradiation performance data base for nitride fuels has been developed from an extensive literature search and review that emphasized uranium nitride, but also included performance data for mixed nitrides [(U,Pu)N] and carbonitrides [(U,Pu)C,N] to increase the quantity and depth of pin data available. This work represents a very extensive effort to systematically collect and organize irradiation data for nitride-based fuels. The data base has many potential applications. First, it can facilitate parametric studies of nitride-based fuels to be performed using a wide range of pin designs and operating conditions. This should aid in the identification of important parameters and design requirements for multimegawatt and SP-100 fuel systems. Secondly, the data base can be used to evaluate fuel performance models. For detailed studies, it can serve as a guide to selecting a small group of pin specimens for extensive characterization. Finally, the data base will serve as an easily accessible and expandable source of irradiation performance information for nitride fuels

  5. Steel bonded dense silicon nitride compositions and method for their fabrication

    Science.gov (United States)

    Landingham, Richard L.; Shell, Thomas E.

    1987-01-01

    A two-stage bonding technique for bonding high density silicon nitride and other ceramic materials to stainless steel and other hard metals, and multilayered ceramic-metal composites prepared by the technique are disclosed. The technique involves initially slurry coating a surface of the ceramic material at about 1500.degree. C. in a vacuum with a refractory material and the stainless steel is then pressure bonded to the metallic coated surface by brazing it with nickel-copper-silver or nickel-copper-manganese alloys at a temperature in the range of about 850.degree. to 950.degree. C. in a vacuum. The two-stage bonding technique minimizes the temperature-expansion mismatch between the dissimilar materials.

  6. Nucleation of iron nitrides during gaseous nitriding of iron; the effect of a preoxidation treatment

    DEFF Research Database (Denmark)

    Friehling, Peter B.; Poulsen, Finn Willy; Somers, Marcel A.J.

    2001-01-01

    grains. On prolonged nitriding, immediate nucleation at the surface of iron grains becomes possible. Calculated incubation times for the nucleation of gamma'-Fe4N1-x during nitriding are generally longer than those observed experimentally in the present work. The incubation time is reduced dramatically...

  7. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided

    International Nuclear Information System (INIS)

    Medina F, A.; Naquid G, C.

    2000-01-01

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  8. Aquatic Life Criteria - Copper

    Science.gov (United States)

    Documents pertain to Aquatic Life Ambient Water Quality criteria for Copper (2007 Freshwater, 2016 Estuarine/marine). These documents contain the safe levels of Copper in water that should protect to the majority of species.

  9. Copper Bioleaching in Chile

    OpenAIRE

    Juan Carlos Gentina; Fernando Acevedo

    2016-01-01

    Chile has a great tradition of producing and exporting copper. Over the last several decades, it has become the first producer on an international level. Its copper reserves are also the most important on the planet. However, after years of mineral exploitation, the ease of extracting copper oxides and ore copper content has diminished. To keep the production level high, the introduction of new technologies has become necessary. One that has been successful is bioleaching. Chile had the first...

  10. Demystifying Controlling Copper Corrosion

    Science.gov (United States)

    The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...

  11. Development of technique for AR coating and nickel and copper metallization of solar cells. FPS Project: Product development

    Science.gov (United States)

    Taylor, W.

    1982-01-01

    Printed nickel overplated with copper and applied on top of a predeposited silicon nitride antireflective coating system for metallizing solar cells was analyzed. The ESL D and E paste formulations, and the new formulations F, G, H, and D-1 were evaluated. The nickel thick films were tested after firing for stability in the cleaning and plating solutions used in the Vanguard-Pacific brush plating process. It was found that the films are very sensitive to the leaning and alkaline copper solutions. Less sensitivity was displayed to the neutral copper solution. Microscopic and SEM observations show segregation of frit at the silicon nitride thick film interface with loose frit residues after lifting off plated grid lines.

  12. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average ...

  13. Preparing microspheres of actinide nitrides from carbon containing oxide sols

    International Nuclear Information System (INIS)

    Triggiani, L.V.

    1975-01-01

    A process is given for preparing uranium nitride, uranium oxynitride, and uranium carboxynitride microspheres and the microspheres as compositions of matter. The microspheres are prepared from carbide sols by reduction and nitriding steps. (Official Gazette)

  14. Advancing liquid metal reactor technology with nitride fuels

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.; Matthews, R.B.

    1991-08-01

    A review of the use of nitride fuels in liquid metal fast reactors is presented. Past studies indicate that both uranium nitride and uranium/plutonium nitride possess characteristics that may offer enhanced performance, particularly in the area of passive safety. To further quantify these effects, the analysis of a mixed-nitride fuel system utilizing the geometry and power level of the US Advanced Liquid Metal Reactor as a reference is described. 18 refs., 2 figs., 2 tabs

  15. Plasma nitridation optimization for sub-15 A gate dielectrics

    NARCIS (Netherlands)

    Cubaynes, F.N; Schmitz, Jurriaan; van der Marel, C.; Snijders, J.H.M.; Veloso, A.; Rothschild, A.; Olsen, C.; Date, L.

    The work investigates the impact of plasma nitridation process parameters upon the physical properties and upon the electrical performance of sub-15 A plasma nitrided gate dielectrics. The nitrogen distribution and chemical bonding of ultra-thin plasma nitrided films have been investigated using

  16. Ion nitriding in 316=L stainless steel

    International Nuclear Information System (INIS)

    Rojas-Calderon, E.L.

    1989-01-01

    Ion nitriding is a glow discharge process that is used to induce surface modification in metals. It has been applied to 316-L austenitic stainless steel looking for similar benefits already obtained in other steels. An austenitic stainless steel was selected because is not hardenable by heat treatment and is not easy to nitride by gas nitriding. The samples were plastically deformed to 10, 20, 40, 50 AND 70% of their original thickness in order to obtain bulk hardening and to observe nitrogen penetration dependence on it. The results were: an increase of one to two rockwell hardness number (except in 70% deformed sample because of its thickness); an increase of even several hundreds per cent in microhardness knoop number in nitrided surface. The later surely modifies waste resistance which would be worth to quantify in further studies. Microhardness measured in an internal transversal face to nitrided surface had a gradual diminish in its value with depth. Auger microanalysis showed a higher relative concentration rate C N /C F e near the surface giving evidence of nitrogen presence till 250 microns deep. The color metallography etchant used, produced faster corrosion in nitrited regions. Therefore, corrosion studies have to be done before using ion nitrited 316-L under these chemicals. (Author)

  17. Innovative boron nitride-doped propellants

    Directory of Open Access Journals (Sweden)

    Thelma Manning

    2016-04-01

    Full Text Available The U.S. military has a need for more powerful propellants with balanced/stoichiometric amounts of fuel and oxidants. However, balanced and more powerful propellants lead to accelerated gun barrel erosion and markedly shortened useful barrel life. Boron nitride (BN is an interesting potential additive for propellants that could reduce gun wear effects in advanced propellants (US patent pending 2015-026P. Hexagonal boron nitride is a good lubricant that can provide wear resistance and lower flame temperatures for gun barrels. Further, boron can dope steel, which drastically improves its strength and wear resistance, and can block the formation of softer carbides. A scalable synthesis method for producing boron nitride nano-particles that can be readily dispersed into propellants has been developed. Even dispersion of the nano-particles in a double-base propellant has been demonstrated using a solvent-based processing approach. Stability of a composite propellant with the BN additive was verified. In this paper, results from propellant testing of boron nitride nano-composite propellants are presented, including closed bomb and wear and erosion testing. Detailed characterization of the erosion tester substrates before and after firing was obtained by electron microscopy, inductively coupled plasma and x-ray photoelectron spectroscopy. This promising boron nitride additive shows the ability to improve gun wear and erosion resistance without any destabilizing effects to the propellant. Potential applications could include less erosive propellants in propellant ammunition for large, medium and small diameter fire arms.

  18. Indium gallium nitride/gallium nitride quantum wells grown on polar and nonpolar gallium nitride substrates

    Science.gov (United States)

    Lai, Kun-Yu

    Nonpolar (m-plane or a-plane) gallium nitride (GaN) is predicted to be a potential substrate material to improve luminous efficiencies of nitride-based quantum wells (QWs). Numerical calculations indicated that the spontaneous emission rate in a single In0.15Ga0.85N/GaN QW could be improved by ˜2.2 times if the polarization-induced internal field was avoided by epitaxial deposition on nonpolar substrates. A challenge for nonpolar GaN is the limited size (less than 10x10 mm2) of substrates, which was addressed by expansion during the regrowth by Hydride Vapor Phase Epitaxy (HVPE). Subsurface damage in GaN substrates were reduced by annealing with NH3 and N2 at 950°C for 60 minutes. It was additionally found that the variation of m-plane QWs' emission properties was significantly increased when the substrate miscut toward a-axis was increased from 0° to 0.1°. InGaN/GaN QWs were grown by Metalorganic Chemical Vapor Deposition (MOCVD) on c-plane and m-plane GaN substrates. The QWs were studied by cathodoluminescence spectroscopy with different incident electron beam probe currents (0.1 nA ˜ 1000 nA). Lower emission intensities and longer peak wavelengths from c-plane QWs were attributed to the Quantum-confined Stark Effect (QCSE). The emission intensity ratios of m-plane QWs to c-plane QWs decreased from 3.04 at 1 nA to 1.53 at 1000 nA. This was identified as the stronger screening effects of QCSE at higher current densities in c-plane QWs. To further investigate these effects in a fabricated structure, biased photoluminescence measurements were performed on m-plane InGaN/GaN QWs. The purpose was to detect the possible internal fields induced by the dot-like structure in the InGaN layer through the response of these internal fields under externally applied fields. No energy shifts of the QWs were observed, which was attributed to strong surface leakage currents.

  19. Thermodynamics, kinetics and process control of nitriding

    DEFF Research Database (Denmark)

    Mittemeijer, Eric J.; Somers, Marcel A. J.

    1997-01-01

    As a prerequisite for the predictability of properties obtained by a nitriding treatment of iron based workpieces, the relation between the process parameters and the composition and structure of the surface layer produced must be known. At present, even the description of thermodynamic equilibrium...... of pure Fe-N phases has not been fully achieved. It is shown that taking into account the ordering of nitrogen in the epsilon and gamma' iron nitride phases leads to an improved understanding of the Fe-N phase diagram. Although consideration of thermodynamics indicates the state the system strives for...... for process control of gaseous nitriding by monitoring the partial pressure of oxygen in the furnace using a solid state electrolyte is provided. At the time the work was carried out the authors were in the Laboratory of Materials Science, Delft University of Technology, Rotterdamseweg 137, 2628 AL Delft...

  20. Conducting metal oxide and metal nitride nanoparticles

    Science.gov (United States)

    DiSalvo, Jr., Francis J.; Subban, Chinmayee V.

    2017-12-26

    Conducting metal oxide and nitride nanoparticles that can be used in fuel cell applications. The metal oxide nanoparticles are comprised of for example, titanium, niobium, tantalum, tungsten and combinations thereof. The metal nitride nanoparticles are comprised of, for example, titanium, niobium, tantalum, tungsten, zirconium, and combinations thereof. The nanoparticles can be sintered to provide conducting porous agglomerates of the nanoparticles which can be used as a catalyst support in fuel cell applications. Further, platinum nanoparticles, for example, can be deposited on the agglomerates to provide a material that can be used as both an anode and a cathode catalyst support in a fuel cell.

  1. Molecular dynamics studies of actinide nitrides

    International Nuclear Information System (INIS)

    Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke; Minato, Kazuo

    2004-01-01

    The molecular dynamics (MD) calculation was performed for actinide nitrides (UN, NpN, and PuN) in the temperature range from 300 to 2800 K to evaluate the physical properties viz., the lattice parameter, thermal expansion coefficient, compressibility, and heat capacity. The Morse-type potential function added to the Busing-Ida type potential was employed for the ionic interactions. The interatomic potential parameters were determined by fitting to the experimental data of the lattice parameter. The usefulness and applicability of the MD method to evaluate the physical properties of actinide nitrides were studied. (author)

  2. Local heating with titanium nitride nanoparticles

    DEFF Research Database (Denmark)

    Guler, Urcan; Ndukaife, Justus C.; Naik, Gururaj V.

    2013-01-01

    We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible.......We investigate the feasibility of titanium nitride (TiN) nanoparticles as local heat sources in the near infrared region, focusing on biological window. Experiments and simulations provide promising results for TiN, which is known to be bio-compatible....

  3. Optical properties of nitride nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Cantarero, A.; Cros, A.; Garro, N.; Gomez-Gomez, M.I.; Garcia, A.; Lima, M.M. de [Materials Science Institute, University of Valencia, PO Box 22085, 46071 Valencia (Spain); Daudin, B. [Departement de Recherche Fondamentale sur la Matiere Condensee, SPMM, CEA/Grenoble, 17 Rue des Martyrs, 38054 Grenoble (France); Rizzi, A.; Denker, C.; Malindretos, J. [IV. Physikalisches Institut, Georg August Universitaet Goettingen, 37073 Goettingen (Germany)

    2011-01-15

    In this paper we review some recent results on the optical properties of nitride nanostructures, in particular on GaN quantum dots (QDs) and InN nanocolumns (NCs). First, we will give a brief introduction on the particularities of vibrational modes of wurtzite. The GaN QDs, embedded in AlN, were grown by molecular beam epitaxy (MBE) in the Stransky-Krastanov mode on c- and a-plane 6H-SiC. We have studied the optical properties by means of photoluminescence (PL) and performed Raman scattering measurements to analyze the strain relaxation in the dots and the barrier, the effect of the internal electric fields, and the influence of specific growth parameters, like the influence of capping or the spacer on the relaxation of the QDs. A theoretical model, based on continuous elastic theory, were developed to interpret the Raman scattering results. On the other hand, InN NCs have been grown by MBE in the vapor-liquid-solid mode using Au as a catalyst. The nanocolumns have different morphology depending on the growth conditions. The optical properties can be correlated to the morphology of the samples and the best growth conditions can be selected. We observe, from the analysis of the Raman data in InN NCs, the existence of two space regions contributing to the scattering: the surface and the inner region. From the inner region, uncoupled phonon modes are clearly observed, showing the high crystal quality and the complete relaxation of the NCs (no strain). The observation of a LO-phonon-plasmon couple in the same spectra is a fingerprint of the accumulation layer predicted at the surface of the nanocolumns. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Boron nitride nanotubes for spintronics.

    Science.gov (United States)

    Dhungana, Kamal B; Pati, Ranjit

    2014-09-22

    With the end of Moore's law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR) effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT), which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  5. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  6. Two-Dimensional Modeling of Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistor

    National Research Council Canada - National Science Library

    Holmes, Kenneth

    2002-01-01

    Gallium Nitride (GaN) High Electron Mobility Transistors (HEMT's) are microwave power devices that have the performance characteristics to improve the capabilities of current and future Navy radar and communication systems...

  7. Surface modification of 17-4PH stainless steel by DC plasma nitriding and titanium nitride film duplex treatment

    International Nuclear Information System (INIS)

    Qi, F.; Leng, Y.X.; Huang, N.; Bai, B.; Zhang, P.Ch.

    2007-01-01

    17-4PH stainless steel was modified by direct current (DC) plasma nitriding and titanium nitride film duplex treatment in this study. The microstructure, wear resistance and corrosion resistance were characterized by X-ray diffraction (XRD), pin-on-disk tribological test and polarization experiment. The results revealed that the DC plasma nitriding pretreatment was in favor of improving properties of titanium nitride film. The corrosion resistance and wear resistance of duplex treatment specimen was more superior to that of only coated titanium nitride film

  8. Microstructure and mechanical properties of silicon nitride structural ceramics of silicon nitride

    International Nuclear Information System (INIS)

    Strohaecker, T.R.; Nobrega, M.C.S.

    1989-01-01

    The utilization of direct evaluation technic of tenacity for fracturing by hardness impact in silicon nitride ceramics is described. The microstructure were analysied, by Scanning Electron Microscopy, equiped with a microanalysis acessory by X ray energy dispersion. The difference between the values of K IC measure for two silicon nitride ceramics is discussed, in function of the microstructures and the fracture surfaces of the samples studied. (C.G.C.) [pt

  9. Boron nitride nanosheets reinforced glass matrix composites

    Czech Academy of Sciences Publication Activity Database

    Saggar, Richa; Porwal, H.; Tatarko, P.; Dlouhý, Ivo; Reece, M. J.

    2015-01-01

    Roč. 114, SEP (2015), S26-S32 ISSN 1743-6753 R&D Projects: GA MŠk(CZ) 7AMB14SK155 EU Projects: European Commission(XE) 264526 Institutional support: RVO:68081723 Keywords : Boron nitride nanosheets * Borosilicate glass * Mechanical properties Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.162, year: 2015

  10. Alkaline fuel cell with nitride membrane

    Science.gov (United States)

    Sun, Shen-Huei; Pilaski, Moritz; Wartmann, Jens; Letzkus, Florian; Funke, Benedikt; Dura, Georg; Heinzel, Angelika

    2017-06-01

    The aim of this work is to fabricate patterned nitride membranes with Si-MEMS-technology as a platform to build up new membrane-electrode-assemblies (MEA) for alkaline fuel cell applications. Two 6-inch wafer processes based on chemical vapor deposition (CVD) were developed for the fabrication of separated nitride membranes with a nitride thickness up to 1 μm. The mechanical stability of the perforated nitride membrane has been adjusted in both processes either by embedding of subsequent ion implantation step or by optimizing the deposition process parameters. A nearly 100% yield of separated membranes of each deposition process was achieved with layer thickness from 150 nm to 1 μm and micro-channel pattern width of 1μm at a pitch of 3 μm. The process for membrane coating with electrolyte materials could be verified to build up MEA. Uniform membrane coating with channel filling was achieved after the optimization of speed controlled dip-coating method and the selection of dimethylsulfoxide (DMSO) as electrolyte solvent. Finally, silver as conductive material was defined for printing a conductive layer onto the MEA by Ink-Technology. With the established IR-thermography setup, characterizations of MEAs in terms of catalytic conversion were performed successfully. The results of this work show promise for build up a platform on wafer-level for high throughput experiments.

  11. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  12. Covalent biofunctionalization of silicon nitride surfaces

    NARCIS (Netherlands)

    Arafat, A.; Giesbers, M.; Rosso, M.; Sudhölter, E.J.R.; Schroën, C.G.P.H.; White, R.G.; Li Yang,; Linford, M.R.; Zuilhof, H.

    2007-01-01

    Covalently attached organic monolayers on etched silicon nitride (SixN4; x 3) surfaces were prepared by reaction of SixN4-coated wafers with neat or solutions of 1-alkenes and 1-alkynes in refluxing mesitylene. The surface modification was monitored by measurement of the static water contact angle,

  13. Bandgap engineered graphene and hexagonal boron nitride

    Indian Academy of Sciences (India)

    In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green's ...

  14. Plasmonic spectral tunability of conductive ternary nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Kassavetis, S.; Patsalas, P., E-mail: ppats@physics.auth.gr [Department of Physics, Aristotle University of Thessaloniki, GR-54124 Thessaloniki (Greece); Bellas, D. V.; Lidorikis, E. [Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina (Greece); Abadias, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, Université de Poitiers-CNRS-ENSMA, 86962 Chasseneuil-Futuroscope (France)

    2016-06-27

    Conductive binary transition metal nitrides, such as TiN and ZrN, have emerged as a category of promising alternative plasmonic materials. In this work, we show that ternary transition metal nitrides such as Ti{sub x}Ta{sub 1−x}N, Ti{sub x}Zr{sub 1−x}N, Ti{sub x}Al{sub 1−x}N, and Zr{sub x}Ta{sub 1−x}N share the important plasmonic features with their binary counterparts, while having the additional asset of the exceptional spectral tunability in the entire visible (400–700 nm) and UVA (315–400 nm) spectral ranges depending on their net valence electrons. In particular, we demonstrate that such ternary nitrides can exhibit maximum field enhancement factors comparable with gold in the aforementioned broadband range. We also critically evaluate the structural features that affect the quality factor of the plasmon resonance and we provide rules of thumb for the selection and growth of materials for nitride plasmonics.

  15. Ion beam induces nitridation of silicon

    International Nuclear Information System (INIS)

    Petravic, M.; Williams, J.S.; Conway, M.

    1998-01-01

    High dose ion bombardment of silicon with reactive species, such as oxygen and nitrogen, has attracted considerable interest due to possible applications of beam-induced chemical compounds with silicon. For example, high energy oxygen bombardment of Si is now routinely used to form buried oxide layers for device purposes, the so called SIMOX structures. On the other hand, Si nitrides, formed by low energy ( 100 keV) nitrogen beam bombardment of Si, are attractive as oxidation barriers or gate insulators, primarily due to the low diffusivity of many species in Si nitrides. However, little data exists on silicon nitride formation during bombardment and its angle dependence, in particular for N 2 + bombardment in the 10 keV range, which is of interest for analytical techniques such as SIMS. In SIMS, low energy oxygen ions are more commonly used as bombarding species, as oxygen provides stable ion yields and enhances the positive secondary ion yield. Therefore, a large body of data can be found in the literature on oxide formation during low energy oxygen bombardment. Nitrogen bombardment of Si may cause similar effects to oxygen bombardment, as nitrogen and oxygen have similar masses and ranges in Si, show similar sputtering effects and both have the ability to form chemical compounds with Si. In this work we explore this possibility in some detail. We compare oxide and nitride formation during oxygen and nitrogen ion bombardment of Si under similar conditions. Despite the expected similar behaviour, some large differences in compound formation were found. These differences are explained in terms of different atomic diffusivities in oxides and nitrides, film structural differences and thermodynamic properties. (author)

  16. Metal surface nitriding by laser induced plasma

    Science.gov (United States)

    Thomann, A. L.; Boulmer-Leborgne, C.; Andreazza-Vignolle, C.; Andreazza, P.; Hermann, J.; Blondiaux, G.

    1996-10-01

    We study a nitriding technique of metals by means of laser induced plasma. The synthesized layers are composed of a nitrogen concentration gradient over several μm depth, and are expected to be useful for tribological applications with no adhesion problem. The nitriding method is tested on the synthesis of titanium nitride which is a well-known compound, obtained at present by many deposition and diffusion techniques. In the method of interest, a laser beam is focused on a titanium target in a nitrogen atmosphere, leading to the creation of a plasma over the metal surface. In order to understand the layer formation, it is necessary to characterize the plasma as well as the surface that it has been in contact with. Progressive nitrogen incorporation in the titanium lattice and TiN synthesis are studied by characterizing samples prepared with increasing laser shot number (100-4000). The role of the laser wavelength is also inspected by comparing layers obtained with two kinds of pulsed lasers: a transversal-excited-atmospheric-pressure-CO2 laser (λ=10.6 μm) and a XeCl excimer laser (λ=308 nm). Simulations of the target temperature rise under laser irradiation are performed, which evidence differences in the initial laser/material interaction (material heated thickness, heating time duration, etc.) depending on the laser features (wavelength and pulse time duration). Results from plasma characterization also point out that the plasma composition and propagation mode depend on the laser wavelength. Correlation of these results with those obtained from layer analyses shows at first the important role played by the plasma in the nitrogen incorporation. Its presence is necessary and allows N2 dissociation and a better energy coupling with the target. Second, it appears that the nitrogen diffusion governs the nitriding process. The study of the metal nitriding efficiency, depending on the laser used, allows us to explain the differences observed in the layer features

  17. Copper and silver halates

    CERN Document Server

    Woolley, EM; Salomon, M

    2013-01-01

    Copper and Silver Halates is the third in a series of four volumes on inorganic metal halates. This volume presents critical evaluations and compilations for halate solubilities of the Group II metals. The solubility data included in this volume are those for the five compounds, copper chlorate and iodate, and silver chlorate, bromate and iodate.

  18. Nitriding behavior of Ni and Ni-based binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Fonovic, Matej

    2015-01-15

    Gaseous nitriding is a prominent thermochemical surface treatment process which can improve various properties of metallic materials such as mechanical, tribological and/or corrosion properties. This process is predominantly performed by applying NH{sub 3}+H{sub 2} containing gas atmospheres serving as the nitrogen donating medium at temperatures between 673 K and 873 K (400 C and 600 C). NH{sub 3} decomposes at the surface of the metallic specimen and nitrogen diffuses into the surface adjacent region of the specimen whereas hydrogen remains in the gas atmosphere. One of the most important parameters characterizing a gaseous nitriding process is the so-called nitriding potential (r{sub N}) which determines the chemical potential of nitrogen provided by the gas phase. The nitriding potential is defined as r{sub N} = p{sub NH{sub 3}}/p{sub H{sub 2}{sup 3/2}} where p{sub NH{sub 3}} and p{sub H{sub 2}} are the partial pressures of the NH{sub 3} and H{sub 2} in the nitriding atmosphere. In contrast with nitriding of α-Fe where the nitriding potential is usually in the range between 0.01 and 1 atm{sup -1/2}, nitriding of Ni and Ni-based alloys requires employing nitriding potentials higher than 100 atm{sup -1/2} and even up to ∞ (nitriding in pure NH{sub 3} atmosphere). This behavior is compatible with decreased thermodynamic stability of the 3d-metal nitrides with increasing atomic number. Depending on the nitriding conditions (temperature, nitriding potential and treatment time), different phases are formed at the surface of the Ni-based alloys. By applying very high nitriding potential, formation of hexagonal Ni{sub 3}N at the surface of the specimen (known as external nitriding) leads to the development of a compound layer, which may improve tribological properties. Underneath the Ni{sub 3}N compound layer, two possibilities exist: (i) alloying element precipitation within the nitrided zone (known as internal nitriding) and/or (ii) development of metastable and

  19. An assessment of the thermodynamic properties of uranium nitride, plutonium nitride and uranium-plutonium mixed nitride

    International Nuclear Information System (INIS)

    Matsui, T.; Ohse, R.W.

    1986-01-01

    Thermodynamic properties such as vapour pressures, heat capacities and enthalpies of formation for UN(s), PuN(s) and (U, Pu)N(s) are critically evaluated. The equations of the vapour pressures and the heat capacities for the three nitrides are assessed. Thermal functions, and thermodynamic functions for the formation of UN(s), PuN(s) and (U, Pu)N(s), are calculated

  20. The oxidation of titanium nitride- and silicon nitride-coated stainless steel in carbon dioxide environments

    International Nuclear Information System (INIS)

    Mitchell, D.R.G.; Stott, F.H.

    1992-01-01

    A study has been undertaken into the effects of thin titanium nitride and silicon nitride coatings, deposited by physical vapour deposition and chemical vapour deposition processes, on the oxidation resistance of 321 stainless steel in a simulated advanced gas-cooled reactor carbon dioxide environment for long periods at 550 o C and 700 o C under thermal-cycling conditions. The uncoated steel contains sufficient chromium to develop a slow-growing chromium-rich oxide layer at these temperatures, particularly if the surfaces have been machine-abraded. Failure of this layer in service allows formation of less protective iron oxide-rich scales. The presence of a thin (3-4 μm) titanium nitride coating is not very effective in increasing the oxidation resistance since the ensuing titanium oxide scale is not a good barrier to diffusion. Even at 550 o C, iron oxide-rich nodules are able to develop following relatively rapid oxidation and breakdown of the coating. At 700 o C, the coated specimens oxidize at relatively similar rates to the uncoated steel. A thin silicon nitride coating gives improved oxidation resistance, with both the coating and its slow-growing oxide being relatively electrically insulating. The particular silicon nitride coating studied here was susceptible to spallation on thermal cycling, due to an inherently weak coating/substrate interface. (Author)

  1. Preparation and study of the nitrides and mixed carbide-nitrides of uranium and of plutonium

    International Nuclear Information System (INIS)

    Anselin, F.

    1966-06-01

    A detailed description is given of a simple method for preparing uranium and plutonium nitrides by the direct action of nitrogen under pressure at moderate temperatures (about 400 C) on the partially hydrogenated bulk metal. It is shown that there is complete miscibility between the UN and PuN phases. The variations in the reticular parameters of the samples as a function of temperature and in the presence of oxide have been used to detect and evaluate the solubility of oxygen in the different phases. A study has been made of the sintering of these nitrides as a function of the preparation conditions with or without sintering additives. A favorable but non-reproducible, effect has been found for traces of oxide. The best results were obtained for pure UN at 1600 C (96 per cent theoretical density) on condition that a well defined powder, was used. The criterion used is the integral width of the X-ray diffraction lines. The compounds UN and PuN are completely miscible with the corresponding carbides. This makes it possible to prepare carbide-nitrides of the general formula (U,Pu) (C,N) by solid-phase diffusion, at around 1400 C. The sintering of these carbide-nitrides is similar to that of the carbides if the nitrogen content is low; in particular, nickel is an efficient sintering agent. For high contents, the sintering is similar to that of pure nitrides. (author) [fr

  2. Intragranular Chromium Nitride Precipitates in Duplex and Superduplex Stainless Steel

    OpenAIRE

    Iversen, Torunn Hjulstad

    2012-01-01

    Intragranular chromium nitrides is a phenomenon with detrimental effects on material properties in superduplex stainless steels which have not received much attention. Precipitation of nitrides occurs when the ferritic phase becomes supersaturated with nitrogen and there is insufficient time during cooling for diffusion of nitrogen into austenite. Heat treatment was carried out at between 1060◦C and 1160◦C to study the materials susceptibility to nitride precipitation with...

  3. Corrosion stability of cermets on the base of titanium nitride

    International Nuclear Information System (INIS)

    Kajdash, O.N.; Marinich, M.A.; Kuzenkova, M.A.; Manzheleev, I.V.

    1991-01-01

    Corrosion resistance of titanium nitride and its cermets in 5% of HCl, 7% of HNO 3 , 10% of H 2 SO 4 is studied. It is established that alloys TiN-Ni-Mo alloyed with chromium (from 10 to 15%) possess the highest corrosion resistance. Cermet TiN-Cr has the higher stability than titanium nitride due to formation of binary nitride (Ti, Cr)N

  4. Copper carrier protein in copper toxic sheep liver

    Energy Technology Data Exchange (ETDEWEB)

    Harris, A L; Dean, P D.G.

    1973-01-01

    The livers of copper-toxic sheep have been analyzed by gel electrophoresis followed by staining the gels for copper with diethyldithiocarbamate and for protein with amido schwartz. These gels were compared with similar gels obtained from the livers of normal and copper-deficient animals. The copper-toxic livers contained an extra protein band which possessed relatively weakly bound copper. Possible origins of this protein are discussed. 8 references, 1 figure, 2 tables.

  5. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  6. Canine Copper-Associated Hepatitis

    NARCIS (Netherlands)

    Dirksen, Karen; Fieten, Hille

    2017-01-01

    Copper-associated hepatitis is recognized with increasing frequency in dogs. The disease is characterized by centrolobular hepatic copper accumulation, leading to hepatitis and eventually cirrhosis. The only way to establish the diagnosis is by histologic assessment of copper distribution and copper

  7. Posttranslational regulation of copper transporters

    NARCIS (Netherlands)

    van den Berghe, P.V.E.

    2009-01-01

    The transition metal copper is an essential cofactor for many redox-active enzymes, but excessive copper can generate toxic reactive oxygen species. Copper homeostasis is maintained by highly conserved proteins, to balance copper uptake, distribution and export on the systemic and cellular level.

  8. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  9. Review of actinide nitride properties with focus on safety aspects

    Energy Technology Data Exchange (ETDEWEB)

    Albiol, Thierry [CEA Cadarache, St Paul Lez Durance Cedex (France); Arai, Yasuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report provides a review of the potential advantages of using actinide nitrides as fuels and/or targets for nuclear waste transmutation. Then a summary of available properties of actinide nitrides is given. Results from irradiation experiments are reviewed and safety relevant aspects of nitride fuels are discussed, including design basis accidents (transients) and severe (core disruptive) accidents. Anyway, as rather few safety studies are currently available and as many basic physical data are still missing for some actinide nitrides, complementary studies are proposed. (author)

  10. Research and development of nitride fuel cycle technology in Japan

    International Nuclear Information System (INIS)

    Minato, Kazuo; Arai, Yasuo; Akabori, Mitsuo; Tamaki, Yoshihisa; Itoh, Kunihiro

    2004-01-01

    The research on the nitride fuel was started for an advanced fuel, (U, Pn)N, for fast reactors, and the research activities have been expanded to minor actinide bearing nitride fuels. The fuel fabrication, property measurements, irradiation tests and pyrochemical process experiments have been made. In 2002 a five-year-program named PROMINENT was started for the development of nitride fuel cycle technology within the framework of the Development of Innovative Nuclear Technologies by the Ministry of Education, Culture, Sports, Science and Technology of Japan. In the research program PROMINENT, property measurements, pyrochemical process and irradiation experiments needed for nitride fuel cycle technology are being made. (author)

  11. Development of pseudocapacitive molybdenum oxide–nitride for electrochemical capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Yen-Jui Bernie [Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Wu, Haoran [Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Kherani, Nazir P. [Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada); Lian, Keryn, E-mail: keryn.lian@utoronto.ca [Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4 (Canada)

    2015-03-15

    A thin film Mo oxide–nitride pseudocapacitive electrode was synthesized by electrodeposition of Mo oxide on Ti and a subsequent low-temperature (400 °C) thermal nitridation. Two nitridation environments, N{sub 2} and NH{sub 3}, were used and the results were compared. Surface analyses of these nitrided films showed partial conversion of Mo oxide to nitrides, with a lower conversion percentage being the film produced in N{sub 2}. However, the electrochemical analyses showed that the surface of the N{sub 2}-treated film had better pseudocapacitive behaviors and outperformed that nitrided in NH{sub 3}. Cycle life of the resultant N{sub 2}-treated Mo oxide–nitride was also much improved over Mo oxide. A two-electrode cell using Mo oxide–nitride electrodes was demonstrated and showed high rate performance. - Highlights: • Mo(O,N){sub x} was developed by electrodeposition and nitridation in N{sub 2} or NH{sub 3}. • N{sub 2} treated Mo(O,N){sub x} showed a capacitive performance superior to that treated by NH{sub 3}. • The promising electrochemical performance was due to the formation of γ-Mo{sub 2}N.

  12. Modeling the Gas Nitriding Process of Low Alloy Steels

    Science.gov (United States)

    Yang, M.; Zimmerman, C.; Donahue, D.; Sisson, R. D.

    2013-07-01

    The effort to simulate the nitriding process has been ongoing for the last 20 years. Most of the work has been done to simulate the nitriding process of pure iron. In the present work a series of experiments have been done to understand the effects of the nitriding process parameters such as the nitriding potential, temperature, and time as well as surface condition on the gas nitriding process for the steels. The compound layer growth model has been developed to simulate the nitriding process of AISI 4140 steel. In this paper the fundamentals of the model are presented and discussed including the kinetics of compound layer growth and the determination of the nitrogen diffusivity in the diffusion zone. The excellent agreements have been achieved for both as-washed and pre-oxided nitrided AISI 4140 between the experimental data and simulation results. The nitrogen diffusivity in the diffusion zone is determined to be constant and only depends on the nitriding temperature, which is ~5 × 10-9 cm2/s at 548 °C. It proves the concept of utilizing the compound layer growth model in other steels. The nitriding process of various steels can thus be modeled and predicted in the future.

  13. Atomic-layer deposition of silicon nitride

    CERN Document Server

    Yokoyama, S; Ooba, K

    1999-01-01

    Atomic-layer deposition (ALD) of silicon nitride has been investigated by means of plasma ALD in which a NH sub 3 plasma is used, catalytic ALD in which NH sub 3 is dissociated by thermal catalytic reaction on a W filament, and temperature-controlled ALD in which only a thermal reaction on the substrate is employed. The NH sub 3 and the silicon source gases (SiH sub 2 Cl sub 2 or SiCl sub 4) were alternately supplied. For all these methods, the film thickness per cycle was saturated at a certain value for a wide range of deposition conditions. In the catalytic ALD, the selective deposition of silicon nitride on hydrogen-terminated Si was achieved, but, it was limited to only a thin (2SiO (evaporative).

  14. Boron nitride encapsulated graphene infrared emitters

    International Nuclear Information System (INIS)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R.

    2016-01-01

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  15. Boron nitride encapsulated graphene infrared emitters

    Energy Technology Data Exchange (ETDEWEB)

    Barnard, H. R.; Zossimova, E.; Mahlmeister, N. H.; Lawton, L. M.; Luxmoore, I. J.; Nash, G. R., E-mail: g.r.nash@exeter.ac.uk [College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2016-03-28

    The spatial and spectral characteristics of mid-infrared thermal emission from devices containing a large area multilayer graphene layer, encapsulated using hexagonal boron nitride, have been investigated. The devices were run continuously in air for over 1000 h, with the emission spectrum covering the absorption bands of many important gases. An approximate solution to the heat equation was used to simulate the measured emission profile across the devices yielding an estimated value of the characteristic length, which defines the exponential rise/fall of the temperature profile across the device, of 40 μm. This is much larger than values obtained in smaller exfoliated graphene devices and reflects the device geometry, and the increase in lateral heat conduction within the devices due to the multilayer graphene and boron nitride layers.

  16. Nitridation of vanadium by ion beam irradiation

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Chayahara, Akiyoshi; Kinomura, Atsushi; Ensinger, Wolfgang

    1994-01-01

    The nitridation of vanadium by ion beam irradiation is studied by the ion implantation method and the dynamic mixing method. The nitrogen ion implantation was carried out into deposited V(110) films. Using both methods, three phases are formed, i.e. α-V, β-V 2 N, and δ-VN. Which phases are formed is related to the implantation dose or the arrival ratio. The orientation of the VN films produced by the dynamic ion beam mixing method is (100) and that of the VN films produced by the ion implantation method is (111). The nitridation of vanadium is also discussed in comparison with that of titanium and chromium. ((orig.))

  17. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  18. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    Science.gov (United States)

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng

    2016-05-01

    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Silicon Nitride Antireflection Coatings for Photovoltaic Cells

    Science.gov (United States)

    Johnson, C.; Wydeven, T.; Donohoe, K.

    1984-01-01

    Chemical-vapor deposition adapted to yield graded index of refraction. Silicon nitride deposited in layers, refractive index of which decreases with distance away from cell/coating interface. Changing index of refraction allows adjustment of spectral transmittance for wavelengths which cell is most effective at converting light to electric current. Average conversion efficiency of solar cells increased from 8.84 percent to 12.63 percent.

  20. Nanopillar arrays of amorphous carbon nitride

    Science.gov (United States)

    Sai Krishna, Katla; Pavan Kumar, B. V. V. S.; Eswaramoorthy, Muthusamy

    2011-07-01

    Nanopillar arrays of amorphous carbon nitride have been prepared using anodic aluminum oxide (AAO) membrane as a template. The amine groups present on the surface of these nanopillars were exploited for functionalization with oleic acid in order to stabilize the nanostructure at the aqueous-organic interface and also for the immobilization of metal nanoparticles and protein. These immobilised nanoparticles were found to have good catalytic activity.

  1. Formation of aluminium nitride and segregation of Cu impurity atoms in aluminium implanted by high dose nitrogen ions

    International Nuclear Information System (INIS)

    Lin Chenglu; Hemment, P.L.F.; Li Jinhua; Zou Shichang

    1994-01-01

    Aluminium films with a thickness of 7000 A (containing 0.85% copper) were deposited on silicon substrates. 400 keV N 2 + or 350 keV N + ions were implanted into the aluminium films or at the interface between the aluminium and silicon, respectively. Automatic spreading resistance (ASR), Fourier transform infrared spectroscopy (FTIR) and Rutherford backscattering (RBS) and channelling were used to characterize the formation of aluminium nitride and the depth distribution of the Cu impurity in the aluminium films after ion implantation and post-annealing. The formation of a stoichiometric AlN layer with high resistance was evident from ASR, RBS analysis and FTIR measurements by the presence of the absorption band at 650 cm -1 . When the implanted nitrogen is near the interface between the aluminium and silicon, a multilayer structure can be obtained, which consists of aluminium, aluminium nitride and the silicon substrate. Cu, which is a background impurity in the deposited aluminium films, segregated into the synthesised aluminium nitride during high dose nitrogen ion implantation. This is due to irradiation-induced segregation during ion implantation. (orig.)

  2. Bonding silicon nitride using glass-ceramic

    International Nuclear Information System (INIS)

    Dobedoe, R.S.

    1995-01-01

    Silicon nitride has been successfully bonded to itself using magnesium-aluminosilicate glass and glass-ceramic. For some samples, bonding was achieved using a diffusion bonder, but in other instances, following an initial degassing hold, higher temperatures were used in a nitrogen atmosphere with no applied load. For diffusion bonding, a small applied pressure at a temperature below which crystallisation occurs resulted in intimate contact. At slightly higher temperatures, the extent of the reaction at the interface and the microstructure of the glass-ceramic joint was highly sensitive to the bonding temperature. Bonding in a nitrogen atmosphere resulted in a solution-reprecipitation reaction. A thin layer of glass produced a ''dry'', glass-free joint, whilst a thicker layer resulted in a continuous glassy join across the interface. The chromium silicide impurities within the silicon nitride react with the nucleating agent in the glass ceramic, which may lead to difficulty in producing a fine glass-ceramic microstructure. Slightly lower temperatures in nitrogen resulted in a polycrystalline join but the interfacial contact was poor. It is hoped that one of the bonds produced may be developed to eventually form part of a graded joint between silicon nitride and a high temperature nickel alloy. (orig.)

  3. Ion-nitriding of austenitic stainless steels

    International Nuclear Information System (INIS)

    Pacheco, O.; Hertz, D.; Lebrun, J.P.; Michel, H.

    1995-01-01

    Although ion-nitriding is an extensively industrialized process enabling steel surfaces to be hardened by nitrogen diffusion, with a resulting increase in wear, seizure and fatigue resistance, its direct application to stainless steels, while enhancing their mechanical properties, also causes a marked degradation in their oxidation resistance. However, by adaption of the nitriding process, it is possible to maintain the improved wear resistant properties while retaining the oxidation resistance of the stainless steel. The controlled diffusion permits the growth of a nitrogen supersaturated austenite layer on parts made of stainless steel (AISI 304L and 316L) without chromium nitride precipitation. The diffusion layer remains stable during post heat treatments up to 650 F for 5,000 hrs and maintains a hardness of 900 HV. A very low and stable friction coefficient is achieved which provides good wear resistance against stainless steels under diverse conditions. Electrochemical and chemical tests in various media confirm the preservation of the stainless steel characteristics. An example of the application of this process is the treatment of Reactor Control Rod Cluster Assemblies (RCCAs) for Pressurized Water Nuclear Reactors

  4. Thermodynamics of silicon nitridation - Effect of hydrogen

    Science.gov (United States)

    Shaw, N. J.; Zeleznik, F. J.

    1982-01-01

    Equilibrium compositions for the nitridization of Si were calculated to detect the effectiveness of H2 in removal of the oxide film and in increasing the concentration of SiO and reducing the proportions of O2. Gibbs free energy for the formation of SiN2O was computed above 1685 K, and at lower temperatures. The thermodynamic properties of SiN2O2 were then considered from 1000-3000 K, taking into account the known thermodynamic data for 39 molecular combinations of the Si, Ni, and O. The gases formed were assumed ideal mixtures with pure phase condensed species. The mole fractions were obtained for a system of SiO2 with each Si particle covered with a thin layer of SiO2 before nitridation, and a system in which the nitriding atmosphere had access to the Si. The presence of H2 was determined to enhance the removal of NiO2 in the first system, decrease the partial pressure of O2, increase the partial pressures of SiO, Si, H2O, NH3, and SiH4, while its effects were negligible in the Si system.

  5. Thin films of copper oxide and copper grown by atomic layer deposition for applications in metallization systems of microelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Waechtler, Thomas

    2010-05-25

    Copper-based multi-level metallization systems in today's ultralarge-scale integrated electronic circuits require the fabrication of diffusion barriers and conductive seed layers for the electrochemical metal deposition. Such films of only several nanometers in thickness have to be deposited void-free and conformal in patterned dielectrics. The envisaged further reduction of the geometric dimensions of the interconnect system calls for coating techniques that circumvent the drawbacks of the well-established physical vapor deposition. The atomic layer deposition method (ALD) allows depositing films on the nanometer scale conformally both on three-dimensional objects as well as on large-area substrates. The present work therefore is concerned with the development of an ALD process to grow copper oxide films based on the metal-organic precursor bis(trin- butylphosphane)copper(I)acetylacetonate [({sup n}Bu{sub 3}P){sub 2}Cu(acac)]. This liquid, non-fluorinated {beta}-diketonate is brought to react with a mixture of water vapor and oxygen at temperatures from 100 to 160 C. Typical ALD-like growth behavior arises between 100 and 130 C, depending on the respective substrate used. On tantalum nitride and silicon dioxide substrates, smooth films and selfsaturating film growth, typical for ALD, are obtained. On ruthenium substrates, positive deposition results are obtained as well. However, a considerable intermixing of the ALD copper oxide with the underlying films takes place. Tantalum substrates lead to a fast self-decomposition of the copper precursor. As a consequence, isolated nuclei or larger particles are always obtained together with continuous films. The copper oxide films grown by ALD can be reduced to copper by vapor-phase processes. If formic acid is used as the reducing agent, these processes can already be carried out at similar temperatures as the ALD, so that agglomeration of the films is largely avoided. Also for an integration with subsequent

  6. Thin films of copper oxide and copper grown by atomic layer deposition for applications in metallization systems of microelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Waechtler, Thomas

    2010-05-25

    Copper-based multi-level metallization systems in today's ultralarge-scale integrated electronic circuits require the fabrication of diffusion barriers and conductive seed layers for the electrochemical metal deposition. Such films of only several nanometers in thickness have to be deposited void-free and conformal in patterned dielectrics. The envisaged further reduction of the geometric dimensions of the interconnect system calls for coating techniques that circumvent the drawbacks of the well-established physical vapor deposition. The atomic layer deposition method (ALD) allows depositing films on the nanometer scale conformally both on three-dimensional objects as well as on large-area substrates. The present work therefore is concerned with the development of an ALD process to grow copper oxide films based on the metal-organic precursor bis(trin- butylphosphane)copper(I)acetylacetonate [({sup n}Bu{sub 3}P){sub 2}Cu(acac)]. This liquid, non-fluorinated {beta}-diketonate is brought to react with a mixture of water vapor and oxygen at temperatures from 100 to 160 C. Typical ALD-like growth behavior arises between 100 and 130 C, depending on the respective substrate used. On tantalum nitride and silicon dioxide substrates, smooth films and selfsaturating film growth, typical for ALD, are obtained. On ruthenium substrates, positive deposition results are obtained as well. However, a considerable intermixing of the ALD copper oxide with the underlying films takes place. Tantalum substrates lead to a fast self-decomposition of the copper precursor. As a consequence, isolated nuclei or larger particles are always obtained together with continuous films. The copper oxide films grown by ALD can be reduced to copper by vapor-phase processes. If formic acid is used as the reducing agent, these processes can already be carried out at similar temperatures as the ALD, so that agglomeration of the films is largely avoided. Also for an integration with subsequent

  7. Micromachining with copper lasers

    Science.gov (United States)

    Knowles, Martyn R. H.; Bell, Andy; Foster-Turner, Gideon; Rutterford, Graham; Chudzicki, J.; Kearsley, Andrew J.

    1997-04-01

    In recent years the copper laser has undergone extensive development and has emerged as a leading and unique laser for micromachining. The copper laser is a high average power (10 - 250 W), high pulse repetition rate (2 - 32 kHz), visible laser (511 nm and 578 nm) that produces high peak power (typically 200 kW), short pulses (30 ns) and very good beam quality (diffraction limited). This unique set of laser parameters results in exceptional micro-machining in a wide variety of materials. Typical examples of the capabilities of the copper laser include the drilling of small holes (10 - 200 micrometer diameter) in materials as diverse as steel, ceramic, diamond and polyimide with micron precision and low taper (less than 1 degree) cutting and profiling of diamond. Application of the copper laser covers the electronic, aerospace, automotive, nuclear, medical and precision engineering industries.

  8. Homogeneous weldings of copper

    International Nuclear Information System (INIS)

    Campurri, C.; Lopez, M.; Fernandez, R.; Osorio, V.

    1995-01-01

    This research explored the metallurgical and mechanical properties of arc welding of copper related with influence of Argon, Helium and mixtures of them. Copper plates of 6 mm thickness were welded with different mixtures of the mentioned gases. The radiography of welded specimens with 100% He and 100% Ar does not show show any porosity. On the other hand, the copper plates welded different gas mixtures presented uniform porosity in the welded zone. The metallographies show recrystallized grain in the heat affected zone, while the welding zone showed a dendritic structure. The results of the tensile strength vary between a maximum of 227 MPa for 100% He and a minimum of 174 MOa for the mixture of 60% He and 40% Ar. For the elongation after fracture the best values, about 36%, were obtained for pure gases. As a main conclusion, we can say that arc welding of copper is possible without loosing the mechanical and metallurgical properties of base metal. 6 refs

  9. copper(II)

    Indian Academy of Sciences (India)

    Unknown

    bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) ... Abstract. Equilibrium concentrations of various condensed and gaseous phases have been thermodyna- ... phere, over a wide range of substrate temperatures and total reactor pressures.

  10. Bacterial Killing by Dry Metallic Copper Surfaces▿

    OpenAIRE

    Santo, Christophe Espírito; Lam, Ee Wen; Elowsky, Christian G.; Quaranta, Davide; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor

    2010-01-01

    Metallic copper surfaces rapidly and efficiently kill bacteria. Cells exposed to copper surfaces accumulated large amounts of copper ions, and this copper uptake was faster from dry copper than from moist copper. Cells suffered extensive membrane damage within minutes of exposure to dry copper. Further, cells removed from copper showed loss of cell integrity. Acute contact with metallic copper surfaces did not result in increased mutation rates or DNA lesions. These findings are important fir...

  11. LEP copper accelerating cavities

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    These copper cavities were used to generate the radio frequency electric field that was used to accelerate electrons and positrons around the 27-km Large Electron-Positron (LEP) collider at CERN, which ran from 1989 to 2000. The copper cavities were gradually replaced from 1996 with new superconducting cavities allowing the collision energy to rise from 90 GeV to 200 GeV by mid-1999.

  12. Copper intoxication in sheep

    Energy Technology Data Exchange (ETDEWEB)

    Gazaryan, V.S.; Sogoyan, I.S.; Agabalov, G.A.; Mesropyan, V.V.

    1966-01-01

    Of 950 sheep fed hay from a vineyard sprayed regularly with copper sulfate, 143 developed clinical copper poisoning and 103 died. The Cu content of the hay was 10.23 mg%, of the liver of dead sheep 17-52 mg%, and of the blood serum of affected sheep 0.86 mg%. The symptoms and the histological findings in kidneys and liver are described.

  13. RF plasma nitriding of severely deformed iron-based alloys

    International Nuclear Information System (INIS)

    Ferkel, H.; Glatzer, M.; Estrin, Y.; Valiev, R.Z.; Blawert, C.; Mordike, B.L.

    2003-01-01

    The effect of severe plastic deformation by cold high pressure torsion (HPT) on radio frequency (RF) plasma nitriding of pure iron, as well as St2K50 and X5CrNi1810 steels was investigated. Nitriding was carried out for 3 h in a nitrogen atmosphere at a pressure of 10 -5 bar and temperatures of 350 and 400 deg. C. Nitrided specimens were analysed by scanning electron microscopy (SEM), X-ray diffraction and micro hardness measurements. It was found that HPT enhances the effect of nitriding leading almost to doubling of the thickness of the nitrided layer for pure iron and the high alloyed steel. The largest increase in hardness was observed when HPT was combined with RF plasma nitriding at 350 deg. C. In the case of pure iron, the X-ray diffraction spectra showed the formation of ε and γ' nitrides in the compound layer, with a preferential formation of γ' at the expense of the α-phase at the higher nitriding temperature. The corresponding surface hardness was up to 950 HV0.01. While the HPT-processed St2K50 exhibits both nitride phases after nitriding at 350 deg. C, only the γ'-phase was observed after nitriding at 400 deg. C. A surface hardness of up to 1050 HV0.01 was measured for this steel. The high alloyed steel X5CrNi1810 exhibited the highest increase in surface hardness when HPT was combined with nitriding at 350 deg. C. The surface hardness of this steel was greater than 1400 HV0.025. The XRD analyses indicate the formation of the expanded austenite (S-phase) in the surface layer as a result of RF plasma nitriding. Furthermore, after HPT X5CrNi1810 was transformed completely into deformation martensite which did not transform back to austenite under thermochemical treatment. However, in the case of nitriding of the HPT-processed high alloyed steel at 400 deg. C, the formation of the S-phase was less pronounced. In view of the observed XRD peak broadening, the formation of nitrides, such as e.g. CrN, cannot be ruled out

  14. Plasma nitriding - an eco friendly surface hardening process

    International Nuclear Information System (INIS)

    Mukherjee, S.

    2015-01-01

    Surface hardening is a process of heating the metal such that the surface gets only hardened. This process is adopted for many components like gears, cams, and crankshafts, which desire high hardness on the outer surface with a softer core to withstand the shocks. So, to attain such properties processes like carburising, nitriding, flame hardening and induction hardening are employed. Amongst these processes nitriding is the most commonly used process by many industries. In nitriding process the steel material is heated to a temperature of around 550 C and then exposed to atomic nitrogen. This atomic nitrogen reacts with iron and other alloying elements and forms nitrides, which are very hard in nature. By this process both wear resistance and hardness of the product can be increased. The atomic nitrogen required for this process can be obtained using ammonia gas (gas nitriding), cyanide based salt bath (liquid nitriding) and plasma medium (plasma nitriding). However, plasma nitriding has recently received considerable industrial interest owing to its characteristic of faster nitrogen penetration, short treatment time, low process temperature, minimal distortion, low energy use and easier control of layer formation compared with conventional techniques such as gas and liquid nitriding. This process can be used for all ferrous materials including stainless steels. Plasma nitriding is carried out using a gas mixture of nitrogen and hydrogen gas at sub atmospheric pressures hence, making it eco-friendly in nature. Plasma nitriding allows modification of the surface layers and hardness profiles by changing the gas mixture and temperature. The wide applicable temperature range enables a multitude of applications, beyond the possibilities of gas or salt bath processes. This has led to numerous applications of this process in industries such as the manufacture of machine parts for plastics and food processing, packaging and tooling as well as pumps and hydraulic, machine

  15. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  16. 77 FR 51825 - Ferrovanadium and Nitrided Vanadium From Russia

    Science.gov (United States)

    2012-08-27

    ... Nitrided Vanadium From Russia Determination On the basis of the record \\1\\ developed in the subject five... order on ferrovanadium and nitrided vanadium from Russia would not be likely to lead to continuation or recurrence of material injury to an industry in the United States within a reasonably foreseeable time. \\1...

  17. Fabrication of functional structures on thin silicon nitride membranes

    NARCIS (Netherlands)

    Ekkels, P.; Tjerkstra, R.W.; Krijnen, Gijsbertus J.M.; Berenschot, Johan W.; Brugger, J.P.; Elwenspoek, Michael Curt

    A process to fabricate functional polysilicon structures above large (4×4 mm2) thin (200 nm), very flat LPCVD silicon rich nitride membranes was developed. Key features of this fabrication process are the use of low-stress LPCVD silicon nitride, sacrificial layer etching, and minimization of

  18. Process for producing ceramic nitrides anc carbonitrides and their precursors

    Science.gov (United States)

    Brown, G.M.; Maya, L.

    1987-02-25

    A process for preparing ceramic nitrides and carbon nitrides in the form of very pure, fine particulate powder. Appropriate precursors is prepared by reaching a transition metal alkylamide with ammonia to produce a mixture of metal amide and metal imide in the form of an easily pyrolyzable precipitate.

  19. Low Temperature Gaseous Nitriding of a Stainless Steel Containing Strong Nitride Formers

    DEFF Research Database (Denmark)

    Fernandes, Frederico Augusto Pires; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    Low temperature thermochemical surface hardening of the precipitation hardening austenitic stainless steel A286 in solution treated state was investigated. A286 contains, besides high amounts of Cr, also substantial amounts of strong nitride formers as Ti, Al and V. It is shown that simultaneous...

  20. Problems and possibilities of development of boron nitride ceramics

    International Nuclear Information System (INIS)

    Rusanova, L.N.; Romashin, A.G.; Kulikova, G.I.; Golubeva, O.P.

    1988-01-01

    The modern state of developments in the field of technology of ceramics produced from boron nitride is analyzed. Substantial difficulties in production of pure ceramics from hexagonal and wurtzite-like boron nitride are stated as related to the structure peculiarities and inhomogeneity of chemical bonds in elementary crystal cells of various modifications. Advantages and disadvantages of familiar technological procedures in production of boron nitride ceramics are compared. A new technology is suggested, which is based on the use of electroorganic compounds for hardening and protection of porous high-purity boron-nitride die from oxidation, and as high-efficient sintered elements for treatment of powders of various structures and further pyrolisis. The method is called thermal molecular lacing (TML). Properties of ceramics produced by the TML method are compared with characteristics of well-known brands of boron nitride ceramics

  1. Electrochemical behavior of rare earth metals and their nitrides

    International Nuclear Information System (INIS)

    Ito, Yasuhiko; Goto, Takuya

    2004-01-01

    Pyrometallurgical recycle process using molten salts is considered to be a high potential in pyro-reprocess technologies for spent nitride fuels, and it is important to understand chemical and electro-chemical behavior of nitrides and metals in molten salts. In this study, cadmium nitrates deposited on the anode Cd plate in motlen salt (LiCl-KCl) with addition of Li 3 N are examined. The cadmium nitrates deposited have various compositions corresponding to polarization potentials and then, the relationship between the deposition potential of nitride Cd and their composition is cleared. Their standard chemical potential of CdN is estimated from electrochemical measurement. And then, potential-pH 3- diagram is drawn by voltametry examination of nitride resolution behavior with using thermochemical data of nitrides. (A. Hishinuma)

  2. Exploring electrolyte preference of vanadium nitride supercapacitor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Chen, Zhaohui; Lu, Gang [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China); Wang, Tianhu [School of Electrical Information and Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Ge, Yunwang, E-mail: ywgelit@126.com [Department of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471023 (China)

    2016-04-15

    Highlights: • Hierarchical VN nanostructures were prepared on graphite foam. • Electrolyte preference of VN supercapacitor electrodes was explored. • VN showed better capacitive property in organic and alkaline electrolytes than LiCl. - Abstract: Vanadium nitride hierarchical nanostructures were prepared through an ammonia annealing procedure utilizing vanadium pentoxide nanostructures grown on graphite foam. The electrochemical properties of hierarchical vanadium nitride was tested in aqueous and organic electrolytes. As a result, the vanadium nitride showed better capacitive energy storage property in organic and alkaline electrolytes. This work provides insight into the charge storage process of vanadium nitride and our findings can shed light on other transition metal nitride-based electrochemical energy storage systems.

  3. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  4. The Effect of Polymer Char on Nitridation Kinetics of Silicon

    Science.gov (United States)

    Chan, Rickmond C.; Bhatt, Ramakrishna T.

    1994-01-01

    Effects of polymer char on nitridation kinetics of attrition milled silicon powder have been investigated from 1200 to 1350 C. Results indicate that at and above 1250 C, the silicon compacts containing 3.5 wt percent polymer char were fully converted to Si3N4 after 24 hr exposure in nitrogen. In contrast, the silicon compacts without polymer char could not be fully converted to Si3N4 at 1350 C under similar exposure conditions. At 1250 and 1350 C, the silicon compacts with polymer char showed faster nitridation kinetics than those without the polymer char. As the polymer char content is increased, the amount of SiC in the nitrided material is also increased. By adding small amounts (approx. 2.5 wt percent) of NiO, the silicon compacts containing polymer char can be completely nitrided at 1200 C. The probable mechanism for the accelerated nitridation of silicon containing polymer char is discussed.

  5. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    International Nuclear Information System (INIS)

    Bouanis, F.Z.; Bentiss, F.; Bellayer, S.; Vogt, J.B.; Jama, C.

    2011-01-01

    Highlights: → C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. → RF plasma treatment enables nitriding for non-heated substrates. → The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. → Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe x N. → The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N 2 gas. Surface characterizations before and after N 2 plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 μm for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV 0.005 at a plasma processing time of 8 h.

  6. Radiofrequency cold plasma nitrided carbon steel: Microstructural and micromechanical characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Bouanis, F.Z. [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Bentiss, F. [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco); Bellayer, S.; Vogt, J.B. [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France); Jama, C., E-mail: charafeddine.jama@ensc-lille.fr [Universite Lille Nord de France, F-59000 Lille (France); Unite Materiaux et Transformations (UMET), Ingenierie des Systemes Polymeres, CNRS UMR 8207, ENSCL, BP 90108, F-59652 Villeneuve d' Ascq Cedex (France)

    2011-05-16

    Highlights: {yields} C38 carbon steel samples were plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge. {yields} RF plasma treatment enables nitriding for non-heated substrates. {yields} The morphological and chemical analyses show the formation of a uniform thickness on the surface of the nitrided C38 steel. {yields} Nitrogen plasma active species diffuse into the samples and lead to the formation of Fe{sub x}N. {yields} The increase in microhardness values for nitrided samples with plasma processing time is interpreted by the formation of a thicker nitrided layer on the steel surface. - Abstract: In this work, C38 carbon steel was plasma nitrided using a radiofrequency (rf) nitrogen plasma discharge on non-heated substrates. General characterizations were performed to compare the chemical compositions, the microstructures and hardness of the untreated and plasma treated surfaces. The plasma nitriding was carried out on non-heated substrates at a pressure of 16.8 Pa, using N{sub 2} gas. Surface characterizations before and after N{sub 2} plasma treatment were performed by means of the electron probe microanalysis (EPMA), X-ray photoelectron spectroscopy (XPS) and Vickers microhardness measurements. The morphological and chemical analysis showed the formation of a uniform structure on the surface of the nitrided sample with enrichment in nitrogen when compared to untreated sample. The thickness of the nitride layer formed depends on the treatment time duration and is approximately 14 {mu}m for 10 h of plasma treatment. XPS was employed to obtain chemical-state information of the plasma nitrided steel surfaces. The micromechanical results show that the surface microhardness increases as the plasma-processing time increases to reach, 1487 HV{sub 0.005} at a plasma processing time of 8 h.

  7. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    Science.gov (United States)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  8. Copper : recession and recovery

    International Nuclear Information System (INIS)

    Warwick-Ching, T.

    2002-01-01

    In 2002, the world output for copper will fall for the first time in nearly a decade because of financial pressure and voluntary constraints. Cutbacks at copper mines amount to 760,000 tonnes per year. These cutbacks have occurred mostly in the United States which holds the largest share of high cost mines. This paper discussed recent developments in both copper supply and demand. The United States is unique as both a large consumer and producer of copper. At 1.35 million tonnes, US mine output in 2001 was at its lowest since 1987. The cutbacks in mining in general were described in this paper with particular reference to the huge loss of mining and metallurgical activity in the United States during a prolonged period of low prices in the mid 1980s. The author noted that this period was followed by an exceptional decade when much of the industry rebounded. Only 8 mines closed outright in the United States and a handful in Canada since the recession of the 1980s, but that is partly because mines got bigger and there are fewer small mines in North America. There are only 4 electrolytic refineries and 3 smelters still active in the entire United States, of which 2 are operating at a fraction of capacity. It was noted that only the buoyancy of China prevented a much bigger decline in copper demand on a global scale

  9. Electrochemical capacitance performance of titanium nitride nanoarray

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China); Wang, Yong [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Du, Hongxiu [School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189 (China); Suzhou Research Institute of Southeast University, Suzhou 215123 (China)

    2013-12-01

    Highlights: • TiN nanoarray is formed by a nitridation process of TiO{sub 2} in ammonia atmosphere. • TiN nanoarray exhibits much higher EDLC capacitance than TiO{sub 2} nanoarray. • The specific capacitance of TiN nanoarray achieves a high level of 99.7 mF cm{sup −2}. • A flexible solid-state supercapacitor is constructed by TiN nanoarray and PVA gel. -- Abstract: In this study, titanium nitride (TiN) nanoarrays with a short nanotube and long nanopore structure have been prepared by an anodization process of ultra thin titanium foil in ethylene glycol (EG) solution containing ammonium fluoride, subsequent calcination process in an air atmosphere, and final nitridation process in an ammonia atmosphere. The morphology and microstructure characterization has been conducted using field emission scanning electron microscope and X-ray diffraction. The electrochemical properties have been investigated through cyclic voltammetry and electrochemical impedance spectrum measurements. The electrochemical capacitance performance has been investigated by galvanostatic charge–discharge measurements in the acidic, neural and alkali electrolyte solution. Well-defined TiN nanoarrays contribute a much higher capacitance performance than titania (TiO{sub 2}) in the supercapacitor application due to the extraordinarily improved electrical conductivity. Such an electrochemical capacitance can be further enhanced by increasing aspect ratio of TiN nanoarray from short nanotubes to long nanopores. A flexible supercapacitor has been constructed using two symmetrical TiN nanoarray electrodes and a polyvinyl alcohol (PVA) gel electrolyte with H{sub 2}SO{sub 4}–KCl–H{sub 2}O–EG. Such a supercapacitor has a highly improved potential window and still keeps good electrochemical energy storage. TiN nanoarray with a high aspect ratio can act well as an ultra thin film electrode material of flexible supercapacitor to contribute a superior capacitance performance.

  10. Reactive sputter deposition of boron nitride

    International Nuclear Information System (INIS)

    Jankowski, A.F.; Hayes, J.P.; McKernan, M.A.; Makowiecki, D.M.

    1995-10-01

    The preparation of fully dense, boron targets for use in planar magnetron sources has lead to the synthesis of Boron Nitride (BN) films by reactive rf sputtering. The deposition parameters of gas pressure, flow and composition are varied along with substrate temperature and applied bias. The films are characterized for composition using Auger electron spectroscopy, for chemical bonding using Raman spectroscopy and for crystalline structure using transmission electron microscopy. The deposition conditions are established which lead to the growth of crystalline BN phases. In particular, the growth of an adherent cubic BN coating requires 400--500 C substrate heating and an applied -300 V dc bias

  11. Packing C60 in Boron Nitride Nanotubes

    Science.gov (United States)

    Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A.

    2003-04-01

    We have created insulated C60 nanowire by packing C60 molecules into the interior of insulating boron nitride nanotubes (BNNTs). For small-diameter BNNTs, the wire consists of a linear chain of C60 molecules. With increasing BNNT inner diameter, unusual C60 stacking configurations are obtained (including helical, hollow core, and incommensurate) that are unknown for bulk or thin-film forms of C60. C60 in BNNTs thus presents a model system for studying the properties of dimensionally constrained ``silo'' crystal structures. For the linear-chain case, we have fused the C60 molecules to form a single-walled carbon nanotube inside the insulating BNNT.

  12. Doping of III-nitride materials

    OpenAIRE

    Pampili, Pietro; Parbrook, Peter J.

    2016-01-01

    In this review paper we will report the current state of research regarding the doping of III-nitride materials and their alloys. GaN is a mature material with both n-type and p-type doping relatively well understood, and while n-GaN is easily achieved, p-type doping requires much more care. There are significant efforts to extend the composition range that can be controllably doped for AlGaInN alloys. This would allow application in shorter and longer wavelength optoelectronics as well as ex...

  13. Stability analysis of zigzag boron nitride nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Hari Mohan, E-mail: rai.2208@gmail.com; Late, Ravikiran; Saxena, Shailendra K.; Kumar, Rajesh; Sagdeo, Pankaj R. [Indian Institute of Technology, Indore –452017 (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM- Indian Institute of Information Technology, Design and Manufacturing, Jabalpur – 482005 (India); Srivastava, Pankaj [Computational Nanoscience and Technology Lab. (CNTL), ABV- Indian Institute of Information Technology and Management, Gwalior – 474015 (India)

    2015-05-15

    We have explored the structural stability of bare and hydrogenated zigzag boron nitride nanoribbons (ZBNNRs). In order to investigate the structural stability, we calculate the cohesive energy for bare, one-edge and both edges H-terminated ZBNNRs with different widths. It is found that the ZBNNRs with width Nz=8 are energetically more favorable than the lower-width counterparts (Nz<8). Bare ZBNNRs have been found energetically most stable as compared to the edge terminated ribbons. Our analysis reveals that the structural stability is a function of ribbon-width and it is not affected significantly by the type of edge-passivation (one-edge or both-edges)

  14. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  15. Hardness of carbides, nitrides, and borides

    International Nuclear Information System (INIS)

    Schroeter, W.

    1981-01-01

    Intermetallic compounds of metals with non-metals such as C, N, and B show different hardness. Wagner's interaction parameter characterizes manner and extent of the interaction between the atoms of the substance dissolved and the additional elements in metallic mixed phases. An attempt has been made to correlate the hardness of carbides, nitrides, and borides (data taken from literature) with certain interaction parameters and associated thermodynamic quantities (ΔH, ΔG). For some metals of periods 4, 5, and 6 corresponding relations were found between microhardness, interaction parameters, heat of formation, and atomic number

  16. The failure of aluminium nitride under shock

    International Nuclear Information System (INIS)

    Pickup, I.M.; Bourne, N.K.

    2002-01-01

    The shear strength of aluminium nitride has been measured over a range of impact stresses by measuring lateral stresses in plate impact experiments. The range of impact stress spanned several key shock thresholds for the material, pre and post Hugoniot elastic limit and up to values where the hexagonal to cubic phase transition starts. The shear strength measurements indicate significant inelastic damage at stress levels in excess of the HEL, but a significant recovery of strength at the highest impact stress was observed. This stress equates to the phase transition stress. The shear strength behaviour is compared to that of silicon carbide, which does not exhibit a phase change at these impact velocities

  17. Surface enrichment with chrome and nitriding of IF steel under an abnormal glow discharge

    International Nuclear Information System (INIS)

    Meira, S.R.; Borges, P.C.; Bernardelli, E.A.

    2014-01-01

    The objective of this work is to evaluate the influence of surface enrichment of IF steel with chrome, and nitriding, the formation of the nitrided layer. Thus, IF steel samples were subjected to surface enrichment process, using 409 stainless steel as a target for sputtering, followed by plasma nitriding, both under a dc abnormal glow discharge. The enrichment treatment was operated at 1200 ° C for 3h. The nitriding treatment was operated at 510 ° C for 2 h. The influence of the treatments on the layers formed was studied through optical microscopy (OM), scan electron microscopy (SEM), X-ray diffraction (XRD) and Vickers microindentation. The results show that the enrichment is effective to enrich the IF surface, furthermore, improves the characteristics of nitriding, comparing nitriding samples to nitriding and enriched, was observed needles of nitrides, as well as a higher hardness, which is associated with the nitrides of chrome, on the nitriding and enriched samples. (author)

  18. Copper and copper-nickel alloys as zebra mussel antifoulants

    Energy Technology Data Exchange (ETDEWEB)

    Dormon, J.M.; Cottrell, C.M.; Allen, D.G.; Ackerman, J.D.; Spelt, J.K. [Univ. of Toronto, Ontario (Canada)

    1996-04-01

    Copper has been used in the marine environment for decades as cladding on ships and pipes to prevent biofouling by marine mussels (Mytilus edulis L.). This motivated the present investigation into the possibility of using copper to prevent biofouling in freshwater by both zebra mussels and quagga mussels (Dreissena polymorpha and D. bugensis collectively referred to as zebra mussels). Copper and copper alloy sheet proved to be highly effective in preventing biofouling by zebra mussels over a three-year period. Further studies were conducted with copper and copper-nickel mesh (lattice of expanded metal) and screen (woven wire with a smaller hole size), which reduced the amount of copper used. Copper screen was also found to be strongly biofouling-resistant with respect to zebra mussels, while copper mesh reduced zebra mussel biofouling in comparison to controls, but did not prevent it entirely. Preliminary investigations into the mechanism of copper antifouling, using galvanic couples, indicated that the release of copper ions from the surface of the exposed metal into the surrounding water is directly or indirectly responsible for the biofouling resistance of copper.

  19. Electrical conduction in composites containing copper core-copper

    Indian Academy of Sciences (India)

    Composites of nanometre-sized copper core-copper oxide shell with diameters in the range 6.1 to 7.3 nm dispersed in a silica gel were synthesised by a technique comprising reduction followed by oxidation of a suitably chosen precursor gel. The hot pressed gel powders mixed with nanometre-sized copper particles ...

  20. Study of copper fluorination

    International Nuclear Information System (INIS)

    Gillardeau, J.

    1967-02-01

    This report deals with the action of fluorine on copper. Comprehensive descriptions are given of the particular technological methods and of the preparation of the reactants. This fluorination reaction has been studied at medium and low fluorine pressures. A nucleation and growth phenomenon is described. The influence of a pollution of the gas phase on the fluorination process is described. The solid-state reaction between cupric fluoride and cooper has also been studied. A special study has been made of the growth of copper deposits by thermal decomposition of gaseous fluorides. (author) [fr

  1. Brazing copper to dispersion-strengthened copper

    Science.gov (United States)

    Ryding, David G.; Allen, Douglas; Lee, Richard H.

    1996-11-01

    The advanced photon source is a state-of-the-art synchrotron light source that will produce intense x-ray beams, which will allow the study of smaller samples and faster reactions and processes at a greater level of detail than has ben possible to date. The beam is produced by using third- generation insertion devices in a 7-GeV electron/positron storage ring that is 1,104 meters in circumference. The heat load from these intense high-power devices is very high, and certain components must sustain total heat loads of 3 to 15 kW and heat fluxes of 30 W/mm$_2). Because the beams will cycle on and off many times, thermal shock and fatigue will be a problem. High heat flux impinging on a small area causes a large thermal gradient that results in high stress. GlidCop, a dispersion-strengthened copper, is the desired design material because of its high thermal conductivity and superior mechanical properties as compared to copper and its alloys. GlidCop is not amenable to joining by fusion welding, and brazing requires diligence because of high diffusivity. Brazing procedures were developed using optical and scanning electron microscopy.

  2. Microstructural characterization of pulsed plasma nitrided 316L stainless steel

    International Nuclear Information System (INIS)

    Asgari, M.; Barnoush, A.; Johnsen, R.; Hoel, R.

    2011-01-01

    Highlights: → The low temperature pulsed plasma nitrided layer of 316 SS was studied. → The plastic deformation induced in the austenite due to nitriding is characterized by EBSD at different depths (i.e., nitrogen concentration). → Nanomechanical properties of the nitride layer was investigated by nanoindentation at different depths (i.e., nitrogen concentration). → High hardness, high nitrogen concentration and high dislocation density is detected in the nitride layer. → The hardness and nitrogen concentration decreased sharply beyond the nitride layer. - Abstract: Pulsed plasma nitriding (PPN) treatment is one of the new processes to improve the surface hardness and tribology behavior of austenitic stainless steels. Through low temperature treatment (<440 deg. C), it is possible to obtain unique combinations of wear and corrosion properties. Such a combination is achieved through the formation of a so-called 'extended austenite phase'. These surface layers are often also referred to as S-phase, m-phase or γ-phase. In this work, nitrided layers on austenitic stainless steels AISI 316L (SS316L) were examined by means of a nanoindentation method at different loads. Additionally, the mechanical properties of the S-phase at different depths were studied. Electron back-scatter diffraction (EBSD) examination of the layer showed a high amount of plasticity induced in the layer during its formation. XRD results confirmed the formation of the S-phase, and no deleterious CrN phase was detected.

  3. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Portolan, E. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Baumvol, I.J.R. [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil); Instituto de Fisica, Universidade Federal do Rio Grande do Sul, Porto Alegre 91509-970 (Brazil); Figueroa, C.A., E-mail: cafiguer@ucs.br [Centro de Ciencias Exatas e Tecnologia, Universidade de Caxias do Sul, 95070-560 Caxias do Sul-RS (Brazil)

    2009-04-15

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p{sub 3/2} photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN{sub x}). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  4. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Genel, K. [Sakarya Univ., Adapazari (Turkey). Mech. Eng. Dept.; Demirkol, M.; Guelmez, T. [Faculty of Mechanical Engineering, Istanbul Technical University, Guemuessuyu, 80191, Istanbul (Turkey)

    2000-08-31

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10{sup 7} cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  5. Corrosion fatigue behaviour of ion nitrided AISI 4140 steel

    International Nuclear Information System (INIS)

    Genel, K.

    2000-01-01

    Machine components suffer from corrosion degradation of fatigue characteristics and improvement can be attained by the application of a nitriding treatment, particularly to low alloy steels. In the present study, the effect of ion nitriding on corrosion fatigue performance of AISI 4140 steel has been investigated by conducting a series of rotary bending corrosion fatigue tests at 95 Hz, in 3% NaCl aqueous solution. Hourglass shaped, 4 mm diameter fatigue specimens were ion nitrided at 748 K for 1, 3, 8 and 16 h prior to the tests. It was observed that distinct fatigue limit behaviour of ion nitrided steel in air completely disappeared in corrosive environment besides severe degradation in fatigue characteristics. An improvement reaching to 60% in corrosion fatigue strength can be attained by successive ion nitriding practice based on a fatigue life of 10 7 cycles. An attempt was made to establish an empirical relationship between corrosion fatigue strength and relative case depth, which considers the size of the ion nitrided specimen. It was also determined that a power relationship holds between corrosion fatigue strength and fatigue life of ion nitrided steel. The presence of white layer has resulted in additional improvement in corrosion fatigue resistance, and it was observed that corrosion fatigue cracks were initiated dominantly under the white layer by pit formation mechanism. (orig.)

  6. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    Science.gov (United States)

    Portolan, E.; Baumvol, I. J. R.; Figueroa, C. A.

    2009-04-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  7. Electronic structure and mechanical properties of plasma nitrided ferrous alloys

    International Nuclear Information System (INIS)

    Portolan, E.; Baumvol, I.J.R.; Figueroa, C.A.

    2009-01-01

    The electronic structures of the near-surface regions of two different nitrided steels (AISI 316 and 4140) were investigated using X-ray photoelectron spectroscopy. Photoelectron groups from all main chemical elements involved were addressed for steel samples with implanted-N concentrations in the range 16-32 at.%. As the implanted-N concentrations were increased, rather contrasting behaviors were observed for the two kinds of steel. The N1s photoelectrons had spectral shifts toward lower (nitrided AISI 316) or higher (nitrided AISI 4140) binding energies, whereas the Fe2p 3/2 photoelectron spectrum remains at a constant binding energy (nitrided AISI 316) or shifts toward higher binding energies (AISI 4140). These trends are discussed in terms of the metallic nitride formation and the overlapping of atomic orbitals. For nitrided AISI 316, a semi-classical approach of charge transfer between Cr and N is used to explain the experimental facts (formation of CrN), while for nitrided AISI 4140 we propose that the interaction between orbitals 4s from Fe and 2p from N promotes electrons to the conduction band increasing the electrical attraction of the N1s and Fe2p electrons in core shells (formation of FeN x ). The increase in hardness of the steel upon N implantation is attributed to the localization of electrons in specific bonds, which diminishes the metallic bond character.

  8. Characterization of plasma nitrided layers produced on sintered iron

    Directory of Open Access Journals (Sweden)

    Marcos Alves Fontes

    2014-07-01

    Full Text Available Plasma nitriding is a thermo-physical-chemical treatment process, which promotes surface hardening, caused by interstitial diffusion of atomic nitrogen into metallic alloys. In this work, this process was employed in the surface modification of a sintered ferrous alloy. Scanning electron microscopy (SEM, X-ray diffraction (XRD analyses, and wear and microhardness tests were performed on the samples submitted to ferrox treatment and plasma nitriding carried out under different conditions of time and temperature. The results showed that the nitride layer thickness is higher for all nitrided samples than for ferrox treated samples, and this layer thickness increases with nitriding time and temperature, and temperature is a more significant variable. The XRD analysis showed that the nitrided layer, for all samples, near the surface consists in a mixture of γ′-Fe4N and ɛ-Fe3N phases. Both wear resistance and microhardness increase with nitriding time and temperature, and temperature influences both the characteristics the most.

  9. Anti corrosion layer for stainless steel in molten carbonate fuel cell - comprises phase vapour deposition of titanium nitride, aluminium nitride or chromium nitride layer then oxidising layer in molten carbonate electrolyte

    DEFF Research Database (Denmark)

    2000-01-01

    Forming an anticorrosion protective layer on a stainless steel surface used in a molten carbonate fuel cell (MCFC) - comprises the phase vapour deposition (PVD) of a layer comprising at least one of titanium nitride, aluminium nitride or chromium nitride and then forming a protective layer in situ...

  10. Nanoscratch characterization of indium nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Lian, Derming [Chin-Yi Univ. of Technology, Taichung, Taiwan (China). Dept. of Mechanical Engineering

    2014-01-15

    In this study we used RF plasma-assisted molecular beam epitaxy for the epitaxial growth of single-crystalline indium nitride (InN) thin films on aluminum nitride buffer layers/Si (111) substrates. We then used scratch techniques to study the influence of the c-axis orientation of the InN films and the beam interactions on the tribological performance of these samples. When grown at 440, 470, and 500 C, the coefficients of friction were 0.18, 0.22, and 0.26, respectively, under a normal force (F{sub n}) of 2000 {mu}N; 0.19, 0.23, and 0.27, respectively, under a value of Fn of 4000 {mu}N; and 0.21, 0.24, and 0.28, respectively, under a value of F{sub n} of 6000 {mu}N. These measured values increased slightly upon increasing the growth temperature because of the resulting smaller sizes of the apertures and/or pores in the inner films. The sliding resistance of the ploughed area was observed. The contact sliding line became increasingly noticeable upon increasing the value of F{sub n}; the plot of the friction with respect to the penetration depth revealed a significant relation in its adhesion properties presentation. (orig.)

  11. Graphyne–graphene (nitride) heterostructure as nanocapacitor

    International Nuclear Information System (INIS)

    Bhattacharya, Barnali; Sarkar, Utpal

    2016-01-01

    Highlights: • Binding energy of heterostructures indicates the exothermic nature. • Increasing electric field enhances charge and energy stored in the system. • The external electric fields amplify the charge transfer between two flakes. • The capacitance value gets saturated above a certain electric field. - Abstract: A nanoscale capacitor composed of heterostructure derived from finite size graphyne flake and graphene (nitride) flake has been proposed and investigated using density functional theory (DFT). The exothermic nature of formation process of these heterostructures implies their stability. Significant charge transfer between two flakes generates permanent dipole in this heterostructures. The amount of charge transfer is tunable under the application of external electric field which enhances their applicability in electronics. We have specifically focused on the capacitive properties of different heterostructure composed of graphyne flake and graphene (nitride) flake, i.e., graphyne/graphene, graphyne/h-BN, graphyne/AlN, graphyne/GaN. The charge stored by each flake, energy storage, and capacitance are switchable under external electric field. Thus, our modeled heterostructures are a good candidate as nanoscale capacitor and can be used in nanocircuit. We found that the charge stored by each flake, energy storage, and capacitance value are highest for graphyne/GaN heterostructures.

  12. Stable boron nitride diamondoids as nanoscale materials

    International Nuclear Information System (INIS)

    Fyta, Maria

    2014-01-01

    We predict the stability of diamondoids made up of boron and nitrogen instead of carbon atoms. The results are based on quantum-mechanical calculations within density functional theory (DFT) and show some very distinct features compared to the regular carbon-based diamondoids. These features are evaluated with respect to the energetics and electronic properties of the boron nitride diamondoids as compared to the respective properties of the carbon-based diamondoids. We find that BN-diamondoids are overall more stable than their respective C-diamondoid counterparts. The electronic band-gaps (E g ) of the former are overall lower than those for the latter nanostructures but do not show a very distinct trend with their size. Contrary to the lower C-diamondoids, the BN-diamondoids are semiconducting and show a depletion of charge on the nitrogen site. Their differences in the distribution of the molecular orbitals, compared to their carbon-based counterparts, offer additional bonding and functionalization possibilities. These tiny BN-based nanostructures could potentially be used as nanobuilding blocks complementing or substituting the C-diamondoids, based on the desired properties. An experimental realization of boron nitride diamondoids remains to show their feasibility. (paper)

  13. Graphyne–graphene (nitride) heterostructure as nanocapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Barnali; Sarkar, Utpal, E-mail: utpalchemiitkgp@yahoo.com

    2016-10-20

    Highlights: • Binding energy of heterostructures indicates the exothermic nature. • Increasing electric field enhances charge and energy stored in the system. • The external electric fields amplify the charge transfer between two flakes. • The capacitance value gets saturated above a certain electric field. - Abstract: A nanoscale capacitor composed of heterostructure derived from finite size graphyne flake and graphene (nitride) flake has been proposed and investigated using density functional theory (DFT). The exothermic nature of formation process of these heterostructures implies their stability. Significant charge transfer between two flakes generates permanent dipole in this heterostructures. The amount of charge transfer is tunable under the application of external electric field which enhances their applicability in electronics. We have specifically focused on the capacitive properties of different heterostructure composed of graphyne flake and graphene (nitride) flake, i.e., graphyne/graphene, graphyne/h-BN, graphyne/AlN, graphyne/GaN. The charge stored by each flake, energy storage, and capacitance are switchable under external electric field. Thus, our modeled heterostructures are a good candidate as nanoscale capacitor and can be used in nanocircuit. We found that the charge stored by each flake, energy storage, and capacitance value are highest for graphyne/GaN heterostructures.

  14. Copper and Copper Proteins in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sergio Montes

    2014-01-01

    Full Text Available Copper is a transition metal that has been linked to pathological and beneficial effects in neurodegenerative diseases. In Parkinson’s disease, free copper is related to increased oxidative stress, alpha-synuclein oligomerization, and Lewy body formation. Decreased copper along with increased iron has been found in substantia nigra and caudate nucleus of Parkinson’s disease patients. Copper influences iron content in the brain through ferroxidase ceruloplasmin activity; therefore decreased protein-bound copper in brain may enhance iron accumulation and the associated oxidative stress. The function of other copper-binding proteins such as Cu/Zn-SOD and metallothioneins is also beneficial to prevent neurodegeneration. Copper may regulate neurotransmission since it is released after neuronal stimulus and the metal is able to modulate the function of NMDA and GABA A receptors. Some of the proteins involved in copper transport are the transporters CTR1, ATP7A, and ATP7B and the chaperone ATOX1. There is limited information about the role of those biomolecules in the pathophysiology of Parkinson’s disease; for instance, it is known that CTR1 is decreased in substantia nigra pars compacta in Parkinson’s disease and that a mutation in ATP7B could be associated with Parkinson’s disease. Regarding copper-related therapies, copper supplementation can represent a plausible alternative, while copper chelation may even aggravate the pathology.

  15. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  16. Method of production of hollow silicon nitride articles

    International Nuclear Information System (INIS)

    Parr, N.L.; Brown, R.L.

    1971-01-01

    The hollow articles prepared according to the invention have a high density, exhibit no internal stresses and correspond to high demands of tolerance and surface quality. One obtains these by flame spraying silicon powder on a pre-heated form designed with separating agent - e.g. NaCl. After removing the form, the silicon is nitridated to silicon nitride by heating in N 2 or in an atmosphere of ammonia. This process can be interrupted if the article is also to be mechanically processed, and then the nitridation can be completed. (Hoe/LH) [de

  17. Critical fields of niobium nitride films of various granularity

    International Nuclear Information System (INIS)

    Antonova, E.A.; Sukhov, V.A.

    1983-01-01

    The behaviour of lattice parameter, specific electrical resistivity, critical temperature, and temperature dependence of upper critical field near Tsub(cr) of sputtered niobium nitride films is investigated versus the substrate temperature and gas mixture composition in the process of reactive cathode sputtering. The relation between extrapolated value of the upper critical field and granularity of niobium nitride films, close as to composition to the stoichiometric one, has been found. Values of the kappa parameter of the Ginsburg-Landau theory and of the coherence length for niobium nitride films of various granularity are estimated in an approximation of uniform distribution of impurities in a sample

  18. Conductive and robust nitride buffer layers on biaxially textured substrates

    Science.gov (United States)

    Sankar, Sambasivan [Chicago, IL; Goyal, Amit [Knoxville, TN; Barnett, Scott A [Evanston, IL; Kim, Ilwon [Skokie, IL; Kroeger, Donald M [Knoxville, TN

    2009-03-31

    The present invention relates to epitaxial, electrically conducting and mechanically robust, cubic nitride buffer layers deposited epitaxially on biaxially textured substrates such as metals and alloys. The invention comprises of a biaxially textured substrate with epitaxial layers of nitrides. The invention also discloses a method to form such epitaxial layers using a high rate deposition method as well as without the use of forming gases. The invention further comprises epitaxial layers of oxides on the biaxially textured nitride layer. In some embodiments the article further comprises electromagnetic devices which may have superconducting properties.

  19. Creative Copper Crests

    Science.gov (United States)

    Knab, Thomas

    2011-01-01

    In this article, the author discusses how to create an art activity that would link the computer-created business cards of fourth-grade students with an upcoming school-wide medieval event. Creating family crests from copper foil would be a great connection, since they, like business cards, are an individual's way to identify themselves to others.…

  20. and copper(II)

    Indian Academy of Sciences (India)

    Unknown

    (II) and copper(II)–zinc(II) complexes. SUBODH KUMAR1, R N PATEL1*, P V KHADIKAR1 and. K B PANDEYA2. 1 Department of Chemistry, APS University, Rewa 486 003, India. 2 CSJM University, Kanpur 208 016, India e-mail: (R N Patel) ...

  1. Reagent conditions of the flotation of copper, copper - molybdenum and copper -zinc ores in foreing countries

    International Nuclear Information System (INIS)

    Nevaeva, L.M.

    1983-01-01

    Reagents-collectors and frothers, used abroad in reagent regimes of flotation of copper, copper-molybdenum and copper zinc ores, have been considered. Xanthogenates, aerofloats, xanthogenformiates, thionocarbamates are mainly used as reagents-collectors. Methylizobutylcarbinol and Daufros are used as reagents-frothers

  2. Characteristics of Au/PZT/TiO2/Nitride/Si structure capacitors with ICP nitride treatments

    International Nuclear Information System (INIS)

    Min, Hyung Seob; Kim, Tae Ho; Jeon, Chang Bae; Lee, Jae Gab; Kim, Ji Young

    2002-01-01

    In this study, the characteristics of PZT/TiO 2 ferroelectric gate stack capacitors with Inductively Coupled Plasma (ICP) nitridation were investigated for field effect transistor (FET)-type Ferroelectric Random Access Memory (FeRAM) applications. If a high accumulation capacitance is to be had, the ICP nitridation time needs to be optimized. While a short ICP treatment time results in thermal oxide growth due to lack of nitrogen, a long nitridation time causes a nitride layer which is too thick. Au/PZT(200 nm)/TiO 2 (40 nm)/Nitride/Si (MeFINS) structure capacitors show a memory window (ΔV) of 1.6 V under ±3-V operation while Au/PZT(200 nm)/TiO 2 (40 nm)/Si (MeFIS) capacitors without nitride treatment exhibit a small memory window of 0.6 V. At the same time, the capacitance of the MeFINS device is almost twice that of the MeFIS capacitor. This result implies that the ICP nitride treatment suppresses the formation of a low dielectric constant interfacial SiO x layer and alleviates the series capacitance problem

  3. Hypoxia targeting copper complexes

    International Nuclear Information System (INIS)

    Dearling, J.L.

    1998-11-01

    The importance and incidence of tumour hypoxia, its measurement and current treatments available, including pharmacological and radiopharmacological methods of targeting hypoxia, are discussed. A variety of in vitro and in vivo methods for imposing hypoxia have been developed and are reviewed. Copper, its chemistry, biochemistry and radiochemistry, the potential for use of copper radionuclides and its use to date in this field is considered with particular reference to the thiosemicarbazones. Their biological activity, metal chelation, in vitro and in vivo studies of their radiocopper complexes and the potential for their use as hypoxia targeting radiopharmaceuticals is described. The reduction of the copper(II) complex to copper(l), its pivotal importance in their biological behaviour, and the potential for manipulation of this to effect hypoxia selectivity are described. An in vitro method for assessing the hypoxia selectivity of radiopharmaceuticals is reported. The rapid deoxygenation and high viability of a mammalian cell culture in this system is discussed and factors which may affect the cellular uptake of a radiopharmaceutical are described. The design, synthesis and complexation with copper and radiocopper of a range of bis(thiosemicarbazones) is reported. Synthesis of these compounds is simple giving high yields of pure products. The characteristics of the radiocopper complexes ( 64 Cu) including lipophilicity and redox activity are reported (reduction potentials in the range -0.314 - -0.590 V). High cellular uptakes of the radiocopper complexes of the ligands, in hypoxic and normoxic EMT6 and CHO320 cells, were observed. Extremes of selectivity are shown ranging from the hypoxia selective 64 Cu(II)ATSM to normoxic cell selective 64 Cu(II)GTS. The selectivities observed are compared with the physico chemical characteristics of the complexes. A good correlation exists between selectivity of the complex and its Cu(II)/Cu(I) reduction potential, with hypoxia

  4. Development of technique for air coating and nickel and copper metalization of solar cells

    Science.gov (United States)

    1982-01-01

    Solar cells were made with a variety of base metal screen printing inks applied over silicon nitride AR coating and copper electroplated. Fritted and fritless nickel and fritless tin base printing inks were evaluated. Conversion efficiencies as high as 9% were observed with fritted nickel ink contacts, however, curve shapes were generally poor, reflecting high series resistance. Problems encountered in addition to high series reistance included loss of adhesion of the nickel contacts during plating and poor adhesion, oxidation and inferior curve shapes with the tin base contacts.

  5. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  6. Fabrication of Aluminum Gallium Nitride/Gallium Nitride MESFET And It's Applications in Biosensing

    Science.gov (United States)

    Alur, Siddharth

    Gallium Nitride has been researched extensively for the past three decades for its application in Light Emitting Diodes (LED's), power devices and UV photodetectors. With the recent developments in crystal growth technology and the ability to control the doping there has been an increased interest in heterostructures formed between Gallium nitride and it's alloy Aluminium Gallium Nitride. These heterostructures due to the combined effect of spontaneous and piezoelectric effect can form a high density and a high mobility electron gas channel without any intentional doping. This high density electron gas makes these heterostructures ideal to be used as sensors. Gallium Nitride is also chemically very stable. Detection of biomolecules in a fast and reliable manner is very important in the areas of food safety and medical research. For biomolecular detection it is paramount to have a robust binding of the probes on the sensor surface. Therefore, in this dissertation, the fabrication and application of the AlGaN/GaN heterostructures as biological sensors for the detection of DNA and Organophosphate hydrolase enzyme is discussed. In order to use these AlGaN/GaN heterostructures as biological sensors capable of working in a liquid environment photodefinable polydimethyl-siloxane is used as an encapsulant. The immobilization conditions for a robust binding of thiolated DNA and the catalytic receptor enzyme organophosphate hydrolase on gold surfaces is developed with the help of X-ray photoelectron spectroscopy. DNA and OPH are detected by measuring the change in the drain current of the device as a function of time.

  7. Diagnostic of corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, C.; Villarreal, M. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Caicedo, J.C., E-mail: jcaicedoangulo1@gmail.com [Powder Metallurgy and Processing of Solid Recycled Research Group, Universidad del Valle, Cali (Colombia); Aperador, W. [Ingeniería Mecatrónica, Universidad Militar Nueva Granada, Bogotá (Colombia); Caicedo, H.H. [Department of Bioengineering, University of Illinois at Chicago, IL 60612 (United States); Department of Anatomy and Cell Biology, University of Illinois at Chicago, IL 60612 (United States); Prieto, P. [Thin Film Group, Universidad del Valle, A.A. 25360, Cali (Colombia); Center of Excellence for Novel Materials, CENM, Cali (Colombia)

    2013-10-31

    HfN/VN multilayered systems were grown on 4140 steel substrates with the aim to improve their electrochemical behavior. The multilayered coatings were grown via reactive r.f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n) while maintaining constant the total coating thickness (∼ 1.2 μm). The coatings were characterized by X-ray diffraction (XRD), and electron microscopy. The electrochemical properties were studied by Electrochemical Impedance Spectroscopy and Tafel curves. XRD results showed preferential growth in the face-centered cubic (111) crystal structure for [HfN/VN]{sub n} multilayered coatings. The maximum corrosion resistance was obtained for coatings with (Λ) equal to 15 nm, corresponding to bilayer n = 80. Polarization resistance and corrosion rate was around 112.19 kΩ cm{sup 2} and 0.094*10{sup −3} mmy respectively; moreover, these multilayered system showed a decrease of 80% on mass loss due to the corrosive–erosive process, in relation to multilayered systems with n = 1 and Λ = 1200. HfN/VN multilayers have been designed and deposited on Si (100) and AISI 4140 steel substrates with bilayer periods (Λ) in a broad range, from nanometers to hundreds of nanometers to study the microstructural evolution and electrochemical progress with decreasing bilayer thickness. - Highlights: • Enhancements on surface electrochemical properties and response to surface corrosion attack. • Superficial phenomenon that occurs in corrosion surface of [Hf-Nitrides/V-Nitrides]n • Corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures.

  8. Diagnostic of corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures

    International Nuclear Information System (INIS)

    Escobar, C.; Villarreal, M.; Caicedo, J.C.; Aperador, W.; Caicedo, H.H.; Prieto, P.

    2013-01-01

    HfN/VN multilayered systems were grown on 4140 steel substrates with the aim to improve their electrochemical behavior. The multilayered coatings were grown via reactive r.f. magnetron sputtering technique by systematically varying the bilayer period (Λ) and the bilayer number (n) while maintaining constant the total coating thickness (∼ 1.2 μm). The coatings were characterized by X-ray diffraction (XRD), and electron microscopy. The electrochemical properties were studied by Electrochemical Impedance Spectroscopy and Tafel curves. XRD results showed preferential growth in the face-centered cubic (111) crystal structure for [HfN/VN] n multilayered coatings. The maximum corrosion resistance was obtained for coatings with (Λ) equal to 15 nm, corresponding to bilayer n = 80. Polarization resistance and corrosion rate was around 112.19 kΩ cm 2 and 0.094*10 −3 mmy respectively; moreover, these multilayered system showed a decrease of 80% on mass loss due to the corrosive–erosive process, in relation to multilayered systems with n = 1 and Λ = 1200. HfN/VN multilayers have been designed and deposited on Si (100) and AISI 4140 steel substrates with bilayer periods (Λ) in a broad range, from nanometers to hundreds of nanometers to study the microstructural evolution and electrochemical progress with decreasing bilayer thickness. - Highlights: • Enhancements on surface electrochemical properties and response to surface corrosion attack. • Superficial phenomenon that occurs in corrosion surface of [Hf-Nitrides/V-Nitrides]n • Corrosion–erosion evolution for [Hf-Nitrides/V-Nitrides]n structures

  9. Interlayer shear of nanomaterials: Graphene-graphene, boron nitride-boron nitride and graphene-boron nitride

    Institute of Scientific and Technical Information of China (English)

    Yinfeng Li; Weiwei Zhang; Bill Guo; Dibakar Datta

    2017-01-01

    In this paper,the interlayer sliding between graphene and boron nitride (h-BN) is studied by molecular dynamics simulations.The interlayer shear force between h-BN/h-BN is found to be six times higher than that of graphene/graphene,while the interlayer shear between graphene/h-BN is approximate to that of graphene/graphene.The graphene/h-BN heterostructure shows several anomalous interlayer shear characteristics compared to its bilayer counterparts.For graphene/graphene and h-BN/h-BN,interlayer shears only exit along the sliding direction while interlayer shear for graphene/h-BN is observed along both the translocation and perpendicular directions.Our results provide significant insight into the interlayer shear characteristics of 2D nanomaterials.

  10. Fabrication of carbide and nitride pellets and the nitride irradiations Niloc 1 and Niloc 2

    International Nuclear Information System (INIS)

    Blank, H.

    1991-01-01

    Besides the relatively well-known advanced LMFBR mixed carbide fuel an advanced mixed nitride is also an attractive candidate for the optimised fuel cycle of the European Fast Reactor, but the present knowledge about the nitride is still insufficient and should be raised to the level of the carbide. For such an optimised fuel cycle the following general conditions have been set up for the fuel: (i) the burnup of the optimised MN and MC should be at least 15 a/o or even beyond, at moderate linear ratings of less than 75 kW/m (ii) the fuel will be used in a He-bonding pin concept and (iii) as far as available an advanced economic pellet fabrication method should be employed. (iv) The fuel structure must contain 15 - 20% porosity in order to accomodate the fission product swelling at high burnup. This report gives a comprehensive description of fuel and pellet fabrication and characterization, irradiation, and post-irradiation examination. From the results important conclusions can be drawn about future work on nitrides

  11. Humidity-dependent stability of amorphous germanium nitrides fabricated by plasma nitridation

    International Nuclear Information System (INIS)

    Kutsuki, Katsuhiro; Okamoto, Gaku; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2007-01-01

    We have investigated the stability of amorphous germanium nitride (Ge 3 N 4 ) layers formed by plasma nitridation of Ge(100) surfaces using x-ray photoelectron spectroscopy and atomic force microscopy. We have found that humidity in the air accelerates the degradation of Ge 3 N 4 layers and that under 80% humidity condition, most of the Ge-N bonds convert to Ge-O bonds, producing a uniform GeO 2 layer, within 12 h even at room temperature. After this conversion of nitrides to oxides, the surface roughness drastically increased by forming GeO 2 islands on the surfaces. These findings indicate that although Ge 3 N 4 layers have superior thermal stability compared to the GeO 2 layers, Ge 3 N 4 reacts readily with hydroxyl groups and it is therefore essential to take the best care of the moisture in the fabrication of Ge-based devices with Ge 3 N 4 insulator or passivation layers

  12. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  13. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    International Nuclear Information System (INIS)

    Hamann, S.; Röpcke, J.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.

    2015-01-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH 4 , C 2 H 2 , HCN, and NH 3 ). With the help of OES, the rotational temperature of the screen plasma could be determined

  14. EDITORIAL: Non-polar and semipolar nitride semiconductors Non-polar and semipolar nitride semiconductors

    Science.gov (United States)

    Han, Jung; Kneissl, Michael

    2012-02-01

    Throughout the history of group-III-nitride materials and devices, scientific breakthroughs and technological advances have gone hand-in-hand. In the late 1980s and early 1990s, the discovery of the nucleation of smooth (0001) GaN films on c-plane sapphire and the activation of p-dopants in GaN led very quickly to the realization of high-brightness blue and green LEDs, followed by the first demonstration of GaN-based violet laser diodes in the mid 1990s. Today, blue InGaN LEDs boast record external quantum efficiencies exceeding 80% and the emission wavelength of the InGaN-based laser diode has been pushed into the green spectral range. Although these tremenduous advances have already spurred multi-billion dollar industries, there are still a number of scientific questions and technological issues that are unanswered. One key challenge is related to the polar nature of the III-nitride wurtzite crystal. Until a decade ago all research activities had almost exclusively concentrated on (0001)-oriented polar GaN layers and heterostructures. Although the device characteristics seem excellent, the strong polarization fields at GaN heterointerfaces can lead to a significant deterioration of the device performance. Triggered by the first demonstration non-polar GaN quantum wells grown on LiAlO2 by Waltereit and colleagues in 2000, impressive advances in the area of non-polar and semipolar nitride semiconductors and devices have been achieved. Today, a large variety of heterostructures free of polarization fields and exhibiting exceptional electronic and optical properties have been demonstrated, and the fundamental understanding of polar, semipolar and non-polar nitrides has made significant leaps forward. The contributions in this Semiconductor Science and Technology special issue on non-polar and semipolar nitride semiconductors provide an impressive and up-to-date cross-section of all areas of research and device physics in this field. The articles cover a wide range of

  15. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J. [INP-Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Börner, K.; Burlacov, I.; Spies, H.-J. [TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, 09599 Freiberg (Germany); Strämke, M.; Strämke, S. [ELTRO GmbH, Arnold-Sommerfeld-Ring 3, 52499 Baesweiler (Germany)

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  16. Comparative study involving the uranium determination through catalytic reduction of nitrates and nitrides by using decoupled plasma nitridation (DPN)

    International Nuclear Information System (INIS)

    Aguiar, Marco Antonio Souza; Gutz, Ivano G. Rolf

    1999-01-01

    This paper reports a comparative study on the determination of uranium through the catalytic reduction of nitrate and nitride using the decoupled plasma nitridation. The uranyl ions are a good catalyst for the reduction of NO - 3 and NO - 2 ions on the surface of a hanging drop mercury electrode (HDME). The presence of NO - in a solution with p H = 3 presented a catalytic signal more intense than the signal obtained with NO - 3 (concentration ten times higher). A detection limit of 1x10 9 M was obtained using the technique of decoupled plasma nitridation (DPN), suggesting the development of a sensitive way for the determination of uranium in different matrixes

  17. Microstructure and Hardness of High Temperature Gas Nitrided AISI 420 Martensitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    Ibrahim Nor Nurulhuda Md.

    2014-07-01

    Full Text Available This study examined the microstructure and hardness of as-received and nitrided AISI 420 martensitic stainless steels. High temperature gas nitriding was employed to treat the steels at 1200°C for one hour and four hours using nitrogen gas, followed by furnace cooled. Chromium nitride and iron nitride were formed and concentrated at the outmost surface area of the steels since this region contained the highest concentration of nitrogen. The grain size enlarged at the interior region of the nitrided steels due to nitriding at temperature above the recrystallization temperature of the steel and followed by slow cooling. The nitrided steels produced higher surface hardness compared to as-received steel due to the presence of nitrogen and the precipitation of nitrides. Harder steel was produced when nitriding at four hours compared to one hour since more nitrogen permeated into the steel.

  18. Hydrogen diffusion between plasma-deposited silicon nitride-polyimide polymer interfaces

    International Nuclear Information System (INIS)

    Nguyen, S.V.; Kerbaugh, M.

    1988-01-01

    This paper reports a nuclear reaction analysis (NRA) for hydrogen technique used to analyze the hydrogen concentration near plasma enhanced chemical vapor deposition (PECVD) silicon nitride-polyimide interfaces at various nitride-deposition and polyimide-polymer-curing temperatures. The CF 4 + O 2 (8% O 2 ) plasma-etch-rate variation of PECVD silicon nitride films deposited on polyimide appeared to correlate well with the variation of hydrogen-depth profiles in the nitride films. The NRA data indicate that hydrogen-depth-profile fluctuation in the nitride films is due to hydrogen diffusion between the nitride-polyimide interfaces during deposition. Annealing treatment of polyimide films in a hydrogen atmosphere prior to the nitride film deposition tends to enhance the hydrogen-depth-profile uniformity in the nitride films, and thus substantially reduces or eliminates variation in the nitride plasma-etch rate

  19. Joining and interface characterization of in situ reinforced silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Asthana, R., E-mail: asthanar@uwstout.edu [Department of Engineering and Technology, 326 FH, University of Wisconsin-Stout, Menomonie, WI 54751 (United States); Singh, M., E-mail: Mrityunjay.Singh@nasa.gov [Ohio Aerospace Institute, NASA Glenn Research Center, Cleveland, OH 44135 (United States); Martinez-Fernandez, J., E-mail: Martinez@us.es [Dpto. Física de la Materia Condensada-ICMSE, Universidad de Sevilla-CSIC, Avda. Reina Mercedes, s/n, 41012 Sevilla (Spain)

    2013-03-05

    Highlights: ► AS800 Si{sub 3}N{sub 4} brazed using oxidation-resistant, high use-temperature braze Cu-ABA. ► Interface enriched in Ti and Si but not in Y, La, and Sr (from Y{sub 2}O{sub 3}, La{sub 2}O{sub 3} and SrO). ► Rapid early-stage kinetic evident in constant layer thickness, composition with time. ► Highly textured large grains of Cu and features associated with plastic deformation. -- Abstract: Copper-base active metal interlayers were used to bond in situ reinforced silicon nitride (Honeywell AS800) at 1317 K for 5 and 30 min in vacuum. The joints were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electron back scattered diffraction (EBSD), and transmission electron microscopy (TEM). A Ti-rich interaction zone (∼3.0–3.5 μm thick) formed at the Si{sub 3}N{sub 4}/braze interface. This reaction layer grew toward the inner part of the joint with a featureless microstructure, creating a strong bond. Regions of a Ti-rich phase were frequently found next to the reaction layer but surrounded by the Cu alloy. Extensive Ti and Si enrichments were noted at the interface but there was no evidence of interfacial segregation of Y, La, and Sr (from Y{sub 2}O{sub 3}, La{sub 2}O{sub 3} and SrO, added as sintering aids). The reaction layer thickness and composition did not change when brazing time increased from 5 min to 30 min suggesting rapid growth kinetics in the early stages of reaction. The joints were crack-free and showed features associated with plastic deformation, which indicated that the metal interlayer accommodated strain associated with CTE mismatch. The inner part of the joint consisted of highly textured large grains of the braze alloy.

  20. Anomalous piezoelectricity in two-dimensional graphene nitride nanosheets.

    Science.gov (United States)

    Zelisko, Matthew; Hanlumyuang, Yuranan; Yang, Shubin; Liu, Yuanming; Lei, Chihou; Li, Jiangyu; Ajayan, Pulickel M; Sharma, Pradeep

    2014-06-27

    Piezoelectricity is a unique property of materials that permits the conversion of mechanical stimuli into electrical and vice versa. On the basis of crystal symmetry considerations, pristine carbon nitride (C3N4) in its various forms is non-piezoelectric. Here we find clear evidence via piezoresponse force microscopy and quantum mechanical calculations that both atomically thin and layered graphitic carbon nitride, or graphene nitride, nanosheets exhibit anomalous piezoelectricity. Insights from ab inito calculations indicate that the emergence of piezoelectricity in this material is due to the fact that a stable phase of graphene nitride nanosheet is riddled with regularly spaced triangular holes. These non-centrosymmetric pores, and the universal presence of flexoelectricity in all dielectrics, lead to the manifestation of the apparent and experimentally verified piezoelectric response. Quantitatively, an e11 piezoelectric coefficient of 0.758 C m(-2) is predicted for C3N4 superlattice, significantly larger than that of the commonly compared α-quartz.

  1. Continuum modelling for carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M

    2007-01-01

    Continuum based models are presented here for certain boron nitride and carbon nanostructures. In particular, certain fullerene interactions, C 60 -C 60 , B 36 N 36 -B 36 N 36 and C 60 -B 36 N 36 , and fullerene-nanotube oscillator interactions, C 60 -boron nitride nanotube, C 60 -carbon nanotube, B 36 N 36 -boron nitride nanotube and B 36 N 36 -carbon nanotube, are studied using the Lennard-Jones potential and the continuum approach, which assumes a uniform distribution of atoms on the surface of each molecule. Issues regarding the encapsulation of a fullerene into a nanotube are also addressed, including acceptance and suction energies of the fullerenes, preferred position of the fullerenes inside the nanotube and the gigahertz frequency oscillation of the inner molecule inside the outer nanotube. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures

  2. Iron Carbides and Nitrides: Ancient Materials with Novel Prospects.

    Science.gov (United States)

    Ye, Zhantong; Zhang, Peng; Lei, Xiang; Wang, Xiaobai; Zhao, Nan; Yang, Hua

    2018-02-07

    Iron carbides and nitrides have aroused great interest in researchers, due to their excellent magnetic properties, good machinability and the particular catalytic activity. Based on these advantages, iron carbides and nitrides can be applied in various areas such as magnetic materials, biomedical, photo- and electrocatalysis. In contrast to their simple elemental composition, the synthesis of iron carbides and nitrides still has great challenges, particularly at the nanoscale, but it is usually beneficial to improve performance in corresponding applications. In this review, we introduce the investigations about iron carbides and nitrides, concerning their structure, synthesis strategy and various applications from magnetism to the catalysis. Furthermore, the future prospects are also discussed briefly. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Defect complexes in carbon and boron nitride nanotubes

    CSIR Research Space (South Africa)

    Mashapa, MG

    2012-05-01

    Full Text Available The effect of defect complexes on the stability, structural and electronic properties of single-walled carbon nanotubes and boron nitride nanotubes is investigated using the ab initio pseudopotential density functional method implemented...

  4. Effect of gas pressure on active screen plasma nitriding response

    International Nuclear Information System (INIS)

    Nishimoto, Akio; Nagatsuka, Kimiaki; Narita, Ryota; Nii, Hiroaki; Akamatsu, Katsuya

    2010-01-01

    An austenitic stainless steel AISI 304 was active screen plasma nitrided using a 304 steel screen to investigate the effect of the gas pressure on the ASPN response. The sample was treated for 18 ks at 723 K in 25% N2 + 75% H2 gases. The gas pressure was changed to 100, 600 and 1200 Pa. The distance between screen and sample was also changed to 10, 30 and 50 mm. The nitrided samples were characterized by appearance observation, surface roughness, optical microscopy, X-ray diffraction, and microhardness testing. After nitriding, polygonal particles with a normal distribution were observed at the center and edges of all the ASPN-treated sample surfaces. Particles on the sample surfaces were finer with an increase in the gas pressure. The nitrided layer with a greater and homogeneous thickness was obtained at a low gas pressure of 100 Pa. (author)

  5. Studies on Preparation and Characterization of Aluminum Nitride-Coated Carbon Fibers and Thermal Conductivity of Epoxy Matrix Composites

    Directory of Open Access Journals (Sweden)

    Hyeon-Hye Kim

    2017-08-01

    Full Text Available In this work; the effects of an aluminum nitride (AlN ceramic coating on the thermal conductivity of carbon fiber-reinforced composites were studied. AlN were synthesized by a wet-thermal treatment (WTT method in the presence of copper catalysts. The WTT method was carried out in a horizontal tube furnace at above 1500 °C under an ammonia (NH3 gas atmosphere balanced by a nitrogen using aluminum chloride as a precursor. Copper catalysts pre-doped enhance the interfacial bonding of the AlN with the carbon fiber surfaces. They also help to introduce AlN bonds by interrupting aluminum oxide (Al2O3 formation in combination with oxygen. Scanning electron microscopy (SEM; Transmission electron microscopy (TEM; and X-ray diffraction (XRD were used to analyze the carbon fiber surfaces and structures at each step (copper-coating step and AlN formation step. In conclusion; we have demonstrated a synthesis route for preparing an AlN coating on the carbon fiber surfaces in the presence of a metallic catalyst.

  6. Optical properties of indium nitride films

    International Nuclear Information System (INIS)

    Tyagaj, V.A.; Evstigneev, A.M.; Krasiko, A.N.; Andreeva, A.F.; Malakhov, V.Ya.

    1977-01-01

    Reflection and transmission spectra of heavily doped indium nitride are studied at lambda=0.5-5 μm. Dispersion of the refractive index near the plasma resonance frequency, h.f. dielectric constant (epsilonsub(infinity)=9.3), and extinction coefficient near the transmission maximum of films have been determined from the analysis of interference pattern. The reflection spectrum exhibits maximum in the infrared range and optical effective mass is found through its position (msub(opt)*=0.11msub(0)). Free carrier absorption coefficient is shown to vary according to the law K approximately lambdasup(2.9+-0.1) which is characteristic of electron scattering by charged impurities. The analysis of absorption spectra near the threshold of interband transitions has lead to the conclusion that free carriers are localized in the lateral extremum of conduction band (or out of the center of the Brillouin zone), therefore the Burstein-Moss effect is absent

  7. Boron Nitride Nanotube: Synthesis and Applications

    Science.gov (United States)

    Tiano, Amanda L.; Park, Cheol; Lee, Joseph W.; Luong, Hoa H.; Gibbons, Luke J.; Chu, Sang-Hyon; Applin, Samantha I.; Gnoffo, Peter; Lowther, Sharon; Kim, Hyun Jung; hide

    2014-01-01

    Scientists have predicted that carbon's immediate neighbors on the periodic chart, boron and nitrogen, may also form perfect nanotubes, since the advent of carbon nanotubes (CNTs) in 1991. First proposed then synthesized by researchers at UC Berkeley in the mid 1990's, the boron nitride nanotube (BNNT) has proven very difficult to make until now. Herein we provide an update on a catalyst-free method for synthesizing highly crystalline, small diameter BNNTs with a high aspect ratio using a high power laser under a high pressure and high temperature environment first discovered jointly by NASA/NIA JSA. Progress in purification methods, dispersion studies, BNNT mat and composite formation, and modeling and diagnostics will also be presented. The white BNNTs offer extraordinary properties including neutron radiation shielding, piezoelectricity, thermal oxidative stability (> 800 C in air), mechanical strength, and toughness. The characteristics of the novel BNNTs and BNNT polymer composites and their potential applications are discussed.

  8. Boron nitride: A new photonic material

    International Nuclear Information System (INIS)

    Chubarov, M.; Pedersen, H.; Högberg, H.; Filippov, S.; Engelbrecht, J.A.A.; O'Connel, J.; Henry, A.

    2014-01-01

    Rhombohedral boron nitride (r-BN) layers were grown on sapphire substrate in a hot-wall chemical vapor deposition reactor. Characterization of these layers is reported in details. X-ray diffraction (XRD) is used as a routine characterization tool to investigate the crystalline quality of the films and the identification of the phases is revealed using detailed pole figure measurements. Transmission electron microscopy reveals stacking of more than 40 atomic layers. Results from Fourier Transform InfraRed (FTIR) spectroscopy measurements are compared with XRD data showing that FTIR is not phase sensitive when various phases of sp 2 -BN are investigated. XRD measurements show a significant improvement of the crystalline quality when adding silicon to the gas mixture during the growth; this is further confirmed by cathodoluminescence which shows a decrease of the defects related luminescence intensity.

  9. Boron nitride: A new photonic material

    Energy Technology Data Exchange (ETDEWEB)

    Chubarov, M., E-mail: mihcu@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Pedersen, H., E-mail: henke@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Högberg, H., E-mail: hanho@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Filippov, S., E-mail: stafi@ifm.liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden); Engelbrecht, J.A.A., E-mail: Japie.Engelbrecht@nmmu.ac.za [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); O' Connel, J., E-mail: jacques.oconnell@gmail.com [Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Henry, A., E-mail: anne.henry@liu.se [Department of Physics, Chemistry and Biology, Linköping University, SE-581 83 Linköping (Sweden)

    2014-04-15

    Rhombohedral boron nitride (r-BN) layers were grown on sapphire substrate in a hot-wall chemical vapor deposition reactor. Characterization of these layers is reported in details. X-ray diffraction (XRD) is used as a routine characterization tool to investigate the crystalline quality of the films and the identification of the phases is revealed using detailed pole figure measurements. Transmission electron microscopy reveals stacking of more than 40 atomic layers. Results from Fourier Transform InfraRed (FTIR) spectroscopy measurements are compared with XRD data showing that FTIR is not phase sensitive when various phases of sp{sup 2}-BN are investigated. XRD measurements show a significant improvement of the crystalline quality when adding silicon to the gas mixture during the growth; this is further confirmed by cathodoluminescence which shows a decrease of the defects related luminescence intensity.

  10. Laser ablation of molecular carbon nitride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D., E-mail: d.fischer@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Schwinghammer, K. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany); Sondermann, C. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Lau, V.W.; Mannhart, J. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Lotsch, B.V. [Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Munich, LMU, Butenandtstr. 5-13, 81377 Munich (Germany); Nanosystems Initiative Munich (NIM) and Center for Nanoscience (CeNS), 80799 Munich (Germany)

    2015-09-15

    We present a method for the preparation of thin films on sapphire substrates of the carbon nitride precursors dicyandiamide (C{sub 2}N{sub 4}H{sub 4}), melamine (C{sub 3}N{sub 6}H{sub 6}), and melem (C{sub 6}N{sub 10}H{sub 6}), using the femtosecond-pulsed laser deposition technique (femto-PLD) at different temperatures. The depositions were carried out under high vacuum with a femtosecond-pulsed laser. The focused laser beam is scanned on the surface of a rotating target consisting of the pelletized compounds. The resulting polycrystalline, opaque films were characterized by X-ray powder diffraction, infrared, Raman, and X-ray photoelectron spectroscopy, photoluminescence, SEM, and MALDI-TOF mass spectrometry measurements. The crystal structures and optical/spectroscopic results of the obtained rough films largely match those of the bulk materials.

  11. Hexagonal boron nitride and water interaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yanbin; Aluru, Narayana R., E-mail: aluru@illinois.edu [Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Wagner, Lucas K. [Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-3080 (United States)

    2016-04-28

    The study of hexagonal boron nitride (hBN) in microfluidic and nanofluidic applications at the atomic level requires accurate force field parameters to describe the water-hBN interaction. In this work, we begin with benchmark quality first principles quantum Monte Carlo calculations on the interaction energy between water and hBN, which are used to validate random phase approximation (RPA) calculations. We then proceed with RPA to derive force field parameters, which are used to simulate water contact angle on bulk hBN, attaining a value within the experimental uncertainties. This paper demonstrates that end-to-end multiscale modeling, starting at detailed many-body quantum mechanics and ending with macroscopic properties, with the approximations controlled along the way, is feasible for these systems.

  12. Apatite formability of boron nitride nanotubes

    International Nuclear Information System (INIS)

    Lahiri, Debrupa; Keshri, Anup K; Agarwal, Arvind; Singh, Virendra; Seal, Sudipta

    2011-01-01

    This study investigates the ability of boron nitride nanotubes (BNNTs) to induce apatite formation in a simulated body fluid environment for a period of 7, 14 and 28 days. BNNTs, when soaked in the simulated body fluid, are found to induce hydroxyapatite (HA) precipitation on their surface. The precipitation process has an initial incubation period of ∼ 4.6 days. The amount of HA precipitate increases gradually with the soaking time. High resolution TEM results indicated a hexagonal crystal structure of HA needles. No specific crystallographic orientation relationship is observed between BNNT and HA, which is due to the presence of a thin amorphous HA layer on the BNNT surface that disturbs a definite orientation relationship.

  13. CVD mechanism of pyrolytic boron nitride

    International Nuclear Information System (INIS)

    Tanji, H.; Monden, K.; Ide, M.

    1987-01-01

    Pyrolytic boron nitride (P-BN) has become a essential material for III-V compound semiconductor manufacturing process. As the demand from electronics industry for larger single crystals increases, the demand for larger and more economical P-BN components is growing rapidly. P-BN is manufactured by low pressure CVD using boron-trihalides and ammonia as the reactants. In spite that P-BN has been in the market for quite a long time, limited number of fundamental studies regarding the kinetics and the formation mechanism of P-BN have been reported. As it has been demonstrated in CVD of Si, knowledge and both theoretical and empirical modeling of CVD process can be applied to improve the deposition technology and to give more uniform deposition with higher efficiency, and it should also apply to the deposition of P-BN

  14. Thermal expansion of quaternary nitride coatings

    Science.gov (United States)

    Tasnádi, Ferenc; Wang, Fei; Odén, Magnus; Abrikosov, Igor A.

    2018-04-01

    The thermal expansion coefficient of technologically relevant multicomponent cubic nitride alloys are predicted using the Debye model with ab initio elastic constants calculated at 0 K and an isotropic approximation for the Grüneisen parameter. Our method is benchmarked against measured thermal expansion of TiN and Ti(1-x)Al x N as well as against results of molecular dynamics simulations. We show that the thermal expansion coefficients of Ti(1-x-y)X y Al x N (X  =  Zr, Hf, Nb, V, Ta) solid solutions monotonously increase with the amount of alloying element X at all temperatures except for Zr and Hf, for which they instead decrease for y≳ 0.5 .

  15. A boron nitride nanotube peapod thermal rectifier

    International Nuclear Information System (INIS)

    Loh, G. C.; Baillargeat, D.

    2014-01-01

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  16. A boron nitride nanotube peapod thermal rectifier

    Energy Technology Data Exchange (ETDEWEB)

    Loh, G. C., E-mail: jgloh@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632 (Singapore); Baillargeat, D. [CNRS-International-NTU-Thales Research Alliance (CINTRA), 50 Nanyang Drive, Singapore 637553 (Singapore)

    2014-06-28

    The precise guidance of heat from one specific location to another is paramount in many industrial and commercial applications, including thermal management and thermoelectric generation. One of the cardinal requirements is a preferential conduction of thermal energy, also known as thermal rectification, in the materials. This study introduces a novel nanomaterial for rectifying heat—the boron nitride nanotube peapod thermal rectifier. Classical non-equilibrium molecular dynamics simulations are performed on this nanomaterial, and interestingly, the strength of the rectification phenomenon is dissimilar at different operating temperatures. This is due to the contingence of the thermal flux on the conductance at the localized region around the scatterer, which varies with temperature. The rectification performance of the peapod rectifier is inherently dependent on its asymmetry. Last but not least, the favourable rectifying direction in the nanomaterial is established.

  17. Rebar graphene from functionalized boron nitride nanotubes.

    Science.gov (United States)

    Li, Yilun; Peng, Zhiwei; Larios, Eduardo; Wang, Gunuk; Lin, Jian; Yan, Zheng; Ruiz-Zepeda, Francisco; José-Yacamán, Miguel; Tour, James M

    2015-01-27

    The synthesis of rebar graphene on Cu substrates is described using functionalized boron nitride nanotubes (BNNTs) that were annealed or subjected to chemical vapor deposition (CVD) growth of graphene. Characterization shows that the BNNTs partially unzip and form a reinforcing bar (rebar) network within the graphene layer that enhances the mechanical strength through covalent bonds. The rebar graphene is transferrable to other substrates without polymer assistance. The optical transmittance and conductivity of the hybrid rebar graphene film was tested, and a field effect transistor was fabricated to explore its electrical properties. This method of synthesizing 2D hybrid graphene/BN structures should enable the hybridization of various 1D nanotube and 2D layered structures with enhanced mechanical properties.

  18. CEMS of nitride coatings in agressive environments

    Science.gov (United States)

    Hanžel, D.; Agudelo, A. C.; Gancedo, J. R.; Lakatos-Varsanyi, M.; Marco, J. F.

    1998-12-01

    The corrosion properties of single layered TiN and CrN films have been compared to bi-layered and multi-layered Ti/TiN films. XPS has showed that in humid SO2 atmosphere the best corrosion properties have been achieved by a multi-layered Ti/TiN coating. Cyclic voltammetry in acetate buffer has been applied to measure the porousity and corrosion resistance of coatings. The best results have been achieved by multi-layered Ti/TiN and CrN films. Conversion electron Mössbauer spectroscopy has been used to study the changes in the interface Fe/TiN during thermal treatment in UHV. It has been shown that the amount of iron nitrides in the interface increases with increasing temperature.

  19. CEMS of nitride coatings in agressive environments

    International Nuclear Information System (INIS)

    Hanzel, D.; Agudelo, A.C.; Gancedo, J.R.; Lakatos-Varsanyi, M.; Marco, J.F.

    1998-01-01

    The corrosion properties of single layered TiN and CrN films have been compared to bi-layered and multi-layered Ti/TiN films. XPS has showed that in humid SO 2 atmosphere the best corrosion properties have been achieved by a multi-layered Ti/TiN coating. Cyclic voltammetry in acetate buffer has been applied to measure the porousity and corrosion resistance of coatings. The best results have been achieved by multi-layered Ti/TiN and CrN films. Conversion electron Moessbauer spectroscopy has been used to study the changes in the interface Fe/TiN during thermal treatment in UHV. It has been shown that the amount of iron nitrides in the interface increases with increasing temperature

  20. CEMS of nitride coatings in agressive environments

    Energy Technology Data Exchange (ETDEWEB)

    Hanzel, D. [University of Ljubljana, J. Stefan Institute (Slovenia); Agudelo, A.C.; Gancedo, J.R. [Instituto de Quimica-Fisica ' Rocasolano' , CSIC (Spain); Lakatos-Varsanyi, M. [Eoetvoes University, Department of Physical Chemistry (Hungary); Marco, J.F. [Instituto de Quimica-Fisica ' Rocasolano' , CSIC (Spain)

    1998-12-15

    The corrosion properties of single layered TiN and CrN films have been compared to bi-layered and multi-layered Ti/TiN films. XPS has showed that in humid SO{sub 2} atmosphere the best corrosion properties have been achieved by a multi-layered Ti/TiN coating. Cyclic voltammetry in acetate buffer has been applied to measure the porousity and corrosion resistance of coatings. The best results have been achieved by multi-layered Ti/TiN and CrN films. Conversion electron Moessbauer spectroscopy has been used to study the changes in the interface Fe/TiN during thermal treatment in UHV. It has been shown that the amount of iron nitrides in the interface increases with increasing temperature.

  1. Synthesis and characterization of boron nitrides nanotubes

    International Nuclear Information System (INIS)

    Ferreira, T.H.; Sousa, E.M.B.

    2010-01-01

    This paper presents a new synthesis for the production of boron nitride nanotubes (BNNT) from boron powder, ammonium nitrate and hematite tube furnace CVD method. The samples were subjected to some characterization techniques as infrared spectroscopy, thermal analysis, X-ray diffraction and scanning electron microscopy and transmission. By analyzing the results can explain the chemical reactions involved in the process and confirm the formation of BNNT with several layers and about 30 nanometers in diameter. Due to excellent mechanical properties and its chemical and thermal stability this material is promising for various applications. However, BNNT has received much less attention than carbon nanotubes, it is because of great difficulty to synthesize appreciable quantities from the techniques currently known, and this is one of the main reasons this work.(author)

  2. Low temperature gaseous nitriding of Ni based superalloys

    DEFF Research Database (Denmark)

    Eliasen, K. M.; Christiansen, Thomas Lundin; Somers, Marcel A. J.

    2010-01-01

    In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr......In the present work the nitriding response of selected Ni based superalloys at low temperatures is addressed. The alloys investigated are nimonic series nos. 80, 90, 95 and 100 and nichrome (Ni/Cr...

  3. Preparation of phosphorus targets using the compound phosphorus nitride

    International Nuclear Information System (INIS)

    Maier-Komor, P.

    1987-01-01

    Commercially available phosphorus nitride (P 3 N 5 ) shows a high oxygen content. Nevertheless, this material is attractive for use as phosphorus targets in experiments where red phosphorus would disappear due to its high vapor pressure and where a metal partner in the phosphide must be excluded due to its high atomic number. Methods are described to produce phosphorus nitride targets by vacuum evaporation condensation. (orig.)

  4. Dynamic Multiaxial Response of a Hot-Pressed Aluminum Nitride

    Science.gov (United States)

    2012-01-05

    Hutchinson, Adv. Appl . Mech. 29 (1992). [34] H. Ming-Yuan, J.W. Hutchinson, Int. J. Solids Struct. 25 (1989) 1053. [35] J. Salem , L. Ghosn, Int. J...Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride by Guangli Hu, C. Q. Chen, K. T. Ramesh, and J. W. McCauley ARL-RP-0487...Laboratory Aberdeen Proving Ground, MD 21005-5066 ARL-RP-0487 June 2014 Dynamic Multiaxial Response of a Hot- Pressed Aluminum Nitride

  5. Optimization of time–temperature schedule for nitridation of silicon ...

    Indian Academy of Sciences (India)

    pact was optimized by kinetic study of the reaction, 3Si + 2N2 = Si3N4 at four different temperatures (1250°C,. 1300°C, 1350°C and 1400°C). ... Reaction sintered silicon nitride; nitridation; reaction kinetics. 1. Introduction. Formation of ..... cation of silica layer resulted in active oxidation of silicon at high temperature to ...

  6. Four-Wave Mixing in Silicon-Rich Nitride Waveguides

    DEFF Research Database (Denmark)

    Mitrovic, Miranda; Guan, Xiaowei; Ji, Hua

    2015-01-01

    We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss.......We demonstrate four-wave mixing wavelength conversion in silicon-rich nitride waveguides which are a promising alternative to silicon for nonlinear applications. The obtained conversion efficiency reaches -13.6 dB while showing no significant nonlinear loss....

  7. Defect reduction in seeded aluminum nitride crystal growth

    Science.gov (United States)

    Bondokov, Robert T.; Schowalter, Leo J.; Morgan, Kenneth; Slack, Glen A; Rao, Shailaja P.; Gibb, Shawn Robert

    2017-09-26

    Bulk single crystal of aluminum nitride (AlN) having an areal planar defect density.ltoreq.100 cm.sup.-2. Methods for growing single crystal aluminum nitride include melting an aluminum foil to uniformly wet a foundation with a layer of aluminum, the foundation forming a portion of an AlN seed holder, for an AlN seed to be used for the AlN growth. The holder may consist essentially of a substantially impervious backing plate.

  8. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    International Nuclear Information System (INIS)

    Ivanovskii, Alexander L

    2009-01-01

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  9. Nitrogen Atom Transfer From High Valent Iron Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael D. [New Mexico State Univ., Las Cruces, NM (United States); Smith, Jeremy M. [Indiana Univ., Bloomington, IN (United States)

    2015-10-14

    This report describes the synthesis and reactions of high valent iron nitrides. Organonitrogen compounds such as aziridines are useful species for organic synthesis, but there are few efficient methods for their synthesis. Using iron nitrides to catalytically access these species may allow for their synthesis in an energy-and atom-efficient manner. We have developed a new ligand framework to achieve these goals as well as providing a method for inducing previously unknown reactivity.

  10. In situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper

    DEFF Research Database (Denmark)

    Kidambi, Piran R.; Blume, Raoul; Kling, Jens

    2014-01-01

    processing, and that this negatively affects the stability of h-BN on the catalyst. For extended air exposure Cu oxidation is observed, and upon re-heating in vacuum an oxygen-mediated disintegration of the h-BN film via volatile boron oxides occurs. Importantly, this disintegration is catalyst mediated, i...

  11. Temperature dependence of copper diffusion in different thickness amorphous tungsten/tungsten nitride layer

    Science.gov (United States)

    Asgary, Somayeh; Hantehzadeh, Mohammad Reza; Ghoranneviss, Mahmood

    2017-11-01

    The amorphous W/WN films with various thickness (10, 30 and 40 nm) and excellent thermal stability were successfully prepared on SiO2/Si substrate with evaporation and reactive evaporation method. The W/WN bilayer has technological importance because of its low resistivity, high melting point, and good diffusion barrier properties between Cu and Si. The thermal stability was evaluated by X-ray diffractometer (XRD) and Scanning Electron Microscope (SEM). In annealing process, the amorphous W/WN barrier crystallized and this phenomenon is supposed to be the start of Cu atoms diffusion through W/WN barrier into Si. With occurrence of the high-resistive Cu3Si phase, the W/WN loses its function as a diffusion barrier. The primary mode of Cu diffusion is the diffusion through grain boundaries that form during heat treatments. The amorphous structure with optimum thickness is the key factor to achieve a superior diffusion barrier characteristic. The results show that the failure temperature increased by increasing the W/WN film thickness from 10 to 30 nm but it did not change by increasing the W/WN film thickness from 30 to 40 nm. It is found that the 10 and 40 nm W/WN films are good diffusion barriers at least up to 800°C while the 30 nm W/WN film shows superior properties as a diffusion barrier, but loses its function as a diffusion barrier at about 900°C (that is 100°C higher than for 10 and 40 nm W/WN films).

  12. Atomic platinum layer coated titanium copper nitride supported on carbon nanotubes for the methanol oxidation reaction

    CSIR Research Space (South Africa)

    Zheng, Y

    2017-09-01

    Full Text Available measurements. The results confirm the core-shell structure of the prepared TiN@Pt/CNTs catalyst. More importantly, the catalyst exhibits superb mass activity and durability for the methanol oxidation reaction (MOR) than that of the commercial JM Pt/C catalyst...

  13. Theoretical study of nitride short period superlattices

    Science.gov (United States)

    Gorczyca, I.; Suski, T.; Christensen, N. E.; Svane, A.

    2018-02-01

    Discussion of band gap behavior based on first principles calculations of electronic band structures for various short period nitride superlattices is presented. Binary superlattices, as InN/GaN and GaN/AlN as well as superlattices containing alloys, as InGaN/GaN, GaN/AlGaN, and GaN/InAlN are considered. Taking into account different crystallographic directions of growth (polar, semipolar and nonpolar) and different strain conditions (free-standing and pseudomorphic) all the factors influencing the band gap engineering are analyzed. Dependence on internal strain and lattice geometry is considered, but the main attention is devoted to the influence of the internal electric field and the hybridization of well and barrier wave functions. The contributions of these two important factors to band gap behavior are illustrated and estimated quantitatively. It appears that there are two interesting ranges of layer thicknesses; in one (few atomic monolayers in barriers and wells) the influence of the wave function hybridization is dominant, whereas in the other (layers thicker than roughly five to six monolayers) dependence of electric field on the band gaps is more important. The band gap behavior in superlattices is compared with the band gap dependence on composition in the corresponding ternary and quaternary alloys. It is shown that for superlattices it is possible to exceed by far the range of band gap values, which can be realized in ternary alloys. The calculated values of the band gaps are compared with the photoluminescence emission energies, when the corresponding data are available. Finally, similarities and differences between nitride and oxide polar superlattices are pointed out by comparison of wurtzite GaN/AlN and ZnO/MgO.

  14. Gallium Nitride Schottky betavoltaic nuclear batteries

    International Nuclear Information System (INIS)

    Lu Min; Zhang Guoguang; Fu Kai; Yu Guohao; Su Dan; Hu Jifeng

    2011-01-01

    Research highlights: → Gallium Nitride nuclear batteries with Ni-63 are demonstrated for the first time. → Open circuit voltage of 0.1 V and conversion efficiency of 0.32% have been obtained. → The limited performance is due to thin effective energy deposition layer. → The output power is expected to greatly increase with growing thick GaN films. -- Abstract: Gallium Nitride (GaN) Schottky betavoltaic nuclear batteries (GNBB) are demonstrated in our work for the first time. GaN films are grown on sapphire substrates by metalorganic chemical vapor deposition (MOCVD), and then GaN Schottky diodes are fabricated by normal micro-fabrication process. Nickel with mass number of 63 ( 63 Ni), which emits β particles, is loaded on the GaN Schottky diodes to achieve GNBB. X-ray diffraction (XRD) and photoluminescence (PL) are carried out to investigate the crystal quality for the GaN films as grown. Current-voltage (I-V) characteristics shows that the GaN Schottky diodes are not jet broken down at -200 V due to consummate fabrication processes, and the open circuit voltage of the GNBB is 0.1 V and the short circuit current density is 1.2 nA cm -2 . The limited performance of the GNBB is due to thin effective energy deposition layer, which is only 206 nm to absorb very small partial energy of the β particles because of the relatively high dislocation density and carrier concentration. However, the conversion efficiency of 0.32% and charge collection efficiency (CCE) of 29% for the GNBB have been obtained. Therefore, the output power of the GNBB are expected to greatly increase with growing high quality thick GaN films.

  15. Synthesis of reduced carbon nitride at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O

    Energy Technology Data Exchange (ETDEWEB)

    Kharlamov, Alexey [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Bondarenko, Marina, E-mail: mebondarenko@ukr.net [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine); Kharlamova, Ganna [Taras Shevchenko National University of Kiev, Volodymyrs' ka St. 64, 01601 Kiev (Ukraine); Fomenko, Veniamin [Frantsevich Institute for Problems of Materials Science of NASU, Krzhyzhanovsky St. 3, 03680 Kiev (Ukraine)

    2016-09-15

    For the first time at the reduction by hydroquinone of water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O reduced carbon nitride (or reduced multi-layer azagraphene) is obtained. It is differed from usually synthesized carbon nitride by a significantly large (on 0.09 nm) interplanar distance is. At the same time, the chemical bonds between atoms in a heteroatomic plane of reduced carbon nitride correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. The samples of water-soluble carbon nitride oxide were synthesized under the special reactionary conditions of a pyrolysis of melamine and urea. We believe that reduced carbon nitride consists of weakly connected carbon-nitrogen monosheets (azagraphene sheets) as well as reduced (from graphene oxide) graphene contains weakly connected graphene sheets. - Graphical abstract: XRD pattern and schematic atomic model of one layer of reduced carbon nitride, carbon nitride oxide and synthesized carbon nitride. For the first time at the reduction by hydroquinone of the water-soluble carbon nitride oxide (g-C{sub 3}N{sub 4})O is obtained the reduced carbon nitride (or reduced multi-layer azagraphene). Display Omitted - Highlights: • First the reduced carbon nitride (RCN) at the reduction of the carbon nitride oxide was obtained. • Water-soluble carbon nitride oxide was reduced by hydroquinone. • The chemical bonds in a heteroatomic plane of RCN correspond to the bonds in a synthesized g-C{sub 3}N{sub 4}. • Reduced carbon nitride consists of poorly connected heteroatomic azagraphene layers.

  16. Preparation and characteristics of various rare earth nitrides

    International Nuclear Information System (INIS)

    Imamura, H.; Imahashi, T.; Zaimi, M.; Sakata, Y.

    2008-01-01

    Active nanocrystalline nitrides of EuN and YbN with high surface areas were successfully prepared by the thermal decomposition of the rare earth amides (Eu(NH 2 ) 2 , Yb(NH 2 ) 2 and Yb(NH 2 ) 3 ). For the preparation of CeN, PrN and NdN, the direct reaction of the rare earth metals with ammonia was extensively studied to determine optimal conditions. In the reaction of rare earth metals with ammonia, hydrides besides the nitrides were competitively formed. The reaction conditions such as temperatures and ratios of ammonia to rare earth metal were crucial in preferential formation of nitride. The nanocrystalline YbN and EuN readily absorbed large amounts of ammonia even at room temperature upon contact with ammonia (13.3 kPa). The absorbed ammonia existed in at least two forms on/in the nitride; the one was surface-adsorbed ammonia and the other ammonia absorbed in the nitride in a decomposed state. The properties of ammonia absorbed by the nitride were further evaluated by temperature-programmed desorption (TPD), FT-IR and XRD techniques

  17. The Effect of Copper

    African Journals Online (AJOL)

    environment, where fishes are found, stuns them ... of earthen ponds are springing up near cocoa ... farm, which posses toxicological risk to farmed ... Veg. oil. 1.0. 1.0. 1.0. 1.0. 1.0. Copper sulphate 0. 1.0. 2.5. 5.0. 7.5. Total ..... Cellulase Production by Wild Strains of Aspergillus Niger, ... Mangrove Area of Lagos, Nigeria.

  18. Copper Pyrimidine based MOFs

    Indian Academy of Sciences (India)

    Synthesized hydrothermally in a 23-mL Teflon lined stainless steel bomb by heating copper(II) 2-pyrazinecarboxylate (31 mg, 0.1 mmol) and tin(II) iodide (75 mg, 0.2 mmol) in 4 mL water at 150±C for 24 h. The reaction vessel was subsequently cooled to 70±C at 1±C/min and held at that temperature for 6 h before returning ...

  19. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    Science.gov (United States)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-09-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better.

  20. The prospect of uranium nitride (UN) and mixed nitride fuel (UN-PuN) for pressurized water reactor

    International Nuclear Information System (INIS)

    Syarifah, Ratna Dewi; Suud, Zaki

    2015-01-01

    Design study of small Pressurized Water Reactors (PWRs) core loaded with uranium nitride fuel (UN) and mixed nitride fuel (UN-PuN), Pa-231 as burnable poison, and Americium has been performed. Pa-231 known as actinide material, have large capture cross section and can be converted into fissile material that can be utilized to reduce excess reactivity. Americium is one of minor actinides with long half life. The objective of adding americium is to decrease nuclear spent fuel in the world. The neutronic analysis results show that mixed nitride fuel have k-inf greater than uranium nitride fuel. It is caused by the addition of Pu-239 in mixed nitride fuel. In fuel fraction analysis, for uranium nitride fuel, the optimum volume fractions are 45% fuel fraction, 10% cladding and 45% moderator. In case of UN-PuN fuel, the optimum volume fractions are 30% fuel fraction, 10% cladding and 60% coolant/ moderator. The addition of Pa-231 as burnable poison for UN fuel, enrichment U-235 5%, with Pa-231 1.6% has k-inf more than one and excess reactivity of 14.45%. And for mixed nitride fuel, the lowest value of reactivity swing is when enrichment (U-235+Pu) 8% with Pa-231 0.4%, the excess reactivity value 13,76%. The fuel pin analyze for the addition of Americium, the excess reactivity value is lower than before, because Americium absorb the neutron. For UN fuel, enrichment U-235 8%, Pa-231 1.6% and Am 0.5%, the excess reactivity is 4.86%. And for mixed nitride fuel, when enrichment (U-235+Pu) 13%, Pa-231 0.4% and Am 0.1%, the excess reactivity is 11.94%. For core configuration, it is better to use heterogeneous than homogeneous core configuration, because the radial power distribution is better

  1. Supersonic copper clusters

    International Nuclear Information System (INIS)

    Powers, D.E.; Hansen, S.G.; Geusic, M.E.; Michalopoulos, D.L.; Smalley, R.E.

    1983-01-01

    Copper clusters ranging in size from 1 to 29 atoms have been prepared in a supersonic beam by laser vaporization of a rotating copper target rod within the throat of a pulsed supersonic nozzle using helium for the carrier gas. The clusters were cooled extensively in the supersonic expansion [T(translational) 1 to 4 K, T(rotational) = 4 K, T(vibrational) = 20 to 70 K]. These clusters were detected in the supersonic beam by laser photoionization with time-of-flight mass analysis. Using a number of fixed frequency outputs of an exciplex laser, the threshold behavior of the photoionization cross section was monitored as a function of cluster size.nce two-photon ionization (R2PI) with mass selective detection allowed the detection of five new electronic band systems in the region between 2690 and 3200 A, for each of the three naturally occurring isotopic forms of Cu 2 . In the process of scanning the R2PI spectrum of these new electronic states, the ionization potential of the copper dimer was determined to be 7.894 +- 0.015 eV

  2. Native copper as a natural analogue for copper canisters

    International Nuclear Information System (INIS)

    Marcos, N.

    1989-12-01

    This paper discusses the occurrence of native copper as found in geological formations as a stability analogue of copper canisters that are planned to be used for the disposal of spent nuclear fuel in the Finnish bedrock. A summary of several publications on native copper occurrences is presented. The present geochemical and geohydrological conditions in which copper is met with in its metallic state show that metallic copper is stable in a wide range of temperatures. At low temperatures native copper is found to be stable where groundwater has moderate pH (about 7), low Eh (< +100 mV), and low total dissolved solids, especially chloride. Microscopical and microanalytical studies were carried out on a dozen of rock samples containing native copper. The results reveal that the metal shows no significant alteration. Only the surface of copper grains is locally coated. In the oldest samples there exist small corrosion cracks; the age of the oldest samples is over 1,000 million years. A review of several Finnish groundwater studies suggests that there are places in Finland where the geohydrological conditions are favourable for native copper stability. (orig.)

  3. Generation and Characteristics of IV-VI transition Metal Nitride and Carbide Nanoparticles using a Reactive Mesoporous Carbon Nitride

    KAUST Repository

    Alhajri, Nawal Saad

    2016-02-22

    Interstitial nitrides and carbides of early transition metals in groups IV–VI exhibit platinum-like electronic structures, which make them promising candidates to replace noble metals in various catalytic reactions. Herein, we present the preparation and characterization of nano-sized transition metal nitries and carbides of groups IV–VI (Ti, V, Nb, Ta, Cr, Mo, and W) using mesoporous graphitic carbon nitride (mpg-C3N4), which not only provides confined spaces for restricting primary particle size but also acts as a chemical source of nitrogen and carbon. We studied the reactivity of the metals with the template under N2 flow at 1023 K while keeping the weight ratio of metal to template constant at unity. The produced nanoparticles were characterized by powder X-ray diffraction, CHN elemental analysis, nitrogen sorption, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results show that Ti, V, Nb, Ta, and Cr form nitride phases with face centered cubic structure, whereas Mo and W forme carbides with hexagonal structures. The tendency to form nitride or carbide obeys the free formation energy of the transition metal nitrides and carbides. This method offers the potential to prepare the desired size, shape and phase of transition metal nitrides and carbides that are suitable for a specific reaction, which is the chief objective of materials chemistry.

  4. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    OpenAIRE

    Sanchi Nenkova; Peter Velev; Mirela Dragnevska; Diyana Nikolova; Kiril Dimitrov

    2011-01-01

    Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of co...

  5. Copper tolerance in Becium homblei

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, C; Stone, J

    1971-04-09

    Analyses show that Becium homblei has apparently no mechanism for limiting copper uptake. As growth proceeds, the concentration of metal increases in leaves and stems. Much of the copper is bound to structural material of the cells. There is a significant difference between the amount of extractable material in root and leaf tissues. These differences, in conjunction with the extrinsic factor of regular bush fires, were important factors in the evolution of this copper-resistant species of Becium. 9 references.

  6. Copper toxicity in housed lambs

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, A H; Valks, D A; Appleton, M A; Shaw, W B

    1969-09-27

    Copper toxicity among 170 lambs artificially reared indoors at High Mowthorpe NAAS Experimental Husbandry Farm is reported. Although only three lambs were lost it is not unreasonable to suggest that the liver copper levels of the lambs which were slaughtered would have been high and losses could have been much heavier had there been any further copper supplementation. Even a copper level of 20 ppm in lamb concentrates given to lambs reared artificially indoors is dangerous, and intakes of much less than 38 mg per lamb per day can be fatal if given of a prolonged period. 5 references, 1 table.

  7. Copper and copper-nickel-alloys - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Klassert, Anton; Tikana, Ladji [Deutsches Kupferinstitut e.V. Am Bonneshof 5, 40474 Duesseldorf (Germany)

    2004-07-01

    With the increasing level of industrialization the demand for and the number of copper alloys rose in an uninterrupted way. Today, the copper alloys take an important position amongst metallic materials due to the large variety of their technological properties and applications. Nowadays there exist over 3.000 standardized alloys. Copper takes the third place of all metals with a worldwide consumption of over 15 millions tons per year, following only to steel and aluminum. In a modern industrial society we meet copper in all ranges of the life (electro-technology, building and construction industry, mechanical engineering, automotive, chemistry, offshore, marine engineering, medical applications and others.). Copper is the first metal customized by humanity. Its name is attributed to the island Cyprus, which supplied in the antiquity copper to Greece, Rome and the other Mediterranean countries. The Romans called it 'ore from Cyprus' (aes cyprium), later cuprum. Copper deposited occasionally also dapper and could be processed in the recent stone age simply by hammering. Already in early historical time copper alloys with 20 to 50 percent tin was used for the production of mirrors because of their high reflecting power. Although the elementary nickel is an element discovered only recently from a historical perspective, its application in alloys - without any knowledge of the alloy composition - occurred at least throughout the last 2.000 years. The oldest copper-nickel coin originates from the time around 235 B.C.. Only around 1800 AD nickel was isolated as a metallic element. In particular in the sea and offshore technology copper nickel alloys found a broad field of applications in piping systems and for valves and armatures. The excellent combination of characteristics like corrosion resistance, erosion stability and bio-fouling resistance with excellent mechanical strength are at the basis of this success. An experience of many decades supports the use

  8. A novel anti-frictional multiphase layer produced by plasma nitriding of PVD titanium coated ZL205A aluminum alloy

    Science.gov (United States)

    Lu, C.; Yao, J. W.; Wang, Y. X.; Zhu, Y. D.; Guo, J. H.; Wang, Y.; Fu, H. Y.; Chen, Z. B.; Yan, M. F.

    2018-02-01

    The heat treatment (consisting of solid solution and aging), is integrated with the nitriding process of titanium coated ZL205A aluminum alloy to improve the surface and matrix mechanical properties simultaneously. Two-step duplex treatment is adopted to prepare the gradient multiphase layer on a magnesium-free ZL205A aluminum-copper based alloy. Firstly, pure titanium film is deposited on the aluminum alloy substrate using magnetron sputtering. Secondly, the Ti-coated specimen is nitrided at the solid solution temperature of the substrate alloying elements in a gas mixture of N2 and H2 and aged at 175 °C. The microstructure evolution, microhardness as well as the wear resistance of obtained multiphase layers are investigated by means of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), microhardness tester and pin-on-disc tribometer. The multiphase layer, dominated by TiN0.3 or Al3Ti, is prepared with significantly increased layer depth after duplex treatment. The surface hardness of multiphase layer is remarkably improved from 23.7HV to 457HV. The core matrix hardness is also increased to 65HV after aging. The wear rate of the multiphase layer decreases about 55.22% and 49.28% in comparison with the aged and Ti coated specimens, respectively. The predominant wear mechanism for the multiphase layer is abrasive and oxidation, but severe adhesive wear for the aged and Ti coated specimens.

  9. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Wang N

    2017-08-01

    Full Text Available Ning Wang,1 Hui Wang,2 Chengchun Tang,3 Shijun Lei,1 Wanqing Shen,1 Cong Wang,1 Guobin Wang,4 Zheng Wang,1,4 Lin Wang1,5 1Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, 2Department of Medical Genetics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 3Boron Nitride Research Center, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 4Department of Gastrointestinal Surgery, 5Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China Abstract: Boron nitride (BN nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials – BN nanospheres (BNNSs and highly water-soluble BN nanomaterial (named BN-800-2 – we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL-1 and 10 µg·mL-1, respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1, SOD2, SOD3, MEK1, and PMK1, might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL-1, BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material. Keywords: boron nitride nanomaterials, Caenorhabditis elegans, nanotoxicology

  10. First principles calculations of interstitial and lamellar rhenium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Soto, G., E-mail: gerardo@cnyn.unam.mx [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico); Tiznado, H.; Reyes, A.; Cruz, W. de la [Universidad Nacional Autonoma de Mexico, Centro de Nanociencias y Nanotecnologia, Km 107 Carretera Tijuana-Ensenada, Ensenada Baja California (Mexico)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer The possible structures of rhenium nitride as a function of composition are analyzed. Black-Right-Pointing-Pointer The alloying energy is favorable for rhenium nitride in lamellar arrangements. Black-Right-Pointing-Pointer The structures produced by magnetron sputtering are metastable variations. Black-Right-Pointing-Pointer The structures produced by high-pressure high-temperature are stable configurations. Black-Right-Pointing-Pointer The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re{sub 3}N and Re{sub 2}N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials

  11. First principles calculations of interstitial and lamellar rhenium nitrides

    International Nuclear Information System (INIS)

    Soto, G.; Tiznado, H.; Reyes, A.; Cruz, W. de la

    2012-01-01

    Highlights: ► The possible structures of rhenium nitride as a function of composition are analyzed. ► The alloying energy is favorable for rhenium nitride in lamellar arrangements. ► The structures produced by magnetron sputtering are metastable variations. ► The structures produced by high-pressure high-temperature are stable configurations. ► The lamellar structures are a new category of interstitial dissolutions. - Abstract: We report here a systematic first principles study of two classes of variable-composition rhenium nitride: i, interstitial rhenium nitride as a solid solution and ii, rhenium nitride in lamellar structures. The compounds in class i are cubic and hexagonal close-packed rhenium phases, with nitrogen in the octahedral and tetrahedral interstices of the metal, and they are formed without changes to the structure, except for slight distortions of the unit cells. In the compounds in class ii, by contrast, the nitrogen inclusion provokes stacking faults in the parent metal structure. These faults create trigonal-prismatic sites where the nitrogen residence is energetically favored. This second class of compounds produces lamellar structures, where the nitrogen lamellas are inserted among multiple rhenium layers. The Re 3 N and Re 2 N phases produced recently by high-temperature and high-pressure synthesis belong to this class. The ratio of the nitrogen layers to the rhenium layers is given by the composition. While the first principle calculations point to higher stability for the lamellar structures as opposed to the interstitial phases, the experimental evidence presented here demonstrates that the interstitial classes are synthesizable by plasma methods. We conclude that rhenium nitrides possess polymorphism and that the two-dimensional lamellar structures might represent an emerging class of materials within binary nitride chemistry.

  12. Structural properties of iron nitride on Cu(100): An ab-initio molecular dynamics study

    KAUST Repository

    Heryadi, Dodi; Schwingenschlö gl, Udo

    2011-01-01

    Due to their potential applications in magnetic storage devices, iron nitrides have been a subject of numerous experimental and theoretical investigations. Thin films of iron nitride have been successfully grown on different substrates. To study

  13. Optical and Micro-Structural Characterization of MBE Grown Indium Gallium Nitride Polar Quantum Dots

    KAUST Repository

    El Afandy, Rami

    2011-01-01

    Gallium nitride and related materials have ushered in scientific and technological breakthrough for lighting, mass data storage and high power electronic applications. These III-nitride materials have found their niche in blue light emitting diodes

  14. Evanescent field phase shifting in a silicon nitride waveguide using a coupled silicon slab

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Oxenløwe, Leif Katsuo; Green, William M. J.

    2015-01-01

    An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration....

  15. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, P.O. Box MG-36, 077125 Magurele-Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Marx, Philippe [AMF Company, Route de Quincy, 18120 Lury-sur-Arnon (France); Gordin, Doina-Margareta; Gloriant, Thierry [INSA Rennes, UMR CNRS 6226 ISCR, 20 Avenue des Buttes de Coësmes, 35708 Rennes Cedex 7 (France)

    2016-05-01

    Surface nitriding was demonstrated to be an effective process for improving the biocompatibility of implantable devices. In this study, we investigated the benefits of nitriding the NiTi shape memory alloy for vascular stent applications. Results from cell experiments indicated that, compared to untreated NiTi, a superficial gas nitriding treatment enhanced the adhesion of human umbilical vein endothelial cells (HUVECs), cell spreading and proliferation. This investigation provides data to demonstrate the possibility of improving the rate of endothelialization on NiTi by means of nitride coating. - Highlights: • Gas nitriding process of NiTi is competent to promote cell spreading. • Surface nitriding of NiTi is able to stimulate focal adhesion formation and cell proliferation. • Similar expression pattern of vWf and eNOS was exhibited by bare and nitrided NiTi. • Gas nitriding treatment of NiTi shows promise for better in vivo endothelialization.

  16. Analysis of mechanical properties of steel 1045 plasma nitriding: with and without tempering

    International Nuclear Information System (INIS)

    Machado, N.T.B.; Passos, M.L.M. dos; Riani, J.C.; Recco, A.A.C.

    2014-01-01

    The purpose of this study was to evaluate the possibility of tempering during the nitriding of AISI 1045 steel. The objective was to evaluate the possibility of eliminating this phase, with the nitriding properties remaining unaltered. For this, three parameter samples were compared: quenched, tempered and nitrided for 2h; quenching and nitrided for 2h and quenching and nitrided for 4h. The analysis techniques used for characterizing the samples before and after nitriding were optical microscopy, hardness Rockwell C (HRC), scanning electron microscopy (SEM), X-ray diffraction (XRD). Results showed that phase γ is the most favorable of all parameters tested. The hardness assays showed that samples with different initial hardness (with and without tempering) and even nitriding time showed similar mechanical properties. This fact suggests that the tempering process occurred parallel to the nitriding process. (author)

  17. Microstructure and antibacterial properties of microwave plasma nitrided layers on biomedical stainless steels

    International Nuclear Information System (INIS)

    Lin, Li-Hsiang; Chen, Shih-Chung; Wu, Ching-Zong; Hung, Jing-Ming; Ou, Keng-Liang

    2011-01-01

    Nitriding of AISI 303 austenitic stainless steel using microwave plasma system at various temperatures was conducted in the present study. The nitrided layers were characterized via scanning electron microscopy, glancing angle X-ray diffraction, transmission electron microscopy and Vickers microhardness tester. The antibacterial properties of this nitrided layer were evaluated. During nitriding treatment between 350 deg. C and 550 deg. C, the phase transformation sequence on the nitrided layers of the alloys was found to be γ → (γ + γ N ) → (γ + α + CrN). The analytical results revealed that the surface hardness of AISI 303 stainless steel could be enhanced with the formation of γ N phase in nitriding process. Antibacterial test also demonstrated the nitrided layer processed the excellent antibacterial properties. The enhanced surface hardness and antibacterial properties make the nitrided AISI 303 austenitic stainless steel to be one of the essential materials in the biomedical applications.

  18. Capacitive performance of molybdenum nitride/titanium nitride nanotube array for supercapacitor

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Yibing, E-mail: ybxie@seu.edu.cn; Tian, Fang

    2017-01-15

    Highlights: • MoN{sub x}/TiN NTA is fully converted from MoO{sub 2}/TiO{sub 2} NTA by one-step nitridation process. • MoN{sub x}/TiN NTA is used as feasible electrode material of high-performance supercapacitor. • MoN{sub x}/TiN NTA shows high capacitance, rate capability and cycling stability. - Abstract: Molybdenum nitride (MoN{sub x}) depositing on titanium nitride nanotube array (TiN NTA) was designed as MoN{sub x}/TiN NTA for supercapacitor electrode material. MoN{sub x}/TiN NTA was fabricated by electrodepositing molybdenum oxide onto titanium dioxide NTA and one-step nitridation treatment in ammonia. MoN{sub x}/TiN NTA involved top-surface layer of MoN{sub x} nanoparticles and underlying layer of TiN NTA, which contributed to electric double layer capacitance in aqueous lithium-ion electrolyte solution. The specific capacitance was increased from 69.05 mF cm{sup −2} for TiN NTA to 121.50 mF cm{sup −2} for MoN{sub x}/TiN NTA at 0.3 mA cm{sup −2}, presenting the improved capacitance performance. MoN{sub x} exhibited the capacitance of 174.83 F g{sup −1} at 1.5 A g{sup −1} and slightly declined to 109.13 F g{sup −1} at 30 A g{sup −1}, presenting high rate capability. MoN{sub x}/TiN NTA exhibited the capacitance retention ratio of 93.8% at 3.0 mA cm{sup −2} after 1000 cycles, presenting high cycling stability. MoN{sub x}/TiN NTA could act as a promising electrode material of supercapacitor.

  19. Spectrographic determination of impurities in copper and copper oxide

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  20. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  1. Technical assistance for development of thermally conductive nitride filler for epoxy molding compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Song, Kee Chan; Jung, In Ha

    2005-07-15

    Technical assistance was carried out to develop nitride filler for thermally conductive epoxy molding compounds. Carbothermal reduction method was used to fabricate silicon nitride powder from mixtures of silica and graphite powders. Microstructure and crystal structure were observed by using scanning electron microscopy and x-ray diffraction technique. Thermal properties of epoxy molding compounds containing silicon nitride were measured by using laser flash method. Fabrication process of silicon nitride nanowire was developed and was applied to a patent.

  2. Performance analysis of nitride alternative plasmonic materials for localized surface plasmon applications

    DEFF Research Database (Denmark)

    Guler, U.; Naik, G. V.; Boltasseva, Alexandra

    2012-01-01

    . Titanium nitride and zirconium nitride, which were recently suggested as alternative plasmonic materials in the visible and near-infrared ranges, are compared to the performance of gold. In contrast to the results from quasistatic methods, both nitride materials are very good alternatives to the usual...

  3. UN{sub 2−x} layer formed on uranium metal by glow plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Long, Zhong [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Hu, Yin [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Chen, Lin [China Academy of Engineering Physics, P.O. Box 919-71, Mianyang 621907 (China); Luo, Lizhu [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Liu, Kezhao, E-mail: liukz@hotmail.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China); Lai, Xinchun, E-mail: lai319@yahoo.com [Science and Technology on Surface Physics and Chemistry Laboratory, P.O. Box 718-35, Mianyang 621907 (China)

    2015-01-25

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN{sub 2−x}. • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN{sub 2−x}. TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed.

  4. UN2−x layer formed on uranium metal by glow plasma nitriding

    International Nuclear Information System (INIS)

    Long, Zhong; Hu, Yin; Chen, Lin; Luo, Lizhu; Liu, Kezhao; Lai, Xinchun

    2015-01-01

    Highlights: • We used a very simple method to prepare nitride layer on uranium metal surface. • This modified layer is nitrogen-rich nitride, which should be written as UN 2−x . • TEM images show the nitride layer is composed of nano-sized grains. • XPS analysis indicates there is uranium with abnormal low valence in the nitride. - Abstract: Glow plasma nitriding is a simple and economical surface treatment method, and this technology was used to prepare nitride layer on the surface of uranium metal with thickness of several microns. The composition and structure of the nitride layer were analyzed by AES and XRD, indicating that this modified layer is nitrogen-rich uranium nitride, which should be written as UN 2−x . TEM images show the nitride layer is composed of nano-sized grains, with compact structure. And XPS analysis indicates there is uranium with abnormal low valence existing in the nitride. After the treated uranium storage in air for a long time, oxygen just entered the surface several nanometers, showing the nitride layer has excellent oxidation resistance. The mechanism of nitride layer formation and low valence uranium appearance is discussed

  5. Turbostratic boron nitride coated on high-surface area metal oxide templates

    DEFF Research Database (Denmark)

    Klitgaard, Søren Kegnæs; Egeblad, Kresten; Brorson, M.

    2007-01-01

    Boron nitride coatings on high-surface area MgAl2O4 and Al2O3 have been synthesized and characterized by transmission electron microscopy and by X-ray powder diffraction. The metal oxide templates were coated with boron nitride using a simple nitridation in a flow of ammonia starting from ammonium...

  6. Cavitation contributes substantially to tensile creep in silicon nitride

    International Nuclear Information System (INIS)

    Luecke, W.E.; Wiederhorn, S.M.; Hockey, B.J.; Krause, R.F. Jr.; Long, G.G.

    1995-01-01

    During tensile creep of a hot isostatically pressed (HIPed) silicon nitride, the volume fraction of cavities increases linearly with strain; these cavities produce nearly all of the measured strain. In contrast, compressive creep in the same stress and temperature range produces very little cavitation. A stress exponent that increases with stress (var-epsilon ∝ σ n , 2 < n < 7) characterizes the tensile creep response, while the compressive creep response exhibits a stress dependence of unity. Furthermore, under the same stress and temperature, the material creeps nearly 100 times faster in tension than in compression. Transmission electron microscopy (TEM) indicates that the cavities formed during tensile creep occur in pockets of residual crystalline silicate phase located at silicon nitride multigrain junctions. Small-angle X-ray scattering (SAXS) from crept material quantifies the size distribution of cavities observed in TEM and demonstrates that cavity addition, rather than cavity growth, dominates the cavitation process. These observations are in accord with a model for creep based on the deformation of granular materials in which the microstructure must dilate for individual grains t slide past one another. During tensile creep the silicon nitride grains remain rigid; cavitation in the multigrain junctions allows the silicate to flow from cavities to surrounding silicate pockets, allowing the dilation of the microstructure and deformation of the material. Silicon nitride grain boundary sliding accommodates this expansion and leads to extension of the specimen. In compression, where cavitation is suppressed, deformation occurs by solution-reprecipitation of silicon nitride

  7. Effective Duration of Gas Nitriding Process on AISI 316L for the Formation of a Desired Thickness of Surface Nitrided Layer

    Directory of Open Access Journals (Sweden)

    Mahmoud Hassan R. S.

    2014-07-01

    Full Text Available High temperature gas nitriding performed on AISI 316L at the temperature of 1200°C. The microstructure of treated AISI 316L samples were observed to identify the formation of the microstructure of nitrided surface layer. The grain size of austenite tends to be enlarged when the nitriding time increases, but the austenite single phase structure is maintained even after the long-time solution nitriding. Using microhardness testing, the hardness values drop to the center of the samples. The increase in surface hardness is due to the high nitrogen concentration at or near the surface. At 245HV, the graph of the effective duration of nitriding process was plotted to achieve the maximum depth of nitrogen diffuse under the surface. Using Sigma Plot software best fit lines of the experimental result found and plotted to find out effective duration of nitriding equation as Y=1.9491(1-0.7947x, where Y is the thickness of nitrided layer below the surface and X is duration of nitriding process. Based on this equation, the duration of gas nitriding process can be estimated to produce desired thickness of nitrided layer.

  8. Gallium nitride at the millennial transition

    International Nuclear Information System (INIS)

    Pankovo, J.I.

    2000-01-01

    The properties of gallium nitride were uncovered in the early years of exploratory research and endowed with negative electron affinity that could be used to make efficient cold cathodes and even dynodes for electron multipliers. GaN has another property i.e. polar nature of the crystal which makes this material piezo-electric and has non-linear optical properties. The piezo-electric properties led to new piezo electric effect may cause interfacial charge. The non-uniform distribution of acceptors, there is also presence of threading and other dislocation in GaN. Defects reappear where two adjacent overgrowth merge, but the good lateral overgrow region is large enough to make lasers. Injection lasers benefit from strong electrical and optical environment. This was achieved by using quantum wells of InGaN in GaN and this can be doped with rare earth elements to exploit the atomic transition between core levels in these elements. The emission efficiency of electrically excited Er in GaN is nearly temperature incentive from 80K to room temperature. An other application of GaN is as a heterojunction emitter for a bi-polar transistor (HBT) that can operate at high temperatures. (A.B.)

  9. Refined phase diagram of boron nitride

    International Nuclear Information System (INIS)

    Solozhenko, V.; Turkevich, V.Z.

    1999-01-01

    The equilibrium phase diagram of boron nitride thermodynamically calculated by Solozhenko in 1988 has been now refined on the basis of new experimental data on BN melting and extrapolation of heat capacities of BN polymorphs into high-temperature region using the adapted pseudo-Debye model. As compared with the above diagram, the hBN left-reversible cBN equilibrium line is displaced by 60 K toward higher temperatures. The hBN-cBN-L triple point has been calculated to be at 3480 ± 10 K and 5.9 ± 0.1 GPa, while the hBN-L-V triple point is at T = 3400 ± 20 K and p = 400 ± 20 Pa, which indicates that the region of thermodynamic stability of vapor in the BN phase diagram is extremely small. It has been found that the slope of the cBN melting curve is positive whereas the slope of hBN melting curve varies from positive between ambient pressure and 3.4 GPa to negative at higher pressures

  10. Scratch-resistant transparent boron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Dekempeneer, E.H.A.; Kuypers, S.; Vercammen, K.; Meneve, J.; Smeets, J. [Vlaamse Instelling voor Technologisch Onderzoek (VITO), Mol (Belgium); Gibson, P.N.; Gissler, W. [Joint Research Centre of the Commission of the European Communities, Institute for Advanced Materials, Ispra (Vatican City State, Holy See) (Italy)

    1998-03-01

    Transparent boron nitride (BN) coatings were deposited on glass and Si substrates in a conventional capacitively coupled RF PACVD system starting from diborane (diluted in helium) and nitrogen. By varying the plasma conditions (bias voltage, ion current density), coatings were prepared with hardness values ranging from 2 to 12 GPa (measured with a nano-indenter). Infrared absorption measurements indicated that the BN was of the hexagonal type. A combination of glancing-angle X-ray diffraction measurements and simulations shows that the coatings consist of hexagonal-type BN crystallites with different degrees of disorder (nanocrystalline or turbostratic material). High-resolution transmission electron microscopy analysis revealed the presence of an amorphous interface layer and on top of this interface layer a well-developed fringe pattern characteristic for the basal planes in h-BN. Depending on the plasma process conditions, these fringe patterns showed different degrees of disorder as well as different orientational relationships with respect to the substrate surface. These observations were correlated with the mechanical properties of the films. (orig.) 14 refs.

  11. Graphene nanoribbons epitaxy on boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xiaobo; Wang, Shuopei; Wu, Shuang; Chen, Peng; Zhang, Jing; Zhao, Jing; Meng, Jianling; Xie, Guibai; Wang, Duoming; Wang, Guole; Zhang, Ting Ting; Yang, Rong; Shi, Dongxia [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yang, Wei [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Laboratoire Pierre Aigrain, ENS-CNRS UMR 8551, Universités Pierre et Marie Curie and Paris-Diderot, 24 rue Lhomond, 75231 Paris Cedex 05 (France); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Zhang, Guangyu, E-mail: gyzhang@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100190 (China)

    2016-03-14

    In this letter, we report a pilot study on epitaxy of monolayer graphene nanoribbons (GNRs) on hexagonal boron nitride (h-BN). We found that GNRs grow preferentially from the atomic steps of h-BN, forming in-plane heterostructures. GNRs with well-defined widths ranging from ∼15 nm to ∼150 nm can be obtained reliably. As-grown GNRs on h-BN have high quality with a carrier mobility of ∼20 000 cm{sup 2} V{sup −1} s{sup −1} for ∼100-nm-wide GNRs at a temperature of 1.7 K. Besides, a moiré pattern induced quasi-one-dimensional superlattice with a periodicity of ∼15 nm for GNR/h-BN was also observed, indicating zero crystallographic twisting angle between GNRs and h-BN substrate. The superlattice induced band structure modification is confirmed by our transport results. These epitaxial GNRs/h-BN with clean surfaces/interfaces and tailored widths provide an ideal platform for high-performance GNR devices.

  12. Fluorescent lighting with aluminum nitride phosphors

    Science.gov (United States)

    Cherepy, Nerine J.; Payne, Stephen A.; Seeley, Zachary M.; Srivastava, Alok M.

    2016-05-10

    A fluorescent lamp includes a glass envelope; at least two electrodes connected to the glass envelope; mercury vapor and an inert gas within the glass envelope; and a phosphor within the glass envelope, wherein the phosphor blend includes aluminum nitride. The phosphor may be a wurtzite (hexagonal) crystalline structure Al.sub.(1-x)M.sub.xN phosphor, where M may be drawn from beryllium, magnesium, calcium, strontium, barium, zinc, scandium, yttrium, lanthanum, cerium, praseodymium, europium, gadolinium, terbium, ytterbium, bismuth, manganese, silicon, germanium, tin, boron, or gallium is synthesized to include dopants to control its luminescence under ultraviolet excitation. The disclosed Al.sub.(1-x)M.sub.xN:Mn phosphor provides bright orange-red emission, comparable in efficiency and spectrum to that of the standard orange-red phosphor used in fluorescent lighting, Y.sub.2O.sub.3:Eu. Furthermore, it offers excellent lumen maintenance in a fluorescent lamp, and does not utilize "critical rare earths," minimizing sensitivity to fluctuating market prices for the rare earth elements.

  13. Aluminum nitride and nanodiamond thin film microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Knoebber, Fabian; Bludau, Oliver; Roehlig, Claus-Christian; Williams, Oliver; Sah, Ram Ekwal; Kirste, Lutz; Cimalla, Volker; Lebedev, Vadim; Nebel, Christoph; Ambacher, Oliver [Fraunhofer-Institute for Applied Solid State Physics, Freiburg (Germany)

    2010-07-01

    In this work, aluminum nitride (AlN) and nanocrystalline diamond (NCD) thin film microstructures have been developed. Freestanding NCD membranes were coated with a piezoelectrical AlN layer in order to build tunable micro-lens arrays. For the evaluation of the single material quality, AlN and NCD thin films on silicon substrates were fabricated using RF magnetron sputtering and microwave chemical vapor deposition techniques, respectively. The crystal quality of AlN was investigated by X-ray diffraction. The piezoelectric constant d{sub 33} was determined by scanning laser vibrometry. The NCD thin films were optimized with respect to surface roughness, mechanical stability, intrinsic stress and transparency. To determine the mechanical properties of the materials, both, micromechanical resonator and membrane structures were fabricated and measured by magnetomotive resonant frequency spectroscopy and bulging experiments, respectively. Finally, the behavior of AlN/NCD heterostructures was modeled using the finite element method and the first structures were characterized by piezoelectrical measurements.

  14. Fully CMOS-compatible titanium nitride nanoantennas

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Justin A., E-mail: jabriggs@stanford.edu [Department of Applied Physics, Stanford University, 348 Via Pueblo Mall, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Naik, Gururaj V.; Baum, Brian K.; Dionne, Jennifer A. [Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, California 94305 (United States); Petach, Trevor A.; Goldhaber-Gordon, David [Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305 (United States)

    2016-02-01

    CMOS-compatible fabrication of plasmonic materials and devices will accelerate the development of integrated nanophotonics for information processing applications. Using low-temperature plasma-enhanced atomic layer deposition (PEALD), we develop a recipe for fully CMOS-compatible titanium nitride (TiN) that is plasmonic in the visible and near infrared. Films are grown on silicon, silicon dioxide, and epitaxially on magnesium oxide substrates. By optimizing the plasma exposure per growth cycle during PEALD, carbon and oxygen contamination are reduced, lowering undesirable loss. We use electron beam lithography to pattern TiN nanopillars with varying diameters on silicon in large-area arrays. In the first reported single-particle measurements on plasmonic TiN, we demonstrate size-tunable darkfield scattering spectroscopy in the visible and near infrared regimes. The optical properties of this CMOS-compatible material, combined with its high melting temperature and mechanical durability, comprise a step towards fully CMOS-integrated nanophotonic information processing.

  15. Device performance of in situ steam generated gate dielectric nitrided by remote plasma nitridation

    International Nuclear Information System (INIS)

    Al-Shareef, H. N.; Karamcheti, A.; Luo, T. Y.; Bersuker, G.; Brown, G. A.; Murto, R. W.; Jackson, M. D.; Huff, H. R.; Kraus, P.; Lopes, D.

    2001-01-01

    In situ steam generated (ISSG) oxides have recently attracted interest for use as gate dielectrics because of their demonstrated reliability improvement over oxides formed by dry oxidation. [G. Minor, G. Xing, H. S. Joo, E. Sanchez, Y. Yokota, C. Chen, D. Lopes, and A. Balakrishna, Electrochem. Soc. Symp. Proc. 99-10, 3 (1999); T. Y. Luo, H. N. Al-Shareef, G. A. Brown, M. Laughery, V. Watt, A. Karamcheti, M. D. Jackson, and H. R. Huff, Proc. SPIE 4181, 220 (2000).] We show in this letter that nitridation of ISSG oxide using a remote plasma decreases the gate leakage current of ISSG oxide by an order of magnitude without significantly degrading transistor performance. In particular, it is shown that the peak normalized transconductance of n-channel devices with an ISSG oxide gate dielectric decreases by only 4% and the normalized drive current by only 3% after remote plasma nitridation (RPN). In addition, it is shown that the reliability of the ISSG oxide exhibits only a small degradation after RPN. These observations suggest that the ISSG/RPN process holds promise for gate dielectric applications. [copyright] 2001 American Institute of Physics

  16. Copper: From neurotransmission to neuroproteostasis

    Directory of Open Access Journals (Sweden)

    Carlos M Opazo

    2014-07-01

    Full Text Available Copper is critical for the Central Nervous System (CNS development and function. In particular, different studies have shown the effect of copper at brain synapses, where it inhibits Long Term Potentation (LTP and receptor pharmacology. Paradoxically, according to recent studies copper is required for a normal LTP response. Copper is released at the synaptic cleft, where it blocks glutamate receptors, which explain its blocking effects on excitatory neurotransmission. Our results indicate that copper also enhances neurotransmission through the accumulation of PSD95 protein, which increase the levels of AMPA receptors located at the plasma membrane of the post-synaptic density. Thus, our findings represent a novel mechanism for the action of copper, which may have implications for the neurophysiology and neuropathology of the CNS. These data indicate that synaptic configuration is sensitive to transient changes in transition metal homeostasis. Our results suggest that copper increases GluA1 subunit levels of the AMPA receptor through the anchorage of AMPA receptors to the plasma membrane as a result of PSD-95 accumulation. Here, we will review the role of copper on neurotransmission of CNS neurons. In addition, we will discuss the potential mechanisms by which copper could modulate neuronal proteostasis (neuroproteostasis in the CNS with focus in the Ubiquitin Proteasome System, which is particularly relevant to neurological disorders such Alzheimer’s disease (AD where copper and protein dyshomeostasis may contribute to neurodegeneration. An understanding of these mechanisms may ultimately lead to the development of novel therapeutic approaches to control metal and synaptic alterations observed in AD patients.

  17. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    International Nuclear Information System (INIS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-01-01

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications

  18. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    Energy Technology Data Exchange (ETDEWEB)

    Czarnowska, Elżbieta [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Borowski, Tomasz [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Sowińska, Agnieszka [Children' s Memorial Health Institute, Pathology Department, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland); Lelątko, Józef [Silesia University, Faculty of Computer Science and Materials Science, 75 Pułku Piechoty 1A, 41-500 Chorzów (Poland); Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland); Wierzchoń, Tadeusz, E-mail: twierz@inmat.pw.edu.pl [Warsaw University of Technology, Faculty of Materials Science and Engineering, Wołoska 141, 02-507 Warsaw (Poland)

    2015-04-15

    Highlights: • Low temperature plasma nitriding process of NiTi shape memory alloy is presented. • The possibility of treatment details of sophisticated shape. • TiN surface layer has diffusive character. • TiN surface layer increases corrosion resistance of NiTi alloy. • Produced TiN layer modify the biological properties of NiTi alloy. - Abstract: NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  19. Active Control of Nitride Plasmonic Dispersion in the Far Infrared.

    Energy Technology Data Exchange (ETDEWEB)

    Shaner, Eric A.; Dyer, Gregory Conrad; Seng, William Francis; Bethke, Donald Thomas; Grine, Albert Dario,; Baca, Albert G.; Allerman, Andrew A.

    2014-11-01

    We investigate plasmonic structures in nitride-based materials for far-infrared (IR) applications. The two dimensional electron gas (2DEG) in the GaN/AlGaN material system, much like metal- dielectric structures, is a patternable plasmonic medium. However, it also permits for direct tunability via an applied voltage. While there have been proof-of-principle demonstrations of plasma excitations in nitride 2DEGs, exploration of the potential of this material system has thus far been limited. We recently demonstrated coherent phenomena such as the formation of plasmonic crystals, strong coupling of tunable crystal defects to a plasmonic crystal, and electromagnetically induced transparency in GaAs/AlGaAs 2DEGs at sub-THz frequencies. In this project, we explore whether these effects can be realized in nitride 2DEG materials above 1 THz and at temperatures exceeding 77 K.

  20. Research and development of nitride fuel cycle technology in Europe

    International Nuclear Information System (INIS)

    Wallenius, Janne

    2004-01-01

    Research and development on nitride fuels for minor actinide burning in accelerator driven systems is performed in Europe in context of the CONFIRM project. Dry and wet methods for fabrication of uranium free nitride fuels have been developed with the assistance of thermo-chemical modelling. Four (Pu, Zr) pins have been fabricated by PSI and will be irradiated in Studsvik at a rating of 40-50 kW/m. The thermal conductivity of (Pu, Zr)N has been measured and was found to be in agreement with earlier theoretical assessments. Safety modeling indicates that americium bearing nitride fuels, in spite of their relatively poor high temperature stability under atmospheric pressure, can survive power transients as long as the fuel cladding remains intact. (author)

  1. Colloidal characterization of silicon nitride and silicon carbide

    Science.gov (United States)

    Feke, Donald L.

    1986-01-01

    The colloidal behavior of aqueous ceramic slips strongly affects the forming and sintering behavior and the ultimate mechanical strength of the final ceramic product. The colloidal behavior of these materials, which is dominated by electrical interactions between the particles, is complex due to the strong interaction of the solids with the processing fluids. A surface titration methodology, modified to account for this interaction, was developed and used to provide fundamental insights into the interfacial chemistry of these systems. Various powder pretreatment strategies were explored to differentiate between true surface chemistry and artifacts due to exposure history. The colloidal behavior of both silicon nitride and carbide is dominated by silanol groups on the powder surfaces. However, the colloid chemistry of silicon nitride is apparently influenced by an additional amine group. With the proper powder treatments, silicon nitride and carbide powder can be made to appear colloidally equivalent. The impact of these results on processing control will be discussed.

  2. Semipolar III-nitride laser diodes with zinc oxide cladding.

    Science.gov (United States)

    Myzaferi, Anisa; Reading, Arthur H; Farrell, Robert M; Cohen, Daniel A; Nakamura, Shuji; DenBaars, Steven P

    2017-07-24

    Incorporating transparent conducting oxide (TCO) top cladding layers into III-nitride laser diodes (LDs) improves device design by reducing the growth time and temperature of the p-type layers. We investigate using ZnO instead of ITO as the top cladding TCO of a semipolar (202¯1) III-nitride LD. Numerical modeling indicates that replacing ITO with ZnO reduces the internal loss in a TCO clad LD due to the lower optical absorption in ZnO. Lasing was achieved at 453 nm with a threshold current density of 8.6 kA/cm 2 and a threshold voltage of 10.3 V in a semipolar (202¯1) III-nitride LD with ZnO top cladding.

  3. Electronic Biosensors Based on III-Nitride Semiconductors.

    Science.gov (United States)

    Kirste, Ronny; Rohrbaugh, Nathaniel; Bryan, Isaac; Bryan, Zachary; Collazo, Ramon; Ivanisevic, Albena

    2015-01-01

    We review recent advances of AlGaN/GaN high-electron-mobility transistor (HEMT)-based electronic biosensors. We discuss properties and fabrication of III-nitride-based biosensors. Because of their superior biocompatibility and aqueous stability, GaN-based devices are ready to be implemented as next-generation biosensors. We review surface properties, cleaning, and passivation as well as different pathways toward functionalization, and critically analyze III-nitride-based biosensors demonstrated in the literature, including those detecting DNA, bacteria, cancer antibodies, and toxins. We also discuss the high potential of these biosensors for monitoring living cardiac, fibroblast, and nerve cells. Finally, we report on current developments of covalent chemical functionalization of III-nitride devices. Our review concludes with a short outlook on future challenges and projected implementation directions of GaN-based HEMT biosensors.

  4. Origin of interfacial charging in irradiated silicon nitride capacitors

    International Nuclear Information System (INIS)

    Hughes, R.C.

    1984-01-01

    Many experiments show that when metal-silicon nitride-silicon dioxide-silicon (MNOS) devices are irradiated in short circuit, a large interfacial charge builds up near the nitride-SiO 2 -Si interface. This effect cannot be explained by simple models of radiation-induced conductivity of the nitride, but it is reported here that inclusion of carrier diffusion and recombination in the photoconductivity equations can predict the observed behavior. Numerical solutions on a computer are required, however, when these complications are added. The simulations account for the magnitude and radiation dose dependence of the results, as well as the occurrence of a steady state during the irradiation. The location of the excess trapped charge near the interface is also predicted, along with the large number of new traps which must be introduced to influence the steady-state charge distribution

  5. Tribological and microstructural characteristics of ion-nitrided steels

    Science.gov (United States)

    Spalvins, T.

    1983-01-01

    Three steels AISI 4140, AISI 4340 and AISI 304 stainless steel were ion nitrided in a plasma consisting of a 75:25 mixture of H2:N2, sometimes with a trace of CH4. Their surface topography was characterized by SEM and two distinct compound phases were identified: the gamma and the epsilon. The core-case hardness profiles were also established. The low Cr alloy steels have an extended diffusion zone in contrast to the 3034 stainless steels which have a sharp interface. The depth of ion-nitriding is increased as the Cr content is decreased. Friction tests reveal that the gamma surface phase has a lower coefficient of friction than the epsilon phase. The lowest coefficient of friction is achieved when both the rider and the specimen surface are ion nitrided. Previously announced in STAR as N83-24635

  6. performance calculations of gadolinium oxide and boron nitride coated fuel

    International Nuclear Information System (INIS)

    Tanker, E.; Uslu, I.; Disbudak, H.; Guenduez, G.

    1997-01-01

    A comparative study was performed on the behaviour of natural uranium dioxide-gadolinium oxide mixture fuel and boron nitride coated low enriched fuel in a pressurized water reactor. A fuel element containing one burnable poison fuel pins was modeled with the computer code WIMS, and burn-up dependent critically, fissile isotope inventory and two dimensional power distribution were obtained. Calculations were performed for burnable poison fuels containing 5% and 10% gadolinium oxide and for those coated with 1μ,5μ and 10μ of boron nitride. Boron nitride coating was found superior to gadolinium oxide on account of its smoother criticality curve, lower power peaks and insignificant change in fissile isotope content

  7. Kinetic modelling of chlorination of nitrided ilmenite using MATLAB

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sivakumar, E-mail: srsivakumar@usm.my; Kwok, Teong Chen, E-mail: ctck@live.com; Hamid, Sheikh Abdul Rezan Sheikh Abdul, E-mail: rezanshk@gmail.com [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang (Malaysia)

    2016-07-19

    In the present study, chlorination of nitride ilmenite using 2{sup k} factorial design was investigated. The reduction experiments were carried out in a temperature range of 400°C to 500°C, chlorination duration from 1 hour to 3 hours and using different type of carbon reactant. Phases of raw materials and reduced samples were analyzed by X-ray diffraction (XRD). Ilmenite was reduced to TiO{sub x}C{sub y}N{sub z} through carbothermal and nitridation for further chlorination into titanium tetrachloride. The Design of Experiment analysis suggested that the types of carbon reactant contribute most influence to the extent of chlorination of nitride ilmenite. The extent of chlorination was highest at 500°C with 3 hours chlorination time and carbon nanotube as carbon reactant.

  8. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot.

    Science.gov (United States)

    Strayer-Scherer, A; Liao, Y Y; Young, M; Ritchie, L; Vallad, G E; Santra, S; Freeman, J H; Clark, D; Jones, J B; Paret, M L

    2018-02-01

    Bacterial spot, caused by Xanthomonas spp., is a widespread and damaging bacterial disease of tomato (Solanum lycopersicum). For disease management, growers rely on copper bactericides, which are often ineffective due to the presence of copper-tolerant Xanthomonas strains. This study evaluated the antibacterial activity of the new copper composites core-shell copper (CS-Cu), multivalent copper (MV-Cu), and fixed quaternary ammonium copper (FQ-Cu) as potential alternatives to commercially available micron-sized copper bactericides for controlling copper-tolerant Xanthomonas perforans. In vitro, metallic copper from CS-Cu and FQ-Cu at 100 μg/ml killed the copper-tolerant X. perforans strain within 1 h of exposure. In contrast, none of the micron-sized copper rates (100 to 1,000 μg/ml) from Kocide 3000 significantly reduced copper-tolerant X. perforans populations after 48 h of exposure compared with the water control (P copper-based treatments killed the copper-sensitive X. perforans strain within 1 h. Greenhouse studies demonstrated that all copper composites significantly reduced bacterial spot disease severity when compared with copper-mancozeb and water controls (P copper composites significantly reduced disease severity when compared with water controls, using 80% less metallic copper in comparison with copper-mancozeb in field studies (P copper composites have the potential to manage copper-tolerant X. perforans and tomato bacterial spot.

  9. Hot carrier dynamics in plasmonic transition metal nitrides

    Science.gov (United States)

    Habib, Adela; Florio, Fred; Sundararaman, Ravishankar

    2018-06-01

    Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nano-structures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing. Transition metal nitrides are an exciting class of new plasmonic materials with superior thermal and mechanical properties compared to conventional noble metals, but their suitability for plasmonic hot carrier applications remains unknown. Here, we present fully first principles calculations of the plasmonic response, hot carrier generation and subsequent thermalization of all group IV, V and VI transition metal nitrides, fully accounting for direct and phonon-assisted transitions as well as electron–electron and electron–phonon scattering. We find the largest frequency ranges for plasmonic response in ZrN, HfN and WN, between those of gold and silver, while we predict strongest absorption in the visible spectrum for the VN, NbN and TaN. Hot carrier generation is dominated by direct transitions for most of the relevant energy range in all these nitrides, while phonon-assisted processes dominate only below 1 eV plasmon energies primarily for the group IV nitrides. Finally, we predict the maximum hot carrier lifetimes to be around 10 fs for group IV and VI nitrides, a factor of 3–4 smaller than noble metals, due to strong electron–phonon scattering. However, we find longer carrier lifetimes for group V nitrides, comparable to silver for NbN and TaN, while exceeding 100 fs (twice that of silver) for VN, making them promising candidates for efficient hot carrier extraction.

  10. Production of 15N for nitride type nuclear fuel

    International Nuclear Information System (INIS)

    Axente, Damian

    2005-01-01

    Full text: Nitride nuclear fuel is the choice for advanced nuclear reactors and ADS, considering its favorable properties as: melting point, excellent thermal conductivity, high fissile density, lower fission gas release and good radiation tolerance. The application of nitride fuels in different nuclear reactors requires use of 15 N enriched nitrogen to suppress 14 C production due to (n,p) reaction on 14 N. Nitride fuel is a promising candidate for transmutation in ADSs of radioactive minor actinides, which are converted into nitrides with 15 N for that purpose. Taking into account that at present the world wide 15 N market is about 20 - 40 Kg 15 N/y, the supply of that isotope for nitride type nuclear fuel, would demand an increase in production capacity by a factor of 1000. For an industrial plant producing 100 t/y 15 N at 99 at. % 15 N concentration, using present technology of 15 N/ 14 N isotopic exchange in Nitrox system, the first separation stage of the cascade would be fed with 10M HNO 3 solution at a 600 m 3 /h flow-rate. If conversion of HNO 3 into NO, NO 2 , at the enriching end of the columns, would be done with gaseous SO 2 , for an industrial plant of 100 t/y 15 N a consumption of 4 million t SO 2 /y and a production of 70 % H 2 SO 4 waste solution of 4.5 million m 3 /y are estimated. The reconversion of H 2 SO 4 into SO 2 in order to recycle SO 2 is a problem to be solved to compensate the cost of sulfur dioxide and to diminish the amount of sulfuric acid waste solution. It should be taken into consideration an important price reduction of 15 N in order to make possible its utilization for industrial production of nitride type nuclear fuel. (authors)

  11. Dissolution performance of plutonium nitride based fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Aneheim, E.; Hedberg, M. [Nuclear Chemistry, Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivaegen 4, Gothenburg, SE41296 (Sweden)

    2016-07-01

    Nitride fuels have been regarded as one viable fuel option for Generation IV reactors due to their positive features compared to oxides. To be able to close the fuel cycle and follow the Generation IV concept, nitrides must, however, demonstrate their ability to be reprocessed. This means that the dissolution performance of actinide based nitrides has to be thoroughly investigated and assessed. As the zirconium stabilized nitrides show even better potential as fuel material than does the pure actinide containing nitrides, investigations on the dissolution behavior of both PuN and (Pu,Zr)N has been undertaken. If possible it is desirable to perform the fuel dissolutions using nitric acid. This, as most reprocessing strategies using solvent-solvent extraction are based on a nitride containing aqueous matrix. (Pu,Zr)N/C microspheres were produced using internal gelation. The spheres dissolution performance was investigated using nitric acid with and without additions of HF and Ag(II). In addition PuN fuel pellets were produced from powder and their dissolution performance were also assessed in a nitric acid based setting. It appears that both PuN and (Pu,Zr)N/C fuel material can be completely dissolved in nitric acid of high concentration with the use of catalytic amounts of HF. The amount of HF added strongly affects dissolution kinetics of (Pu, Zr)N and the presence of HF affects the 2 solutes differently, possibly due to inhomogeneity o the initial material. Large additions of Ag(II) can also be used to facilitate the dissolution of (Pu,Zr)N in nitric acid. PuN can be dissolved by pure nitric acid of high concentration at room temperature while (Pu, Zr)N is unaffected under similar conditions. At elevated temperature (reflux), (Pu,Zr)N can, however, also be dissolved by concentrated pure nitric acid.

  12. Kinetic parameters of nitridation of molybdenum and niobium alloys with various structure states

    International Nuclear Information System (INIS)

    Solodkin, G.A.; Bulgach, A.A.; Likhacheva, T.E.

    1985-01-01

    Effect of preliminary plastic strain under rolling on kinetic parameters of nitridation of VN-2AEh, VN-3 niobium alloys and molybdenum alloy with hafnium is investigated. Extreme character of dependence of kinetic parameters of nitridation on the degree of reduction under rolling is determined. Preliminary plastic strain at negligible reduction is shown to accelerate growth of the zone of internal nitridation and decelerates growth of the nitride zone. Nitrogen atom removal from the surface to the centre is retarded at the increase of the degree of reduction up to 50% and higher. The degree of deformations is the higher the lower nitridation temperature is

  13. Preparation and characterization of morph-genetic aluminum nitride/carbon composites from filter paper

    International Nuclear Information System (INIS)

    Wang Wei; Xue Tao; Jin Zhihao; Qiao Guanjun

    2008-01-01

    Morph-genetic aluminum nitride/carbon composites with cablelike structure were prepared from filter paper template through the surface sol-gel process and carbothermal nitridation reaction. The resulting materials have a hierarchical structure originating from the morphology of cellulose paper. The aluminum nitride/carbon composites have the core-shell microstructure, the core is graphitic carbon, and the shell is aluminum nitride nanocoating formed by carbothermal nitridation reduction of alumina with the interfacial carbon in nitrogen atmosphere. Scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and transmission electron microscope were employed to characterize the structural morphology and phase compositions of the final products

  14. Silicon nitride photonics: from visible to mid-infrared wavelengths

    Science.gov (United States)

    Micó, Gloria; Bru, Luis A.; Pastor, Daniel; Doménech, David; Fernández, Juan; Sánchez, Ana; Cirera, Josep M.; Domínguez, Carlos; Muñoz, Pascual

    2018-02-01

    Silicon nitride has received a lot of attention during the last ten years, for applications such as bio-photonics, tele/datacom, optical signal processing and sensing. In this paper, firstly an updated review of the state of the art of silicon nitride photonics integration platforms will be provided. Secondly, our developments on a moderate confinement Si3N4 platform in the near-infrared will be presented. Finally, our steps towards establishing a Si3N4 based platform for broadband operation spanning from visible to mid-infrared wavelengths will be introduced.

  15. Synthesis, reactivity, and electronic structure of molecular uranium nitrides

    OpenAIRE

    Cleaves, Peter A.

    2016-01-01

    The study of metal-ligand multiple bonding offers insight into the electronic structure and bond of metal systems. Until recently, for uranium, such systems were limited to uranyl, and terminal chalcogenide, imide and carbene complexes. In 2012, this was extended to nitrides with the first preparation of a uranium–nitride (U≡N) species isolable under standard conditions, namely [U(TrenTIPS)(N)][Na(12C4)2] (52), which is prepared by the two-electron reduction of sodium azide with a trivalent u...

  16. Inter-layer potential for hexagonal boron nitride

    Energy Technology Data Exchange (ETDEWEB)

    Leven, Itai; Hod, Oded, E-mail: odedhod@tau.ac.il [Department of Chemical Physics, School of Chemistry, The Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978 (Israel); Azuri, Ido; Kronik, Leeor [Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100 (Israel)

    2014-03-14

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  17. Structural, electronic and optical properties of carbon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M L [California Univ., Berkeley (United States). Dept. of Physics

    1996-05-01

    Carbon nitride was proposed as a superhard material and a structural prototype, {beta}-C{sub 3}N{sub 4}, was examined using several theoretical models. Some reports claiming experimental verifications have been made recently. The current status of the theory and experiment is reviewed, and a detailed discussion is presented of calculations of the electronic and optical properties of this material. These calculations predict that {beta}-C{sub 3}N{sub 4} will have a minimum gap which is indirect at 6.4{+-}0.5 eV. A discussion of the possibility of carbon nitride nanotubes is also presented. (orig.)

  18. Proceedings of the symposium on nitride fuel cycle technology

    International Nuclear Information System (INIS)

    2004-12-01

    This report is the Proceedings of the Symposium of Nitride Fuel Cycle Technology, which was held on July 28, 2004, at the Tokai Research Establishment of the Japan Atomic Energy Research Institute. The purpose of this symposium is to exchange information and views on nitride fuel cycle technology among researchers from foreign and domestic organizations, and to discuss the recent and future research activities. The topics in the symposium are Present State of the Technology Development in the World and Japan, Fabrication Technology, Property Measurement and Pyrochemical Process. The intensive discussion was made among 53 participants. This report consists of 2 papers as invited presentations and 12 papers as contributed papers. (author)

  19. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Guler Urcan

    2015-01-01

    Full Text Available Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities for photocatalytic applications.

  20. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    International Nuclear Information System (INIS)

    Butt, Drryl P.; Jaques, Brian

    2009-01-01

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (U x , Dy 1-x )N (0.7 (le) X (le) 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  1. Nitriding and Nitrocarburizing; Current Status and Future Challenges

    DEFF Research Database (Denmark)

    Somers, Marcel A. J.

    , aspects of low temperature surface hardening of stainless steels in a gaseous environment will be addressed. Here, the developed case consists of expanded austenite and/or expanded martensite, which essentially is a super saturated solid solution of nitrogen/carbon in austenite/martensite. The current......This contribution addresses the current understanding of gaseous nitriding and nitrocarburizing. Aspects of thermodynamics, kinetics and microstructure development in iron and heat treatable steel will be explained. In these materials the nitrided/ nitrocarburized case can be subdivided...

  2. Inter-layer potential for hexagonal boron nitride

    Science.gov (United States)

    Leven, Itai; Azuri, Ido; Kronik, Leeor; Hod, Oded

    2014-03-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures.

  3. Peculiar features in formation of diffusion layer properties during nitridation

    International Nuclear Information System (INIS)

    Gulyaev, A.P.; Konoval'tsev, V.I.; Nikitin, V.V.

    1983-01-01

    Peculiarities of the formation of multiphase nitridated layer at samples of commercial iron, 20, 40Kh and 38KhMYu6A steels are studied with the help of high-temperature methods of investigation (X-ray diffraction analysis, hardening and thickness measuring). It is found out that during the saturation the solid solution oversaturated with nitrogen is formed; some increase in hardness in the process is a result of solid solution hardening and the increase of thickness of nitride zone; however the main growth of the layer hardness is achieved during the cooling as a result of α phase precipitating hardening

  4. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Argonne Leadership Computing Facility, Argonne National Laboratories, 9700 S. Cass Avenue Argonne, Lemont, Illinois 60439 (United States)

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  5. Inter-layer potential for hexagonal boron nitride

    International Nuclear Information System (INIS)

    Leven, Itai; Hod, Oded; Azuri, Ido; Kronik, Leeor

    2014-01-01

    A new interlayer force-field for layered hexagonal boron nitride (h-BN) based structures is presented. The force-field contains three terms representing the interlayer attraction due to dispersive interactions, repulsion due to anisotropic overlaps of electron clouds, and monopolar electrostatic interactions. With appropriate parameterization, the potential is able to simultaneously capture well the binding and lateral sliding energies of planar h-BN based dimer systems as well as the interlayer telescoping and rotation of double walled boron-nitride nanotubes of different crystallographic orientations. The new potential thus allows for the accurate and efficient modeling and simulation of large-scale h-BN based layered structures

  6. Synthesis and Optimization of the Sintering Kinetics of Actinide Nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Drryl P. Butt; Brian Jaques

    2009-03-31

    Research conducted for this NERI project has advanced the understanding and feasibility of nitride nuclear fuel processing. In order to perform this research, necessary laboratory infrastructure was developed; including basic facilities and experimental equipment. Notable accomplishments from this project include: the synthesis of uranium, dysprosium, and cerium nitrides using a novel, low-cost mechanical method at room temperature; the synthesis of phase pure UN, DyN, and CeN using thermal methods; and the sintering of UN and (Ux, Dy1-x)N (0.7 ≤ X ≤ 1) pellets from phase pure powder that was synthesized in the Advanced Materials Laboratory at Boise State University.

  7. Defect-selective dry etching for quick and easy probing of hexagonal boron nitride domains

    Science.gov (United States)

    Wu, Qinke; Lee, Joohyun; Park, Sangwoo; Woo, Hwi Je; Lee, Sungjoo; Song, Young Jae

    2018-03-01

    In this study, we demonstrate a new method to selectively etch the point defects or the boundaries of as-grown hexagonal boron nitride (hBN) films and flakes in situ on copper substrates using hydrogen and argon gases. The initial quality of the chemical vapor deposition-grown hBN films and flakes was confirmed by UV-vis absorption spectroscopy, atomic force microscopy, and transmission electron microscopy. Different gas flow ratios of Ar/H2 were then employed to etch the same quality of samples and it was found that etching with hydrogen starts from the point defects and grows epitaxially, which helps in confirming crystalline orientations. However, etching with argon is sensitive to line defects (boundaries) and helps in visualizing the domain size. Finally, based on this defect-selective dry etching technique, it could be visualized that the domains of a polycrystalline hBN monolayer merged together with many parts, even with those that grew from a single nucleation seed.

  8. Hexagonal Boron Nitride assisted transfer and encapsulation of large area CVD graphene

    Science.gov (United States)

    Shautsova, Viktoryia; Gilbertson, Adam M.; Black, Nicola C. G.; Maier, Stefan A.; Cohen, Lesley F.

    2016-07-01

    We report a CVD hexagonal boron nitride (hBN-) assisted transfer method that enables a polymer-impurity free transfer process and subsequent top encapsulation of large-area CVD-grown graphene. We demonstrate that the CVD hBN layer that is utilized in this transfer technique acts as a buffer layer between the graphene film and supporting polymer layer. We show that the resulting graphene layers possess lower doping concentration, and improved carrier mobilities compared to graphene films produced by conventional transfer methods onto untreated SiO2/Si, SAM-modified and hBN covered SiO2/Si substrates. Moreover, we show that the top hBN layer used in the transfer process acts as an effective top encapsulation resulting in improved stability to ambient exposure. The transfer method is applicable to other CVD-grown 2D materials on copper foils, thereby facilitating the preparation of van der Waals heterostructures with controlled doping.

  9. Defect induced tuning of photoluminescence property in graphitic carbon nitride nanosheets through synthesis conditions

    Energy Technology Data Exchange (ETDEWEB)

    Das, D. [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India); Banerjee, D., E-mail: nilju82@gmail.com [School of Materials Science Engineering Indian Institute of Engineering Science and Technology, Shibpur, Howrah (India); Pahari, D. [School of Materials Science Engineering Indian Institute of Engineering Science and Technology, Shibpur, Howrah (India); Ghorai, U.K. [Department of Industrial Chemistry & Swami Vivekananda Research centre, Ramakrishna Mission Vidyamandira, Belur Math, Howrah 711202 (India); Sarkar, S.; Das, N.S. [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India); Chattopadhyay, K.K., E-mail: kalyan_chattopadhyay@yahoo.com [School of Materials Science and Nanotechnology, Jadavpur University, Kolkata 700032 (India); Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata 700032 (India)

    2017-05-15

    Synthesis of layered sheet like graphitic carbon nitride by pyrolysis of urea at different temperatures has been reported. The proper phase formation has been confirmed by X-ray diffraction study whereas field emission scanning and transmission electron microscope characterized the morphology of the material. Fourier transform infrared and Raman spectroscopy revealed the presence of different bonds in the sample. Thermal gravimetric analysis has been used to study the thermal stability of the material. Energy dispersive X-ray analysis further revealed the elemental composition of carbon and nitrogen in a proper stoichiometric ratio. Excitation dependent photoluminescence spectra of the as prepared samples have been studied in detail. It has been shown that synthesis condition can tailor the amount of defects present in the synthesized samples that in turn can change the photoluminescence properties of the material. The fluorescence spectra of the as prepared samples have been used to detect copper ions present in the sample. It has also been shown that the presence of defects which is mainly N-H functional groups can change the decay characteristics of the carrier in these samples which in turn changes the PL spectra.

  10. Copper Powder and Chemicals: edited proceedings of a seminar

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    Various papers are presented covering the following topics: Status of Copper Chemical Industry in India, Copper Powder from Industrial Wastes, Manufacture of Copper Hydroxide and High Grade Cement Copper from Low Grade Copper Ore, Manufacture of Copper Sulphate as a By-Product, Hydrometallurgical Treatments of Copper Converter and Smelter Slage for Recovering Copper and other Non-Ferrous Metals, Recovery of Copper from Dilute Solutions, Use of Copper Compounds as Fungicides in India, Copper in Animal Husbandry, and Use of Copper Powder and Chemicals for Marine Applications. The keynote paper given at the Seminar was on Conservation of Copper for Better Use.

  11. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors.

    Science.gov (United States)

    Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei

    2011-08-01

    In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.

  12. Heavy Ion Irradiation Effects in Zirconium Nitride

    International Nuclear Information System (INIS)

    Egeland, G.W.; Bond, G.M.; Valdez, J.A.; Swadener, J.G.; McClellan, K.J.; Maloy, S.A.; Sickafus, K.E.; Oliver, B.

    2004-01-01

    Polycrystalline zirconium nitride (ZrN) samples were irradiated with He + , Kr ++ , and Xe ++ ions to high (>1.10 16 ions/cm 2 ) fluences at ∼100 K. Following ion irradiation, transmission electron microscopy (TEM) and grazing incidence X-ray diffraction (GIXRD) were used to analyze the microstructure and crystal structure of the post-irradiated material. For ion doses equivalent to approximately 200 displacements per atom (dpa), ZrN was found to resist any amorphization transformation, based on TEM observations. At very high displacement damage doses, GIXRD measurements revealed tetragonal splitting of some of the diffraction maxima (maxima which are associated with cubic ZrN prior to irradiation). In addition to TEM and GIXRD, mechanical property changes were characterized using nano-indentation. Nano-indentation revealed no change in elastic modulus of ZrN with increasing ion dose, while the hardness of the irradiated ZrN was found to increase significantly with ion dose. Finally, He + ion implanted ZrN samples were annealed to examine He gas retention properties of ZrN as a function of annealing temperature. He gas release was measured using a residual gas analysis (RGA) spectrometer. RGA measurements were performed on He-implanted ZrN samples and on ZrN samples that had also been irradiated with Xe ++ ions, in order to introduce high levels of displacive radiation damage into the matrix. He evolution studies revealed that ZrN samples with high levels of displacement damage due to Xe implantation, show a lower temperature threshold for He release than do pristine ZrN samples. (authors)

  13. Graphitic carbon nitride based nanocomposites: a review

    Science.gov (United States)

    Zhao, Zaiwang; Sun, Yanjuan; Dong, Fan

    2014-11-01

    Graphitic carbon nitride (g-C3N4), as an intriguing earth-abundant visible light photocatalyst, possesses a unique two-dimensional structure, excellent chemical stability and tunable electronic structure. Pure g-C3N4 suffers from rapid recombination of photo-generated electron-hole pairs resulting in low photocatalytic activity. Because of the unique electronic structure, the g-C3N4 could act as an eminent candidate for coupling with various functional materials to enhance the performance. According to the discrepancies in the photocatalytic mechanism and process, six primary systems of g-C3N4-based nanocomposites can be classified and summarized: namely, the g-C3N4 based metal-free heterojunction, the g-C3N4/single metal oxide (metal sulfide) heterojunction, g-C3N4/composite oxide, the g-C3N4/halide heterojunction, g-C3N4/noble metal heterostructures, and the g-C3N4 based complex system. Apart from the depiction of the fabrication methods, heterojunction structure and multifunctional application of the g-C3N4-based nanocomposites, we emphasize and elaborate on the underlying mechanisms in the photocatalytic activity enhancement of g-C3N4-based nanocomposites. The unique functions of the p-n junction (semiconductor/semiconductor heterostructures), the Schottky junction (metal/semiconductor heterostructures), the surface plasmon resonance (SPR) effect, photosensitization, superconductivity, etc. are utilized in the photocatalytic processes. Furthermore, the enhanced performance of g-C3N4-based nanocomposites has been widely employed in environmental and energetic applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation, carbon dioxide reduction, disinfection, and supercapacitors. This critical review ends with a summary and some perspectives on the challenges and new directions in exploring g-C3N4-based advanced nanomaterials.

  14. 21 CFR 73.1647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper. It...

  15. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, van den G.J.; de Goeij, J.J.M.; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendriks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (<1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  16. Copper uptake and retention in liver parenchymal cells isolated from nutritionally copper-deficient rats

    NARCIS (Netherlands)

    Berg, G.J. van den; Goeij, J.J.M. de; Bock, I.; Gijbels, M.J.J.; Brouwer, A.; Lei, K.Y.; Hendruiks, H.F.J.

    1991-01-01

    Copper uptake and retention were studied in primary cultures of liver parenchymal cells isolated from copper-deficient rats. Male Sprague-Dawley rats were fed a copper-deficient diet (< 1 mg Cu/kg) for 10 wk. Copper-deficient rats were characterized by low copper concentrations in plasma and liver,

  17. The strength limits of ultra-thin copper films

    Energy Technology Data Exchange (ETDEWEB)

    Wiederhirn, Guillaume

    2007-07-02

    Elucidating size effects in ultra-thin films is essential to ensure the performance and reliability of MEMS and electronic devices. In this dissertation, the influence of a capping layer on the mechanical behavior of copper (Cu) films was analyzed. Passivation is expected to shut down surface diffusion and thus to alter the contributions of dislocation- and diffusion-based plasticity in thin films. Experiments were carried out on 25 nm to 2 {mu}m thick Cu films magnetron-sputtered onto amorphous-silicon nitride coated silicon (111) substrates. These films were capped with 10 nm of aluminum oxide or silicon nitride passivation without breaking vacuum either directly after Cu deposition or after a 500 C anneal. The evolution of thermal stresses in these films was investigated mainly by the substrate curvature method between -160 C and 500 C. Negligible differences were detected for the silicon nitride vs. the aluminum oxide passivated Cu films. The processing parameters associated with the passivation deposition also had no noticeable effect on the stress-temperature behavior of the Cu. However, the thermomechanical behavior of passivated Cu films strongly depended on the Cu film thickness. For films in the micrometer range, the influence of the passivation layer was not significant, which suggests that the Cu deformed mainly by dislocation plasticity. However, diffusional creep plays an increasing role with decreasing film thickness since it becomes increasingly difficult to nucleate dislocations in smaller grains. Size effects were investigated by plotting the stress at room temperature after thermal cycling as a function of the inverse film thickness. Between 2 {mu}m and 200 nm, the room temperature stress was inversely proportional to the film thickness. The passivation exerted a strong effect on Cu films thinner than 100 nm by effectively shutting down surface diffusion mechanisms. Since dislocation processes were also shut off in these ultra-thin films, they

  18. NID Copper Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Zhu, Zihua

    2011-09-12

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology, possibly one under development at Nonlinear Ion Dynamics (NID), will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL in January 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are reported here. A second sample of isotopically separated copper was provided by NID to PNNL in August 2011 for isotopic analysis as a test of the NID technology. The results of that analysis are also reported here.

  19. Development of nitride fuel and pyrochemical process for transmutation of minor actinides

    International Nuclear Information System (INIS)

    Arai, Yasuo; Akabori, Mitsuo; Minato, Kazuo; Uno, Masayoshi

    2010-01-01

    Nitride fuel cycle for transmutation of minor actinides has been investigated under the double-strata fuel cycle concept. Mononitride solid solutions containing minor actinides have been prepared and characterised. Thermo-physical properties, such as thermal expansion, heat capacity and thermal diffusivity, have been measured by use of minor actinide nitride and burn-up simulated nitride samples. Irradiation behaviour of nitride fuel has been examined by irradiation tests. Pyrochemical process for treatment of spent nitride fuel has been investigated mainly by electrochemical measurements and nitride formation behaviour in pyrochemical process has been studied for recycled fuel fabrication. Recent results of experimental study on nitride fuel and pyrochemical process are summarised in the paper. (authors)

  20. Gallium and copper radiopharmaceutical chemistry

    International Nuclear Information System (INIS)

    Green, M.A.

    1991-01-01

    Gallium and copper radionuclides have a long history of use in nuclear medicine. Table 1 presents the nuclear properties of several gallium and copper isotopes that either are used in the routine practice of clinical nuclear medicine or exhibit particular characteristics that might make them useful in diagnostic or therapeutic medicine. This paper will provide some historic perspective along with an overview of some current research directions in gallium and copper radiopharmaceutical chemistry. A more extensive review of gallium radiopharmaceutical chemistry has recently appeared and can be consulted for a more in-depth treatment of this topic

  1. Copper complexes as 'radiation recovery' agents

    International Nuclear Information System (INIS)

    Sorenson, J.R.J.

    1989-01-01

    Copper and its compounds have been used for their remedial effects since the beginning of recorded history. As early as 3000 BC the Egyptians used copper as an antiseptic for healing wounds and to sterilise drinking water; and later, ca 1550 BC, the Ebers Papyrus reports the use of copper acetate, copper sulphate and pulverised metallic copper for the treatment of eye infections. These historical uses of copper and its compounds are particularly interesting in the light of modern evidence concerning the use of certain copper complexes for the treatment of radiation sickness and more recently as an adjunct to radiotherapy for cancer patients. (author)

  2. 3D-atom probe analysis of Cr and Cu added nitriding steels

    International Nuclear Information System (INIS)

    Takahashi, J.; Kawakami, K.; Sugiyama, M.; Kawasaki, K.

    2004-01-01

    Full text: Nitriding treatment is a very effective method for hardening the surface of steels and realizing improvement in wear-resistance. Although this technology has been performed for many years, the precipitation and hardening mechanisms are not completely clear. It was not easy to observe very fine precipitates which may be generated in nitriding steels. We performed a three-dimensional atom probe analysis of the nitriding steel plate in which two kinds of precipitates were generated. Hot-rolled steel plates, which mainly contained Cr 1.0wt.% and Cu 1.3wt.%, were nitrided by annealing (550-6000 o ) in a mainly NH 3 atmosphere. The material before the nitriding had a hardness of about 100 Hv. By the nitriding, the surface hardness increased to more than 700 Hv, and the inside hardness also increased to 200 Hv. The specimens were taken from 0.15 mm, 0.3 mm and 0.8 mm depth from the surface, which mostly correspond to the peak, the half and the inside hardness, respectively. In the specimen of 0.8 mm depth, prolate spheroidal Cu precipitates of more than 8 nm in diameter were observed. In the specimen of 0.3 mm depth, plate-shape nitride precipitates of 6-10 nm in diameter were observed in addition to the Cu precipitates. Each Cu precipitate made a pair with the nitride precipitate. In the 0.15 mm depth specimen, Cr nitride precipitates of high volume density in addition to the pairs consisting of a Cu precipitate and a Cr nitride precipitate were observed. The size of the nitride precipitate forming the pair was slightly larger than that of the single Cr nitride precipitates. Furthermore, the denuded zone where the nitride precipitate does not exist was observed around the pairs. From these results, it was concluded that three stages of precipitation arose as follows: By the heat treatment of nitriding processing, Cu precipitates were generated first. Then, Cr nitride nucleated at the surface of the Cu precipitates inhomogeneously, and surrounding solute Cr was

  3. Copper tailings in stucco mortars

    Directory of Open Access Journals (Sweden)

    Osvaldo Pavez

    Full Text Available Abstract This investigation addressed the evaluation of the use of copper tailings in the construction industry in order to reduce the impact on the environment. The evaluation was performed by a technical comparison between stucco mortars prepared with crushed conventional sand and with copper tailings sand. The best results were achieved with the stucco mortars containing tailings. The tailings presented a fine particles size distribution curve different from that suggested by the standard. The values of compressive strength, retentivity, and adherence in the stucco mortars prepared with copper tailings were much higher than those obtained with crushed sand. According to the results from this study, it can be concluded that the preparation of stucco mortars using copper tailings replacing conventional sand is a technically feasible alternative for the construction industry, presenting the benefit of mitigating the impact of disposal to the environment.

  4. Heterostructures for Increased Quantum Efficiency in Nitride LEDs

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Robert F. [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2010-09-30

    Task 1. Development of an advanced LED simulator useful for the design of efficient nitride-based devices. Simulator will contain graphical interface software that can be used to specify the device structure, the material parameters, the operating conditions and the desired output results. Task 2. Theoretical and experimental investigations regarding the influence on the microstructure, defect concentration, mechanical stress and strain and IQE of controlled changes in the chemistry and process route of deposition of the buffer layer underlying the active region of nitride-based blue- and greenemitting LEDs. Task 3. Theoretical and experimental investigations regarding the influence on the physical properties including polarization and IQE of controlled changes in the geometry, chemistry, defect density, and microstructure of components in the active region of nitride-based blue- and green-emitting LEDs. Task 4. Theoretical and experimental investigations regarding the influence on IQE of novel heterostructure designs to funnel carriers into the active region for enhanced recombination efficiency and elimination of diffusion beyond this region. Task 5. Theoretical and experimental investigations regarding the influence of enhanced p-type doping on the chemical, electrical, and microstructural characteristics of the acceptor-doped layers, the hole injection levels at Ohmic contacts, the specific contact resistivity and the IQE of nitride-based blue- and green-emitting LEDs. Development and optical and electrical characterization of reflective Ohmic contacts to n- and p-type GaN films.

  5. Compositional analysis of silicon oxide/silicon nitride thin films

    Directory of Open Access Journals (Sweden)

    Meziani Samir

    2016-06-01

    Full Text Available Hydrogen, amorphous silicon nitride (SiNx:H abbreviated SiNx films were grown on multicrystalline silicon (mc-Si substrate by plasma enhanced chemical vapour deposition (PECVD in parallel configuration using NH3/SiH4 gas mixtures. The mc-Si wafers were taken from the same column of Si cast ingot. After the deposition process, the layers were oxidized (thermal oxidation in dry oxygen ambient environment at 950 °C to get oxide/nitride (ON structure. Secondary ion mass spectroscopy (SIMS, Rutherford backscattering spectroscopy (RBS, Auger electron spectroscopy (AES and energy dispersive X-ray analysis (EDX were employed for analyzing quantitatively the chemical composition and stoichiometry in the oxide-nitride stacked films. The effect of annealing temperature on the chemical composition of ON structure has been investigated. Some species, O, N, Si were redistributed in this structure during the thermal oxidation of SiNx. Indeed, oxygen diffused to the nitride layer into Si2O2N during dry oxidation.

  6. Dynamic response of multiwall boron nitride nanotubes subjected to ...

    Indian Academy of Sciences (India)

    Page 1 ... 1. Introduction. Boron nitride nanotubes (BNNTs) are like carbon nanotubes. (CNTs) in structure in which carbon atoms are replaced by alternate boron and nitrogen atoms. Thus, BNNTs demon- ... istic analyser for intermediate landing situation of inserted mass.15 Also, a macroscopic continuum simulation is sug-.

  7. Damage initiation and evolution in silicon nitride under\

    Czech Academy of Sciences Publication Activity Database

    Raga, R.; Khader, I.; Chlup, Zdeněk; Kailer, A.

    360-361, AUG (2016), s. 147-159 ISSN 0043-1648 EU Projects: European Commission(XE) 263476 - ROLICER Institutional support: RVO:68081723 Keywords : Silicon nitride * Rollingcontactfatigue * Subsurface damage Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.531, year: 2016

  8. Estimation of tribological anticorrosion properties of impregnated nitriding layers

    International Nuclear Information System (INIS)

    Iwanow, J.; Senatorski, J.; Tacikowski, J.

    1999-01-01

    In this paper is described aim, experimental and test result of tribological anticorrosion properties of thin nitriding layer (12.5 μm) obtained on 45 steel grade in controlled gas-nitriding process (570 o C, 4 h) impregnated with oil-based formulations, containing corrosion inhibitor BS-43, modified with tribological additives based on ashen organometallic compounds as well as ash-free organic compounds. It was stated, that tribological additives does not influence, in fact, on behaviour of corrosion resistance of nitriding layers impregnated with oil-base formulations mainly connected with inhibitor BS-43. Synergy of tribological additive and corrosion inhibitor is however more visible in modelling of wear resistance of nitriding layer. The influence nature of tribological additives in combination with corrosion inhibitor BS-43 is dependent on their kind and as result improves or worsens the wear resistance by friction. Hence in choice of impregnated formulation, which is enable to accomplish of tribological anticorrosion requirements, determined, above all, tribological additive. (author)

  9. Thermionic field emission in gold nitride Schottky nanodiodes

    Science.gov (United States)

    Spyropoulos-Antonakakis, N.; Sarantopoulou, E.; Kollia, Z.; Samardžija, Z.; Kobe, S.; Cefalas, A. C.

    2012-11-01

    We report on the thermionic field emission and charge transport properties of gold nitride nanodomains grown by pulsed laser deposition with a molecular fluorine laser at 157 nm. The nanodomains are sandwiched between the metallic tip of a conductive atomic force microscope and a thin gold layer forming thus a metal-semiconductor-metal junction. Although the limited existing data in the literature indicate that gold nitride was synthesized previously with low efficiency, poor stability, and metallic character; in this work, it is shown that gold nitride nanodomains exhibit semiconducting behavior and the metal-semiconductor-metal contact can be modeled with the back-to-back Schottky barrier model. From the experimental I-V curves, the main charge carrier transport process is found to be thermionic field emission via electron tunneling. The rectifying, near symmetric and asymmetric current response of nanocontacts is related to the effective contact area of the gold nitride nanodomains with the metals. A lower limit for the majority charge carriers concentration at the boundaries of nanodomains is also established using the full depletion approximation, as nanodomains with thickness as low as 6 nm were found to be conductive. Current rectification and charge memory effects are also observed in "quite small" conductive nanodomains (6-10 nm) due to stored charges. Indeed, charges near the surface are identified as inversion domains in the phase shift mapping performed with electrostatic force microscopy and are attributed to charge trapping at the boundaries of the nanodomains.

  10. Transferrable monolithic III-nitride photonic circuit for multifunctional optoelectronics

    Science.gov (United States)

    Shi, Zheng; Gao, Xumin; Yuan, Jialei; Zhang, Shuai; Jiang, Yan; Zhang, Fenghua; Jiang, Yuan; Zhu, Hongbo; Wang, Yongjin

    2017-12-01

    A monolithic III-nitride photonic circuit with integrated functionalities was implemented by integrating multiple components with different functions into a single chip. In particular, the III-nitride-on-silicon platform is used as it integrates a transmitter, a waveguide, and a receiver into a suspended III-nitride membrane via a wafer-level procedure. Here, a 0.8-mm-diameter suspended device architecture is directly transferred from silicon to a foreign substrate by mechanically breaking the support beams. The transferred InGaN/GaN multiple-quantum-well diode (MQW-diode) exhibits a turn-on voltage of 2.8 V with a dominant electroluminescence peak at 453 nm. The transmitter and receiver share an identical InGaN/GaN MQW structure, and the integrated photonic circuit inherently works for on-chip power monitoring and in-plane visible light communication. The wire-bonded monolithic photonic circuit on glass experimentally demonstrates in-plane data transmission at 120 Mb/s, paving the way for diverse applications in intelligent displays, in-plane light communication, flexible optical sensors, and wearable III-nitride optoelectronics.

  11. Microstructure characterization of fluidized bed nitrided Fe–Si and ...

    Indian Academy of Sciences (India)

    Unknown

    The investi- gations on the nitrided samples were carried out by optical and SEM microscopic observations, X-ray ... Many studies have been carried out in the past to improve ... Experimental. The Fe .... The same is true for the FeSiAl sample.

  12. Second-harmonic generation in substoichiometric silicon nitride layers

    Science.gov (United States)

    Pecora, Emanuele; Capretti, Antonio; Miano, Giovanni; Dal Negro, Luca

    2013-03-01

    Harmonic generation in optical circuits offers the possibility to integrate wavelength converters, light amplifiers, lasers, and multiple optical signal processing devices with electronic components. Bulk silicon has a negligible second-order nonlinear optical susceptibility owing to its crystal centrosymmetry. Silicon nitride has its place in the microelectronic industry as an insulator and chemical barrier. In this work, we propose to take advantage of silicon excess in silicon nitride to increase the Second Harmonic Generation (SHG) efficiency. Thin films have been grown by reactive magnetron sputtering and their nonlinear optical properties have been studied by femtosecond pumping over a wide range of excitation wavelengths, silicon nitride stoichiometry and thermal processes. We demonstrate SHG in the visible range (375 - 450 nm) using a tunable 150 fs Ti:sapphire laser, and we optimize the SH emission at a silicon excess of 46 at.% demonstrating a maximum SHG efficiency of 4x10-6 in optimized films. Polarization properties, generation efficiency, and the second order nonlinear optical susceptibility are measured for all the investigated samples and discussed in terms of an effective theoretical model. Our findings show that the large nonlinear optical response demonstrated in optimized Si-rich silicon nitride materials can be utilized for the engineering of nonlinear optical functions and devices on a Si chip.

  13. Electron microprobe analysis of tantalum--nitride thin films

    International Nuclear Information System (INIS)

    Stoltz, D.L.; Starkey, J.P.

    1979-06-01

    Quantitative chemical analysis of 500- and 2000-angstrom tantalum--nitride films on glass substrates has been accomplished using an electron microprobe x-ray analyzer. In order to achieve this analysis, modifications to the microprobe were necessary. A description of the calibration procedure, the method of analysis, and the quantitative results are discussed

  14. Synthesis of hexagonal boron nitride graphene-like few layers

    Science.gov (United States)

    Yuan, S.; Toury, B.; Journet, C.; Brioude, A.

    2014-06-01

    Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction.Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr01017e

  15. Microstructural evolution during nitriding, finite element simulation and experimental assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hassani-Gangaraj, S.M. [Politecnico di Milano, Dipartimento di Meccanica, Via La Masa, 1, 20156 Milano (Italy); Guagliano, M., E-mail: mario.guagliano@polimi.it [Politecnico di Milano, Dipartimento di Meccanica, Via La Masa, 1, 20156 Milano (Italy)

    2013-04-15

    A finite element simulation of nitriding is proposed in this paper, using the analogy between diffusion and heat conduction, to overcome the shortcomings of the classical internal oxidation model in predicting the kinetics of layer growth and nitrogen distribution during nitriding. To verify the model, a typical gas nitriding has been carried out on an axisymmetric specimen. Treated specimen has been characterized using optical microscopy (OM), scanning electron microscopy (SEM), micro-hardness and X-Ray diffraction (XRD) measurements. It was found that the so-called diffusion zone can be divided into two parts with different influence on the mechanical characteristics including residual stress and hardening. First layer which is a two phase region of ferritic matrix and γ′ (Fe{sub 4}N) makes further improvement with respect to the second layer which is a solid solution of nitrogen in ferrite. The formation of that two phase region, which is not predicted by classical model, can be efficiently recognized by the proposed model. It is also proved that the model has the ability to consider the geometry dependency of layer growth and formation in nitriding.

  16. Hydrotreatment activities of supported molybdenum nitrides and carbides

    Energy Technology Data Exchange (ETDEWEB)

    Dolce, G.M.; Savage, P.E.; Thompson, L.T. [University of Michigan, Ann Arbor, MI (United States). Dept. of Chemical Engineering

    1997-05-01

    The growing need for alternative sources of transportation fuels encourages the development of new hydrotreatment catalysts. These catalysts must be active and more hydrogen efficient than the current commercial hydrotreatment catalysts. Molybdenum nitrides and carbides are attractive candidate materials possessing properties that are comparable or superior to those of commercial sulfide catalysts. This research investigated the catalytic properties of {gamma}-Al{sub 2}O{sub 3}-supported molybdenum nitrides and carbides. These catalysts were synthesized via temperature-programmed reaction of supported molybdenum oxides with ammonia or methane/hydrogen mixtures. Phase constituents and compositions were determined by X-ray diffraction, elemental analysis, and neutral activation analysis. Oxygen chemisorption was used to probe the surface properties of the catalysts. Specific activities of the molybdenum nitrides and carbides were competitive with those of a commercial sulfide catalyst for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). For HDN and HDS, the catalytic activity on a molybdenum basis was a strong inverse function of the molybdenum loading. Product distributions of the HDN, HDO and HDS of a variety of heteroatom compounds indicated that several of the nitrides and carbides were more hydrogen efficient than the sulfide catalyst. 35 refs., 8 figs., 7 tabs.

  17. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Unknown

    carbide ceramics. A K MUKHOPADHYAY. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz.

  18. High efficiency nitride based phosphores for white LEDs

    NARCIS (Netherlands)

    Li, Yuan Qiang; Hintzen, H.T.J.M.

    2008-01-01

    In this overview paper, novel rare-earth doped silicon nitride based phosphors for white LEDs applications have been demonstrated. The luminescence properties of orange-red-emitting phosphors (M2Si5N8:Eu2+) and green-to-yellow emitting phosphors (MSi2N2O2:Eu2+, M = Ca, Sr, Ba) are discussed in

  19. Formation of zirconium nitride via mechanochemical decomposition of zircon

    International Nuclear Information System (INIS)

    Puclin, T.; Kaczmarek, W.A.

    1996-01-01

    In this paper we report some results of the mechanochemical reduction of zircon, and for the first time subsequent reaction with nitrogen to form zirconium nitride (ZrN). This process can be described by the equation: 3ZrSiO 4 + 8Al + 1.5N 2 = 4Al 2 O 3 + 3ZrN + 3Si. Milling was carried out in three steps: 1) low speed grinding of Al+ZrSiO 4 in vacuum, 2) high speed milling to effect the reduction, and 3) continued milling after the addition of nitrogen. Powders produced were examined by X-ray diffraction. The first step showed no reaction occurred during low speed grinding. The second step proved to be a slow reaction without the 'ignition' often seen in other mechanochemical reduction works. The final step was also gradual, and did not always go to full nitridation over the duration of the experiment, giving a product of composition ZrN 0.6 to ZrN l.0 . This is quite acceptable as transition metal nitrides are often non-stoichiometric. These results show that the formation of a useful hard material such as ZrN can be formed from a raw mineral by two stage mechanochemical processing. Further investigations are currently being undertaken to eliminate Fe contamination and produce pure ceramic oxide-nitride composites

  20. Effect of microstructure on the high temperature strength of nitride

    Indian Academy of Sciences (India)

    Effect of microstructure on the high temperature strength of nitride bonded silicon carbide composite. J Rakshit P K Das. Composites Volume ... The effect of these parameters on room temperature and high temperature strength of the composite up to 1300°C in ambient condition were studied. The high temperature flexural ...

  1. Cellular growth and dislocation structures in laser-nitrided titanium

    NARCIS (Netherlands)

    Kloosterman, A.B.; Hosson, J.Th.M. De

    1997-01-01

    Transmission electron microscopic observations were made of different dislocation structures in laser-nitrided titanium. Equidistant edge dislocations in the bulk and periodic surface structures exhibit a periodicity within the same order of magnitude. An analysis is presented in which both periodic

  2. Boron nitride elastic and thermal properties. Irradiation effects

    International Nuclear Information System (INIS)

    Jager, Bernard.

    1977-01-01

    The anisotropy of boron nitride (BN) and especially thermal and elastic properties were studied. Specific heat and thermal conductivity between 1.2 and 300K, thermal conductivity between 4 and 350K and elastic constants C 33 and C 44 were measured. BN was irradiated with electrons at 77K and with neutrons at 27K to determine properties after irradiation [fr

  3. Continuous Fiber Ceramic Composite (CFCC) Program: Gaseous Nitridation

    Energy Technology Data Exchange (ETDEWEB)

    R. Suplinskas G. DiBona; W. Grant

    2001-10-29

    Textron has developed a mature process for the fabrication of continuous fiber ceramic composite (CFCC) tubes for application in the aluminum processing and casting industry. The major milestones in this project are System Composition; Matrix Formulation; Preform Fabrication; Nitridation; Material Characterization; Component Evaluation

  4. Indentation fatigue in silicon nitride, alumina and silicon carbide ...

    Indian Academy of Sciences (India)

    Repeated indentation fatigue (RIF) experiments conducted on the same spot of different structural ceramics viz. a hot pressed silicon nitride (HPSN), sintered alumina of two different grain sizes viz. 1 m and 25 m, and a sintered silicon carbide (SSiC) are reported. The RIF experiments were conducted using a Vicker's ...

  5. Gallium Nitride MMICs for mm-Wave Power Operation

    NARCIS (Netherlands)

    Quay, R.; Maroldt, S.; Haupt, C.; Heijningen, M. van; Tessmann, A.

    2009-01-01

    In this paper a Gallium Nitride MMIC technology for high-power amplifiers between 27 GHz and 101 GHz based on 150 nm- and 100 nm-gate technologies is presented. The GaN HEMT MMICs are designed using coplanar waveguide transmission-line-technology on 3-inch semi-insulating SiC substrates. The

  6. Analysis of boron nitride by flame spectrometry methods

    International Nuclear Information System (INIS)

    Telegin, G.F.; Chapysheva, G.Ya.; Shilkina, N.N.

    1989-01-01

    A rapid method has been developed for determination of free and total boron contents as well as trace impurities in boron nitride by using autoclave sample decomposition followed by atomic emission and atomic absorption determination. The relative standard deviation is not greater than 0.03 in the determination of free boron 0.012 in the determination of total boron content

  7. Methods for improved growth of group III nitride buffer layers

    Science.gov (United States)

    Melnik, Yurity; Chen, Lu; Kojiri, Hidehiro

    2014-07-15

    Methods are disclosed for growing high crystal quality group III-nitride epitaxial layers with advanced multiple buffer layer techniques. In an embodiment, a method includes forming group III-nitride buffer layers that contain aluminum on suitable substrate in a processing chamber of a hydride vapor phase epitaxy processing system. A hydrogen halide or halogen gas is flowing into the growth zone during deposition of buffer layers to suppress homogeneous particle formation. Some combinations of low temperature buffers that contain aluminum (e.g., AlN, AlGaN) and high temperature buffers that contain aluminum (e.g., AlN, AlGaN) may be used to improve crystal quality and morphology of subsequently grown group III-nitride epitaxial layers. The buffer may be deposited on the substrate, or on the surface of another buffer. The additional buffer layers may be added as interlayers in group III-nitride layers (e.g., GaN, AlGaN, AlN).

  8. Hardness and thermal stability of cubic silicon nitride

    DEFF Research Database (Denmark)

    Jiang, Jianzhong; Kragh, Flemming; Frost, D. J.

    2001-01-01

    The hardness and thermal stability of cubic spinel silicon nitride (c-Si3N4), synthesized under high-pressure and high-temperature conditions, have been studied by microindentation measurements, and x-ray powder diffraction and scanning electron microscopy, respectively The phase at ambient...

  9. Study on the nitride fuel fabrication for FBR cycle (1)

    International Nuclear Information System (INIS)

    Shinkai, Yasuo; Ono, Kiyoshi; Tanaka, Kenya

    2002-07-01

    In the phase-II of JNC's 'Feasibility Study on Commercialized Fuel Reactor Cycle System (the F/S)', the nitride fuels are selected as candidate for fuels for heavy metal cooled reactor, gas cooled reactor, and small scale reactor. In particular, the coated fuel particles are a promising concept for gas cooled reactor. In addition, it is necessary to study in detail the application possibility of pellet nitride fuel and vibration compaction nitride fuel for heavy metal cooled reactor and small scale reactor in the phase-II. In 2001, we studied more about additional equipments for the nitride fuel fabrication in processes from gelation to carbothermic reduction in the vibration compaction method. The result of reevaluation of off-gas mass flow around carbothermic reduction equipment in the palletizing method, showed that quantity of off-gas flow reduced and its reduction led the operation cost to decrease. We studied the possibility of fabrication of large size particles in the coated fuel particles for helium gas cooled reactor and we made basic technical issues clear. (author)

  10. Characterization of nitrides in an AISI 1010 steel

    International Nuclear Information System (INIS)

    Naquid G, C.

    1998-01-01

    It was characterized the phase formation in the 1010 carbon steel nitrided in a plasma reactor nearby to eutectoid point. The microstructure and identification of these ones were evaluated by Optical microscopy (OM), Dilatometry and X-ray diffraction (XRD). (Author)

  11. Crystallographic phases and magnetic properties of iron nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guo-Ke [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Liu, Yan; Zhao, Rui-Bin [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Shen, Jun-Jie [Department of Mathematics and Physics, Shijiazhuang Tiedao University, Shijiazhuang 050043 (China); Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China); Hou, Deng-Lu, E-mail: houdenglu@mail.hebtu.edu.cn [Department of Physics, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiazhuang 050024 (China)

    2015-08-31

    Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe{sub 4}N, ε-Fe{sub 3−x}N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe.

  12. Crystallographic phases and magnetic properties of iron nitride films

    International Nuclear Information System (INIS)

    Li, Guo-Ke; Liu, Yan; Zhao, Rui-Bin; Shen, Jun-Jie; Wang, Shang; Shan, Pu-Jia; Zhen, Cong-Mian; Hou, Deng-Lu

    2015-01-01

    Iron nitride films, including single phase films of α-FeN (expanded bcc Fe), γ′-Fe 4 N, ε-Fe 3−x N (0 ≤ x ≤ 1), and γ″-FeN, were sputtered onto AlN buffered glass substrates. It was found possible to control the phases in the films merely by changing the nitrogen partial pressure during deposition. The magnetization decreased with increased nitrogen concentration and dropped to zero when the N:Fe ratio was above 0.5. The experimental results, along with spin polarized band calculations, have been used to discuss and analyze the magnetic properties of iron nitrides. It has been demonstrated that in addition to influencing the lattice constant of the various iron nitrides, the nearest N atoms have a significant influence on the exchange splitting of the Fe atoms. Due to the hybridization of Fe-3d and N-2p states, the magnetic moment of Fe atoms decreases with an increase in the number of nearest neighbor nitrogen atoms. - Highlights: • Single phase γ′-Fe 4 N, ε-Fe 3−x N, and γ″-FeN films were obtained using dc sputtering. • The phases in iron nitride films can be controlled by the nitrogen partial pressure. • The nearest N neighbors have a significant influence on the exchange splitting of Fe

  13. The copper deposits of Michigan

    Science.gov (United States)

    Butler, B.S.; Burbank, W.S.

    1929-01-01

    The copper district of Keweenaw Point, in the northern peninsula of Michigan, is the second largest producer of copper in the world.  The output of the district since 1845 has been more than 7,500,000,000 pounds and showed a rather steady and consistent increase from the beginning of production to the end of the World War in 1918, since which there has been a marked decrease.

  14. Copper atomic-scale transistors.

    Science.gov (United States)

    Xie, Fangqing; Kavalenka, Maryna N; Röger, Moritz; Albrecht, Daniel; Hölscher, Hendrik; Leuthold, Jürgen; Schimmel, Thomas

    2017-01-01

    We investigated copper as a working material for metallic atomic-scale transistors and confirmed that copper atomic-scale transistors can be fabricated and operated electrochemically in a copper electrolyte (CuSO 4 + H 2 SO 4 ) in bi-distilled water under ambient conditions with three microelectrodes (source, drain and gate). The electrochemical switching-on potential of the atomic-scale transistor is below 350 mV, and the switching-off potential is between 0 and -170 mV. The switching-on current is above 1 μA, which is compatible with semiconductor transistor devices. Both sign and amplitude of the voltage applied across the source and drain electrodes ( U bias ) influence the switching rate of the transistor and the copper deposition on the electrodes, and correspondingly shift the electrochemical operation potential. The copper atomic-scale transistors can be switched using a function generator without a computer-controlled feedback switching mechanism. The copper atomic-scale transistors, with only one or two atoms at the narrowest constriction, were realized to switch between 0 and 1 G 0 ( G 0 = 2e 2 /h; with e being the electron charge, and h being Planck's constant) or 2 G 0 by the function generator. The switching rate can reach up to 10 Hz. The copper atomic-scale transistor demonstrates volatile/non-volatile dual functionalities. Such an optimal merging of the logic with memory may open a perspective for processor-in-memory and logic-in-memory architectures, using copper as an alternative working material besides silver for fully metallic atomic-scale transistors.

  15. Atmospheric corrosion effects on copper

    International Nuclear Information System (INIS)

    Franey, J.P.

    1985-01-01

    Studies have been performed on the naturally formed patina on various copper samples. Samples have been obtained from structures at AT and T Bell Laboratories, Murray Hill, NJ (40,2,1 and <1 yr) and the Statue of Liberty (100 yr). The samples show a distinct layering effect, that is, the copper base material shows separate oxide and basic sulfate layers on all samples, indicating that patina is not a homogeneous mixture of oxides and basic sulfates

  16. Chronic copper poisoning in lambs

    Energy Technology Data Exchange (ETDEWEB)

    Ross, D B

    1964-08-08

    This communication presented evidence of the elevation of plasma GOT (glutamic oxaloacetic transaminase or aspartate transaminase) concentration during the development of copper toxicity in some experimental lambs, and also demonstrated that plasma GOT concentration can be used to assess the course of the disease during treatment. A group of Kerry Hill lambs were fed 1 1/2 lb per day of a proprietary concentrate containing 40 parts of copper per million on a dry-matter basis in addition to hay and water ad lib. Data was included for the plasma GOT concentrations of the lambs, bled weekly after weaning from pasture to this diet. There was some variation between the individual lambs, and in one there was no increase in plasma GOT by the 20th week when all the surviving lambs were slaughtered. The concentrations of copper found in the caudate lobe of the liver and in the kidney cortex post mortem were given. The overall findings showed that the liver gave a reliable indication of the copper status of an animal whereas the kidney cortex copper concentration was a better criterion for the diagnosis of copper poisoning and was in agreement with the results of Eden, Todd, and Grocey and Thompson. Observations demonstrated the benefits resulting from the early diagnosis of chronic copper poisoning in lambs, when treatment of affected animals may be commenced before the haemolytic crisis develops. Treatment included reducing the copper intake and dosing with ammonium molybdate and sodium sulfate, and the plasma GOT concentration may be used to assess the rate of recovery. 4 references, 3 tables.

  17. Sodium Flux Growth of Bulk Gallium Nitride

    Science.gov (United States)

    Von Dollen, Paul Martin

    This dissertation focused on development of a novel apparatus and techniques for crystal growth of bulk gallium nitride (GaN) using the sodium flux method. Though several methods exist to produce bulk GaN, none have been commercialized on an industrial scale. The sodium flux method offers potentially lower cost production due to relatively mild process conditions while maintaining high crystal quality. But the current equipment and methods for sodium flux growth of bulk GaN are generally not amenable to large-scale crystal growth or in situ investigation of growth processes, which has hampered progress. A key task was to prevent sodium loss or migration from the sodium-gallium growth melt while permitting N2 gas to access the growing crystal, which was accomplished by implementing a reflux condensing stem along with a reusable sealed capsule. The reflux condensing stem also enabled direct monitoring and control of the melt temperature, which has not been previously reported for the sodium flux method. Molybdenum-based materials were identified from a corrosion study as candidates for direct containment of the corrosive sodium-gallium melt. Successful introduction of these materials allowed implementation of a crucible-free containment system, which improved process control and can potentially reduce crystal impurity levels. Using the new growth system, the (0001) Ga face (+c plane) growth rate was >50 mum/hr, which is the highest bulk GaN growth rate reported for the sodium flux method. Omega X-ray rocking curve (?-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were 1020 atoms/cm3, possibly due to reactor cleaning and handling procedures. This dissertation also introduced an in situ technique to correlate changes in N2 pressure with dissolution of nitrogen and precipitation of GaN from the sodium-gallium melt. Different stages of N2 pressure decay were identified and linked to

  18. Copper sulphate poisoning in horses

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, M

    1975-01-01

    In the archives of the Clinic for Internal Diseases of Domestic Animals at the Veterinary Faculty of Zagreb University some thirty cases of horse disease diagnosed as copper sulphate poisoning were noted. The data correspond in many respects to the clinical findings of copper sulphate poisoning in other domestic animals. A series of experimental horse poisonings were undertaken in order to determine the toxicity of copper sulphate. The research results are as follows: Horses are sensitive to copper sulphate. Even a single application of 0.125 g/kg body weight in 1% concentration by means of incubation into the stomach causes stomach and gut disturbances and other poisoning symptoms. Poisoning occurs in two types: acute and chronic. The former appears after one to three applications of copper sulphate solution and is characterized by gastroenteritis, haemolysis, jaundice and haemoglobinuria with signs of consecutive damage of kidney, liver and other organs. The disease, from the first application to death lasts for two weeks. Chronic poisoning is caused by ingestion of dry copper sulphate in food (1% solution dried on hay or clover) for two or more months. There are chronic disturbances of stomach and gut and loss of weight, and consecutive (three to four) haemolytic crises similar to those of acute poisoning. From the beginning of poisoning to death six or more months can elapse.

  19. Development of technique for AR coating and nickel and copper metallization of solar cells: FPS project, product development

    Science.gov (United States)

    Rominger, C. G.

    1981-01-01

    Silicon nitride and nickel pastes are investigated in conjunction with a brush copper plating process for the purpose of identifying one or more fabrication sequences which yield at least 10 percent efficient N(+)/P(+) flat plate solar cells. The adhesion of all nickel pastes is reduced significantly when subjected to acidic and alkaline brush copper plating solutions as a result of a combination of thermally induced stress and chemical attack of the frit, which occurs at the interface with the silicon solar cell. The AgF is penetrating the 800 a of Si3N4 and ohmic contact is occurring at all fire-in tempertures. During the brush plating process, fingers and buss bars tend to spread.

  20. Genome Sequences of Two Copper-Resistant Escherichia coli Strains Isolated from Copper-Fed Pigs

    DEFF Research Database (Denmark)

    Lüthje, Freja L.; Hasman, Henrik; Aarestrup, Frank Møller

    2014-01-01

    The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances.......The draft genome sequences of two copper-resistant Escherichia coli strains were determined. These had been isolated from copper-fed pigs and contained additional putative operons conferring copper and other metal and metalloid resistances....

  1. Recombination and photosensitivity centres in boron nitride irradiated with ions

    International Nuclear Information System (INIS)

    Kabyshev, A.; Konusov, F.; Lopatin, V.

    2001-01-01

    The physical-chemical processes, taking place during the irradiation of dielectrics with ions distort the electron structure of the compounds and generate additional localise state in the forbidden zone (FZ). Consequently, the semiconductor layer with the specific surface density of σ ≥ 10 -10 S/ forms on the surface of the dielectric. In addition to his, the high concentration of the radiation-induced defects changes the optical and photoelectric properties of the materials and also the energy characteristics. Analysis of the photoelectric properties indicates that the recombination processes take part in electric transport. These processes restricted the increase of the photosensitivity and changing the kinetics of relaxation of photo conductivity (σ hv ). The practical application of the boron nitride (BN) the in the thermonuclear systems (for example, Ref. 7), stimulates research into the reasons for the deceleration of its properties under the effect of radiation of various types. The conductivity of non-irradiated boron nitride is of the electron-hole nature with a large fraction of the activation component in exchange of the charge carriers between the levels of the defects and the forbidden zones. On the basis of the correlation of the energy and kinetic parameters of luminescence and , the authors of Ref. 8 constructed a model of electron transfers accompanying the electric transport of the boron nitride. In addition to ion-thermal modification, the conductivity of boron nitride is also of the electron-hole nature and is accompanied by luminescence. Examination of the characteristics of luminescence may be useful for obtaining more information on the transport mechanism. In this work, in order to clarify the main parameters of the forbidden band, detailed investigations were carried out into the spectrum of the electronic states of radiation defects which determine the photoelectric and luminescence properties of the modified boron nitride. The

  2. Electronic structure calculations on nitride semiconductors and their alloys

    International Nuclear Information System (INIS)

    Dugdale, D.

    2000-09-01

    Calculations of the electronic properties of AIN, GaN, InN and their alloys are presented. Initial calculations are performed using the first principles pseudopotential method to obtain accurate lattice constants. Further calculations then investigate bonding in the nitrides through population analysis and density of state calculations. The empirical pseudopotential method is also used in this work. Pseudopotentials for each of the nitrides are constructed using a functional form that allows strained material and alloys to be studied. The conventional k.p valence band parameters for both zincblende and wurtzite are obtained from the empirical band structure using two different methods. A Monte-Carlo fitting of the k.p band structure to the pseudopotential data (or an effective mass method for the zincblende structure) is used to produce one set. Another set is obtained directly from the momentum matrix elements and energy eigenvalues at the centre of the Brillouin zone. Both methods of calculating k.p parameters produce band structure in excellent agreement with the original empirical band calculations near the centre of the Brillouin zone. The advantage of the direct method is that it produces consistent sets of parameters, and can be used in studies involving a series of alloy compositions. Further empirical pseudopotential method calculations are then performed for alloys of the nitrides. In particular, the variation of the band gap with alloy composition is investigated, and good agreement with theory and experiment is found. The direct method is used to obtain k.p parameters for the alloys, and is contrasted with the fitting approach. The behaviour of the nitrides under strain is also studied. In particular. valence band offsets for nitride heterojunctions are calculated, and a strong forward- backward asymmetry in the band offset is found, in good agreement with other results in the literature. (author)

  3. Gallium nitride-based micro-opto-electro-mechanical systems

    Science.gov (United States)

    Stonas, Andreas Robert

    Gallium Nitride and its associated alloys InGaN and AlGaN have many material properties that are highly desirable for micro-electro-mechanical systems (MEMS), and more specifically micro-opto-electro-mechanical systems (MOEMS). The group III-nitrides are tough, stiff, optically transparent, direct bandgap, chemically inert, highly piezoelectric, and capable of functioning at high temperatures. There is currently no other semiconductor system that possesses all of these properties. Taken together, these attributes make the nitrides prime candidates not only for creating new versions of existing device structures, but also for creating entirely unique devices which combine these properties in novel ways. Unfortunately, their chemical resiliency also makes the group III-nitrides extraordinarily difficult to shape into devices. In particular, until this research, no undercut etch technology existed that could controllably separate a selected part of a MEMS device from its sapphire or silicon carbide substrate. This has effectively prevented GaN-based MEMS from being developed. This dissertation describes how this fabrication obstacle was overcome by a novel etching geometry (bandgap-selective backside-illuminated photoelectochemical (BS-BIPEC) etching) and its resulting morphologies. Several gallium-nitride based MEMS devices were created, actuated, and modelled, including cantilevers and membranes. We describe in particular our pursuit of one of the many novel device elements that is possible only in this material system: a transducer that uses an externally applied strain to dynamically change the optical transition energy of a quantum well. While the device objective of a dynamically tunable quantum well was not achieved, we have demonstrated sufficient progress to believe that such a device will be possible soon. We have observed a shift (5.5meV) of quantum well transition energies in released structures, and we have created structures that can apply large biaxial

  4. Ionic nitriding of high chromium martensitic stainless steels

    International Nuclear Information System (INIS)

    Bruhl, S.P; Charadia, R; Vaca, L.S; Cimetta, J

    2008-01-01

    Martensitic stainless steels are used in industrial applications where resistance to corrosion and mechanical resistance are needed simultaneously. These steels are normally used in tempering and annealing condition which gives them hardnesses of 500 and 600 HV (about 54 HRC). Ionic nitriding is an assisted diffusion technique that has recently been successfully applied to harden austenitic stainless steels without reducing their resistance to corrosion. The application with AISI 420 martensitic steels has not given good results yet, because in most cases, it affects their corrosion resistance. This work presents the results of the pulsed nitriding of martensitic steels with a higher chrome content, such as the M340 and M333 Boehler steels and they are compared with the same materials after tempering and annealing, without nitriding. The influence of the variations in the parameters of the process, such as the percentage of active time in the pulsed wave, partial nitrogen pressure, current density and effective tension in the microstructure, hardness and wear and corrosion resistance was studied. The microstructure was studied with an optic microscope; the wear resistance with abrasion tests following ASTM G-65 and corrosion with 100 hour long saline haze tests, in a device built according to ASTM B117. Hardness was found to rise to values of 1000 to 1350 HV in all the steels after ionic nitriding, the modified layers oscillated from 3 to 15 microns. As a result, wear resistance also increased, with differences depending on the microstructure and the thickness of the modified layer. However, corrosion resistance was not good, except in the case of the M333 steel test piece with less hardness and a less thick nitrided layer without a noticeable interphase (au)

  5. Anomalous microstructural changes in III-nitrides under ion bombardment

    International Nuclear Information System (INIS)

    Kucheyev, S.O.; Williams, J.S.; Jagadish, C.

    2002-01-01

    Full text: Group-III nitrides (GaN, AlGaN, and InGaN) are currently a 'hot topic' in the physics and material research community due to very important technological applications of these materials in (opto)electronics. In the fabrication of III-nitride-based devices, ion bombardment represents a very attractive processing tool. However, ion-beam-produced lattice disorder and its undesirable consequences limit technological applications of ion implantation. Hence, studies of ion-beam-damage processes in Ill-nitrides are not only physically interesting but also technologically important. In this study, wurtzite GaN, AlGaN, and InGaN films exposed to ion bombardment under a wide range of irradiation conditions are studied by a combination of transmission electron microscopy (TEM), environmental scanning electron microscopy (ESEM), energy dispersive x-ray spectrometry (EDS), atomic force microscopy (AFM), cathodoluminescence (CL), and Rutherford backscattering/channeling (RBS/C) spectrometry. Results show that, unlike the situation for mature semiconductors such as Si and GaAs, Ill-nitrides exhibit a range of intriguing behavior involving extreme microstructural changes under ion bombardment. In this presentation, the following aspects are discussed: (i) formation of lattice defects during ion bombardment, (ii) ion-beam-induced phase transformations, (iii) ion-beam-produced stoichiometric imbalance and associated material decomposition, and (iv) an application of charging phenomena during ESEM imaging for studies of electrical isolation in GaN by MeV light ion irradiation. Emphasis is given to the (powerful) application of electron microscopy techniques for the understanding of physical processes occurring in Ill-nitrides under ion bombardment. Copyright (2002) Australian Society for Electron Microscopy Inc

  6. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  7. Use of copper radioisotopes in investigating disorders of copper metabolism

    International Nuclear Information System (INIS)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M.; Smith, S.; Mercer, J.

    1998-01-01

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes 64 Cu (t 1/2 = 12.8 hr) and 67 Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  8. Synthesis of graphitic carbon nitride by reaction of melamine and uric acid

    International Nuclear Information System (INIS)

    Dante, Roberto C.; Martin-Ramos, Pablo; Correa-Guimaraes, Adriana; Martin-Gil, Jesus

    2011-01-01

    Highlights: → Graphitic carbon nitrides by CVD of melamine and uric acid on alumina. → The building blocks of carbon nitrides are heptazine nuclei. → Composite particles with alumina core and carbon nitride coating. - Abstract: Graphitic carbon nitrides were synthesized starting from melamine and uric acid. Uric acid was chosen because it thermally decomposes, and reacts with melamine by condensation at temperatures in the range of 400-600 deg. C. The reagents were mixed with alumina and subsequently the samples were treated in an oven under nitrogen flux. Alumina favored the deposition of the graphitic carbon nitrides layers on the exposed surface. This method can be assimilated to an in situ chemical vapor deposition (CVD). Infrared (IR) spectra, as well as X-ray diffraction (XRD) patterns, are in accordance with the formation of a graphitic carbon nitride with a structure based on heptazine blocks. These carbon nitrides exhibit poor crystallinity and a nanometric texture, as shown by transmission electron microscopy (TEM) analysis. The thermal degradation of the graphitic carbon nitride occurs through cyano group formation, and involves the bridging tertiary nitrogen and the bonded carbon, which belongs to the heptazine ring, causing the ring opening and the consequent network destruction as inferred by connecting the IR and X-ray photoelectron spectroscopy (XPS) results. This seems to be an easy and promising route to synthesize graphitic carbon nitrides. Our final material is a composite made of an alumina core covered by carbon nitride layers.

  9. The Advanced Aluminum Nitride Synthesis Methods and Its Applications: Patent Review.

    Science.gov (United States)

    Shishkin, Roman A; Elagin, Andrey A; Mayorova, Ekaterina S; Beketov, Askold R

    2016-01-01

    High purity nanosized aluminum nitride synthesis is a current issue for both industry and science. However, there is no up-to-date review considering the major issues and the technical solutions for different methods. This review aims to investigate the advanced methods of aluminum nitride synthesis and its development tendencies. Also the aluminum nitride application patents and prospects for development of the branch have been considered. The patent search on "aluminum nitride synthesis" has been carried out. The research activity has been analyzed. Special attention has been paid to the patenting geography and the leading researchers in aluminum nitride synthesis. Aluminum nitride synthesis methods have been divided into 6 main groups, the most studied approaches are carbothermal reduction (88 patents) and direct nitridation (107 patents). The current issues for each group have been analyzed; the main trends are purification of the final product and nanopowder synthesis. The leading researchers in aluminum nitride synthesis have represented 5 countries, namely: Japan, China, Russia, South Korea and USA. The main aluminum nitride application spheres are electronics (59,1 percent of applications) and new materials manufacturing (30,9 percent). The review deals with the state of the art data in nanosized aluminum nitride synthesis, the major issues and the technical solutions for different synthesis methods. It gives a full understanding of the development tendencies and of the current leaders in the sphere.

  10. Plasma nitriding of a precipitation hardening stainless steel to improve erosion and corrosion resistance

    International Nuclear Information System (INIS)

    Cabo, Amado; Bruhl, Sonia P.; Vaca, Laura S.; Charadia, Raul Charadia

    2010-01-01

    Precipitation hardening stainless steels are used as structural materials in the aircraft and the chemical industry because of their good combination of mechanical and corrosion properties. The aim of this work is to analyze the structural changes produced by plasma nitriding in the near surface of Thyroplast PH X Supra®, a PH stainless steel from ThyssenKrupp, and to study the effect of nitriding parameters in wear and corrosion resistance. Samples were first aged and then nitriding was carried out in an industrial facility at two temperatures, with two different nitrogen partial pressures in the gas mixture. After nitriding, samples were cut, polished, mounted in resin and etched with Vilella reagent to reveal the nitrided case. Nitrided structure was also analyzed with XRD. Erosion/Corrosion was tested against sea water and sand flux, and corrosion in a salt spray fog (ASTM B117). All nitrided samples presented high hardness. Samples nitrided at 390 deg C with different nitrogen partial pressure showed similar erosion resistance against water and sand flux. The erosion resistance of the nitrided samples at 500 deg C was the highest and XRD revealed nitrides. Corrosion resistance, on the contrary, was diminished; the samples suffered of general corrosion during the salt spray fog test. (author)

  11. NID Copper Sample Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kouzes, Richard T.; Zhu, Zihua

    2011-02-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76Ge. The DEMONSTRATOR will utilize 76Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  12. NID Copper Sample Analysis

    International Nuclear Information System (INIS)

    Kouzes, Richard T.; Zhu, Zihua

    2011-01-01

    The current focal point of the nuclear physics program at PNNL is the MAJORANA DEMONSTRATOR, and the follow-on Tonne-Scale experiment, a large array of ultra-low background high-purity germanium detectors, enriched in 76 Ge, designed to search for zero-neutrino double-beta decay (0νββ). This experiment requires the use of germanium isotopically enriched in 76 Ge. The DEMONSTRATOR will utilize 76 Ge from Russia, but for the Tonne-Scale experiment it is hoped that an alternate technology under development at Nonlinear Ion Dynamics (NID) will be a viable, US-based, lower-cost source of separated material. Samples of separated material from NID require analysis to determine the isotopic distribution and impurities. The MAJORANA DEMONSTRATOR is a DOE and NSF funded project with a major science impact. DOE is funding NID through an SBIR grant for development of their separation technology for application to the Tonne-Scale experiment. The Environmental Molecular Sciences facility (EMSL), a DOE user facility at PNNL, has the required mass spectroscopy instruments for making these isotopic measurements that are essential to the quality assurance for the MAJORANA DEMONSTRATOR and for the development of the future separation technology required for the Tonne-Scale experiment. A sample of isotopically separated copper was provided by NID to PNNL for isotopic analysis as a test of the NID technology. The results of that analysis are reported here.

  13. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  14. Microstructural characterization of an AISI-SAE 4140 steel without nitridation and nitrided; Caracterizacion microestructural de un acero AISI-SAE 4140 sin nitrurar y nitrurado

    Energy Technology Data Exchange (ETDEWEB)

    Medina F, A.; Naquid G, C. [Gerencia de Ciencia de Materiales, Depto. de Sintesis y Caracterizacion de Materiales, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    It was micro structurally characterized an AISI-SAE 4140 steel before and after of nitridation through the nitridation process by plasma post-unloading microwaves through Optical microscopy (OM), Scanning electron microscopy (SEM) by means of secondary electrons and retrodispersed, X-ray diffraction (XRD), Energy dispersion spectra (EDS) and mapping of elements. (Author)

  15. Renal cortex copper concentration in acute copper poisoning in calves

    Directory of Open Access Journals (Sweden)

    Luis E. Fazzio

    2012-01-01

    Full Text Available The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu concentration in clinical cases of acute copper poisoning (ACP. A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.

  16. Copper metallurgy at the crossroads

    Directory of Open Access Journals (Sweden)

    Habashi F.

    2007-01-01

    Full Text Available Copper technology changed from the vertical to the horizontal furnace and from the roast reaction to converting towards the end of the last century. However, the horizontal furnace proved to be an inefficient and polluting reactor. As a result many attempts were made to replace it. In the past 50 years new successful melting processes were introduced on an industrial scale that were more energy efficient and less polluting. In addition, smelting and converting were conducted in a single reactor in which the concentrate was fed and the raw copper was produced. The standing problem in many countries, however, is marketing 3 tonnes of sulfuric acid per tonne of copper produced as well as emitting large amounts of excess SO2 in the atmosphere. Pressure hydrometallurgy offers the possibility of liberating the copper industry from SO2 problem. Heap leaching technology has become a gigantic operation. Combined with solvent extraction and electrowinning it contributes today to about 20% of copper production and is expected to grow. Pressure leaching offers the possibility of liberating the copper industry from SO2 problem. The technology is over hundred years old. It is applied for leaching a variety of ores and concentrates. Hydrothermal oxidation of sulfide concentrates has the enormous advantage of producing elemental sulfur, hence solving the SO2 and sulfuric acid problems found in smelters. Precipitation of metals such as nickel and cobalt under hydrothermal conditions has been used for over 50 years. It has the advantage of a compact plant but the disadvantage of producing ammonium sulfate as a co-product. In case of copper, however, precipitation takes place without the need of neutralizing the acid, which is a great advantage and could be an excellent substitute for electrowinning which is energy intensive and occupies extensive space. Recent advances in the engineering aspects of pressure equipment design open the door widely for increased

  17. Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size

    Science.gov (United States)

    Escobar, C. A.; Caicedo, J. C.; Aperador, W.

    2014-01-01

    In this research it was studied vanadium nitride (VN) and hafnium nitride (HfN) film, which were deposited onto silicon (Si (100)) and AISI 4140 steel substrates via r.f. magnetron sputtering technique in Ar/N2 atmosphere with purity at 99.99% for both V and Hf metallic targets. Both films were approximately 1.2±0.1 μm thick. The crystallography structures that were evaluated via X-ray diffraction analysis (XRD) showed preferential orientations in the Bragg planes VN (200) and HfN (111). The chemical compositions for both films were characterized by EDX. Atomic Force Microscopy (AFM) was used to study the morphology; the results reveal grain sizes of 78±2 nm for VN and 58±2 nm for HfN and roughness values of 4.2±0.1 nm for VN and 1.5±0.1 nm for HfN films. The electrochemical performance in VN and HfN films deposited onto steel 4140 were studied by Tafel polarization curves and impedance spectroscopy methods (EIS) under contact with sodium chloride at 3.5 wt% solution, therefore, it was found that the corrosion rate decreased about 95% in VN and 99% for HfN films in relation to uncoated 4140 steel, thus demonstrating, the protecting effect of VN and HfN films under a corrosive environment as function of morphological characteristics (grain size). VN(grain size)=78±2.0 nm, VN(roughness)=4.2±0.1 nm, VN(corrosion rate)=40.87 μmy. HfN(grain size)=58±2.0 nm, HfN(roughness)=1.5±0.1 nm, HfN(corrosion rate)=0.205 μmy. It was possible to analyze that films with larger grain size, can be observed smaller grain boundary thus generating a higher corrosion rate, therefore, in this work it was found that the HfN layer has better corrosion resistance (low corrosion rate) in relation to VN film which presents a larger grain size, indicating that the low grain boundary in (VN films) does not restrict movement of the Cl- ion and in this way the corrosion rate increases dramatically.

  18. Nanodefects in ultrahard crystalline cubic boron nitride

    International Nuclear Information System (INIS)

    Nistor, S. V.; Stefan, M.; Goovaerts, E.; Schoemaker, D.

    2002-01-01

    Cubic boron nitride (cBN), the second hardest known material after diamond, exhibits high thermal conductivity and an excellent ability to be n or p doped, which makes it a strong candidate for the next generation of high-temperature micro optical and micro electronic devices. According to recent studies, cBN exhibits a better resistance to radiation damage than diamond, which suggests potential applications in extreme radiation environments. Crystalline cBN powders of up to 0.5 mm linear size is obtained in a similar way as diamond, by catalytic conversion of hexagonal BN (hBN) to cBN at even higher pressures (> 5GPa) and temperatures (∼ 1900 K). Considering the essential role played by the nanodefects (point defects and impurities) in determining its physical properties, it is surprising how limited is the amount of published data concerning the properties of nanodefects in this material, especially by Electron Paramagnetic Resonance (EPR) spectroscopy, the most powerful method for identification and characterization of nanodefects in both insulators and semiconductors. This seems to be due mainly to the absence of natural cBN gems and the extreme difficulties in producing even mm 3 sized synthetic crystals. We shall present our recent EPR studies on cBN crystalline powders, performed in a broad temperature range from room temperature (RT) down to 1.2 K on several sorts of large size cBN powder grits of yellow and amber color for industrial applications. Previous multifrequency (9.3 GHz and 95 GHz) EPR studies of brown to black cBN crystallites prepared with excess of boron, resulted in the discovery of two new types of paramagnetic point defects with different spectral properties, called the D1 and D2 centers. Our X(9.3 GHz)-band EPR investigations resulted in the observation in amber cBN crystalline powders of a spectrum with a strong temperature dependence of the lineshape. It was found that for high and low temperatures, respectively, the numerical

  19. Investigation of copper nuclei

    International Nuclear Information System (INIS)

    Delfini, M.G.

    1983-01-01

    An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64 Cu and 66 Cu. They were obtained by bombarding the 63 Cu and 65 Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64 Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)

  20. Some new aspects of microstructural development during sintering of silicon nitride

    International Nuclear Information System (INIS)

    Feuer, H.; Woetting, G.; Gugel, E.

    1994-01-01

    The mechanical properties of silicon nitride ceramics strongly depend on their microstructure. However, there is still a lively discussion about the parameters controlling the microstructural development. The current research was stimulated by the observation that a bimodal grain-size distribution in dense silicon nitride has a very beneficial effect on the mechanical properties, especially on the fracture toughness. This paper is focused on the relationship between the α-β-transformation and the densification of silicon nitride powders with different characteristics and sintering additives. Effects of β-grains originally present in the silicon nitride powder, of added β-silicon nitride seeds and of β-crystals formed by the α/β-transformation on the resulting microstructure and on the properties are discussed. The results are summarised in a model describing prerequisites and processing conditions, which are necessary to achieve a bimodal microstructure, i. e. a self-reinforced silicon nitride ceramic. (orig.)

  1. Magnetic properties of Nd3(Fe,Mo)29 compound and its nitride

    International Nuclear Information System (INIS)

    Pan Hongge

    1998-01-01

    The iron-rich ternary intermetallic compound Nd 3 (Fe,Mo) 29 with the Nd 3 (Fe,Ti) 29 -type monoclinic structure and its nitride were prepared. After nitrogenation, the nitride retains the structure of the parent compound, but the unit-cell volume of the nitride is 5.9% greater than that of the parent compound. The Curie temperature of Nd 3 (Fe,Mo) 29 nitride is 70.9% higher than that of the parent compound and the saturation magnetization of the nitride is about 6.6% (at 4.2 K) and 23.7% (at 300 K) higher than that of the parent compound. The anisotropy of the nitride is similar to that of parent compound, which exhibits plane anisotropy. (orig.)

  2. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1991-01-01

    In this paper, the conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design is performed. As a first step, an intensive literature survey is completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins is designed and analyzed using the SIEX computer code. The analysis predicts that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors

  3. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    Science.gov (United States)

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  4. Performance analysis of a mixed nitride fuel system for an advanced liquid metal reactor

    International Nuclear Information System (INIS)

    Lyon, W.F.; Baker, R.B.; Leggett, R.D.

    1990-11-01

    The conceptual development and analysis of a proposed mixed nitride driver and blanket fuel system for a prototypic advanced liquid metal reactor design has been performed. As a first step, an intensive literature survey was completed on the development and testing of nitride fuel systems. Based on the results of this survey, prototypic mixed nitride fuel and blanket pins were designed and analyzed using the SIEX computer code. The analysis predicted that the nitride fuel consistently operated at peak temperatures and cladding strain levels that compared quite favorably with competing fuel designs. These results, along with data available in the literature on nitride fuel performance, indicate that a nitride fuel system should offer enhanced capabilities for advanced liquid metal reactors. 13 refs., 10 figs., 2 tabs

  5. Influence of plastic deformation on nitriding of a molybdenum-hafnium alloy

    International Nuclear Information System (INIS)

    Lakhtin, Yu.M.; Kogan, Ya.D.; Shashkov, D.P.; Likhacheva, T.E.

    1982-01-01

    The influence of a preliminary plastic strain on the structure and properties of molybdenum alloy with 0.2 wt.% Hf upon nitriding in the ammonia medium at 900-1200 deg C during 1-6 h is investigated. The study of microhardness distribution across the nitrided layer thickness has shown that with increase of the degree of preliminary plastic strain up to 50 % the nitrided layer hardness decreases and with further reduction growth up to 90 % - increases. Nitriding sharply (hundred times) increases wear resistance of molybdenum alloy with hafnium addition. At the reduction degree 25 % the wear resistance is less than at other values of percentage reduction in area owing to the minimum thickness of the nitride zone. The alloy strained before nitriding by 25 % has shown the best results during heat resistance testing

  6. LIGNOCELLULOSE NANOCOMPOSITE CONTAINING COPPER SULFIDE

    Directory of Open Access Journals (Sweden)

    Sanchi Nenkova

    2011-04-01

    Full Text Available Copper sulfide-containing lignocellulose nanocomposites with improved electroconductivity were obtained. Two methods for preparing the copper sulfide lignocellulose nanocomposites were developed. An optimization of the parameters for obtaining of the nanocomposites with respect to obtaining improved electroconductivity, economy, and lower quantities and concentration of copper and sulfur ions in waste waters was conducted. The mechanisms and schemes of delaying and subsequent connection of copper sulfides in the lignocellulosic matrix were investigated. The modification with a system of 2 components: cupric sulfate pentahydrate (CuSO4. 5H2O and sodium thiosulfate pentahydrate (Na2S2O3.5H2O for wood fibers is preferred. Optimal parameters were established for the process: 40 % of the reduction system; hydromodule M=1:6; and ratio of cupric sulfate pentahydrate:sodium thiosulfate pentahydrate = 1:2. The coordinative connection of copper ions with oxygen atoms of cellulose OH groups and aromatic nucleus in lignin macromolecule was observed.

  7. Current trends in copper theft prevention

    Energy Technology Data Exchange (ETDEWEB)

    Mastrofrancesco, A. [Electrical Safety Authority, ON (Canada)

    2009-07-01

    Copper is used in electrical wiring, water and gas piping, currency, and in household items. An increase in the price and demand for copper has made copper theft a profitable venture for some thieves. Copper consumed in North America is typically supplied by recycling. Scrap dealers may pay near-market prices for pure copper wires. However, copper theft poses a serious threat to the safety of utility workers and the public. Power outages caused by copper theft are now affecting grid reliability. This paper examined technologies and techniques used to prevent copper theft as part of a security strategy for utilities. Attempts to steal copper can leave utility substations unsecured and accessible to children. The theft of neutral grounds will cause the local distribution company (LDC) to malfunction and may cause power surges in homes as well as appliance fires. Utilities are now looking at using a hybrid steel and copper alternative to prevent copper theft. Asset identification techniques are also being used to identify the original owners of the copper and more easily prosecute thieves. Automated monitoring techniques are also being used to increase substation security. Utilities are also partnering with law enforcement agencies and pressuring governments to require scrap dealers to record who they buy from. It was concluded that strategies to prevent copper theft should be considered as part of an overall security strategy for utilities. tabs., figs.

  8. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Ning; Wang, Hui; Tang, Chengchun; Lei, Shijun; Shen, Wanqing; Wang, Cong; Wang, Guobin; Wang, Zheng; Wang, Lin

    2017-01-01

    Boron nitride (BN) nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials - BN nanospheres (BNNSs) and highly water-soluble BN nanomaterial (named BN-800-2) - we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL -1 and 10 µg·mL -1 , respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1 , SOD2 , SOD3 , MEK1 , and PMK1 , might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL -1 , BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material.

  9. Elasticity and inelasticity of silicon nitride/boron nitride fibrous monoliths.

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. I.; Burenkov, Yu. A.; Kardashev, B. K.; Singh, D.; Goretta, K. C.; de Arellano-Lopez, A. R.; Energy Technology; Russian Academy of Sciences; Univer. de Sevilla

    2001-01-01

    A study is reported on the effect of temperature and elastic vibration amplitude on Young's modulus E and internal friction in Si{sub 3}N{sub 4} and BN ceramic samples and Si{sub 3}N{sub 4}/BN monoliths obtained by hot pressing of BN-coated Si{sub 3}N{sub 4} fibers. The fibers were arranged along, across, or both along and across the specimen axis. The E measurements were carried out under thermal cycling within the 20-600 C range. It was found that high-modulus silicon-nitride specimens possess a high thermal stability; the E(T) dependences obtained under heating and cooling coincide well with one another. The low-modulus BN ceramic exhibits a considerable hysteresis, thus indicating evolution of the defect structure under the action of thermoelastic (internal) stresses. Monoliths demonstrate a qualitatively similar behavior (with hysteresis). This behavior of the elastic modulus is possible under microplastic deformation initiated by internal stresses. The presence of microplastic shear in all the materials studied is supported by the character of the amplitude dependences of internal friction and the Young's modulus. The experimental data obtained are discussed in terms of a model in which the temperature dependences of the elastic modulus and their features are accounted for by both microplastic deformation and nonlinear lattice-atom vibrations, which depend on internal stresses.

  10. Cathodic cage nitriding of AISI 409 ferritic stainless steel with the addition of CH4

    Directory of Open Access Journals (Sweden)

    Rômulo Ribeiro Magalhães de Sousa

    2012-04-01

    Full Text Available AISI 409 ferritic stainless steel samples were nitrided using the cathodic cage plasma nitriding technique (CCPN, with the addition of methane to reduce chromium precipitation, increase hardness and wear resistance and reduce the presence of nitrides when compared to plasma carbonitriding. Microhardness profiles and X-Ray analysis confirm the formation of a very hard layer containing mainly ε-Fe3N and expanded ferrite phases.

  11. Martensitic Stainless Steels Low-temperature Nitriding: Dependence of Substrate Composition

    OpenAIRE

    Ferreira, Lauro Mariano; Brunatto, Silvio Francisco; Cardoso, Rodrigo Perito

    2015-01-01

    Low-temperature plasma assisted nitriding is a very promising technique to improve surface mechanical properties of stainless steels, keeping unaltered or even improving their surface corrosion resistance. During treatment, nitrogen diffuses into the steel surface, increasing its hardness and wear resistance. In the present work the nitriding process of different martensitic stainless steels was studied. As-quenched AISI 410, 410NiMo, 416 and 420 stainless steel samples were plasma nitrided a...

  12. Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications

    Science.gov (United States)

    Micó, Gloria; Pastor, Daniel; Pérez, Daniel; Doménech, José David; Fernández, Juan; Baños, Rocío; Alemany, Rubén; Sánchez, Ana M.; Cirera, Josep M.; Mas, Roser

    2017-01-01

    Silicon nitride photonics is on the rise owing to the broadband nature of the material, allowing applications of biophotonics, tele/datacom, optical signal processing and sensing, from visible, through near to mid-infrared wavelengths. In this paper, a review of the state of the art of silicon nitride strip waveguide platforms is provided, alongside the experimental results on the development of a versatile 300 nm guiding film height silicon nitride platform. PMID:28895906

  13. Mechanochemical reduction of copper sulfide

    DEFF Research Database (Denmark)

    Balaz, P.; Takacs, L.; Jiang, Jianzhong

    2002-01-01

    The mechanochemical reduction of copper sulfide with iron was induced in a Fritsch P-6 planetary mill, using WC vial filled with argon and WC balls. Samples milled for specific intervals were analyzed by XRD and Mossbauer spectroscopy. Most of the reaction takes place during the first 10 min...... of milling and only FeS and Cu are found after 60 min. The main chemical process is accompanied by phase transformations of the sulfide phases as a result of milling. Djurleite partially transformed to chalcocite and a tetragonal copper sulfide phase before reduction. The cubic modification of FeS was formed...... first, transforming to hexagonal during the later stages of the process. The formation of off-stoichiometric phases and the release of some elemental sulfur by copper sulfide are also probable....

  14. Laser sintering of copper nanoparticles

    International Nuclear Information System (INIS)

    Zenou, Michael; Saar, Amir; Ermak, Oleg; Kotler, Zvi

    2014-01-01

    Copper nanoparticle (NP) inks serve as an attractive potential replacement to silver NP inks in functional printing applications. However their tendency to rapidly oxidize has so far limited their wider use. In this work we have studied the conditions for laser sintering of Cu-NP inks in ambient conditions while avoiding oxidation. We have determined the regime for stable, low-resistivity copper (< ×3 bulk resistivity value) generation in terms of laser irradiance and exposure duration and have indicated the limits on fast processing. The role of pre-drying conditions on sintering outcome has also been studied. A method, based on spectral reflectivity measurements, was used for non-contact monitoring of the sintering process evolution. It also indicates preferred spectral regions for sintering. Finally, we illustrated how selective laser sintering can generate high-quality, fine line (<5 µm wide) and dense copper circuits. (paper)

  15. Copper tolerance of Trichoderma species

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2014-01-01

    Full Text Available Some Trichoderma strains can persist in ecosystems with high concentrations of heavy metals. The aim of this research was to examine the variability of Trichoderma strains isolated from different ecosystems, based on their morphological properties and restriction analysis of ITS fragments. The fungal growth was tested on potato dextrose agar, amended with Cu(II concentrations ranging from 0.25 to 10 mmol/l, in order to identify copper-resistant strains. The results indicate that some isolated strains of Trichoderma sp. show tolerance to higher copper concentrations. Further research to examine the ability of copper bioaccumulation by tolerant Trichoderma strains is needed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31080 i br. III 43010

  16. Biliary copper excretion by hepatocyte lysosomes in the rat. Major excretory pathway in experimental copper overload

    International Nuclear Information System (INIS)

    Gross, J.B. Jr.; Myers, B.M.; Kost, L.J.; Kuntz, S.M.; LaRusso, N.F.

    1989-01-01

    We investigated the hypothesis that lysosomes are the main source of biliary copper in conditions of hepatic copper overload. We used a rat model of oral copper loading and studied the relationship between the biliary output of copper and lysosomal hydrolases. Male Sprague-Dawley rats were given tap water with or without 0.125% copper acetate for up to 36 wk. Copper loading produced a 23-fold increase in the hepatic copper concentration and a 30-65% increase in hepatic lysosomal enzyme activity. Acid phosphatase histochemistry showed that copper-loaded livers contained an increased number of hepatocyte lysosomes; increased copper concentration of these organelles was confirmed directly by both x ray microanalysis and tissue fractionation. The copper-loaded rats showed a 16-fold increase in biliary copper output and a 50-300% increase in biliary lysosomal enzyme output. In the basal state, excretory profiles over time were similar for biliary outputs of lysosomal enzymes and copper in the copper-loaded animals but not in controls. After pharmacologic stimulation of lysosomal exocytosis, biliary outputs of copper and lysosomal hydrolases in the copper-loaded animals remained coupled: injection of colchicine or vinblastine produced an acute rise in the biliary output of both lysosomal enzymes and copper to 150-250% of baseline rates. After these same drugs, control animals showed only the expected increase in lysosomal enzyme output without a corresponding increase in copper output. We conclude that the hepatocyte responds to an increased copper load by sequestering excess copper in an increased number of lysosomes that then empty their contents directly into bile. The results provide direct evidence that exocytosis of lysosomal contents into biliary canaliculi is the major mechanism for biliary copper excretion in hepatic copper overload

  17. Figurines in Pietrele: Copper Age ideology

    Directory of Open Access Journals (Sweden)

    Svend Hansen

    2011-12-01

    Full Text Available Major trends in figurine production of the copper age settlement of Pietrele (Romania are discussed. The bone figurines are seen as an ideological innovation of the Early Copper Age system in the Eastern Balkans.

  18. Copper tolerance and virulence in bacteria

    Science.gov (United States)

    Ladomersky, Erik; Petris, Michael J.

    2015-01-01

    Copper (Cu) is an essential trace element for all aerobic organisms. It functions as a cofactor in enzymes that catalyze a wide variety of redox reactions due to its ability to cycle between two oxidation states, Cu(I) and Cu(II). This same redox property of copper has the potential to cause toxicity if copper homeostasis is not maintained. Studies suggest that the toxic properties of copper are harnessed by the innate immune system of the host to kill bacteria. To counter such defenses, bacteria rely on copper tolerance genes for virulence within the host. These discoveries suggest bacterial copper intoxication is a component of host nutritional immunity, thus expanding our knowledge of the roles of copper in biology. This review summarizes our current understanding of copper tolerance in bacteria, and the extent to which these pathways contribute to bacterial virulence within the host. PMID:25652326

  19. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  20. Effect of cold working on nitriding process of AISI 304 and 316 austenitic stainless steel

    International Nuclear Information System (INIS)

    Pereira, Silvio Andre de Lima

    2012-01-01

    The nitriding behavior of AISI 304 and 316 austenitic stainless steel was studied by different cold work degree before nitriding processes. The microstructure, thickness, microhardness and chemical micro-composition were evaluated through optical microscopy, microhardness, scanner electronic microscopy and x ray diffraction techniques. Through them, it was observed that previous plastic deformations do not have influence on layer thickness. However, a nitrided layer thicker can be noticed in the AISI 304 steel. In addition, two different layers can be identified as resulted of the nitriding, composed for austenitic matrix expanded by nitrogen atoms and another thinner immediately below expanded by Carbon atoms. (author)

  1. Gold film with gold nitride - A conductor but harder than gold

    International Nuclear Information System (INIS)

    Siller, L.; Peltekis, N.; Krishnamurthy, S.; Chao, Y.; Bull, S.J.; Hunt, M.R.C.

    2005-01-01

    The formation of surface nitrides on gold films is a particularly attractive proposition, addressing the need to produce harder, but still conductive, gold coatings which reduce wear but avoid the pollution associated with conventional additives. Here we report production of large area gold nitride films on silicon substrates, using reactive ion sputtering and plasma etching, without the need for ultrahigh vacuum. Nanoindentation data show that gold nitride films have a hardness ∼50% greater than that of pure gold. These results are important for large-scale applications of gold nitride in coatings and electronics

  2. The influence of surface layer nitriding on phase composition and tribological properties of cast steel

    International Nuclear Information System (INIS)

    Brzozka, K; Gorka, B; Gawronski, M; Budzynowski, T W

    2010-01-01

    The effect of two-stage low-temperature nitriding on atomic structure and mechanical properties of selected cast steels is investigated. Conversion electron Moessbauer spectroscopy has been used to investigate nitrides formation. In order to study tribological characteristics, tests of friction and reflecting electron microscopy measurements have been performed. It has been found that thin nitrides layer (composed mainly of γ'-Fe 4 N) arises in the course of the nitriding procedure in most of investigated cast steels, what considerably affects their microstructure and tribological properties.

  3. Surface Area, and Oxidation Effects on Nitridation Kinetics of Silicon Powder Compacts

    Science.gov (United States)

    Bhatt, R. T.; Palczer, A. R.

    1998-01-01

    Commercially available silicon powders were wet-attrition-milled from 2 to 48 hr to achieve surface areas (SA's) ranging from 1.3 to 70 sq m/g. The surface area effects on the nitridation kinetics of silicon powder compacts were determined at 1250 or 1350 C for 4 hr. In addition, the influence of nitridation environment, and preoxidation on nitridation kinetics of a silicon powder of high surface area (approximately equals 63 sq m/g) was investigated. As the surface area increased, so did the percentage nitridation after 4 hr in N2 at 1250 or 1350 C. Silicon powders of high surface area (greater than 40 sq m/g) can be nitrided to greater than 70% at 1250 C in 4 hr. The nitridation kinetics of the high-surface-area powder compacts were significantly delayed by preoxidation treatment. Conversely, the nitridation environment had no significant influence on the nitridation kinetics of the same powder. Impurities present in the starting powder, and those accumulated during attrition milling, appeared to react with the silica layer on the surface of silicon particles to form a molten silicate layer, which provided a path for rapid diffusion of nitrogen and enhanced the nitridation kinetics of high surface area silicon powder.

  4. The wear and corrosion resistance of shot peened-nitrided 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Hashemi, B.; Rezaee Yazdi, M.; Azar, V.

    2011-01-01

    Research highlights: → Shot peening-nitriding increased the wear resistance and surface hardness of samples. → This treatment improved the surface mechanical properties. → Shot peening alleviates the adverse effects of nitriding on the corrosion behavior. -- Abstract: 316L austenitic stainless steel was gas nitrided at 570 o C with pre-shot peening. Shot peening and nitriding are surface treatments that enhance the mechanical properties of surface layers by inducing compressive residual stresses and formation of hard phases, respectively. The structural phases, micro-hardness, wear behavior and corrosion resistance of specimens were investigated by X-ray diffraction, Vickers micro-hardness, wear testing, scanning electron microscopy and cyclic polarization tests. The effects of shot peening on the nitride layer formation and corrosion resistance of specimens were studied. The results showed that shot peening enhanced the nitride layer formation. The shot peened-nitrided specimens had higher wear resistance and hardness than other specimens. On the other hand, although nitriding deteriorated the corrosion resistance of the specimens, cyclic polarization tests showed that shot peening before the nitriding treatment could alleviate this adverse effect.

  5. The influence of nitride thickness variations on the switching speed of MNOS memory transistors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1978-01-01

    The influence of nitride thickness variations on the switching speed of MNOS memory transistors is examined. The switching time constant is calculated as a function of the nitride thickness using a model of modified Fowler-Nordheim injection. The calculated characteristics compare well with measu......The influence of nitride thickness variations on the switching speed of MNOS memory transistors is examined. The switching time constant is calculated as a function of the nitride thickness using a model of modified Fowler-Nordheim injection. The calculated characteristics compare well...

  6. Human copper transporter 2 is localized in late endosomes and lysosomes and facilitates cellular copper uptake

    NARCIS (Netherlands)

    Berghe, van den P.V.E; Folmer, D.E.; Malingré, H.E.M.; Beurden, van E.; Klomp, A.E.M.; Sluis, van de B.; Merkx, M.; Berger, R.J.; Klomp, L.W.J.

    2007-01-01

    High-affinity cellular copper uptake is mediated by the CTR (copper transporter) 1 family of proteins. The highly homologous hCTR (human CTR) 2 protein has been identified, but its function in copper uptake is currently unknown. To characterize the role of hCTR2 in copper homoeostasis,

  7. Copper nitrate redispersion to arrive at highly active silica-supported copper catalysts

    NARCIS (Netherlands)

    Munnik, P.|info:eu-repo/dai/nl/328228524; Wolters, M.|info:eu-repo/dai/nl/304829560; Gabrielsson, A.; Pollington, S.D.; Headdock, G.; Bitter, J.H.|info:eu-repo/dai/nl/160581435; de Jongh, P.E.|info:eu-repo/dai/nl/186125372; de Jong, K.P.|info:eu-repo/dai/nl/06885580X

    2011-01-01

    In order to obtain copper catalysts with high dispersions at high copper loadings, the gas flow rate and gas composition was varied during calcination of silica gel impregnated with copper nitrate to a loading of 18 wt % of copper. Analysis by X-ray diffraction (XRD), N2O chemisorption, and

  8. Copper and Anesthesia: Clinical Relevance and Management of Copper Related Disorders

    OpenAIRE

    Langley, Adrian; Dameron, Charles T.

    2013-01-01

    Recent research has implicated abnormal copper homeostasis in the underlying pathophysiology of several clinically important disorders, some of which may be encountered by the anesthetist in daily clinical practice. The purpose of this narrative review is to summarize the physiology and pharmacology of copper, the clinical implications of abnormal copper metabolism, and the subsequent influence of altered copper homeostasis on anesthetic management.

  9. 21 CFR 73.1125 - Potassium sodium copper chloropyhllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). 73.1125 Section 73.1125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT....1125 Potassium sodium copper chloropyhllin (chlorophyllin-copper complex). (a) Identity. (1) The color...

  10. 21 CFR 73.2125 - Potassium sodium copper chlorophyllin (chlorophyllin-copper complex).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). 73.2125 Section 73.2125 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT... § 73.2125 Potassium sodium copper chlorophyllin (chlorophyllin-copper complex). (a) Identity and...

  11. III-nitride based light emitting diodes and applications

    CERN Document Server

    Han, Jung; Amano, Hiroshi; Morkoç, Hadis

    2017-01-01

    The revised edition of this important book presents updated and expanded coverage of light emitting diodes (LEDs) based on heteroepitaxial GaN on Si substrates, and includes new chapters on tunnel junction LEDs, green/yellow LEDs, and ultraviolet LEDs. Over the last two decades, significant progress has been made in the growth, doping and processing technologies of III-nitride based semiconductors, leading to considerable expectations for nitride semiconductors across a wide range of applications. LEDs are already used in traffic signals, signage lighting, and automotive applications, with the ultimate goal of the global replacement of traditional incandescent and fluorescent lamps, thus reducing energy consumption and cutting down on carbon-dioxide emission. However, some critical issues must be addressed to allow the further improvements required for the large-scale realization of solid-state lighting, and this book aims to provide the readers with details of some contemporary issues on which the performanc...

  12. Radio frequency plasma nitriding of aluminium at higher power levels

    International Nuclear Information System (INIS)

    Gredelj, Sabina; Kumar, Sunil; Gerson, Andrea R.; Cavallaro, Giuseppe P.

    2006-01-01

    Nitriding of aluminium 2011 using a radio frequency plasma at higher power levels (500 and 700 W) and lower substrate temperature (500 deg. C) resulted in higher AlN/Al 2 O 3 ratios than obtained at 100 W and 575 deg. C. AlN/Al 2 O 3 ratios derived from X-ray photoelectron spectroscopic analysis (and corroborated by heavy ion elastic recoil time of flight spectrometry) for treatments preformed at 100 (575 deg. C), 500 (500 deg. C) and 700 W (500 deg. C) were 1.0, 1.5 and 3.3, respectively. Scanning electron microscopy revealed that plasma nitrided surfaces obtained at higher power levels exhibited much finer nodular morphology than obtained at 100 W

  13. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    CERN Document Server

    Vaidya, S J; Shaikh, A M; Chandorkar, A N

    2002-01-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co sup 6 sup 0 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radi...

  14. Point defects in thorium nitride: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2016-11-15

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  15. Point defects in thorium nitride: A first-principles study

    International Nuclear Information System (INIS)

    Pérez Daroca, D.; Llois, A.M.; Mosca, H.O.

    2016-01-01

    Thorium and its compounds (carbides and nitrides) are being investigated as possible materials to be used as nuclear fuels for Generation-IV reactors. As a first step in the research of these materials under irradiation, we study the formation energies and stability of point defects in thorium nitride by means of first-principles calculations within the framework of density functional theory. We focus on vacancies, interstitials, Frenkel pairs and Schottky defects. We found that N and Th vacancies have almost the same formation energy and that the most energetically favorable defects of all studied in this work are N interstitials. These kind of results for ThN, to the best authors' knowledge, have not been obtained previously, neither experimentally, nor theoretically.

  16. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Nan, E-mail: nanniu@fas.harvard.edu; Woolf, Alexander; Wang, Danqing; Hu, Evelyn L. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Zhu, Tongtong; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States)

    2015-06-08

    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  17. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    International Nuclear Information System (INIS)

    Niu, Nan; Woolf, Alexander; Wang, Danqing; Hu, Evelyn L.; Zhu, Tongtong; Oliver, Rachel A.; Quan, Qimin

    2015-01-01

    We report exceptionally low thresholds (9.1 μJ/cm 2 ) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance

  18. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    FAN; ChangZeng

    2007-01-01

    The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.……

  19. Valence electronic structure of tantalum carbide and nitride

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ The valence electronic structures of tantalum carbide (TaC) and tantalum nitride (TaN) are studied by using the empirical electronic theory (EET). The results reveal that the bonds of these compounds have covalent, metallic and ionic characters. For a quantitative analysis of the relative strength of these components, their ionicities have been calculated by implanting the results of EET to the PVL model. It has been found that the ionicity of tantalum carbide is smaller than that of tantalum nitride. The EET results also reveal that the covalent electronic number of the strongest bond in the former is larger than that of the latter. All these suggest that the covalent bond of TaC is stronger than that of TaN, which coincides to that deduced from the first-principles method.

  20. Neutron detection using boron gallium nitride semiconductor material

    Directory of Open Access Journals (Sweden)

    Katsuhiro Atsumi

    2014-03-01

    Full Text Available In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  1. Morphologic and crystallographic studies on electrochemically formed chromium nitride films

    Energy Technology Data Exchange (ETDEWEB)

    Amezawa, Koji [Graduate School of Environmental Studies, Tohoku University, 6-6-01 Aramaki-Aoba, Aoba-ku, Sendai 980-8579 (Japan); Goto, Takuya; Tsujimura, Hiroyuki; Hagiwara, Rika; Tomii, Yoichi [Graduate School of Energy Science, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Uchimoto, Yoshiharu [Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Ito, Yasuhiko [Department of Environmental Systems Science, Faculty of Engineering, Doshisya University, Kyotanabe-shi, Kyoto 610-0321 (Japan)

    2007-11-20

    Chromium nitride films were prepared by anodically oxidizing nitride ions at 0.4-1.5 V versus Li{sup +}/Li on chromium substrates in molten LiCl-KCl-Li{sub 3}N systems at 723 K. A crystalline Cr{sub 2}N film was successfully prepared at 0.4-1.4 V, and was thicker at more positive electrolytic potential. At 1.5 V, a Cr-N film could be also obtained, but its growth rate was relatively low. The film prepared at 1.5 V consisted of two distinctive layers. The surface layer was amorphous Cr-N containing crystalline CrN particles, and the inner layer was crystalline CrN. It was considered the existence of the amorphous phase suppressed the film growth. (author)

  2. Niobium nitride Josephson tunnel junctions with magnesium oxide barriers

    International Nuclear Information System (INIS)

    Shoji, A.; Aoyagi, M.; Kosaka, S.; Shinoki, F.; Hayakawa, H.

    1985-01-01

    Niobium nitride-niobium nitride Josephson tunnel junctions have been fabricated using amorphous magnesium oxide (a-MgO) films as barriers. These junctions have excellent tunneling characteristics. For example, a large gap voltage (V/sub g/ = 5.1 mV), a large product of the maximum critical current and the normal tunneling resistance (I/sub c/R/sub n/ = 3.25 mV), and a small subgap leakage current (V/sub m/ = 45 mV, measured at 3 mV) have been obtained for a NbN/a-MgO/NbN junction. The critical current of this junction remains finite up to 14.5 K

  3. Synthesis of niobium nitride by pyrolysis of niobium pentachloride ammines

    International Nuclear Information System (INIS)

    Grebtsova, O.M.; Shulga, Y.M.; Troitskii, V.N.

    1986-01-01

    This paper investigates the conditions for the preparation of niobium nitride in the thermal decomposition of niobium nitride in the thermal decomposition of niobium pentachloride ammines. The synthesis of the ammines was accomplished by the reaction of powdered NbC1 5 with dry ammonia at 210 K. Thermography and x-ray diffraction, spectral, and chemical analyses were used to identify the ammonolysis products. It was established that the products of ammonolysis of NbC1 5 are a mixture of the x-ray-amorphous complex Nb (NH 2 ) /SUB 5-x/ - (NG 3 ) 3 CL 3 (x≅) and 2 moles of NH 4 C1. The steps in the thermal decomposition of this mixture were studied. The phase transition that is observed in the case of further vacuum heat treatment at 1100-1300 K is presented

  4. Thermal plasma synthesis of transition metal nitrides and alloys

    International Nuclear Information System (INIS)

    Ronsheim, P.; Christensen, A.N.; Mazza, A.

    1981-01-01

    Applications of arc plasma processing to high-temperature chemistry of Group V nitrides and Si and Ge alloys are studied. The transition metal nitrides 4f-VN, 4f-NbN, and 4f-TaN are directly synthesized in a dc argon-nitrogen plasma from powders of the metals. A large excess of N 2 is required to form stoichiometric 4f-VN, while the Nb and Ta can only be synthesized with a substoichiometric N content. In a dc argon plasma the alloys V 3 Si, VSi 2 , NbSi 2 , NbGe 2 , Cr 3 Si, and Mo 3 Si are obtained from powder mixtures of the corresponding elements. The compounds are identified by x-ray diffraction patterns and particle shape and size are studied by electron microscopy

  5. The structure and dynamics of boron nitride nanoscrolls

    International Nuclear Information System (INIS)

    Perim, Eric; Galvao, Douglas S

    2009-01-01

    Carbon nanoscrolls (CNSs) are structures formed by rolling up graphene layers into a scroll-like shape. CNNs have been experimentally produced by different groups. Boron nitride nanoscrolls (BNNSs) are similar structures using boron nitride instead of graphene layers. In this paper we report molecular mechanics and molecular dynamics results for the structural and dynamical aspects of BNNS formation. Similarly to CNS, BNNS formation is dominated by two major energy contributions, the increase in the elastic energy and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers. The armchair scrolls are the most stable configuration while zigzag scrolls are metastable structures which can be thermally converted to armchairs. Chiral scrolls are unstable and tend to evolve into zigzag or armchair configurations depending on their initial geometries. The possible experimental routes to produce BNNSs are also addressed.

  6. Refining processes in the copper casting technology

    OpenAIRE

    Rzadkosz, S.; Kranc, M.; Garbacz-Klempka, A.; Kozana, J.; Piękoś, M.

    2015-01-01

    The paper presents the analysis of technology of copper and alloyed copper destined for power engineering casts. The casts quality was assessed based on microstructure, chemical content analysis and strength properties tests. Characteristic deoxidising (Logas, Cup) and modifying (ODM2, Kupmod2) formulas were used for the copper where high electrical conductivity was required. Chosen examples of alloyed copper with varied Cr and Zr content were studied, and the optimal heat treatment parameter...

  7. 21 CFR 184.1261 - Copper sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Copper sulfate. 184.1261 Section 184.1261 Food and... Substances Affirmed as GRAS § 184.1261 Copper sulfate. (a) Copper sulfate (cupric sulfate, CuSO4·5H2O, CAS... the reaction of sulfuric acid with cupric oxide or with copper metal. (b) The ingredient must be of a...

  8. The Bauschinger Effect in Copper

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker; Brown, L .M.; Stobbs, W. M.

    1981-01-01

    A study of the Bauschinger effect in pure copper shows that by comparison with dispersion hardened copper the effect is very small and independent of temperature. This suggests that the obstacles to flow are deformable. A simple composite model based on this principle accounts for the data semi......-quantitatively and also accounts for the stored energy of cold-work. An interesting feature of the model is that it shows very clearly that, although dislocation pile-ups may exist, the flow stress of the composite is entirely due to the resistance to dislocation motion in the tangles of forest dislocations....

  9. Cupriferous peat: embryonic copper ore

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, D C

    1961-07-01

    A Canadian peat was found to contain up to 10% (dry weight) Cu, and a mechanism for Cu accumulation in peat was discussed. Wet chemical techniques and x-ray diffraction were utilized to identify Cu compounds. Copper was organically bound in peat as a chelate complex and did not occur as an oxide, sulfide, or as elemental Cu. Because of the low S content of peat the Cu was assumed to be bound to nitrogen or oxygen-containing components. Copper, having a greater affinity for N, tended to form the more stable Cu-N chelate. The element was concentrated as circulating cupriferous ground waters filtered through the peat.

  10. Tunable synthesis of copper nanotubes

    International Nuclear Information System (INIS)

    Kaniukov, E; Yakimchuk, D; Kozlovsky, A; Shlimas, D; Zdorovets, M; Kadyrzhanov, K

    2016-01-01

    Simple method of tunable synthesis of copper nanotubes based on template synthesis was developed. A comprehensive study of the structural, morphological and electrical characteristics of the obtained nanostructures was carried out. Characterization of structural features was made by methods of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffractometry analysis. Evaluation of wall thickness is made by methods of gas permeability. Electrical conductivity of nanotubes was define in the study of their current-voltage characteristics. The possibility to control of copper nanotubes physical properties by variation of the deposition parameters was shown. (paper)

  11. Frequency effects and properties of plasma deposited fluorinated silicon nitride

    International Nuclear Information System (INIS)

    Chang, C.; Flamm, D.L.; Ibbotson, D.E.; Mucha, J.A.

    1988-01-01

    The properties of low-hydrogen, fluorinated plasma-enhanced chemical vapor deposition (PECVD) silicon nitride films grown using NF 3 /SiH 4 /N 2 feed mixtures in 200 kHz and 14 MHz discharges were compared. High-energy ion bombardment at 200 kHz is expected to enhance surface diffusion and chemical reconstruction. Compared to fluorinated silicon nitride deposited at 14 MHz under otherwise comparable conditions, the 200 kHz films had a lower Si--H bond concentration (approx. 21 cm -3 ), lower total hydrogen content (5--8 x 10 21 cm -3 ), better resistance to oxidation, lower compressive stress (-0.7 to -1.5 Gdyne/cm), and higher density (3.1 g/cm 3 ). The dielectric constant of better low-frequency Class I films was constant to 500 MHz, while that of high-frequency films fell up to 15% between 100 Hz and 10 MHz. The absorption edges of low-frequency PECVD fluorinated silicon nitride films were between 5.0 and 6.1 eV, which compare with 4.4 to 5.6 eV for the high-excitation frequency fluorinated material and 3 to 4 eV for conventional PECVD nitride. However high-frequency films may have fewer trap centers and a lower dielectric constant. 14 MHz p-SiN:F films grown with NH 3 as an auxiliary nitrogen source showed absorption edges similar to low-frequency material grown from NF 3 /SiH 4 /N 2 , but they have substantially more N--H bonding. The dielectric constant and absorption edge of these films were comparable to those of low-frequency p-SiN:F from NF 3 /SiH 4 /N 2

  12. Method of preparing uranium nitride or uranium carbonitride bodies

    International Nuclear Information System (INIS)

    Wilhelm, H.A.; McClusky, J.K.

    1976-01-01

    Sintered uranium nitride or uranium carbonitride bodies having a controlled final carbon-to-uranium ratio are prepared, in an essentially continuous process, from U 3 O 8 and carbon by varying the weight ratio of carbon to U 3 O 8 in the feed mixture, which is compressed into a green body and sintered in a continuous heating process under various controlled atmospheric conditions to prepare the sintered bodies. 6 claims, no drawings

  13. Charge carrier transport properties in layer structured hexagonal boron nitride

    Directory of Open Access Journals (Sweden)

    T. C. Doan

    2014-10-01

    Full Text Available Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV, hexagonal boron nitride (hBN has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K. The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T0−α with α = 3.02, satisfying the two-dimensional (2D carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1, which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.

  14. TXRF analysis of trace metals in thin silicon nitride films

    International Nuclear Information System (INIS)

    Vereecke, G.; Arnauts, S.; Verstraeten, K.; Schaekers, M.; Heyrts, M.M.

    2000-01-01

    As critical dimensions of integrated circuits continue to decrease, high dielectric constant materials such as silicon nitride are being considered to replace silicon dioxide in capacitors and transistors. The achievement of low levels of metal contamination in these layers is critical for high performance and reliability. Existing methods of quantitative analysis of trace metals in silicon nitride require high amounts of sample (from about 0.1 to 1 g, compared to a mass of 0.2 mg for a 2 nm thick film on a 8'' silicon wafer), and involve digestion steps not applicable to films on wafers or non-standard techniques such as neutron activation analysis. A novel approach has recently been developed to analyze trace metals in thin films with analytical techniques currently used in the semiconductor industry. Sample preparation consists of three steps: (1) decomposition of the silicon nitride matrix by moist HF condensed at the wafer surface to form ammonium fluosilicate. (2) vaporization of the fluosilicate by a short heat treatment at 300 o C. (3) collection of contaminants by scanning the wafer surface with a solution droplet (VPD-DSC procedure). The determination of trace metals is performed by drying the droplet on the wafer and by analyzing the residue by TXRF, as it offers the advantages of multi-elemental analysis with no dilution of the sample. The lower limits of detection for metals in 2 nm thick films on 8'' silicon wafers range from about 10 to 200 ng/g. The present study will focus on the matrix effects and the possible loss of analyte associated with the evaporation of the fluosilicate salt, in relation with the accuracy and the reproducibility of the method. The benefits of using an internal standard will be assessed. Results will be presented from both model samples (ammonium fluoride contaminated with metallic salts) and real samples (silicon nitride films from a production tool). (author)

  15. Processing and properties of solid state nitrided stainless steels

    International Nuclear Information System (INIS)

    Rennhard, C.A.P.

    1993-02-01

    The properties of austenitic steels and duplex-steels are significantly improved by nitrogen (N) addition. In the present investigation, new alloys were produced and characterized using the high solid N-solubility and diffusion alloying from the gas phase. Most suitable base materials are powder, wire or sheet because of the short diffusion distance. PM-materials were in-can nitrided or treated in a fluidized bed and compacted by Hot Isostatic Pressing (HIP) or hot extrusion. The impact toughness level of PM alloys at room temperature is about 120 to 200 J, compared to 250 to 300 J for steels with equal strength that are produced by ingot metallurgy (IM). The toughness can be improved by high temperature deformation such as forging, hot rolling or hot extrusion or by removing the oxide layer on the particle surface by hydrogen gas reduction. A duplex steel with 22 Cr, 5.6 Ni and 2.7 Mo was transformed to a fully austenitic steel with over 500 MPa yield strength by increasing the N content from 0.2 to 0.65 weight-percent. The expensive Ni can successfully be replaced by N. Nitrided wire material is the base material for cold deformed high-strength wire. The improved strain hardening rate of nitrogen alloyed steels helps to achieve ductile and corrosion resistant materials with strength up to 2200 MPa. Sheet materials were diffusion bonded in the HIP or compacted in a 5000 kN press immediately after in-can nitriding to form solid blocks. Nitrided powder, wire and sheet materials lead to near net shape products that cannot be produced by conventional ingot metallurgy or would require the expensive high-pressure metallurgy. (author) 67 figs., tabs., 70 refs

  16. Boron nitride nanotubes as a reinforcement for brittle matrices

    Czech Academy of Sciences Publication Activity Database

    Tatarko, Peter; Grasso, S.; Porwal, H.; Saggar, Richa; Chlup, Zdeněk; Dlouhý, Ivo; Reece, M.J.

    2014-01-01

    Roč. 34, č. 14 (2014), s. 3339-3349 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 EU Projects: European Commission(XE) 264526 - GLACERCO Institutional support: RVO:68081723 Keywords : Amorphous borosilicate glass * Boron nitride nanotubes * Composite * Toughening mechanisms * Scratch resistance Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 2.947, year: 2014

  17. SONOS memories with embedded silicon nanocrystals in nitride

    International Nuclear Information System (INIS)

    Liu, Mei-Chun; Chiang, Tsung-Yu; Chao, Tien-Sheng; Kuo, Po-Yi; Lei, Tan-Fu; Chou, Ming-Hong; Wu, Yi-Hong; Cheng, Ching-Hwa; Liu, Sheng-Hsien; Yang, Wen-Luh; You, Hsin-Chiang

    2008-01-01

    We have successfully demonstrated SONOS memories with embedded Si-NCs in silicon nitride. This new structure exhibits excellent characteristics in terms of larger memory windows and longer retention time compared to control devices. Using the same thickness 2.5 nm of the bottom tunneling oxide, we found that N 2 O is better than O 2 oxide. Retention property is improved when the thickness of N 2 O is increased to 3.0 nm

  18. Effect of boron nitride coating on fiber-matrix interactions

    International Nuclear Information System (INIS)

    Singh, R.N.; Brun, M.K.

    1987-01-01

    Coatings can modify fiber-matrix reactions and consequently interfacial bond strengths. Commercially available mullite, silicon carbide, and carbon fibers were coated with boron nitride via low pressure chemical vapor deposition and incorporated into a mullite matrix by hot-pressing. The influence of fiber-matrix interactions for uncoated fibers on fracture morphologies was studied. These observations are related to the measured values of interfacial shear strengths

  19. Delamination of hexagonal boron nitride in a stirred media mill

    International Nuclear Information System (INIS)

    Damm, C.; Körner, J.; Peukert, W.

    2013-01-01

    A scalable process for delamination of hexagonal boron nitride in an aqueous solution of the non-ionic surfactant TWEEN85 using a stirred media mill is presented. The size of the ZrO 2 beads used as grinding media governs the dimensions of the ground boron nitride particles as atomic force microscopic investigations (AFM) reveal: the mean flakes thickness decreases from 3.5 to 1.5 nm and the ratio between mean flake area and mean flake thickness increases from 2,200 to 5,800 nm if the grinding media size is reduced from 0.8 to 0.1 mm. This result shows that a high number of stress events in combination with low stress energy (small grinding media) facilitate delamination of the layered material whereas at high stress energies in combination with a low number of stress events (large grinding media) breakage of the layers dominates over delamination. The results of particle height analyses by AFM show that few-layer structures have been formed by stirred media milling. This result is in agreement with the layer thickness dependence of the delamination energy for hexagonal boron nitride. The concentration of nanoparticles remaining dispersed after centrifugation of the ground suspension increases with grinding time and with decreasing grinding media size. After 5 h of grinding using 0.1 mm ZrO 2 grinding media the yield of nanoparticle formation is about 5 wt%. The nanoparticles exhibit the typical Raman peak for hexagonal boron nitride at 1,366 cm −1 showing that the in-plane order in the milled platelets is remained.

  20. Formation and properties of chromium nitride coatings on martensitic steels

    International Nuclear Information System (INIS)

    Mendala, B.; Swadzba, L.; Hetmanczyk, M.

    1999-01-01

    In this paper the results of investigation of coatings obtained by ARC-PVD method on martensitic E1961 (13H12NWMFA) steel, which is used on compressor blades in the aircraft engines, were presented. The chemical composition of E1961 was given. The PVT-550 device was used for coating. The protective chromium nitride coatings were tested. The influence of ARC-PVD method parameters for example: bias, pressure and flow rate of reactive gases on the structure and properties of the CrN coatings in corrosion tests were investigated. Technical parameters of obtained CrN coatings were given. The phase analysis of chromium nitride coatings obtained with different technical parameters were tested. The results of phase analysis are given. The pitting corrosion resistance tests in 10% FeCl 3 solution was conducted. The corrosion rate for CrN coated samples were defined. It was found that 50 V and 100 V bias, about 0.5 and 0.7 Pa pressure and 140 sccm (standard cubic centimeter) flow rate of nitride during coating favour the CrN monophase structure while increasing bias to 150 V, decreasing the pressure to about 0.5 Pa and 0.3 Pa and increasing the flow rate of nitride to 160 - 180 sccm favour the CrN+Cr 2 N diphase structure. On the basis of corrosion investigations for CrN coatings obtained with different ARC-PVD parameters the best corrosion resistance in 10% FeCl 3 solution for CrN+Cr 2 N diphase structure was found. (author)

  1. Interface-induced electronic structure toughening of nitride superlattices

    Czech Academy of Sciences Publication Activity Database

    Řehák, Petr; Černý, Miroslav; Holec, D.

    2017-01-01

    Roč. 325, SEP (2017), s. 410-416 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GA16-24711S Institutional support: RVO:68081723 Keywords : Ab initio calculations * Cleavage * Friedel oscillations * Nitride multilayers Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.589, year: 2016

  2. Transient Nonlinear Optical Properties of Thin Film Titanium Nitride

    Science.gov (United States)

    2017-03-23

    13] • Chemical composition • Crystal structure and lattice parameters • Defect structure This tuneability will be useful in future engineering ...Nitride SarahKatie Thomas Follow this and additional works at: https://scholar.afit.edu/etd Part of the Materials Science and Engineering Commons This... Thesis is brought to you for free and open access by AFIT Scholar. It has been accepted for inclusion in Theses and Dissertations by an authorized

  3. On new allotropes and nanostructures of carbon nitrides

    OpenAIRE

    Bojdys, Michael Janus

    2010-01-01

    In the first section of the thesis graphitic carbon nitride was for the first time synthesised using the high-temperature condensation of dicyandiamide (DCDA) – a simple molecular precursor – in a eutectic salt melt of lithium chloride and potassium chloride. The extent of condensation, namely next to complete conversion of all reactive end groups, was verified by elemental microanalysis and vibrational spectroscopy. TEM- and SEM-measurements gave detailed insight into the well-defined morpho...

  4. Electrical conduction in composites containing copper core–copper ...

    Indian Academy of Sciences (India)

    Unknown

    of Mott's small polaron hopping conduction model. ... sample exhibited a metallic conduction confirming the formation of a percolative chain of ..... value of εp. Also the oxide layer formation on the initially unoxidized copper particles will increase the resistivity level of the nanocomposite. This is borne out by results shown in ...

  5. Electron trapping during irradiation in reoxidized nitrided oxide

    International Nuclear Information System (INIS)

    Mallik, A.; Vasi, J.; Chandorkar, A.N.

    1993-01-01

    Isochronal detrapping experiments have been performed following irradiation under different gate biases in reoxidized nitrided oxide (RNO) MOS capacitors. These show electron trapping by the nitridation-induced electron traps at low oxide fields during irradiation. A difference in the detrapping behavior of trapped holes and electrons is observed, with trapped holes being detrapped at relatively lower temperatures compared to trapped electrons. Electron trapping shows a strong dependence on tile magnitude of the applied gate bias during irradiation but is independent of its polarity. Conventional oxide devices, as expected, do not show any electron trapping during irradiation by the native electron traps. Finally, a comparison of the isochronal detrapping behavior following irradiation and following avalanche injection of electrons has been made to estimate the extent of electron trapping. The results show that electron trapping by the nitridation-induced electron traps does not play the dominant role in improving radiation performance of RNO, though its contribution cannot be completely neglected for low oxide field irradiations

  6. Neutron induced degradation in nitrided pyrogenic field oxide MOS capacitors

    Science.gov (United States)

    Vaidya, S. J.; Sharma, D. K.; Shaikh, A. M.; Chandorkar, A. N.

    2002-09-01

    Neutron induced oxide charge trapping and generation of interface states in MOS capacitors with pyrogenic and nitrided pyrogenic field oxides have been studied. In order to assess the damage due to neutrons alone, it is necessary to account for the damage produced by the accompanying gamma rays from neutron radiation. This is done by measuring the intensity of gamma radiation accompanying neutrons at different neutron fluences at the irradiation position. MOS capacitor structures were subjected to neutron radiation in a swimming pool type of reactor. Other samples from the same batch were then subjected to an equivalent dose of gamma radiation from a Co 60 source. The difference in the damage observed was used to characterize the damage caused by neutrons. It is observed that neutrons, though uncharged, are capable of causing ionization damage. This damage is found to be significant when the radiation is performed under biased conditions. Nitridation in different ambients is found to improve the radiation performance of pyrogenic field oxides with respect to positive charge build up as well as interface state generation. Pyrogenic oxide nitrided in N 2O is found to be the best oxynitride as damage due to neutrons is the least.

  7. Iron nitride films formed in a r. f. glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Li, J.L.; O' Keefe, T.J.; James, W.J. (Depts. of Chemistry and Metallurgical Engineering and Graduate Center for Materials Research, Univ. of Missouri-Rolla (United States))

    1992-12-30

    Fe[sub 2]N and Fe[sub 3]N films were deposited on an r.f. glow discharge by introducing Fe(CO)[sub 5] and NH[sub 3] into the reactor. The iron nitride films thus formed exhibited sheet conductivities in the range of 10[sup 2]-10[sup 3] ohm[sup -1] cm[sup -1]. They exhibited microhardness ranging from 578 to 659 kg mm[sup -2] on glass slides. The effects of the deposition temperature and the nature of the substrate material on the structure and composition of the films were investigated. An Fe[sub 4]N layer was formed on iron substrates at 400degC in the plasma nitriding process using NH[sub 3] as the gas source. The Fe[sub 4]N layer exhibited a microhardness of 230 kg mm[sup -2]. The effect of the temperature on the formation of the nitrided layer is discussed. (orig.).

  8. Study the gas sensing properties of boron nitride nanosheets

    International Nuclear Information System (INIS)

    Sajjad, Muhammad; Feng, Peter

    2014-01-01

    Graphical abstract: - Highlights: • We synthesized boron nitride nanosheets (BNNSs) on silicon substrate. • We analyzed gas sensing properties of BNNSs-based gas-sensor device. • CH 4 gas is used to measure gas-sensing properties of the device. • Quick response and recovery time of the device is recorded. • BNNSs showed excellent sensitivity to the working gas. - Abstract: In the present communication, we report on the synthesis of boron nitride nanosheets (BNNSs) and study of their gas sensing properties. BNNSs are synthesized by irradiating pyrolytic hexagonal boron nitride (h-BN) target using CO 2 laser pulses. High resolution transmission electron microscopic measurements (HRTEM) revealed 2-dientional honeycomb crystal lattice structure of BNNSs. HRTEM, electron diffraction, XRD and Raman scattering measurements clearly identified h-BN. Gas sensing properties of synthesized BNNSs were analyzed with prototype gas sensor using methane as working gas. A systematic response curve of the sensor is recorded in each cycle of gas “in” and “out”; suggesting excellent sensitivity and high performance of BNNSs-based gas-sensor

  9. Prospects of III-nitride optoelectronics grown on Si

    International Nuclear Information System (INIS)

    Zhu, D; Wallis, D J; Humphreys, C J

    2013-01-01

    The use of III-nitride-based light-emitting diodes (LEDs) is now widespread in applications such as indicator lamps, display panels, backlighting for liquid-crystal display TVs and computer screens, traffic lights, etc. To meet the huge market demand and lower the manufacturing cost, the LED industry is moving fast from 2 inch to 4 inch and recently to 6 inch wafer sizes. Although Al 2 O 3 (sapphire) and SiC remain the dominant substrate materials for the epitaxy of nitride LEDs, the use of large Si substrates attracts great interest because Si wafers are readily available in large diameters at low cost. In addition, such wafers are compatible with existing processing lines for 6 inch and larger wafers commonly used in the electronics industry. During the last decade, much exciting progress has been achieved in improving the performance of GaN-on-Si devices. In this contribution, the status and prospects of III-nitride optoelectronics grown on Si substrates are reviewed. The issues involved in the growth of GaN-based LED structures on Si and possible solutions are outlined, together with a brief introduction to some novel in situ and ex situ monitoring/characterization tools, which are especially useful for the growth of GaN-on-Si structures. (review article)

  10. Nanotube bundle oscillators: Carbon and boron nitride nanostructures

    International Nuclear Information System (INIS)

    Thamwattana, Ngamta; Hill, James M.

    2009-01-01

    In this paper, we investigate the oscillation of a fullerene that is moving within the centre of a bundle of nanotubes. In particular, certain fullerene-nanotube bundle oscillators, namely C 60 -carbon nanotube bundle, C 60 -boron nitride nanotube bundle, B 36 N 36 -carbon nanotube bundle and B 36 N 36 -boron nitride nanotube bundle are studied using the Lennard-Jones potential and the continuum approach which assumes a uniform distribution of atoms on the surface of each molecule. We address issues regarding the maximal suction energies of the fullerenes which lead to the generation of the maximum oscillation frequency. Since bundles are also found to comprise double-walled nanotubes, this paper also examines the oscillation of a fullerene inside a double-walled nanotube bundle. Our results show that the frequencies obtained for the oscillation within double-walled nanotube bundles are slightly higher compared to those of single-walled nanotube bundle oscillators. Our primary purpose here is to extend a number of established results for carbon to the boron nitride nanostructures.

  11. Tribology of nitrided-coated steel-a review

    Directory of Open Access Journals (Sweden)

    Bhaskar Santosh V.

    2017-01-01

    Full Text Available Surface engineering such as surface treatment, coating, and surface modification are employed to increase surface hardness, minimize adhesion, and hence, to reduce friction and improve resistance to wear. To have optimal tribological performance of Physical Vapor Deposition (PVD hard coating to the substrate materials, pretreatment of the substrate materials is always advisable to avoid plastic deformation of the substrate, which may result in eventual coating failure. The surface treatment results in hardening of the substrate and increase in load support effect. Many approaches aim to improve the adhesion of the coatings onto the substrate and nitriding is the one of the best suitable options for the same. In addition to tribological properties, nitriding leads to improved corrosion resistance. Often corrosion resistance is better than that obtainable with other surface engineering processes such as hard-chrome and nickel plating. Ability of this layer to withstand thermal stresses gives stability which extends the surface life of tools and other components exposed to heat. Most importantly, the nitrogen picked-up by the diffusion layer increases the rotating-bending fatigue strength in components. The present article reviews mainly the tribological advancement of different nitrided-coated steels based on the types of coatings, structure, and the tribo-testing parameters, in recent years.

  12. Tribology of nitrided-coated steel-a review

    Science.gov (United States)

    Bhaskar, Santosh V.; Kudal, Hari N.

    2017-01-01

    Surface engineering such as surface treatment, coating, and surface modification are employed to increase surface hardness, minimize adhesion, and hence, to reduce friction and improve resistance to wear. To have optimal tribological performance of Physical Vapor Deposition (PVD) hard coating to the substrate materials, pretreatment of the substrate materials is always advisable to avoid plastic deformation of the substrate, which may result in eventual coating failure. The surface treatment results in hardening of the substrate and increase in load support effect. Many approaches aim to improve the adhesion of the coatings onto the substrate and nitriding is the one of the best suitable options for the same. In addition to tribological properties, nitriding leads to improved corrosion resistance. Often corrosion resistance is better than that obtainable with other surface engineering processes such as hard-chrome and nickel plating. Ability of this layer to withstand thermal stresses gives stability which extends the surface life of tools and other components exposed to heat. Most importantly, the nitrogen picked-up by the diffusion layer increases the rotating-bending fatigue strength in components. The present article reviews mainly the tribological advancement of different nitrided-coated steels based on the types of coatings, structure, and the tribo-testing parameters, in recent years.

  13. Polarity Control in Group-III Nitrides beyond Pragmatism

    Science.gov (United States)

    Mohn, Stefan; Stolyarchuk, Natalia; Markurt, Toni; Kirste, Ronny; Hoffmann, Marc P.; Collazo, Ramón; Courville, Aimeric; Di Felice, Rosa; Sitar, Zlatko; Vennéguès, Philippe; Albrecht, Martin

    2016-05-01

    Controlling the polarity of polar semiconductors on nonpolar substrates offers a wealth of device concepts in the form of heteropolar junctions. A key to realize such structures is an appropriate buffer-layer design that, in the past, has been developed by empiricism. GaN or ZnO on sapphire are prominent examples for that. Understanding the basic processes that mediate polarity, however, is still an unsolved problem. In this work, we study the structure of buffer layers for group-III nitrides on sapphire by transmission electron microscopy as an example. We show that it is the conversion of the sapphire surface into a rhombohedral aluminum-oxynitride layer that converts the initial N-polar surface to Al polarity. With the various AlxOyNz phases of the pseudobinary Al2O3 -AlN system and their tolerance against intrinsic defects, typical for oxides, a smooth transition between the octahedrally coordinated Al in the sapphire and the tetrahedrally coordinated Al in AlN becomes feasible. Based on these results, we discuss the consequences for achieving either polarity and shed light on widely applied concepts in the field of group-III nitrides like nitridation and low-temperature buffer layers.

  14. III-nitride semiconductors and their modern devices

    CERN Document Server

    2013-01-01

    This book is dedicated to GaN and its alloys AlGaInN (III-V nitrides), semiconductors with intrinsic properties well suited for visible and UV light emission and electronic devices working at high temperature, high frequency, and harsh environments. There has been a rapid growth in the industrial activity relating to GaN, with GaN now ranking at the second position (after Si) among all semiconductors. This is mainly thanks to LEDs, but also to the emergence of lasers and high power and high frequency electronics. GaN-related research activities are also diversifying, ranging from advanced optical sources and single electron devices to physical, chemical, and biological sensors, optical detectors, and energy converters. All recent developments of nitrides and of their technology are gathered here in a single volume, with chapters written by world leaders in the field. This third book of the series edited by B. Gil is complementary to the preceding two, and is expected to offer a modern vision of nitrides and...

  15. Development of new ferritic alloys reinforced by nano titanium nitrides

    International Nuclear Information System (INIS)

    Mathon, M.H.; Perrut, M.; Poirier, L.; Ratti, M.; Hervé, N.; Carlan, Y. de

    2015-01-01

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH 2 powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy

  16. Development of new ferritic alloys reinforced by nano titanium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Mathon, M.H., E-mail: marie-helene.mathon@cea.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Perrut, M., E-mail: mikael.perrut@onera.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Poirier, L., E-mail: poirier@nitruvid.com [Bodycote France and Belgium, 9 r Jean Poulmarch, 95100 Argenteuil (France); Ratti, M., E-mail: mathieu.ratti@snecma.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France); Hervé, N., E-mail: nicolas.herve@cea.fr [CEA, DRT, LITEN, F38054 Grenoble (France); Carlan, Y. de, E-mail: yann.decarlan@cea.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France)

    2015-01-15

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH{sub 2} powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy.

  17. 21 CFR 73.2647 - Copper powder.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Copper powder. 73.2647 Section 73.2647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The color additive copper powder shall conform in identity and specifications to the requirements of § 73...

  18. Relative SHG measurements of metal thin films: Gold, silver, aluminum, cobalt, chromium, germanium, nickel, antimony, titanium, titanium nitride, tungsten, zinc, silicon and indium tin oxide

    Directory of Open Access Journals (Sweden)

    Franklin Che

    Full Text Available We have experimentally measured the surface second-harmonic generation (SHG of sputtered gold, silver, aluminum, zinc, tungsten, copper, titanium, cobalt, nickel, chromium, germanium, antimony, titanium nitride, silicon and indium tin oxide thin films. The second-harmonic response was measured in reflection using a 150 fs p-polarized laser pulse at 1561 nm. We present a clear comparison of the SHG intensity of these films relative to each other. Our measured relative intensities compare favorably with the relative intensities of metals with published data. We also report for the first time to our knowledge the surface SHG intensity of tungsten and antimony relative to that of well known metallic thin films such as gold and silver. Keywords: Surface second-harmonic generation, Nonlinear optics, Metal thin films

  19. Tribo-electrochemical characterization of hafnium multilayer systems deposited on nitride/vanadium nitride AISI 4140 steel

    Science.gov (United States)

    Mora, M.; Vera, E.; Aperador, W.

    2016-02-01

    In this work is presented the synergistic behaviour among corrosion/wear (tribocorrosion) of the multilayer coatings hafnium nitride/vanadium nitride [HfN/VN]n. The multilayers were deposited on AISI 4140 steel using the technique of physical vapor deposition PVD magnetron sputtering, the tests were performed using a pin-on-disk tribometer, which has an adapted potentiostat galvanostat with three-electrode electrochemical cell. Tribocorrosive parameters such as: Friction coefficient between the coating and the counter body (100 Cr6 steel ball); Polarization resistance by means of electrochemical impedance spectroscopy technique and corrosion rate by polarization curves were determined. It was observed an increase in the polarization resistance, a decrease in the corrosion rate and a low coefficient of friction in comparison with the substrate, due to an increase on the number of bilayers.

  20. Tribo-electrochemical characterization of hafnium multilayer systems deposited on nitride/vanadium nitride AISI 4140 steel

    International Nuclear Information System (INIS)

    Mora, M; Vera, E; Aperador, W

    2016-01-01

    In this work is presented the synergistic behaviour among corrosion/wear (tribocorrosion) of the multilayer coatings hafnium nitride/vanadium nitride [HfN/VN]n. The multilayers were deposited on AISI 4140 steel using the technique of physical vapor deposition PVD magnetron sputtering, the tests were performed using a pin-on-disk tribometer, which has an adapted potentiostat galvanostat with three-electrode electrochemical cell. Tribocorrosive parameters such as: Friction coefficient between the coating and the counter body (100 Cr6 steel ball); Polarization resistance by means of electrochemical impedance spectroscopy technique and corrosion rate by polarization curves were determined. It was observed an increase in the polarization resistance, a decrease in the corrosion rate and a low coefficient of friction in comparison with the substrate, due to an increase on the number of bilayers. (paper)

  1. Waste conversion into high-value ceramics: Carbothermal nitridation synthesis of titanium nitride nanoparticles using automotive shredder waste.

    Science.gov (United States)

    Mayyas, Mohannad; Pahlevani, Farshid; Maroufi, Samane; Liu, Zhao; Sahajwalla, Veena

    2017-03-01

    Environmental concern about automotive shredder residue (ASR) has increased in recent years due to its harmful content of heavy metals. Although several approaches of ASR management have been suggested, these approaches remain commercially unproven. This study presents an alternative approach for ASR management where advanced materials can be generated as a by-product. In this approach, titanium nitride (TiN) has been thermally synthesized by nitriding pressed mixture of automotive shredder residue (ASR) and titanium oxide (TiO 2 ). Interactions between TiO 2 and ASR at non-isothermal conditions were primarily investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry. Results indicated that TiO 2 influences and catalyses degradation reactions of ASR, and the temperature, at which reduction starts, was determined around 980 °C. The interaction between TiO 2 and ASR at isothermal conditions in the temperature range between 1200 and 1550 °C was also studied. The pressed mixture of both materials resulted in titanium nitride (TiN) ceramic at all given temperatures. Formation kinetics were extracted using several models for product layer diffusion-controlled solid-solid and solid-fluid reactions. The effect of reactants ratio and temperature on the degree of conversion and morphology was investigated. The effect of reactants ratio was found to have considerable effect on the morphology of the resulting material, while temperature had a lesser impact. Several unique structures of TiN (porous nanostructured, polycrystalline, micro-spherical and nano-sized structures) were obtained by simply tuning the ratio of TiO 2 to ASR, and a product with appreciable TiN content of around 85% was achieved after only one hour nitridation at 1550 °C. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Crystallo-chemistry of actinide nitrides (U1-yPuy)N and effect of impurities

    International Nuclear Information System (INIS)

    Beauvy, M.; Coulon-Picard, E.; Pelletier, M.

    2004-01-01

    Investigations on actinide nitrides has been done in our Laboratories for Fast Breeder Reactors since the seventies and some properties are reported to show the interest for these fuels. Today, the actinide nitrides are reconsidered as possible fuels for the future fission reactors (GFR and LMFR selected by the international forum Generation IV). The results of new investigations on crystal structure of mixed mono-nitrides (U,Pu)N, and the effects of oxygen and carbon contaminations on this structure are presented. The cubic 'NaCl-fcc' type structure of actinide nitrides AnN with space group O5/h-Fm3m does not respect the 'Vegard law' model for the mixed nitrides (U 1-y Pu y )N. These nitrides are usually considered with strong metallic character associated with partial ionic bonding, but the ionic contribution in the An-N bonding determined in this work is very important and near 41.6% for UN and PuN. From results published on resistivity of mixed nitrides, the data on bonding must be also modified for partial covalence. This is in good agreement with the experimental lattice parameters which are not compatible with dominant metallic bonding. The numbers of bonding electrons in the nitrides (U 1-y Pu y )N are reevaluated and the low values proposed comparatively with those previously published confirm the strong ionic character with high concentration of An 3+ ions. The solubility of oxygen and carbon in actinide nitrides (U 1-y Pu y )N are discussed from measurements on volume concentration of actinide oxide phase, total oxygen and carbon contents, and lattice parameter of nitrides. The oxygen solubility limit in UN is near 1000 ppm, with a lightly higher value of 1200 ppm for the mixed nitride (U 0.8 Pu 0.2 )N. The effects of oxygen or carbon atoms in the lattice of (U 1-y Pu y )N are analysed

  3. Surface Texturing-Plasma Nitriding Duplex Treatment for Improving Tribological Performance of AISI 316 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Naiming Lin

    2016-10-01

    Full Text Available Surface texturing-plasma nitriding duplex treatment was conducted on AISI 316 stainless steel to improve its tribological performance. Tribological behaviors of ground 316 substrates, plasma-nitrided 316 (PN-316, surface-textured 316 (ST-316, and duplex-treated 316 (DT-316 in air and under grease lubrication were investigated using a pin-on-disc rotary tribometer against counterparts of high carbon chromium bearing steel GCr15 and silicon nitride Si3N4 balls. The variations in friction coefficient, mass loss, and worn trace morphology of the tested samples were systemically investigated and analyzed. The results showed that a textured surface was formed on 316 after electrochemical processing in a 15 wt % NaCl solution. Grooves and dimples were found on the textured surface. As plasma nitriding was conducted on a 316 substrate and ST-316, continuous and uniform nitriding layers were successfully fabricated on the surfaces of the 316 substrate and ST-316. Both of the obtained nitriding layers presented thickness values of more than 30 μm. The nitriding layers were composed of iron nitrides and chromium nitride. The 316 substrate and ST-316 received improved surface hardness after plasma nitriding. When the tribological tests were carried out under dry sliding and grease lubrication conditions, the tested samples showed different tribological behaviors. As expected, the DT-316 samples revealed the most promising tribological properties, reflected by the lowest mass loss and worn morphologies. The DT-316 received the slightest damage, and its excellent tribological performance was attributed to the following aspects: firstly, the nitriding layer had high surface hardness; secondly, the surface texture was able to capture wear debris, store up grease, and then provide continuous lubrication.

  4. Copper nanoparticles in zeolite Y

    NARCIS (Netherlands)

    Seidel, A.; Loos, J.; Boddenberg, B.

    1999-01-01

    CuCl has been dispersed in the supercages of a Y-type zeolite by heating a mechanical salt/host mixture in vacuo. The occluded salt was subsequently reduced to copper metal in a hydrogen atmosphere. Virtually complete reduction of the salt is achieved at 460°C. Under the same conditions,

  5. Effects of copper on mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Kostal, L

    1971-01-01

    The author deals with the effects of copper on mitosis. He found that a Cu concentration of 1 mg per liter is very toxic and strongly inhibits the course of mitosis in Vicia fabia. The effects of 0.5 mg and 0.25 mg Cu concentrations per liter were similar but a much weaker character.

  6. Copper complexes as chemical nucleases

    Indian Academy of Sciences (India)

    Unknown

    anticancer drug famotidine has been shown as a better catalyst than CuCl2 for sulfite ... Effect of addition of bis-chelate copper(II) complexes (dpq, •; phen, ; ..... Reproduction, Development & Genetics for their help in the DNA cleavage studies ...

  7. Copper, lead and zinc production

    International Nuclear Information System (INIS)

    Ayers, J.; Ternan, S.

    2001-01-01

    This chapter provides information on the by-products and residues generated during the production of copper, lead and zinc. The purpose of this chapter is to describe by-products and residues which are generated, how these may be avoided or minimised, and available options for the utilization and management of residues. (author)

  8. on THICKNESS OF COPPER (|) OXIDE

    African Journals Online (AJOL)

    2006-12-20

    Dec 20, 2006 ... known materials to be used as semiconductor devices. The oxide is. Observed to be an attractive starting material for the production of solar cells for low cost terrestrial conversion of solar energy to electricity. Copper (I) oxide is one Of the earliest known photovoltaic materials and the first in which the ...

  9. Lab Tracker and Copper Calculator

    Science.gov (United States)

    ... have to do with factors of asymmetric neurologic development, such as being right or left-handed. The copper is often seen most prominently in the basal ganglia, the area deep within the brain that coordinates movements. The face of the giant ...

  10. Crystallization of copper metaphosphate glass

    Science.gov (United States)

    Bae, Byeong-Soo; Weinberg, Michael C.

    1993-01-01

    The effect of the valence state of copper in copper metaphosphate glass on the crystallization behavior and glass transition temperature has been investigated. The crystallization of copper metaphosphate is initiated from the surface and its main crystalline phase is copper metaphosphate (Cu(PO)3),independent of the (Cu sup 2+)/(Cu(total)). However, the crystal morphology, the relative crystallization rates, and their temperature dependences are affected by the (Cu sup 2+)/(Cu (total)) ratio in the glass. On the other hand, the totally oxidized glass crystallizes from all over the surface. The relative crystallization rate of the reduced glass to the totally oxidized glass is large at low temperature, but small at high temperature. The glass transition temperature of the glass increases as the (Cu sup 2+)/(Cu(total)) ratio is raised. It is also found that the atmosphere used during heat treatment does not influence the crystallization of the reduced glass, except for the formation of a very thin CuO surface layer when heated in air.

  11. COPPER CORROSION AND SOLUBILITY RESEARCH

    Science.gov (United States)

    This poster provides a very cursory summary of TTEB in-house copper research experimental systems, and extramural research projects. The field studies summarized are the Indian Hill (OH) study of the use of orthophosphate for reducing cuprosolvency in a high alkalinity water, an...

  12. Spectroscopic studies of copper enzymes

    International Nuclear Information System (INIS)

    Dooley, D.M.; Moog, R.; Zumft, W.; Koenig, S.H.; Scott, R.A.; Cote, C.E.; McGuirl, M.

    1986-01-01

    Several spectroscopic methods, including absorption, circular dichroism (CD), magnetic CD (MCD), X-ray absorption, resonance Raman, EPR, NMR, and quasi-elastic light-scattering spectroscopy, have been used to probe the structures of copper-containing amine oxidases, nitrite reductase, and nitrous oxide reductase. The basic goals are to determine the copper site structure, electronic properties, and to generate structure-reactivity correlations. Collectively, the results on the amine oxidases permit a detailed model for the Cu(II) sites in these enzymes to be constructed that, in turn, rationalizes the ligand-binding chemistry. Resonance Raman spectra of the phenylhydrazine and 2,4-dinitrophenyl-hydrazine derivatives of bovine plasma amine oxidase and models for its organic cofactor, e.g. pyridoxal, methoxatin, are most consistent with methoxatin being the intrinsic cofactor. The structure of the Cu(I) forms of the amine oxidases have been investigated by X-ray absorption spectroscopy (XAS); the copper coordination geometry is significantly different in the oxidized and reduced forms. Some anomalous properties of the amine oxidases in solution are explicable in terms of their reversible aggregation, which the authors have characterized via light scattering. Nitrite and nitrous oxide reductases display several novel spectral properties. The data suggest that new types of copper sites are present

  13. A Study of Protection of Copper Alloys

    International Nuclear Information System (INIS)

    Kim, E. A.; Kim, S. H.; Kim, C. R.

    1974-01-01

    Volatile treatment of high capacity boiler water with hydrazine and ammonia is studied. Ammonia comes from the decomposition of excess hydrazine injected to treat dissolved oxygen. Ammonia is also injected for the control of pH. To find an effect of such ammonia on the copper alloy, the relations between pH and iron, and ammonia and copper are studied. Since the dependence of corrosion of iron on pH differs from that of copper, a range of pH was selected experimentally to minimize the corrosion rates of both copper and iron. Corrosion rates of various copper alloys are also compared

  14. Electrochemical remediation of copper contaminated clay soils

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.A.; Babakina, O.A.; Mitojan, R.A. [Moscow State Univ. (Russian Federation)

    2001-07-01

    The study objective focused on electrochemical remediation copper polluted soils in the presence of adjuvant substances and conditions that are more effective for the treatment. Some of these substances were studied in different researches. Moreover, authors obtained a result of extraction copper rate higher than 90%. In this connection the following problems were set: - Influence organic and inorganic substances on copper mobility in soil under the DC current. - Moisture effect on copper migration in clay. - Electrochemical remediation soils different mineralogical composition. - A washing conditions contribution to electrochemical remediation of soil from copper. - Accuracy rating experimental dates. (orig.)

  15. Tribological properties of copper-based composites with copper coated NbSe2 and CNT

    International Nuclear Information System (INIS)

    Chen, Beibei; Yang, Jin; Zhang, Qing; Huang, Hong; Li, Hongping; Tang, Hua; Li, Changsheng

    2015-01-01

    Graphical abstract: Morphology of copper coated NbSe 2 and CNT; friction coefficient and wear rate of copper-based composites. - Highlights: • NbSe 2 and CNT were coated with copper layers by the means of electroless plating. • The mechanical and tribological properties of copper composites were studied. • The enhancement mechanisms of copper coated NbSe 2 and CNT were proposed. • Copper–copper coated (12 wt.%NbSe 2 –3 wt.%CNT) composite had the best wear resistance. - Abstract: Copper-based composites with copper coated NbSe 2 and/or CNT were fabricated by the powder metallurgy technique. The morphology and phase composition of copper coated NbSe 2 and carbon nanotube (CNT) were observed using high solution transmission electronic microscope (HRTEM), scanning electronic microscope (SEM equipped with EDS) and X-ray diffraction (XRD). The density, hardness, and bending strength of as-prepared copper-based composites were measured, and their tribological properties were investigated using UMT-2 tester. Results indicated that all copper-based composites showed decreased density and bending strength, but increased hardness in comparison with copper matrix. Besides, the incorporation of copper coated NbSe 2 improved the friction-reducing and anti-wear properties of copper matrix. Addition of copper coated CNT greatly enhanced the mechanical and tribological properties. In particular, when the content of copper coated CNT was 3 wt.%, the corresponding composite exhibited the best tribological properties. This was because NbSe 2 was distributed chaotically in matrix, which greatly improved the friction-reducing property of copper, while CNT with superior mechanical strength enhanced the wear resistance by increasing the load-carrying capacity. More importantly, copper layers coated on NbSe 2 and CNT favored the good interfacial combination between fillers and copper matrix showing beneficial effect for the stresses transferring from matrix to fillers

  16. Reactivity test between beryllium and copper

    International Nuclear Information System (INIS)

    Kawamura, H.; Kato, M.

    1995-01-01

    Beryllium has been expected for using as plasma facing material on ITER. And, copper alloy has been proposed as heat sink material behind plasma facing components. Therefore, both materials must be joined. However, the elementary process of reaction between beryllium and copper alloy does not clear in detail. For example, other authors reported that beryllium reacted with copper at high temperature, but it was not obvious about the generation of reaction products and increasing of the reaction layer. In the present work, from this point, for clarifying the elementary process of reaction between beryllium and copper, the out-of-pile compatibility tests were conducted with diffusion couples of beryllium and copper which were inserted in the capsule filled with high purity helium gas (6N). Annealing temperatures were 300, 400, 500, 600 and 700 degrees C, and annealing periods were 100, 300 and 1000h. Beryllium specimens were hot pressed beryllium, and copper specimens were OFC (Oxygen Free Copper)

  17. Neutronic study using oxide and nitride fuels for the Super Phenix 2 reactor

    International Nuclear Information System (INIS)

    Batista, J.L.; Renke, C.A.C.

    1991-11-01

    This report presents a neutronic analysis and a description of the Super Phenix 2 reactor, taken as reference. We present the methodology and results for cell and global reactor calculations for oxide (U O 2 - Pu O 2 ) and nitride (U N - Pu N) fuels. To conclude we compare the performance of oxide and nitride fuels for the reference reactor. (author)

  18. High-rate silicon nitride deposition for photovoltaics : from fundamentals to industrial application

    NARCIS (Netherlands)

    Kessels, W.M.M.; Oever, van den P.J.; Bosch, R.C.M.; Bijker, M.D.; Evers, M.F.J.; Schram, D.C.; Sanden, van de M.C.M.

    2005-01-01

    The development of a novel plasma technique for high rate (> 1 nm/s) silicon nitride deposition for multifunctional antireflection coatings on crystalline silicon solar cells is described. The research has involved the analysis of the structural and optical properties of the silicon nitride films as

  19. High-rate silicon nitride deposition for photovoltaics : from fundamentals to industrial application

    NARCIS (Netherlands)

    Kessels, W.M.M.; Oever, van den P.J.; Bosch, R.C.M.; Bijker, M.D.; Evers, M.F.J.; Schram, D.C.; Sanden, van de M.C.M.

    2004-01-01

    The development of a novel plasma technique for high rate (> 1 nm/s) silicon nitride deposition for multifunctional antireflection coatings on crystalline silicon solar cells is described. The research has involved the analysis of the structural and optical properties of the silicon nitride films as

  20. Effects of Ion-Nitriding on the Pitting Behavior of Austenitic Stainless Steels Containing Mo

    International Nuclear Information System (INIS)

    Cho, Yong Seok; Choe, Han Cheol; Kim, Kwan Hyu

    1994-01-01

    Austenitic stainless steels(ASS) containing 1-4wt% Mo were ion-nitrided at 550 .deg. C for 20hrs and 30hrs, and their pitting behavior was examined by the electrochemical measurements. The formation of multiphase surface layers composed of the ε-{(Fe, Cr) 2- 3N} and the γ'-{(Fe, Cr) 4 N} phases was observed after ion-nitriding. The compound layers were approximately 50 μm thick after nitriding for 20hrs and 70 μm thick after 30hrs. Anodic polarization curves indicated that passive current density(I p ) and critical current density(I c ) increased, and corrosion potential(E corr ) decreased as a results of ion-nitriding. As the Mo content in the ion-nitrided ASS increased, passivation breakdown potential(E b ) and repassivation potential(E r ) increased, whereas I c and I p decreased. The pit nucleation time of the ASS nitrided for 20hrs was 10 minutes, while that of the 30hr nitrided samples was 3 minutes. The nucleation and growth of pits were significantly increased with the decreasing of Mo content as well as the increasing of ion-nitriding time